

Introduction to Embedded Linux

Lab Instructions

Revision 3.00
October 2014

Technical Training
Organization

Important Notice

ii Introduction to Embedded Linux

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright  2012 Texas Instruments Incorporated

Revision History
August 2012 – Revision 1.0

Mailing Address

Texas Instruments
Training Technical Organization
6550 Chase Oaks Blvd
Building 2

Plano, TX 75023

Introduction to Embedded Linux - Lab 01: Booting Linux 01 - 1

Lab 01: Booting Linux

Introduction
This lab exercise will demonstrate creating a bootable mini-SD card and using it to boot the
Arago Linux distribution (from TI’s software development kit) on the AM335x Starter Kit. The
SDK contains all files that are needed to boot Linux on the development board.

The lab environment uses a host computer that is running the Ubuntu distribution of Linux. While
it is not required to use a Linux-based development PC, doing so is generally more convenient
than using a Windows-based environment. Developers who do not have access to a Linux-based
development PC may consider setting up a dual-boot environment on their PC so that both Linux
and Windows may be booted. Another option is to use virtualization software such as VMware or
Virtual Box in order to run a Linux virtual machine within their Windows environment.

Module Topics

01 - 2 Introduction to Embedded Linux - Lab 01: Booting Linux

Module Topics

Lab 01: Booting Linux ...1-1

Module Topics ..1-2

A. Create a Bootable SD Card ...1-3

B. Boot Linux on the AM335x Starter Kit ..1-6

 A. Create a Bootable SD Card

Introduction to Embedded Linux - Lab 01: Booting Linux 01 - 3

A. Create a Bootable SD Card

1. Power on the development computer.

The development PC used in these lab exercises has Ubuntu 12.04 installed. There is a
single user account (username is “user”) which has a null password and a null sudo
password. Also, the computer has been configured to automatically log into this user
account.

2. Insert the mini-SD card, with adapter, into the SD/MMC card reader and plug the
card reader into the PC USB slot.

You may see two partitions of the mini-SD card show up on the desktop when the card
reader is attached. This is because we do not erase the SD cards between workshops, so
that this SD card may already contain all of the files needed to boot. Also, if you are
using a new AM335x starter kit out of the box, the micro-SD card that ships with the kit
also comes installed with the files necessary to boot Linux.

Don’t worry; we will reformat the card in step 5 to ensure that the lab exercise is
completed successfully.

3. Launch an xterm terminal.

You can use one of the terminal icons from the desktop. Two terminal icons are provided:
one with a black background and one with a white background. This will become
important in later labs when we use a terminal to interface to Linux running on the
AM335x Starter Kit. It is easy to become confused when multiple terminals are open as
to which is accessing Linux on the host PC and which is accessing Linux on the
development board. For now you may use either terminal according to preference.

4. Determine the Small Computer Systems Interface (SCSI) device-node mapping of
your SD/MMC card reader.

Within the xterm terminal window type:

Note: you do not need to type anything before the dollar symbol (“ubuntu$”). This is
being used to designate the terminal prompt.

ubuntu$ sudo sg_map –i

You should see something similar to the following output to the terminal:
/dev/sg0 /dev/scd0 NECVMWar VMware IDE CDR10 1.00
/dev/sg1 /dev/sda VMware, VMware Virtual S 1.0
/dev/sg2 /dev/sdb USB 2.0 SD/MMC Reader

In the above example, the SD/MMC Reader has been mapped to the /dev/sdb device
node. This is very likely what you will observe as well.

sg_map is part of the sg3-utils package available through Ubuntu’s Aptitude package
manager. It has already been installed for you on this virtual machine, but if you are
running these labs on a different Linux computer, you can install the utility by typing:

ubuntu$ sudo apt-get install sg3-utils

A. Create a Bootable SD Card

01 - 4 Introduction to Embedded Linux - Lab 01: Booting Linux

5. Unmount the micro-SD card

Within Linux, the format operation cannot be completed on a storage device while it is
mounted into the root filesystem. Linux mounts the partitions of a block storage device as
separate mount points, so unmount each one:

(This step assumes that the device node determined in step 4 is “sdb,” otherwise replace
“sdb” with the correct node.)
 ubuntu$ sudo umount /dev/sdb1
 ubuntu$ sudo umount /dev/sdb2
 ubuntu$ sudo umount /dev/sdb3

Note: your micro-SD card may or may not have a third partition. If there is no third
partition, you will get a warning when you attempt to unmount, but this can be ignored.

6. Change into the Software Development Kit (sdk) directory.
ubuntu$ cd /home/user/ti-sdk-07.01.00.00

Note: You can use the autofill feature to make this faster by typing
 “cd /home/user/ti-” and then pressing the <tab> key.

7. List the contents of this directory.
ubuntu$ ls

You should see :

bin directory holding binary (executable) files and scripts for the
sdk. The script that we will use to write the bootable sd card is
here.

board-support directory holding source code for the linux kernel and uboot as
well as pre-built versions of both. The u-boot and kernel we will
place on the sd card are in the “prebuilt-images” subdirectory

docs sdk documentation

example-applications example linux applications including the matrix gui application
that comes programmed onto Sitara evaluation kits and sdks
from the factory

filesystem the root filesystem that will be installed onto the bootable sd card
is located here. It was built (as was the entire sdk) using
OpenEmbedded.

host-tools contains the pin multiplexing (pinmux) utility

linux-devkit contains the gnu cross-compiler for the am335x and associated
libraries as well as qtopia development tools.

8. Change into the bin directory of the sdk
 ubuntu$ cd bin

9. Execute the “create-sdcard.sh” script, being sure to use root permissions via the
“sudo” (“switch user do”) command.

ubuntu$ sudo ./create-sdcard.sh

 This script creates two partitions on the multimedia card and formats the partitions (vfat
on partition 1 and ext3 on partition 2). The partitioning requirements needed for a micro-
SD card to be bootable on a TI ARM device must be precise, and this script guarantees
that the partitioning is done correctly.

 The script will ask some questions, the next steps specify what you should answer.

 A. Create a Bootable SD Card

Introduction to Embedded Linux - Lab 01: Booting Linux 01 - 5

10. (create-sdcard.sh) Specify device number/node for the micro-SD card.

The script will list the devices on the system to which the Linux boot files may be
written. You should see something similar to:
 # major minor size name
 1: 8 88 3813376 sdb

In particular, the “name” listed in the final column should be the same as was determined
in step 4. There should be only one option, so enter “1” and continue.

11. (create-sdcard.sh) If prompted to repartition the sd card, press “y”

If the script determines that the sd card you are using has already been partitioned, it will
ask if you wish to keep the current partitioning or repartition. If asked, press “y” for yes.
If not, continue to step 12.

12. (create-sdcard.sh) Specify two partitions.

A bootable SD card requires two partitions. The first partition contains the MLO, u-boot
and kernel image. The second partition contains the root file system (which must be in a
separate partition).

The create-sdcard.sh script provides the option of creating a third partition. This is
because the micro-SD card that comes with the AM335x starter kit boards has a third
partition that contains the installation files for the SDK and for Code Composer Studio
(CCS). We have no need for a third partition to use as general storage, so select the 2-
partition option.

13. (create-sdcard.sh) Enter “y” to continue after partitioning is complete.

14. (create-sdcard.sh) Choose option “1” to install pre-built image from sdk.

Note that the sdk used in this workshop is not the standard sdk-07.01.00.00 from Texas
Instruments. The sdk has been rebuilt using a workshop bitbake overlay layer that
provides additional features to the sd card image beyond what is provided in the sdk.
More detail on this will be provided throughout the workshop.

15. Eject the multimedia card.
ubuntu$ sudo eject /dev/sdb

For efficiency, Linux rarely writes directly to a device, but instead writes into a RAM
buffer, which is then copied to the device. In some cases, the entire buffer may not be
written until the device is ejected, which could potentially cause corruption if the micro-
SD is pulled from the reader before the device is properly ejected.

The “create-sdcard.sh” script actually ejects the device for you (technically it unmounts
the device using the “umount” command for those advanced students who are aware of
the difference between the two operations), but it is good practice to get in the habit of
always ejecting before removing the micro-SD card just in case it is needed.

16. Remove the mini-SD card from the SD/MMC card reader and insert it into the
mini-SD slot of the AM335x Starter Kit.

On the AM335x Starter Kit, the metal leads of the micro-SD card should face away from
the printed circuit board.

B. Boot Linux on the AM335x Starter Kit

01 - 6 Introduction to Embedded Linux - Lab 01: Booting Linux

B. Boot Linux on the AM335x Starter Kit

17. Connect an Ethernet cable between the host PC and the AM335x starter kit.

The first Ethernet connection (eth0) on the AM335x starter kit corresponds to the RJ-45
jack that is further from the USB connector (labeled “J6” on the PCB). This is the one
you should use.

18. Connect a USB cable between the host PC and the AM335x starter kit.

The AM335x starter kit has connections for UART, JTAG (xds-100) and an Ethernet
gadget driver over the USB cable. Support for the UART-over-USB functionality is
provided by an ASIC from FTDI.

19. Power on the AM335x Starter Kit.

There are two buttons on the non-LCD side of the AM335x starter kit. The button which
is next to the barrel connector for the power cable is the reset button. The button on the
side across from this connector is the power button.

Once you press the power button, you should see a green LED light up on the base board.

20. Start minicom.
ubuntu$ minicom

Minicom has been pre-configured to use the device “/dev/ttyUSB1” which is the device
node corresponding to the UART-over-USB driver provided by the FTDI chip. It is
configured for 115,200 baud, 8 bit data, no parity, 1 stop bit, and no flow control.

It takes a moment after powering on the AM335x starter kit before the /dev/ttyUSB1
device node is recognized and mounted by the system, so if you receive either of the
following messages:

minicom: cannot open /dev/ttyUSB1: No such file or directory

 or
minicom: cannot open /dev/ttyUSB1: Device or resource busy

wait a few moments and try again.

21. Enter user “root” at the login prompt (no password.)

Note: you may need to press the “Enter” key in order to see the login prompt.

Upon a successful boot of Arago Linux, you will be presented the login prompt on the
minicom console (after quite a bit of feedback as Linux boots):

am335x login: root

 B. Boot Linux on the AM335x Starter Kit

Introduction to Embedded Linux - Lab 01: Booting Linux 01 - 7

22. Determine IP addresses of Ethernet and Ethernet-over-USB connections

The standard sdk version 07.01.00.00 from Texas Instruments initializes with a mass
storage USB gadget driver instead of the Ethernet gadget driver used in the workshop.
This is one of the changes made in the workshop’s bitbake overlay layer, which will be
discussed in module 2.

In the host Ubuntu machine, type the command:
 ubuntu$ ifconfig

You should see three entries – eth0, lo and USB0.

You may likewise use the “ifconfig” command on the AM335x starter kit to test the
connections, via the minicom connection that you established in step 20.
 am335x$ ifconfig

You should see the same three connections (with different IP addresses for eth0 and
USB0) on the am335x starter kit.

23. (If necessary) Manually disconnect and reconnect USB0.

You should find the Ethernet USB gadget driver to be fairly robust, but if you do not see
a USB0 connection upon booting the system, you can often bring the interface up by
disconnecting and then reconnecting manually:
 ubuntu$ sudo ifdown usb0
 ubuntu$ sudo ifup usb0

If you still do not see a “USB0” connection, ask your instructor for assistance.

24. Test Ethernet and Ethernet-over-USB connections

(You can press <ctrl-c> while you have scope within the terminal in order to exit the ping
utility.)

ubuntu$ ping 192.168.1.2
ubuntu$ ping 192.168.7.2
am335x$ ping 192.168.1.1
am335x$ ping 192.168.7.1

As you determined in step 22, the gigabit Ethernet connection is on the “192.168.1.x”
subnet and the Etherent-over-USB connection is on the “192.168.7.x” subnet.

In both cases, the Ubuntu host machine has final octet set to 1 and the am335x starter kit
has the final octet set to 2. These addresses are set statically in the
“/etc/network/interfaces” configuration file of each system.

25. View the startup configuration.

The startup script methodology used by the Arago distribution is called SysV (system
five) and is a common startup methodology across various Linux distributions. Much
information is available on the internet for those wishing to learn more about SysV.

am335x$ ls /etc/rc5.d

B. Boot Linux on the AM335x Starter Kit

01 - 8 Introduction to Embedded Linux - Lab 01: Booting Linux

(Page intentionally left blank)

Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation 02 - 1

Lab 02: Linux Terminal Manipulation

Introduction
Lab 01 consists of two parts. Linux is an inherently text-based operating system, and, particularly
in an embedded environment, users will be able to leverage the toolset of Linux most effectively
with a strong working knowledge of text-based terminal commands. In the first section you will
learn basic terminal manipulation, with commands such as “cd,” “ls,” and “cp,” and introducing a
few helpful features along the way such as autofill and history.

The second and third sections cover Linux redirection and Linux shell scripting. These are
advanced and very powerful features of the terminal interface, and users who learn these tools
will enjoy an added level of control over Linux systems from the terminal interface.

Module Topics

02 - 2 Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation

Module Topics

Lab 02: Linux Terminal Manipulation ..2-1

Module Topics ..2-2

1 Basic Terminal Manipulation ...2-3

2 Linux Redirection ..2-6

(Advanced) Linux Scripting ...2-7

 1 Basic Terminal Manipulation

Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation 02 - 3

1 Basic Terminal Manipulation
Note that these exercises are to be completed on the Ubuntu host computer and not on the
AM335x starter kit.

1. Change to your home directory.
ubuntu$ cd ~

The tilde “~” character is Linux shorthand for the current user’s home directory, which is
located at “/home/<user>”

2. Print the current directory path.
ubuntu$ pwd

 The “pwd” command is short for “print working directory.”

3. List the contents of the current directory.
ubuntu$ ls

4. View the help page for the “mkdir” command.
ubuntu$ mkdir --help

Most commands support the “--help" option, which prints a help listing for the command.
Many commands also support a shorthand version, “-h” as well.

5. Make a new directory named “lab02.”
ubuntu$ mkdir lab02

6. Change into the lab02 directory.
7. Create a new, empty file named “myhugelongfilename.”

There are a number of ways to create a new file, but the simplest is by using the “touch”
command. The “touch” command updates the timestamp on a file if it exists and, if the
file does not exist, creates it.
 ubuntu$ touch myhugelongfilename1

8. List “myhugelongfilename1” specifically, i.e. without listing any other files, using
Linux autofill.
The autofill capability in the Linux terminal is extremely helpful. Linux will autofill the
name of a file or directory in the current directory when you press the “tab” key. You can
try this with the “ls” command:
 Note: this is the letter “m” followed by the “tab” key.

ubuntu$ ls m<tab>
9. Create a second new file named “myhugelongfilename2” by using the terminal

history.
By pressing the up and down arrows, you can cycle through the history of commands that
have been executed in the terminal. The first up arrow press will give you the list
command of step 8, and the second press will give you the touch command of step 7.
Once the touch command is displayed in the terminal, you can move the cursor within the
command using the left and right arrow keys. Use the right arrow key to move to the end
of the line (or press the “end” key to move there in one step) and replace the number “1”
with “2” and press enter.

