I3 TEXAS
INSTRUMENTS

Creating loT Solutions with the
Tiva® C Series Connected LaunchPad

Workshop

Student Guide and Lab Manual

Revision 1.04 O

July 2014
Technical Training
Organization

Important Notice

Important Notice

Texas Instruments and its subsidiaries (T]) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright © 2014 Texas Instruments Incorporated

Revision History

March 2014 — Revision 1.00 Initial release
March 2014 —Revision 1.01 TivaWare path change errata

April 2014 —Revision 1.02 CCS version 6 release update
May 2014 —Revision 1.03 1ab04 enet io.c changes
July 2014 — Revision 1.04 errata

Mailing Address

Texas Instruments

Training Technical Organization
6550 Chase Oaks Blvd

Building 2

Plano, TX 75023

ii

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop

Table of Contents

Table of Contents

Intro to TM4C Devices, LaunchPad and Cloud Services ... Chapter 1

Code Composer Studiocoeevvneiineiiniiiniiiniiiniiieiinnnnenes Chapter 2
Initialization, GPIO and TivaWareccccoeeiveeiinniinnens Chapter 3
Ethernet Portccoovvvieiiiiiiiiiiieiiieiiiiiniciniosnrosnsomoes Chapter 4
Interrupts and the Timersccccevveeiiniiiniiiniiinninnnnnne. Chapter 5
ADC and the Educational BoosterPackccccvvvenneee. Chapter 6
PWM and QEIcccciiviiiiiiniiiniiiniiieiinicinicnnessnrcensanns Chapter 7
I’C, SensorLib and GUI COMPOSETcccvvvveneeerrvnnnnn Chapter 8
SPIand QSSI ccuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiririeieieiacienaen Chapter 9
UART oiiiiiiiiiiiiiniiinieintetetseetsestsnsssnsssnsssnscsnsonnsan Chapter 10
L 0N Chapter 11
Memory, Security and the MPUccccieviiiiniiiinnnnnnes Chapter 12
Floating Point Unitccccoviiieiiieiiieiiieiinrcineciniocnionee Chapter 13
DMA ciiiiiiiiiiiieeiiieiiietisttntttntssntosstossssenssesssnssnns Chapter 14
Low Power Modescoeiieniiieiiieiiieiiieinecinesinrennnness Chapter 15
Graphics Library ...cccoeciiiiiiiiiiniiiiiieiinecineiinessnsonasees Chapter 16
TM4C1294XL. LaunchPad Schematiccocvviurueneenns Appendix
TM4C1294XL LaunchPad Bill of Material Appendix
Educational BoosterPack MKk. II Schematic Appendix

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - iii

Table of Contents

iv

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop

Introduction

Introduction

This chapter will introduce you to the basics of the Cortex-M4F and the Tiva™ C Series
peripherals. The lab will step you through setting up the hardware and software required for the
rest of the workshop.

The Wiki page for this workshop is located here:

http://www.ti.com/ConnectedLaunchPad Workshop

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-1

http://www.ti.com/ConnectedLaunchPadWorkshop

Chapter Topics

Chapter Topics

Introduction 1-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens 1-2
TT ProceSSOF POFIOLIOcccoccueeiiieiiiiiieie ettt et eeat e beesbeensennseenaens 1-3
ROGUAMAD ...ttt ettt e sae e be b e e st sae e s e enseeeseenbeenseesaens 1-4
TMACI29X OVEIVIEW ...ttt st 1-5
TMACI294NCPDT MiCrOCORIIOIIEE ..ottt 1-9
TMACI294NCPDT MEMOTY MAP ...ttt e 1-10
EK-TMACI294XL LAUNCRPAA...........c.ocoooeeiiiieiiiieee et 1-11
TOT OUE OF THE BOX ...ttt ettt ettt ettt ettt ee et ene e 1-12
Lab01: Hardware and SoOftware Set UP..........c..cccoouiiiiiaeieiiee ettt 1-13

ODBJEOTIVE -ttt t et ettt s e ee et e st et e bt e st es e eaeeaeea s e s e s e eseebeeb e emsene e sesesaeebeabeeaeebeeneaneeaeenes 1-13
PIOCEAULIE ...ttt st ettt be s st besae bt et e e enes 1-14
QUICKSIATT IOT APPIICATION ...ttt et e s eesaae e s eenbeesnseenenes 1-24

1-2

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

TI Processor Portfolio

Tl Processor Portfolio

TlI Embedded Processing Portfolio
. Based Processor Digital Signal Processor (DSP)
Portfolio at a Glance at a Glance Portfolio at a Glance Portfolio at a Glance
Software, Tools, Kits & Boards DSP & ARM® MPU
16-bit ultra-low 32-bit 32-bit 32-bit ARM® 32-bit ARM® Singlewre Multicore
power MCUs real-time MCUs ARM® MCUs safety MCUs processors SPs processors
- - Tiva" C Series | Hercules™ Sitara™ €5000™ €6000™ DSP
MSP430 C2000 ARM Cortex™-M4F | ARM Cortex-R4F ARI Cortex-A8 C6000" and ARM
ARMO™ Cortex-A15
'— DT DevicE Table ‘_ | “Device Table || “Device Table
U;Io 40MHz 1o Uém Fixeddoatng Ugw Up to 800MHz Upto 10GHz
25MHz 300 MHz 120MHz upto 220 MHz 135GHz DSPs muticore, fixed/
Flash Fiash, RAM Flash Fiash SORAM,DDRy | 00ing + accekeraors
05KB10 512KB 16KB 10 512KB 32KB o 1MB 256KB 10 3MB Ugsgmgnﬁgﬁ N 1041I\ol1l35L22
™ 8 3 KB L1, 1MB L.
Analog 0, ADC, P, ADC. T ey oo use, | S0 o DDRDSSPON | WARGPNGASE 106, | R, P, Mo
LCD, USB, FRAM CAN, $PL FC CAN, ADC, EMF, ADC, AN LR inegraled comech e T
,USB, , 5P| Cryplo, Tamper ADC, CAN, LIN GEMAC, PCle+PHY, lg! necivity | 4/100 MAC, uPP, UART,
SPLFC, EMIF ugﬁvw\:ﬁ RC\%NS'S opbons: USB 20, EMAC Hyperiink, DDR2/3
T Motor control, Industrial Communication, Salely, o Patient monitorng,
o | Ojamwer | GO | e | Srmesissl | borce | e
purpose lightng, ren_ energy Applications Processor industrial & medical smart gnd, medical P base stations
502510 59,00 $18510 $20.00 §2150$1000 $5.00t $30.00 $5.00-525.00 $200%0 $25.00 $3010 $225.00
Tiva C Roadmap ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-3

Tl Processor Portfolio

Roadmap

Tiva C Series Roadmap

dn Progusdan

Froduotion Desrvrabopemian
- -

TWACA 28 Overven ..

1-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

TI Processor Portfolio

TM4C129x Overview
TM4C129x Overview

ARM® Cortex™-M4F Processor Core
- Up to 120 MHz, 150 DMIPS TM4C129x Temperatures 85°C | 105°C
- Single Precision Floating Point ARNE
On-chip MmO ke SRAM: 6kB EEPROM Gortex WP T T
. ash; ; | oo 1uBFash |
- ROM with TivaWare DriverLib, BootLoader HPlofi20NHz
Communication Interfaces
- 10/100 Ethernet MAC / PHY — row |
« USB FS PHY, OTG / Host / Dev NVIC ETM SWDIT
- USB HS with'external PHY via ULPI System Module
- 8 UARTs, 10 I°Cs, 4 Quad SPI, 2 CAN
- DS-compliant 1-Wire Master I/ ("System Management)8l 6x 52:bit TimerPWW/CCP
- External Peripheral Interface
System Integration
- 32-channel DMA Controller ——— i
- Internal Precision 16MHz Oscillator
. gwo watchdog timers with separate clock
omains
- ARM Cortex Systick Timer Chaiubebibh bbb GhtaliadbshsashudlV | G S
- Eight 32-bit general purpose timers
. Igvﬁ\ge'{— gwer batt-backed hibernate module upt0 2 MSPS
. Flexible pin-muxing capabi”ty Data Protectio
- LCD controller ki
H | oxTamperipus | 10/100 Ethemet MAC/ PHY
MPtL%caﬁ&%tEmers with 8 PWM outputs (IEEE 1588) Packages oo
- QEl AES, DES, SHA & MD5 USB FulliHigh Speed - BTGRP (16x16612,04)
Data Protection Accelerators (HostDevice/OTG) 2,04
- AES, DES, HASH & CRC hardware acceleration

- Four tamper inputs

Analog)
+ 24 Channels of 2x 12-bit ADC up to 2 MSPS
- On-chip voltage regulator

TM4C129x Overview

TM4C129x Tomporatures | 85°C | 1057
ARM® L ower & Cloc
Cortex™-M4F [Wemory — J{ Fower&Glocking)
_ _ : || e
*32-bit core with DSP-oriented
*|[EEE754-compliant FPU Nvic L ETM _ |SWDIT DA (32 charnal) S
. . [SystemWodules ™)
*SIMD vector processing unit P T—
*Memory protection unit
. LCD
* Several operating modes to | O
reduce power consumption
LB MRS
10100 Ethemet MAC /PHY
CRC Accelerator (IEEE 1588) Packages
AES, DES, SHA & MD5 USB FullHigh Speed e

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

1-56

TI Processor Portfolio

TM4C129x Overview

+ 100,000

Write/Erase

TM4C129x

Cycles

500K write
cycles
Access
protection per
64 byte block

Temperatures 85°C | 105°C
ARM®
Cortex™-M4F
TOTZOWE B Up to 1 MB Flash Precision Oscillator
Up to 256 KB SRAM *¢ Battery-Backed Hiberate:
6 KB EEPROM
pre=—ll] RO |
DMA (32 channels) Syste odule
N —
| System Management "} 8x 32-bit Timer/PWM/CCP
) | e]
= SysTick Timer
Real-time JTAG 2x Watchdog Timer
8x MC PWM 8x UART 2x 12ch, 12-bit ADCs
Quadrature Encoder Inputs 4x QSSI/SPI up to 2 MSPS
10x I2C LDO Voltage Regulator
| e) 2x CAN 3x Analog Comparators
Ax Tamper Inputs 10100 Ethemet MAC/PHY
CRC Accelerator (IEEE 1588) Packages
USB FulHigh Soeed = 212-BGA (10x10x1, 0.5)
AES, DES, SHA 8 MD5 ullHigh Spee . 128TQFP (16x16¢1.2,04
Accelerators (HostDevicelOTG) A

TM4C129x Overview

32-bit RTC

1/32,768 second
resolution plus 15-bit
sub-second counter
with trim capabilities
Hardware calendar
VDD powers when valid
(VBAT>VDD)

Low battery
management

Multiple potential
external wake sources
in addition to WAKE pin

Can be disabled/locked
to help protect
customer IP

TM4C129X Temperatures 85°C | 105°C
a5 zch
EE—
— ROM |
| v
(" System Management™ || o 32:it TmerPWM/ICCP
i W] | e
— SysTick Timer
Quadrature Encoder Inputs 4x QSSI/SPI
\) 3x Analog Comparators
10100 EnemetNAC/PHY
(EEE 1588) actancs
AES, DES, SHA & MD5 USB Full/High Speed " 21ZBGA(IIO, 05)
. DES, N Oiopee + 128-TQFP (16x16x1.2, 04
{licsDenceRIC) HIEERAEED

1-6

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

TI Processor Portfolio

¢ 8/16/32-bit parallel bus
¢ x16 SDRAM support up to
50MHz (64MB max)

¢ x8/x16 Host-Bus support
up to 256MB muxed

¢ PSRAM w/iRDY support

¢ Up to 150MB/sec for gen
purpose 32-bit interface

TM4C129x Overview

TM4C129x

Temperatures 85°C | 105°C

ARM®
Cortex™-M4F
Up to 120 MHz

Up to 1 MB Flash Precision Oscillator

Up to 256 KB SRAM
6 KB EEPROM
DMA (32 channels)
-

C Battery-Backed Hibernate

ETM

NVIC SWD/T

¢ Blocking & non-blocking
reads

¢ Passive & Active LCD
support

Character-based & OLED
support

QVGA (640x480)

60Hz refresh

25MHz pixel clock

16bpp color

~50% BW @ 100MHz CPU

L 4

L K R R B 2

I-wire (SW)

Cl
SysTick Timer

2x Watchdog Timer

8x 32-bit Timer/PWM/CCP

Ul snsndll | GRS
8x UART 2x 12ch, 12-bit ADCs
"alure Encoder Inputs 4x QSSI/SPI up o 2MSPS
10x I2C LDO Voltage Regulator
(e) 3¢ Analog Comparators
4x Tamper Inputs 10/100 Ethemet MAC / PHY'
CEA] packaes
e = 212-BGA (10x10x1, 0.5)
AES, DES, SHA & MD5 Qe IS5 + 128-TQFP (16x16x1.2,0.4)
Accelerators (Host/Device/OTG) LGS

¢ 10 to 11-bit ENOB w/o
hardware averaging

¢ 24 shared input channels for
flexible assignments

¢ 8 digital comparators plus 4
programmable conversion
sequencers to reduce CPU
overhead

TM4C129x Overview

B

¢ Supports use of internal or
external regulator

¢ Active RMII & Mll interfaces

¢ Several source/destination
48-bit address filters

¢ 64-bit multicast hash filter

¢ |IEEE1588 w/ nanosecond
resolution

¢ Advanced snapshot options

¢ Supports Magic Packet &
wakeup frames

TM4C1 29X Temperatures 85°C | 105°C
ARM®

Cortex™-M4F __ 7

Up to 120 MHz Up to 1 MB Flash Precision Oscillator

Up to 256 KB SRAM “¢ Battery-Backed Hibemate
6 KB EEPROM
Tr— ROM |
Syste a eme 8x 32-bit Timer/PWM/CCP

\ -)

1-Wire (SW)
LC

Systick Timer
2x Watchdog Timer

2
B

(S]
S

8% MC Fuvin:
Quadrature Encoder Inputs Pl upto 2 MSPS
10x 2C

2x CAN
101100 Ethemet MAC / PHY
(IEEE 1588)

USB Full/High Speed
(Host/Device/OTG)

LDO Voltage Regulator
3x Analog Comparators
Packages

+ 212-BGA(10x10x1, 0.5)
+ 128-TQFP (16x16x1.2,04)

CRC Accelerator

AES, DES, SHA & MD5
Accelerators

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

1-7

TI Processor Portfolio

applications

=

TM4C129x Overview
¢ Basedon 16-b|t_counter TM4C129x a0 |16
¢ Includes 4 fault inputs for i
low-latency shutdown Cortex™-MaF | St) il
| UpotuBRasn |
+ Outputs can be L
independent or —
complements NVIC ETM SWDIT
¢ Dead-band generation
Supported | System Management "} 8x 32-bit Timer/PWM/CCP
| e
N T 2x 12ch, 12-bi ADCs
Pl usorate Encoder s W 02NSPS
10/100 Etnemet MAC/PHY
(IEEE 1588) Packages
- AES, DES, SHA & MD5 : flﬁﬁ:ﬂ?ﬁ?ﬁl}ﬁ_g
¢ 32-bit based values Accelerators (HostIDevice/OTG)
TM4C129x Overview
* Event Iogging with TM4C129X Temperatures 85°C | 105°C
configurable level ARM® : ower & Clocking
. . Cortexm-mar | | A | G
¢ Weak pull-up & glitch filter Upto 120 MHz
| UpozsckasRAV |
¢ Battery-backed RAM can be Battery-Backed Hibemate
used for master key / — ”’/“c row
password with option for Mo RS Systom Modules
tamper eviction ("System Management |
AN A\
| o |
¢ Reduces CPU overhead for [Debug
Code Ver'f'catlon & Other Real-time JTAG 2x Watchdog Timer
related functions bk sy kil ——
o1 5
> SN
& Reduces CPU overhead for
data encryption /) I "
decryption in secured (EEE to88) e
ryp B oes s Tl oo rariosos AN
network and/or data Accelerators (HosliDevice/OTG) A

TM4C1294NCPDT Features ...

1-8

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

TM4C1294NCPDT Microcontroller

TM4C1294NCPDT Microcontroller
Tiva™ TM4C1294NCPDT Microcontroller

32-bit ARM® Cortex™M4 120MHz / 150DMIPS CPU

Thumb2 16/32-bit instruction set

IEEE754-compliant single-precision Floating-Point Unit

1 MB Flash / 256 kB RAM / 6 kB EEPROM / ROM with TivaWare driver library
Nested Vectored Interrupt Controller for deterministic interrupt handling
8/16/32-bit External Peripheral Interface

Two 12-bit 2MSPS SAR ADCs with 16 digital comparators

Memory Protection Unit with 64 programmable regions

Three Analog Comparators with internal and external references

Eight 16/32-bit General Purpose timers / Two watchdog timers / 24-bit SysTick timer
One PWM module with 4 generator blocks (4 PWM output pairs)

32-Channel DMA

Two CAN 2.0 A/B controllers

4 QSSI/8 UARTs / 10 I2C

Integrated Full- & Low-speed USB 2.0
10/100 Ethernet MAC + PHY

L 2R R JER JER K R 2R R R IR 2R R 2R 2K SR 4

Memory Map ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-9

TMA4C1294NCPDT Memory Map

TM4C1294NCPDT Memory Map
Tiva™ TM4C1294NCPDT Memory Map

0x0000

¢ Fixed memory map
Flash

¢ 4G addressing range
- - . 0x0010
¢ Bit-banding maps every bit T
of SRAM and Peripheral Om0200
memory to a separate address ROM
¢ ROM contains: 0%2000
¢ Bootloader SRAM

¢ Initial vector table
¢ Peripheral driver library
¢ AES crypto tables
¢ CRC error detection functionality
¢ The Hibernation module also has 16
32-bit words of battery-backed
SRAM for saving the processor state

¢ See the UG for more detail

0x2200

Bit-band alias of SRAM
0x4000

Peripherals
0x4200

Bit-band alias of Peripherals
0x6000

External Peripheral Interface
0xE000

Private Peripheral Bus

LaunchPad Features ...

1-10 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

EK-TM4C1294XL LaunchPad

EK-TM4C1294XL LaunchPad

¢ 32-bit TM4C1294NCPDT Microcontroller

¢ Two 40-pin BoosterPack stackable connectors
(accepts earlier 20-pin)

¢ Four LEDs (2 user, 2 Ethernet activity)
¢Two User buttons

¢ Reset and Wake buttons

¢ User 10/100 Ethernet port

¢ User Full and low-speed USB 2.0 port

¢ USB in-Circuit Debug and External Debug
connectors

¢ 98 breadboard pin-outs
¢ Power measurement jumpers

¢ Edge connector offers
additional expansion

Tiva™ EK-TM4C1294XL LaunchPad

ExoSite Cloud Services ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-11

EK-TM4C1294XL LaunchPad

loT Out of the Box

Tiva C loT Out-of-Box Experience Partner

Enabling rapid prototyping w/
LaunchPads + BoosterPacks
& get your creations

Cloud Service Widgets

connected to the Provider Alerts
cloud with Exosite Scripts
& EXOSITE| svs

Mobile

TI Branded Seamless out of box

Cloud experience:

* Low-cost hardware

« Link into Exosite Cloud within
minutes
i0S/Android app for interfacing with
your cloud-connected platform

Wi-Fi
IoT Gateways
Tiva C Your portal to the
TM4C129 cloud e
MCcU+ iva
4 Ethernet) 1 TM4C129 or |
RF LaunchPad | = gp LZM4Sh1Pi3d Wi
Booster Booster o s
Pack | Pack oo
Supported in
TivaWare 2.1+

Lab ...

1-12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

Lab01: Hardware and Software Set Up

Lab01: Hardware and Software Set Up

Objective

The objective of this lab exercise is to download and install Code Composer Studio, as well as
download the various other support documents and software to be used with this workshop. Then
we’ll review the contents of the evaluation kit and verify its operation with the pre-loaded
quickstart demo program. These development tools will be used throughout the remaining lab
exercises in this workshop.

Lab01: Setup and Out of Box Application Demo

USB Emulation l
Connection \

Cloud
Services

Install all needed software

Open kit and verify contents
Connect board and load driver
Run preprogrammed loT application

L 2R JER 2R 4

Ethernet
I Agenda ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-13

Lab01: Hardware and Software Set Up

Procedure

Hardware

1.

You will need the following hardware:

A 32 or 64-bit Windows XP, Windows7 or 8 laptop with 2G or more of free hard
drive space. 1G of RAM should be considered a minimum ... more is better.
Apple laptops running any of the above OS’s are acceptable. Linux laptops are
not recommended.

Wi-Fi is highly desirable

If you are working the labs from home, a second monitor will make the labs
much easier to run. If you are attending a live workshop, you are welcome to
bring one.

If you are attending a live workshop, please bring a set of earphones or ear-
buds.

If you are attending a live workshop, you will receive an evaluation board;
otherwise you need to purchase one.

If you are attending a live workshop, a digital multi-meter will be provided;
otherwise you need to purchase one to complete lab15.

