rflib
RFCC26X2.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016-2023, Texas Instruments Incorporated
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * * Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  *
12  * * Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in the
14  * documentation and/or other materials provided with the distribution.
15  *
16  * * Neither the name of Texas Instruments Incorporated nor the names of
17  * its contributors may be used to endorse or promote products derived
18  * from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
27  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
28  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 /*!****************************************************************************
33 @file RFCC26X2.h
34 @brief Radio Frequency (RF) Core Driver for the CC13X2 and CC26X2 device
35  family.
36 
37 To use the RF driver, ensure that the correct driver library for your device
38 is linked in and include the top-level header file as follows:
39 
40 @code
41 #include <ti/drivers/rf/RF.h>
42 @endcode
43 
44 <hr>
45 @anchor rf_overview
46 Overview
47 ========
48 
49 The RF driver provides access to the radio core on the CC13x2/CC26x2 device
50 family. It offers a high-level interface for command execution and to the
51 radio timer (RAT). The RF driver ensures the lowest possible power consumption
52 by providing automatic power management that is fully transparent for the
53 application.
54 
55 @note This document describes the features and usage of the RF driver API. For a
56 detailed explanation of the RF core, please refer to the
57 <a href='../../proprietary-rf/technical-reference-manual.html'><b>Technical
58 Reference Manual</b></a> or the
59 <a href='../../proprietary-rf/proprietary-rf-users-guide.html'><b>Proprietary
60 RF User Guide</b></a>.
61 
62 <b>Key features are:</b>
63 
64 @li @ref rf_command_execution "Synchronous execution of direct and immediate radio commands"
65 @li @ref rf_command_execution "Synchronous and asynchronous execution of radio operation commands"
66 @li Various @ref rf_event_callbacks "event hooks" to interact with RF commands and the RF driver
67 @li Automatic @ref rf_power_management "power management"
68 @li @ref rf_scheduling "Preemptive scheduler for RF operations" of different RF driver instances
69 @li Convenient @ref rf_rat "Access to the radio timer" (RAT)
70 @li @ref rf_tx_power "Programming the TX power level"
71 @li @ref rf_temperature_compensation "Temperature Compensation"
72 
73 @anchor rf_setup_and_configuration
74 Setup and configuration
75 =======================
76 
77 The RF driver can be configured at 4 different places:
78 
79 1. In the build configuration by choosing either the single-client or
80  multi-client driver version.
81 
82 2. At compile-time by setting hardware and software interrupt priorities
83  in the board support file.
84 
85 3. During run-time initialization by setting #RF_Params when calling
86  #RF_open().
87 
88 4. At run-time via #RF_control().
89 
90 
91 Build configuration
92 -------------------
93 
94 The RF driver comes in two versions: single-client and multi-client. The
95 single-client version allows only one driver instance to access the RF core at
96 a time. The multi-client driver version allows concurrent access to the RF
97 core with different RF settings. The multi-client driver has a slightly larger
98 footprint and is not needed for many proprietary applications. The driver
99 version can be selected in the build configuration by linking against a
100 RFCC26X2_multiMode pre-built library. The multi-client driver is the default
101 configuration in the SimpleLink SDKs.
102 
103 
104 Board configuration
105 -------------------
106 
107 The RF driver handles RF core hardware interrupts and uses software interrupts
108 for its internal state machine. For managing the interrupt priorities, it
109 expects the existence of a global #RFCC26XX_HWAttrsV2 object. This object is configured
110 in SysConfig and defined in the generated file `ti_drivers_config.c`.
111 By default, the priorities are set to the lowest possible value:
112 
113 @code
114 const RFCC26XX_HWAttrsV2 RFCC26XX_hwAttrs = {
115  .hwiPriority = INT_PRI_LEVEL7, // Lowest HWI priority: INT_PRI_LEVEL7
116  // Highest HWI priority: INT_PRI_LEVEL1
117 
118  .swiPriority = 0, // Lowest SWI priority: 0
119  // Highest SWI priority: Swi.numPriorities - 1
120 
121  .xoscHfAlwaysNeeded = true // Power driver always starts XOSC-HF: true
122  // RF driver will request XOSC-HF if needed: false
123 };
124 @endcode
125 
126 
127 Initialization
128 --------------
129 
130 When initiating an RF driver instance, the function #RF_open() accepts a
131 pointer to a #RF_Params object which might set several driver parameters. In
132 addition, it expects an #RF_Mode object and a setup command which is usually
133 generated by SmartRF Studio:
134 
135 @code
136 RF_Params rfParams;
137 RF_Params_init(&rfParams);
138 rfParams.nInactivityTimeout = 2000;
139 
140 RF_Handle rfHandle = RF_open(&rfObject, &RF_prop,
141  (RF_RadioSetup*)&RF_cmdPropRadioDivSetup, &rfParams);
142 @endcode
143 
144 The function #RF_open() returns a driver handle that is used for accessing the
145 correct driver instance. Please note that the first RF operation command
146 before an RX or TX operation command must be a `CMD_FS` to set the synthesizer
147 frequency. The RF driver caches both, the pointer to the setup command and the
148 physical `CMD_FS` for automatic power management.
149 
150 
151 Run-time configuration
152 ----------------------
153 
154 While a driver instance is opened, it can be re-configured with the function
155 #RF_control(). Various configuration parameters @ref RF_CTRL are available.
156 Example:
157 
158 @code
159 uint32_t timeoutUs = 2000;
160 RF_control(rfHandle, RF_CTRL_SET_INACTIVITY_TIMEOUT, &timeoutUs);
161 @endcode
162 
163 <hr>
164 @anchor rf_command_execution
165 Command execution
166 =================
167 
168 The RF core supports 3 different kinds of commands:
169 
170 1. Direct commands
171 2. Immediate commands
172 3. Radio operation commands
173 
174 Direct and immediate commands are dispatched via #RF_runDirectCmd() and
175 #RF_runImmediateCmd() respectively. These functions block until the command
176 has completed and return a status code of the type #RF_Stat when done.
177 
178 @code
179 #include <ti/devices/${DEVICE_FAMILY}/driverlib/rf_common_cmd.h>
180 
181 RF_Stat status = RF_runDirectCmd(rfHandle, CMD_ABORT);
182 assert(status == RF_StatCmdDoneSuccess);
183 @endcode
184 
185 Radio operation commands are potentially long-running commands and support
186 different triggers as well as conditional execution. Only one command can be
187 executed at a time, but the RF driver provides an internal queue that stores
188 commands until the RF core is free. Two interfaces are provided for radio
189 operation commands:
190 
191 1. Asynchronous: #RF_postCmd() and #RF_pendCmd()
192 2. Synchronous: #RF_runCmd()
193 
194 The asynchronous function #RF_postCmd() posts a radio operation into the
195 driver's internal command queue and returns a command handle of the type
196 #RF_CmdHandle which is an index in the command queue. The command is
197 dispatched as soon as the RF core has completed any previous radio operation
198 command.
199 
200 @code
201 #include <ti/devices/${DEVICE_FAMILY}/driverlib/rf_common_cmd.h>
202 
203 RF_Callback callback = NULL;
204 RF_EventMask subscribedEvents = 0;
205 RF_CmdHandle rxCommandHandle = RF_postCmd(rfHandle, (RF_Op*)&RF_cmdRx,
206  RF_PriorityNormal, callback, subscribedEvents);
207 
208 assert(rxCommandHandle != RF_ALLOC_ERROR); // The command queue is full.
209 @endcode
210 
211 Command execution happens in background. The calling task may proceed with
212 other work or execute direct and immediate commands to interact with the
213 posted radio operation. But beware that the posted command might not have
214 started, yet. By calling the function #RF_pendCmd() and subscribing events of
215 the type #RF_EventMask, it is possible to re-synchronize to a posted command:
216 
217 @code
218 // RF_EventRxEntryDone must have been subscribed in RF_postCmd().
219 RF_EventMask events = RF_pendCmd(rfHandle, rxCommandHandle,
220  RF_EventRxEntryDone);
221 
222 // Program proceeds after RF_EventRxEntryDone or after a termination event.
223 @endcode
224 
225 The function #RF_runCmd() is a combination of both, #RF_postCmd() and
226 #RF_pendCmd() and allows synchronous execution.
227 
228 A pending or already running command might be aborted at any time by calling
229 the function #RF_cancelCmd() or #RF_flushCmd(). These functions take command
230 handles as parameters, but can also just abort anything in the RF driver's
231 queue:
232 
233 @code
234 uint8_t abortGraceful = 1;
235 
236 // Abort a single command
237 RF_cancelCmd(rfHandle, rxCommandHandle, abortGraceful);
238 
239 // Abort anything
240 RF_flushCmd(rfHandle, RF_CMDHANDLE_FLUSH_ALL, abortGraceful);
241 @endcode
242 
243 When aborting a command, the return value of #RF_runCmd() or #RF_pendCmd()
244 will contain the termination reason in form of event flags. If the command is
245 in the RF driver queue, but has not yet start, the #RF_EventCmdCancelled event is
246 raised.
247 
248 <hr>
249 @anchor rf_event_callbacks
250 Event callbacks
251 ===============
252 
253 The RF core generates multiple interrupts during command execution. The RF
254 driver maps these interrupts 1:1 to callback events of the type #RF_EventMask.
255 Hence, it is unnecessary to implement own interrupt handlers. Callback events
256 are divided into 3 groups:
257 
258 - Command-specific events, documented for each radio operation command. An example
259  is the #RF_EventRxEntryDone for the `CMD_PROP_RX`.
