13.2. Model Zoo Reference
Complete reference of all available models in Tiny ML Tensorlab’s model zoo.
13.2.1. Classification Models
13.2.1.1. Standard Classification
For non-NPU devices:
Model Name |
Parameters |
Description |
|---|---|---|
|
~100 |
Minimal, very simple tasks |
|
~500 |
Small, simple classification |
|
~1,000 |
Baseline classification |
|
~2,000 |
Medium complexity |
|
~4,000 |
Good accuracy |
|
~6,000 |
Higher accuracy |
|
~13,000 |
Complex classification |
13.2.1.2. NPU Classification
For NPU-enabled devices (F28P55, AM13E2, MSPM0G5187):
Model Name |
Parameters |
Description |
|---|---|---|
|
~100 |
Minimal NPU model |
|
~500 |
Small NPU model |
|
~1,000 |
Baseline NPU model |
|
~2,000 |
Medium NPU model |
|
~4,000 |
Recommended NPU model |
|
~6,000 |
Larger NPU model |
|
~13,000 |
Large NPU model |
|
~20,000 |
Very large NPU model |
|
~55,000 |
Maximum NPU model |
13.2.1.3. Application-Specific Classification
Arc Fault Models:
Model Name |
Parameters |
Description |
|---|---|---|
|
~200 |
Minimal arc fault detection |
|
~400 |
Balanced arc fault |
|
~800 |
Higher accuracy arc fault |
|
~1,400 |
Maximum arc fault accuracy |
Motor Fault Models:
Model Name |
Parameters |
Description |
|---|---|---|
|
~1,000 |
Baseline motor fault |
|
~2,000 |
Improved motor fault |
|
~4,000 |
Best motor fault accuracy |
13.2.2. Regression Models
13.2.2.1. Standard Regression
Model Name |
Parameters |
Description |
|---|---|---|
|
~500 |
Small regression |
|
~1,000 |
Baseline regression |
|
~2,000 |
Medium regression |
|
~4,000 |
Good accuracy |
|
~8,000 |
Higher accuracy |
13.2.2.2. NPU Regression
Model Name |
Parameters |
Description |
|---|---|---|
|
~500 |
Small NPU regression |
|
~1,000 |
Baseline NPU regression |
|
~2,000 |
Medium NPU regression |
|
~4,000 |
Recommended NPU regression |
|
~8,000 |
Large NPU regression |
|
~20,000 |
Maximum NPU regression |
13.2.3. Anomaly Detection Models
Autoencoder-based models for anomaly detection.
13.2.3.1. Standard AD
Model Name |
Parameters |
Description |
|---|---|---|
|
~500 |
Small autoencoder |
|
~1,000 |
Baseline autoencoder |
|
~2,000 |
Medium autoencoder |
|
~4,000 |
Good complexity |
|
~8,000 |
Higher complexity |
13.2.3.2. NPU AD
Model Name |
Parameters |
Description |
|---|---|---|
|
~500 |
Small NPU autoencoder |
|
~1,000 |
Baseline NPU autoencoder |
|
~2,000 |
Medium NPU autoencoder |
|
~4,000 |
Recommended NPU autoencoder |
|
~8,000 |
Large NPU autoencoder |
|
~20,000 |
Maximum NPU autoencoder |
13.2.4. Forecasting Models
13.2.4.1. Standard Forecasting
Model Name |
Parameters |
Description |
|---|---|---|
|
~500 |
Small forecasting |
|
~1,000 |
Baseline forecasting |
|
~2,000 |
Medium forecasting |
|
~4,000 |
Good accuracy |
|
~8,000 |
Higher accuracy |
13.2.4.2. NPU Forecasting
Model Name |
Parameters |
Description |
|---|---|---|
|
~500 |
Small NPU forecasting |
|
~1,000 |
Baseline NPU forecasting |
|
~2,000 |
Medium NPU forecasting |
|
~4,000 |
Recommended NPU forecasting |
|
~8,000 |
Large NPU forecasting |
|
~20,000 |
Maximum NPU forecasting |
13.2.5. Image Classification Models
Model Name |
Parameters |
Description |
|---|---|---|
|
~10,000 |
Minimal image model |
|
~50,000 |
Small image model |
|
~100,000 |
Medium image model |
|
~20,000 |
Simple custom CNN |
13.2.6. Model Selection Guide
By Device Type:
Device Class |
Recommended Models |
Max Size |
|---|---|---|
Entry-level M0+ |
|
~1k params |
Mid-range |
|
~4k params |
High-performance |
|
~13k params |
NPU devices |
|
~55k params |
By Task Complexity:
Task Complexity |
Classes/Output |
Recommended Size |
|---|---|---|
Simple (2 classes) |
Binary |
100-500 params |
Moderate (3-5 classes) |
Few classes |
1k-2k params |
Complex (6+ classes) |
Many classes |
4k+ params |
Very complex |
High accuracy needed |
6k-13k params |
13.2.7. Model Architecture Details
Classification Architecture (CLS_*k_NPU):
Input (1, 512, 1)
├── Conv1: 1→4 ch, kernel=5
├── BN + ReLU
├── MaxPool: 2x1
├── Conv2: 4→8 ch, kernel=5
├── BN + ReLU
├── MaxPool: 2x1
├── Conv3: 8→16 ch, kernel=3
├── BN + ReLU
├── Flatten
└── FC: → num_classes
Anomaly Detection Architecture (AD_*k_NPU):
Encoder:
├── Conv1: 1→4 ch
├── Conv2: 4→8 ch
└── Conv3: 8→bottleneck
Decoder:
├── ConvT1: bottleneck→8 ch
├── ConvT2: 8→4 ch
└── ConvT3: 4→1 ch
13.2.8. Using Models
In Configuration:
training:
model_name: 'CLS_4k_NPU'
Listing Available Models:
from tinyml_tinyverse.common.models import MODEL_REGISTRY
print(list(MODEL_REGISTRY.keys()))
Model Information:
from tinyml_tinyverse.common.models import MODEL_REGISTRY
model_class = MODEL_REGISTRY['CLS_4k_NPU']
model = model_class(config={}, input_features=512, variables=1, num_classes=2)
params = sum(p.numel() for p in model.parameters())
print(f"Parameters: {params}")