3. Foundational Components
- 3.1. U-Boot
- 3.1.1. User’s Guide
- 3.1.1.1. General Information
- 3.1.1.2. USB Device Firmware Upgrade (DFU)
- 3.1.1.3. Booting over Ethernet (Ethernet RGMII)
- 3.1.1.4. SD, eMMC and USB
- 3.1.1.4.1. Partitioning eMMC from U-Boot
- 3.1.1.4.2. Updating an SD card from a host PC
- 3.1.1.4.3. Updating an SD card or eMMC using DFU
- 3.1.1.4.4. Booting Linux from SD card or eMMC
- 3.1.1.4.5. Booting tiboot3.bin, tispl.bin and u-boot.img from eMMC boot partition (For K3 class of SoCs)
- 3.1.1.4.6. Booting to U-Boot prompt from USB storage
- 3.1.1.4.7. Booting Linux from USB storage
- 3.1.1.4.8. Steps for working around SD card issues
- 3.1.1.5. SPI
- 3.1.1.6. OSPI/QSPI NOR/NAND
- 3.1.1.7. UART
- 3.1.1.8. DDRSS ECC
- 3.1.1.9. RemoteProc
- 3.1.1.10. U-Boot Splash Screen
- 3.1.1.10.1. Features supported
- 3.1.1.10.1.1. Enabling the splash screen on ti-u-boot
- 3.1.1.10.1.2. Display custom logo as splash screen
- 3.1.1.10.1.3. Enabling splash screen on custom board based on AM62x SoC
- 3.1.1.10.1.4. Display image using U-Boot command line
- 3.1.1.10.1.5. Run splash screen using OSPI NOR
- 3.1.1.10.1.6. Display RLE compressed image
- 3.1.1.10.1.7. Flicker free display across boot stages and Linux Kernel
- 3.1.1.10.1.8. Flicker free and persistent display until display server
- 3.1.1.10.1. Features supported
- 3.1.2. Troubleshooting
- 3.1.1. User’s Guide
- 3.2. Kernel
- 3.2.1. Users Guide
- 3.2.2. Kernel Drivers
- 3.2.2.1. Audio
- 3.2.2.2. CSI2RX
- 3.2.2.3. Crypto
- 3.2.2.4. MCAN
- 3.2.2.5. MCRC64
- 3.2.2.6. DSS
- 3.2.2.7. EQEP
- 3.2.2.8. GPIO
- 3.2.2.9. I2C
- 3.2.2.10. CPSW Ethernet
- 3.2.2.11. NETCONF/YANG
- 3.2.2.12. PWM
- 3.2.2.13. OSPI/QSPI NOR/NAND
- 3.2.2.14. SPI
- 3.2.2.15. NAND
- 3.2.2.16. MMC/SD
- 3.2.2.17. UART
- 3.2.2.18. USB
- 3.2.2.19. Voltage & Thermal Management (VTM)
- 3.2.2.20. Watchdog
- 3.2.3. LTP-DDT Validation
- 3.2.4. FAQs
- 3.3. Power Management
- 3.3.1. Power Management Overview
- 3.3.2. DFS
- 3.3.3. CPUIdle
- 3.3.4. Runtime PM
- 3.3.5. Low Power Modes
- 3.3.6. Wakeup Sources
- 3.3.7. S/W Architecture of System Suspend
- 3.3.8. Debug Information
- 3.4. Security
- 3.5. Filesystem
- 3.6. Tools
- 3.7. PRU Subsystem
- 3.7.1. Overview of PRU Subsystem
- 3.7.1.1. Getting Started Information
- 3.7.1.2. Hardware Information
- 3.7.1.3. Training Material
- 3.7.1.4. Development Tools
- 3.7.1.5. Software Information
- 3.7.1.6. Examples
- 3.7.1.7. Evaluation Hardware
- 3.7.1.8. TI Designs
- 3.7.1.9. Support
- 3.7.1.10. PRU FAQ
- 3.7.1.10.1. PRU Applications & Support questions
- 3.7.1.10.1.1. What is the difference between the PRU subsystem and ICSS?
- 3.7.1.10.1.2. Is TI providing libraries for the PRU?
- 3.7.1.10.1.3. Can I develop my own industrial protocols on the PRU-ICSS?
- 3.7.1.10.1.4. Can the PRU run a High Level Operating System?
- 3.7.1.10.1.5. My processor has a PRU. Is the PRU supported in the Linux Processor SDK?
- 3.7.1.10.2. PRU Memory Access questions
- 3.7.1.10.3. PRU GPI/O questions
- 3.7.1.10.3.1. What is the maximum speed for toggling PRU GPO pins via PRU software?
- 3.7.1.10.3.2. When does the PRU start capturing from the input pins?
- 3.7.1.10.3.3. Can the module be modified so that the GPI start bit is a zero instead of a one?
- 3.7.1.10.3.4. What happens after 28 bit GPI shifts?
- 3.7.1.10.3.5. Can data be pre-loaded into shadow registers prior to configuring the PRU GPO mode to shift out mode?
- 3.7.1.10.3.6. When does PRU<n>_CLOCKOUT start running?
- 3.7.1.10.3.7. When does the PRU start shifting data in the shadow registers?
- 3.7.1.10.3.8. The shadow registers are loaded by writing to PRU<n>_R30 [0:15]. Does this change the state of the corresponding device-level pins?