If you are attending a live workshop, you will receive a second A-male to micro-
B-male USB cable. Otherwise, you will need to provide your own to complete
labl1.

If you are attending a live workshop, a Kentec 3.5” TFT LCD Touch Screen
BoosterPack (Part# EB-LM4F120-L35) will be provided. Otherwise, you will
need to provide your own to complete lab 16.

If you are attending a live workshop, TI’s Educational BoosterPack Mk.II will be
provided. Otherwise, you will need to provide your own to complete labs 6, 7
and 8.

If you are attending a live workshop, a Olimex 8x8 LED array Boosterpack will
be provided during the live workshop. Otherwise you will need to purchase your
own and modify it to complete lab 9.

As you complete each of the following steps, check the box in the title to assure that
you have done everything in order.

1-14 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

http://www.ti.com/tool/ek-tm4c1294gxl
http://www.harborfreight.com/catalogsearch/result?q=multimeter
http://www.newark.com/kentec-electronics/eb-lm4f120-l35/exp-board-lcd-boosterpack-stellaris/dp/48W2063?in_merch=Popular%20Products
http://www.newark.com/kentec-electronics/eb-lm4f120-l35/exp-board-lcd-boosterpack-stellaris/dp/48W2063?in_merch=Popular%20Products
http://boosterpackdepot.info/wiki/index.php?title=Educational_BoosterPack_MK_II
http://www.mouser.com/new/olimex/olimexLED8x8/

Lab01: Hardware and Software Set Up

Download and Install Code Composer Studio 01

2. P Download and start the latest version of Code Composer Studio (CCS) 6.x web
installer from http://processors.wiki.ti.com/index.php/Download CCS (do not download
any beta versions). Bear in mind that the web installer will require Internet access until it
completes. If the web installer version is unavailable or you can’t get it to work,
download, unzip and run the offline version. The offline download will be much larger
than the installed size of CCS since it includes all the possible supported hardware.

This version of the workshop was constructed using CCS version 6.0.0.00190. Your
version may be later. For this and the next few steps, you will need a my. TI account (you
will be prompted to create one or log into your existing account).

Note that the “free” license of CCS will operate with full functionality for free while
connected to a Tiva™ C Series evaluation board.

You may need to turn off your firewall and/or anti-virus software.

3. If'you downloaded the offline file, ® launch the ccs setup 6.x.x.xXxXxXxx.exe
file in the folder created when you unzipped the download.

4. P Accept the Software License Agreement and click Next.

&+ Code Composer Studio v6 Setup

License Agreement

Please read the following license agreement carefully.

Code Composer Studio 6.0 Software License Agreement

Lt

IMPORTANT — PLEASE READ THE FOLLOWING LICENSE AGREEMENT CAREFULLY. THIS IS A LEGALLY EINDING
AGREEMENT. AFTER YOU READ THIS LICENSE AGREEMENT, YOU WILL BE ASKED WHETHER YOU ACCEPT AND
AGREE TO THE TERMS OF THIS LICENSE AGREEMENT, DO NOT CLICK T ACCEPT™UMLESS: (1) YOU ARE
ALTHORIZED TO ACCEPT AND AGREE TO THE TERMS OF THIS LICENSE AGREEMENT ON BEHALF OF YOURSELF
AND YOUR COMPANY; AND (2) YOU INTEND TO ENTER INTO AND TO BE BOUND BY THE TERMS OF THIS LEGALLY
BINDING AGREEMENT ON BEHALF OF YOURSELF AND YOUR COMPANY,

Important - Read carefully: This Code Composer Studio 6.0 Software License Agreement ("Agreement”) is & legal
agreement between you (either an individual or entity) and Texas Instruments Incorporated ("TI7). The “Licensed
Materials™ subject to this Agreement indude the software programs {in whole or in part) that accompany this
Agreement and any "ondine” or electronic documentation (in whole or in part) associated with these software
programs. By installing, copying or otherwise using the Licensed Materials you agree to abide by the provisions set
forth herein. This Agreement is displayed for you to read prior to using the Licensed Materials. If you choose not to
accept or agree with these provisions, do not download or install the Licensed Materials,

Mote Regarding Access to Open Source Software: The Licensed Materials are bundled with open source software.

By accepting this Agreement, you will gain access to software licensed under open source licenses, in which case

@irh enfhuare and Farracnandinn anen zrires liceneas will ha licted in the annlicahle enfhuare manifect fin whnls Ar
b

@1 accept the terms of the icense agreement.:
(711 do not accept the terms of the license agreement.

Texas Instruments

< Back Next > Finish Cancel

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-15

http://processors.wiki.ti.com/index.php/Download_CCS

Lab01: Hardware and Software Set Up

5. Unless you have a specific reason to install CCS in another location, P accept the default
installation folder and click Next. If you have another version of CCS and you want to
keep it, we recommend that you install this version into a different folder.

[&+ Code Composer Studio v6 Setup @w
Choose Installation Location (
‘Where should Code Composer Studio v6 be installed? :
[~
To change the main installation folder click the Browse button.
CCS Install Folder =

[T Install CCS plugine into an existing Eclipse instaliation

Texas Instruments

Finish Cancel

6. P In the next dialog, select the processors that your CCS installation will support. Select
at least 32-bit ARM MCUs order to run the labs in this workshop. You can select other ar-
chitectures, but the installation time and size will increase. » Click Next.

&+ Code Composer Studio vb Setup @

Processor Support \(’

Select Product Families to be installed

[
Description
WJiiSP Utra Low Power HCUs Processor Architectures included:
[c2000 22-bit Reaktime MCUs MSP430

D Wireless Connectivity MCUs

= £ 32-0it ARM MCUs
Stellaris Device Support
Tiva C Series Support
Tiva E Series Support
Hercules Device Support
TIARM Compiler
O ccc 2RM Compiler

[sitara 22-bit ARM Processors

[media Processors

[single Core DSPs

D Mutti Core Precessors

[T Select Al Install Size: 1389.37 MB.

Texas Instruments

1-16 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

Lab01: Hardware and Software Set Up

7. In the Select Emulators dialog, keep the default selections and P click Next.

v+ Code Composer Studio v6 Setup

Select Emulators

Select the emulators you want installed and deselect the emulators you want to leave out

[m13Ds560 PCIEmulator

XDS100 Class Emulator Support
XDS200 Class Emulator Support

D Blackhawk Emulators

D Spectrum Digital Emulators and Boards
MSP430 USB FET

iva/Stellaris ICOI Debug Probe

[Select All

Texas Instruments

Description

Install Size: 1668.50 MB.

8.

In the App Center dialog, » expand the Software section and select GUI Composer.
We’ll be using this tool in 1ab08.» Click Finish.

s Code Composer Studic vb Setup

There are additional products and features ("add-ons") available from the CCS App Center. Selected
add-ons will be installed by the App Center when you run Code Composer Studio for the first time.

£ D Tools (for &pp Center background downloead)
=] Software (for App Center background download)
O wsr43oware

[~ Select.all

Texas Instruments

Description

GUI Composer, build and deploy
custom GUls.

Install Size: 1518.34 MB.

Finish] [Cancel

The installation process will begin. If you are using the web installer, the installation will
depend on the speed of your connection. The offline installation should take about 5

minutes depending on your machine.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

1-17

Lab01: Hardware and Software Set Up

9. When the installation is complete, » uncheck the Launch Code Composer Studio
checkbox and then click Finish.

¥ Code Composer Studio v6 Setup =N X

€CS Installation |
Code Composer Studio has been successfully installed.

™ Launch Code Composer Studio
¥ Create Desktop Shortcut

¥ Create Start Menu Shortcut

1-18 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

Lab01: Hardware and Software Set Up

Install TivaWare™ for C Series (Complete) O

10. » Download and install the latest full version of TivaWare
from: http://www.ti.com/tool/sw-tm4c . The filename is SW-TM4C-
2.x.x.xxxxx.exe . This workshop was built using version 2.1.0.12573. Your version
may be a later one.
If at all possible, please install TivaWare into the default folder named
C:\TI\TivaWare C Series-2.x.X.XXXXX

Install LM Flash Programmer O

11. » Download, unzip and install the latest LM Flash Programmer
(LMFLASHPROGRAMMER) from http://www.ti.com/tool/Imflashprogrammer .

Download and Install Workshop Lab Files [

12. » Download and install the lab installation file from the workshop materials section of
the Wiki site below. The program will install your lab files in:

C:\TM4C1294 Connected LaunchPad Workshop

http://www.ti.com/ConnectedLaunchPadWorkshop

Download Workshop Workbook 01

13. » Download a copy of the workbook pdf file from the workshop materials section of the
Wiki site below to your desktop. It will be handy for copying and pasting code.

http://www.ti.com/ConnectedLaunchPadWorkshop

Terminal Program O

14. If you are running WindowsXP, you can use HyperTerminal as your terminal program.
Windows7 does not have a terminal program built-in, but there are many third-party
alternatives. The instructions in the labs use PuTTY. You can download PuTTY from the
address below.

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Windows-side USB Examples O

15. » Download and install the Windows-side USB examples from this site:

www.ti.com/sw-usb-win

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-19

http://www.ti.com/tool/sw-tm4c
http://www.ti.com/tool/lmflashprogrammer
http://www.ti.com/ConnectedLaunchPadWorkshop
http://www.ti.com/ConnectedLaunchPadWorkshop
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.ti.com/sw-usb-win

Lab01: Hardware and Software Set Up

Download and Install GIMP O

16. We will need a graphics manipulation tool capable of handling PNM formatted images.

GIMP can do that. » Download and install GIMP from here: www.gimp.org

LaunchPad Board Schematic

17. For your reference, the schematics for the LaunchPad and Educational BoosterPack Mk.

II are included at the end of this workbook.

Helpful Documents and Sites

18.

19.

20.

21.

There are many helpful documents that you should have, but at a minimum you should
have the following documents at your fingertips.

With TivaWare™ installed, look in
C:\TI\TivaWare C Series-2.1.0.12573\docs and you’ll find:

Peripheral Driver User’s Guide (SW-DRL-UG-x.x.pdf)

USB Library User’s Guide (SW-USBL-UG-x.x.pdf)

Graphics Library User’s Guide (SW-GRL-UG-x.x.pdf)

LaunchPad Firmware User’s Guide (SW-EK-TM4C1294XL-UG-x.x.pdf)

grlib_demo program User’s Guide (SW-EK-TM4C1294XL-BOOSTXL-KENTEC-L35-UG-x.x)

Go to: http://www.ti.com/lit/gpn/tm4c1294ncpdt and download the TM4C1294NCPDT
Microcontroller Data Sheet. Tiva™ C Series data sheets are actually the complete user’s
guide to the device, so expect a large document.

If you are migrating from an earlier Stellaris design, you will find this document
ful: http://www.ti.com/litv/pdf/spma050a

Download the latest ARM Optimizing C/C++ Compilers User Guide

from http://www.ti.com/lit/pdf/spnul 51 (SPNU151). Of particular interest are the sizes
for all the different data types in table 6-2. You may see the use of TMS470 here ... that
is the TI product number for its ARM devices.

1-20 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

http://www.gimp.org/
http://www.ti.com/lit/gpn/tm4c1294ncpdt
http://www.ti.com/litv/pdf/spma050a
http://www.ti.com/lit/pdf/spnu151

Lab01: Hardware and Software Set Up

Kit Contents
22. » Open up your kit

You should find the following in your box:

e The EK-TM4C1294XL LaunchPad Board
o Retractable Ethernet cable
e USB cable (A-male to micro-B-male)
e README First card
Initial Board Set-Up

23. Connecting the board and installing the drivers

The EK-TM4C1294XL LaunchPad Board ICDI USB port (marked DEBUG and
shown in the picture below) implements a composite USB port and consists of
three devices/connections:

Stellaris ICDI JTAG/SWD Interface - debugger connection
Stellaris ICDI DFU Device - firmware update connection
Stellaris Virtual Serial Port - a serial data connection

*
P e X1l g

@0 0000090
Q OOOOOOI-D

Using the included USB cable, » connect the USB emulation connector on your
evaluation board (marked DEBUG) to a free USB port on your PC. A PC’s USB
port is capable of sourcing up to 500 mA for each attached device, which is suffi-
cient for the evaluation board. If connecting the board through a USB hub, it must
be a powered hub.

The drivers should install automatically.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-21

Lab01: Hardware and Software Set Up

Verify Driver Installation

24. » In Windows 7 or 8, click the Start button and type Device Manager in the
search box. Expand the Ports and Stellaris In-Circuit Debug Interface sections
and verify that the devices are properly installed.

Note the port number of the Stellaris Virtual COM Port here:
You’ll need this information several times during the workshop.

= Device Manager = |] e

File Action View Help

e B HE|®
. Hi Portable Devices -
477 Ports (COM & LPT)

‘? Dell Wireless 5620 (EV-DO-H5PA) Mobile Broadband Mini-Card Diagnestics (COM4)

JZ Dell Wireless 5620 (EV-DO-HSPA) Mobile Broadband Mini-Card NMEA (COME)

ECP Printer Port (LPT1)

Y5 Stellaris Virtual Serial Port (COM4T) _

- Processors

o L 5D host adapters

b j Smart card readers

b -% Sound, video and game controllers

Al;, Stellaris In-Circuit Debug Interface

. .M Stellaris ICDI DFU Device B |

e Stellaris ICDLTAG/SWD Interface

b A5 Storage controllers

m

If they are not properly installed they will appear in the Other Devices section.
Expand that section, right-click on one of them and select Update Driver Software
... Browse your computer and install the driver from the following location:

C:\TI\TivaWare C Series-2.1.0.12573\windows_drivers

Complete this process for all three devices.

1-22 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

Lab01: Hardware and Software Set Up

Jumper Positions

25. » Check the jumper positions on your board.

JP1 selects where the LaunchPad will be connected to power. The choices are
power from ICDI (debug USB port), OTG (user USB port) or BoosterPack (like
this Fuel Tank BoosterPack). Make sure the jumper is in the ICDI position.

JP2 is a power measurement point for MCU current only. Make sure this
jumper is in place.

JP3 is a power measurement point for the entire LaunchPad board’s current.
Make sure this jumper is in place.

JP4 and 5 configure the LaunchPad for either CAN or UART communication.
Vertical is CAN and horizontal is UART (see the silkscreen). Make sure that all
four jumpers are in the horizontal (UART) position.

P15 7
wuu.tr.com/ZlTaunchpad
3 3

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-23

http://www.ti.com/tool/boostxl-battpack

QuickStart lIoT Application

QuickStart lIoT Application

Due to the logistical restrictions of providing wired Ethernet access to everyone in the
workshop, the quickstart or out-of-box (OOB) code will be run as a demo. Feel free to
run this yourself at your office or home.

The EK-TM4C1294XL Connected LaunchPad features a TM4C1294NCPDT
microcontroller device pre-programmed with an Internet of Things (IoT) quickstart
application. This application records various information using the Connected LaunchPad
and periodically reports it to a cloud server managed by TI’s cloud partner, Exosite,.

Register with Exosite

26. » Go to http://ti.exosite.com and sign up for a Portal account. After activating
your account, log in.

Add your Board to Your Portal

27. » Under Getting Started Guide on the home page, click on the Click here link in
Step 2. On the next page, under Select a supported device below, select EK-
TMA4C1294XL Connected LaunchPad from the drop-down list. Click Continue.

» On the next page, enter your device’s MAC address (look on the bottom of
your board), then give the device a name and location. Click Continue.

» On the next page, click QUIT. The next page will display the added device.

Connect the Hardware

28. » Connect the included Ethernet cable from the Ethernet port of a router to the
Ethernet port on the Connected LaunchPad. Press the reset button on the
LaunchPad board (near the Ethernet connector) to restart the [oT code. LEDs D3
and D4 will reflect Ethernet activity across the port.

At this point the USB cable is only needed to power the board. No other data is currently
being transmitted across the USB port.

1-24 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

http://exosite.com/
http://ti.exosite.com/

QuickStart IoT Application

loT Application

29. » On the far left of the TI Exosite webpage, click on Dashboards. Your added
device will appear in the Portal Dashboards area.

» Click anywhere on the listed device to go to that device’s dashboard.

Scott's CLP
ONLINE
I ON OFF
13M388S
I ON OFF
48 C
1 0
Junction Temperature
60
45 C:w""""'
o 30
15
0
11:26:00 11:41:00 11:56:00 12:11:00 12:26:00

30. » Click on the LED switches in the upper left of the page to control your LEDs. The
change will take several seconds to occur.

31. » Place your finger on the microcontroller on the LaunchPad. Your finger is likely either
warmer or cooler than the device. After several seconds you will see the displayed
JUNCTION TEMERPATURE and the graph change.

32. P Press the user buttons a few times each. The BUTTON PUSHES area will report the
number of presses for each button.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-25

QuickStart lIoT Application

Open PuTTY

33. » Click on your Windows Start button and type putty in the Search programs and files
box. Click on putty.exe in the displayed list. Make the selections shown below:

£8 PuTTY Configuration =) . £8 PuTTY Configuration =]
il Select Serial as the e
™ e Connection type. Enter T i e
Keonrd ot = your COM port number Koo e
-eatures onnection Features Corfigure the seridl ine
e TR e omem csw e | and 115200 for the speed. | - i o
fepommncs Load. save or delete a stored session . . i s Data bis 8
o m Click Serial at the bottom i '
Selection
o S \ of the Category pane. . e —
Data [Save :
Proxy J
e ~==] | Make the
SSH
= e TR 8, 1, None, None . ‘
- selections shown on the ‘
— e right and click Open. — ——

If you prefer some other terminal program, use these settings.

34. » Press the reset button for a few seconds (near the Ethernet connector) on the
LaunchPad board to restart the IoT application. It may take a few moments for the appli-
cation to relink with the ExoSite servers.

35. » Type help in the terminal display and press Enter. This will present a complete list of
commands that can be made to the application though the virtual serial port connection.

36. » Slide the ExoSite Dashboard down so that you can see the tic tac toe board. Type
tictactoe in the terminal display and press Enter. Choose 2 or 3 and start playing. Re-
member that the Dashboard could be viewed anywhere on Earth, and even low Earth or-
bit.

37. Dashboards are completely configurable and can perform additional analysis, data
fusion and generate alerts to email addresses. » When you are done, close PuT-
TY and the web browser. Disconnect and store the Ethernet cable for later use.

1-26 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

QuickStart IoT Application

For more details about this application, see the readme file and the source files lo-
cated at:

C:/ti/TivaWare C Series-2.1/examples/boards/ek-tm4cl294x1l/gs iot
Visit ti.exosite.com to watch the tutorial video at the bottom of the page.
Troubleshooting Notes: If you have trouble connecting or firewall issues, go

to exosite.com/ti-faq. If your device is behind a proxy type setproxy help in the
terminal window for configuration information.

You’re done.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1-27

http://ti.exosite.com/
http://exosite.com/ti-faq

QuickStart lIoT Application

1-28 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction

Code Composer Studio

Introduction

This chapter will introduce you to the basics of Code Composer Studio. In the lab, we will

explore some Code Composer features.

|

9
]
uz

s

o

v

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Chapter Topics

Chapter Topics

Code Composer Studio 2-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens 2-2
TI Software and TOOIS ECOSYSIEM............c..ccccovecuiiieieiieieeieeieeeie ettt ese e sae s ense e ense e 2-3
CCS FUNCHONAL OVEIVIEWceeeeeeeeee ettt ettt ettt 2-5
Projects QA WOTKSPACESc..ccuecueeieiieieeeieeeie ettt ettt ettt e taeeaeesaseetseteenbeessessaens 2-5
AdAING FiLES 10 @ PFOJECT ...ttt et 2-6
POFEADIE PFOJECES ...ttt ettt 2-7
Path and Build VAriQDIEscc.cccooieiieiiiiieee ettt sttt enbeeaaeereens 2-8
Build CORIGUIATIONS ..ottt ettt ettt eat ettt e eneenneens 2-9
For More COS INfOFMALION.ccoocuieeeieee ettt ettt ettt e e 2-10
TEVA € PAFIAGTS ...ttt ettt ettt ettt et ettt ee et et e enees 2-11
Lab02: Code COMPOSET STUATOc..coccvieeeeeiiiieeiiie et et et eteeeite e stae s b e sbeesebeesaeestbeestaeesbaesnseennseas 2-13

ODBJEOTIVE .ttt ettt ettt ettt et e et es et e st et e bt eates e eaeeaeea s e s e seeseebeeb e emsens e sesesaeebeabeeseebeeneeanesaeanes 2-13
LD 2 PPOCEAUFE ...ttt ettt bttt 2-14
USINE N1 FILES...utiiiiitiiiiciicecet ettt ettt sae e beesbessaessbeesseessesseenseessenssesseenseas 2-18
Link driverlib.lib t0 YOUL PrOJECTccviiiiiiieiieieeieie ettt ene 2-19
Build, Load, RUINcouviiiiiiic e e e e e e e e et e e e eaaeeeenneesennneeeenns 2-22
POISPECLIVES ...ttt ettt ettt ettt e e st e st e bt e st e e st et e ent e et e e s e et e enaeesee st enseenteeneenes 2-25
LM FIASH PFOZFAMIMEY ...ttt ettt ettt sttt 2-27
Optional: Creating a bin file for the flash programmerccccccevoiiiiieiiisieiieneee e 2-29

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Tl Software and Tools Ecosystem

Tl Software and Tools Ecosystem

TI-RTOS

\

High-level OS support and

Run-Time Software

OS Independent support and
TI-Wares software packages

Development Tools

S *

Support &
Community

¢ Tl Design Network: off-the-shelf

software, tools and services
Forums & Wikis

In-person and online training

Tl Software and Tools Ecosystem

CCStudio™ Integrated

Development Environment

(IDE) and other IDEs
Optimizing compilers

Design Kits & Evaluation
Modules

/

Development Software ...