1 Basic Terminal Manipulation

02 - 4 Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation

10. Explore the behavior of the autofill when there is a filename conflict.
ubuntu$ ls m<tab>

If you were careful to press <tab> just once, you should now see.

ubuntu$ ls myhugelongfilename

Because both “myhugelongfilename1” and “myhugelongfilename2” meet the criterion
“m*” the autofill has completed as much as it can up to the conflict.

Another useful feature of the autofill is that if you have a conflict, you can press <tab>
twice in rapid succession in order to print a listing of all files that meet the current
criteria.

 ubuntu$ ls myhugelongfilename<tab><tab>

This should print “myhugelongfilename1” and “myhugelongfilename2” in the terminal.
Note that after these files are listed, the prompt returns to:

 ubuntu$ ls myhugelongfilename

This allows you to enter the next character and resolve the conflict. Finish by adding
either “1” or “2.”

11. Edit the “myhugefilename1” file using the “gedit” command.
ubuntu$ gedit myhugefilename1

Did you use the autofill (tab) capability? It is a good idea to get into the habit of using the
autofill. You might be surprised how helpful it will become as you use Linux more
frequently.

12. Add some text into “myhugefilename1.”
gedit is a user-friendly text editor that has features that should be familiar to any
Windows user, including copy and cut-and-paste with the familiar “ctrl-c,” “ctrl-x,” and
“ctrl-v” combinations.
Add anything you like into the file – the name of your first dog, the state where you were
born or your favorite flavor of ice cream – and then save the file with the “save” button.

Exit the gedit application by pressing the “x” in the top right corner of the window.

13. Print the contents of “myhugefilename1” from the terminal with “cat.”

You can print the contents of a text file using the “cat” command in Linux. (This is short
for “concatenate.” If you specify more than one filename to the “cat” command, they will
be concatenated together and then displayed on the terminal.)
 ubuntu$ cat myhugefilename1

14. Print the contents of “myhugefilename1” from the terminal with “more.”
The “more” command has a number of useful features. If the file you are printing is too
large to fit on one terminal screen, “cat” will simply dump everything so that you have to
scroll back to see the whole file. “more” will pause after each page, and you may use the
space bar to advance to the next page.
 ubuntu$ more myhugefilename1

 1 Basic Terminal Manipulation

Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation 02 - 5

15. Create a subdirectory named “subdir.”
Refer to step 5 if needed

16. Create a copy of “myhugefilename1” named “mycopy1,” where the file “mycopy1”
is in the “subdir” directory.

ubuntu$ cp myhugefilename1 subdir/mycopy1

17. Create a second copy using the current directory reference “.”
ubuntu$ cp ./myhugefilename1 ./subdir/mycopy2

The single period “.” in the above command refers to the current directory. It is not
necessary to reference the current directory in most instances because it is implied, but
there are cases where the current directory reference is useful to know, so we wanted to
introduce it here.

18. Verify the copies by listing the contents of the subdir directory.
19. Change into the subdir directory.
20. Change the name of “mycopy1” to “mynewfilename.”

ubuntu$ mv mycopy1 mynewfilename

The Linux “mv” (move) command may also be used to change a filename.

21. Move “mynewfilename” from the “subdir” directory up one level to the “lab02”
directory.

ubuntu$ mv mynewfilename ../mynewfilename

Note that the double period (“..”) in the above command refers to the directory one
level up from the current directory. Before you ask, there is no triple period. To move up
two directories, you would use “../..”

In this case, the same effect could have been achieved with:

 ubuntu$ mv mynewfilename ..

If you move a file to a directory, Linux will automatically retain the original file name.

22. Copy everything from the “subdir” directory up one level to the “lab02” directory.
ubuntu$ cp * ..

The asterisk (*) acts as a wildcard in Linux just as in DOS and Windows. An asterisk by
itself will match everything in the current directory, thus the above command copies
everything from the current directory into the parent directory.

23. Remove “mynewfilename” from the “subdir” directory
ubuntu$ rm mynewfilename

24. Change directories up one level to the “lab02” directory
25. Remove the “subdir” directory and all of its contents (recursive removal)

ubuntu$ rm -R subdir

2 Linux Redirection

02 - 6 Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation

2 Linux Redirection
Note that these exercises are to be completed on the Ubuntu host computer and not on the
AM335x starter kit.

26. If you haven’t already done so, create “~/lab02” subdirectory and change into it.
27. Test the echo command with something like “Linux Rocks!”

ubuntu$ echo Linux Rocks!

The echo command takes the string passed to it as a parameter – in this case the phrase
“Linux Rocks!” – and writes it to the application’s standard output. When you execute a
program from a terminal, the standard output is displayed on that terminal. Thus, you see
the phrase repeated (echoed) onto the terminal.

28. Redirect the echo command standard output into the file “test.”
ubuntu$ echo Linux Rocks! > test

29. Repeat step 28 with a new phrase, being sure to use a single-greater-than (“>”)
redirection.

ubuntu$ echo AM335x Rocks! > test
30. Dump the contents of the file “test” into the terminal.

ubuntu$ cat test
31. Redirect another phrase into the file “test,” this time using double greater-than

redirection (“>>”)

ubuntu$ echo and so does Texas Instruments! >> test

32. Dump the contents of the file “test” into the terminal.
Have you determined the difference between single-greater-than and double-greater-than
redirection? Single greater-than redirection will overwrite the output file, whereas double
greater-than redirection will append to it.

33. Redirect the contents of “test” into the standard input of the command “grep.”
ubuntu$ grep Texas < test

The grep command will search for a phrase (such as “Texas”) in a file or standard input
stream and filter out those lines which contain the phrase.

34. Simultaneous standard input and standard output redirection
ubuntu$ grep Texas < test > test2

35. Dump the test2 file
You should see that the file test2 has been filled with the same output you previously saw
displayed on the terminal in step 33.

36. Pipe the standard output of the “cat” command into the standard input of the
“grep” command.

ubuntu$ cat test | grep Texas

The greater-than and less-than signs are referred to as redirection, whereas the “|” is
termed a pipe. Piping the output of one command into the input of another is common
practice in Linux, especially when writing scripts.

 (Advanced) Linux Scripting

Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation 02 - 7

(Advanced) Linux Scripting
37. If you haven’t already done so, create “~/lab02” directory and change into it.
38. Edit a file named “myscript.sh”

ubuntu$ gedit myscript.sh
39. Create a script that will append “mystring” to any file in the current directory that

contains the key phrase “mykey”
The calling format for this script is:

ubuntu$./myscript.sh mystring mykey
A few notes about Linux scripting:
(For more information, refer to “Learning the Bash Shell” by O’Reilly Publishing.)

a. The first argument passed to the script may be referenced with “$1” (without the
quotes), the second with “$2”, etc.

b. You can create a for loop from any space-separated list using the following
format. The below example script would perform similarly to the “ls” command:
 for file in ./*
 do
 echo ${file}
 done

c. You can test with an if statement. The following example script will print the
name of the variable “file” only if it matches the string “testfile”
 if [“${file}” == “testfile”]
 then
 echo ${file}
 fi
note that the variable “${file}” is in quotes. This is for proper handling of the
case in which the variable “${file}” is empty. Without the quotes, there
would be a syntax error because there is no left-hand side to the test. With the
quotes, the test will hold correctly in the case of an empty variable because the
left-hand side is an empty string.
Note that the space after the initial “[“ bracket is required, as is the space before
the final bracket.

d. You can test if a file contains a given string with the “grep” command. grep is a
very useful search utility, which along with “sed” (a serial editor utility which
can do search-and-replace) is very commonly used in Linux scripting. To test if
the file “myfile” contains the string “mykey,” you could use the test:
 if [`grep –c mykey myfile` -ne 0]
Passing the “-c” option will instruct grep to count the occurrences of the
following string. By placing the full command in right-facing single quotes, the
command is executed in the shell and the result is inserted in place of the
expression. Note that both the initial and final quotation marks must be right-
facing.

(Advanced) Linux Scripting

02 - 8 Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation

40. Change the permissions of “myscript.sh” to add executable permission for all users
ubuntu$ chmod a+x myscript.sh

41. Create one or more test files in the “lab02” directory and test your script.
Note: The solution is shown on the next page.

Correct operation is as shown below:

 (Advanced) Linux Scripting

Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation 02 - 9

42. Solution:

(Advanced) Linux Scripting

02 - 10 Introduction to Embedded Linux - Lab 02: Linux Terminal Manipulation

(Page intentionally left blank)

Introduction to Embedded Linux - Lab 3: git 3 - 1

Lab 3: OpenEmbedded

Introduction
In this lab exercise you will explore OpenEmbedded, which is a Bitbake-based system for
building entire distributions of Linux from recipe source files.

You will begin by investigating the workshop Bitbake layer that has been added ontop of the
OpenEmbedded Arago distribution recipes.

In the second section you will then create a build recipe for the provided “Hello World” C source
code.

Module Topics

3 - 2 Introduction to Embedded Linux - Lab 3: git

Module Topics

Lab 3: OpenEmbedded ..3-1

Module Topics ..3-2

1 Exploring the Workshop Bitbake Layer ..3-3

2 Write a Basic C-code Recipe ..3-6

 1 Exploring the Workshop Bitbake Layer

Introduction to Embedded Linux - Lab 3: git 3 - 3

1 Exploring the Workshop Bitbake Layer
One of the fundamental tenets of the Bitbake tool is that, when modifying an existing distribution,
you should make changes in the form of an overlay layer instead of modifying the base recipes of
the existing distribution. This is equivalent to the concept of inheritance that is used throughout
object-oriented programming.

The workshop exercises are implemented in Bitbake recipes which are collected into a Bitbake
layer called “meta-workshop.” By convention, the names of Bitbake layers begin with “meta-,”
although this is not a requirement.

1. Locate the Yocto/OpenEmbedded source recipes
ubuntu$ cd /home/user/oe-layersetup/sources
ubuntu$ ls

Here you see the various layers that comprise the recipe system for the OpenEmbedded
build system. The layers are organized as follows:

bitbake The fundamental recipes and class definitions of the
Bitbake build system. The recipes and class definitions provided here are the most
fundamental, and nearly every type used in an OpenEmbedded build inherits from a
definition provided here. Note that OpenEmbedded, while utilizing the Bitbake tool, is
still a separate entity and has its own recipes as defined in “oe-core.”

meta-arago This layer extends the OpenEmbedded base recipes
found in the “meta-openembedded” layer in order to define the Arago Linux distribution.

meta-linaro This layer contains recipes for building the Linaro
toolchain. Linaro provides an open-source compiler, assembler, linker, etc. Currently the
Linaro toolchain is recommended for cross-compiling the Arago distribution for use on
TI’s Sitara devices.

meta-openembedded This layer contains a large array of basic recipes for
building various common components of a Linux distribution from Gnu-community
source code.

meta-qt5 This layer contains recipes for building qt version 5.
Currently only qt version 4 recipes have been integrated into the “meta-openembedded”
layer and this latest version of qt is maintained in a separate layer.

meta-ti This layer contains recipes and class definitions specific
to Texas Instruments. The dividing line between “meta-ti” and “meta-arago” is somewhat
hazy, but generally this layer contains more hardware-specific information such as
patches for taking advantage of various hardware accelerators on TI devices.

meta-workshop This layer contains recipes for the lab exercises of the
Texas Instruments “Introduction to Embedded Linux” workshop series.

oe-core The fundamental defintions of the OpenEmbedded
community. Whereas bitbake provides a generalized build system, these definitions
provide build mechanisms specifically tailored towards building a Linux distribution such
as kernel and bootloader build recipes and recipes for adding initialization scripts.

1 Exploring the Workshop Bitbake Layer

3 - 4 Introduction to Embedded Linux - Lab 3: git

2. Display the Arago Bitbake layers
ubuntu$ cd /home/user/oe-layersetup/build
ubuntu$ source conf/setenv
ubuntu$ MACHINE=am335x-evm bitbake-layers help

The output of this command shows various commands accepted by the “bitbake-layers”
utility.

 ubuntu$ MACHINE=am335x-evm bitbake-layers show-layers

Note that some of the subdirectories listed in step 1 actually contain multiple layers. This
utility shows each layer, its location and its priority. Layers of a higher priority will
override those of a lower priority.

You can see that the “meta-workshop” layer is priority 11 and the various Arago layers
are all priority 10 or less. This means that the “meta-workshop” layer will override the
definitions of the base Arago distribution.

3. Explore the meta-workshop layer

ubuntu$ cd /home/user/oe-layersetup/sources/meta-workshop

4. View the layer configuration file
Each bitbake layer must contain a layer definition and configuration file at
<layer-path>/conf/layer.conf
 ubuntu$ more conf/layer.conf

This file modifies the following environment varibles used by the Bitbake tool:

BBPATH This environment variable is
used to search for conf and class files. The search directories form a colon-separated list.
By appending the path of this layer to the variable, this layer’s “conf” and “classes”
directories will be searched.

BBFILES This environment variable
provides search directories for various bitbake recipe files within the layer, i.e. those files
with “.bb” and “.bbappend” exetensions. Note the use of the wildcard character “*” to
specify every one of these files in the layer. This variable is a space-separated list. Note
that if subdirectories are added to the layer, they must be added to this variable, or else
the bitbake tool will not locate them.

BBFILE_COLLECTIONS This variable allows advanced
users to separate the layer into various collections (see below). Most users will simply
define a single collection which has the same name as the layer.

BBFILE_PATTERN_<collection-name> This variable is set with a
regular expression that can be used to filter the recipes of the layer into various
collections. Note that this pattern is only applied to those files which are specified in
“BBFILES.” Generally there is a single collection defined for each layer, in which case
the regular expression “^${LAYERDIR}/” will include every file in the layer and does
not need to be modified.

BBFILE_PRIORITY_<collection-name> This environment variable sets
the priorty of the “meta-workshop” collection. Note that this value in this file determines
this priority and is therefore the same as was displayed in step 2.