260 
261 - Generic events, defined for all radio operations and originating on the RF core.
262  These are for instance #RF_EventCmdDone and #RF_EventLastCmdDone. Both events
263  indicate the termination of one or more RF operations.
264 
265 - Generic events, defined for all radio operations and originating in the RF driver,
266  for instance #RF_EventCmdCancelled.
267 
268 @sa @ref RF_Core_Events, @ref RF_Driver_Events.
269 
270 How callback events are subscribed was shown in the previous section. The
271 following snippet shows a typical event handler callback for a proprietary RX
272 operation:
273 
274 @code
275 void rxCallback(RF_Handle handle, RF_CmdHandle command, RF_EventMask events)
276 {
277  if (events & RF_EventRxEntryDone)
278  {
279  Semaphore_post(rxPacketSemaphore);
280  }
281  if (events & RF_EventLastCmdDone)
282  {
283  // ...
284  }
285 }
286 @endcode
287 
288 In addition, the RF driver can generate error and power-up events that do not
289 relate directly to the execution of a radio command. Such events can be
290 subscribed by specifying the callback function pointers #RF_Params::pErrCb and
291 #RF_Params::pPowerCb.
292 
293 All callback functions run in software interrupt (SWI) context. Therefore,
294 only a minimum amount of code should be executed. When using absolute timed
295 commands with tight timing constraints, then it is recommended to set the RF
296 driver SWIs to a high priority.
297 See @ref rf_setup_and_configuration "Setup and configuration" for more details.
298 
299 <hr>
300 @anchor rf_power_management
301 Power management
302 ================
303 
304 The RF core is a hardware peripheral and can be switched on and off. The RF
305 driver handles that automatically and provides the following power
306 optimization features:
307 
308 - Lazy power-up and radio setup caching
309 - Power-down on inactivity
310 - Deferred dispatching of commands with absolute timing
311 
312 
313 Lazy power-up and radio setup caching
314 -------------------------------------
315 
316 The RF core optimizes the power consumption by enabling the RF core as late as
317 possible. For instance does #RF_open() not power up the RF core immediately.
318 Instead, it waits until the first radio operation command is dispatched by
319 #RF_postCmd() or #RF_runCmd().
320 
321 The function #RF_open() takes a radio setup command as parameter and expects a
322 `CMD_FS` command to follow. The pointer to the radio setup command and the
323 whole `CMD_FS` command are cached internally in the RF driver. They will be
324 used for every proceeding power-up procedure. Whenever the client re-runs a
325 setup command, the driver updates its internal cache with the new settings.
326 RF driver also caches the first CMD_FS from the list of done commands. Please
327 refer #RF_postCmd() for limitations of command chains.
328 
329 By default, the RF driver measures the time that it needs for the power-up
330 procedure and uses that as an estimate for the next power cycle. On the
331 CC13x0/CC26x0 devices, power-up takes usually 1.6 ms. Automatic measurement
332 can be suppressed by specifying a custom power-up time with
333 #RF_Params::nPowerUpDuration. In addition, the client might set
334 #RF_Params::nPowerUpDurationMargin to cover any uncertainty when doing
335 automatic measurements. This is necessary in applications with a high hardware
336 interrupt load which can delay the RF driver's internal state machine
337 execution.
338 
339 
340 Power-down on inactivity
341 ------------------------
342 
343 Whenever a radio operation completes and there is no other radio operation in
344 the queue, the RF core might be powered down. There are two options in the RF
345 driver:
346 
347 - **Automatic power-down** by setting the parameter
348  #RF_Params::nInactivityTimeout. The RF core will then start a timer after
349  the last command in the queue has completed. The default timeout is "forever"
350  and this feature is disabled.
351 
352 - **Manual power-down** by calling #RF_yield(). The client should do this
353  whenever it knows that no further radio operation will be executed for a
354  couple of milliseconds.
355 
356 During the power-down procedure the RF driver stops the radio timer and saves
357 a synchronization timestamp for the next power-up. This keeps the radio timer
358 virtually in sync with the RTC even though it is not running all the time. The
359 synchronization is done in hardware.
360 
361 
362 Deferred dispatching of commands with absolute timing
363 -----------------------------------------------------
364 
365 When dispatching a radio operation command with an absolute start trigger that
366 is ahead in the future, the RF driver defers the execution and powers the RF
367 core down until the command is due. It does that only, when:
368 
369 1. `cmd.startTrigger.triggerType` is set to `TRIG_ABSTIME`
370 
371 2. The difference between #RF_getCurrentTime() and `cmd.startTime`
372  is at not more than 3/4 of a full RAT cycle. Otherwise the driver assumes
373  that `cmd.startTime` is in the past.
374 
375 3. There is enough time to run a full power cycle before `cmd.startTime` is
376  due. That includes:
377 
378  - the power-down time (fixed value, 1 ms) if the RF core is already
379  powered up,
380 
381  - the measured power-up duration or the value specified by
382  #RF_Params::nPowerUpDuration,
383 
384  - the power-up safety margin #RF_Params::nPowerUpDurationMargin
385  (the default is 282 microseconds).
386 
387 If one of the conditions are not fulfilled, the RF core is kept up and
388 running and the command is dispatched immediately. This ensures, that the
389 command will execute on-time and not miss the configured start trigger.
390 
391 <hr>
392 @anchor rf_scheduling
393 Preemptive scheduling of RF commands in multi-client applications
394 =================================================================
395 
396 Schedule BLE and proprietary radio commands.
397 
398 @code
399 RF_Object rfObject_ble;
400 RF_Object rfObject_prop;
401 
402 RF_Handle rfHandle_ble, rfHandle_prop;
403 RF_Params rfParams_ble, rfParams_prop;
404 RF_ScheduleCmdParams schParams_ble, schParams_prop;
405 
406 RF_Mode rfMode_ble =
407 {
408  .rfMode = RF_MODE_MULTIPLE, // rfMode for dual mode
409  .cpePatchFxn = &rf_patch_cpe_ble,
410  .mcePatchFxn = 0,
411  .rfePatchFxn = &rf_patch_rfe_ble,
412 };
413 
414 RF_Mode rfMode_prop =
415 {
416  .rfMode = RF_MODE_MULTIPLE, // rfMode for dual mode
417  .cpePatchFxn = &rf_patch_cpe_genfsk,
418  .mcePatchFxn = 0,
419  .rfePatchFxn = 0,
420 };
421 
422 // Init RF and specify non-default parameters
423 RF_Params_init(&rfParams_ble);
424 rfParams_ble.nInactivityTimeout = 200; // 200us
425 
426 RF_Params_init(&rfParams_prop);
427 rfParams_prop.nInactivityTimeout = 200; // 200us
428 
429 // Configure RF schedule command parameters directly.
430 schParams_ble.priority = RF_PriorityNormal;
431 schParams_ble.endTime = 0;
432 schParams_ble.allowDelay = RF_AllowDelayAny;
433 
434 // Alternatively, use the helper function to configure the default behavior
435 RF_ScheduleCmdParams_init(&schParams_prop);
436 
437 // Open BLE and proprietary RF handles
438 rfHandle_ble = RF_open(rfObj_ble, &rfMode_ble, (RF_RadioSetup*)&RF_cmdRadioSetup, &rfParams_ble);
439 rfHandle_prop = RF_open(rfObj_prop, &rfMode_prop, (RF_RadioSetup*)&RF_cmdPropRadioDivSetup, &rfParams_prop);
440 
441 // Run a proprietary Fs command
442 RF_runCmd(rfHandle_pro, (RF_Op*)&RF_cmdFs, RF_PriorityNormal, NULL, NULL);
443 
444 // Schedule a proprietary RX command
445 RF_scheduleCmd(rfHandle_pro, (RF_Op*)&RF_cmdPropRx, &schParams_prop, &prop_callback, RF_EventRxOk);
446 
447 // Schedule a BLE advertiser command
448 RF_scheduleCmd(rfHandle_ble, (RF_Op*)&RF_cmdBleAdv, &schParams_ble, &ble_callback,
449  (RF_EventLastCmdDone | RF_EventRxEntryDone | RF_EventTxEntryDone));
450 
451 @endcode
452 
453 <hr>
454 @anchor rf_rat
455 Accessing the Radio Timer (RAT)
456 ==============================
457 
458 The Radio Timer on the RF core is an independent 32 bit timer running at a
459 tick rate of 4 ticks per microsecond. It is only physically active while the
460 RF core is on. But because the RF driver resynchronizes the RAT to the RTC on
461 every power-up, it appears to the application as the timer is always running.
462 The RAT accuracy depends on the system HF clock while the RF core is active
463 and on the LF clock while the RF core is powered down.
464 
465 The current RAT time stamp can be obtained by #RF_getCurrentTime():
466 
467 @code
468 uint32_t now = RF_getCurrentTime();
469 @endcode
470 
471 The RAT has 8 independent channels that can be set up in capture and compare
472 mode by #RF_ratCapture() and #RF_ratCompare() respectively. Three of these
473 channels are accessible by the RF driver. Each channel may be connected to
474 physical hardware signals for input and output or may trigger a callback
475 function.
