2.4.2. Linux 09.02.00 Performance Guide

Read This First

All performance numbers provided in this document are gathered using following Evaluation Modules unless otherwise specified.

Name

Description

AM62Px SK

AM62Px Starter Kit rev E1 with ARM running at 1.4GHz, DDR data rate 3200 MT/S

Table: Evaluation Modules

About This Manual

This document provides performance data for each of the device drivers which are part of the Processor SDK Linux package. This document should be used in conjunction with release notes and user guides provided with the Processor SDK Linux package for information on specific issues present with drivers included in a particular release.

If You Need Assistance

For further information or to report any problems, contact http://e2e.ti.com/ or http://support.ti.com/

2.4.2.1. System Benchmarks

2.4.2.1.1. LMBench

LMBench is a collection of microbenchmarks of which the memory bandwidth and latency related ones are typically used to estimate processor memory system performance. More information about lmbench at http://lmbench.sourceforge.net/whatis_lmbench.html and http://lmbench.sourceforge.net/man/lmbench.8.html

Latency: lat_mem_rd-stride128-szN, where N is equal to or smaller than the cache size at given level measures the cache miss penalty. N that is at least double the size of last level cache is the latency to external memory.

Bandwidth: bw_mem_bcopy-N, where N is equal to or smaller than the cache size at a given level measures the achievable memory bandwidth from software doing a memcpy() type operation. Typical use is for external memory bandwidth calculation. The bandwidth is calculated as byte read and written counts as 1 which should be roughly half of STREAM copy result.

Execute the LMBench with the following:

cd /opt/ltp
./runltp -P j721e-idk-gw -f ddt/lmbench -s LMBENCH_L_PERF_0001

Benchmarks

am62pxx_sk-fs: perf

af_unix_sock_stream_latency (microsec)

24.11

af_unix_socket_stream_bandwidth (MBs)

1157.09

bw_file_rd-io-1mb (MB/s)

1259.67

bw_file_rd-o2c-1mb (MB/s)

700.16

bw_mem-bcopy-16mb (MB/s)

1840.35

bw_mem-bcopy-1mb (MB/s)

1998.40

bw_mem-bcopy-2mb (MB/s)

1765.85

bw_mem-bcopy-4mb (MB/s)

1814.33

bw_mem-bcopy-8mb (MB/s)

1812.83

bw_mem-bzero-16mb (MB/s)

7811.23

bw_mem-bzero-1mb (MB/s)

4892.32 (min 1998.40, max 7786.23)

bw_mem-bzero-2mb (MB/s)

4781.56 (min 1765.85, max 7797.27)

bw_mem-bzero-4mb (MB/s)

4807.19 (min 1814.33, max 7800.04)

bw_mem-bzero-8mb (MB/s)

4808.86 (min 1812.83, max 7804.88)

bw_mem-cp-16mb (MB/s)

916.17

bw_mem-cp-1mb (MB/s)

1241.66 (min 890.00, max 1593.31)

bw_mem-cp-2mb (MB/s)

1132.75 (min 886.66, max 1378.83)

bw_mem-cp-4mb (MB/s)

1168.97 (min 932.94, max 1404.99)

bw_mem-cp-8mb (MB/s)

1247.39 (min 954.54, max 1540.24)

bw_mem-fcp-16mb (MB/s)

1729.73

bw_mem-fcp-1mb (MB/s)

4739.30 (min 1692.37, max 7786.23)

bw_mem-fcp-2mb (MB/s)

4699.41 (min 1601.54, max 7797.27)

bw_mem-fcp-4mb (MB/s)

4736.38 (min 1672.71, max 7800.04)

bw_mem-fcp-8mb (MB/s)

4712.00 (min 1619.11, max 7804.88)

bw_mem-frd-16mb (MB/s)

1871.13

bw_mem-frd-1mb (MB/s)

1826.58 (min 1692.37, max 1960.78)

bw_mem-frd-2mb (MB/s)

1673.53 (min 1601.54, max 1745.51)

bw_mem-frd-4mb (MB/s)

1752.67 (min 1672.71, max 1832.62)

bw_mem-frd-8mb (MB/s)

1714.64 (min 1619.11, max 1810.16)

bw_mem-fwr-16mb (MB/s)

1548.59

bw_mem-fwr-1mb (MB/s)