- 3.7.1.10.3.9. When the PRU<n>_ENABLE_SHIFT bit is cleared, does the PRU immediately stop shifting PRU<n>_DATAOUT?
- 3.7.1.10.3.10. Does the PRU shift data out LSB or MSB first?
- 3.7.1.10.3.11. What happens to the content stored in R30 when the PRU changes to a different GPO mode?
- 3.7.1.10.4. PRU INTC and System Event questions
- 3.7.1.10.5. PRU Debugger questions
- 3.7.1.10.1. PRU Applications & Support questions
- 3.7.2. Training
- 3.7.2.1. PRU Getting Started Labs
- 3.7.2.2. Lab 1: How to Create a PRU Project
- 3.7.2.3. Lab 2: How to Write PRU Firmware
- 3.7.2.4. Lab 3: How to Compile PRU Firmware
- 3.7.2.5. Lab 4: How to Initialize the PRU
- 3.7.2.6. Lab 5: Basic Debugging of PRU Firmware
- 3.7.2.7. PRU Hands-on Labs
- 3.7.2.7.1. Lab Configuration
- 3.7.2.7.2. LAB 1: Toggle LED with PRU GPO
- 3.7.2.7.3. LAB 2: Read Push Button Switch on PRU0 GPI & Toggle LED with PRU1 GPO
- 3.7.2.7.4. LAB 3: Temperature Monitor
- 3.7.2.7.5. LAB 4: Introduction to Linux driver
- 3.7.2.7.6. LAB 5: RPMsg Communication between ARM and PRU
- 3.7.2.7.6.1. Build the PRU Firmware - Using CCSv6
- 3.7.2.7.6.2. Build the PRU Firmware - Using the Provided Makefile
- 3.7.2.7.6.3. Build the RPMsg Client Sample Driver
- 3.7.2.7.6.4. Copy files to the target file system
- 3.7.2.7.6.5. Part 1: Kernel space communication
- 3.7.2.7.6.6. What just happened?
- 3.7.2.7.6.7. Part 2: User Space Communication
- 3.7.2.7.6.8. Part 3: User Space Application
- 3.7.2.7.6.9. What just happened?
- 3.7.2.7.7. LAB 6: Blinking LEDs with RPMsg from Linux User Space
- 3.7.2.7.7.1. Build the PRU Firmware - Using CCSv6
- 3.7.2.7.7.2. Build the PRU Firmware - Using the Provided Makefile
- 3.7.2.7.7.3. Copy files to the target file system
- 3.7.2.7.7.4. Part 1: Linux Command Line LED Toggling
- 3.7.2.7.7.5. What just happened?
- 3.7.2.7.7.6. Part 2: Linux Shell Script LED Toggling
- 3.7.2.7.7.7. What just happened?
- 3.7.2.8. Getting Started with PRU Software Support Package
- 3.7.2.9. RPMsg Quick Start Guide
- 3.7.2.9.1. Introduction
- 3.7.2.9.2. Getting the Linux Processor SDK
- 3.7.2.9.3. Configuring and Building the Linux Kernel with RPMsg Support
- 3.7.2.9.4. Creating a Bootable SD Card with RPMsg Support
- 3.7.2.9.5. Booting the Board and Testing RPMsg
- 3.7.2.9.6. Getting Started with RPMsg Development
- 3.7.2.9.7. Common Issues
- 3.7.3. Linux Drivers
- 3.7.4. Firmware Development
- 3.7.5. Hardware
- 3.7.1. Overview of PRU Subsystem
- 3.8. IPC for AM62x
- 3.8.1. Software Dependencies to Get Started
- 3.8.2. Typical Boot Flow on AM62x for ARM Linux users
- 3.8.3. Getting Started with IPC Linux Examples
- 3.8.4. Booting Remote Cores from Linux console/User space
- 3.8.5. DMA memory Carveouts
- 3.8.6. Changing the Memory Map
- 3.8.7. RPMsg Char Driver
- 3.8.8. ti-rpmsg-char library
- 3.8.9. RPMsg examples:
- 3.9. Graphics and Display
- 3.9.1. Introduction
- 3.9.2. Rogue Debug Info
- 3.9.3. Rogue Power Management Info
- 3.9.4. Build Guide
- 3.9.5. Display
- 3.9.6. OpenGL ES
- 3.9.7. Vulkan
- 3.9.8. QT Graphics Framework
- 3.9.9. GTK+ Graphics Framework
- 3.9.10. Weston
- 3.9.11. PowerVR Tools
- 3.10. Hypervisor
- 3.10.1. Jailhouse
- 3.10.1.1. Overview
- 3.10.1.2. Enabling hypervisor on AM62x platform
- 3.10.1.3. Building Jailhouse Image for AM62x platform
- 3.10.1.4. Generate SD Card Image for Jailhouse
- 3.10.1.5. Booting the SD Card Image
- 3.10.1.6. Pre-built components in Jailhouse Image
- 3.10.1.7. Jailhouse Interface
- 3.10.1.8. Running Jailhouse Demos on AM62x
- 3.10.1.9. Memory Reservation
- 3.10.1.10. Hardware Modules Reservation
- 3.10.1.11. Root-cell configuration
- 3.10.1.12. Performance
- 3.10.1. Jailhouse
- 3.11. Virtualization
- 3.12. Machine Learning
- 3.13. ARM Trusted Firmware-A
- 3.14. OP-TEE