7.7.9. Fan Blade Fault Classification
Detect faults in BLDC fans from accelerometer data.
7.7.9.1. Overview
This example demonstrates fault detection in brushless DC (BLDC) fans using vibration data from accelerometers. It can identify various fault conditions including blade damage, bearing wear, and imbalance.
Application: Cooling systems, industrial fans, computer hardware
Task Type: Time Series Classification
Data Type: Multivariate (accelerometer X, Y, Z axes)
7.7.9.2. Demo Setup
Hardware setup for fan blade fault classification demo
7.7.9.3. Fault Types
The model can identify various fault conditions:
7.7.9.4. Configuration
common:
target_module: 'timeseries'
task_type: 'generic_timeseries_classification'
target_device: 'F28P55'
dataset:
dataset_name: 'fan_blade_fault_classification'
training:
model_name: 'CLS_4k_NPU'
training_epochs: 50
batch_size: 32
testing: {}
compilation: {}
7.7.9.5. Running the Example
cd tinyml-modelzoo
./run_tinyml_modelzoo.sh examples/fan_blade_fault_classification/config.yaml
cd tinyml-modelzoo
run_tinyml_modelzoo.bat examples\fan_blade_fault_classification\config.yaml
7.7.9.6. Dataset Details
Input Variables:
Accelerometer X-axis
Accelerometer Y-axis
Accelerometer Z-axis
Classes:
Normal operation
Blade fault
Bearing fault
Imbalance
7.7.9.7. Results and Analysis
ROC Curves:
One-vs-Rest Multi-class ROC curves showing excellent classification performance
Class Score Histogram:
Distribution of class score differences
Feature Extraction Quality:
PCA visualization showing class separation in feature space
7.7.9.8. Anomaly Detection Variant
This example also supports anomaly detection mode:
./run_tinyml_modelzoo.sh examples/fan_blade_fault_classification/config_anomaly_detection.yaml
Reconstruction Error Analysis:
Reconstruction error distribution for anomaly detection
7.7.9.9. See Also
Blower Imbalance - Current-based imbalance detection