Development Tools for Tiva C Series MCUs

©IAR KEIL gComposer”
SYSIEMS ARM [3]KEIL Studio
Eval Kit 32KB code size | 32KB code size Full function.
License limited. limited. Onboard
Upgradeable Upgradeable emulation limited
Compiler IAR C/C++ RealView C/C++ TIC/C++
C-SPY / .
Debugger / Embedded - CCS/Eclipse-
MVision .
IDE Workbench based suite
MDK-Basic (256
Full Upgrade 2700 USD KB) =€2000 445 USD
(2895 USD)
JTAG
Debugger | I-Jet, 345 USD ke XDS100, 79 USD
(low cost)

Run-time software ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Tl Software and Tools Ecosystem

Run-Time Software

R TI-RTOS: provides an optimized real-time
TI. W‘?res' middle w.are that . kernel at no charge that works with Tl Wares
minimizes programming complexity
with optimized drivers & ¢ Real-time kernel (SYSBIOS) + optimized for
OS independent support for Ti L dewces:
solutions » Scheduling
¢ Lowe-level driver libraries * Memory management
. . . « Utilities
¢ Perlpher.al prograr-nmlng interface ¢ Foundational software packages (Tl Wares)
¢ Tool-chain agnostic C code o Libraries and examples
¢ Available today ¢ TIRTOS available today
TI-RTOS

* File systems

SYSBIOS BE: Tl Wares L . Network stack

+ USB

SDK
Software Development Kit

CCS Functional Overview ...

2-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Tl Software and Tools Ecosystem

CCS Functional Overview

Code Composer Studio Functional Overview

I Standard | N
Standard | | | Target |
| Runtime | YS/BIOS, | Config |
Libraries | | Libraries | | File |
.ccxml

Emul
Debug '| P rcions

0

————— 1
SYS/BIOS E— .map .gel || [stand-Alone
Config) I Emulator
(.cfg) —Jl Bios.cmd |
¢ Integrated Development Environment (IDE) based on Eclipse .‘, _

¢ Contains all development tools — compilers, assembler, linker, _

debugger, BIOS and includes one target — the Simulator Nl
& GEL files initialize the debugger so that it knows the location Target Board
of the memory, peripherals, etc.

Projects and Workspaces ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-5

Projects and Workspaces

Projects and Workspaces

Projects and Workspaces (viewed in CCS)

L Project Explorer &3 5EE ¥ =) \
4 [[= lab2 [Active - Debug]| T

| s 9}:;? Binaries
- > [Includes

> [= Debug

> [= targetConfigs >

Source > 18 main.c
» @ startup_ccs.c

o g tmidcl23ghbpm.cmd

B, driverlib.lib ~
4 1= lab3

> [ay Includes

» = targetConfigs

- |8 main.c

- g startup_ces.c

> | g trmdcl23ghBpm.cmd

PROJECT

> WORKSPACE

Projects and Workspaces ...

Projects and Workspaces

A Link_ Source Files
Workspace /| Project + Code and Data

* Project 1 Link * Source Files Link Header Files
* Project2 - = * Header Files = T+ Declarations
* Project 3 * Library Files Link _Library Files
* Settings/preferences s Build/tool settings ~ ~ ~ « Code and Data
~
¢ WORKSPACE folder contains: ¢ PROJECT folder contains:
* IDE settings and preferences * Build and tool settings (for use
* Projects can reside in the workspace in managed MAKE projects)
folder or be linked from elsewhere * Files can be linked to or
* When importing projects into the reside in the project folder
workspace, linking is recommended * Deleting a linked file within the
* Deleting a project within the Project mgjﬁrc]’f(Explorer only deletes
Explorer only deletes the link

Adding Files ...

2-6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Adding Files to a Project

Adding Files to a Project

Adding Files to a Project

¢ Users can ADD (copy or link) files into their project
* SOURCE files are typically COPIED
* LIBRARY files are typically LINKED (referenced)

@ Right-click on project and select: @ Select file(s) to add to the project:
1 -
a [=" lab2 [Active - Debug]
T T L . hw_tmp006.h
> %, Binaries :
> [al Includes _| i2em_drv.c
bu Add Files... | 2cm drv:h
@ Select “Copy” or “Link” & COPY
]]]] * Copies file from original location
Select how files should be imported inte the project: to projectfolder (tWO COpieS)
@ Copy files
() Link to files ¢ LINK
] R * References (points to) source
Create link locations relative to: | PROJECT_LOC flle in the originalfo/der

Lot P,

- * Can select a “reference” point —
typically PROJECT_LOC

But using a variable like PROJECT_LOC can make portability difficult ...

Making a Project Portable ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-7

Portable Projects

Portable Projects

Portable Projects

¢ Why make your projects “portable”?
* Project sharing is simplified
* Re-locating your projects is easier
* It’s simple to link to new releases of software libraries

[Project Explorer i ERE

4[15 lab2 [Active - Debug] Copied files are not a problem (they
. 4 Binaries move with the project folder)
> B Includes Linked files may be an issue. They
> [Debug P

o torgetConigs are located outside the project

folder via a:
- absolute path, or
- relative path

> main.c
» || startup_ces.c
tmédcl23ghbpm.cmd
(=g driverlib.lib
Rl

o
& File Operation =5

Select how files should be imported into the project:

This is the Path Variable
for a relative path. This

can be specified for every
linked file.

) Copy files

@ Link to files

Create link locations relative to

.

PROJECT_LOC A

Path and Build Variables ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Path and Build Variables

Path and Build Variables
Path Variables and Build Variables

¢ Path Variables
* Used by CCS (Eclipse) to store the base path for relative linked files

* Example: PROJECT_LOC is set to the path of your project, say ":
|

c:/Tiva LaunchPad Workshop/lab2/project

* Used as a reference point for relative paths, e.g.
S{PROJECT LOC}/../files/main.c

¢ Build Variables

* Used by CCS (Eclipse) to store base path for build libraries or files

* Example: CG_TOOL_ROOQT is set to the path for the code
generation tools (compiler/linker)

* Used to find #include .h files, or object libraries, e.g.
${CG_TOOL_ROOT}/include OF ${CG_TOOL ROOT}/lib

¢ How are these variables defined?
* The variables in these examples are automatically defined
when you create a new project (PROJECT_LOC) and when you
install CCS with the build tools (CG_TOOL_ROQT)
* What about TivaWare or additional software libraries? You can define
some new variables yourself

Adding Variables ...

Adding Variables the Easy Way

¢ You can add variables manually, but there’s an easier way ...
@ CCS allows the creation of variables in two imported files:
* Macros.ini ... import this file into your project (project scope)
* Vars.ini ... import this file into your workspace (all projects in workspace scope)

¢ From the CCS menu bar click File & Import = Code Composer Studio 2>
Build Variables = Next then select the vars.ini file (as shown) and click

Finish

t[@M [3 varsini - Notepad

% Import Build Variables

File Edit Format View Help
TIVAWARE_INSTALL = c:\TI\Tivaware_C_Series-2.1.0.12573

Select File
Select the build-uvarizbles file to import,

Build-variables fil: CATMAC1284_Connected_LaunchPad Workshop\vars.ini

] Overwite eisting values

® [T e | . ——

¢ You can then then use the TIVAWARE_INSTALL variable for your path and
build in every project in the workspace

Build Configurations ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Build Configurations

Build Configurations

Build Configurations

¢ Code Composer has two pre-defined BUILD CONFIGURATIONS:
Debug (symbols, no optimization) — great for LOGICAL debug

Release (no symbols, optimization) — great for PERFORMANCE
¢ Users can create their own custom build configurations & - -
Right-click on the project and select Properties ;

|
Then click “Processor Options” or any other category: 2Releass

«' Properties for Stellaris_Hwi_Swi_ledToggle

type filter text

Processor Options [=1 4 v v
» Resource
General
4 Build Configuration: |Debug [Active]

4 ARM Compiler
Processor Options
Optimization
Debug Options Target processor version (--silicon_version, -mv) [?Md v]
Include Options Designate code state, 16-bit (thumb) or 32-bit (--code_state) [16 ']
MISRA-C:2004
» Advanced Options Specify floating point suppert (--float_support) [FP\MSPDIE ']
> ARM Linker Application binary interface. (--abi) [Eabl v]
> XDCtools
R e o e Rt oot t-—.

More Info ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

For More CCS Information

For More CCS Information

CCSv5 - For More Information
Category:CCS Training Modules Library

The goal of the modules library is to provide trainin
Category:CCS Training to facilitate customization and translation of the mat
particular device but the training focuses on the fe

MSP430

This page provides a collection of training mater] Module Video

Contents [hide]
1 Getlling Started Guides
2 Workshops

Portable Projects

2.1 CCS Specific Workshops Target Configuration
2.1.1 Fundamentals Workshops
2.1.2 Advanced Workshops o

2.2 Device Specific Workshops
2.2.1 MSP430

2.2.2 C2000 Video Training

2.2.3 Stellaris (ARM Cortex-Mx)

2.2.4 Sitara (ARM Coriex-Ag) « CCSvh Getting Started (Video) 2: This demo goes through a basic projec

2.9 5 Davinci / ARM Cortex-Ad + CCSvh Video Tutorials: Collection of short video tutorials (with audio) on va
296 CE000 » CCS Quick Tips: Collection of short quick video captures (no audio) to de

o Introduction to CCSva & An in-depth video (with audio) introducing the CO3

and (of course) informative way. The version of CCS shown is w4 but many®
« C2000 Piccolo Control Law Accelerator Debug with CCS &: This video wil
C2000 Real-Time Features &7 This video tutorial covers two ve

3 Video Training
4 Miscellaneous Presentations

5 Modules Library
ry seful fog

eaT= My ¥ %

http://processors.wiki.ti.com/index.php/Category:CCS_Training Partners ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-11

Tiva C Partners

Tiva C Partners

Tiva C Middleware & Protocol Partners

Coming soon
to TM129x
GUI-X

= EEITXY &

express log

» ThreadX Real-Time RTOS

» Supported in CCS & IAR

* NetX IPv4 & IPv6 Protocol & Security Stacks

* TM4C129x will be among the first devices with
GUI-X builder and runtime support

>;

’/ SEGGER

* embOS Real-Time RTOS

» Supported in CCS & IAR

» emWin GUI Library ported to TM4C129x with
full support in PC GUI Builder Tools

* embOS/IP IPv4 & IPv6 Protocol Stacks

NUCGCLEUS
embedded Ready Start™
* Nucleus RTOS

* Supported in CCS & CodeBench
* Nucleus Net IPv4 & IPv6 Protocol & Security
* Industrial EE Examples tailored to Tiva C HW

> KEIL

* RTX CMSIS Compliant RTOS

» Supported in Keil MDK Professional Version
« TCP/IP, USB, CAN, File and GUI (emWIN)
* Full CMSIS Platform Support

RoweBots

« Unison RTOS with POSIX compliant API

« Supported in CCS, IAR, Keil-RV & CodeBench
* Robust IPv4 & IPv6 Protocol & Security Stacks
* Complete loT & M2M Examples on Tiva C HW

TI-RTOS & NDK

* Real-Time RTOS fully supported in CCS

* Support for IAR coming soon

* Robust IPv4 & IPv6 Protocol Stacks

* Created for MPU platforms, now optimized
for MCUs

Lab ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Lab02: Code Composer Studio

Lab02: Code Composer Studio
Objective

In this lab, we’ll create a project that contains two source files, main. c and
tm4cl294ncpdt startup ccs.c, which contain the code to blink the two user LEDs on
your LaunchPad board. The purpose of this lab is to practice creating projects and getting to
know the look and feel of Code Composer Studio. In later labs we’ll examine the code in more
detail. So far now, don’t worry about the C code we’ll be using in this lab.

Lab02: Code Composer Studio

USB Emulation 1l
Connection \

¢ Create a new project
¢ Experiment with some CCS features
¢ Use the LM Flash Programmer

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-13

Lab 2 Procedure

Lab 2 Procedure

Folder Structure for the Labs

1. Browse the directory structure for the workshop labs
» Using Windows Explorer, locate the following folder:
C:\TM4C1294 Connected LaunchPad Workshop

In this folder, you will find all the lab folders for the workshop. If you don’t see this folder on
your C: \ drive, check to make sure you have installed the workshop lab files. Expand the folder
and you’ll see the lab folders and a single workshop folder. The 1abxx folders will contain your
project settings and files for the projects that you create and the projects we created for you to
import. They will also contain solution files saved as . txt files. You will be able to see these
files in Code Composer’s Project Explorer and easily cut/paste the contents into your files if and
when you need to.

Note: When you create a project, you have a choice to store the project in the “default
location” which is the CCS workspace or to select another location. In this workshop, we’ll
use this folder:

C:\TM4C1294 Connected LaunchPad Workshop\workspace
The workspace will only contain CCS settings, and links to the projects we create or import.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Lab 2 Procedure

Create a New CCS Project

2. Create a new project
» Launch Code Composer Studio. When the Select a workspace dialog appears, P browse to:
C:\TM4C1294 Connected LaunchPad Workshop\workspace

Do not check the Use this as the default and do not ask again checkbox. If at some point you
accidentally check this box, it can be changed in CCS.

» Click OK.

If you are prompted to install additional tools, follow the on-screen prompts to do so. A
restart of CCS may be required

3. Select a CCS License

If you haven’t already licensed Code Composer, you may be asked to do so in the next few
installation steps. You can do this step manually from the CCS Help menu.

» Click on Help — Code Composer Studio Licensing Information.

» Select the “Upgrade” tab, and then select the “Free” license. As long as your PC is connected
to the LaunchPad board, CCS will have full functionality, free of charge.

4. New Products Discovered

If the “New Product Discovered” window appears, click the Select A/l button and then click
Finish.

5. Close Welcome screen

When the “Getting Started” window appears, close it using the “X” on the tab.

iy

[Getting Started &3

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-15

Lab 2 Procedure

6. Create a New Project

To create a new project, P select Project — New CCS Project:

[Project] Run Scripts Wi
C4% MNew CCS Project

» In the New CCS Project dialog, select Tiva C Series as the target and Tiva TM4C1294NCPDT
for the part. Be careful making this selection.

» For the Connection, pick Stellaris In-Circuit Debug Interface. This is the built-in emulator on
the LaunchPad board.

» Name the project lab0?2

» Uncheck the Use default location checkbox and browse to:
C:\TM4C1294 Connected LaunchPad Workshop\lab02

» In the Project templates and examples box, pick Empty Project (with main. c) and click

Finish.

-

s+ New CCS Project

[© |

CCS Project

Create a new CCS5 Project.

Target: Tiva C Series

<=

+ [Tiva TM4C1204NCPDT -|

Connection: [Stellaris-ln-Circuit Debug Interface

4 Cortex M [ARM]

Project name: lab02

[7] Use default location

Location: C:\TMAC1294_Connected_LaunchPad Workshop\lab02

Compiler version: | TIw5.1.5

B —

b Advanced settings

- Project templates and examples

type filter text

4 [Z] Empty Projects
|5 Empty Project
[Empty Project (with main.c)
[Empty Assembly-only Project
[Empty RTSC Project

4 [Z] Basic Examples
& Helle World

Creates an empty project fully initialized for »
the selected device. The project will contain
an empty ‘main.c’ source-file,

(?j < Back

Next > Fish || Cancel

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Lab 2 Procedure

7. Review the CCS Editing GUI

In the Project Explorer pane, click on the " to the left of 1ab02 to expand the project. Note

that main. c is already open for editing in the Editor pane.

w+ CCS Edit - lab02/main.c - Code Composer Studio

Licensed S ab02

=NAEs X
File Edit View Mavigate Project Run Scripts Window Help
PrEE AP E v = (B

il Project Explorer 7 = <===g'> ¥ = O/ [& mainc 2 = m|
4 1= lab02 [Active - Debug] 1/*

> [l Includes % main.c

2 3 =

> @ targetConfigs 4 int main(void) {

> [main.c 5

> [g tmdcl294ncpdt_startup_ces.c 6 return @; 3

> | g tmdcl294ncpdt.cmd 7} Edltor

2 mainbet 8
pane
. -
Project Explorer ;
pane [;_, Problems I3 e =m|
0 items
Description Resource Path Location Type
Problems
pane

8. You probably noticed that the New Project wizard added a source file called

tm4cl294ncpdt startup ccs.c into the project automatically. We’ll look more

closely at the contents of this file later.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Lab 2 Procedure

Using .ini Files
If you recall in the variables part of the presentation:

e Path variable — when you ADD (link) a file to your project, you can specify a “relative
to” path. The default is PROJECT LOC which means that your linked resource (like
a .lib file) will be linked relative to your project directory.

e Build variable — used for items such as the search path for include files associated with a
library — i.e. it is used when you build your project.

Variables can either have a PROJECT scope (that they only work for this project) or a
WORKSPACE scope (that they work across all projects in the workspace).

We will need to add (link) a library file and then add a search path for our include files. We’re
going to use a quick and easy way to add a variable into your WORKSPACE that will make this
process very portable.

9. We’ve included a file called vars.ini in the
C:\TM4C1294 Connected LaunchPad Workshop folder. It contains a single line
that defines a variable called TIVAWARE INSTALL as follows:

TIVAWARE INSTALL = C:\TI\TivaWare C Series-2.1.0.12573

Code Composer allows the use of a vars.ini file to . (= General
define workspace variables and amacros. ini file to > B2 CfC++
define project variables. 4 = Code Composer Studio

jogs, Build Variables

» Right-click on 1ab02 in the Project Explorer pane of B Existing CCS Eclipse Projects

CCS. Select Import, and then Import ... In the next dialog, ES Legacy CCSv33 Projects

expand Code Composer Studio. . & Git

¢ [Install

» [= Run/Debug
» Select Build Variables and click Next. , @ Team

» In the next dialog (shown below), browse to
C:\TM4C1294 Connected LaunchPad Workshop\vars.ini and click Finish.

&% Import Build Variables (o] B

Select File

Select the build-variables file to import.

Build-variables file: C:\TMA4C1294_Connected_LaunchPad_Workshop\vars.ini

[Overwrite existing values

(?:. MNext > [Finish] ’ Cancel]

Now you can use this variable for the paths that CCS will need to find your files. If, at a later
date, you update TivaWare and it has a new folder name, the only edit you need to make is
here in vars. ini. If you change workspaces, you will have to re-import vars.ini.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Lab 2 Procedure

Link driverlib.lib to Your Project

10. Link the TivaWare driverlib.lib file to your project
» Select Project-Add Files... Navigate to:

C:\TI\TivaWare C Series-2.1.0.12573
\driverlib\ccs\Debug\driverlib.1lib

... and P> click Open. The File Operation dialog will open ...

Now we’ll use the TIVAWARE INSTALL path variable that you created earlier. This means
that the LINK (or reference to the library) file will be RELATIVE to the location of the
TivaWare installation. If you hand this project to someone else, they can install the project
anywhere on their file system and this link will still work. If you choose PROJECT LOC,
you would get a path that is relative to the location of your project and it would require the
project to be installed at the same “level” in the directory structure. Another advantage of this
approach is that if you wanted to link to a new version, say TivaWare C Series-2.9,
all you have to do is modify the variable to the new folder name.

«r File Qperation liz-J

Select how files should be imported into the project:
) Copy files

@) Link to files

Create link locations relative to: [WAWARE_INSTALL VI

Configure Drag and Drop Settings...

|@:’| [oK l ’ Cancel]

» Make the selections shown and click OK.

Your project should now look something like the screen capture below. Note E‘
the symbol for driverlib.1ib denotes a linked file. Lol

[Project Explorer &2 FlEE il]

s

4 = lab02 [Active - Debug]
+ [Includes
- = targetConfigs
+ [main.c
. [€] trdcl294ncpdt_startup_ces.c
» g tmdcl294nepdt.ocmd
By driverliblib
E maintdt

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-19

Lab 2 Procedure

11. Copy main.txt contents into main.c

Code Composer placed a starter template in the main. c file it added to our project during
the New Project wizard. We need to replace this code with the code that will blink the LED’s.
We placed a file called main. txt in the 1ab02 folder for this purpose.

» Find main. txt in the Project Explorer pane and double-click on it to open it in the
editor. Press Ctr1-A to select all the code and then Ctr1-C to copy it. Click on the

main. c tab in the Editor pane and press Ct r1-A and then Ctr1-V to replace the template
with the copied code. Click on the main. txt tab and then click the X on the right side of
the tab to close the file.

