7.7.20. Washing Machine Regression
Predict washing machine load weight from sensor data.
7.7.20.1. Overview
This example demonstrates load weight estimation for washing machines using motor current and vibration data. Accurate load estimation enables optimal water and detergent dosing, improving efficiency and wash quality.
Application: Smart appliances, home automation, energy efficiency
Task Type: Time Series Regression
Data Type: Multivariate (motor and sensor data)
7.7.20.2. Configuration
common:
target_module: 'timeseries'
task_type: 'generic_timeseries_regression'
target_device: 'MSPM0G5187'
dataset:
dataset_name: 'reg_washing_machine'
training:
model_name: 'REGR_2k_NPU'
training_epochs: 50
batch_size: 32
testing: {}
compilation: {}
7.7.20.3. Running the Example
cd tinyml-modelzoo
./run_tinyml_modelzoo.sh examples/reg_washing_machine/config.yaml
cd tinyml-modelzoo
run_tinyml_modelzoo.bat examples\reg_washing_machine\config.yaml
7.7.20.4. Dataset Details
Input Variables:
Motor current
Drum speed
Vibration sensor data
Output:
Load weight (continuous value in kg)
7.7.20.5. Results
Float Model Predictions:
Actual vs predicted load weight using float model
Quantized Model Predictions:
Actual vs predicted load weight using quantized model