476 
477 In order to allocate a RAT channel and trigger a callback function at a
478 certain time stamp, use #RF_ratCompare():
479 
480 @code
481 RF_Handle rfDriver;
482 RF_RatConfigCompare config;
483 RF_RatConfigCompare_init(&config);
484 config.callback = &onRatTriggered;
485 config.channel = RF_RatChannelAny;
486 config.timeout = RF_getCurrentTime() + RF_convertMsToRatTicks(1701);
487 
488 RF_RatHandle ratHandle = RF_ratCompare(rfDriver, &config, nullptr);
489 assert(ratHandle != RF_ALLOC_ERROR);
490 
491 void onRatTriggered(RF_Handle h, RF_RatHandle rh, RF_EventMask e, uint32_t compareCaptureTime)
492 {
493  if (e & RF_EventError)
494  {
495  // RF driver failed to trigger the callback on time.
496  }
497  printf("RAT has triggered at %u.", compareCaptureTime);
498 
499  // Trigger precisely with the same period again
500  config.timeout = compareCaptureTime + RF_convertMsToRatTicks(1701);
501  ratHandle = RF_ratCompare(rfDriver, &config, nullptr);
502  assert(ratHandle != RF_ALLOC_ERROR);
503 }
504 @endcode
505 
506 The RAT may be used to capture a time stamp on an edge of a physical pin. This
507 can be achieved with #RF_ratCapture().
508 
509 @code
510 #include <ti/devices/DeviceFamily.h>
511 #include DeviceFamily_constructPath(driverlib/ioc.h)
512 #include <ti/drivers/GPIO.h>
513 #include <ti/drivers/gpio/GPIOCC26XX.h>
514 // Map IO 26 to RFC_GPI0
515 GPIO_setMux(IOID_26, IOC_PORT_RFC_GPI0);
516 
517 RF_Handle rfDriver;
518 RF_RatConfigCapture config;
519 RF_RatConfigCapture_init(&config);
520 config.callback = &onSignalTriggered;
521 config.channel = RF_RatChannelAny;
522 config.source = RF_RatCaptureSourceRfcGpi0;
523 config.captureMode = RF_RatCaptureModeRising;
524 config.repeat = RF_RatCaptureRepeat;
525 
526 RF_RatHandle ratHandle = RF_ratCapture(rfDriver, &config, nullptr);
527 assert(ratHandle != RF_ALLOC_ERROR);
528 
529 void onSignalTriggered(RF_Handle h, RF_RatHandle rh, RF_EventMask e, uint32_t compareCaptureTime)
530 {
531  if (e & RF_EventError)
532  {
533  // An internal error has occurred
534  }
535  printf("Rising edge detected on IO 26 at %u.", compareCaptureTime);
536 }
537 @endcode
538 
539 In both cases, the RAT may generate an output signal when being triggered. The
540 signal can be routed to a physical IO pin:
541 
542 @code
543 // Generate a pulse on an internal RAT output signal
544 RF_RatConfigOutput output;
545 RF_RatConfigOutput_init(&output);
546 output.mode = RF_RatOutputModePulse;
547 output.select = RF_RatOutputSelectRatGpo3;
548 RF_ratCompare(...);
549 
550 // Map RatGpo3 to one of four intermediate doorbell signals.
551 // This has to be done in the override list in order to take permanent effect.
552 // The override list can be found in the RF settings .c file exported from
553 // SmartRF Studio.
554 // Attention: This will change the default mapping of the PA and LNA signal as well.
555 #include <ti/devices/[DEVICE_FAMILY]/inc/hw_rfc_dbell.h>
556 static uint32_t pOverrides[] =
557 {
558  HW_REG_OVERRIDE(0x1110, RFC_DBELL_SYSGPOCTL_GPOCTL2_RATGPO3),
559  // ...
560 }
561 
562 // Finally, route the intermediate doorbell signal to a physical pin.
563 #include <ti/devices/DeviceFamily.h>
564 #include DeviceFamily_constructPath(driverlib/ioc.h)
565 #include <ti/drivers/GPIO.h>
566 #include <ti/drivers/gpio/GPIOCC26XX.h>
567 GPIO_setMux(IOID_17, IOC_PORT_RFC_GPO2);
568 @endcode
569 
570 <hr>
571 @anchor rf_tx_power
572 Programming the TX power level
573 ==============================
574 
575 The application can program a TX power level for each RF client with the function
576 #RF_setTxPower(). The new value takes immediate effect if the RF core is up and
577 running. Otherwise, it is stored in the RF driver client configuration.
578 
579 TX power may be stored in a lookup table in ascending order. This table is usually
580 generated and exported from SmartRF Studio together with the rest of the PHY configuration.
581 A typical power table my look as follows:
582 @code
583 RF_TxPowerTable_Entry txPowerTable[] = {
584  { .power = 11, .value = { 0x1233, RF_TxPowerTable_DefaultPA }},
585  { .power = 13, .value = { 0x1234, RF_TxPowerTable_DefaultPA }},
586  // ...
587  RF_TxPowerTable_TERMINATION_ENTRY
588 };
589 @endcode
590 
591 @note Some devices offer a high-power PA in addition to the default PA.
592 A client must not mix configuration values in the same power table and must
593 not hop from a default PA configuration to a high-power PA configuration unless it
594 can guarantee that the RF setup command is re-executed in between.
595 
596 Given this power table format, the application may program a new power level in multiple
597 ways. It can use convenience functions to search a certain power level
598 in the power table or may access the table index-based:
599 @code
600 // Set a certain power level. Search a matching level.
601 RF_setTxPower(h, RF_TxPowerTable_findValue(txPowerTable, 17));
602 
603 // Set a certain power level with a known level.
604 RF_setTxPower(h, txPowerTable[3].value);
605 
606 // Set a certain power without using a human readable level.
607 RF_setTxPower(h, value);
608 
609 // Set maximum power. Search the value.
610 RF_setTxPower(h, RF_TxPowerTable_findValue(txPowerTable, RF_TxPowerTable_MAX_DBM));
611 
612 // Set minimum power without searching.
613 RF_setTxPower(h, txPowerTable[0].value);
614 
615 // Set minimum power. Search the value.
616 RF_setTxPower(h, RF_TxPowerTable_findValue(txPowerTable, RF_TxPowerTable_MIN_DBM));
617 
618 // Set maximum power without searching.
619 int32_t lastIndex = sizeof(txPowerTable) / sizeof(RF_TxPowerTable_Entry) - 2;
620 RF_setTxPower(h, txPowerTable[lastIndex].value);
621 @endcode
622 
623 The current configured power level for a client can be retrieved by #RF_getTxPower().
624 @code
625 // Get the current configured power level.
626 int8_t power = RF_TxPowerTable_findPowerLevel(txPowerTable, RF_getTxPower(h));
627 @endcode
628 
629 <hr>
630 @anchor rf_temperature_compensation
631 Temperature Compensation
632 ==============================
633 
634 The RF driver improves the accuracy of XOSC_HF by performing temperature
635 dependent compensation. This is commonly done in the BAW/SIP devices where the
636 compensation parameters are already available inside the package.
637 
638 When temperature compensation is enabled, RF_enableHPOSCTemperatureCompensation()
639 is called during the board initialization(in Board_init()). This function enables
640 the RF driver to update HPOSC_OVERRIDE with the correct frequency offset according
641 to the ambient temperature at radio setup.
642 
643 @code
644 // Enable RF Temperature Compensation
645 status = RF_enableHPOSCTemperatureCompensation(void)
646 @endcode
647 
648 The RF driver also subscribes to a temperature notification event that triggers
649 for 3 degree Celsius change in temperature. At every 3 degree Celsius change in
650 temperature, it updates the RF core with the new frequency offset and re-subscribes
651 to the temperature notification with updated thresholds.
652 
653 @warning At the moment, temperature compensation is only supported on BAW or SIP
654 device variants.
655 
656 Error Handling
657 --------------
658 When temperature compensation is enabled, but HPOSC_OVERRIDE is not found, then
659 RF_open() returns a NULL handle.
660 
661 RF_enableHPOSCTemperatureCompensation() returns #RF_StatInvalidParamsError if
662 the temperature notification fails to register.
663 
664 When the temperature notification fails to register, a global callback can be
665 executed by subscribing to the event #RF_GlobalEventTempNotifyFail defined in
666 #RF_GlobalEvent.
667 
668 @note The #RF_Handle in the global callback function will belong to the current
669 active client and this client is not causing the failure, since neither the
670 temperature event nor the failure is client specific.