 1 Exploring the Workshop Bitbake Layer

Introduction to Embedded Linux - Lab 3: git 3 - 5

5. List the contents of the meta-workshop layer
ubuntu$ ls

You will see the following subdirectories:

conf directory for configuration files specific to the layer

images recipes that define distribution images (i.e. all the files one
would copy to an sd card to boot a Linux distribution) and SDK images. The files defined
here integrate the recipes in the other subdirectories into the “arago-core-tisdk-image”
recipe, allowing a specialized workshop version of the SDK to be built.

packagegroups recipes that group individual Bitbake recipes together into
package groups. These recipes utilize the “packagegroup” class.

recipes-overlay recipes that overlay (i.e. override) the behavior of one of the
underlying Arago distribution layers.

recipes-workshop-c this subdirectory contains recipes for rebuilding the workshop
lab files which are written in the form of C or C++ code.

recipes-workshop-qt this subdirectory contains recipes for rebuilding the workshop
lab files which are written in the form of qt projects.

2 Write a Basic C-code Recipe

3 - 6 Introduction to Embedded Linux - Lab 3: git

2 Write a Basic C-code Recipe
In this section, you will write a basic Bitbake recipe to build a “Hello World” application that has
been provided for you in C code.

6. Change to the “lab03_student” directory
Assuming that you are already in the “/home/user/oe-layersetup/sources/meta-workshop”
directory, which should be the case upon completing section 1,

ubuntu$ cd recipes-workshop-c/lab03_student
ubuntu$ ls -R

 You will find the following files and directories:

 files/hello.c “Hello World” application

 files/LICENSE (empty) license file

 lab03-student-native_1.0.bb An incomplete recipe file for executing
a native build. Recall that a native build is one that will execute on the computer that is
used to build the recipe (as opposed to the default behavior which would be to build for a
specific target such as the AM335x Starter Kit.) This will allow you to test your
application on the x86 Ubuntu machine you are using to build it.

7. Determine an md5 sum (hash) for the license file

OpenEmbedded now forces recipes to have an associated LICENSE and LICENSE file
specifying the terms. Recipes are required to specify the md5 sum of the LICENSE file in
order to avoid either accidental or malicious tampering of the file.

ubuntu$ md5sum files/LICENSE
8. Edit the Bitbake recipe

ubuntu$ gedit lab03-student-native_1.0.bb

Note the line:

LIC_FILES_CHECKSUM =
“file://LICENSE;md5=d41d8cd98f00b204e9800998ecf8427e”

This specifies a license file for the recipe and the md5 sum for the license file. It should
match what you determined in step 7.

9. Declare native class inheritance
Add the following declaration to lab03-student-native_1.0.bb:

inherit native

The inherit declaration will override the base class variables and build tasks with tasks
from the “native” class. These task overrides will ensure the the application is built for
the i686 (native processor) instead of the Cortex-A8.

 2 Write a Basic C-code Recipe

Introduction to Embedded Linux - Lab 3: git 3 - 7

10. Enter source Uniform Resource Identifier (URI)

The SRC_URI variable is a space-separated list of URI-formatted files. A URI is similar
to a URL (Uniform Resource Locater) if you are familiar with that terminology. URI’s
are more generic which is to say that every URL is a URI, but the converse is not
necessarily true.

Since all of the files that we are using for source code are locally resident, the URI will
use the “file://” prepended identifier. If you were downloading from the internet you
might use “ftp://,” “http://,” “https://,” “git://,” etc.

You will not need to specify an absolute path to the files you are including as source files.
In fact, not only do you not need to use absolute paths, but you should avoid them in
order to make your recipe relocatable. Bitbake will automatically search the “files”
directory within the recipe, so you only need to specify the path from this point, i.e.:

 “file://LICENSE”

In addition to the LICENSE file, you will need to include “helloworld.c” Recall that the
SRC_URI variable is a space-separated list of URI values.

If you wish, you may span the definition of the SRC_URI variable across multiple lines
by terminating one line with the backslash (\) character and then entering a carriage
return. The carriage return will be ignored (because it is escaped with the backslash
character directly preceding it) but will appear when the text-based recipe file is
displayed in an editor.

You may either specify “helloworld.c” as a direct value or utilize the wildcard (*)
character in order to make your definition more generic using “*.c”

11. Set the source directory (${S}) to match the working directory (${WORKDIR})

The default “do_fetch” task will copy all files specified in the “SRC_URI” variable into
the working directory, ${WORKDIR}. The default “do_unpack” task will de-archive any
recognized archive files (.tar.gz, .tar.bz2, etc) into the source directory, ${S}.

Our source files, however, are not in the form of an archive, so the “do_unpack” task will
do nothing, leaving the source files in the ${WORKDIR} directory. There are two
solutions. Perhaps the more elegant solution would be to override the “do_unpack” task
to copy our source files from ${WORKDIR} into ${S}. Instead, we choose the simpler
solution of setting ${S} equal to the ${WORKDIR}.

S=“${WORKDIR}”

Note that within the bitbake context, the quotation marks around the ${WORKDIR}
variable expansion are required for proper operation.

2 Write a Basic C-code Recipe

3 - 8 Introduction to Embedded Linux - Lab 3: git

12. Enter do_compile function
The default implementation of the “do_compile” function is to call “make.” This is fine if
your source code includes a makefile, but ours does not! One solution would be to create
a makefile, but instead lets just redefine the do_compile function to meet our needs.
Begin by removing the colon (:) character from the “do_compile” function. This symbol
allows the definition of an empty function without generating a python error.

Next fill in the do_compile function. The function uses BASH shell syntax. You should
be able to implement the compile step in a single line. A few pre-defined variables that
will be useful for you are:

${CC} The gnu C compiler chain, including path on this system
${S} The source code directory
${CFLAGS} A set of C compiler flags that are appropriate for this target
${LDFLAGS} A set of linker flags that are appropriate for this target

Be sure to name the output file “lab03-student.” (A variable ${MYBASENAME} has
been created for this purpose.)

It should be noted that even though you could implement “do_compile” without using the
above variables, you should use these variables to make your recipe portable across
multiple targets.

13. Enter do_install function
The default “do_install” function is to call “make install.” Since we do not have a
makefile, we will want to override this function with our own definition.

As before, remove the colon (:) character from the empty “do_install” function. You will
then need to add two lines for this function. The first line will create an empty directory
to store the binary built by “do_compile.” The second line will actually copy the binary
executable generated by “do_compile” into this directory.

A few pre-defined variables that will be useful to you:
${D} The destination directory, which warehouses the package files
${bindir} The path on the target to the directory holding this package’s binaries

14. Save file
FileSave (ctrl-s)

15. Build recipe
ubuntu$ cd /home/user/oe-layersetup/build
ubuntu$ MACHINE=am335x-evm bitbake lab03-student-native

16. Test application
Enter the following (all one line without carriage returns)
Hint: Don’t forget the autofill (tab) feature!

ubuntu$./arago-tmp-external-linaro-toolchain/
sysroots/i686-linux/home/user/workshop/
lab03_workspace/lab03-student/lab03-student

If successful, you will see “Hello World” displayed on the terminal.

 2 Write a Basic C-code Recipe

Introduction to Embedded Linux - Lab 3: git 3 - 9

17. Compare your method to the solution
There are more than one correct means of writing this recipe. Compare yours to the
solution and make note of any differences.

ubuntu# more ../lab03-solution-a/
 lab03-solution-a-native_1.0.bb

2 Write a Basic C-code Recipe

3 - 10 Introduction to Embedded Linux - Lab 3: git

(Page intentionally left blank)

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 1

Lab 4: Code Composer Studio Debug

This lab exercise explores using CCSv6 (i.e. Eclipse) for building and debugging our Linux
applications. First, you will import your OpenEmbedded recipe as a Makefile project and rebuild
the application. Next, you will configure remote debugging and then finally run/debug the
program.

In the case of Linux applications, it’s often convenient to use the GDB (Gnu DeBugger) protocol
– running over Ethernet (TCP/IP) – for connecting between the host (CCSv6/Eclipse) and the
target (Linux application running on the ARM processor).

CCSv6 Installation
 We’ve installed CCSv6 into the /home/user/ti folder

Module Topics

4 - 2 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

Module Topics

Lab 4: Code Composer Studio Debug ..4-1

Module Topics ..4-2

Test Secure Shell Protocol ...4-3

Create CCS Project ..4-5

Setup CCSv5 Remote System Explorer Connection ... 4-11

Setup CCSv5 Debug Configuration ... 4-18

 Test Secure Shell Protocol

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 3

Test Secure Shell Protocol
1. Boot the AM335x starter kit and log in as “root” if you have not already done so

You need to either have an Ethernet cable connected between the AM335x starter kit and
the host computer, or you need a USB cable with the Ethernet-over-USB gadget driver.
The lab instructions will assume you are using standard Ethernet, but may be easily
modified to use Ethernet-over-usb by changing the “192.168.1.x” subnet address to the
“192.168.7.x” subnet address.

Refer to “Lab01: Booting Linux” for more information.

2. Verify IP connection

ubuntu$ ifconfig

3. Verify static IP settings

The IP addresses for the eth0 and usb0 connections have been statically set in a system
configuration file at “/etc/network/interfaces.” You can see the details using:

ubuntu$ more /etc/network/interfaces

Scroll through the file until you locate the entry for the “eth0” interface:

auto eth0

iface eth0 inet static

 address 192.168.1.1

 netmask 255.255.255.0

There is a similar entry for the usb0 interface.

4. View hostname definitions

ubuntu$ more /etc/hosts

Linux provides a few mechanisms for resolving hostnames. The more complex method
uses the Domain Name System (DNS) to resolve hostnames from databases stored on
special servers named “Domain Name Servers.”

A simpler mechanism allows system administrators to store hostnames in a system file at
“/etc/hosts.” This method only allows for the specification of static IP addresses, and is
local to the machine on which the “/etc/hosts” file is located. However, even with these
limitations, the simpler method is sufficient for our needs in the workshop.

5. Test connection

ubuntu$ ping am335x.gigether.net

Test Secure Shell Protocol

4 - 4 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

6. Establish a secure shell (ssh) connection between host and am335x starter kit

ubuntu$ ssh root@am335x.gigether.net

Currently there should be no key on file for the hostname you are connecting to and you
should see a message:
“The authenticity of ‘host am335x.gigether.net
(192.168.1.2)’ can’t be established…”

This message is shown in the screen capture below:

If you get this message, type “yes” at the prompt and ssh will generate a new key for you.

7. Press “Enter” key when prompted for password

There is no root password on the AM335x starter kit, so when ssh prompts you for a
password, simply press “Enter.”

8. Explore Terminal

You can navigate an ssh terminal exactly as you would a minicom or screen terminal as
you have been using previously.

9. Exit from ssh

am335x$ exit

(From within the terminal where you launched ssh)

 Create CCS Project

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 5

Create CCS Project
1. Start CCSv6 from the Ubuntu desktop.

2. Select “/home/user/oe-layersetup/sources/meta-workshop
/recipes-workshop-c/lab04_workspace” as your workspace

Note: Use the “Browse…” button!

By default, CCS will query you for the workspace you would like to use each time it starts as
per the following window:

The workspace contains general information that is outside the scope of individual projects
such as the debugging connections that have been configured and the general settings for the
IDE. Each lab exercise is organized into its own workspace for this workshop.

If you choose to select “Use this as the default and do not ask again” on this screen, you can
switch between workspaces after CCS has loaded by using

 FileSwitch Workspace

Create CCS Project

4 - 6 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

3. Examine the lab04_workspace

Currently there is one project in the workspace, “lab04-solution-a”

This project was added to the workspace using the same procedure you will now follow for
the “lab04-student” project.

The “lab04-solution-a” project contains the “LICENSE” and “Makefile” from the “files”
directory of lab04-solution-a. Note that the source code for the project is not shown. This is
because the source code for the workshop solutions is maintained on a git repository at
www.github.com and downloaded by Bitbake according the the lab recipe files. As such, this
source code is not available to modify within the CCS editor.

If you launch the “lab04-solution-a” debugger, the source code will appear in the debugger.

 Create CCS Project

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 7

4. Create a new project in the lab04_workspace workspace

Eclipse provides many different types of projects. The project type selected will affect which
build tools are used to build your project

 CCS Project – uses Eclipse’s managed make capability, which builds and maintains the
make file for you as you add/subtract items and settings from the GUI. By default, a CCS
Project builds with the compiler, assembler and linker that are shipped with Code
Composer Studio.

 C/C++C++ Project (or C Project) – uses Eclipse’s managed make capability, but
gives you a wider range of options for specifying the build tools you wish to use (whereas
CCS Project will automatically use the build tools that come with CCS.) We will use this
project type and specify the arago distribution gnu compiler chain (gcc) build tools.

 C/C++Makefile Project with Existing Code – uses your own makefile; while this
leaves the work of building and maintaining your own makefiles, it gives you absolute
control over your builds

 Qt – allows you to import a qtopia project, i.e. a project you created using QT Creator
and/or QT Designer.

 We’ll create a “C/C++  Makefile Project with Existing Code” as shown in the following
screen capture. Select in the tree and then press “Next.”

→

Create CCS Project

4 - 8 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

CCS will then query the location of the existing Makefile. Browse to “/home/user/oe-
layersetup/sources/meta-workshop/recipes-workshop-c/lab04-workspace/lab04-student/files”

Recall that this Makefile has been configured to build the application using the
OpenEmbedded build system.

The “Project Name” will default to “files” because this is the directory where the Makefile is
located. You will want to change to a more descriptive name, such as “lab04-student.”

Also, be sure to select “Cross GCC” as the Toolchain for the Indexer (this will allow CCS to
index your source files, enabling autocomplete and other useful features.)

 Create CCS Project

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 9

5. Upon successful completion, you should see the “lab04-student” project in the Project
Explorer window

Note that the “lab04-student” project displays the “helloworld.c” source code in the project
explorer window. This is because this source file is located in the “files” folder of the
Makefile that was imported, as opposed to the solution files, which download their source
from a git repository at github.

Create CCS Project

4 - 10 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

6. Examine the provided helloworld.c

You can double-click on the “helloworld” entry in the Project Explorer window

7. Build your program

ProjectBuild All (ctrl-b)

 Setup CCSv5 Remote System Explorer Connection

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 11

Setup CCSv5 Remote System Explorer Connection

8. Open the remote systems view

Window  Show View  Other…  Remote Systems  Remote Systems

Setup CCSv5 Remote System Explorer Connection

4 - 12 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

9. Configure a new connection using the Remote Systems menu or by pressing the new
connection button

10. Configure the connection as per next six screen-captures

 Setup CCSv5 Remote System Explorer Connection

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 13

Remote System Type: Linux

Host Name: am335x.gigether.net

Connection name: Gigabit Ethernet to AM335x

Description: Connection to hostname am335x on the .gigether.net
subnet

On third screen (files) select “ssh.files” under configuration and on the fourth screen
(processes), select “processes.shell.Linux” under configuration.