1777.05 (min 1593.31, max 1960.78)

bw_mem-fwr-2mb (MB/s)

1562.17 (min 1378.83, max 1745.51)

bw_mem-fwr-4mb (MB/s)

1618.81 (min 1404.99, max 1832.62)

bw_mem-fwr-8mb (MB/s)

1675.20 (min 1540.24, max 1810.16)

bw_mem-rd-16mb (MB/s)

16.00

bw_mem-rd-1mb (MB/s)

2002.94 (min 1840.60, max 2165.28)

bw_mem-rd-2mb (MB/s)

1791.11 (min 1654.81, max 1927.40)

bw_mem-rd-4mb (MB/s)

1849.46 (min 1780.15, max 1918.77)

bw_mem-rd-8mb (MB/s)

1869.24 (min 1822.53, max 1915.94)

bw_mem-rdwr-16mb (MB/s)

1855.29

bw_mem-rdwr-1mb (MB/s)

1285.97 (min 890.00, max 1681.93)

bw_mem-rdwr-2mb (MB/s)

1262.00 (min 886.66, max 1637.33)

bw_mem-rdwr-4mb (MB/s)

1297.38 (min 932.94, max 1661.82)

bw_mem-rdwr-8mb (MB/s)

1347.41 (min 954.54, max 1740.27)

bw_mem-wr-16mb (MB/s)

1831.08

bw_mem-wr-1mb (MB/s)

1761.27 (min 1681.93, max 1840.60)

bw_mem-wr-2mb (MB/s)

1646.07 (min 1637.33, max 1654.81)

bw_mem-wr-4mb (MB/s)

1720.99 (min 1661.82, max 1780.15)

bw_mem-wr-8mb (MB/s)

1781.40 (min 1740.27, max 1822.53)

bw_mmap_rd-mo-1mb (MB/s)

2165.67

bw_mmap_rd-o2c-1mb (MB/s)

646.73

bw_pipe (MB/s)

717.53

bw_unix (MB/s)

1157.09

lat_connect (us)

52.27

lat_ctx-2-128k (us)

4.79

lat_ctx-2-256k (us)

3.86

lat_ctx-4-128k (us)

4.51

lat_ctx-4-256k (us)

3.49

lat_fs-0k (num_files)

283.00

lat_fs-10k (num_files)

124.00

lat_fs-1k (num_files)

183.00

lat_fs-4k (num_files)

165.00

lat_mem_rd-stride128-sz1000k (ns)

31.26

lat_mem_rd-stride128-sz125k (ns)

5.54

lat_mem_rd-stride128-sz250k (ns)

5.83

lat_mem_rd-stride128-sz31k (ns)

3.65

lat_mem_rd-stride128-sz50 (ns)

2.15

lat_mem_rd-stride128-sz500k (ns)

10.41

lat_mem_rd-stride128-sz62k (ns)

5.19

lat_mmap-1m (us)

56.00

lat_ops-double-add (ns)

2.86

lat_ops-double-div (ns)

15.73

lat_ops-double-mul (ns)

2.86

lat_ops-float-add (ns)

2.86

lat_ops-float-div (ns)

9.30

lat_ops-float-mul (ns)

2.86

lat_ops-int-add (ns)

0.72

lat_ops-int-bit (ns)

0.48

lat_ops-int-div (ns)

4.29

lat_ops-int-mod (ns)

4.53

lat_ops-int-mul (ns)

3.07

lat_ops-int64-add (ns)

0.72

lat_ops-int64-bit (ns)

0.48

lat_ops-int64-div (ns)

6.79

lat_ops-int64-mod (ns)

5.25

lat_ops-int64-mul (ns)

3.55

lat_pagefault (us)

1.39

lat_pipe (us)

19.48

lat_proc-exec (us)

782.00

lat_proc-fork (us)

606.11

lat_proc-proccall (us)

0.01

lat_select (us)

33.39

lat_sem (us)

1.79

lat_sig-catch (us)

5.28

lat_sig-install (us)

0.66

lat_sig-prot (us)

0.55

lat_syscall-fstat (us)

2.73

lat_syscall-null (us)

0.46

lat_syscall-open (us)

149.03

lat_syscall-read (us)

0.77

lat_syscall-stat (us)

3.94

lat_syscall-write (us)