671 
672 <hr>
673 @anchor rf_convenience_features
674 Convenience features
675 ====================
676 
677 The RF driver simplifies often needed tasks and provides additional functions.
678 For instance, it can read the RSSI while the RF core is in RX mode using the
679 function :tidrivers_api:`RF_getRssi`:
680 
681 @code
682 int8_t rssi = RF_getRssi(rfHandle);
683 assert (rssi != RF_GET_RSSI_ERROR_VAL); // Could not read the RSSI
684 @endcode
685 
686 <hr>
687  ******************************************************************************
688  */
689 
690 //*****************************************************************************
691 //
696 //
697 //*****************************************************************************
698 
699 #ifndef ti_drivers_rfcc26x2__include
700 #define ti_drivers_rfcc26x2__include
701 
702 #ifdef __cplusplus
703 extern "C" {
704 #endif
705 
706 #include <stdint.h>
707 #include <stdbool.h>
708 
709 #include <ti/drivers/dpl/ClockP.h>
710 #include <ti/drivers/dpl/SemaphoreP.h>
711 #include <ti/drivers/utils/List.h>
712 
713 #include <ti/devices/DeviceFamily.h>
714 #include DeviceFamily_constructPath(driverlib/rf_common_cmd.h)
715 #include DeviceFamily_constructPath(driverlib/rf_prop_cmd.h)
716 #include DeviceFamily_constructPath(driverlib/rf_ble_cmd.h)
717 
729 #define RF_EventCmdDone (1 << 0)
730 #define RF_EventLastCmdDone (1 << 1)
731 #define RF_EventFGCmdDone (1 << 2)
732 #define RF_EventLastFGCmdDone (1 << 3)
733 #define RF_EventTxDone (1 << 4)
734 #define RF_EventTXAck (1 << 5)
735 #define RF_EventTxCtrl (1 << 6)
736 #define RF_EventTxCtrlAck (1 << 7)
737 #define RF_EventTxCtrlAckAck (1 << 8)
738 #define RF_EventTxRetrans (1 << 9)
739 #define RF_EventTxEntryDone (1 << 10)
740 #define RF_EventTxBufferChange (1 << 11)
741 #define RF_EventPaChanged (1 << 14)
742 #define RF_EventSamplesEntryDone (1 << 15)
743 #define RF_EventRxOk (1 << 16)
744 #define RF_EventRxNOk (1 << 17)
745 #define RF_EventRxIgnored (1 << 18)
746 #define RF_EventRxEmpty (1 << 19)
747 #define RF_EventRxCtrl (1 << 20)
748 #define RF_EventRxCtrlAck (1 << 21)
749 #define RF_EventRxBufFull (1 << 22)
750 #define RF_EventRxEntryDone (1 << 23)
751 #define RF_EventDataWritten (1 << 24)
752 #define RF_EventNDataWritten (1 << 25)
753 #define RF_EventRxAborted (1 << 26)
754 #define RF_EventRxCollisionDetected (1 << 27)
755 #define RF_EventModulesUnlocked (1 << 29)
756 #define RF_EventInternalError (uint32_t)(1 << 31)
757 #define RF_EventMdmSoft 0x0000002000000000
758 
767 #define RF_EventCmdCancelled 0x1000000000000000
768 #define RF_EventCmdAborted 0x2000000000000000
769 #define RF_EventCmdStopped 0x4000000000000000
770 #define RF_EventRatCh 0x0800000000000000
771 #define RF_EventPowerUp 0x0400000000000000
772 #define RF_EventError 0x0200000000000000
773 #define RF_EventCmdPreempted 0x0100000000000000
774 
792 #define RF_CTRL_SET_INACTIVITY_TIMEOUT 0
793 
802 #define RF_CTRL_UPDATE_SETUP_CMD 1
803 
808 #define RF_CTRL_SET_POWERUP_DURATION_MARGIN 2
809 
816 #define RF_CTRL_SET_PHYSWITCHING_DURATION_MARGIN 3
817 
824 #define RF_CTRL_SET_RAT_RTC_ERR_TOL_VAL 4
825 
836 #define RF_CTRL_SET_POWER_MGMT 5
837 
858 #define RF_CTRL_SET_HWI_PRIORITY 6
859 
880 #define RF_CTRL_SET_SWI_PRIORITY 7
881 
890 #define RF_CTRL_SET_AVAILABLE_RAT_CHANNELS_MASK 8
891 
905 #define RF_CTRL_COEX_CONTROL 9
906 
919 #define RF_TxPowerTable_MIN_DBM -128
920 
927 #define RF_TxPowerTable_MAX_DBM 126
928 
934 #define RF_TxPowerTable_INVALID_DBM 127
935 
953 #define RF_TxPowerTable_INVALID_VALUE 0x3fffff
954 
970 #define RF_TxPowerTable_TERMINATION_ENTRY \
971  { .power = RF_TxPowerTable_INVALID_DBM, .value = { .rawValue = RF_TxPowerTable_INVALID_VALUE, .paType = RF_TxPowerTable_DefaultPA } }
972 
979 #define RF_TxPowerTable_DEFAULT_PA_ENTRY(bias, gain, boost, coefficient) \
980  { .rawValue = ((bias) << 0) | ((gain) << 6) | ((boost) << 8) | ((coefficient) << 9), .paType = RF_TxPowerTable_DefaultPA }
981 
988 #define RF_TxPowerTable_CC13x4Sub1GHz_DEFAULT_PA_ENTRY(bias, gain, boost, coefficient, gain2) \
989  { .rawValue = ((bias) << 0) | ((gain) << 6) | ((boost) << 8) | ((coefficient) << 9) | ((gain2) << 16), .paType = RF_TxPowerTable_DefaultPA }
990 
997 #define RF_TxPowerTable_HIGH_PA_ENTRY(bias, ibboost, boost, coefficient, ldotrim) \
998  { .rawValue = ((bias) << 0) | ((ibboost) << 6) | ((boost) << 8) | ((coefficient) << 9) | ((ldotrim) << 16), .paType = RF_TxPowerTable_HighPA }
999 
1000 
1007 #define RF_GET_RSSI_ERROR_VAL (-128)
1008 #define RF_CMDHANDLE_FLUSH_ALL (-1)
1009 #define RF_ALLOC_ERROR (-2)
1010 #define RF_SCHEDULE_CMD_ERROR (-3)
1011 #define RF_ERROR_RAT_PROG (-255)
1012 #define RF_ERROR_INVALID_RFMODE (-256)
1013 #define RF_ERROR_CMDFS_SYNTH_PROG (-257)
1014 
1015 #define RF_NUM_SCHEDULE_ACCESS_ENTRIES 2
1016 #define RF_NUM_SCHEDULE_COMMAND_ENTRIES 8
1017 #define RF_NUM_SCHEDULE_MAP_ENTRIES (RF_NUM_SCHEDULE_ACCESS_ENTRIES + RF_NUM_SCHEDULE_COMMAND_ENTRIES)
1018 #define RF_SCH_MAP_CURRENT_CMD_OFFSET RF_NUM_SCHEDULE_ACCESS_ENTRIES
1019 #define RF_SCH_MAP_PENDING_CMD_OFFSET (RF_SCH_MAP_CURRENT_CMD_OFFSET + 2)
1020 
1021 #define RF_ABORT_PREEMPTION (1<<2)
1022 #define RF_ABORT_GRACEFULLY (1<<0)
1023 
1024 #define RF_SCH_CMD_EXECUTION_TIME_UNKNOWN 0
1025 
1026 #define RF_RAT_ANY_CHANNEL (-1)
1027 #define RF_RAT_TICKS_PER_US 4
1028 
1029 #define RF_LODIVIDER_MASK 0x7F
1030 
1031 
1038 #define RF_STACK_ID_DEFAULT 0x00000000
1039 #define RF_STACK_ID_154 0x8000F154
1040 #define RF_STACK_ID_BLE 0x8000FB1E
1041 #define RF_STACK_ID_EASYLINK 0x8000FEA2
1042 #define RF_STACK_ID_THREAD 0x8000FEAD
1043 #define RF_STACK_ID_TOF 0x8000F00F
1044 #define RF_STACK_ID_CUSTOM 0x0000FC00
1045 
1050 #define RF_convertUsToRatTicks(microseconds) \
1051  ((microseconds) * (RF_RAT_TICKS_PER_US))
1052 
1056 #define RF_convertMsToRatTicks(milliseconds) \
1057  ((milliseconds) * 1000 * (RF_RAT_TICKS_PER_US))
1058 
1062 #define RF_convertRatTicksToUs(ticks) \
1063  ((ticks) / (RF_RAT_TICKS_PER_US))
1064 
1068 #define RF_convertRatTicksToMs(ticks) \
1069  ((ticks) / (1000 * (RF_RAT_TICKS_PER_US)))
1070 
1071 
1083 typedef struct {
1084  uint32_t rawValue:22;
1085  uint32_t __dummy:9;
1089  uint32_t paType:1;
1094 
1113 typedef struct
1114 {
1115  int8_t power;
1116 
1119 } __attribute__((packed)) RF_TxPowerTable_Entry;
1120 
1121 
1128 typedef enum {
1132 
1133 
1148 
1149 
1158 typedef struct {
1159  uint8_t rfMode;
1160  void (*cpePatchFxn)(void);
1161  void (*mcePatchFxn)(void);
1162  void (*rfePatchFxn)(void);
1163 } RF_Mode;
1164 
1175 typedef enum {
1179 } RF_Priority;
1180 
1191 typedef enum {
1195 } RF_PriorityCoex;
1196 
1207 typedef enum {
1211 } RF_RequestCoex;
1212 
1219 typedef struct {
1222 } RF_CoexOverride;
1223 
1230 typedef struct {
1236 
1245 typedef enum {
1251  RF_StatError = 0x80,
1255 } RF_Stat;
1256 
1261 typedef uint64_t RF_EventMask;
1262 
1272 typedef union {
1274  rfc_CMD_RADIO_SETUP_t common;
1283 } RF_RadioSetup;
1284 
1313 typedef enum {
1316 
1320 } RF_ClientEvent;
1321 
1383 typedef enum {
1385 
1389 
1392  RF_GlobalEventInit = (1 << 2),
1393 
1397 
1401 
1405 
1409 
1413 } RF_GlobalEvent;
1414 
1415 
1419 typedef uint32_t RF_ClientEventMask;
1420 
1424 typedef uint32_t RF_GlobalEventMask;
1425 
1438 typedef int16_t RF_CmdHandle;
1439 
1460 typedef struct RF_ObjectMultiMode RF_Object;
1461 
1465 struct RF_ObjectMultiMode{
1467  struct {
1468  uint32_t nInactivityTimeout;
1469  RF_Mode* pRfMode;
1470  RF_RadioSetup* pRadioSetup;
1471  uint32_t nPhySwitchingDuration;
1472  uint32_t nPowerUpDuration;
1473  uint32_t nPowerUpDurationFs;
1474  bool bMeasurePowerUpDuration;
1475  bool bUpdateSetup;
1476  uint16_t nPowerUpDurationMargin;
1477  void* pPowerCb;
1478  void* pErrCb;