Setup CCSv5 Remote System Explorer Connection

4 - 14 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

On the fifth screen (shells) choose “ssh.shells” and on the sixth screen (ssh Terminals) choose
“ssh.terminals.” You may press “Finish” on the sixth screen.

 Setup CCSv5 Remote System Explorer Connection

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 15

11. Change the ssh login user ID to “root”

Right-click “Gigabit Ethernet to am335x” in the Remote Systems window and select
“Properties”

Change Default User ID to root as shown:

Note: You may need to press the small button that appears between “Default User ID:” and
the entry box if the entry box is grayed over.

Press OK

Setup CCSv5 Remote System Explorer Connection

4 - 16 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

12. Connect to target using newly created connection

Right-click on “Gigabit Ethernet to AM335x” in the Remote Systems window and select
“Connect”

You may get a message indicating the ssh service does not recognize the RSA key fingerprint
of the AM335x starter kit. This is the same message that you should have seen in step 6 from
the terminal, and it will only appear if you did not generate a new key in that step.

If it appears, press “Yes” to continue connecting and you should not see it a second time.

You may also receive an unknown host error if the “known_hosts” file was not updated in
step 6. If so, press “yes” to continue.

13. If quieried, enter username and password as follows:

 Setup CCSv5 Remote System Explorer Connection

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 17

14. If queried for a Secure Storage password, cancel out fo the query box,

15. Test connection with filesystem viewer

If you have successfully connected the RSE, you should be able to expand the SFTP files tab
under the connection as shown:

Setup CCSv5 Debug Configuration

4 - 18 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

Setup CCSv5 Debug Configuration
16. Create a new C/C++ debug configuration.

 Bring up the Debug Configurations dialog:

Run → Debug Configurations

Select "C/C++ Remote Application" and create a new configuration with the icon in the
upper left hand corner of the window or by right-clicking “C/C++ Remote Application.”

17. Setup the configuration:

 Use the following settings (many of these should be set by default):

Name: lab04-student

Project: lab04-student (select using “Browse…”)

 Setup CCSv5 Debug Configuration

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 19

C/C++ App: lab04-student (select using “Browse…”)

Note: It would be intuitive to use the “.debug” version of “lab04-student” as shown on this
screen capture, but this will not work. The reason is because the file stored in
“.debug/lab04-student” contains only the debugging symbols, but not the executable code.

When gcc loads an executable file, it automatically looks for debug symbols in the “.debug”
directory of the same folder, so the correct way to load the executable with debug symbols in
this case is to load the stripped executable, so long as the debug symbols are available in
the .debug folder.

Providing a stripped executable with a symbols-only file in the .debug directory is the default
build behavior of OpenEmbedded.

Setup CCSv5 Debug Configuration

4 - 20 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

Remote Path: /home/root/workshop/lab04-student

The remote path is the location on the remote system where CCS will download the
executable before launching it within the gdbserver context.

When finished, this tab should look as follows:

Note: Don’t press the “Debug” button yet, we still need to fill out the “Debugger” tab!

 Setup CCSv5 Debug Configuration

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 21

18. On the Debugger Main tab, specify the GDB debugger.

 We are using the cross version of the GDB debugger. The cross version runs on the i686
platform but debugs code for the AM335x device. Thus, we need to specify the GDB
debugger as:

arm-linux-gnueabihf-gdb

 Note that this application must be available in the Linux “PATH” environment variable. (This
has been taken care of in the lab setup.)

Note as well that the “Force thread list update on suspend” box has been checked. This is
not necessary for this hello world application because it is single-threaded, but it is
recommended that you always check this box as multi-threaded applications (see Module
07 and Lab 07) will not debug properly without this box checked. There is also very little
overhead to updating the thread list on each suspend, so it might as well be selected each
time.

Setup CCSv5 Debug Configuration

4 - 22 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

19. Press the Debug Button to begin Debugging your application.

Alternately you could press the close button and manually start debugging using

Rundebug (F11)

20. After clicking Debug, the IDE will switch into the Debug Perspective. It will then load
the program and execute until it reaches main().

 Setup CCSv5 Debug Configuration

Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug 4 - 23

21. View remote terminal

You can view the ssh terminal in which the application is running from the “Display Selected
Console” dropdown in the console window

Select the “Remote Shell” terminal and you will see the message “Hello World!” displayed
after you step over the printf statement.

22. Run through the application once

You may press the start button or use RunResume (F8)

23. Restart the application

After each run through of the application, the gdbserver application terminates and a new

session must be restarted. This is also what will happen if you press the stop button or
select RunTerminate (ctrl-F2)

You may restart by pressing the bug button You can press the button without using the
pull-down menu, or by using the pull-down and selecting “ccslab Debug”

Note that if you wish to halt a running application without ending the debug session, you
must use the pause button or “RunSuspend”

Setup CCSv5 Debug Configuration

4 - 24 Introduction to Embedded Linux - Lab 4: Code Composer Studio Debug

24. Set some breakpoints, single step, view some variables

You can set a breakpoint by right-clicking on a line of code and selecting
“RunToggle Breakpoint”, or by pressing (Ctrl-Shift-B). You can also double-click the area
just to the left of the code line in the display window.

You can step over a line of code with “RunStep Over” (F6), or by pressing the step-over
icon.

You can run to the next breakpoint with “RunResume” (F8) or by pressing the run icon.

You can view a variable by right clicking and selecting “Add Watch Expression”

Of course, this is a very simple hello world program – but feel free to add a variable or two
and restart the debugger. Note that any changes made will not take effect until you halt the
current debug session, rebuild the application, and then re-launch a new debug session.

In order to make changes, you will need to Press the stop button or RunTerminate
(ctrl-F2)

Edit the main.c file and then press filesave (ctrl-s)

Rebuild the program with ProjectBuild all (ctrl-b)

Relaunch the debugger with RunDebug (F11)

25. Exit debugging and return to edit Perspective

Often during development it is more convenient after a quick debugging test to exit the
debugger and return to the code editing perspective. Even though it is possible to edit code,
rebuild and rerun in the debugging perspective, the editing perspective is generally more
useful for making more significant changes. To switch back to the editing perspective,

Press the stop button or select RunTerminate (ctrl-F2)

WindowOpen PerspectiveCCS Edit

Introduction to Embedded Linux - Lab 5: Using GPIO 5 - 1

Lab 5: Using GPIO

Introduction
In this lab exercise, you will use file I/O to manipulate the GPIO driver using virtual files. You
will begin by testing the GPIO using the Linux terminal, and will then write C programs, first just
to turn the GPIO on, and then to blink the GPIO at the rate of 1 Hertz.

Recall that commands that should be executed in the Linux terminal of the host x86 machine
(VMware) are shown preceded with the ubuntu prompt:

 ubuntu$

whereas commands that should be executed in the Linux terminal of the AM335x starter kit are
shown preceded with the am335x prompt:

 am335x$

Module Topics

5 - 2 Introduction to Embedded Linux - Lab 5: Using GPIO

Module Topics

Lab 5: Using GPIO ...5-1

Module Topics ..5-2

Boot Board and Test GPIO ..5-3

Part A, Light LED from C Application ..5-4

Part B, Blink LED from C Application ..5-5

 Boot Board and Test GPIO

Introduction to Embedded Linux - Lab 5: Using GPIO 5 - 3

Boot Board and Test GPIO
1. If you have already booted the board from the SD/MMC interface and have an

attached serial console, you can skip this step
Otherwise power up the AM335x starter kit and login via the serial console. Reference
“Lab01: Booting Linux” if needed.
Login as:
 User: root
 Password: none

2. View current trigger setting for heartbeat LED

am335x$ cat /sys/class/leds/evmsk:green:heartbeat/trigger

3. Using sysfs, disable heartbeat trigger from heartbeat LED

am335x$ echo “none” > /sys/class/leds/evmsk:green:heartbeat/trigger

4. Disable MMC trigger from MMC LED

Use the “ls” command to locate the appropriate led within /sys/class/leds

5. Drive the usr0 GPIO to light the LED

am335x$ echo 1 > /sys/class/leds/evmsk:green:usr0/brightness

If you like, you can turn the LED back off by echoing “0” into the same virtual file.

Part A, Light LED from C Application

5 - 4 Introduction to Embedded Linux - Lab 5: Using GPIO

Part A, Light LED from C Application
6. If needed, start Code Composer Studio from the Desktop Icon
7. Switch to the “lab05_workspace” workspace

FileSwitch Workspace

The workspace is located at /home/user/oe-layersetup/sources/meta-
workshop/recipes-workshop-c/lab05_workspace

8. Open “main.c” in the “lab05-student” project
There are two solution projects as well as the student starter files. You can expand the
“lab05-student” project in the Project Explorer view if necessary and then double-click
the “main.c” file to open it.

9. In the “main.c” file of “lab05-student”, use fopen, fprintf, and fclose to accomplish
the equivalent of lab05 steps 3-5 from the previous section, using a C program
Here are the function prototypes for fopen, fprintf and fclose:
 #include <stdio.h>

FILE *fopen(const char *restrict filename,
const char *restrict mode);

int fprintf(FILE *restrict stream, const char
*restrict format, ...);

int fclose(FILE *stream);

 Accepted values for the “mode” field of fopen include:

“r” Read only
“w” Write only
“rw” Read and Write

10. Build your application
ProjectBuild All
 Or
(Right-click Project)Build Project

11. Debug your application
Debugging has already been configured for this project in the same manner as you set up
in Lab 4. You will need to choose “lab05-student” from the available debugging
connections.
Use “RunDebug Configurations…” to bring up the debug configuration
Select the “lab05student” configuration, and then press the “Debug…” button.
Alternately, select “lab05 Debug” from “RunDebug History” or use the bug pulldown
menu

Upon successful completion, you should see user LED 0 light on the AM335x starter kit.

 Part B, Blink LED from C Application

Introduction to Embedded Linux - Lab 5: Using GPIO 5 - 5

Part B, Blink LED from C Application
Expand the application by adding a for or while loop to toggle the user LED 0 between on and
off state. A common trick for toggling is to use the exclusive or (XOR) operation:

 int toggle = 0;

 toggle ^= 1; \\ will change 1 to 0 and 0 to 1

After writing the toggle value into the virtual file, you will need to use the fflush command;
otherwise, the value will be stored in a write buffer but not actually written to the virtual file until
the buffer is filled. (fclose automatically performs fflush, so we didn’t have to worry about this in
the previous lab.)

You will also want to use the “sleep” command to pause for a second between iterations of the
loop; otherwise the GPIO will toggle so quickly you will only see a dimly lit user LED 0. The
prototypes for these functions follow:

 #include <stdio.h>

 int fflush(File *stream);

 #include <unistd.h>

 unsigned int sleep(unsigned int seconds);

The solution to this exercise (in the “lab05-solution-b” project) also uses signal handling to exit
from the while loop when “ctrl-c” is pressed. When debugging with Code Composer Studio,
using signals to end a program is less of a concern since CCS may be used to halt the program
when desired. Signal handling will be discussed in the next chapter.

Part B, Blink LED from C Application

5 - 6 Introduction to Embedded Linux - Lab 5: Using GPIO

(Page intentionally left blank)

Introduction to Embedded Linux - Lab 6: Serial Driver 6 - 1

Lab 6: Serial Driver

Introduction
In this lab exercise you will control the AM335x UART via the Linux terminal as well as a C
program. The UART in question is an actual RS-232 UART; however, the FTDI USB bridge chip
on the AM335x starter kit captures the output of this UART and converts it to a Serial-over-USB
interface.

Part B demonstrates writing of formatted strings to the UART, and in part C, you will examine
the code used to configure the serial port for 115,200 baud, 8-bit operation with no stop bits and 1
parity bit.

Recall that commands that should be executed in the Linux terminal of the host x86 machine are
shown preceded with the ubuntu prompt:

 ubuntu$

whereas commands that should be executed in the Linux terminal of the AM335x starter kit are
shown preceded with the am335x prompt:

 am335x$

Module Topics

6 - 2 Introduction to Embedded Linux - Lab 6: Serial Driver

Module Topics

Lab 6: Serial Driver ...6-1

Module Topics ..6-2

Boot Board and Test SSH Error! Bookmark not defined.-Error! Bookmark not defined.

Remove Serial Console from AM335x Starter Kit..6-3

Part A: Simple UART Driver Hello World ..6-4

Part B: Optional Challenge – Variables over UART ...6-6

Part C: Examination Lab – UART Configuration ...6-7

Restore Serial Console on AM335x Starter Kit ...6-8

 Remove Serial Console from AM335x Starter Kit

Introduction to Embedded Linux - Lab 6: Serial Driver 6 - 3

Remove Serial Console from AM335x Starter Kit
The Linux console that is connected over the UART-over-USB connection on the AM335x is the
only serial port that is exposed from the board. If we wish to experiment with using this UART
via Linux drivers from an application, we will need to disable the console.

1. Boot the AM335x starter kit (if necessary)
2. Open CCSv6 and switch to the lab06-workspace

FileSwitch Workspace
 The workspace is located at:
/home/user/oe-layersetup/sources/meta-workshop/
recipes-workshop-c/lab06-workspace

3. Open the remote system view
WindowShow ViewOther…
Expand the “Remote Systems” folder and select the “Remote Systems” view from inside.

4. Locate “/etc/inittab” within the am335x.gigether.net Remote System View
Expand the “am335x.gigether.net” commenction and then descend the tree through:
am335x.gigether.netSftp FilesRoot/etcinittab

Double-click the “inittab” file within the view or right-click and select open.
The file will open within CCS even though it resides on the AM335x Starter Kit!

5. Edit the inittab file and comment out the serial console setup
ubuntu$ gedit inittab

Within the editor, you will need to find the line (should be line number 31):
S:2345:once:/sbin/getty 115200 ttyO0

And comment it out by placing a hash (#) at the beginning of the line:
S:2345:once:/sbin/getty 115200 ttyO0

When you are done, save the file and exit using
Filesave (ctrl-s)

6. Reboot the AM335x starter kit
You may use the push button on the underside of the main board closest to the power
supply barrel connector. If your serial port is still live, you will see feedback from u-boot
and the booting kernel, but at the end of the boot process, you should not see a login. You
will still be able to login to the AM335x using ssh or a like terminal program, however,
once it boots.