Note the asterisk on the left of the main. c tab. This indicates that unsaved changes have
been made to the file.

[€ *main.c &3
1 #include <stdint.h>
2 #include <stdbool.h

2-20 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Lab 2 Procedure

12. Add the INCLUDE search paths for the header files

» Note that the top of the code includes 6 header files. While some of these can be found in the
default tools path, others cannot. We need to tell Code

Composer where to find them. 4 Build

4 ARM Compiler
» Right-click on your 1ab02 project in the Project Processor Options
Explorer pane and select Properties. Optirization

) Debug Options
» Click on Build — ARM Compiler — Include Options (as

shown):

» In the Add dir to #include search path pane, click the
“+” sign next to Add dir to #include search path

MISRA-C:2004

(Depending on your CCS version, this may be the upper or lower right pane)

Add dir to #include search path (--include_path, -I) e e 5 5l D

"$ICG TOOL ROOTYinclude"

and add the following path using the build variable you created earlier. Place the variable name
inside braces, after the $ as shown (you may want to copy and paste this from the pdf file):

S{TIVAWARE INSTALL}

» Click OK.
i v+ Properties for lab02 ‘ﬂr
type filter text Include Options L= vy

a Resource
Linked Resources
Resource Filters Cenfiguration: |Debug [Active] '] [Manage Configurations...]

General
a Build
4 ARM Compiler

Processor Options Add dir to #include search path (--include_path, -I) & w8 8 F 3
Optimization "S{CG_TOOL_ROT}finclude"
AT
MISRA-C:2004
[» Advanced Options
> ARM Linker
ARM Hex Utility [Disabled]

Debug

Specify 2 preinclude file (--preinclude) %352

» Click OK again. Problem solved.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-21

Lab 2 Procedure

13. Check your stack size

Many software programmers waste precious SRAM memory by depending on default values
or failing to set the stack sizes.

» Right-click on 1ab02 and select Properties. Expand ARM Linker and then Basic Options.
Set the Heap size to 0 and the C system stack size to 100 as shown below. We won’t be using
dynamic memory allocation (so we won’t need a heap) and our stack utilization will be
minimal (or none).

Specify output file name (--output_file, -o) "&ProjMame}.out”
Input and output sections listed into <file> (--map_file, -m) "&ProjMame}.map”
Heap size for C/C++ dynamic memaory allocation (--heap_size, -heap) 0

Set C system stack size (--stack_size, -stack) 100

Click OK.

Build, Load, Run

14. Test build your project and fix any errors

» Make sure your project is active by clicking on 1ab02 in the Project ﬂ% -
Explorer pane. Test build 1ab02 by clicking on the HAMMER (Build) button.
You should note a new pane will appear at the bottom center of CCS called the
Console. The console will display the steps that the compiler and linker have just completed. You
can ignore any optimization advice for the present. Correct any problems you may have.

15. Build, Load and Run I

» Assure that your LaunchPad is connected to your laptop. Build and load your
project to the TM4C1294NCPDT flash memory by clicking the Debug button.

P If you encounter the error shown, your (‘i icilaris In-Circuit Debug Interface/CORTEX_M4_0 [t
board is disconnected, your power jumpers
are in the wrong position or your drivers &%& Error connecting to the target: -
are incorrectly installed. ‘S Frequency is out of range. I
Cancel] ’ Retry
L A

The program counter will run to main () and stop. 6wvoid main(void)

71

2-22 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Lab 2 Procedure

16. Getting to know the CCS Debug GUI

[+ CCS Debug - 1ab02/main.c - Code Composer Studio

File Edt View Project Tools Scripts Run Window Help
. B @ - Prs@rinD Trwilp 1| B 2B RiFiD Gl c;:.‘ B | [cosEdit (% CCS Debu

o @] ®

% Debug 51 S B 0= Veriables i1 G Bxpressions il Registers % & | rg e a
4 ¥ 18602 [Code Composer Studio - Device Debugging] Name Fme: Value Location
4 @ Stellaris In-Circuit Debug Interface/CORTEX_M4_0 (Suspended - HW Breakpoint)
= main) at main.c:11 0:00000664
= _c.int0[) at boot.asm:217 0x000007A6 (_c_intd0 does not contain frame information)

Debug Pane Watch & Expressions Panes

[@ maine 5
#include <stdint.h>
2 #include <stdbool.h>
3 #include “inc/hw_menmap.h”
4 #include "inc/hw_types.h"
5 frinclude " rlib/sysctl.h”
¢ #include "driverlib/gpic.h”

8uints_t uisPinData=1;
10 int main(void)
£]
- SysCtl1ClockEreqSet((SYSCTL_XTAL_2SMHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480), 126006080); r
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPION);
GPIOPinTypeGPIOOutput (GPIO_PORTN_BASE, GPIO_PIN_@|GPI0_PIN_1);
GPIOPinkirite(GPIO_PORTN_BASE, GPIO_PIN_O|GPIO_PIN_1, 8x86);
while(1)
{

GPIOPinkirite(GPIO_PORTM_BASE, GPIO_PIN_® | GPIO_PIN_1, uisPinData);

e U s o Code/Editor Pane

3 z

& Console 52 5 BB | =
I3b02

CORTEX_M4_@: GEL Output:

Memory Map Initialization Complete

Console and Problems Panes

 Full License : LE Writable Smiart Insert m:1

Note the names of the Code Composer panes above. There are two pre-defined perspectives
in Code Composer; CCS Edit and CCS Debug (at the arrow above). Perspectives are only
a “view” of the available data ... you can edit your code here without changing perspectives.
And you can modify these or create as many additional perspectives as you like. More on that
in a moment.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-23

Lab 2 Procedure

17. Run your program.

» Click the Resume button or press the F8 key on your keyboard: [

The D1 and D2 LEDs on your target board should blink. If not, attempt to solve the problem
yourself for a few minutes, and then ask your instructor for help.

To stop your program running, P click the Suspend button: 1l

If the code stops with a “No source available ...” indication, click on the main. c tab. Most of
the time in the while () loop is spent inside the SysCt1Delay () function. Only the library
file for this function is linked into the project, the source file is not.

18. Set a Breakpoint

In the code pane in the middle of your screen, double-click in the blue area to the left of the line

)

Click the Resume (e button to restart the code. The program will stop at the breakpoint and
you will see an arrow on the left of the line number, indicating that the program counter has
stopped on this line of code. Click the Resume button a few times or press the F8 key to run the
code. Observe the LEDs on the LaunchPad board as you do this.

number GPIOPinWrite () instruction. This will set a breakpoint (it will look like this:

19. View/Watch memory and variables.
» Click on the Expressions tab in the Watch and Expressions pane.

» Double-click on the ui8PinData variable anywhere in main () to highlight it.

ry

» Right-click on ui8PinData and select F.;y Add Watch Bxpression.. §
Add Watch Expression ... ‘—_-—.‘-.J

» Click OK. Right-click on ui8PinData in the
Expressions pane (upper-right of CCS), and select Number Format - Hex. Note the value of
ui8PinData.

Of course, the ui8PinData variable is located in SRAM. You can see the address in the
expressions view. But let’s go see it in memory.

» Select View — Memory Browser: @ Memory Browser i

» Type &ui8PinData into the memory e
window (where you see Enter location here) to &uwigPinData

display ui8PinData in memory. Only 8-bits of | |0, 20000078 - wiPinData < Memaory R
that 32-bit memory location correspond to the
variable. Select 8-bit Hex — T1 Style from the |E-Bit Hex - Tl Style - |
dropdown box for a better view.

@x20000078 uiSPinData
82 D1 8@ BE CAl::
@x20000058 00 DB OF 46 Ad 09

2-24 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Lab 2 Procedure

20. View Registers

» Select View — Registers and notice that you can see the contents of all of the registers in your
target CPU’s architecture. This is very handy for debugging purposes.

Bk Registers EZ 6’:?:Expre55ions 2t = | Q:‘,‘<-:'\"| T | Q’%‘9 ¥ =08

MName Value Description

. % Core Registers

. B WATCHDOGD

. B WATCHDOGL

. &% GPIO_PORTA

. &% GPIO_PORTE

. &% GPIO_PORTC

. B GPIO_PORTD i

Fi Ll 2

» Click on the arrow on the left to expand each register view. Note that non-system peripherals
that have not been enabled cannot be read. In this project you can view Core Registers,
GPIO_PORTN (where the LEDs are), SYSEXC (the system exception module), HIB,

FLASH CTRL, SYSCTL, NVIC and FPU.

Perspectives

CCS perspectives are quite flexible. You can customize the perspective(s) and save them as your
own custom views if you like. It’s easy to resize, maximize, open different views, close views,
and occasionally, you might wonder “How do I get things back to normal?”

21. Let’s move some windows around and then reset the perspective.

» Left-click and hold the Console window tab and move the window to a new location. »
Release the left mouse button to drop it.

In the editing pane, » double-click on the main. c tab :
L.t main.c &3
Notice that the editor window maximizes to full screen. e

Double-click on the tab again to restore it.

» Move some windows around on your desktop by clicking-and-holding on the tabs.

Whenever you get lost or some windows seem to have disappeared in either the CCS Edit, CCS
Debug or your own perspectives, you can restore the window arrangement back to the default.

» You can save your layout by clicking Windows — Save Perspective As ... You can save it as a
default perspective or give it your own name. If you want to reset the view to the factory default
you can also choose Window — Reset Perspective.

NOTE: Do not use the CCS Edit and CCS Debug perspective tabs to move back and forth
between perspectives. Clicking the CCS Debug tab only changes the view (perspective);
it does not connect to the device, download the code or start a debug session. Likewise,
clicking the CCS Edit tab does not terminate a debug session.

Only use the Debug and Terminate buttons to move between perspectives in this
workshop.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-25

Lab 2 Procedure

22. Remove all breakpoints

» Click Run = Remove All Breakpoints=> Yes from the menu bar or double-click on the
breakpoint symbol in the editor pane. Again, breakpoints can only be removed when the

processor is not running.

Terminate the debug session.
23. Terminate the Debug Session

» Click the red Terminate button to terminate the debug session and return to
the CCS Edit perspective.

24. If you don’t plan on doing the optional steps at the end of this chapter, close any

open files in the editor pane, collapse the 1ab02 project in the Project Explorer pane and

minimize Code Composer Studio.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

LM Flash Programmer

LM Flash Programmer

The LM Flash Programmer is a standalone programming GUI that allows you to program the
flash memory of a Tiva C Series device through multiple ports (along with some other features).
Creating the files required for this is a separate build step in Code Composer that is shown on the
next page. If you have not done so already, install the LM Flash Programmer onto your PC.

Make sure that Code Composer Studio is not actively running code in the CCS Debug
perspective... otherwise CCS and the Flash Programmer may conflict for control of the USB

port.

25. Open LM Flash Programmer

There should be a shortcut to the LM Flash Programmer on your desktop, ﬂ”
double-click it to open the tool. If the shortcut does not appear, go to Start 2>

: s
All Programs 2 Texas Instruments =2 Stellaris 2 LM Flash Programmer and P

click on LM Flash Programmer (or just type “LM” into the Windows search
box)

Y our evaluation board should currently be programmed with the lab02 application and it should
be running. If the user LEDs aren’t blinking, press the RESET button on the board.
We’re going to program the original application back into the TM4C1294NCPDT flash memory.

» Click the Configuration tab. Select the TM4C1294XL LaunchPad from the Quick Set pull-
down menu under the Configuration tab.

See the user’s guide for information on how to manually configure the tool for targets that are not
evaluation boards.

ﬁr} LM Flash Programmer - Build 1601 = &
Cenfiguration]Program] Flash Utilities | Other Utilities] Help
Quick Set
|TM4C1294XL LaunchPad -]
Interface
Port: |ITAG
1CDI (Eval Board) |
Clock Source
= 25 MHz
. ’7

wip TEXAS INSTRUMENTS

Idle

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-27

LM Flash Programmer

26. Click the Program Tab, then click the Browse button and navigate to:

C:\TI\TivaWare C Series-2.1.0.12573\examples\boards\
ek-tm4cl294x1\gs iot\ccs\Debug\gs iot.bin

and » click Open. You may find that clicking on the " symbol rather than the file name is
easier to navigate.

gs-1iot is the application that was programmed into the flash memory of the
TMA4C1292NCPDT when you removed it from the box.

Note that all applications have been built with all four supported IDEs.

» Make sure that the following checkboxes are selected:

Options
Erase Method:
{+ Erase Entire Flash - (faster)
" Erase Mecessary Pages - (slower)

[v Verify After Program
[Reset MCU After Program

Program Address Offset: 0x |0

27. Program

» Click the Program button. You should see the programming and verification status at the
bottom of the window. After these steps are complete, the quickstart application should be
running on your LaunchPad.

28. Close the LM Flash Programmer

2-28 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

Optional: Creating a bin file for the flash programmer

Optional: Creating a bin file for the flash programmer

If you want to create a . bin file for use by the stand-alone programmer in any of the labs in this
workshop or in your own project, use the steps below.

Remember that the project will have to be open before you can change its properties.

29. Set Post-Build step to call “tiobj2bin” utility

» In CCS Project Explorer, right-click on your project and select Properties. On the left, click
Build and then the Steps tab. Paste the following commands into the Post-build steps Command
box.

30.

31.

Note: The following four commands should be entered as a single line in the Command
box. To make this easier, we included a text file from which you can copy-paste.
Find postbuild. txt in the workshop folder.

"${CCS_INSTALL ROOT}/utils/tiobj2bin/tiobj2bin"
"S{BuildArtifactFileName}" "S$S{BuildArtifactFileBaseName}.bin"
"${CG_TOOL ROOT}/bin/armofd" "${CG _TOOL ROOT}/bin/armhex"
"${CCS_INSTALL_ROOT}/utils/tiobj2bin/mkhex4bin"

Rebuild your project

These post-build steps will run after your project builds and the .bin file will be in
the \labxx\project\debug folder. You can access this .bin in the CCS Project
Explorer in your project by expanding the Debug folder.

If you try to re-build and you receive a message “gmake: Nothing to be done for
‘all’ .”, this indicates that no files have changed in your project since the last time you
built it. You can force the project to build by first right-clicking the project and then select
Clean Project. Now you should be able to re-build your project which will run the post-build
step to create the . bin file.

Close any open files in the editor pane, collapse the lab02 project in the Project Explorer pane
and minimize Code Composer Studio.

You’re done.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2-29

Optional: Creating a bin file for the flash programmer

2-30 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS

TivaWare™, Initialization and GPIO

Introduction

This chapter will introduce you to TivaWare, the initialization of the device and the operation of
the GPIO. The lab exercise uses TivaWare API functions to set up the clock, and to configure and
write to the GP1O port.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3-1

Chapter Topics

Chapter Topics

TivaWare™, Initialization and GPI1O 3-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens 3-2
TEVAWAFE.......c.coeieieeee et et 3-3
CLOCKITG ...ttt ettt ettt e et e ae e b e e sb e e st e e seeseensaebeenbeesseeneen 3-4
TMACI294NCPDT MaAin CIOCK TFEE.........c.oceoveiiiiiiiiiiieicct ettt 3-5
GPIO ... ettt ettt 3-6
GPIO Address MASKINGcccoouiiiiiiiiieieeee ettt 3-7
Critical FUNCEION GPIO PFOECHIONcoocviuiiiiiiieeieeeeteeeie ettt ettt se et e e 3-8
Lab03: Initialization and GPIO................c.ccccoiiiiiiiiiiiiiiiiieiiteeeee ettt 3-9

(003 1< o1 5 4 £ USRS PSS 3-9
PIOCEAULIE ...ttt st b et a e bbbt sae bt et eae e nes 3-10

3-2

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

TivaWare

TivaWare

TivaWare™ for C Series Features

Peripheral Driver Library

¢ High-level APl interface to complete peripheral set
¢ License & royalty free use for Tl Cortex-M parts

¢ Available as object library and as source code

¢ Programmed into the on-chip ROM

¢ USB Device and Embedded Host compliant

USB Stacks and Examples Extras

+ Wireless protocols
+ 1Q math examples

¢ Device, Host, OTG and Windows-side examples « Bootloaders
¢ Free VID/PID sharing program + Windows side applications

Ethernet
+ Iwip and uip stacks with 1588 PTP modifications
¢ Extensive examples

Graphics Library

¢ Graphics primitive and widgets
¢ 153 fonts plus Asian and Cyrillic
¢ Graphics utility tools

Sensor Library

¢ An interrugt driven 12C master driver for
handling I°C transfers

& Aset of drivers for I2C connected sensors

¢ Aset of routines for common sensor operations

¢ Three layers: Transport, Sensor and
Processing

In System Programming ...

In System Programming

*

*

<

a

iva Boot Loader

Preloaded in ROM or can be programmed at the beginning of flash to act as an
application loader

Can also be used as an update mechanism for an application running on a Tiva
microcontroller.

Interface via UART (default), I12C, SSI, Ethernet, USB (DFU H/D)
Included in the Tiva Peripheral Driver Library with full applications examples /

Fundamental Clocks...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

Clocking

Clocking

Fundamental Clock Sources

Precision Internal Oscillator

* 16 MHz £ 3% T
Main Oscillator using... fo | 2

An external single-ended clock source 7 L

An external crystal & g

Internal 30 kHz Oscillator
¢ 30 kHz £ 50%
¢ Intended for use during Deep-Sleep power-saving modes

Hibernation Module Clock Source
¢ 32,768Hz crystal or oscillator

K ¢ Real-Time Clock

SysClk Sources...

System (CPU) Clock Sources

ﬁhe CPU can be driven by any of the fundamental clocks ... \
¢ Precision 16MHz internal oscillator

¢ Main oscillator

¢ Internal 30 kHz oscillator

¢ Real-Time Clock

- Plus -

¢ Aninternal 320 or 480 MHz PLL driven by the internal 16MHz or main
oscillator

¢ The internal 16MHz oscillator divided by four (4MHz £ 3%) /

Clock Source Drive PLL? Used as SysCIk?

Internal 16MHz Yes Yes

Internal 16Mhz/4 No Yes

Main Oscillator Yes Yes

Internal 30 kHz No Yes

Hibernation Module No Yes

PLL - Yes

Clock Tree...

3-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

TM4C1294NCPDT Main Clock Tree

TM4C1294NCPDT Main Clock Tree

a0 PR -
s ~FHY Clock T}
— _
£
i W
cikond g
FTF REF_CLK %
- [PEGs
1] oS
=W
= MO] —————SYECLE]=
caciid LD
]
- ADCCLE &
FaC

1
xosca ., | |
ROECT |

1

i Hibemation Module HIE) |

.I 4 mode —_L'_)_L_,.._]g

mase Aﬁ_‘—‘h SYECLK cPU
PLL ! L

™
|:F1|:Gl:- :-l:-:c!_-lj

| |
- +h k
e o i
W e) Pshc | [Purres] [Feveon] R 1 1 %
- PEENCI - FLLFREC DEEPLL - Ji
peripherals requiing = chock gaces
1Sk FI0ET dock i
ALTCLIGRG
11 ALTCLK
— I'-:-n-eﬂms.u:r'as
LRoES | | UART, 281, Timess, ADC, WOT

The TivaWare driverLib SysCt1ClockFregSet () API:

Configures the crystal frequency

Selects either the Main or Internal oscillator

Selects whether to use the PLL or not

Configures the PLL frequency to 320MHz or 4§0MHz
Indicates the desired frequency

The API will return the actual frequency set, which may be different than the desired frequency if
the choices made do not allow it.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3-5

GPIO

GPIO

General Purpose 10

ﬁny GPIO can be an interrupt: \
- Edge-triggered on rising, falling or both
- Level-sensitive on high or low values

¢ Can directly initiate an ADC sample sequence or uDMA
transfer

¢ Toggle rate up to the CPU clock speed on the Advanced
High-Performance Bus. 2 CPU clock speed on the
Standard.

¢ Programmable Drive Strength (2, 4, 8, 10 and 12mA ...
8, 10, 12mA with slew rate control)

¢ Programmable weak pull-up, pull-down, and open drain
¢ Pin state can be held during hibernation

Pin Mux Utility...

Pin Mux Utility

¢ Allows the user to graphically configure the device pin-out
¢ Generates source and header files for use with any of the supported IDE’s

File Edit Help

5 % Change Device: Lisizseres - LisFizons0R - Output Code: (7] ROM Function Calls

Pin Display Modules Treeview

Dgta2 Dgtal3 Digtal7 Digtals Digkal 10

P2 18 ssocLk
P 2 SSFSS
Pas 2t SSORX
Pas 2 s
Ps) eeiscL
Pa7 2 Be1soA

Pa0 s IRK T2cce0
Pa1 ® U T2ccet
pa2 a7 peoscL | Tacee
Pa3 ® ocospA | Taceet
Pas) Anto ssecLk TiccR) | canoRx
Pas 57 An SSeFss Ticee | canomx
P56 1 SSERX Toccr
sserx Toccet

Taccrn

Taccet

Tsccrn

Log Window

[Double-cick or right-cick on a periheral function o enable .

ntiea ot EnableaOpN XTI iy naves
s

Enabled OutputOD Lockedout Partially Enabled

http://www.ti.com/tool/tm4c_pinmux
Masking...

http://www.ti.com/tool/tm4c pinmux

3-6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

http://www.ti.com/tool/tm4c_pinmux

GPIO Address Masking

GPIO Address Masking
GPIO Address Masking

Each GPIO port has a base address. You can write an 8-bit value directly to this base
address and all eight pins are modified. If you want to modify specific bits, you can use a
bit-mask to indicate which bits are to be modified. This is done in hardware by mapping
each GPIO port to 256 addresses. Bits 9:2 of the address bus are used as the bit mask.