1479  void* pClientEventCb;
1480  RF_ClientEventMask nClientEventMask;
1481  uint16_t nPhySwitchingDurationMargin;
1482  uint32_t nID;
1483  } clientConfig;
1485  struct {
1486  struct {
1487  rfc_CMD_FS_t cmdFs;
1488  } mode_state;
1489  SemaphoreP_Struct semSync;
1490  RF_EventMask volatile eventSync;
1491  void* pCbSync;
1492  RF_EventMask unpendCause;
1493  ClockP_Struct clkReqAccess;
1494  bool bYielded;
1495  } state;
1496 };
1497 
1506 
1507 
1516 typedef int8_t RF_RatHandle;
1517 
1521 typedef enum {
1528 } RF_InfoType;
1529 
1535 typedef union {
1536  RF_CmdHandle ch;
1537  uint16_t availRatCh;
1539  RF_Handle pClientList[2];
1540  uint32_t phySwitchingTimeInUs[2];
1542 } RF_InfoVal;
1543 
1547 typedef struct {
1548  RF_CmdHandle ch;
1549  RF_Handle pClient;
1550  uint32_t startTime;
1551  uint32_t endTime;
1554 
1558 typedef struct {
1561 } RF_ScheduleMap;
1562 
1588 typedef void (*RF_Callback)(RF_Handle h, RF_CmdHandle ch, RF_EventMask e);
1589 
1603 typedef void (*RF_RatCallback)(RF_Handle h, RF_RatHandle rh, RF_EventMask e, uint32_t compareCaptureTime);
1604 
1620 typedef void (*RF_ClientCallback)(RF_Handle h, RF_ClientEvent event, void* arg);
1621 
1635 typedef void (*RF_GlobalCallback)(RF_Handle h, RF_GlobalEvent event, void* arg);
1636 
1645 typedef struct {
1647 
1649  uint32_t nPowerUpDuration;
1650 
1654 
1657 
1659 
1664 
1666 
1668  RF_ClientEventMask nClientEventMask;
1669 
1671  uint32_t nID;
1672 } RF_Params;
1673 
1677 typedef enum {
1680 } RF_StartType;
1681 
1685 typedef enum {
1690  } RF_EndType;
1691 
1692 /* RF command. */
1693 typedef struct RF_Cmd_s RF_Cmd;
1694 
1695 /* RF command . */
1696 struct RF_Cmd_s {
1697  List_Elem _elem; /* Pointer to next and previous elements. */
1698  RF_Callback volatile pCb; /* Pointer to callback function */
1699  RF_Op* pOp; /* Pointer to (chain of) RF operations(s) */
1700  RF_Object* pClient; /* Pointer to client */
1701  RF_EventMask bmEvent; /* Enable mask for interrupts from the command */
1702  RF_EventMask pastifg; /* Accumulated value of events happened within a command chain */
1703  RF_EventMask rfifg; /* Return value for callback 0:31 - RF_CPE0_INT, 32:63 - RF_HW_INT */
1704  RF_CmdHandle ch; /* Command handle */
1705  RF_Priority ePri; /* Priority of RF command */
1706  uint8_t volatile flags; /* [0: Aborted, 1: Stopped, 2: canceled] */
1707  uint32_t startTime; /* Command start time (in RAT ticks) */
1708  RF_StartType startType; /* Command start time type */
1709  uint32_t allowDelay; /* Delay allowed if the start time cannot be met. */
1710  uint32_t endTime; /* Command end time (in RAT ticks) */
1711  RF_EndType endType; /* Command end type */
1712  uint32_t duration; /* Command duration (in RAT ticks) */
1713  uint32_t activityInfo; /* General value supported by user */
1714  RF_PriorityCoex coexPriority; /* Command priority to use for coexistence request. */
1715  RF_RequestCoex coexRequest; /* Command REQUEST line behavior to use for coexistence request. */
1716 };
1717 
1723 typedef struct {
1724  uint8_t hwiPriority;
1725  uint8_t swiPriority;
1728  RF_GlobalEventMask globalEventMask;
1730 
1735 typedef enum
1736 {
1741 
1744 typedef enum
1745 {
1753 
1772 typedef RF_ScheduleStatus (*RF_SubmitHook)(RF_Cmd* pCmdNew, RF_Cmd* pCmdBg, RF_Cmd* pCmdFg, List_List* pPendQueue, List_List* pDoneQueue);
1773 
1791 typedef RF_ExecuteAction (*RF_ExecuteHook)(RF_Cmd* pCmdBg, RF_Cmd* pCmdFg, List_List* pPendQueue, List_List* pDoneQueue, bool bConflict, RF_Cmd* conflictCmd);
1792 
1798 typedef struct {
1802 
1806 typedef enum {
1808  RF_AllowDelayAny = UINT32_MAX
1809 } RF_AllowDelay;
1810 
1811 /* @brief RF schedule command parameter struct
1812  *
1813  * RF schedule command parameters are used with the RF_scheduleCmd() call.
1814  */
1815 typedef struct {
1816  uint32_t startTime;
1818  uint32_t allowDelay;
1819  uint32_t endTime;
1824  uint32_t duration;
1825  uint32_t activityInfo;
1829 
1834 typedef struct {
1835  uint32_t duration;
1836  uint32_t startTime;
1838 } RF_AccessParams;
1839 
1846 typedef enum {
1852 
1858 typedef enum {
1868 
1874 typedef enum {
1880 
1887 typedef enum {
1891 
1906 typedef enum {
1914 
1924 typedef enum {
1933 
1938 typedef struct {
1940  RF_RatHandle channel;
1945 
1950 typedef struct {
1952  RF_RatHandle channel;
1953  uint32_t timeout;
1956 
1961 typedef struct {
1965 
1998 extern RF_Handle RF_open(RF_Object *pObj, RF_Mode *pRfMode, RF_RadioSetup *pRadioSetup, RF_Params *params);
1999 
2013 extern void RF_close(RF_Handle h);
2014 
2025 extern uint32_t RF_getCurrentTime(void);
2026 
2081 extern RF_CmdHandle RF_postCmd(RF_Handle h, RF_Op *pOp, RF_Priority ePri, RF_Callback pCb, RF_EventMask bmEvent);
2082 
2093 extern RF_ScheduleStatus RF_defaultSubmitPolicy(RF_Cmd* pCmdNew, RF_Cmd* pCmdBg, RF_Cmd* pCmdFg, List_List* pPendQueue, List_List* pDoneQueue);
2094 
2106 extern RF_ExecuteAction RF_defaultExecutionPolicy(RF_Cmd* pCmdBg, RF_Cmd* pCmdFg, List_List* pPendQueue, List_List* pDoneQueue, bool bConflict, RF_Cmd* conflictCmd);
2107 
2108 
2117 extern void RF_ScheduleCmdParams_init(RF_ScheduleCmdParams *pSchParams);
2118 
2145 extern RF_CmdHandle RF_scheduleCmd(RF_Handle h, RF_Op *pOp, RF_ScheduleCmdParams *pSchParams, RF_Callback pCb, RF_EventMask bmEvent);
2146 
2206 extern RF_EventMask RF_pendCmd(RF_Handle h, RF_CmdHandle ch, RF_EventMask bmEvent);
2207 
2235 extern RF_EventMask RF_runCmd(RF_Handle h, RF_Op *pOp, RF_Priority ePri, RF_Callback pCb, RF_EventMask bmEvent);
2236 
2256 extern RF_EventMask RF_runScheduleCmd(RF_Handle h, RF_Op *pOp, RF_ScheduleCmdParams *pSchParams, RF_Callback pCb, RF_EventMask bmEvent);
2257 
2277 extern RF_Stat RF_cancelCmd(RF_Handle h, RF_CmdHandle ch, uint8_t mode);
2278 
2297 extern RF_Stat RF_flushCmd(RF_Handle h, RF_CmdHandle ch, uint8_t mode);
2298 
2312 extern RF_Stat RF_runImmediateCmd(RF_Handle h, uint32_t *pCmdStruct);
2313 
2327 extern RF_Stat RF_runDirectCmd(RF_Handle h, uint32_t cmd);
2328 
2343 extern void RF_yield(RF_Handle h);
2344 
2355 extern void RF_Params_init(RF_Params *params);
2356 
2367 extern RF_Stat RF_getInfo(RF_Handle h, RF_InfoType type, RF_InfoVal *pValue);
2368 
2377 extern int8_t RF_getRssi(RF_Handle h);
2378 
2388 extern RF_Op* RF_getCmdOp(RF_Handle h, RF_CmdHandle cmdHnd);
2389 
2398 extern void RF_RatConfigCompare_init(RF_RatConfigCompare* channelConfig);
2399 
2408 extern void RF_RatConfigCapture_init(RF_RatConfigCapture* channelConfig);
2409 
2418 extern void RF_RatConfigOutput_init(RF_RatConfigOutput* ioConfig);
2419 
2461 extern RF_RatHandle RF_ratCompare(RF_Handle rfHandle, RF_RatConfigCompare* channelConfig, RF_RatConfigOutput* ioConfig);
2462 
2502 extern RF_RatHandle RF_ratCapture(RF_Handle rfHandle, RF_RatConfigCapture* channelConfig, RF_RatConfigOutput* ioConfig);
2503 
2521 extern RF_Stat RF_ratDisableChannel(RF_Handle rfHandle, RF_RatHandle ratHandle);
2522 
2533 extern RF_Stat RF_control(RF_Handle h, int8_t ctrl, void *args);
2534 
2553 extern RF_Stat RF_requestAccess(RF_Handle h, RF_AccessParams *pParams);
2554 
2574 extern RF_TxPowerTable_Value RF_getTxPower(RF_Handle h);
2575 
2595 extern RF_Stat RF_setTxPower(RF_Handle h, RF_TxPowerTable_Value value);
2596 
2616 
2641 extern RF_TxPowerTable_Value RF_TxPowerTable_findValue(RF_TxPowerTable_Entry table[], int8_t powerLevel);
2642 
2643 
2652 extern RF_Stat RF_enableHPOSCTemperatureCompensation(void);
2653 
2654 #ifdef __cplusplus
2655 }
2656 #endif
2657 
2658 #endif /* ti_drivers_rfcc26x2__include */
2659 
2660 //*****************************************************************************
2661 //
2665 //
2666 //*****************************************************************************
RF Hardware attributes.