Part A: Simple UART Driver Hello World

6 - 4 Introduction to Embedded Linux - Lab 6: Serial Driver

Part A: Simple UART Driver Hello World

7. Write a program to send “Hello World” over the UART
You should have the following starter file in your lab06-student project:

8. You will need to use the driver calls “open,” “write” and “close” to access the UART
driver.

The device node corresponding to the UART that is exposed over the USB connection is
“/dev/ttyO0” (this is “tty”, the capitol letter “O”, then the number 0)

Here are a few function prototypes that may help you write your program.

#include <unistd.h>

// open returns a file descriptor.

// Accepted flags are O_RDONLY, O_WRONLY, O_RDWR

int open(const char *pathname, int flags);

// count in bytes. Returns number of bytes successfully written

size_t write(int fd, const void *buf, size_t count);

// close returns 0 on success

int close(int fd);

Also, you may wish to use the “sizeof” C macro, which will return the size of a variable
(or array or struct) in bytes.

 Part A: Simple UART Driver Hello World

Introduction to Embedded Linux - Lab 6: Serial Driver 6 - 5

9. Debug your “Hello World” program
Be sure to use the “lab06-student” debug configuration, and make sure the serial port
terminal (minicom) that you opened in step Error! Reference source not found. is still
connected to the AM335x starter kit. If the program executes successfully, you should
see your message appear on this terminal.

Part B: Optional Challenge – Variables over UART

6 - 6 Introduction to Embedded Linux - Lab 6: Serial Driver

Part B: Optional Challenge – Variables over UART
Think you got what it takes? This is an optional lab that demonstrates how you can
send formatted strings over the UART.

The challenge is to generate something like the following on your UART:

Hint:

The function “snprintf” works pretty much exactly like “printf,” except that it writes to a
string instead of writing to the terminal. There is also a function “sprintf,” but the
function “snprintf” is preferred because it writes at most “n” bytes to the output string,
which guarantees you will not overflow. Here is the function prototype:

int snprintf(char *str, size_t size, const char *format, ...);

An example to write the value of “j” into the string “iteration”

 char iteration[10];

 snprintf(iteration, 10, "%d", j);

 Part C: Examination Lab – UART Configuration

Introduction to Embedded Linux - Lab 6: Serial Driver 6 - 7

Part C: Examination Lab – UART Configuration
This lab demonstrates configuration of the UART using the “termios” library. You will not
see a difference in how the lab executes, because Linux has already configured the UART
with the proper settings; however, it is good practice to always initialize the port in such a
manner instead of relying on outside configuration files.

10. Execute the “lab06-solution-c” debugging configuration

Because the solutions are maintained on a git repository, the source code for main.c is
managed by OpenEmbedded and is not immediately available for viewing by CCS.
However, by launching the debugger, CCS will locate the source file (within the
OpenEmbedded rootfs build for the AM335x) and you will be able to see the solution
source.

11. Note the “configure_serial” function at the beginning of main.c
The “termios” library is built on top of the low-level “ioctl” function for configuration of
a standard driver. This routine uses bit manipulation (clear and set operations) to
configure the “terminal_setting” variable to 115,200 Baud, 8-bit operation with no stop
bits and 1 parity bit.

12. Execute the application
You will see the same output as in Part B since the configuration of this lab is simply
reconfiguring the serial port to what were already its default settings. If you wish, you
can cut and past the “configure_serial” function from the solution main.c into the “lab06-
student” project and see the effect of changing the settings.

Restore Serial Console on AM335x Starter Kit

6 - 8 Introduction to Embedded Linux - Lab 6: Serial Driver

Restore Serial Console on AM335x Starter Kit
Though you could complete the remainder of workshop labs using an ssh terminal, it is handy to
have the UART terminal available.

1. Boot the AM335x starter kit (if necessary)
2. Open CCSv6 and switch to the lab06-workspace

FileSwitch Workspace
 The workspace is located at:
/home/user/oe-layersetup/sources/meta-workshop/
recipes-workshop-c/lab06-workspace

3. Open the remote system view
WindowShow ViewOther…
Expand the “Remote Systems” folder and select the “Remote Systems” view from inside.

4. Locate “/etc/inittab” within the am335x.gigether.net Remote System View
Expand the “am335x.gigether.net” commenction and then descend the tree through:
am335x.gigether.netSftp FilesRoot/etcinittab

Double-click the “inittab” file within the view or right-click and select open.
The file will open within CCS even though it resides on the AM335x Starter Kit!

5. Edit the inittab file and comment out the serial console setup
ubuntu$ gedit inittab

Within the editor, you will need to find the line (should be line number 31):
#S:2345:once:/sbin/getty 115200 ttyO0

And uncomment it by removing the hash (#) at the beginning of the line:
S:2345:once:/sbin/getty 115200 ttyO0

When you are done, save the file and exit using
Filesave (ctrl-s)

6. Reboot the AM335x starter kit
You may use the push button on the underside of the main board closest to the power
supply barrel connector. You will see feedback from u-boot and the booting kernel, and
at the end of the boot process, you will now see a login prompt again.

Introduction to Embedded Linux - Lab 7: Linux Scheduler 7 - 1

Lab 7: Linux Scheduler

Introduction
In this lab exercise you will explore the Linux Scheduler using POSIX threads (pthreads) and
semaphores. You will create threads that print a message indicating which thread is running. In
the first exercise, you will use standard time-slicing threads without semaphores. In the next
exercise you will use realtime threads without semaphores, and in the final lab, you will use
realtime threads with semaphores.

By examining the output of these applications, you will see firsthand the effect of using time
slicing versus realtime threads and the application of semaphores.

Module Topics

7 - 2 Introduction to Embedded Linux - Lab 7: Linux Scheduler

Module Topics

Lab 7: Linux Scheduler ...7-1

Module Topics ..7-2

A. Creating a POSIX thread ..7-3

B. Real-time Threads ...7-7

C. Using Semaphores ...7-8

 Creating a POSIX thread

Introduction to Embedded Linux - Lab 7: Linux Scheduler 7 - 3

A.Creating a POSIX thread
1. If needed, start Code Composer Studio from the desktop icon
2. Switch to the “lab07-workspace” workspace

FileSwitch Workspace

 The workspace is located at:

/home/user/oe-layersetup/sources/meta-workshop/
recipes-workshop-c/lab07_workspace

3. Expand the “lab07-student” project
4. Examine “thread.c”

You can double-click the file in the explorer window or (right-click)open
This file defines a single function, which is a template for launching a POSIX thread.
 int launch_pthread(pthread_t *hThread_byref,
 int type,
 int priority,
 void *(*thread_fxn)(void *env),
 void *env)
The variables used are as follows

pthread_t *hThread_byref: this is a pointer to a POSIX thread handle. This
is equivalent to passing the handle by reference (as opposed to pass by
copy.) The handle pointed to will be overwritten by the pthread_create
function so that it is effectively used as a return value.

 int type: REALTIME or TIMESLICE as #define’d in thread.h
 int priority: 1-99 for REALTIME thread or 0 for TIMESLICE

void *(*thread_fxn)(void *env): this is a pointer to a function, where
the function takes a single (void *) argument and returns a (void *) value.
This is a pointer to the function that will be the entry point for the newly
created thread. In C, a pointer to a function is just the name of the
function. The entry point for a POSIX thread must be a function with this
prototype. A (void *) pointer is like a skeleton key – any pointer type
may be passed through a (void *) argument. In order for such a pointer to
be referenced within the function, however, it must be type cast.

void *env: this is the argument that will be passed to the thread function upon
entry into the newly created POSIX thread.

5. Open main.c

Creating a POSIX thread

7 - 4 Introduction to Embedded Linux - Lab 7: Linux Scheduler

6. Examine the “thread_fxn” template
/* Global thread environments */
typedef struct thread_env
{
 int quit; // Thread will run as long as quit = 0
 int id;
 sem_t *mySemPtr;
 sem_t *partnerSemPtr;
} thread_env;

thread_env thread1_env = {0, 1, NULL, NULL};
thread_env thread2_env = {0, 2, NULL, NULL};

/* Thread Function */
void *thread_fxn(void *envByRef)
{
 thread_env *envPtr = envByRef;

}

The thread function takes the standard (void *) argument; however, note that it type casts
this pointer as a (thread_env *). The thread environment type is defined just above and
contains four elements. By passing a pointer to this structure, you are effectively passing
these four elements as parameters to the function.

7. Write the thread function
For this first stage of the lab, you will only use the “quit” and “id” fields of the
environment structure. Your thread function should have three phases:

1. Print a message to stdout (will be printed to terminal) indicating that the
thread has been entered. Be sure to indicate the thread ID (envPtr->id) in
this message.

2. Enter a loop that will repeat as long as the quit variable
(envPtr->quit) is zero. Inside this while loop, print a message to indicate
you are inside the loop, again indicating the thread ID, and then enter a spin
loop to pause before the next message (or else your terminal will quickly
become flooded with messages!) A good delay value is:
 for(i=50000000; i > 0; i--);
Note: *Do not* use the “sleep” function. It is important for the lab that this
is an actual spin loop, even though that is not good programming!

3. After exiting the while loop, print a final message to indicate that the thread
is exiting (include the thread ID in the message) and then return the thread ID
as the return value of the function. Note: you do not need to create a return
structure. Since both pointers and ints are 32-bit on this architecture, you
may cheat and simply recast the ID as a (void *):
 return (void *)envPtr->id;

 Creating a POSIX thread

Introduction to Embedded Linux - Lab 7: Linux Scheduler 7 - 5

8. Write the main function
The main function should have the following 5 phases:

1. Print a message indicating you are launching thread 1, then launch this new
pthread using the “launch_pthread” function defined in thread.c. Store the
handle to the newly created thread in the “thread1” variable, and pass the
“thread1_env” environment structure. Be sure to launch as a TIMESLICE
thread.

2. Print a message indicating you are launching thread 2, then launch this new
pthread using the “launch_pthread” function defined in thread.c. Store the
handle to the newly created thread in the “thread2” variable, and pass the
“thread2_env” environment structure. Be sure to launch as a TIMESLICE
thread.

3. Print a message to indicate that the application threads have started, then
sleep the main thread for 10 seconds using:
 sleep(10);

4. Change the quit field of the thread1_env and thread2_env environment
structures to 1.

5. Use pthread_join to halt the main thread until both thread1 and thread2 have
exited. Be sure to capture the return values of these threads in the
thread1Return and thread2Return variables. Print a message indicating which
threads have exited using the thread1Return and thread2Return variables
(Recall that the return value of the thread_fxn is the thread ID).

9. Build the lab07_pthread_lab project

In the project explorer, (right-click lab07_pthread_lab)Build Project
or
ProjectBuild All (ctrl-B)

10. Debug any build errors
Don’t forget your two resources for lab writing:
 (right-click lab07_pthread_lab)Compare WithBranch, Tag or Reference…
 Localsolution_A
 Or ask your instructor for help.

11. Once the program has built, launch the “lab07-student” debug session
You should be taken to main

Creating a POSIX thread

7 - 6 Introduction to Embedded Linux - Lab 7: Linux Scheduler

12. Select the Remote Shell console window

13. Run the program with the resume button () or RunResume (F8)
14. You should see something like the following output (you may have to re-select the

Remote Shell view after program terminates)
Note: Due to non-determinism of Time-Slice scheduling, results may appear slightly
different than as in the window below

 Real-time Threads

Introduction to Embedded Linux - Lab 7: Linux Scheduler 7 - 7

B. Real-time Threads
15. Change thread1 to a REALTIME thread with priority 99
16. Change thread2 to a REALTIME thread with priority 98
17. Rebuild, launch the debugger, and view the Remote Shell output

You should see an output that matches the following:

18. What difference do you see between this output and the TIMESLICE thread

output? Why?

Using Semaphores

7 - 8 Introduction to Embedded Linux - Lab 7: Linux Scheduler

C. Using Semaphores
19. In main.c thread_fxn, change the while loop for the following functionality:

1. Do a semaphore wait operation using the thread’s “my semaphore” pointer
(envPtr->mySemPtr)

2. Do a “sleep(1);” after the completion of the semaphore wait operation to slow the
system down. (This should replace the for loop that was previously used to delay
the system.)

3. Keep the print statement to indicate that execution is inside the while loop of the
thread, printing the thread ID

4. Finish the loop by posting the “partner semaphore”
(envPtr->partnerSemPtr)

20. In main, create and initialize the semaphores pointed to by
“thread1_env->mySemPtr” and “thread2_env->mySemPtr”
You will need to use the “malloc” function to allocate memory for both semaphores,
followed by the “sem_init” function to initialize the semaphores. Be sure to set the initial
values for both semaphores to “0.”

21. Initialize “thread1_env->partnerSemPtr” to point to the same semaphore as
“thread2_env->mySemPtr” and vice-versa

22. Create a “trigger” semaphore post in main to post “thread1_env->mySemPtr” after
both threads have been created
The thread_fxn has been set up so that both threads will start upon creation with a
semaphore wait operation. Since both semaphores were initialized to “0,” something
needs to kick off one of the threads or nothing will ever happen. Once thread1 is kicked
off with the first semaphore post from main, it will post the semaphore for thread2, and
from there out there is a one-to-one correspondence between the semaphore wait
operations and the semaphore post operations.
An alternative to the triggering post in main would have been to initialize the
“thread1_env->mySemPtr” to an initial value of “1.”

23. Rebuild, launch the debugger, and view the Remote Shell output
You should see output that matches the following:

Introduction to Embedded Linux - Lab 8: Berkeley Sockets 8 - 1

Lab 8: Berkeley Sockets

Introduction
In this lab exercise you will explore Linux networking on the AM335x starter kit. You will write
a Berkeley sockets client application which will send the message “Hello World!” from the
AM335x starter kit via an Ethernet connection using Berkeley sockets. Once the client
application is working, you will then write a Berkeley sockets server application to run on the
host x86 computer to receive the message and print it to the terminal.

Recall that commands that should be executed in the Linux terminal of the host x86 machine are
shown preceded with the ubuntu prompt:

 ubuntu$

whereas commands that should be executed in the Linux terminal of the AM335x starter kit are
shown preceded with the am335x prompt:

 am335x$

Module Topics

8 - 2 Introduction to Embedded Linux - Lab 8: Berkeley Sockets

Module Topics

Lab 8: Berkeley Sockets ...8-1

Module Topics ..8-2

A. Berkeley Socket Client ...8-3

B. Build and Launch the Host Server ..8-4

C. Server Application ...8-6

 Berkeley Socket Client

Introduction to Embedded Linux - Lab 8: Berkeley Sockets 8 - 3

A. Berkeley Socket Client
1. Start code composer studio and switch to the “lab08-client-workspace”

FileSwitch Workspace

 Be sure that you open the “client” verion of this lab and not the “server” version!