/ GPIO Port D (ouoos.sooo)\
The register we want to change is GPIO Port D (0x4005.8000) mmmnnnm

Current contents of the register is:

Write Value (0xXEB)

1{1]1]0|1{0|1]1

The value we will write is OXEB:

Instead of writing to GPIO Port D directly, write to l
0x4005.8098. Bits 9:2 (shown here) become a bit-mask ---)|0|0|0|0|1 |0|0|1 |1|0|0|0|

for the value you write.
Only the bits markicri]:r%g(;.in the bit-mask are mmnnnm 1 n

New value in GPIO Port D (note
k that only the red bits were writtey

GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_5|GPIO_PIN_2|GPIO_PIN_1, 0xEB);

Note: you specify base address, bit mask, and value to write.
The GIPOPinWrite() function determines the correct address for the mask.

GPIOLOCK ...

The masking technique used on Tiva C Series GPIO is somewhat similar to the “bit-banding”
technique used in memory. To aid in the efficiency of software, the GPIO ports allow for the
modification of individual bits in the GPIO Data (GPIODATA) register by using bits [9:2] of
the address bus as a mask. In this manner, software can modify individual GPIO pins in a single,
atomic read-modify-write (RMW) instruction without affecting the state of the other pins on the
port. This method is more efficient than the conventional method of performing a RMW
operation to set or clear an individual GPIO pin. To implement this feature, the GPIODATA
register covers 256 locations in the memory map.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3-7

Critical Function GPIO Protection

Critical Function GPIO Protection

Critical Function GPIO Protection

¢ Five pins on the device are protected against accidental
programming:
PC3,2,1 & 0: JTAG/SWD
PD7: NMI
¢ Any write to the following registers for these pins will not be
stored unless the GPIOLOCK register has been unlocked:
GPIO Alternate Function Select register
GPIO Pull Up or Pull Down select registers
GPIO Digital Enable register
¢ The following sequence will unlock the GPIOLOCK register for
PFO using direct register programming:

¢ Reading the GPIOLOCK register returns it to lock status

Lab...

3-8 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

Lab03: Initialization and GPIO

Lab03: Initialization and GPIO
Objective

In this lab we’ll learn how to initialize the clock system and the GPIO peripheral using TivaWare.
We’ll then blink LEDs on the evaluation board.

Lab03: Initialization and GPIO

USB Emulation l
Connection \

¢ Configure the system clock
¢ Enable and configure GPIO

¢ Use a software delay to light LEDs on
the LaunchPad board

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3-9

Lab03: Initialization and GPIO

Procedure

Create lab03 Project

1.

» Maximize Code Composer. On the CCS menu bar select File > New = CCS Project.
Make the selections shown below. Make sure to uncheck the “Use default location”
checkbox and select the correct path to the project folder as shown. Click Finish.

' 5
v New CCS Project l Cf X

CCS Project —% i
Create a new CCS Project. :_' E

Target: Tiva C Series - | Tiva TM4C1294NCPDT VI

Connection: ’Stellarisln—Circuit Debug Interface vl Verify

% Cortex M [ARM]

Project name: lab03

[Use default location
Location: | CATMAC1298_Connected_LaunchPad_Workshop\lab03

More... l

Compiler version: | TIv5.1.5 vl [

b Advanced settings

* Project templates and examples

type filter text Creates an empty project fully initialized for
= - the selected device. The project will contain
4 = I?—"”F'tJ" Projects an empty 'main.c’ source-file.
ler Empty Project
e Empty Project (with main.c)
[Empty Assernbly-only Project
[Empty RTSC Project

|y Hello World

@ < Back Next > [Finish || cancel |

—

When the wizard completes, click the " next to 1ab03 in the Project Explorer pane to
expand the project. Note that Code Composer has automatically added a mostly empty

main. c file to your project as well as the startup file.

Note: We placed a file called main. txt in the 1ab03 folder which contains the final
code for the lab. If you run into trouble, you can refer to this file.

3-10

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

Lab03: Initialization and GPIO

Header Files

2. P Delete the current contents of main. c.

TivaWare™ is written using the ISO/IEC 9899:1999 (or C99) C programming standards
along with the Hungarian standard for variable naming. The C99 C programming
conventions make better use of available hardware, including the IEE754 floating point
unit. In order for our code to resemble TivaWare, we’re going to use those guidelines.

» Type (or cut/paste from this pdf file) the following lines into the now empty main.c
file to include the header files needed to access the TivaWare APIs as well as a variable
definition:

#include <stdint.h>

#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

uint8 t ui8PinData=1;

The use of the <> restricts the search path to only the specified path. Using the
causes the search to start in the project directory. For includes like the two standard ones,
you want to assure that you’re accessing the original, standard files ... not any that may
have been modified.

stdint.h: Variable definitions for the C99 standard
stdbool.int: Boolean definitions for the C99 standard

hw_memmap . h : Macros defining the memory map of the Tiva C Series device. This
includes defines such as peripheral base address locations such as GPIO PORTN BASE.

hw_types.h : Defines common types and macros

sysctl.h: Defines and macros for System Control API of DriverLib. This includes
API functions such as SysCt1ClockSet and SysCtlClockGet.

gpio.h : Defines and macros for GPIO API of DriverLib. This includes API functions
such as GPIOPinTypeGPIOOutput and GPIOPinWrite.

uint8 t uiB8PinData=1;: Creates an integer variable called ui8PinData and
initializes it to 1. This will be used to light the two user LEDs one at a time. Note that the
C99 type is an 8-bit unsigned integer and that the variable name reflects this.

You will see question marks to the left of the include lines in main . c displayed in the
edit pane, telling us that the include files can’t be found. We’ll fix this later.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3-11

Lab03: Initialization and GPIO

main() Function
3. Let’s drop in a template for our main function.
» Leave a line for spacing and add this code after the previous declarations:
int main (void)
{
}

If you type this in, notice that the editor will automatically add the closing brace when
you add the opening one. Why wasn’t this thought of sooner?

Clock Setup

4. Configure the system clock to run using a 25MHz crystal on the main oscillator, driving
the PLL at 480MHz. The PLL oscillates at either of these frequencies and can be driven
by crystals or oscillators running between 5 and 25MHz. The PLL is connected to a
single 10-bit divider. The division value (+1) is calculated by the
SysCtlClockFregSet () API and loaded into the PSYSDIV field of the
RSCLKCFG register. This register also contains the 10-bit OSYSDIV field for dividing
clock signal without the PLL. Bear in mind that improperly selected PLL and
SYSCLK values will result in non-integral divisions that will cause SYSCLK jitter.

» Enter this single line of code inside main () :

SysCtlClockFregSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 120000000);

Refer to the figure of the clock =TT
tree on page 3-5 of the

workbook to see how these
selections are made. i}

TILE
s]
AR
WA

O A
T L]

2]
SWITCH_T

The diagram here is an excerpt
from the LaunchPad board

schematic. ¥ | |
The 25MHz crystal drives i

both the main oscillator and I:: IO <2
the Ethernet clock (saving a o6 | JZ
crystal in your system). The B L
32.768kHz crystal drives the
hibernation (Real-time) clock. 2

un] 30| 1n) a| L]

The remaining 16 MHz crystal A
(not shown here) is connected _

to the USB/JTAG emulation microcontroller.

3-12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

Lab03: Initialization and GPIO

GPIO Configuration

5. Before calling any peripheral specific driverLib function, we must enable the clock
for that peripheral. If you fail to do this, it will result in a Fault ISR (address fault).This is
a common mistake for new Tiva C Series users. The second statement below configures
the two GPIO pins connected to the D1 and D2 LEDs as outputs. LEDs D3 and D4 are
used to indicate Ethernet activity and are not
directly user programmable. The third line

assures that both LEDs are off.

% Vo ¢Y-
The excerpt of the LaunchPad board schematic on N N
the right shows GPIO pins PNO and PN1 are
connected to the LEDs. rSo 83c
T o] e

» Leave a line for spacing, then enter these three
lines of code inside main () after the line in the GND GND
previous step.

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION);
GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_O|GPIO_PIN 1);
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_©|GPIO_PIN_1, 0x00);

GPIO Port A (AHB): 0x4005.8000| The base addresses of the GPIO ports listed in
GPIO Port B (AHB): 0x4005.9000| the User Guide are shown here. Note that they

GPIO Port C (AHB): 0x4005.A000 DR > :
GPIO Port D (AHB): 0x4005.8000 are 2.111 within tl}e memory map’s peripheral
GPIO Port E (AHB): 0x4005.Cco00| Section shown in module 1. APB refers to the

GPIO Port F (AHB): 0x4005.0000| Advanced Peripheral Bus, while AHB refers to
GPIO Port G (AHB): 0x4005.E000| the Advanced High-Performance Bus. The AHB
GPIO Port H (AHB): 0x4005.F000| offers better back-to-back performance than the

GPIO Port J (AHB): 0x4006.0000
GPIO Port K (AHB): 0x4006.1000 APB bus. GPIO ports accessed through the AHB

GPIO Port L (AHB): 0x4006.2000 can toggle every clock cycle vs. once
GPIO Port M (AHB): 0x4006.3000 every two cycles for ports on the APB.
GPIO Port N (AHB): 0x4006.4000 The chart only shows the AHB base
GPIO Port P (AHB): 0x4006.5000 addresses

GPIO Port Q (AHB): 0x4006.6000 ’

NOTE: There is a delay of 3 to 6 clock cycles between enabling a peripheral and being
able to use that peripheral. In most cases, the amount of time required by the API coding
itself prevents any issues, but there are situations where you may be able to cause a
system fault by attempting to access the peripheral before it becomes available.

A good programming habit is to interleave your peripheral enable statements as follows:

Enable ADC
Enable GPIO
Config ADC
Config GPIO

This will prevent any possible system faults without incorporating software delays.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3-13

Lab03: Initialization and GPIO

while() Loop

6.

Finally, create a while (1) loop to send a “1” and “0” to the selected GPIO pins, with
an equal delay between the two.

SysCtlbDelay () is a loop timer provided in TivaWare. The count parameter is the loop
count, not the actual delay in clock cycles. Each loop is 3 CPU cycles.

To write to the GPIO pin, use the GPIO API function call GPIOPinWrite. Make sure
to read and understand how the GPTOPinWrite function is used in the datasheet. The
third data argument is not simply a 1 or 0, but represents the entire 8-bit data port. The
second argument is a bit-packed mask of the data being written.

In our example below, we are writing the value in the ui 8PinData variable to both
GPIO pins that are connected to the user LEDs. Only those two pins will be written to
based on the bit mask specified. The final instruction cycles through the LEDs by making
ui8PinData equal to 1, 2, 1, 2, 1, 2 and so on. Note that the values sent to the pins match
their positions; a “one” in the bit two position can only reach the bit two pin on the port.

Now might be a good time to look at the Datasheet for your Tiva C Series device. Check
out the GPIO chapter to understand the unique way the GPIO data register is designed
and the advantages of this approach.

» Leave a line for spacing, and then add this code after the code in the previous step.

while(1)

{
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_© | GPIO_PIN_1, ui8PinData);
SysCtlDelay(2000000) ;
if(ui8PinData==4) {ui8PinData=1;} else {ui8PinData=ui8PinData*2;}

If you find that the indentation of your code doesn’t look quite right, » select all of your
code by clicking CTRL-A and then right-click on the selected code. Select Source -
Correct Indentation. Notice the other great stuff under the Source and Surround With
selections.

3-14

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

Lab03: Initialization and GPIO

7. » Click the Save button to save your work. Your code should look something like this:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

uint8 t ui8PinData=1;

int main (void)
{

SySCthlockFreqSet((SYSCTL7XTAL725MHZ | SYSCTL OSC MAIN | SYSCTL USE PLL |
SYSCTL_CFG VCO 480), 120000000);

SysCtlPeripheralEnable (SYSCTL PERIPH GPION) ;
GPIOPinTypeGPIOOutput (GPIO PORTN BASE, GPIO PIN 0|GPIO PIN 1);
GPIOPinWrite(GPIOiPORTNiBASE, GPIOiPINio\GPloiPINil, 0x00) ;

while (1)

{
GPIOPinWrite(GPIOiPORTNiBASE, GPIOiPINio | GPIO _PIN 1, ui8PinData) ;
SysCtlDelay (2000000) ;
if (ui8PinData==4) {ui8PinData=1;} else {ui8PinData=ui8PinData*2;}

If you’re having problems, you can cut/paste this code into main. c or you can cut/paste
from the main. txt file in your Project Explorer pane.

If you were to try building this code now (please don’t), it would fail since we still need
to set our build options.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3-15

Lab03: Initialization and GPIO

Startup Code

8. In addition to the main file you have created, you will also need a startup file specific to
the tool chain you are using. This file contains the vector table, startup routines to copy
initialized data to RAM and clear the bss section, and default fault ISRs. The New Project
wizard automatically added a copy of this file into the project for us.

» Double-click on tm4c1294ncpdt startup ccs.c inyour Project Explorer
pane and take a look around. Don’t make any changes at this time. Close the file.

Set the Build Options
9. P Right-click on Lab03 in the Project Explorer pane and select Properties.
Click Include Options under ARM Compiler. In the #include search path

pane, click the Add button and add the following search path:
${TIVAWARE_INSTALL}

Those are braces, not parentheses. This is the path we created earlier by using the
vars.ini file in the 1ab02 project. Since those paths are defined at the workspace
level, we can simply use it again here.

Depending on your version of CCS, the Add dir to #include search path may be the
upper or lower right pane.

«« Properties for 1ab03 l] -
type filter text Include Options Sl v
» Resource :
General
4 Build Configuration: | Debug [Active] '] ’Manage Configurations...]
4 ARM Compiler
Processor Options
Optimization
Include Options Add dir to #Finclude search path (--include_path, -I) & = =2
MISRA-C:2004 "${CG_TOOL_ROOTYinclude"
> Advanced Options
> ARM Linker
ARM Hex Utility [Disabled]
Debug
Specify a preinclude file (--preinclude) L=
» Click OK.

3-16

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

Lab03: Initialization and GPIO

10. Add the Driver Library File

The driverlib.lib file needs to be in the 1ab03 project. In 1ab02 we added a link to this
file. You can see it under your 1ab02 project in the Project Explorer pane. Can it be as
simple as copy/pasting it? Let’s try.

» Expand the 1ab02 project in the Project Explorer pane (if you closed the project,
right-click on it and select Open Project). Right-click on driverlib. 1ib under the
1ab02 project and select Copy. P Right-click on the 1ab03 project and select Paste.
You should now see the linked file under 1ab03.

11. It can be easy to get confused and mistakenly build or work on the wrong project or file.
To reduce that possibility, » right-click on 1ab02 and select Close Project. This will
collapse the project and close any open files you have from the project. You can open it
again at any time. P Click on the 1ab03 project name to make sure the project is active. It
will say 1ab@3 [Active - Debug]. This tells you that the 1lab03 project is active and
that the build configuration is debug.

12. Stack Considerations

» Right-click on the 1ab03 project in the Project Explorer pane and select Properties.
Expand Build 2 ARM Linker and click on Basic Options. Find the Heap size and Set C
system stack size boxes as shown below.

type filter text Basic Options (A=t S
> Resource
General
4 Build Cenfiguration: IDebug [Active] v] IManage Configurations...‘
> ARM Compiler
a4 ARM Linker
Basic Options
File Search Path Specify output file name (--output file, -o) "§{ProjMame}.out” Browse...

> Advanced Options Input and output sections listed into <file> (--map_file, -m) "§{ProjMame}.map"” Browse...

Debug
Heap size for C/C++ dynamic memeory allocation (--heap_size, -heap) 0
Set C system stack size (--stack_size, -stack) 100

i

» Enter 0 for the Heap size and 100 for the C system stack size and click OK. We won’t be
using the heap in these labs and our need for a C stack is very limited. Failure to monitor
the size of your stack(s) can result in a significant amount of memory being wasted.

These settings will be made for you in the rest of the labs.

13. Test Build

P Test build 1ab03 to check for errors by clicking the Build (Hammer) button.
You can ignore any optimization advice for the present. Correct any other %
warnings or errors.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3-17

Lab03: Initialization and GPIO

Compile, Download and Run the Code

14. » Compile and download your application by clicking the Debug button on
the menu bar. If you are prompted to save changes, do so. If you have any

issues, correct them, and then click the Debug button again. After a successful
build, the CCS Debug perspective will appear.

» Click the Resume button to run the program that was downloaded to the
flash memory of your device. You should see the LEDs flashing. If you want Ll B
to edit the code to change the delay timing or which LEDs are flashing, go

ahead.

If you suspend the code and get the message “No source available for ...”, simply click
on the main. c editor tab. The source code for SysCt1Delay () is not present in our
project. It is only present as a library file.

» Click on the Terminate button to return to the CCS Edit perspective.

3-18 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

Lab03: Initialization and GPIO

Examine the Tiva C Series Pin Masking Feature

15. Let’s change the code so that both LEDs are on all the time. Make the following changes:

» Find the line containinguint8 t ui8PinData=1; and change it to
uint8 t ui8PinData=3; That’s 1+2=3, meaning both LEDs will light.

» Find the line containing 1 £ (ui8PinData ... and comment it out by adding / / to
the start of the line.

» Click the Save button to save your changes. I_|:L|

16. » Compile and download your application by clicking the Debug button on the menu
bar. P Click the Resume button to run the code. Verify that both LEDs illuminate.

17. Now let’s use the pin masking feature to light the LEDs one at the time. Remember that
we don’t have to go back to the CCS Edit perspective to edit the code. We can do it right
here. In the code window, look at the first line containing GPTIOPinWrite () . The pin
mask here is GPIO_PIN 0| GPIO PIN 1, meaning that both of these bit positions,
corresponding to the positions of the LEDs will be sent to the GPIO port. » Change the
bit mask to GPIO PIN 0. The line should look like this:

GPIOPinWrite (GPIO PORTN BASE, GPIO PIN 0O, ui8PinData);

18. » Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to light:

» Click the Resume button. If you predicted D2, you were correct.
19. In the code window, » change the first GPIOPinWrite() line to:

GPIOPinWrite (GPIO PORTN BASE, GPIO PIN 1, ui8PinData);

20. » Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to light:

» Click the Resume button. If you predicted D1, you were correct.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3-19

Lab03: Initialization and GPIO

21. Let’s change the code back to the original set up: Make the following changes:

22.

23.

» Find the line containinguint8 t ui8PinData=3; and change it back to
uint8 t ui8PinData=1;
» Find the line containing i f (ui8PinData ... and uncomment it

» Find the line containing the GPIOPinWrite () and change it back to:

GPIOPinWrite (GPIO PORTN BASE, GPIO PIN 0| GPIO PIN 1, ui8PinData);

» Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes. Click the Resume button and verify that the code
works like it did before.

» Click on the Terminate button to return to the CCS Edit perspec- Iil
tive. Close the 1ab03 project. Minimize Code Composer Studio.

Homework idea: Look at the use of the ButtonsPoll () API call in the EK-
TM4C1294XL Firmware Development Package User’s Guide in the docs folder in your
TivaWare installtion. Write code to use that API function to turn the LEDs on and off us-
ing the pushbuttons.

You’re done.