Definition: RFCC26X2.h:1723
Definition: RFCC26X2.h:1687
uint32_t allowDelay
Definition: RFCC26X2.h:1818
RF_RatCaptureMode captureMode
Configuration of the mode of event to cause a capture event.
Definition: RFCC26X2.h:1942
Default PA.
Definition: RFCC26X2.h:1129
Generates a one-clock period width pulse.
Definition: RFCC26X2.h:1907
RF_CmdHandle ch
Command handle (RF_GET_CURR_CMD).
Definition: RFCC26X2.h:1536
Definition: RFCC26X2.h:1408
RF_StartType startType
Definition: RFCC26X2.h:1708
Definition: RFCC26X2.h:1404
RF_EventMask RF_pendCmd(RF_Handle h, RF_CmdHandle ch, RF_EventMask bmEvent)
Synchronizes the calling task to an RF operation command ch and returns accumulated event flags...
Highest priority. Only use this for urgent commands.
Definition: RFCC26X2.h:1176
Configure RAT_CHANNEL[x] to interface with RAT_GPO[4].
Definition: RFCC26X2.h:1928
RF driver configuration parameters.
Definition: RFCC26X2.h:1645
rfc_CMD_RADIO_SETUP_PA_t common_pa
Radio setup command for BLE and IEEE modes with High Gain PA.
Definition: RFCC26X2.h:1279
RF_TxPowerTable_Value RF_TxPowerTable_findValue(RF_TxPowerTable_Entry table[], int8_t powerLevel)
Retrieves a power configuration value for a given power level in dBm.
uint32_t startTime
Start time window in RAT Time for radio access.
Definition: RFCC26X2.h:1836
RF_Callback volatile pCb
Definition: RFCC26X2.h:1698
RF_RatCallback callback
Callback function to be invoked upon a capture event (optional).
Definition: RFCC26X2.h:1951
Definition: RFCC26X2.h:1686
#define RF_NUM_SCHEDULE_ACCESS_ENTRIES
Number of access request entries.
Definition: RFCC26X2.h:1015
Use RAT user channel 0.
Definition: RFCC26X2.h:1848
void RF_RatConfigOutput_init(RF_RatConfigOutput *ioConfig)
Initialize the configuration structure to be used to set up a RAT IO.
uint32_t RF_getCurrentTime(void)
Return current radio timer value.
Definition: RFCC26X2.h:1808
Function was called with an invalid parameter.
Definition: RFCC26X2.h:1249
void(* RF_GlobalCallback)(RF_Handle h, RF_GlobalEvent event, void *arg)
Handles global events as part of PHY configuration.
Definition: RFCC26X2.h:1635
uint16_t nPowerUpDurationMargin
Definition: RFCC26X2.h:1658
Definition: RFCC26X2.h:1864
RF_ExecuteHook executeHook
Function hook implements the runtime last second go-no-go execute decision.
Definition: RFCC26X2.h:1800
Frequency Synthesizer Programming Command.
Definition: cc13x2_cc26x2/driverlib/rf_common_cmd.h:237
Create a bitmask showing available RAT channels.
Definition: RFCC26X2.h:1523
int8_t RF_getRssi(RF_Handle h)
Get RSSI value.
rfc_CMD_PROP_RADIO_SETUP_PA_t prop_pa
Radio setup command for PROPRIETARY mode on 2.4 GHz with High Gain PA.
Definition: RFCC26X2.h:1281
uint8_t rfMode
Specifies which PHY modes should be activated. Must be set to RF_MODE_MULTIPLE for dual-mode operatio...
Definition: RFCC26X2.h:1159
void RF_close(RF_Handle h)
Close client connection to RF driver.
Definition: RFCC26X2.h:1392
RF_AllowDelay
Controls the behavior of the RF_scheduleCmd() API.
Definition: RFCC26X2.h:1806
Coexistence override settings for BLE5 application scenarios.
Definition: RFCC26X2.h:1230
Definition: RFCC26X2.h:1807
Command finished with an error.
Definition: RFCC26X2.h:1248
RF_ClientEventMask nClientEventMask
Definition: RFCC26X2.h:1668
RF_EndType endType
Definition: RFCC26X2.h:1711
Free the channel after the first capture event.
Definition: RFCC26X2.h:1888
RF_Stat RF_enableHPOSCTemperatureCompensation(void)
Enables temperature monitoring and temperature based drift compensation.
Configure RAT_CHANNEL[x] to interface with RAT_GPO[5].
Definition: RFCC26X2.h:1929
RF_ScheduleStatus
Describes the location within the pend queue where the new command was inserted by the scheduler...
Definition: RFCC26X2.h:1744
RF schedule map entry structure.
Definition: RFCC26X2.h:1547
RF_ExecuteAction
Controls the behavior of the state machine of the RF driver when a conflict is identified run-time be...
Definition: RFCC26X2.h:1735
Chose the first available channel.
Definition: RFCC26X2.h:1847
RF_EventMask RF_runCmd(RF_Handle h, RF_Op *pOp, RF_Priority ePri, RF_Callback pCb, RF_EventMask bmEvent)
Runs synchronously an RF operation command or a chain of commands and returns the termination reason...
void RF_ScheduleCmdParams_init(RF_ScheduleCmdParams *pSchParams)
Initialize the configuration structure to default values to be used with the RF_scheduleCmd() API...
RF_Stat RF_requestAccess(RF_Handle h, RF_AccessParams *pParams)
Request radio access.
uint32_t allowDelay
Definition: RFCC26X2.h:1709
Cmd is found in the pool but was already ended.
Definition: RFCC26X2.h:1250
Selects the RTC update signal source.
Definition: RFCC26X2.h:1859
Configure RAT_CHANNEL[x] to interface with RAT_GPO[2].
Definition: RFCC26X2.h:1926
RF_EventMask rfifg
Definition: RFCC26X2.h:1703
Definition: RFCC26X2.h:1696
Definition: RFCC26X2.h:1688
RF_RatHandle channel
RF_RatHandle identifies the channel to be allocated.
Definition: RFCC26X2.h:1940
RF_PriorityCoex priority
Priority level for coexistence priority signal.
Definition: RFCC26X2.h:1220
Low priority. Override default value configured by setup command.
Definition: RFCC26X2.h:1193
RF_Handle RF_open(RF_Object *pObj, RF_Mode *pRfMode, RF_RadioSetup *pRadioSetup, RF_Params *params)
Creates a a new client instance of the RF driver.
uint32_t nPowerUpDuration
Definition: RFCC26X2.h:1649
Retrieve a command handle of the current command.
Definition: RFCC26X2.h:1522
High priority. Override default value configured by setup command.
Definition: RFCC26X2.h:1194
Execute if no conflict, let current command finish if conflict.
Definition: RFCC26X2.h:1737
uint8_t swiPriority
Priority for SWIs belong to the RF driver.
Definition: RFCC26X2.h:1725
RF_ExecuteAction(* RF_ExecuteHook)(RF_Cmd *pCmdBg, RF_Cmd *pCmdFg, List_List *pPendQueue, List_List *pDoneQueue, bool bConflict, RF_Cmd *conflictCmd)
Defines the execution and conflict resolution hook at runtime.
Definition: RFCC26X2.h:1791
Rising edge of the selected source will trigger a capture event.
Definition: RFCC26X2.h:1875
RF_Stat RF_setTxPower(RF_Handle h, RF_TxPowerTable_Value value)
Updates the transmit power configuration of the RF core.
Definition: RFCC26X2.h:1384
uint8_t volatile flags
Definition: RFCC26X2.h:1706
uint32_t duration
Duration in RAT Ticks for the radio command.
Definition: RFCC26X2.h:1824
rfc_CMD_PROP_RADIO_DIV_SETUP_t prop_div
Radio setup command for PROPRIETARY mode on Sub-1 Ghz.
Definition: RFCC26X2.h:1278
List_Elem _elem
Definition: RFCC26X2.h:1697
RF_GlobalEventMask globalEventMask
Event mask which the globalCallback is invoked upon.
Definition: RFCC26X2.h:1728
RF_RatOutputSelect
Selects GPO to be used with RF_ratCompare() or RF_ratCapture().
Definition: RFCC26X2.h:1924
RF_Op * RF_getCmdOp(RF_Handle h, RF_CmdHandle cmdHnd)
Get command structure pointer.
Stores output parameters for RF_getInfo().