0.64

lat_tcp (us)

0.93

lat_unix (us)

24.11

latency_for_0.50_mb_block_size (nanosec)

10.41

latency_for_1.00_mb_block_size (nanosec)

6.25 (min 0.00, max 31.26)

pipe_bandwidth (MBs)

717.53

pipe_latency (microsec)

19.48

procedure_call (microsec)

0.01

select_on_200_tcp_fds (microsec)

33.39

semaphore_latency (microsec)

1.79

signal_handler_latency (microsec)

0.66

signal_handler_overhead (microsec)

5.28

tcp_ip_connection_cost_to_localhost (microsec)

52.27

tcp_latency_using_localhost (microsec)

0.93

2.4.2.1.2. Dhrystone

Dhrystone is a core only benchmark that runs from warm L1 caches in all modern processors. It scales linearly with clock speed. For standard ARM cores the DMIPS/MHz score will be identical with the same compiler and flags.

Execute the benchmark with the following:

runDhrystone

Benchmarks

am62pxx_sk-fs: perf

cpu_clock (MHz)

1400.00

dhrystone_per_mhz (DMIPS/MHz)

2.90

dhrystone_per_second (DhrystoneP)

7142857.00

2.4.2.1.3. Whetstone

Whetstone is a benchmark primarily measuring floating-point arithmetic performance.

Execute the benchmark with the following:

runWhetstone

Benchmarks

am62pxx_sk-fs: perf

whetstone (MIPS)

5000.00

2.4.2.1.4. Linpack

Linpack measures peak double precision (64 bit) floating point performance in solving a dense linear system.

Benchmarks

am62pxx_sk-fs: perf

linpack (Kflops)

580494.00

2.4.2.1.5. NBench

NBench which stands for Native Benchmark is used to measure macro benchmarks for commonly used operations such as sorting and analysis algorithms. More information about NBench at https://en.wikipedia.org/wiki/NBench and https://nbench.io/articles/index.html

Benchmarks

am62pxx_sk-fs: perf

assignment (Iterations)

13.94

fourier (Iterations)

22639.00

fp_emulation (Iterations)

92.34

huffman (Iterations)

1169.40

idea (Iterations)

3444.90

lu_decomposition (Iterations)

533.43

neural_net (Iterations)

8.82

numeric_sort (Iterations)

598.41

string_sort (Iterations)

164.95

2.4.2.1.6. Stream

STREAM is a microbenchmark for measuring data memory system performance without any data reuse. It is designed to miss on caches and exercise data prefetcher and speculative accesses. It uses double precision floating point (64bit) but in most modern processors the memory access will be the bottleneck. The four individual scores are copy, scale as in multiply by constant, add two numbers, and triad for multiply accumulate. For bandwidth, a byte read counts as one and a byte written counts as one, resulting in a score that is double the bandwidth LMBench will show.

Execute the benchmark with the following:

stream_c

Benchmarks

am62pxx_sk-fs: perf

add (MB/s)

2702.00

copy (MB/s)

3765.90

scale (MB/s)

3488.00

triad (MB/s)

2402.50

2.4.2.1.7. CoreMarkPro

CoreMark®-Pro is a comprehensive, advanced processor benchmark that works with and enhances the market-proven industry-standard EEMBC CoreMark® benchmark. While CoreMark stresses the CPU pipeline, CoreMark-Pro tests the entire processor, adding comprehensive support for multicore technology, a combination of integer and floating-point workloads, and data sets for utilizing larger memory subsystems.

Benchmarks

am62pxx_sk-fs: perf

cjpeg-rose7-preset (workloads/)

41.84

core (workloads/)

0.30

coremark-pro ()

944.26

linear_alg-mid-100x100-sp (workloads/)

14.70

loops-all-mid-10k-sp (workloads/)

0.71

nnet_test (workloads/)

1.09

parser-125k (workloads/)

8.77

radix2-big-64k (workloads/)

75.73

sha-test (workloads/)

81.97

zip-test (workloads/)

21.74

2.4.2.1.8. MultiBench

MultiBench™ is a suite of benchmarks that allows processor and system designers to analyze, test, and improve multicore processors. It uses three forms of concurrency: Data decomposition: multiple threads cooperating on achieving a unified goal and demonstrating a processor’s support for fine grain parallelism. Processing multiple data streams: uses common code running over multiple threads and demonstrating how well a processor scales over scalable data inputs. Multiple workload processing: shows the scalability of general-purpose processing, demonstrating concurrency over both code and data. MultiBench combines a wide variety of application-specific workloads with the EEMBC Multi-Instance-Test Harness (MITH), compatible and portable with most any multicore processors and operating systems. MITH uses a thread-based API (POSIX-compliant) to establish a common programming model that communicates with the benchmark through an abstraction layer and provides a flexible interface to allow a wide variety of thread-enabled workloads to be tested.