3-20

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization

Ethernet Port

Introduction

In this chapter we’ll take a closer look at the Ethernet port, stacks and IEEE 1588. In the lab we’ll
control the LaunchPad via a web page that we open and modify.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4-1

Chapter Topics

Chapter Topics

Ethernet Port 4-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens 4-2
Features and BIOCKk DIGQUAML..................c.c.ccoooveiuiiiiiciiiieeieeit ettt sae et ebeesseenaens 4-3
Ethernet Module CIOCKINGccocoueiieiieiiieci ettt ettt s e etsesse e esseesaens 4-3
POrt HArdWare DESIQN................c.cceeiuiiieeieeeecieeie et et ete et et eeteesseessessbesaeesaseesseessesseessensseeseens 4-4
TEEE I588.....ocoiiiieeeeeeeeeee ettt et ettt ettt ettt a et b et et ene b er et ere e 4-5
Included Open SOUFCE STACKS..............cccooiiiiiiiiiiiiii et 4-7
Lab04: EtRErnet LAD..............cccoocooiiiaieiiiee ettt ettt ettt et eat ettt et e eneenneens 4-9

DIESCIIPLION: ...ttt ettt ettt b et e et e et e e bt e et e ea e e teen et enbeeseeeaseeneesaeesneeneeneeeneesne e neenneen 4-9
PrOCEAUIE ...ttt ettt ettt et s et et e e e et e et et e e meeebe e b e enae e saeeneenes 4-10

4-2

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

Features and Block Diagram

Features and Block Diagram

Ethernet Peripheral Features

L 2K ZBR R 2R 2

L 2R ZR R 2R R R R 2R R R R R 2N 2

10BASE-T/100BASE-TX IEEE-802.3 compliant

Full-duplex and half-duplex 10/100 Mbps data transmission rates
Flow control and back pressure with full-featured and enhanced auto-negotiation

IEEE 802.1Q VLAN tag detection

Conforms to IEEE 1588-2002 Timestamp Precision Time Protocol (PTP) protocol and the
IEEE 1588-2008 Advanced Timestamp specification

Four MAC address filters

Programmable 64-bit Hash Filter for multicast address filtering

Promiscuous mode support

Processor offloading

Programmable insertion (TX) or deletion (RX) of preamble and start-of-frame data
Programmable generation (TX) or deletion (RX) of CRC and pad data

IP header and hardware checksum checking (IPv4, IPv6, TCP/UDP/ICMP)

LED activity selection

Supports network statistics with RMON/MIB counters

Supports Magic Packet and wakeup frames /,
Efficient transfers using integrated Direct Memory Access (DMA) S 4
MDI/MDI-X cross-over support

Register-programmable transmit amplitude

Automatic polarity correction and 10BASE-T signal reception

Block diagram ...

To Bus
Matrix

-

To Bus
Matrix

AHB Master Interface

AHB Slave Interface

»

-
Il

Ethernet Block Diagram

TXFIFO

Y

Y
A

IEEE 1588 TX Module
Physical
Layer

2002/ 2008 ! PPS CRC
Interface

a | DMA TXRX Offload Engine RX Module (PHY)

Controller Controller =3
Filtering / VLAN / SA/ CRC CRC

TX Pair

——»

RX Pair

[—

RXFIFO

A

J

MEDIA ACCESS
CONTROLLER (MAC)

ENOMDC

DMA MAC Control / erkal
Control/ | ol | stats Reqi Management s
] status [L) Interface (SMI) | L

Registers

Power MAC
Management Management
Module (PMM) Counters (MMC)

¢ TX and RX FIFO’s are 2kB and separate from system memory
¢ Ethernet module acts as a DMA bus master

Clocking ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

Ethernet Module Clocking

Ethernet Module Clocking

Ethernet Clocking

GP0 P [} ~

PTPREF_CLK
AR CLX

~
EMAC L EPY

320 or 480MHz PLL SYSCLK

¢ EMAC circuitry is run on the SYSCLK
¢ The PHY clock can be run from:

The main oscillator with a 25MHz crystal

The PLL through a divider

PM4 with a 50Mhz oscillator. + 20 for 10Mbps and + 2 for 100Mbps operation
¢ A separate 25MHz PHY crystal is not required

Port design ...

4-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

Port Hardware Design

Port Hardware Design

Ethernet Port Hardware Design

Placa pull up resistors and G16-G17 near TMAG MCU

I!‘r
G Placa C18 and C22 near pin 2 and pin 7 of U$10
g \l
e
2 \l - oZ
iy = z,
(oW = =,

el
¢ U10 — Ethernet isolation transformer
¢ U13 - Diode ESD protection array
¢ U14 — RJ45 connector
PTP ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4-5

IEEE 1588

IEEE 1588

Ethernet Port - IEEE1588

¢ Supports IEEE 1588-2002 Timestamp Precision Time
Frototcol (PTP) and IEEE1588 Advanced Timestamp
eatures

¢ Provides “CAN bus” type features over an Ethernet network

¢ IEEE 1588 is a protocol designed to synchronize real-time
clocks in the nodes of a distributed system that
communicate using a network (Ethernet UDP/IP) at a high
degree of accuracy

¢ Ethernet port 1588 HW intercepts PTP time packets entering
or leaving the port. SW implementation takes place above
the UDP layer.

¢ Microsecond accuracy is easily achievable

O

Master Slave Slave Slave

Ethernet network

Stacks ...

4-6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

IEEE 1588

Included Open Source Stacks

Open Source TCP/IP Stacks Included in Examples

uip — Micro IP
Protocols supported
+ Transmission Control Protocol (TCP)
User Datagram Protocol (UDP)
+ Internet Protocol (IP)

+ Internet Control Message Protocol
(ICMP)

+ Address Resolution Protocol (ARP)
Memory requirements

+ Typical code size on the order of a few
kilobytes

¢ RAM usage can be as low as a few
hundred bytes.

Memory conserved by limiting to one
outstanding transmit packet

uip and lwip licenses
No restriction in shipping in real products

Redistribution of stack source or binaries
(such as in our kit) must carry copyright

Iwip — Light-weight IP

Protocols supported

+ Internet Protocol (IP) including packet
forwarding over multiple network
interfaces

+ Internet Control Message Protocol (ICMP)
for network maintenance and debugging

¢ User Datagram Protocol (UDP) including
experimental UDP-lite extensions

¢ Transmission Control Protocol (TCP) with
congestion control, RTT estimations, and
fast recovery/transmit

+ Dynamic Host Configuration Protocol
(DHCP)

+ Point-to-Point Protocol (PPP)

+ Address Resolution Protocol (ARP) for
Ethernet

Specialized raw API for enhanced
performance

¢ Optional Berkeley-like socket APl
Memory Requirements
+ Typical code size is on the order of 25 to 40
kilobytes
+ RAM requirements are approximately 15 to
a few tens of kilobytes

¢ TI-RTOS stack also available

¢ Other 3 party stacks are available (higher cost / more capabilities / larger memory footprint)

Lab ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

4-7

IEEE 1588

4-8 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

Lab04: Ethernet Lab

Lab04: Ethernet Lab

Description:

In this lab we’ll control an LED on the LaunchPad with webpages served up from the
microcontroller’s flash memory. We’ll experiment with two methods of control and then modify

the web page in memory.

Lab04: Ethernet Port

USB Emulation
Connection

Ethernet

Import and run the enet_io example
Examine program details

Experiment with 2 methods of web control
Modify web page

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4-9

Lab04: Ethernet Lab

Procedure

Maximize Code Composer

1. Maximize Code Composer. Click on Project, and then select Import CCS Projects
When the Import dialog appears, make the selections shown below. The Copy projects
into workspace checkbox will automatically be checked. Since we will be using TivaWare
example code, this will make a copy of the project in our workspace and preserve the
original example. Click Finish.

-

x+ Import CCS Eclipse Projects

Select CCS Projects to Import
Select a directory to search for existing CC5 Eclipse projects.

@ Select search-directory: CATITivaWare_C_Series-2.1.0.1257 3\ examplestboards\ek-tmé 1 294xl\enet _io Browse...

) Select archive file: s

L
m

Discovered projects:

T enet_io [CATNTivaWare_C_Series-2.1.0.12573\examples\boards\ek-tmd c1294xl\enet_io\ccs] Select All

Deselect All

Refresh

[Autornatically import referenced projects found in same search-directory

Copy projects into workspace

Open the Resource Explorer and browse available example projects...

@ Finish |

Cancel

4-10 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

Lab04: Ethernet Lab

2. In the Project Explorer pane, expand the enet io project. Double-click on enet io.c
to open it for editing.

We will be running two examples that illustrate different ways of controlling the
LaunchPad via web pages.

I/0 Control Demo 1 uses JavaScript running in the web browser to send HTTP requests
to particular URLs. These URLs are intercepted by the file system support layer

(io fs.c)and used to control the LED. Responses generated by the board are returned
to the browser and inserted into the page HTML dynamically by more JavaScript code.

I/O Control Demo 2 uses standard HTML forms to pass parameters to CGI (Common
Gateway Interface) handlers running on the LaunchPad. These handlers process the form
data and control the LED as requested before sending a response page (in this case, the
original form) back to the browser. The application registers the names and handlers for
each of its CGIs with the HTTPD server during initialization and the server calls these
handlers after parsing URL parameters each time one of the CGI URLSs is requested.

enet_io.c is made up of several modules:

ControlCGIHandler() Called when the web browser requests 1/0O control

SSIHandler() Called by the HTTP server when it encounters an SSI tag

DisplayIPAddress() Displays the IwIP type IP address

SysTickIntHandler() Handles the SysTick interrupt

IwIPHostTimerHandler() Supports host timer functions

main() Sets up the clock, Ethernet and 1/O ports, configures SysTick
timer and enables interrupts

3. Change the DHCP Usage
» Find the following line of code at line 640 in enet io.c and make the indicated
change below. This change and the following one will prevent a lengthy wait for the stack
to receive a DHCP address.

From: lwIPInit (g_ui32SysClock, pui8MACArray, 0, 0, 0, IPADDR USE DHCP) ;

To: lwIPInit (g_ui32SysClock, pui8MACArray, 0, 0, 0, IPADDR USE AUTOIP);

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4-11

Lab04: Ethernet Lab

4. Comment out a loop
If you are using a version of TivaWare later than 2.1.0.12573 you can skip this step.

Find lines 533 through 546 in enet_io.c as shown below:

33
34 for(ui32Idx = 1; ui32Idx < 17; ui32Idx++)
35 {
36
37 /!
38 /f Toggle the GPIO
39 1/
40 MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO PIN 1,
41 (MAP_GPIOPinRead(GPIO_PORTN BASE, GPIO PIN 1) ~
42 GPIO PIN 1));
43
44 SysCtlDelay(g ui32SysClock/(ui32Idx << 1));
45
46 1
47 1
548}

5327 I

533 /4|

534 for{ui32Idx = 1; wi32Idx < 17; ui32Idx++)

535 7

536

537 /

538 !/ Toggle the GPIO

539 f

548 MAP GPIOPinWrite(GPIO_PORTN_BASE, GPIO PIN 1,
541 (MAP_GPIOPinRead(GPIO_PORTN_BASE, GPIO PIN 1) ~
542 GPIO_PIN 1));

243

S44 SysCtlDelay(g wi32SysClock/(ui32Idx << 1));
545

546 0

547 }

548 }

This loop of code was intended to produce an LED animation on an earlier development
board and was accidentally left in this release of the code.

4-12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

Lab04: Ethernet Lab

5. Connect and Build

» Connect the LaunchPad’s’ Ethernet port to the Ethernet port of your PC us-
ing the included cable. If your PCs wireless or other ports are enabled, you #ﬁ:
should disable it now. If you have problems connecting to the board in later
steps, you may also need to disable your firewall software.

» Click the Debug button now to build and load the project to your board.

Move the CCS window down so that most of the desktop is visible but you can still see the
Resume button.

Since the Connected LaunchPad does not have any kind of a display, we need a way to see
information that the enet 1io program needs to present. We’ll do that by connecting a
terminal program (like PuTTY) to the USB virtual serial port and displaying the transmit-
ted data on our laptop. The following steps will use PuTTY, but you can adapt them to
your favorite terminal program. The USB port on the LaunchPad is a composite port that
implements two emulator ports and a single virtual serial port.

6. Open PuTTY

» Click on your Windows Start button and type putty in the Search programs and files
box. Click on putty.exe in the displayed list. Make the selections shown below:

uTTY Configuration =) . uTTY Configuration =)
B 0Ty Cotpe Select Serial as the B Tyt
T s e Connection type. Enter the i T

Koot &3 o COM port number you found Koo ety s amed b B CONE
eatures cnnection type: . P Corfigure the serial Ine

i TRIe cmm s s || in chapter 1 and 775200 for - e st o
iy Load. save or delete a stored session . . | pesans Deta bis 8
s tﬁ the speed. Click Serial at the e B ‘
Selection Selecti

B F——— (bottom of the Category pane. | - il =
) [save Dat ———
Proxy. : Proxy
s ‘==l Make the o

41 8SH . 5 SSH

-sm- e 8, 1, None, None selections s ‘

Aways Never @ Only on clean exit N K
shown on the right and click |
Aot | [_open Cancel 0p€n. Apout Open Cancal

If you prefer some other terminal program, use these settings.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4-13

Lab04: Ethernet Lab

7. Runenet_io

» Click the Resume button (e in CCS. After a few
seconds PuTTY will display the information shown on the
right.

Since we aren’t using a DHCP server, the program will
assign the port its own address as shown in the second
screen capture. It may take several minutes for the stack to
timeout. Your address may be different.

P COM46 - PUTTY

Assign your Laptop’s Ethernet port a compatible address

» Click on your Windows Start button and type network connections in the Search pro-
grams and files box. Click on View network connections under the Control Panel heading.

P Find the correct Local Area Connection for your Ethernet port and right-click on it.

Select Properties.
[Local Area Connection Properties X
Netwarking L&'ﬂg.j .
S the Properties button.
a:
& Intel(R) 82577LM Gigabit Network Connection

This connection uses the following items:

[Z s o Clienit for Microsoft Networks -
=} iware Bridge Protocol
A= DNE LightWeight Fiter
J=10305 Packet Scheduler
gﬁ\e and Printer Sharing for Microsoft Networks

2. |ntemet Protocal Version 6 (TCP/IPvE)
—,

4. Intemet Protocol Version 4 (TCP/1Pv4)

. T
Description

Allows your computer to access resources on a Microsoft
network.

each 8-bits in length (0

| Install... Uninstall

OK Cancel

» Click on Internet Protocol Version 4 and then click

IPV4 addresses are 32-bits (2* possible addresses, alt-
hough some are reserved) and written as four fields,
-255). We must assign the
Ethernet port a compatible address with the one as-
signed to the LaunchPad port in order for them to
communicate. This means that the first three fields
must be identical and the fourth must be different.

In the screen captures here, the LaunchPad address is 169.254.31.238..

Yours will likely be different.

P Click the Use the following IP address: selection
and assign your port a compatible address. In our case,
a compatible address could be 169.254.31.001
(there are many).

The Subnet mask will automatically default to
255.255.0.0

» Click OK

Internet Protacol Version 4 (TCP/IPvd) Properties [2 [t
General
You can get IP settings assigned automatically if your network supparts
this capability. Ofherwise, you need to ask your network administrator
for the appropriate IP settings.
Obtain an IP address automatically
@ Use the following [P address:
IP address: 169 .254 . 31 . 001‘
Subnet mask: 255.255. 0 . 0
Default gateway:
Obtain DNS server address automatically
@ Use the following NS server addresses:
Preferred DNS server:
Alternate DNS server:
7| validate settings upon exit e
=

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

Lab04: Ethernet Lab

9. P Start your web browser, enter the address shown in PuTTY (not the one you used for
your Ethernet port’s address) and press Enter. A web page served from the Connected
LaunchPad should appear. If the page doesn’t look like this, try changing the compatibility
settings of your browser.

{l'; Texas Tiva™ C Series TM4C1294XL Development Kit
INSTRUMENTS EK-TM4C1294XL

About Texas Instruments

About Tl
Ti

TMAC1294NCPDT Block
Diagram 2 o s 2 i g s .
Texas Instruments (T1) is a global analog and digital semiconductor |C desian and manufacturing company. In addition to analeg technologies, digital signal
processing (DSP) and microcontroller (MCU) semicenductors, Tl designs and manufactures semicenductor solutions for analog and digital embedded and

EK-TM4C1294XL Product
Page application processing. In the microcontroller space, Tl offers the broadest range of embedded control products, from ultra-low-power MSP430™ MCUs and

Tiva™ TMAC129x Family high-performance w real-time confrollers, to the 32 bit general-purpose ARM®E-based MCUs of the Tiva™ C Series product line. Read more
Product Page about us on the web at www.ti.com.

110 Control Demo 1
(HTTP Requests)

110 Control Demo 2
(SSUCGI)

If you are having issues seeing the web page on your browser, you may have one or more
of the following issues:

1) You typed the IP address incorrectly for either your Ethernet port or in your browser.
Remember that the Ethernet port’s address and the board address cannot be exactly the
same.

2) Your firewall software is getting in the way ... disable it for now.

3) You didn’t disable your wireless or other unused ports and your browser is trying to
access the address over one of those connections instead of the wired Ethernet connection.

4) You may not have the Java Runtime Engine installed. Go to www.java.com and install
the JRE.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4-15

http://www.java.com/

Lab04: Ethernet Lab

10. I/O Control

11.

12.

» On the web page, click any of the first five links on the left. Bear in mind that the third
and fourth will not work without Internet access. All of the text and graphics for the others
is programmed in the microcontroller’s on-board flash memory.

» Click the link to I/O Control Demo 1. Press the Toggle LED button a few times, and
observe LED D2 on the LaunchPad board. You can also change the rate that LED D1
flashes by clicking the Set Speed button. LEDs D3 and D4 indicate Ethernet activity.

» Click the link to I/O Control Demo 2. Click on the box under New and click the Update
Settings button to change the state of LED D1. You can also change the rate that LED D1
flashes. Try typing some text in the Display this text over the UART: box and click Send
Text. The text that you typed should appear in the PuTTY terminal display on your laptop.

» When you’re done, close the web browser. Don’t forget that you will need to
reset the IP address and firewall settings later. Click the Terminate button in Iil
CCS to return to the CCS Edit perspective.

The embedded web server used in the enet io example uses the open source IwIP
TCP/IP stack. When you first start the application, the index . htm file is displayed in
your web browser.

In this part of the lab, we will modify the web page using notepad as our editor. We will
create a new file system image to embed into the application. There is a command line tool
inthe \TivaWare C Series-2.1.0.12573\tools\bin folder that will
generate a header file with an array for each file in the \ £ s folder.

Since we copied the original example code into our workspace, we’ll need to edit the code
there instead of the original location.

» Using Windows Explorer, find the index.htm file in the

C:\TM4C1294 Connected LaunchPad Workshop\workspace\enet io\fs folder.
Right-click on index .htm and select Open with, then click Notepad to open the file for
editing using Notepad.

» About halfway into the file, find the code that looks like this:

<div id="heading_h2">
EK-TM4C1294XL

</div>

» Change the line of code so that it looks like this:

<div id="heading h2">

This EK-TM4C1294XL belongs to YourName'!

</div>

» Save the file and close your Notepad.

4-16

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

Lab04: Ethernet Lab

13. Convert the HTML files to a Header File

Back in Code Composer Studio; examine the io_fs.c file in the enet io project. You
will find the command line and options that are needed to run the makefsfile utility in
the comments around line 40.

» Open a DOS command window by clicking on your Windows Start button and typing
cmd in the Search programs and files box. Click Enter.

» Type cd\ and press Enter to return to the root directory C: \

» Type cd C:\TM4C1294 Connected LaunchPad Workshop\workspace\enet io and
press Enter. You can also copy/paste this from the pdf file if you use the mouse to paste
and not the keyboard shortcut.

» Now we can call the makefsfile utility. Type (or copy/paste) the following and then
press Enter.

C:\TI\TivaWare C Series-2.1.0.12573\tools\bin\
makefsfile.exe -i fs -o io fsdata.h -r -h

Note the successful completion message. A new io_ fsdata.h header file has been
created with the changes that you made to index.htm. io fs. c includes this header
file. Close the command window when you are finished.

B Chwindows\system32icmd.exe |ﬂ|ﬁ]

Microsoft Windows [Uersion 6.1.76011
Copyright <c>» 2809 Microsoft Corporation. HAll rights reserved.

C:sUsers aBl1?2895 bcds
C:“>cd G:sTH4C1294_Connected_LaunchPad_Workshopsworkspacesenet_io

C:%TM4C1294_Connected_LaunchPad_Workshopsworkspacesenet_io»C:A\TI~TivalWare_GC_Seri]
es—2 . 1stools~binmakefsfile.exe —i fz -0 io_fsdata.h —» -h

makefsfile — Generate a file containing a file system image.
Copyright <c> 20082814 Texas Instruments Incorporated. All rights reserved.

Completed successfully. 17 files from 1 directory processed.
Binary size 268255 (@x000417df> bytes

C:~TH4C1294_Connected_LaunchPad_YWorkshop~workspace~enet_io>

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4-17

Lab04: Ethernet Lab

13.

14.

15.

Rebuild the enet_io Example Application

» Maximize Code Composer Studio. We just modified one of the files in the project without
the IDE knowing it, so we need to perform a clean build. Right-click on enet_io in
the Project Explorer pane and select Clean Project. Click the Debug button to fﬁ"
build/load the project.

Load the Modified Website in your Browser

» Move CCS so that you can see both the CCS Resume button and the PuTTY window.
Make sure that your Ethernet port address is still compatible with the IP address that the
LaunchPad board reports. Open a web browser and type in the LaunchPad’s address like
before (it’s possible that the address has changed).

