7.7.11. Grid Stability
Predict power grid stability from node parameters.
7.7.11.1. Overview
This example predicts the stability of a power grid based on node-level parameters. It helps operators anticipate instability conditions and take preventive actions before grid failures occur.
Application: Smart grid, power system operation, renewable energy integration
Task Type: Time Series Classification
Data Type: Multivariate (node parameters)
Four-Node Star Network:
Four-node star network used for grid stability analysis
7.7.11.2. Configuration
common:
target_module: 'timeseries'
task_type: 'generic_timeseries_classification'
target_device: 'F28P55'
dataset:
dataset_name: 'grid_stability'
training:
model_name: 'CLS_4k_NPU'
training_epochs: 50
batch_size: 32
testing: {}
compilation: {}
7.7.11.3. Running the Example
cd tinyml-modelzoo
./run_tinyml_modelzoo.sh examples/grid_stability/config.yaml
cd tinyml-modelzoo
run_tinyml_modelzoo.bat examples\grid_stability\config.yaml
7.7.11.4. Dataset Details
Input Variables:
Reaction time of participants
Power consumed/produced
Price elasticity coefficients
Other node parameters
Classes:
Stable
Unstable
7.7.11.5. See Also
Electrical Fault - Transmission line fault classification