2. Examine main.c from lab08-client-student
This is an empty program with the necessary header files included. All of the code for the
following steps of this section is to be placed within this empty main function.

3. Open an IP socket using the “socket” function
The socket command returns a file descriptor, which should be saved in the SocketFD
variable.

4. Request a connection via the SocketFD IP socket using the “connect” function
The characteristics of the connection are specified via the stSockAddr structure. The
connection should be configured to:
 family: AF_INET (IP connection)
 address: 192.168.1.1
 port: 1100
The address chosen correlates to the (static) IP address of the host computer that the
program will connect to. This could have been determined via the “ifconfig” command at
a host terminal. The port can be any port that is not already in use; however, the client
and server must agree on the port used for the connection. The server program you will
use to test the client is configured to use port 1100, a somewhat arbitrary choice.

5. Write a message into the connected socket using the “write” function
In the example, we write “Hello World of Ethernet!”

6. Close the connection with the “shutdown” function
This is the cleanup for the “connect” function of step 4. At this point, connect could be
called a second time using the same socket to establish a new connection.

7. Close the socket with the “close” function
This is the cleanup for the “socket” function of step 3.

8. Build the program and check for any errors, but do not launch the debugger at this
time
The client application will fail if there is no server running on the host computer to accept
the connection.

Build and Launch the Host Server

8 - 4 Introduction to Embedded Linux - Lab 8: Berkeley Sockets

B.Build and Launch the Host Server

9. Keep CCS open, but in a separate Linux terminal window on the x86 host, change to
the “/home/user/oe-layersetup/sources/meta-workshop/recipes-
workshop-c/lab08-server-workspace/lab08-server-solution-a/files”
directory
Be careful not to change into the “lab08-client-solution-a” directory by mistake.

10. List the contents of the directory
There are two files: LICENSE and makefile

11. Rebuild the application
ubuntu$ make host

After a successful completion of the make script, a new executable named
“lab08-sever-solution-a-x86” will appear in the directory.

12. Launch the application with root permissions using the “sudo” command
ubuntu$ sudo ./ lab08-sever-solution-a-x86

Until you launch the client application you will not see anything happen. The server
program will wait for a connection to be requested by a client, and upon opening a
connection will echo any message received to the terminal. If all goes well, you will see
the message you wrote into the client appear on this terminal once the client application
is run.

13. Change back to the CCS window and launch the lab08-student application using the
CCS debugger
Be sure to press the “resume” button after launching the debugger as CCS will halt the
application at the start of main after it is loaded.

14. Examine the x86 server application

 Build and Launch the Host Server

Introduction to Embedded Linux - Lab 8: Berkeley Sockets 8 - 5

15. Exit the x86 server application by pressing (ctrl-c)
You must have “focus” within the terminal window in order for the (ctrl-c) to take effect.
If nothing happens when you press (ctrl-c), use the mouse to select the terminal window.

Server Application

8 - 6 Introduction to Embedded Linux - Lab 8: Berkeley Sockets

C. Server Application
16. If you have not already done so, exit the server application with (ctrl-c)
17. In one of the x86 host computer terminals, change to the “lab08-server-student”

files directory

ubuntu$ cd /home/user/oe-layersetup/sources/meta-workshop/
recipes-workshop-c/lab08-server-workspace/lab08-server-student/files

18. Run a “make clean” operation to remove the current server binary
19. Open main.c for editing

ubuntu$ gedit main.c
20. Examine provided signal structure

The main.c starting file has been set up with all of the header files you should require as
well as with a registered signal handler for SIGINT (ctrl-c). The signal handler will clean
up the current connection and socket by closing ConnectFD (connection file descriptor)
and SocketFD (socket file descriptor.) It is important that these file descriptors are
properly closed before exiting the application; otherwise they will remain open and will
block any further connection via the specified IP address and port.

21. Within the main function, open a socket with the “socket” function and bind it to an
IP address and port with the “bind” function

family: AF_INET
port: 1100
address: INADDR_ANY (you could also use 192.168.1.1)

22. Ready the socket to accept connections with the “listen” command
23. Create a while loop to accept connections and read data as it comes across

The while loop should have the following stages:
1. Begin the while loop by accepting a connection from the socket. (This

function will block until a connection request is made from a client)
2. Create an inner while loop that reads a byte from the connection and writes it

to standard out (you can use STDOUT_FILENO as the file descriptor for
standard out.) You should exit from the inner loop when the read command
returns “0” for the number of bytes read, which indicates a termination of the
connection.

3. After exiting the inner while loop, indicating the connection was closed by
the client, close the connection on the server side with the close command.
The solution also prints a message to standard out to indicate that the
connection was closed at this point.

24. Save the file
25. Rebuild the server executable

ubuntu$ make host
26. Test your server executable with the known-good client that you wrote in section C

ubuntu$ sudo ./lab08-server-student-x86

Introduction to Embedded Linux - Lab 09: Framebuffer Driver 09 - 1

Lab 09: Framebuffer Driver

Introduction
In this lab exercise you will explore the Linux framebuffer device (FBDEV) driver. This is the
low-level driver that controls graphical displays such as LCD screens. The framebuffer driver is
so named because it exposes the display bitmap (i.e. the “frame buffer”) as a virtual file. You will
begin by using the standard “write” command to write an image into this virtual file. You will
then use the more efficient “mmap” command to map this virtual file as an array into the
application memory space and manipulate it directly. In the final step of the lab, you will
implement a double-buffered system using mmap.

Module Topics

09 - 2 Introduction to Embedded Linux - Lab 09: Framebuffer Driver

Module Topics

Lab 09: Framebuffer Driver ...9-1

Module Topics ..9-2

Copy-based Framebuffer Application ..9-3

mmap-based Framebuffer Application ..9-4

Double-buffered Framebuffer Application...9-5

 Copy-based Framebuffer Application

Introduction to Embedded Linux - Lab 09: Framebuffer Driver 09 - 3

Copy-based Framebuffer Application
1. Start Code Composer Studio and switch to the “lab09-workspace” workspace.
2. Examine the main.c starter file in the “lab09-student” project.

A small section of code has been provided to write the value “0” into the sysfs virtual file
“/sys/class/graphics/fb0/blank.” This enables the backlight for the display
(i.e. disables blanking of the display.)
A number of variable declarations have been provided as well.

3. Open the “/dev/fb0” device node.
This is the device node corresponding to framebuffer zero, the default framebuffer device
for the system.

4. Query the framebuffer driver for its fixed screen information.
You may use the “ioctl” driver function with the “FBIOGET_FSCREENINFO”
command enumeration. For convenience, the ioctl function prototype is provided below:

int ioctl(int fd, int request, void *argument);
5. Query the framebuffer driver for its variable screen information.

You may use the “ioctl” driver function with the “FBIOGET_VSCREENINFO”
command enumeration.

6. Use nested for loops to write pixel values into the framebuffer bitmap.
You can determine the number of pixels in a row by using the
“fbfix.line_length” determined in step 4. Note that the line length is always
specified as the number of bytes in one row of the bitmap. Each pixel has a four-byte
color value, so the number of pixels in a row is the line length divided by four.
You can set the number of rows equal to “fbvar.yres” as determined in step 5.
Each pixel has a 32-bit ARGB color value: 8-bit attribute, 8-bit red, 8-bit green and 8-bit
blue. You may color with any scheme you like. The solution creates a 2-d color gradient
using:

pixel_val = ((j/2) << 8) + (unsigned int) (0.9 * i);
7. Once the nested for loops have set each pixel value, close the framebuffer file

descriptor.
Closing the file descriptor does not erase the contents of the framebuffer. The pixel
values you have written will persist within the framebuffer after closing the file
descriptor unless they are overwritten.

8. Build and test your application.

mmap-based Framebuffer Application

09 - 4 Introduction to Embedded Linux - Lab 09: Framebuffer Driver

mmap-based Framebuffer Application
9. Insert the “mmap” function into main.c

This will need to come after the call that opens “/dev/fb0” because you will need the
returned file descriptor, and it should also come after the “ioctl” calls for determining
fixed and variable screen info as you will need this information to determine the size of
the buffer to memory map.
For convenience, the mmap function prototype is provided below:

 void *mmap(void *addr, // use “0” (zero)

 size_t len, // buffer length in bytes
 int prot, // use “PROT_READ | PROT_WRITE”
 int flags, // use “MAP_SHARED”
 int fd, // device file descriptor
 off_t offset);// use “0” (zero)

The return value is a user-space (i.e. virtual) pointer to the newly mapped
memory buffer.

Most of the parameters that have been provided for you are unlikely to change. Passing a
value other than zero in the initial address field allows you to request a specific physical
address for the framebuffer to be mapped to, which is rarely used. The “prot” field
indicates that the mapped memory can be written and read. The “MAP_SHARED” flag
indicates that the changes will be written to the underlying file (i.e. framebuffer) as
opposed to “MAP_PRIVATE,” which would allow reading of the framebuffer, but would
write all changes to a private copy of RAM and never update the framebuffer. The offset
field specifies the offset within the framebuffer where the mapping into program RAM
will begin.

10. Modify the pixel manipulation within your nested for loops to write directly into the
memory mapped region.
You will no longer require the “write” driver function. Instead, you can use the memory
mapped array to write directly into the framebuffer.

11. Build, test and commit.

 Double-buffered Framebuffer Application

Introduction to Embedded Linux - Lab 09: Framebuffer Driver 09 - 5

Double-buffered Framebuffer Application
The FBDEV driver uses the concept of a virtual display space. Using a virtual display space that
is twice as large as the physical display’s bitmap, the application will create a “ping” and a
“pong” display buffer within the virtual space and use the “FBIO_PANDISPLAY” ioctl call to
toggle between them.

12. Change the mmap function call in main.c to map a buffer size that is twice as large
as the display size.
Previously the application used line length and height of the display to calculate the size
of the display bitmap. By mapping a buffer that is twice this size from the virtual memory
space of the framebuffer driver, you will have enough memory to implement a “ping”
and a “pong” buffer for the display.

13. Add an infinite “for” or “while” loop around the nested loops created in step 6.
You can use Code Composer Studio to halt the application, so there is no issue with
creating an infinite loop.

14. Declare an int named “pingOrPong” and toggle it between “1” and “0” on each
iteration of the infinite loop that was set up in step 13.
You can use:
 pingOrPong ^= 1;
to toggle the value between 1 and 0;

15. Modify the nested loops from step 6 to offset the array by (pingPong * buflen/4)
The formula “(pingPong * buflen/4)” assumes that you are using a pointer to int and that
buflen is specified in bytes. This offset will place the modified pixels in the correct
“ping” or “pong” area of the virtual memory space.

16. After the nested loops complete, update the displayed buffer using the
“FBIOPAN_DISPLAY” ioctl function call.
You will use the “fbvar” structure that you initialized with the
“FBIOGET_VSCREENINFO” ioctl in step 5 as the input to the FBIOPAN_DISPLAY
ioctl function call. One of the variable fields in this structure is “fbvar.yoffset,”
which defines the vertical offset of the display space within the virtual display buffer of
the driver.
Use:
 fbvar.yoffset = pingPong * fbvar.yres;
To adjust the offset as appropriate for the ping or pong buffer, and then use:
 ioctl(fd, FBIOPAN_DISPLAY, &fbvar);
to pan the offset to that location.

17. Use the “FBIO_WAITFORVSYNC” ioctl to synchronize to the display.
“FBIOPAN_DISPLAY” is a hardware-latched function, so it does not actually take effect
until the vertical sync of the display. However, for a simple application, it would be
possible for the application to update the display twice or even more in between vertical
sync events. Proper synchronization requires calling the “FBIO_WAITFORVSYNC”
ioctl after calling “FBIOPAN_DISPLAY” to guarantee that the application does not
begin processing the next buffer until the latched “FBIOPAN_DISPLAY” ioctl
completes.
Directly after the “FBIOPAN_DISPLAY” ioctl function call, use:
 ioctl(fd, FBIO_WAITFORVSYNC, NULL);
to block the application until the hardware vertical sync event occurs.

Double-buffered Framebuffer Application

09 - 6 Introduction to Embedded Linux - Lab 09: Framebuffer Driver

18. Implement the “FBIO_WAITFORVSYNC” workaround.
The “FBIO_WAITFORVSYNC” ioctl has not been integrated into the mainstream Linux
fbdev driver, so you will have to use the following definition at the top of main.c (after
the header file include statements):
 #define FBIO_WAITFORVSYNC _IOW('F', 0x20, u_int32_t)
Note: be sure not to put a semicolon at the end of this line.

19. Build and run the application.
As described above, the application draws exactly the same pixels into the ping and pong
buffers, so it may not be obvious that anything has changed. This is a good point to test
the code, however, and determine if everything is working properly up to this point.

20. (Optional) Implement some form of motion.
If you have extra time, you may want to implement some form of motion in the display,
such as horizontal scrolling between iterations of the loop. Motion will demonstrate the
necessity of a double-buffered system as a properly implemented double-buffered system
will not have “tearing” artifacts as would appear in a single-buffered system attempting
motion.

Introduction to Embedded Linux - Lab 10: Using QT Creator 10 - 1

Lab 10: Using qt

Introduction
The Qtopia (“QT” for short) graphics package is an open-source GUI development platform used
in many Linux and Windows applications. This lab exercise will lead you through the creation of
a simple “Hello World” project built using an OpenEmbedded Bitbake recipe. You will first test
this project by running it within the x86 Linux host environment. One advantage to developing
with Qtopia is that the language is device (and even operating system) independent, so that
applications written for the AM335x can easily tested in an x86 environment. You will then
rebuild the application for the AM335x starter kit and test the application using Code Composer
Studio’s remote debugging capability.

Module Topics

10 - 2 Introduction to Embedded Linux - Lab 10: Using QT Creator

Module Topics

Lab 10: Using qt ... 10-1

Module Topics .. 10-2

qt Hello World ... 10-3

 qt Hello World

Introduction to Embedded Linux - Lab 10: Using QT Creator 10 - 3

qt Hello World
By default, QT Creator is configured to create QT applications for the native environment on to
which it is installed. This will be a useful feature, as you will be able to test and debug
applications within the Ubuntu x86 environment before deploying to the AM335x starter kit.

1. Use gedit to open the lab 10 Bitbake files
ubuntu$ cd /home/user/oe-layersetup/sources/meta-workshop/
recipes-workshop-qt/lab10-workspace/lab10-student
ubuntu$ gedit lab10-student_1.0.bb lab10-student_1.0.inc

2. Examine lab10-student_1.0.bb
The first line of “lab10-student_1.0.bb” uses the “require” command to include the
“lab10-student_1.0.inc” file. Note that PN and PV are bitbake-defined variables for
the package and
${PN}=lab10-student
${PV}=1.0

Note the line “inherit qt4e” This line inherits the “qt4e” bitbake recipe class. This
class contains task definitions to build a qt project. (The acronym stands for “qt for
embedded.)