13 TEXAS Tiva™ C Series TM4C1294XL Evaluation Kit
INSTRUMENTS This EK-TM4C1294XL belongs to Howard Wolowitz!

About Texas Instruments

TMAC1294NCPDT Block
Diagram Texas Instruments (T1)is a global analog and digital semiconductor |C design and manufacturing company. In addition to analog technologies, digital

Sl el el cignal processing (DSP) and microcentroller (MCLU) semiconductors, Tl designs and manufactures semiconductor solutions for analog and digital
Page embedded and application processing. In the microcontroller space, Tl offers the broadest range of embedded control products, fram ultra-low-power
MSP430™ MCUs and high-performance TWMS320C2000™ real-time controllers, to the 32 bit general-purpose ARM®&-based MCUs ofthe Tiva™ C

LR RSP L S orics product line. Read more about us on the web at www.di com.
Product Page

0 Control Demo 1
(HTTP Requests)

1O Control Demo 2
{SSICGI)

Restore your network settings

» Remember your original network settings on your PC? Restore those and re-
enable your firewall, wireless and other connections (if necessary). Terminate the .||
CCS Debug session, close the enet io project and minimize CCS. Close -
PuTTY..

You’re done.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port

Interrupts and the Timers

Introduction

This chapter will introduce you to the use of interrupts on the ARM® Cortex-M4" and the general
purpose timer module (GPTM). The lab will use the timer to generate interrupts. We will write a
timer interrupt service routine (ISR) that will blink the LED.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 - 1

Chapter Topics

Chapter Topics

Interrupts and the Timers 5-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens 5-2
COTLEX-MA NVIC ...ttt ettt ettt ettt ettt 5-3
Cortex-M4 Interrupt Handing Qnd VECIOTS................cccceeieeieiveiieieeieesieesieeie e sseeseesessaesneens 5-7
General Purpose Timer MOAUIE..................c..cc.cccoveuieiiiiiieiiiiiecie ettt eae e 5-9
Lab05: Interrupts and the TIMercociciiiiiiiiiiiiiiieeteeeeee ettt 5-11

(0]0) 1515 A< SR 5-11
PLOCEAULE ...ttt ettt ettt b ettt bbb s bt sbe b bt e b e b 5-12

5 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

Cortex-M4 NVIC

Cortex-M4 NVIC

Nested Vectored Interrupt Controller (NVIC)

Handles exceptions and interrupts (7 exceptions and 106 interrupts) \
8 programmable dynamically reprogrammable priority levels, priority grouping
Automatic state save and restoration

Automatic reading of the vector table entry

Pre-emptive/Nested Interrupts

Tail-chaining

Deterministic: always 12 cycles or 6 cycles with tail-chaining

Level and pulse interrupt signal detection /

000000)

*

\

Motor control ISRs (e.g. PWM, ADC)

Commyunication ISRs (e.g. CAN)

t

Main 1pplication (foreground)

Tail Chaining...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 - 3

Cortex-M4 NVIC

Interrupt Latency - Tail Chaining

~

Highest
Priority IRQ1 B R L L LR L

IRQ2 -~ &

Typical EEUTEN cor EETENN ror

processor

Tail-chaining

cortex-ms [BUBH] k1 [l Rz [0
nie - 124 6k « 12

k {Cycles Cycles Cycles J

Pre-emption ...

In the above example, two interrupts occur simultaneously.

In most processors, interrupt handling is fairly simple and each interrupt will start a

PUSH PROCESSOR STATE — RUN ISR — POP PROCESSOR STATE process. Since IRQ1 was
higher priority, the NVIC causes the CPU to run it first. When the interrupt handler (ISR) for the
first interrupt is complete, the NVIC sees a second interrupt pending, and runs that ISR. This is
quite wasteful since the middle POP and PUSH are moving the exact same processor state back
and forth to stack memory. If the interrupt handler could have seen that a second interrupt was
pending, it could have “tail-chained” into the next ISR, saving power and cycles.

The Tiva C Series NVIC does exactly this. It takes only 12 cycles to PUSH and POP the
processor state. When the NVIC sees a pending ISR during the execution of the current one, it
will “tail-chain” the execution using just 6 cycles to complete the process.

If you are depending on interrupts to be run quickly, the Tiva C Series devices offer a huge
advantage here.

5 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

Cortex-M4 NVIC

Interrupt Latency — Pre-emption

~

Priority

Highest IRQ1 / N

IRQ2

rocess B sz)
processor ISR1 POP POP

Cortex-M4 ISR 1 —

NVIC m
: ‘41-»6‘« F12>‘
: 12

k ‘ cycles Cycles Cycles /

Late arrival...

In this example, the processor was in the process of popping the processor status from the stack
for the first ISR when a second ISR occurred.

In most processors, the interrupt controller would complete the process before starting the entire
PUSH-ISR-POP process over again, wasting precious cycles and power doing so.

The Tiva C Series NVIC is able to stop the POP process, return the stack pointer to the proper
location and “tail-chain” into the next ISR with only 6 cycles.

Again, this is a huge advantage for interrupt handling on Tiva C Series devices.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 - 5

Cortex-M4 NVIC

Interrupt Latency — Late Arrival

4 N

Highest | IRQ1———
Priority

IRQ2

e [[e | | 2 |
processor P! ISR 1 POP POP

Cortex-M4 . ISR 1 l ISR 2
NVIC

ek 12~

k Cycles Cycles /

Interrupt handling...

In this example, a higher priority interrupt has arrived just after a lower priority one.

In most processors, the interrupt controller is smart enough to recognize the late arrival of a
higher priority interrupt and restart the interrupt procedure accordingly.

The Stellaris NVIC takes this one step further. The PUSH is the same process regardless of the
ISR, so the Stellaris NVIC simply changes the fetched ISR. In between the ISRs, “tail chaining”
is done to save cycles.

Once more, Stellaris devices handle interrupts with lower latency.

5 - 6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

Cortex-M4 Interrupt Handing and Vectors

Cortex-M4 Interrupt Handing and Vectors

NVIC Interrupt Handling

Interrupt handling is automatic. No instruction overhead.

/ Entry

-

¢ Automatically pushes registers RO—R3, R12, LR, PSR, and PC onto the
stack (eight 32-bit words)

¢ In parallel, ISR is pre-fetched on the instruction bus. ISR ready to start
executing as soon as stack PUSH complete

¢ Interrupt pending bit is cleared for single-input interrupts

~

/Exit

¢ Processor state is automatically restored from the stack

¢ In parallel, interrupted instruction is pre-fetched ready for execution
upon completion of stack POP

/
<

%

Exception types...

Exception Types

Vector Exception Priority Vector Descriptions
Number Type address
0 - 0x00 Stack top address
1 Reset -3 0x04 Reset
2 NMI -2 0x08 Non-Maskable Interrupt
3 Hard Fault -1 0x0C Error during exception processing
4 Memory Programmable 0x10 MPU violation
Management
Fault
5 Bus Fault Programmable 0x14 Bus error (Prefetch or data abort)
6 Usage Fault Programmable 0x18 Exceptions due to program errors
7-10 Reserved - 0x1C - 0x28
1" Svcall Programmable 0x2C SVC instruction
12 Debug Monitor | Programmable 0x30 Exception for debug
13 Reserved - 0x34
14 PendSV Programmable 0x38
15 SysTick Programmable 0x3C System Tick Timer
16 and above | Interrupts Programmable 0x40 External interrupts (Peripherals)

Vector Table...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 -7

Cortex-M4 Interrupt Handing and Vectors

Vector Table

Vector Address or | Description Vector Address or iption. Vector Address or | Description’
oftset it i “onset
0X0000.0000 - |Processor exceptions 000000098 | 16/32-Bi Tamer 18 GO0 [Tmer 44
0x0000.003C || onnoles |oREmvTmerl® | oowoomo s
0x00000040 _[GRIOPortA | 000000080 18825 Timer2A | Gmgres [teerea
00000 EET | Dx0DDD00AD T18/32-Bit Timer 28 00000148 Timer 58
G008 |GRIOPGG Analog Comparator 0 0x0000014C___ Floating-Point Exception (mprecise]
. Analog Comparator 1 - Reserved
0X0000004C___[GPIO PortD I
¢ After reset, the vector table is located * o R 3 GOaTEE P4
at address 0 0x0000.0050 GPIO Port E | I i ! alog Comparator | T
0x0000.0054 UARTO 0x0000.00B0 System Control T OX0000.0160 TGPIO Port Ml
0x0000.0058 |UART1 0x000000B4 | Flash Memory Control I oo000018a | io Porth
. 0x0000.005C Sslo 0x0000.00B8 GPIO Port F = Reserved
¢ Each em‘ry contains the address of 0x0000.0060 | 2C0 |7 O«0000D0BC | GFIOForG | ox00000166__[Tamper
the function to be executed 000000064 [PWM Faut T0000060 16RO Parthl GRNNDTT__[GPIO Part P Gurenary or PO

GA0000TTE | GPIO Por Pl

0x0000.0068 _[PWM Generator 0 T0N00CE UARTZ |
0x0000.006C | PWM Generator 1 I Oxo00000Ca (s8I oo onrs; _|orIOPtE2
¢ The value in address 0x00 is used as T ey e W [P0 Pt P3
: . o010 [oFOFotFe
starting address of the Main Stack Ox00000074___|QEI0 om0 s — [sowonier oMo Fats
Pointer (MSP) 0x0000.0078 _|ADCO Sequence 0 ST " Samesi oo Patre
0X0000.007C___|ADCO Sequence 1 e TomO1EC [GPIOFartPT
0x0000.0080 | ADCO Sequence 2 I Gomamine oA | RN [P0 PorQ Summary orGO)
* Vector table can be relocated by 0x0000.0084 |ADCO Sequence 3 —_— 000000184 |GPIO Port 01
el i 0x0000.0088 | Watchdog Timers 0 and 1 a0000 oen. Etlemet VMAC 000000128 PO Pt 2
writing to the VTABLE register e [T GRS [GPOPG
- = 1673280 Tmer | 1 1
(must be aligned on a 1024-byte USE MAG OX00001A0 |GPIO PartGe
0x0000.0080 [16/32:Bi Timer 08
boundary) 000 00EC | PWM Generator 3 SN AL S0P
0x0000.0084 | 16/32:Bi Timer 1A | | TR
0x0000 0OFO ‘uDMA 0 Software 00000 01AC GPIO Por 7
0x0000.00F4 uDMA 0 Eror k5 Reasamved
¢ Open 0x000000FE | ADC1 Sequence 0 GOO0001C8 [16/82.Bi Tier 64
tm4cl294ncpdt startup ccs.c | ca000000FC | ADCH Sequence 1 Ox0000.01CC__[16/32-6i Timer 68
to see vector table coding | ci00000100 | ADCH Sequence2 DSBODNK {4023 3T 7
L A e [Cao0iD[eAzBNTmerTS
0x0000.0104 .ADC| Sequence 3 “Ox0000.01D8 o)
000000108 EFI0 T oma00oe e
0x0000.010C GPIO Port J E |Resenved
0x0000.0110 GPIO Port K | 0x0000.01F4 ‘Izca
000000114 |GPIOPariL Od0000tFE [P
I 2 =

B0000011E 5512
DO00OTIC 5813
00000120 |UART3

| oowooizs uamTs
000000128
0x0000012C
000000130
000000724

[oemoorE Ees GPTM...

5 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

General Purpose Timer Module

General Purpose Timer Module

General Purpose Timer Module

Contains eight 16/32-bit GPTM blocks with the following features:

ﬁs or 32-bit programmable one-shot timer \
¢ 16 or 32-bit programmable periodic timer

¢ 16-bit general purpose timer with 8-bit pre-scaler
¢ 32-bit Real-Time Clock (RTC) when external 32,768Hz clock used as input
¢ 16-bit input-edge count or time-capture modes with 8-bit pre-scaler

¢ 16-bit PWM mode with an 8-bit pre-scaler and software-programmable output
inversion of the PWM signal

Either the SYSCLK or ALTCLK can be used as the timer clock source. ALTCLK can
be the PIOSC, Hib. module RTC or the low frequency internal oscillator

¢ Count up/down

¢ Can be daisy-chained and loads can be synchronized

¢ Can trigger on ADC events

¢ Can be configured to stall when user asserts CPU Halt during debug

wMA enabled

Lab...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 - 9

General Purpose Timer Module

5 - 10Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

Lab05: Interrupts and the Timer

Lab05: Interrupts and the Timer

Objective

In this lab we’ll set up the timer to generate interrupts, and then write the code that responds to
the interrupt ... flashing the LED. We’ll also experiment with generating a system level
exception, by attempting to configure a peripheral before it’s been enabled.

Lab05: Interrupts and the GP Timer

USB Emulation l
Connection \

¢ Enable and configure the Timer
¢ Enable and configure Interrupts
¢ Write the ISR code and test
¢ Generate an exception

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 11

LabO05: Interrupts and the Timer

Procedure

Import lab05 Project

1. We have already created the 1ab05 project for you with an empty main. c, a startup file
and all necessary project and build options set.

» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings show below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

«+ Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5 Eclipse projects.

| B

@ Select search-directory: C\TM4C1294_Connected_LaunchPad_Workshop'lab05 Browse...

() Select archive file: Browse...

Discovered projects:
BT lab05 [CATM4C1294_Connected_LaunchPad_Workshophlab05) Select All
Deselect All

Refresh

[] Copy projects into workspace
["] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

Cancel

@ Finish |

5 - 12Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

Lab05: Interrupts and the Timer

Header Files

2. P Expand the lab by clicking the " to the left of 1ab05 in the Project Explorer pane.
Open main. c for editing by double-clicking on it.

» Type (or copy/paste) the following seven lines into main.c to include the header files
needed to access the TivaWare APIs :

#include <stdint.h>

#include <stdbool.h>

#include "inc/tm4c1294ncpdt.h”
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"

Several new include headers are needed to support the hardware we’ll be using in this
code:

tm4cl294ncpdt. h: Definitions for the interrupt and register assignments on the Tiva
C Series device on the LaunchPad board

interrupt.h : Defines and macros for NVIC Controller (Interrupt) API of
driverLib. This includes API functions such as IntEnable and
IntPrioritySet.

timer.h : Defines and macros for Timer API of driverLib. This includes API
functions such as TimerConfigure and TimerLoadSet.

Note that there are no question marks shown in the editor pane beside your include
statements. The paths have already been set up for you in the imported project.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 13

Lab05: Interrupts and the Timer

main()

3. We’re going to compute our timer delays using the variable ui32Period. Create main()
along with an unsigned 32-bit integer (that’s why the variable is called ui32Period) for

this computation. ui32SysClkFreq will be the return value when we configure the
system clock.

» Leave a line for spacing and type (or cut/paste) the following after the previous lines:

int main(void)

{
uint32_ t ui32Period;
uint32 t ui32SysClkFreq;
}
Clock Setup

4. Configure the system clock to run at 120MHz (like in lab04) with the following call.

» Leave a blank line for spacing and enter this single line of code inside main ():

ui32SysClkFreq = SysCtlClockFregSet ((SYSCTL XTAL 25MHZ | SYSCTL OSC MAIN
| SYSCTL USE PLL | SYSCTL CFG VCO 480), 120000000);

GPIO Configuration

5. Like the previous lab, we need to enable the GPIO peripheral and configure the pins
connected to the LEDs as outputs.

» Leave a line for spacing and add these lines after the last ones. Leave a line between
them.

SysCtlPeripheralEnable (SYSCTL PERIPH GPION) ;

GPIOPinTypeGPIOOutput (GPIO PORTN BASE, GPIO PIN 0|GPIO PIN 1);

5 - 14Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

Lab05: Interrupts and the Timer

Timer Configuration

6. Again, before calling any peripheral specific driverLib function we must enable the
clock to that peripheral. If you fail to do this, it will result in a Fault ISR (address fault).

The second statement configures Timer 0 as a 32-bit timer in periodic mode. Note that
when Timer 0 is configured as a 32-bit timer, it combines the two 16-bit timers Timer 0A
and Timer 0B. See the General Purpose Timer chapter of the device datasheet for more
information. TIMERO BASE is the start of the timer registers for Timer0 in, you guessed
it, the peripheral section of the memory map.

» Remember that we should interleave the peripheral enable statements to prevent
possible timing issues? Place the first statement below after the first one in step 5 and the
second one as last:

SysCtlPeripheralEnable (SYSCTL PERIPH TIMERO) ;

TimerConfigure (TIMERO BASE, TIMER CFG_PERIODIC) ;

Calculate Delay

7. To toggle a GPIO at 1Hz and a 50% duty cycle, you need to generate an interrupt at 2 of
the desired period. First, calculate the number of clock cycles required for a 1Hz period
by calling SysCt1ClockGet () and dividing it by your desired frequency (here that is
1, so the division is omitted). Then divide that by two, since we want a count that is %2 of
that for the interrupt.

This calculated period is then loaded into the Timer’s Interval Load register using the
TimerLoadSet function of the driverLib Timer API. Note that you have to subtract
one from the timer period since the interrupt fires at the zero count.

» Add a line for spacing and add the following lines of code after the previous ones:

ui32Period = ui32SysClkFreq/2;
TimerLoadSet (TIMERO BASE, TIMER A, ui32Period -1);

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 15

Lab05: Interrupts and the Timer

Interrupt Enable

8. Next, we have to enable the interrupt ... not only in the timer module, but also in the
NVIC (the Nested Vector Interrupt Controller, the Cortex M4’s interrupt controller).
IntMasterEnable () isthe master interrupt enable API for all interrupts.
IntEnable enables the specific vector associated with TimerOA. TimerIntEnable,
enables a specific event within the timer to generate an interrupt. In this case we are
enabling an interrupt to be generated on a timeout of Timer 0A.

» Add a line for spacing and type the next three lines of code after the previous ones:

IntEnable (INT TIMEROA) ;
TimerIntEnable(TIMERO_BASE, TIMER_TIMA_TIMEOUT);
IntMasterEnable () ;

Timer Enable

9. Finally we can enable the timer. This will start the timer and interrupts will begin
triggering on the timeouts.
» Add a line for spacing and type the following line of code after the previous ones:

TimerEnable (TIMERO BASE, TIMER A);

while(1) Loop

10. The main loop of the code is simply an empty while (1) loop since the toggling of the
GPIO will happen in the interrupt service routine.

» Add a line for spacing and add the following lines of code after the previous ones:

while (1)
{
}

5 - 16Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

Lab05: Interrupts and the Timer

Timer Interrupt Handler

11. Since this application is interrupt driven, we must add an interrupt handler or ISR for the
Timer. In the interrupt handler, we must first clear the interrupt source and then toggle
the GPIO pin based on the current state. Just in case your last program left any of the
LEDs on, the first GPIOPinWrite () call turns off both user LEDs. Writing a 2 to pin
2 lights the D1 LED.

» Add a line for spacing and add the following lines of code after the final closing brace
ofmain () .

void TimerOIntHandler (void)

{
// Clear the timer interrupt
TimerIntClear(TIMERO_BASE, TIMER TIMA TIMEOUT) ;

// Read the current state of the GPIO pin and
// write back the opposite state
if (GPTOPinRead (GPIO PORTN BASE, GPIO PIN 1))
{
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_l, 0);

GPIOPinWrite (GPIO PORTN BASE, GPIO PIN 1, 2);

}

» If your indentation looks wrong, select all the code by pressing Ctrl-A, right-click on
the selected code and pick Source = Correct Indentation.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 17

LabO05: Interrupts and the Timer

12. » Click the Save button to save your work.

Y our code should look something like this:

#include <stdint.h>

#include <stdbool.h>

#include "inc/tm4cl294ncpdt.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"

int main(void)

{
uint32 t ui32Period;
uint32 t ui32SysClkFreq;

ui32SysClkFreq = SysCtlClockFregSet ((SYSCTL XTAL 25MHZ | SYSCTL OSC MAIN |
SYSCTL_USE_PLL | SYSCTL_CFG VCO 480), 120000000);

SysCtlPeripheralEnable (SYSCTL PERIPH GPION) ;
SysCtlPeripheralEnable (SYSCTL PERIPH TIMERO) ;

GPIOPinTypeGPIOOutput (GPIO PORTN BASE, GPIO PIN 0|GPIO PIN 1);
TimerConfigure (TIMERO BASE, TIMER CFG_PERIODIC);

ui32Period = ui32SysClkFreq/2;
TimerLoadSet (TIMERO BASE, TIMER A, ui32Period -1);

IntEnable(INTiTIMEROA);
TimerIntEnable(TIMERO_BASE, TIMER_TIMA_TIMEOUT);
IntMasterEnable () ;

TimerEnable (TIMERO BASE, TIMER A);

while (1)
{
}

}

void TimerOIntHandler (void)

{
// Clear the timer interrupt
TimerIntClear(TIMERO_BASE, TIMER TIMA TIMEOUT) ;

// Read the current state of the GPIO pin and
// write back the opposite state
if (GPIOPinRead (GPIO PORTN BASE, GPIO PIN 1))

{
GPIOPinWrite (GPIO_ PORTN BASE, GPIO PIN 1, 0);

GPIOPinWrite (GPIO_ PORTN BASE, GPIO PIN 1, 2);

If you’re having problems, this code is contained in main. txt in your project folder.

5 - 18Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

Lab05: Interrupts and the Timer

Startup Code

13. » Open tm4cl294ncpdt startup ccs.c for editing. This file contains the
vector table that was discussed during the presentation.

» Open the file and look for the Timer 0 subtimer A vector.

When that timer interrupt occurs, the NVIC will look in this vector location for the
address of the ISR (interrupt service routine). That address is where the next code fetch
will happen.