Benchmarks

am62pxx_sk-fs: perf

4m-check (workloads/)

412.47

4m-check-reassembly (workloads/)

128.37

4m-check-reassembly-tcp (workloads/)

60.68

4m-check-reassembly-tcp-cmykw2-rotatew2 (workloads/)

33.43

4m-check-reassembly-tcp-x264w2 (workloads/)

1.95

4m-cmykw2 (workloads/)

251.26

4m-cmykw2-rotatew2 (workloads/)

50.34

4m-reassembly (workloads/)

88.42

4m-rotatew2 (workloads/)

53.45

4m-tcp-mixed (workloads/)

120.30

4m-x264w2 (workloads/)

2.01

idct-4m (workloads/)

19.22

idct-4mw1 (workloads/)

19.23

ippktcheck-4m (workloads/)

413.29

ippktcheck-4mw1 (workloads/)

412.95

ipres-4m (workloads/)

112.28

ipres-4mw1 (workloads/)

111.69

md5-4m (workloads/)

28.96

md5-4mw1 (workloads/)

29.38

rgbcmyk-4m (workloads/)

65.94

rgbcmyk-4mw1 (workloads/)

65.94

rotate-4ms1 (workloads/)

23.58

rotate-4ms1w1 (workloads/)

23.54

rotate-4ms64 (workloads/)

23.84

rotate-4ms64w1 (workloads/)

23.79

x264-4mq (workloads/)

0.58

x264-4mqw1 (workloads/)

0.58


2.4.2.2. Boot-time Measurement

2.4.2.2.1. Boot media: MMCSD

Boot Configuration

am62pxx_sk-fs: boot time (sec)

Kernel boot time test when bootloader, kernel and sdk-rootfs are in mmc-sd

105.28 (min 15.02, max 128.07)

Kernel boot time test when init is /bin/sh and bootloader, kernel and sdk-rootfs are in mmc-sd

3.70 (min 3.67, max 3.77)


2.4.2.3. Graphics SGX/RGX Driver

2.4.2.3.1. Glmark2

Run Glmark2 and capture performance reported (Score). All display outputs (HDMI, Displayport and/or LCD) are connected when running these tests

Benchmark

am62pxx_sk-fs: Score

Glmark2-DRM

57.00

Glmark2-Wayland

913.00


2.4.2.4. Ethernet

Ethernet performance benchmarks were measured using Netperf 2.7.1 https://hewlettpackard.github.io/netperf/doc/netperf.html Test procedures were modeled after those defined in RFC-2544: https://tools.ietf.org/html/rfc2544, where the DUT is the TI device and the “tester” used was a Linux PC. To produce consistent results, it is recommended to carry out performance tests in a private network and to avoid running NFS on the same interface used in the test. In these results, CPU utilization was captured as the total percentage used across all cores on the device, while running the performance test over one external interface.

UDP Throughput (0% loss) was measured by the procedure defined in RFC-2544 section 26.1: Throughput. In this scenario, netperf options burst_size (-b) and wait_time (-w) are used to limit bandwidth during different trials of the test, with the goal of finding the highest rate at which no loss is seen. For example, to limit bandwidth to 500Mbits/sec with 1472B datagram:

burst_size = <bandwidth (bits/sec)> / 8 (bits -> bytes) / <UDP datagram size> / 100 (seconds -> 10 ms)
burst_size = 500000000 / 8 / 1472 / 100 = 425

wait_time = 10 milliseconds (minimum supported by Linux PC used for testing)

UDP Throughput (possible loss) was measured by capturing throughput and packet loss statistics when running the netperf test with no bandwidth limit (remove -b/-w options).