Definition: RFCC26X2.h:1535
RF_Handle pClient
Pointer to client object.
Definition: RFCC26X2.h:1549
RF_CmdHandle RF_postCmd(RF_Handle h, RF_Op *pOp, RF_Priority ePri, RF_Callback pCb, RF_EventMask bmEvent)
Appends RF operation commands to the driver&#39;s command queue and returns a command handle...
RF_RatHandle RF_ratCapture(RF_Handle rfHandle, RF_RatConfigCapture *channelConfig, RF_RatConfigOutput *ioConfig)
Setup a Radio Timer (RAT) channel in capture mode.
Default priority. Use this in single-client applications.
Definition: RFCC26X2.h:1178
RF_CmdHandle ch
Definition: RFCC26X2.h:1704
Provide the client list.
Definition: RFCC26X2.h:1526
RF_Priority ePri
Definition: RFCC26X2.h:1705
RF_EndType endType
End type for the end time.
Definition: RFCC26X2.h:1823
RF_CoexOverride bleObserver
Definition: RFCC26X2.h:1234
Definition: cc13x2_cc26x2/driverlib/rf_common_cmd.h:112
RF_RatOutputMode
Selects the mode of the RAT_GPO[x] for RF_ratCompare() or RF_ratCapture().
Definition: RFCC26X2.h:1906
RAT related IO parameter structure.
Definition: RFCC26X2.h:1961
High-power PA.
Definition: RFCC26X2.h:1130
RF_CmdHandle ch
Command handle.
Definition: RFCC26X2.h:1548
Inverts the polarity of the output.
Definition: RFCC26X2.h:1910
RF_RequestCoex request
Behavior for coexistence request signal.
Definition: RFCC26X2.h:1221
RF_InfoType
Selects the entry of interest in RF_getInfo().
Definition: RFCC26X2.h:1521
uint32_t startTime
Start time in RAT Ticks for the radio command.
Definition: RFCC26X2.h:1816
RF_Priority priority
Priority of the command or access request.
Definition: RFCC26X2.h:1552
Definition: RFCC26X2.h:1315
RF_Stat RF_flushCmd(RF_Handle h, RF_CmdHandle ch, uint8_t mode)
Abort/stop/cancel command and any subsequent commands in command queue.
RF_StartType
Controls the behavior of the RF_scheduleCmd() API.
Definition: RFCC26X2.h:1677
void RF_RatConfigCompare_init(RF_RatConfigCompare *channelConfig)
Initialize the configuration structure to be used to set up a RAT compare event.
Definition: RFCC26X2.h:1749
RF_ratCapture parameter structure.
Definition: RFCC26X2.h:1938
Definition: cc13x2_cc26x2/driverlib/rf_prop_cmd.h:902
Runtime coexistence override parameters.
Definition: RFCC26X2.h:1219
Falling edge of the selected source will trigger a capture event.
Definition: RFCC26X2.h:1876
bool bRadioState
Current RF core power state (RF_GET_RADIO_STATE).
Definition: RFCC26X2.h:1538
RF_RatCaptureMode
Selects the mode of RF_ratCapture().
Definition: RFCC26X2.h:1874
RF_RatOutputSelect select
The signal which shall be connected to the GPO.
Definition: RFCC26X2.h:1963
RF_EndType
Controls the behavior of the RF_scheduleCmd() API.
Definition: RFCC26X2.h:1685
void(* RF_Callback)(RF_Handle h, RF_CmdHandle ch, RF_EventMask e)
Handles events related to RF command execution.
Definition: RFCC26X2.h:1588
RF_CmdHandle RF_scheduleCmd(RF_Handle h, RF_Op *pOp, RF_ScheduleCmdParams *pSchParams, RF_Callback pCb, RF_EventMask bmEvent)
Schedule an RF operation (chain) to the command queue.
Proprietary Mode Radio Setup Command for 2.4 GHz.
Definition: cc13x2_cc26x2/driverlib/rf_prop_cmd.h:455
#define RF_NUM_SCHEDULE_COMMAND_ENTRIES
Number of scheduled command entries.
Definition: RFCC26X2.h:1016
Definition: cc13x2_cc26x2/driverlib/rf_common_cmd.h:681
uint32_t endTime
Definition: RFCC26X2.h:1710
uint32_t activityInfo
Activity info provided by user.
Definition: RFCC26X2.h:1825
RF_ScheduleStatus RF_defaultSubmitPolicy(RF_Cmd *pCmdNew, RF_Cmd *pCmdBg, RF_Cmd *pCmdFg, List_List *pPendQueue, List_List *pDoneQueue)
Sorts and adds commands to the RF driver internal command queue.
uint32_t duration
Radio access duration in RAT Ticks requested by the client.
Definition: RFCC26X2.h:1835
Command successfully scheduled for execution.
Definition: RFCC26X2.h:1253
RF_RatCaptureSource source
Configuration of the event source to cause a capture event.
Definition: RFCC26X2.h:1941
Configure RAT_CHANNEL[x] to interface with RAT_GPO[6].
Definition: RFCC26X2.h:1930
Radio Setup Command for Pre-Defined Schemes.
Definition: cc13x2_cc26x2/driverlib/rf_common_cmd.h:176
RF_RatCaptureRepetition repeat
Configuration of the channel to be used in single or repeated mode.
Definition: RFCC26X2.h:1943
Proprietary Mode Radio Setup Command for All Frequency Bands.
Definition: cc13x2_cc26x2/driverlib/rf_prop_cmd.h:561
Command not executed because RF core is powered down.
Definition: RFCC26X2.h:1247
uint32_t startTime
Start time (in RAT tick) of the command or access request.
Definition: RFCC26X2.h:1550
Do not assert REQUEST in RX. Override default value configured by setup command.
Definition: RFCC26X2.h:1210
RF_GlobalCallback globalCallback
Pointer to a callback function serving client independent events listed in RF_GlobalEvent.
Definition: RFCC26X2.h:1727
RF_TxPowerTable_PAType
Selects a power amplifier path in a TX power value.
Definition: RFCC26X2.h:1128
RF_RequestCoex coexRequest
REQUEST line behavior to use for coexistence request.
Definition: RFCC26X2.h:1827
RF_CoexOverride bleBroadcaster
Definition: RFCC26X2.h:1233
RF_Stat RF_control(RF_Handle h, int8_t ctrl, void *args)
Set RF control parameters.
Definition: RFCC26X2.h:1678
Selects the Generic event of Event Fabric as source.
Definition: RFCC26X2.h:1860
void RF_yield(RF_Handle h)
Signal that radio client is not going to issue more commands in a while.
Definition: RFCC26X2.h:1815
Definition: RFCC26X2.h:1746
Definition: RFCC26X2.h:1748
The RF core has been powered up the radio setup has been finished.
Definition: RFCC26X2.h:1314
void(* RF_ClientCallback)(RF_Handle h, RF_ClientEvent event, void *arg)
Handles events related to a driver instance.
Definition: RFCC26X2.h:1620
Deprecated. Not supported.
Definition: RFCC26X2.h:1525
Signals the client that the RF driver is about to switch over from another client.
Definition: RFCC26X2.h:1319
RF_PriorityCoex coexPriority
Priority to use for coexistence request.
Definition: RFCC26X2.h:1826
RF_Callback pPowerCb
Definition: RFCC26X2.h:1653
RF_StartType startType
Start type for the start time.
Definition: RFCC26X2.h:1817
RF_Stat RF_getInfo(RF_Handle h, RF_InfoType type, RF_InfoVal *pValue)
Get value for some RF driver parameters.
rfc_radioOp_t RF_Op
Base type for all radio operation commands.
Definition: RFCC26X2.h:1147
High priority. Use this for time-critical commands in synchronous protocols.
Definition: RFCC26X2.h:1177
int16_t RF_CmdHandle
Command handle that is returned by RF_postCmd().
Definition: RFCC26X2.h:1438
General error specifier.
Definition: RFCC26X2.h:1251
Definition: RFCC26X2.h:1751
RF_ClientCallback pClientEventCb
Definition: RFCC26X2.h:1665
void RF_RatConfigCapture_init(RF_RatConfigCapture *channelConfig)
Initialize the configuration structure to be used to set up a RAT capture event.
RF_Stat RF_runDirectCmd(RF_Handle h, uint32_t cmd)
Send any Direct command.
Definition: RFCC26X2.h:1400
uint16_t availRatCh
Available RAT channels (RF_GET_AVAIL_RAT_CH).
Definition: RFCC26X2.h:1537
RF_GlobalEvent
Global RF driver events.
Definition: RFCC26X2.h:1383
RF_Object * RF_Handle
A handle that is returned by to RF_open().
Definition: RFCC26X2.h:1505
rfc_CMD_BLE5_RADIO_SETUP_PA_t ble5_pa
Radio setup command for BLE5 mode with High Gain PA.
Definition: RFCC26X2.h:1280
RF_Priority
Scheduling priority of RF operation commands.
Definition: RFCC26X2.h:1175
RF_PriorityCoex coexPriority
Definition: RFCC26X2.h:1714
Definition: RFCC26X2.h:1689
RF_Stat
Status codes for various RF driver functions.
Definition: RFCC26X2.h:1245
Definition: cc13x2_cc26x2/driverlib/rf_ble_cmd.h:1644
Definition: RFCC26X2.h:1747
RF_Stat RF_cancelCmd(RF_Handle h, RF_CmdHandle ch, uint8_t mode)
Abort/stop/cancel single command in command queue.
