7.7.6. AC Arc Fault
Detect AC arc faults in electrical systems using current waveform analysis.
7.7.6.1. Overview
AC arc faults occur when electrical current flows through an unintended path, often caused by damaged insulation, loose connections, or worn conductors. This example demonstrates how to detect these dangerous conditions using machine learning on current sensor data.
Application: Electrical safety systems, circuit breakers, residential/commercial protection
Task Type: Time Series Classification
Data Type: Univariate (current waveform)
7.7.6.2. Configuration
common:
target_module: 'timeseries'
task_type: 'generic_timeseries_classification'
target_device: 'F28P55'
dataset:
dataset_name: 'ac_arc_fault'
training:
model_name: 'ArcFault_model_700_t'
training_epochs: 50
batch_size: 32
testing: {}
compilation: {}
7.7.6.3. Running the Example
cd tinyml-modelzoo
./run_tinyml_modelzoo.sh examples/ac_arc_fault/config.yaml
cd tinyml-modelzoo
run_tinyml_modelzoo.bat examples\ac_arc_fault\config.yaml
7.7.6.4. Dataset Details
The AC arc fault dataset contains current waveforms sampled during normal operation and various arc fault conditions.
Classes:
Normal operation
Arc fault conditions
Input Features: Current waveform samples
7.7.6.5. Recommended Models
Model |
Parameters |
Use Case |
|---|---|---|
|
~200 |
Minimal footprint |
|
~300 |
Balanced |
|
~700 |
Higher accuracy |
|
~1,400 |
Maximum accuracy |
7.7.6.6. See Also
Arc Fault Detection - DC arc fault detection