In order to start a netperf client on one device, the other device must have netserver running. To start netserver:

netserver [-p <port_number>] [-4 (IPv4 addressing)] [-6 (IPv6 addressing)]

Running the following shell script from the DUT will trigger netperf clients to measure bidirectional TCP performance for 60 seconds and report CPU utilization. Parameter -k is used in client commands to summarize selected statistics on their own line and -j is used to gain additional timing measurements during the test.

#!/bin/bash
for i in 1
do
   netperf -H <tester ip> -j -c -l 60 -t TCP_STREAM --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &

   netperf -H <tester ip> -j -c -l 60 -t TCP_MAERTS --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &
done

Running the following commands will trigger netperf clients to measure UDP burst performance for 60 seconds at various burst/datagram sizes and report CPU utilization.

  • For UDP egress tests, run netperf client from DUT and start netserver on tester.

netperf -H <tester ip> -j -c -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE
  • For UDP ingress tests, run netperf client from tester and start netserver on DUT.

netperf -H <DUT ip> -j -C -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE

2.4.2.4.1. CPSW/CPSW2g/CPSW3g Ethernet Driver

  • CPSW3g: AM62px

TCP Bidirectional Throughput

Command Used

am62pxx_sk-fs: THROUGHPUT (Mbits/sec)

am62pxx_sk-fs: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

1800.0

59.22

  • Interrupt pacing value is kept as 250 microseconds for tx and rx interrupts.

TCP Bidirectional Throughput Interrupt Pacing

Command Used

am62pxx_sk-fs: THROUGHPUT (Mbits/sec)

am62pxx_sk-fs: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

1344.61

37.04

CPSW UDP Egress Throughput

Frame Size(bytes)

am62pxx_sk-fs: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE)

am62pxx_sk-fs: THROUGHPUT (Mbits/sec)

am62pxx_sk-fs: CPU Load %(LOCAL_CPU_UTIL)

64

18.00

19.89

41.4

128

82.00

90.14

41.57

256

210.00

225.72

41.14

512

466.00

498.49

41.15

1024

978.00

936.62

42.7

1280

1234.00

947.78

33.1

1518

1472.00

955.52

33.21


CPSW UDP Ingress Throughput

Frame Size(bytes)

am62pxx_sk-fs: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE)

am62pxx_sk-fs: THROUGHPUT (Mbits/sec)

am62pxx_sk-fs: CPU Load %(LOCAL_CPU_UTIL)

am62pxx_sk-fs: Packet loss %

64

18.00

7.3

31.08

63.54

128

82.00

34.9

30.41

58.7

256

210.00

94.08

31.17

50.21

512

466.00

201.31

32.04

13.06

1024

978.00

916.22

40.04

0.02

1280

1234.00

930.71

39.42

0.0

1518

1472.00

916.74

38.17

0.0


2.4.2.5. EMMC Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

2.4.2.5.1. AM62PXX-SK

Buffer size (bytes)

am62pxx_sk-fs: Write EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Write EXT4 CPU Load (%)

am62pxx_sk-fs: Read EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Read EXT4 CPU Load (%)

1m

89.80

1.21

285.00

2.24

4m

95.70

0.94

286.00

1.76

4k

79.20

26.99

92.80

25.24

256k

90.30

1.71

284.00

3.43


2.4.2.6. UBoot EMMC Driver

2.4.2.6.1. AM62PXX-SK

Table: UBOOT EMMC RAW

File size (bytes in hex)

am62pxx_sk-fs: Write Throughput (Kbytes/sec)

am62pxx_sk-fs: Read Throughput (Kbytes/sec)

2000000

95533.53

268590.16

4000000

98254.87

232397.16


2.4.2.7. MMC/SD Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

2.4.2.7.1. AM62PXX-SK

Buffer size (bytes)

am62pxx_sk-fs: Write EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Write EXT4 CPU Load (%)

am62pxx_sk-fs: Read EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Read EXT4 CPU Load (%)

1m

42.70

0.81

87.50

1.05

4m

43.40

0.60

87.30

0.81

4k

3.60

1.64

16.40

5.05

256k

39.60

1.00

85.50

1.24

The performance numbers were captured using the following:

  • SanDisk 8GB MicroSDHC Class 10 Memory Card

  • Partition was mounted with async option


2.4.2.8. UBoot MMC/SD Driver

2.4.2.8.1. AM62PXX-SK

Table: UBOOT MMCSD FAT

File size (bytes in hex)

am62pxx_sk-fs: Write Throughput (Kbytes/sec)

am62pxx_sk-fs: Read Throughput (Kbytes/sec)