The remaining lines are a bit more advanced and not important at this stage. Basically
they define the “do_my_package_write_ipk” function which will force the result of
the package to be copied directly into the target root filesystem that is maintained by
OpenEmbedded.

Generally one package should not touch the workspace of another package in this
way, but this is a hack that allows the package to update the target root filesystem
without rebuilding the entire rootfs package each time, which would take a
significant amount of time. Recall that OE is not meant to be a development/debug
system, it is meant for generating a full OS image, and as such build time
optimization is not a priority.

3. Examine lab10-student_1.0.inc
The recipe defines the “SRC_URI” variable to bring in any source files in the
package files directory which have the extensions: “pro,” “c,” “cpp,” or “h,” in
addition to bringing in the LICENSE file.
The package then overrides the “do_install” function in order to pass the
“INSTALL_PATH” variable during the call of “make install.” The use of this
variable will be demonstrated in step 5.
The remaining tasks used to build the package are used unchanged from the “qt4e”
class definitions.

4. Start CCS and change to the “lab10-workspace” workspace
You can use FileSwitch Workspace…
Note that the qt projects are maintained in a separate directory from the standard C
projects. This is because the Bitbake recipe files are different for the qt projects, and
keeping them in separate directories makes it easier to apply a script to generate or
update the recipe files.
The full path to the “lab-10” workspace is:

/home/user/oe-layersetup/sources/meta-workshop/recipes-workshop-qt/lab10-workspace

qt Hello World

10 - 4 Introduction to Embedded Linux - Lab 10: Using QT Creator

5. Examine lab10-student.pro
As with any file in the project, you may open by double-clicking within the project
explorer window.
This is a standard qt project file. You can see that the project file defines the sources
that comprise the project, in this case just the “main.cpp” file. Also, it defines the
path to install the application on the target, which is reference to the variable
“$(INSTALL_PATH)”
This variable is passed to the project during the “do_install” Bitbake command as
was shown in step 3.

6. Examine the provided main.cpp
This file is an empty shell containing only the standard “main” entry point for C/C++
applications and the standard qt wrapper, which is the definition of a QApplication
variable and the calling of the “exec” task from this object.
As written, the application does not have any qt objects and will simply launch the
QT environment with nothing in it.

7. Fill in the remaining application
You will need to initialize a QLabel object and then use the “show” task to make the
object visible within the qt environment.

8. Rebuild the application within CCS
9. Once the application builds correctly, test it within the x86 system

Open a Linux terminal outside of CCS (you can use ctrl-atl-t if you have scope in the
Ubuntu desktop.)
ubuntu$ cd /home/user/oe-layersetup/sources/meta-workshop/
recipes-workshop-qt/lab10-workspace/lab10-student/files
ubuntu$ make host
ubuntu$ ls
Upon a successful build, you should see the file “lab10-student-x86” in the directory.

10. Launch qt’s virtual framebuffer
qt has a virtual framebuffer application that allows you to test embedded graphics
projects within the x86 environment. It is part of the “qt4-dev-tools” aptitude
package, which has already been installed on your system.

11. Execute the application within the x86 environment using qt’s virtual
framebuffer
ubuntu$ sudo ./lab10-student-x86 –qws –display QVFb:0

12. Return to CCS
If you closed the application, you may simply re-launch it. Otherwise return to the
CCS window.

13. Examine the debug configuration for “lab10-student”
RunDebug Configurations…

14. View the arguments in the “arguments” tab
Right-click the “(x)=Arguments” tab in the debug configuration. Note that CCS has
been configured to pass the “-qws” argument to the application when it is launched.
This is required for embedded qt applications as it launched the “qt window server”
on the target.

15. Launch/Debug the application
Press the “Debug” button

Introduction to Embedded Linux - Lab11: git 11 - 1

Lab 11: git

Introduction
In this lab exercise you will explore the git tool, an open-source tool for version control. You will
create an empty git repository and manipulate test files from the Linux terminal, using the git tool
to save “commits” in between changes and then restore previous commits using tags. You will
also create a second branch and use the git merge capability.

In the next lab exercise, you will build on this knowledge using the git eclipse plugin to save
commits of lab exercises and, if necessary, use the diff utility to compare your project to the
solution files, which are committed on a separate “solutions” branch.

Module Topics

11 - 2 Introduction to Embedded Linux - Lab11: git

Module Topics

Lab 11: git ... 11-1

Module Topics .. 11-2

Create a New git Repository .. 11-3

Explore a Workshop git Repository ... 11-8

 Create a New git Repository

Introduction to Embedded Linux - Lab11: git 11 - 3

Create a New git Repository
The lab exercise will begin by creating a new repository.

Note that the commit and tag commands use the “-m” option to provide commit and tag
messages. If the “-m” option is excluded or specified incorrectly, git will automatically route you
into a text editor to write the commit or tag message. If you are routed into the text editor and are
unable to save your message and exit, ask your instructor for help.

1. Make a directory named “test_repo” at /home/user/
ubuntu$ cd /home/user/
ubuntu$ mkdir test_repo

2. Initialize the test_repo directory with “git init”
ubuntu$ cd test_repo
ubuntu$ git init

3. Create a text file to save
There are many ways to do this. Let’s try out a Linux redirect (>)
 ubuntu$ echo “File initialization” > testfile
Note that there is a single greater-than sign, which will overwrite this value into the file
(as opposed to appending.)

4. Verify contents of testfile
ubuntu$ cat testfile

5. Commit testfile
ubuntu$ git add testfile
ubuntu$ git commit –m “commit: Initial file”

6. Create a tag for your initial commit
ubuntu$ git tag v1.0 –m “tag: Initial file”

7. Modify testfile
ubuntu$ echo “Mod 1, master branch” >> testfile

Note that the usage of two greater-than signs indicates the Linux redirect will append the
echoed message into testfile.

8. Verify contents of testfile
ubuntu$ cat testfile

9. Commit testfile
We can use the “-a” flag as a shortcut since “testfile” has already been added to the
repository index.
 ubuntu$ git commit –a –m “commit: Mod 1,master branch”

10. Checkout v1.0 of the repository
ubuntu$ git checkout v1.0

git will display a message indicating that you are in “Detached HEAD” state. This means
that your current position within the repository is not at the end of a branch. This is
important because git does not allow you to modify a commit within a branch since this
would affect every commit that comes after it in the branch.
As the message indicates, if you want to save any changes you make to the files in this
commit, you will need to create a new branch from the commit point. This will then place
the current position (i.e. HEAD pointer) at the end of that (newly created) branch,
allowing you to create commits on the new branch.

Create a New git Repository

11 - 4 Introduction to Embedded Linux - Lab11: git

Since you will not be modifying the files at this commit point, there is no need for you to
create a new branch.

11. Verify contents of testfile
ubuntu$ cat testfile

How does this compare to the state of the test file when viewed in step 8?

12. Check out the v1.1 tag
ubuntu$ git checkout v1.1

git displays the same “detached HEAD” state message as before. Why is this, when the
v1.1 commit is the last commit on the branch?
The answer is a subtle but important distinction. There is a difference between checking
out a branch and checking out the last commit on the branch. This is because all commits,
even the last commit on a branch are unchangeable. git will only allow you to make
modifications to a branch when you checkout the branch.

13. Check out the master branch
ubuntu$ git checkout master

Now there is no “detached HEAD” message. Again, even though the files are identical to
the state they were in when the “v1.1” tag was checked out, the state of the repository is
different.

14. Modify testfile
ubuntu$ echo “Mod 2, master branch” >> testfile

15. Commit testfile
16. Create a tag “v1.2” for your latest commit with the message “tag: Mod 2, master

branch”
17. Print the list of this repository’s commits and tags

ubuntu$ git tag
ubuntu$ git log

18. Determine which commit node each tag corresponds to

Begin by listing the current tags

ubuntu$ git tag

You can then print out the hash corresponding to the commit node that a given tag
references

ubuntu$ git rev-parse --verify v1.0^{commit}

Finally, you can locate the commit within the log by its hash

ubuntu$ git log

19. Print the current testfile

ubuntu$ cat testfile
20. Check out the previous commit

ubuntu$ git checkout HEAD^

Note: You will get a “detached HEAD” message as explained in step 10.

 Create a New git Repository

Introduction to Embedded Linux - Lab11: git 11 - 5

The caret (^) symbol in a git context is used to refer to the commit previous to a given
reference. Recalling that “HEAD” references the user’s current position within the git tree,
“HEAD^” would be the last commit. The caret symbol may be stacked, i.e. “HEAD^^”
and it may also be used in conjunction with other references such as tags. (“v1.1^”)
Note that the caret will always reference the previous commit, so that “v1.1^” will only
take you to the “v1.0” tag if there are no untagged commits inbetween.

21. Print the testfile
22. Create a new branch off of the v1.0 tag

ubuntu$ git branch test
23. Print a list of branches

ubuntu$ git branch

You should see:

 * (no branch)

 master

 test

The asterisk next to “no branch” indicates that you are currently in “detached HEAD”
state.

24. Move to the test branch
ubuntu$ git checkout test

25. Print a list of branches
ubuntu$ git branch

You should now see:

 master

 * test

26. Create a new file named testfile2 with the following text:
ubuntu$ echo “Mod 1, test branch” > testfile2

27. Commit your change (without tag)
Don’t forget to “git add” testfile2 into the index!

28. Modify testfile and use “git add” to add it for staging
29. Modify testfile2 again, but do not use “git add” to stage it
30. Create a new file named “testfile3,” and do not use “git add” to add it to the index.

Create a New git Repository

11 - 6 Introduction to Embedded Linux - Lab11: git

31. View the current status of the git repository
ubuntu$ git status

you should see:

On branch test
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: testfile

Changes not staged for commit:
(use "git add <file>..." to update what will be
committed)
(use "git checkout -- <file>..." to discard changes in
working directory)

modified: testfile2

Untracked files:
(use "git add <file>..." to include in what will be
committed)

testfile3

32. Commit your change and tag as “v2.0”
33. Print the log

Note that the log shows commits only for the current branch
34. (Attempt to) Checkout the master branch

You should get an error indicating that your local changes to “testfile2” would be
overwritten by checking out the master branch. This is because in step 32, only the
changes to “testfile” were added to commit “v2.0”
There are two solutions when this occurs. The first solution would be to create a new
commit and “git add testfile2” In some cases, however, you might want to (permanently)
discard whatever remaining local changes have been made and perform the checkout.

35. Discard changes to current branch
 ubuntu$ git reset --hard

36. Checkout the master branch
 ubuntu$ git checkout master

37. Do a list command (“ls”)
You should see “testfile” and “testfile3” but no “testfile2.”
“testfile” is present because it is present in this commit node of the git repository.
“testfile3” is present because, even though it is not present in this commit node of the git
repository, it is an untracked file, indicating that it is not affected by the “git checkout”
command.
“testfile2” is not present because it is not present in this commit node, but it is a file that
is tracked by the git repository (i.e. it is in the git index).

 Create a New git Repository

Introduction to Embedded Linux - Lab11: git 11 - 7

38. Merge the “test” branch into the “master” branch
ubuntu$ git merge test

Note: if you have made even a slight deviation from the instructions, you may get a
merge conflict message indicating that the changes in the two branches are such that git
does not know how to merge them. This is very common when merging branches (more
common in fact than merging without a conflict!)

git requires you to resolve merge conflicts by hand. The tool will mark the merge
conflicts in the files where they occur and the user then edits the files with a text editor to
resolve them. This is an advanced topic and will not be covered in the workshop.

39. Do another list command
The master branch now has “testfile,” “testfile2,” and “testfile3.” Try printing the
contents of testfile2 with the “cat” command.

40. View your repository graphically using gitk
ubuntu$ gitk --all

Explore a Workshop git Repository

11 - 8 Introduction to Embedded Linux - Lab11: git

Explore a Workshop git Repository
The git tool is used for version management of software, with principles similar to other revision
control systems such as CVS, subversion or clearcase.

This workshop introduces git because it is the most commonly used version management tool in
the Linux community, having been developed by Linus Torvalds (the original developer of the
Linux kernel) specifically for version management of the Linux kernel.

Not only is the Linux kernel managed on a git repository, but the majority of source code in the
GNU community, i.e. the source code that forms full distributions of the Linux operating system,
is managed on git repositories as well.

Additionally both the OpenEmbedded recipe files that specify Texas Instruments’ Arago Linux
distribution as well as the Bitbake overlay used to modify the distribution for this workshop
(“meta-workshop”) are managed on git repositories. This lab exercise will begin with an
exploration of the “meta-workshop” git repository. At the end of the lab, you will create a new
branch to store any changes you make to the workshop Bitbake recipes during the course of the
workshop.

1. Locate the “meta-workshop” git repository

ubuntu$ cd /home/user/oe-layersetup/sources/meta-workshop

2. Display the git repository branches

ubuntu$ git branch

The output of this command shows that there is only one branch for this repository,
named “master.” The asterisk indicates that this is the currently checked-out branch.

3. Search the git repository tags
ubuntu$ git tag

The output of this command will show you a list of commits that have been tagged. This
repository tags certain commits with a version number, which is a common use of tags,
although not the only use. In this repository, the version numbers are followed by an
indication of which sdk version the layer is meant to overlay.

4. View the commit log between v1.0_sdk07.01.00.00 and v1.2_sdk07.01.00.00
Not all commits are tagged. If you wish to see the details of every commit that was made
between two tags use

ubuntu$ git log v1.0_sdk07.01.00.00..v1.2_sdk07.01.00.00
 (note: two periods between tags)

You may scroll through the log with the up and down arrow keys. Press “q” to quit.

5. Create a new branch to use for workshop development
Note: the examples will assume a branch named “student;” however, you may name this
branch whatever you wish.

ubuntu$ git branch student

 Explore a Workshop git Repository

Introduction to Embedded Linux - Lab11: git 11 - 9

6. Check out your development branch
ubuntu$ git checkout student

From this point onward, any changes that you make to the workshop recipe files will be
stored in the “student” branch. This will allow you to revert back to the workshop start
files if necessary.

Explore a Workshop git Repository

11 - 10 Introduction to Embedded Linux - Lab11: git

(Page intentionally left blank)

Workshop Title - Workshop Setup Guide A1 - 1

Workshop Setup Guide

Introduction
This document contains information for setting up an Ubuntu 12.04 host computer to run the lab
exercises of the “Introduction to Embedded Linux One-Day Workshop.”

