7.7.14. ECG Classification
Classify normal vs anomalous heartbeats from ECG signals.
7.7.14.1. Overview
This example demonstrates heartbeat classification using ECG (electrocardiogram) signals. It can identify normal heartbeats and various arrhythmia conditions, enabling early detection of cardiac abnormalities.
Application: Wearable health monitors, cardiac monitoring, medical devices
Task Type: Time Series Classification / Anomaly Detection
Data Type: Multivariate (ECG leads)
7.7.14.2. Configuration
Classification Mode:
common:
target_module: 'timeseries'
task_type: 'generic_timeseries_classification'
target_device: 'F28P55'
dataset:
dataset_name: 'ecg_classification'
training:
model_name: 'CLS_4k_NPU'
training_epochs: 50
batch_size: 32
testing: {}
compilation: {}
7.7.14.3. Running the Example
# Classification mode
cd tinyml-modelzoo
./run_tinyml_modelzoo.sh examples/ecg_classification/config.yaml
# Anomaly detection mode
./run_tinyml_modelzoo.sh examples/ecg_classification/config_anomaly_detection.yaml
cd tinyml-modelzoo
# Classification mode
run_tinyml_modelzoo.bat examples\ecg_classification\config.yaml
# Anomaly detection mode
run_tinyml_modelzoo.bat examples\ecg_classification\config_anomaly_detection.yaml
7.7.14.4. Dataset Details
Input Variables:
ECG signal samples
Multiple leads (if available)
Classes (Classification mode):
Normal heartbeat
Abnormal heartbeat / Arrhythmia
Anomaly Detection Mode:
Train on normal heartbeats only, detect anomalies based on reconstruction error.
7.7.14.5. See Also
Anomaly Detection Example - Anomaly detection tutorial