400000

37236.36

60235.29

800000

40960.00

72495.58

1000000

41583.76

81512.44


2.4.2.9. USB Driver

2.4.2.9.1. USB Device Controller

Table: USBDEVICE HIGHSPEED SLAVE_READ_THROUGHPUT

Number of Blocks

am62pxx_sk-fs: Throughput (MB/sec)

150

44.10

Table: USBDEVICE HIGHSPEED SLAVE_WRITE_THROUGHPUT

Number of Blocks

am62pxx_sk-fs: Throughput (MB/sec)

150

39.90


2.4.2.10. CRYPTO Driver

2.4.2.10.1. OpenSSL Performance

Table: OpenSSL Performance

Algorithm

Buffer Size (in bytes)

am62pxx_sk-fs: throughput (KBytes/Sec)

aes-128-cbc

1024

27031.21

aes-128-cbc

16

552.76

aes-128-cbc

16384

88069.46

aes-128-cbc

256

8216.49

aes-128-cbc

64

2187.29

aes-128-cbc

8192

76024.49

aes-128-ecb

1024

27399.85

aes-128-ecb

16

573.77

aes-128-ecb

16384

91215.19

aes-128-ecb

256

8339.88

aes-128-ecb

64

2251.84

aes-128-ecb

8192

78157.14

aes-192-cbc

1024

26395.65

aes-192-cbc

16

553.54

aes-192-cbc

16384

79527.94

aes-192-cbc

256

8087.89

aes-192-cbc

64

2193.92

aes-192-cbc

8192

69823.15

aes-192-ecb

1024

27090.60

aes-192-ecb

16

570.65

aes-192-ecb

16384

82482.52

aes-192-ecb

256

8261.63

aes-192-ecb

64

2266.73

aes-192-ecb

8192

71778.30

aes-256-cbc

1024

25508.18

aes-256-cbc

16

555.50

aes-256-cbc

16384

72783.19

aes-256-cbc

256

7644.93

aes-256-cbc

64

2168.23

aes-256-cbc

8192

64143.36

aes-256-ecb

1024

26324.31

aes-256-ecb

16

568.96

aes-256-ecb

16384

74880.34

aes-256-ecb

256

8201.64

aes-256-ecb

64

2240.98

aes-256-ecb

8192

66183.17

sha256

1024

36728.83

sha256

16

613.09

sha256

16384

283989.33

sha256

256

9599.83

sha256

64

2425.77

sha256

8192

195665.92

sha512

1024

25829.72

sha512

16

600.75

sha512

16384

69058.56

sha512

256

8569.77

sha512

64

2403.75

sha512

8192

61964.29

Table: OpenSSL CPU Load

Algorithm

am62pxx_sk-fs: CPU Load

aes-128-cbc

32.00

aes-128-ecb

34.00

aes-192-cbc

32.00

aes-192-ecb

33.00

aes-256-cbc

31.00

aes-256-ecb

33.00

sha256

98.00

sha512

98.00

Listed for each algorithm are the code snippets used to run each benchmark test.

time -v openssl speed -elapsed -evp aes-128-cbc

2.4.2.11. Low Power Performance

Table: Deep sleep

Rail name

Rail voltage(V)

am62pxx_sk-fs

vdd_core

0.85

14.08

vddr_core

0.85

1.24

soc_dvdd_3v3

3.30

5.36

soc_dvdd_1v8

1.80

2.87

vdda_1v8

1.80

9.26

vdd_lpddr4/vdd_ddr4

1.10

5.20

Total

38.02

Table: MCU only

Rail name

Rail voltage(V)

am62pxx_sk-fs

vdd_core

0.85

202.22

vddr_core

0.85

2.67

soc_dvdd_3v3

3.30

5.28

soc_dvdd_1v8

1.80

2.84

vdda_1v8

1.80

17.62

vdd_lpddr4/vdd_ddr4

1.10

3.36

Total

233.99

Partial I/O Data - All voltage rails were measured to be near 0V

Further optimizations are possible for these low power modes. Please refer to the AM62x Power Consumption App Note (https://www.ti.com/lit/pdf/spradg1)