7.7.13. Human Activity Recognition
Classify human activities from accelerometer and gyroscope data.
7.7.13.1. Overview
This example demonstrates Human Activity Recognition (HAR) using inertial sensor data. It classifies activities such as walking, running, sitting, and standing based on accelerometer and gyroscope readings.
Application: Wearables, fitness trackers, smart home, elderly care
Task Type: Time Series Classification
Data Type: Multivariate (accelerometer + gyroscope)
Note
This example uses a branched model architecture for improved accuracy.
7.7.13.2. Configuration
common:
target_module: 'timeseries'
task_type: 'generic_timeseries_classification'
target_device: 'F28P55'
dataset:
dataset_name: 'branched_model_parameters'
training:
model_name: 'CLS_4k_NPU'
training_epochs: 50
batch_size: 32
testing: {}
compilation: {}
7.7.13.3. Running the Example
cd tinyml-modelzoo
./run_tinyml_modelzoo.sh examples/branched_model_parameters/config.yaml
cd tinyml-modelzoo
run_tinyml_modelzoo.bat examples\branched_model_parameters\config.yaml
7.7.13.4. Dataset Details
Input Variables:
Accelerometer X, Y, Z
Gyroscope X, Y, Z
Activity Classes:
Walking
Running
Sitting
Standing
Lying down
Walking upstairs
Walking downstairs