Definition: RFCC26X2.h:1861
uint32_t timeout
Definition: RFCC26X2.h:1953
Definition: RFCC26X2.h:1396
uint32_t startTime
Definition: RFCC26X2.h:1707
uint32_t endTime
End time (in RAT tick) of the command or access request.
Definition: RFCC26X2.h:1551
Definition: cc13x2_cc26x2/driverlib/rf_prop_cmd.h:1013
Use RAT user channel 1.
Definition: RFCC26X2.h:1849
RF_RatCaptureRepetition
Selects the repetition of RF_ratCapture().
Definition: RFCC26X2.h:1887
int8_t power
Definition: RFCC26X2.h:1115
RF_ClientEvent
Client-related RF driver events.
Definition: RFCC26X2.h:1313
RF_RatCaptureSource
Selects the source signal for RF_ratCapture().
Definition: RFCC26X2.h:1858
Provide the client to client switching times.
Definition: RFCC26X2.h:1527
RF request access parameter struct.
Definition: RFCC26X2.h:1834
Bluetooth 5 Radio Setup Command for all PHYs.
Definition: cc13x2_cc26x2/driverlib/rf_ble_cmd.h:706
int8_t RF_RatHandle
RAT handle that is returned by RF_ratCompare() or RF_ratCapture().
Definition: RFCC26X2.h:1516
Use RAT user channel 2.
Definition: RFCC26X2.h:1850
RF_RatOutputMode mode
The mode the GPO should operate in.
Definition: RFCC26X2.h:1962
RF_CoexOverride bleConnected
Definition: RFCC26X2.h:1232
Default priority. Use value configured by setup command.
Definition: RFCC26X2.h:1192
uint32_t RF_ClientEventMask
Event mask for combining RF_ClientEvent event flags in RF_Params::nClientEventMask.
Definition: RFCC26X2.h:1419
RF_EventMask RF_runScheduleCmd(RF_Handle h, RF_Op *pOp, RF_ScheduleCmdParams *pSchParams, RF_Callback pCb, RF_EventMask bmEvent)
Runs synchronously a (chain of) RF operation(s) for dual or single-mode.
Configure RAT_CHANNEL[x] to interface with RAT_GPO[7].
Definition: RFCC26X2.h:1931
Definition: RFCC26X2.h:1388
Sets the output low independently of any RAT events.
Definition: RFCC26X2.h:1911
TX power configuration entry in a TX power table.
Definition: RFCC26X2.h:1113
Sets the output high independently of any RAT events.
Definition: RFCC26X2.h:1912
uint32_t activityInfo
Definition: RFCC26X2.h:1713
RF_Stat RF_runImmediateCmd(RF_Handle h, uint32_t *pCmdStruct)
Send any Immediate command.
A unified type for radio setup commands of different PHYs.
Definition: RFCC26X2.h:1272
void(* RF_RatCallback)(RF_Handle h, RF_RatHandle rh, RF_EventMask e, uint32_t compareCaptureTime)
Handles events related to the Radio Timer (RAT).
Definition: RFCC26X2.h:1603
RF_TxPowerTable_Value value
PA hardware configuration for that power level.
Definition: RFCC26X2.h:1118
RF_Op * pOp
Definition: RFCC26X2.h:1699
uint32_t nInactivityTimeout
Definition: RFCC26X2.h:1646
Abort the incoming command, letting the ongoing command finish.
Definition: RFCC26X2.h:1738
RF schedule map structure.
Definition: RFCC26X2.h:1558
RF_ScheduleStatus(* RF_SubmitHook)(RF_Cmd *pCmdNew, RF_Cmd *pCmdBg, RF_Cmd *pCmdFg, List_List *pPendQueue, List_List *pDoneQueue)
Handles the queue sorting algorithm when a new command is submitted to the driver from any of the act...
Definition: RFCC26X2.h:1772
RF_ratCompare parameter structure.
Definition: RFCC26X2.h:1950
RF_EventMask pastifg
Definition: RFCC26X2.h:1702
RF_SubmitHook submitHook
Function hook implements the scheduling policy to be executed at the time of RF_scheduleCmd API call...
Definition: RFCC26X2.h:1799
Sets the output low on a RAT event.
Definition: RFCC26X2.h:1909
uint32_t duration
Definition: RFCC26X2.h:1712
Configure RAT_CHANNEL[x] to interface with RAT_GPO[3].
Definition: RFCC26X2.h:1927
RF_CoexOverride bleInitiator
Definition: RFCC26X2.h:1231
rfc_CMD_PROP_RADIO_DIV_SETUP_PA_t prop_div_pa
Radio setup command for PROPRIETARY mode on Sub-1 Ghz with High Gain PA.
Definition: RFCC26X2.h:1282
Assert REQUEST in RX. Override default value configured by setup command.
Definition: RFCC26X2.h:1209
RF_RequestCoex
Behavior for coexistence request signal.
Definition: RFCC26X2.h:1207
Command finished with success.
Definition: RFCC26X2.h:1252
Function finished with success.
Definition: RFCC26X2.h:1254
int8_t RF_TxPowerTable_findPowerLevel(RF_TxPowerTable_Entry table[], RF_TxPowerTable_Value value)
Retrieves a power level in dBm for a given power configuration value.
Definition: RFCC26X2.h:1877
RF_RatHandle RF_ratCompare(RF_Handle rfHandle, RF_RatConfigCompare *channelConfig, RF_RatConfigOutput *ioConfig)
Setup a Radio Timer (RAT) channel in compare mode.
RF_RatHandle channel
RF_RatHandle identifies the channel to be allocated.
Definition: RFCC26X2.h:1952
Abort the ongoing command and run dispatcher again.
Definition: RFCC26X2.h:1739
bool xoscHfAlwaysNeeded
Indicate that the XOSC HF should be turned on by the power driver.
Definition: RFCC26X2.h:1726
Rearm the channel after each capture events.
Definition: RFCC26X2.h:1889
Sets the output high on a RAT event.
Definition: RFCC26X2.h:1908
Configure RAT_CHANNEL[x] to interface with RAT_GPO[1].
Definition: RFCC26X2.h:1925
Show the current RF core power state. 0: Radio OFF, 1: Radio ON.
Definition: RFCC26X2.h:1524
RF_ExecuteAction RF_defaultExecutionPolicy(RF_Cmd *pCmdBg, RF_Cmd *pCmdFg, List_List *pPendQueue, List_List *pDoneQueue, bool bConflict, RF_Cmd *conflictCmd)
Makes a final decision before dispatching a scheduled command.
RF_RequestCoex coexRequest
Definition: RFCC26X2.h:1715
RF_RatSelectChannel
Select the preferred RAT channel through the configuration of RF_ratCompare() or RF_ratCapture().
Definition: RFCC26X2.h:1846
RF scheduler policy.
Definition: RFCC26X2.h:1798
void RF_Params_init(RF_Params *params)
Function to initialize the RF_Params struct to its defaults.
Definition: cc13x2_cc26x2/driverlib/rf_common_cmd.h:122
Specifies a RF core firmware configuration.
Definition: RFCC26X2.h:1158
uint32_t nID
RF handle identifier.
Definition: RFCC26X2.h:1671
RF_Object * pClient
Definition: RFCC26X2.h:1700
rfc_command_t commandId
Definition: RFCC26X2.h:1273
Definition: RFCC26X2.h:1750
rfc_CMD_PROP_RADIO_SETUP_t prop
Radio setup command for PROPRIETARY mode on 2.4 GHz.
Definition: RFCC26X2.h:1277
rfc_CMD_BLE5_RADIO_SETUP_t ble5
Radio setup command for BLE5 mode.
Definition: RFCC26X2.h:1276
PA configuration value for a certain power level.
Definition: RFCC26X2.h:1083
RF_RatCallback callback
Callback function to be invoked upon a capture event (optional).
Definition: RFCC26X2.h:1939
Definition: RFCC26X2.h:1679
Command not executed because RF driver is busy.
Definition: RFCC26X2.h:1246
RF_Stat RF_ratDisableChannel(RF_Handle rfHandle, RF_RatHandle ratHandle)
Disable a RAT channel.
RF_Callback pErrCb
Definition: RFCC26X2.h:1656
uint8_t hwiPriority
Priority for HWIs belong to the RF driver.
Definition: RFCC26X2.h:1724
RF_TxPowerTable_Value RF_getTxPower(RF_Handle h)
Returns the currently configured transmit power configuration.
uint16_t nPhySwitchingDurationMargin
An additional safety margin to be used to calculate when conflicts shall be evaluated run-time...
Definition: RFCC26X2.h:1663
RF_EventMask bmEvent
Definition: RFCC26X2.h:1701
uint32_t RF_GlobalEventMask
Event mask for combining RF_GlobalEvent event flags in RFCC26XX_HWAttrsV2::globalEventMask.
Definition: RFCC26X2.h:1424
Stores the client&#39;s internal configuration and states.
RF_Priority priority
Access priority.
Definition: RFCC26X2.h:1837
uint64_t RF_EventMask
Data type for events during command execution.
Definition: RFCC26X2.h:1261
void * pScheduleMap
Deprecated. Not supported.
Definition: RFCC26X2.h:1541
RF_PriorityCoex
Priority level for coexistence priority signal.
Definition: RFCC26X2.h:1191
Default request line behavior. Use value configured by setup command.
Definition: RFCC26X2.h:1208
© Copyright 1995-2023, Texas Instruments Incorporated. All rights reserved.
Trademarks | Privacy policy | Terms of use | Terms of sale