It consists of 4 required sections:

 Installing Ubuntu 12.04
 Installing Code Composer Studio
 Installing Lab Files
 Configuring Ubuntu Static IP

After completing these installation steps, you will have everything needed to run the lab exercises
on your system.

Additionally, a number of steps were taken to make the environment more user friendly
(“Installing Gnome3 and Standard Scrollbars”) and to set up the lab files toolchain and target
filesystem. These comprise the three optional sections. There is no need to go through the
optional sections in order to run the lab exercises, but if you would like to know the steps that
were required to set up that portion of the lab environment, the steps are shown in these optional
sections.

The lab files that you will need to install are located on the workshop wiki page at:

http://processors.wiki.ti.com/index.php/Introduction_to_Linux_One-Day_Workshop

Installing Ubuntu 12.04

A1 - 2 Workshop Title - Workshop Setup Guide

Chapter Topics

Workshop Setup Guide .. 1-1

Installing Ubuntu 12.04 ... 1-3

Installing Code Composer Studio v.5.3.0.00090 .. 1-4

Installing Lab Files .. 1-6

Configuring Ubuntu Static IP ... 1-8

(Optional) Installing Gnome3 and Standard Scrollbars .. 1-9

(Optional) Installing Angstrom Cross-compile ToolsError! Bookmark not defined.-Error! Bookmark not define

(Optional) Modifying Angstrom FilesystemError! Bookmark not defined.-Error! Bookmark not defined.

 Installing Ubuntu 12.04

Workshop Title - Workshop Setup Guide A1 - 3

Installing Ubuntu 12.04
Note: Currently the Eclipse IDE platform upon which Code Composer Studio is based uses 32-bit
libraries. It is recommended that you install the 32-bit desktop Ubuntu 12.04 even if you have a
64-bit machine.

There are many tutorials available for installing Ubuntu, so this section will not go through great
detail on the actual installation; however, it provides information for removing the user password
and setting automatic login, as is done in the workshop image.

1. Begin by downloading an Ubuntu 12.04 image and burning onto an installation
disk.
Please see above. It is recommended that you install the 32-bit version of Ubuntu even if
you are using a 64-bit machine. There are tools that allow installation via an installation
CD (requires a CD burner to create the installation disk) as well as installation via a USB
mass-storage device. Either method is fine.

2. Install Ubuntu 12.04 on your computer.
Other versions of Ubuntu may also work, but version 12.04 is what has been tested for
this workshop.
If you select “automatic login” on the user setup screen, you can skip step 4.
Be sure to write down the password that you set! The following steps will show you how
to remove the password, but you will need to know the old one.

3. Open a terminal
ctrl-alt-t

4. Select automatic login (If you forgot to select in step 2)
sudo gedit /etc/lightdm/lightdm.conf
Enter the password from step 2 when prompted.
Add the following four lines under the section header “[SeatDefaults]”
autologin-guest=false
autologin-user=user
autologin-user-timeout=0
autologin-session=lightdm-autologin

5. Allow null passwords for sudo
sudo gedit /etc/sudoers
Enter the password from step 2 if prompted.
Locate the line that reads:
%admin ALL=(ALL) ALL
And change to read
%admin ALL=(ALL) NOPASSWD: ALL

6. Allow null passwords for authorization (i.e. login)
sudo gedit /etc/pam.d/common-auth
Locate the line that contains “nullok_secure” and change “nullok_secure” into just “nullok”

7. Remove user password
sudo passwd –d user

8. Reboot to test
sudo shutdown –h now
When Ubuntu reboots, open a terminal and try the sudo command:
sudo ls
If everything has worked correctly, the list operation should complete without prompting
for a password.

Installing Code Composer Studio v.6.0.1.00040

A1 - 4 Workshop Title - Workshop Setup Guide

Installing Code Composer Studio v.6.0.1.00040
You can download CCS6 from:

http://processors.wiki.ti.com/index.php/CCSv6

and selecting the “Linux” download button.

Also, because older versions of CCS are not always archived, the exact version used in the
workshop is also available from the wiki page.

9. Install required libraries
ubuntu# sudo apt-get update
ubuntu# sudo apt-get install libgnomevfs2-0
ubuntu# sudo apt-get install liborbit2-dev

10. Download CCS from the above listed link
11. Add executable permission to the installer

chmod a+x ccs_setup_linux32.bin
12. Run the installer program

./ccs_setup_linux32.bin
13. Read and accept the license agreement.
14. Accept the default install directory: /home/user/ti
15. Select “Sitara 32-bit ARM Processors” from the Processor Support window, and in

the submenu select “GCC ARM Compiler”
You should not select “TI ARM Compiler.” This compiler does not have Linux support and
is used when Sitara processors are run without the Linux operating system. The “GCC
Arm Compiler” will not actually be used to generate code because OpenEmbedded will
be used instead, but this compiler is used to parse source files.

16. In “Select Emulators” window, leave the defaults of XDS100 and XDS200 support.
These emulators are supported under the free license.

17. Leave the default for “App Center” (no packages installed)
Though PRU and Linux Development Tools are interesting packages for AM335x
development, they will not be used in this workshop.

18. Press “Finish” to begin the installation
19. Select “Create Desktop Shortcut” on final screen (Should be selected by default.)
20. Change desktop shortcut to a custom script

Right-click the shortcut and select properties
Change “command:”
 From: /home/user/ti/ccsv6/eclipse/ccstudio
 To: /home/user/ti/ccsv6/eclipse/my_ccstudio.sh

21. Create “myccstudio.sh” launch script
gedit /home/user/ti/ccsv6/eclipse/my_ccstudio.sh

Enter the following:

export PATH=/home/user/gcc-linaro-arm-linux-gnueabihf-4.7-2013-03-
20130313_linux/bin:$PATH
/home/user/ti/ccsv6/eclipse/ccstudio

22. Make the script executable
chmod a+x /home/user/ti/ccsv6/eclipse/my_ccstudio.sh

23. Start Code Composer Studio
24. Select the Free License Agreement

The License Agreement selection will come up upon first start.

 Installing Code Composer Studio v.6.0.1.00040

Workshop Title - Workshop Setup Guide A1 - 5

If for some reason the License Setup Wizard does not automatically launch, you can
access it via:
HelpCode Composer Studio Licenscing InformationUpgrade TabLaunch Licensing
Setup…

25. Close CCS

Installing Workshop Files

A1 - 6 Workshop Title - Workshop Setup Guide

Installing Workshop Files
The merged Yocto and Open Embedded projects provide an open-source set of recipe files
for rebuilding various distributions using a tool named Bitbake. The generic Yocto/OE
installation is one route to rebuilding Arago, but it is recommended that you instead install the
Yocto/OE build environment from the arago-project.org website as it has been pre-configured
for Arago builds.

1. Use aptitude to install the sg3-utils package (used in lab 0)
ubuntu$ sudo apt-get install sg3-utils

1. Use aptitude to install qvfb (used in lab 10)
ubuntu# sudo apt-get install qt4-dev-tools

1. Install bitbake dependencies
ubuntu$ sudo apt-get install git build-essential diffstat texinfo
gawk chrpath python-dev python-m2crypto

2. Switch shell from dash to bash
ubuntu$ sudo dpkg-reconfigure dash
 select “no” when prompted

3. Install Linaro cross compiler
ubuntu$ cd /home/user
ubuntu$ wget --no-check-certificate \
 https://launchpad.net/linaro-toolchain-
binaries/trunk/2013.03/+download/gcc-linaro-arm-linux-gnueabihf-
4.7-2013.03-20130313_linux.tar.bz2

ubuntu$ tar -jxvf gcc-linaro-arm-linux-gnueabihf-4.7-2013.03-20130313_linux.tar.bz2 -C
/home/user

4. Add Linaro path to .bashrc
ubuntu$ gedit /home/user/.bashrc

Add the following at the end:
export PATH=$PATH:/home/user/gcc-linaro-arm-linux-gnueabihf-4.7-2013.03-
20130313_linux/bin

5. Source .bashrc for change to take effect
ubuntu# source /home/user/.bashrc

6. Install arago bitbake files
Ubuntu$ git clone git://arago-project.org/git/projects/oe-layersetup.git

7. Configure for sdk-07.01.00.00
Ubuntu$ cd oe-layersetup
Ubuntu$./oe-layertool-setup.sh –f configs/amsdk/amsdk-07.01.00.00-config.txt

8. Add workshop overlay
ubuntu$ cd /home/user/oe-layersetup/sources
ubuntu$ git clone https://github.com/preissig/meta-workshop

9. Add meta-workshop layer to bitbake configuration
ubuntu$ cd /home/user/oe-layersetup/
ubuntu$ gedit build/conf/bblayers.conf

Add “/home/user/oe-layersetup/sources/meta-workshop” to the “BBLAYERS” variable.

10. (Optional) Get preloaded packages
Over time the locations and versions of packages change on the internet. Generally you
will have the best success, especially with older builds, by downloading one of the
preloaded source code packages. This is also significantly faster than having bitbake
download each file individually.

 Installing Workshop Files

Workshop Title - Workshop Setup Guide A1 - 7

Ubuntu$ wget
http://downloads.ti.com/dsps/dsps_public_sw/am_bu/sdk-
downloads/TISDK-Downloads/ALL/exports/amsdk-07.01.00.00-
downloads.tar.gz
Ubuntu$ tar zxf amsdk-07.01.00.00-downloads.tar.gz
Ubuntu$ mv sdk-7.1-downloads/* oe-layersetup/downloads
Ubuntu$ rmdir sdk-7.1-downloads

11. Build sdk – this will take a long time, possibly 24 hours!
Ubuntu$ cd build
Ubuntu$ source conf/setenv
Ubuntu$ MACHINE=am335x-evm bitbake -k arago-core-tisdk-image
(Note: the “-k” option will continue to build the distribution even if an error is encountered
in one of the packages.)
For available images:
ls sources/meta-arago/meta-arago-distro/recipes-core/images/

12. Copy sdk image
ubuntu$ cp arago-tmp-external-linaro-toolchain/deploy/images/arago-core-tisdk-image-
am335x-evm.tar.gz /home/user

13. De-archive sdk
Ubuntu$ mkdir ti-sdk-07.01.00.00
Ubuntu$ tar zxf arago-core-tisdk-image-am335x-evm.tar.gz –C /home/user/ti-sdk-
07.01.00.00

14. Run sdk installer
ubuntu$./sdk-install.sh

15. Run sdk set up
ubuntu# sudo apt-get update
ubuntu$ sudo ./setup.sh

When prompted, enter username as “user” instead of the default of “root.”

Accept default values for each other question until you get to the serial port for
minicom. Instead of the default of “/dev/ttyS0” enter “/dev/ttyUSB1”

You may then accept the default values for the rest of the script.

Configuring Ubuntu Static IP

A1 - 8 Workshop Title - Workshop Setup Guide

Configuring Ubuntu Static IP
The “auto” setting for usb0 in /etc/network/interfaces is a workaround. It would be better specified
as “allow-hotplug” however, there are known issues with this in Ubuntu 12.04. The web
recommends using udev as an alternate solution, but the workshop developer was unable to
make this approach work.

Using “auto usb0” works well, but with the disadvantage that if no ethernet-over-usb connection is
available when Ubuntu starts up, the message “waiting on network configuration…” will appear
and will require about 2 minutes to timeout. This extra 2 minutes of boot time may be
circumvented by attaching the beaglebone so that the interface is present.

Users who dislike this 2 minute boot time may remove “auto usb0” in which case the usb0 will
have to be manually configured each time the Beaglebone is attached using “#sudo ifup usb0”

2. Open /etc/network/interfaces file
sudo gedit /etc/network/interfaces

3. Add an “eth0” entry (or modify current entry.) Entry should be as follows:
auto eth0
iface eth0 inet static
 address 192.168.1.1
 netmask 255.255.255.0

auto usb0
iface usb0 inet static
 address 192.168.7.1
 netmask 255.255.255.0

Note: “address” and “netmask” entries preceded by tab.

4. Save and close
5. Remove Gnome networking settings

sudo nm-connection-editor
Any connection that appears under the “wired” or “wireless” tab should be deleted.

6. (Optional) Reboot and use “ifconfig” to verify new setting
ifconfig

7. Open /etc/hosts
sudo gedit /etc/hosts

8. Add static IP addresses for hosts on the network
(At the end of the file, add the following)
192.168.1.1 ubuntu.gigether.net
192.168.1.2 am335x.gigether.net
192.168.7.1 ubuntu.etherusb.net
192.168.7.2 am335x.etherusb.net

 (Optional) Installing Gnome3 and Standard Scrollbars

Workshop Title - Workshop Setup Guide A1 - 9

(Optional) Installing Gnome3 and Standard Scrollbars
Ubuntu 12.04 ships with a desktop manager called Unity. One feature that a lot of people do not
prefer in Unity is that the drop-down lists that would normally appear at the top of a window
(including CCS) now appear at the top of the desktop. Additionally, Unity uses a new type of
scrollbar called overlay scrollbars that, while saving a little space on the screen that can be used
for other things, are a little more difficult to use.

This section is not required for the workshop labs to work properly, but since these changes were
made on the workshop image, they are listed here.

1. Launch a terminal
2. Acquire a WAN (i.e. internet) connection

If you have already set up a static IP address as per the previous section, you can
override the static address using
ubuntu$ sudo ifdown eth0
ubuntu$ sudo dhclient eth0

3. Install gnome-shell Aptitude package
ubuntu$ sudo add-apt-repository ppa:gnome3-team/gnome3
ubuntu$ sudo apt-get update
ubuntu$ sudo apt-get install gnome-shell

4. Log out of the Ubuntu session
There is a gear icon in the top right corner that produces a drop-down menu with the
logout option.

5. Select the Gnome Desktop
Click the Ubuntu icon next to thye username (user) and select Gnome.

6. Press login to log back in
The desktop has only subtly changed, but if you launch CCS, you will notice that the
pulldown menus are now at the top of the CCS window (instead of along the top of the
desktop.)

7. Disable overylay scrollbars
Launch a terminal and type the following (single line, no carriage return)
ubuntu$ gsettings set org.gnome.desktop.interface ubuntu-overlay-
scrollbars false

8. Log out and back in for change to take effect
The “user” dropdown menu in the top right of the desktop can be used to log out.

	lab00_cover
	lab01_Booting_Linux
	lab02_terminal_manipulation
	lab03_openembedded
	lab04_ccsv5_debug
	lab05_gpio_driver
	lab06_uart_driver
	lab07_linux_scheduler
	lab08_berkeley_sockets
	lab09_fbdev_driver
	lab10_qt
	lab11_git
	labA1_3day_setup

