13.2. Model Zoo Reference

Complete reference of all available models in Tiny ML Tensorlab’s model zoo.

13.2.1. Classification Models

13.2.1.1. Standard Classification

For non-NPU devices:

Model Name

Parameters

Description

CLS_100

~100

Minimal, very simple tasks

CLS_500

~500

Small, simple classification

CLS_1k

~1,000

Baseline classification

CLS_2k

~2,000

Medium complexity

CLS_4k

~4,000

Good accuracy

CLS_6k

~6,000

Higher accuracy

CLS_13k

~13,000

Complex classification

13.2.1.2. NPU Classification

For NPU-enabled devices (F28P55, AM13E2, MSPM0G5187):

Model Name

Parameters

Description

CLS_100_NPU

~100

Minimal NPU model

CLS_500_NPU

~500

Small NPU model

CLS_1k_NPU

~1,000

Baseline NPU model

CLS_2k_NPU

~2,000

Medium NPU model

CLS_4k_NPU

~4,000

Recommended NPU model

CLS_6k_NPU

~6,000

Larger NPU model

CLS_13k_NPU

~13,000

Large NPU model

CLS_20k_NPU

~20,000

Very large NPU model

CLS_55k_NPU

~55,000

Maximum NPU model

13.2.1.3. Application-Specific Classification

Arc Fault Models:

Model Name

Parameters

Description

ArcFault_model_200_t

~200

Minimal arc fault detection

ArcFault_model_400_t

~400

Balanced arc fault

ArcFault_model_800_t

~800

Higher accuracy arc fault

ArcFault_model_1400_t

~1,400

Maximum arc fault accuracy

Motor Fault Models:

Model Name

Parameters

Description

MotorFault_model_1_t

~1,000

Baseline motor fault

MotorFault_model_2_t

~2,000

Improved motor fault

MotorFault_model_3_t

~4,000

Best motor fault accuracy

13.2.2. Regression Models

13.2.2.1. Standard Regression

Model Name

Parameters

Description

REGR_500

~500

Small regression

REGR_1k

~1,000

Baseline regression

REGR_2k

~2,000

Medium regression

REGR_4k

~4,000

Good accuracy

REGR_8k

~8,000

Higher accuracy

13.2.2.2. NPU Regression

Model Name

Parameters

Description

REGR_500_NPU

~500

Small NPU regression

REGR_1k_NPU

~1,000

Baseline NPU regression

REGR_2k_NPU

~2,000

Medium NPU regression

REGR_4k_NPU

~4,000

Recommended NPU regression

REGR_8k_NPU

~8,000

Large NPU regression

REGR_20k_NPU

~20,000

Maximum NPU regression

13.2.3. Anomaly Detection Models

Autoencoder-based models for anomaly detection.

13.2.3.1. Standard AD

Model Name

Parameters

Description

AD_500

~500

Small autoencoder

AD_1k

~1,000

Baseline autoencoder

AD_2k

~2,000

Medium autoencoder

AD_4k

~4,000

Good complexity

AD_8k

~8,000

Higher complexity

13.2.3.2. NPU AD

Model Name

Parameters

Description

AD_500_NPU

~500

Small NPU autoencoder

AD_1k_NPU

~1,000

Baseline NPU autoencoder

AD_2k_NPU

~2,000

Medium NPU autoencoder

AD_4k_NPU

~4,000

Recommended NPU autoencoder

AD_8k_NPU

~8,000

Large NPU autoencoder

AD_20k_NPU

~20,000

Maximum NPU autoencoder

13.2.4. Forecasting Models

13.2.4.1. Standard Forecasting

Model Name

Parameters

Description

FCST_500

~500

Small forecasting

FCST_1k

~1,000

Baseline forecasting

FCST_2k

~2,000

Medium forecasting

FCST_4k

~4,000

Good accuracy

FCST_8k

~8,000

Higher accuracy

13.2.4.2. NPU Forecasting

Model Name

Parameters

Description

FCST_500_NPU

~500

Small NPU forecasting

FCST_1k_NPU

~1,000

Baseline NPU forecasting

FCST_2k_NPU

~2,000

Medium NPU forecasting

FCST_4k_NPU

~4,000

Recommended NPU forecasting

FCST_8k_NPU

~8,000

Large NPU forecasting

FCST_20k_NPU

~20,000

Maximum NPU forecasting

13.2.5. Image Classification Models

Model Name

Parameters

Description

MobileNetV2_Tiny

~10,000

Minimal image model

MobileNetV2_Small

~50,000

Small image model

MobileNetV2_Medium

~100,000

Medium image model

CustomCNN_Small

~20,000

Simple custom CNN

13.2.6. Model Selection Guide

By Device Type:

Device Class

Recommended Models

Max Size

Entry-level M0+

*_100, *_500

~1k params

Mid-range

*_1k, *_2k

~4k params

High-performance

*_4k, *_6k

~13k params

NPU devices

*_NPU variants

~55k params

By Task Complexity:

Task Complexity

Classes/Output

Recommended Size

Simple (2 classes)

Binary

100-500 params

Moderate (3-5 classes)

Few classes

1k-2k params

Complex (6+ classes)

Many classes

4k+ params

Very complex

High accuracy needed

6k-13k params

13.2.7. Model Architecture Details

Classification Architecture (CLS_*k_NPU):

Input (1, 512, 1)
├── Conv1: 1→4 ch, kernel=5
├── BN + ReLU
├── MaxPool: 2x1
├── Conv2: 4→8 ch, kernel=5
├── BN + ReLU
├── MaxPool: 2x1
├── Conv3: 8→16 ch, kernel=3
├── BN + ReLU
├── Flatten
└── FC: → num_classes

Anomaly Detection Architecture (AD_*k_NPU):

Encoder:
├── Conv1: 1→4 ch
├── Conv2: 4→8 ch
└── Conv3: 8→bottleneck

Decoder:
├── ConvT1: bottleneck→8 ch
├── ConvT2: 8→4 ch
└── ConvT3: 4→1 ch

13.2.8. Using Models

In Configuration:

training:
  model_name: 'CLS_4k_NPU'

Listing Available Models:

from tinyml_tinyverse.common.models import MODEL_REGISTRY
print(list(MODEL_REGISTRY.keys()))

Model Information:

from tinyml_tinyverse.common.models import MODEL_REGISTRY

model_class = MODEL_REGISTRY['CLS_4k_NPU']
model = model_class(config={}, input_features=512, variables=1, num_classes=2)
params = sum(p.numel() for p in model.parameters())
print(f"Parameters: {params}")