» You need to carefully find the appropriate vector position and replace
IntDefaultHandler with the name of your Interrupt handler (We suggest that you
copy/paste this). In this case you will add TimerOIntHandler to the position with the
comment “Timer 0 subtimer A” asshown below:

IntDefanltHandler, S ADC Sequence 2
IntDefanltHandler, S ADC Sequence 3
IntDefanltHandler, S/ Watchdog timer
TimerO0IntHandler, // Timer 0 subtimer A
IntDefaultHandler, /¢ Timer 0 subtimer B
IntDefanltHandler, S/ Timer 1 subtimer A

You also need to declare this function at the top of this file as external. This is necessary
for the compiler to resolve this symbol.

» Find the line containing:

extern void _c_int00(void);

» and add:

extern void TimerOIntHandler (void) ;

right below it as shown below:

ff External declaration for the reset handler that i= to be called when the

f/ processor is started

21 extern vold _c_int00(void);
42 extern void TimerOIntHandler (void) ;

By the way, the IntDefaultHandler handler will catch any “unintentional”
interrupts that may occur. Since this handler is also a while (1) loop, you might want
to consider changing it for your production system.

» Click the Save button.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 19

LabO05: Interrupts and the Timer

Pre-defined Name

14. In order for the compiler to find the correct interrupt mapping it needs to know exactly
which part is being used. We do that through a build option called a pre-defined name.

» Right-click on lab05 in your Project Explorer and select Properties.

» Under Build > ARM Compiler > Advanced Options > Predefined j
Symbols, add PART_TM4C1294NCPDT to the list as shown below. b

'« Properties for lab05 Llﬂld_h]
type filter text Predefined Symbols (S e
> Resource
General
4 Build Configuration: |Debug [Active | ‘l [Manage Configurat\on;..]

a ARM Compiler
Processor Options

Optimization -
Include Options Pre-define NAME (--define, -D) & e B4
MISRA-C:2004 PART_TM4C1294NCPDT

4 Advanced Options
Advanced Debug Options
Language Optiens
Parser Preprocessing Options
Predefined Symbols
Diagnastic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumptions
Aszembler Options
File Type Specifier
Directory Specifier
Default File Extensions Undefine NAME (--undefing, -U) IERARE
Command Files

4 ARM Linker
Basic Options
File Search Path

4 Advanced Options
Command File Preprocessing
Diagnostics
Linker Qutput
Symbel Management
Runtime Environment
Linktime Optimization
Miscellaneous

Debug

@:l Show advanced settings [0K] [Cancel

This property, along with the others that we’ve already seen, will already be set in the
remaining labs in this workshop

» Click OK.

5 - 20Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

Lab05: Interrupts and the Timer

Compile, Download and Run The Code

application. If you have any issues, correct them, and then click the Debug
button again. (You were careful about that interrupt vector placement,
weren’t you?) After a successful build, the CCS Debug perspective will
appear. Again, ignore any optimization advice.

15. » Click the Debug button on the menu bar to compile and download your I .

» Click the Resume button to run the program that was downloaded to the I_I B
flash memory of your device. The blue LED should be flashing quickly on
your LaunchPad board.

When you’re done, P> click the Terminate button to return to the Editing
perspective.

Exceptions

16. » Find the line of code that enables the GPIO peripheral and comment it out as shown
below:

SysCtlPeripheralEnable (SYSCTL PERIPH GPION);
SysCtlPeripheralEnable (SYSCTL PERIPH TIMER®);

L e B

GPIOPinTypeGPIOOutput{GPIO_PORTN_BASE, GPIO PIN @|GPIO_PIN 1);
TimerConfigure(TIMER® BASE, TIMER_CFG_PERIODIC);

(N S R S]
Ll pd =

Now our code will be accessing the peripheral without the peripheral clock being
enabled. This should generate an exception.

17. » Compile and download your application by clicking the Debug button on the menu
bar. Save your changes when you’re prompted. Click the Resume button to run the
program.

What?! The program seems to run just fine doesn’t it? The D1 LED is flashing. The
problem is that we enabled the peripheral in our earlier run of the code ... and we never
disabled it or power cycled the part.

18. » Click the Terminate button to return to the editing perspective. Cycle the power on the
board by removing and reconnecting the USB cable. This will return the peripheral
registers to their default power-up states.

The code with the enable line commented out is now running, but note that the D1 LED
isn’t flashing.

19. » Just so you’re sure what’s going on, compile and download your application by
clicking the Debug button on the menu bar, then click the Resume button to run the
program. Again, the D1 LED should not be blinking.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 21

LabO05: Interrupts and the Timer

20. » Click the Suspend button to stop execution. You should see that
execution has trapped inside the Fault ISR () interrupt routine. All of
the exception ISRs trap in while(1) loops in the provided code. That (M N
probably isn’t the behavior you want in your production code.

21. » Back in main. c, uncomment the line enabling the GPIO port. Compile, download
and run your code to make sure everything works properly. When you’re done, click the
Terminate button to return to the Editing perspective

22. P Close the 1ab05 project. Minimize CCS.

Homework Idea: Investigate the Pulse-Width Modulation capabilities of the general
purpose timer. Program the timer to blink the LED faster than your eye can see, usually
above 30Hz and use the pulse width to vary the apparent intensity. Write a loop to make
the intensity vary periodically.

You’re done.

5 - 22Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers

ADC12 and the Educational BoosterPack

Introduction

This chapter will introduce you to the use of the analog to digital conversion (ADC) peripheral on
the TM4C1294NCPDT. The lab will use the ADC and the sequencer to sample the analog
accelerometers on the Educational BoosterPack.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5-1

Chapter Topics

Chapter Topics

ADC12 and the Educational BoosterPack 5-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens 5-2
ADQCI2 oot et a ettt ettt et et 5-3
Sample Sequencers and Educational BOOSIEFPACKcc.cccoovueveieieeiieieeieeieeieeeie e 5-4
LADOO: ADCI2 ... ettt bttt ettt eee e 5-5

(0]0) 1515 4 < PR SS PRSI 5-5
PrOCEAULE ...ttt ettt ettt ettt et b bbbttt a b e 5-6
HardWare QVEIaZING..........cooieiiieieeieeii ettt et e st e et et e esaesseeseenteessessaeesesnsesneesseensennnennes 5-15
(221011 V1TSS 5-16
Calling APIS from ROM.......ooouiiiiiiiee ettt ettt e st e ae e enes 5-17

5-2 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

ADC12

ADC12

Analog-to-Digital Converter

+ The TM4C1294NCPDT contains two 12-bit / \
ADC modules that can be used to convert
continuous analog voltages to discrete AV Vi VOU{HI”
digital values
¢ Each ADC module operates independently
and can:
Execute different sample sequences /m\
Sample any of the shared analog input 3
channels /
Generate interrupts & triggers / \ /
e
't
Inout 20 101
npu —_—r—,——
Chahnels Apco IMpruets) 100
— 3011
>
010
4-_I'nte"upt8/ o
Triggers 000
Triggers ® j

Features...

TM4C1294NCPDT ADC Features

The microcontroller has two ADC modules sharing 20 input channels.
Each module has:

Single ended & differential input ¢ Flexible trigger control \
configurations - Controller/ software
Timers
¢ On-chip temperature sensor - Analog comparators
- PWM

¢ Maximum sample rate of two million

samples/second (2MSPS). e
 Uses VREFA+ and GNDA pins for © 2B (LI 2 N
voltage reference + 8 Digital comparators per ADC + 2
¢ 4 programmable sample conversion Analog comparators per device
sequencers per ADC o DMA enabled

¢ Separate analog power & ground pins

/

VIN VOUT

Sequencers...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5-3

Sample Sequencers and Educational BoosterPack

Sample Sequencers and Educational BoosterPack

ADC Sample Sequencers

¢ Tiva TM4C ADC'’s collect and sample data using programmable sequencers.
¢ Each sample sequence is a fully programmable series of consecutive (back-to-back)
samples that allows the ADC module to collect data from multiple input sources without
having to be re-configured.
¢ Each ADC module has 4 sample sequencers that control sampling and data capture.
¢ All sample sequencers are identical except for the number of samples they can capture
and the depth of their FIFO.
¢ To configure a sample sequencer, the following information is required:
Input source for each sample
Mode (single-ended, or differential) for each sample
Interrupt generation on sample completion for each sample
Indicator for the last sample in the sequence

¢ Each sample sequencer can transfer data Number of
kndepende?ltly thc:‘ough a dedicated DMA channel. A Samples BepthionFie
SS3 1 1
SS2 4 4
SS1 4 4
SSO 8 8

Educational Boosterpack ...

Educational BoosterPack MK Ii

¢ Part #: EDUBOOSTMKII
¢ MSRP: $34.95

¢ Feature List:
= 128x128pixel color TFT display (SPI)
= 3 axis accelerometer (analog)

=TI TMPOOG6 IR temperature sensor
(I2C address 0x40)

= Tl Ambient Light Sensor
(I°C address 0x44)

= RGB LED (GPIO)

= Microphone (analog)

= Buzzer (GPIO)

= Servo connector (PWM or GPIO)
= 2-axis joystick (analog)

= Push buttons (GPIO)

Lab...

5-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

Lab06: ADC12

Lab06: ADC12

Objective

In this lab we’ll use the ADC12 and sample sequencers to measure the data from the Educational
BoosterPack’s analog accelerometers. We’ll use Code Composer to display the changing values.

Lab06: ADC12

USB Emulation l

Connection

/0 Connect Educational BoosterPack to
LaunchPad Board

¢ Enable and configure ADC and sequencer

~

¢ Measure and display values from
the accelerometers on the Educational
BoosterPack

¢ Add hardware averaging
¢ Use CCS graphing features

¢ Use ROM peripheral driver library calls and
K note code size difference /

Agenda ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5-5

Lab06: ADC12

Procedure

Import Ia06 Project

1. We have already created the 1ab06 project for you with an empty main. c, a startup file
and all necessary project and build options set.

» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish.
Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

w+ Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5 Eclipse projects.

| B

@) Select search-directory: CATM4C1294_Connected_LaunchPad_Workshophlab0s Browse...

() Select archive file: Browse...

Discovered projects:

11 lab06 [CATMAC1294_Connected_LaunchPad_Workshop'lab05] Select All

Deselect All

Refresh

[C] Copy projects into workspace
[] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

Cancel

@ Finish |

5-6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

Lab06: ADC12

Header Files

2. P Add the following lines into main. c to include the header files needed to access the
TivaWare APlIs:

#include <stdint.h>

#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/adc.h"

adc.h: definitions for using the ADC driver

main()
3. P Setupthemain () routine by adding the three lines below:

int main (void)
{
}

4. The following definition will create an array that will be used for storing the data read
from the ADC FIFO. It must be as large as the FIFO for the sequencer in use. We will be
using sequencer 1 which has a FIFO depth of 4. If another sequencer was used with a
smaller or deeper FIFO, then the array size would have to be changed. For instance, se-
quencer 0 has a depth of 8.

» Add the following line of code as the first line of code in main () :
uint32_t ui32ACCValues[4];

5. We’ll need some variables for displaying to values from the accelerometer sensor data.
The first variable is for storing the average of the temperature. The remaining variables
are used to store the temperature values for Celsius and Fahrenheit. All are declared as
'volatile' so that each variable cannot be optimized out by the compiler and will be avail-
able to the 'Expression' or 'Local' window(s) at run-time.

» Add these lines after the one in step 4:

volatile uint32_t ui32AccX;
volatile uint32_ t ui32AccY;
volatile uint32_ t ui32AccZ;

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5-7

Lab06: ADC12

6.

Set up the system clock again to run at 1220MHz. » Add a line for spacing and add this
single line after the last ones:

SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 120000000);

Later, we’re going to connect the Educational BoosterPack to BoosterPack Connector 1
(the one furthest from the Ethernet connector) on the Connected LaunchPad. We could
have picked connector 2 ... it was a coin-toss. According to the schematics, that will
connect the following signals from left to right:

BoosterPack BoosterPack LaunchPad Configuration
Function Connector Pin/Function Parameter
ACC_XOUT J3-3 PEO / Analog Input 3 ADC_CTL_CH3
ACC YOUT 13-4 PE1 / Analog Input 2 ADC_CTL_CH2
ACC_ZOUT I3-5 PE2 / Analog Input 1 ADC_CTL_CHI

We can enable both ADCO and GPIO Port E » Add a line for spacing and add these
lines after the last one:

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCO);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

Next we need to configure the three GPIO pins to be analog inputs: Leave a line for
spacing and add this one after the last:

GPIOPinTypeADC (GPIO_PORTE_BASE, GPIO PIN 0 | GPIO_PIN 1 | GPIO_PIN 2);

For this lab, we’ll allow the ADC12 to run at its default 1IMSPS rate from the 16MHz
ADC clock. Reprogramming the sampling rate and input clock is left as an exercise for
the student. The reference voltage will remain configured as the internal default.

Next, we can configure the ADC sequencer. We want to use ADCO, sample sequencer 1,
we want the processor to trigger the sequence and we want to use the highest priority.

» Add a line for spacing and add this line of code:

ADCSequenceConfigure(ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, 9);

5-8 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

Lab06: ADC12

10. Now we need to configure three steps in the ADC sequencer. The first and second
configuration steps will instruct the ADC to sample the X and Y accelerometer outputs
(see the table in step 7 above). The third configuration step instructs the ADC to sample
the Z output, generate an interrupt and also tells the sequencer that this is the final sample
in the sequence. Just to keep things simple we won’t actually be interrupting the code,
just using the bit to indicate a ready state.

» Add the following three lines after the last:

ADCSequenceStepConfigure (ADCO BASE, 1, 0, ADC CTL CH3);
ADCSequenceStepConfigure (ADCO_BASE, 1, 1, ADC CTL CH2);
ADCSequenceStepConfigure (ADCO_BASE, 1, 2, ADC CTL_CH1|ADC_CTL IE|ADC CTL_END);

11. Now we can enable ADC sequencer 1. This is the last step to ready the sequencer and
ADC before we start them.

» Add a line for spacing and then add this one:
ADCSequenceEnable(ADCO_BASE, 1);
12. Still withinmain (), add a while loop to the bottom of your code.

» Add a line for spacing and enter these three lines of code:

while(1)
{
}

13. » Save your work.

As a sanity-check, click on the Build button. If you are having issues,
check the code on the next page:

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5-9

Lab06: ADC12

#include <stdint.h>

#include <stdbool.h>
#include "inc/hw memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/adc.h"

int main (void)

{
uint32 t ui32ACCValues[4];
volatile uint32 t ui32AccX;
volatile uint32_ t ui32AccY;
volatile uint32 t ui32AccZ;

SysCthlockFreqSet((SYSCTL7XTAL725MHZ | SYSCTL OSC MAIN | SYSCTL USE PLL |
SYSCTL_CFG_VCO_480), 120000000);

SysCtlPeripheralEnable (SYSCTL PERIPH ADCO) ;
SysCtheripheralEnable(SYSCTLiPERIPHiGPIOE);

GPIOPinTypeADC (GPIO PORTE BASE, GPIO PIN 0 | GPIO PIN 1 | GPIO PIN 2);

ADCSequenceConfigure (ADCO_BASE, 1, ADC TRIGGER PROCESSOR, O0);
ADCSequenceStepConfigure (ADCO_BASE, 1, 0, ADC_CTL_CH3);
ADCSequenceStepConfigure (ADCO_BASE, 1, 1, ADC CTL CH2);
ADCSequenceStepConfigure (ADCO_BASE, 1, 2, ADC_CTL_CH1|ADC_CTL_IE|ADC_CTL_END) ;

ADCSequenceEnable (ADCO _BASE, 1);
while (1)

{
}

When you build this code, may get a warning that the ui32ACCX, Y and Z values were
created but never used. Ignore this warning for now, we’ll add the code to use this array
later.

Inside the while (1) Loop

14. The indication that the sequencer and ADC processes are complete will be the ADC
interrupt status flag. It’s always good programming practice to make sure that the flag is
cleared before writing code that depends on it. This step will also clear the bit each time
our code completes the loop.

» Add the following line as your first line of code inside the while (1) loop:

ADCIntClear (ADCO_BASE, 1);

5 - 10Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

Lab06: ADC12

15. Now we can trigger the ADC conversion with software. ADC conversions can be
triggered by many other sources.

» Add the following line directly after the last:

ADCProcessorTrigger (ADCO_BASE, 1);

16. We need to wait for the conversion to complete. Obviously, a better way to do this would
be to use an actual interrupt, rather than waste CPU cycles waiting, but this is intended to
be a simple example of the ADC and sequencer in action.

» Add a line for spacing and then add the following three lines of code:

while(!ADCIntStatus (ADCO_BASE, 1, false))

{
}

17. When code execution exits the loop in the previous step, we know that the conversion is
complete and that we can read the ADC value from the ADC Sample Sequencer 1 FIFO.
The function we’ll be using copies data from the specified sample sequencer output FIFO
to a buffer in memory. The number of samples available in the hardware FIFO are copied
into the buffer, which must be large enough to hold that many samples. This will only
return the samples that are presently available, which might not be the entire sample
sequence if you attempt to access the FIFO before the conversion is complete.

» Add a line for spacing and add the following line after the last:

ADCSequenceDataGet (ADCO_BASE, 1, ui32ACCValues);

18. > Add these final three lines to move the values into some variables with more friendly
sounding names:

ui32AccX = ui32ACCValues|[O0];
ui32AccY = ui32ACCValues|[1];
ui32AccZ = ui32ACCValues|[2];

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP5 - 11

Lab06: ADC12

19. » Save your work and compare it with our code below:

#include <stdint.h>

#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/adc.h"

int main(void)

{
uint32 t ui32ACCValues[4];
volatile uint32_t ui32AccX;
volatile uint32_t ui32AccY;
volatile uint32_t ui32AccZ;

SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 120000000);

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCO);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_@ | GPIO_PIN 1 | GPIO_PIN_2);

ADCSequenceConfigure(ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
ADCSequenceStepConfigure(ADCO_BASE, 1, ©, ADC_CTL_CH3);
ADCSequenceStepConfigure(ADCO_BASE, 1, 1, ADC_CTL_CH2);
ADCSequenceStepConfigure (ADCO_BASE, 1, 2, ADC_CTL_CH1|ADC_CTL_IE|ADC_CTL_END);

ADCSequenceEnable (ADCO_BASE, 1);

while(1)

{
ADCIntClear(ADCO_BASE, 1);
ADCProcessorTrigger (ADCO_BASE, 1);
while(!ADCIntStatus(ADCO_BASE, 1, false))
{
}
ADCSequenceDataGet(ADCO_BASE, 1, ui32ACCValues);
ui32AccX = ui32ACCValues[0];
ui32AccY = ui32ACCValues[1];
ui32AccZ = ui32ACCValues[2];

You can also find this code inmainl . txt in your project folder.

5 - 12Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

Lab06: ADC12

Connect the Educational
BoosterPack

20. Disconnect the USB cable from your
LaunchPad and carefully connect the
Educational BoosterPack as shown to
BoosterPack connector 1. Connector 1 is
furthest from the Ethernet jack.
Reconnect your USB cable. If the LCD
backlight fails to illuminate, check your
connection.

Build and Run the Code

21. » Compile and download your
application by clicking the Debug button
on the menu bar. If you have any issues,
correct them, and then click the Debug
button again. After a successful build, the
CCS Debug perspective will appear.

22. P Click on the Expressions tab (upper
right). Remove all expressions (if there are any) from the Expressions pane by right-
clicking inside the pane and selecting Remove All.

» Find the ui32AccX, ui32AccY and ui32AccZ variables in the last three lines of
code. Double-click on each variable to highlight it, then right-click on it, select Add
Watch Expression and then click OK. Do this for all three variables, one at the time.

=)= Variables Qﬁ"&cpressinns s 2% B | o 5& Qf!‘| = '=_‘>| '%&-
Expression Type Value Address
(=)= uid2Acck unsigned int 0 (020000070
(=)= uid2Accy unsigned int 0 (020000074
(%)= uid2hccZ unsigned int 3187724738 020000078
mp Add new expression

Breakpoint

Let’s set up the debugger so that it will update our watch windows each time the code
runs. Since there’s no line of code after the variables are updated, we’ll choose the one
right before them and display the result of the last calculation.

23. P Set a breakpoint on the first
line of code in the while (1)
loop by double-clicking in the
blue area left of the line num-
ber.

while(1)

1
ADCIntClear(ADC@® BASE, 1);
ADCProcessorTrigger(ADCE BASE, 1);

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP5 - 13

Lab06: ADC12

24. » Right-click on the breakpoint symbol and select Breakpoint Properties ...
Find the Action line and click on the Remain Halted value. ﬁ-

» Click on the down-arrow that appears on the right and select Refresh All
Windows from the list. » Click OK.

«r Properties for

Breakpoint Properties & Breakpoint Properties

Properties Values
4 Hardware Configuration
: Type Breakpoint
& Debugger Response
Condition

> Skip Count 0
Action Refresh All Windows
4 Miscellaneous

Group Default Group
MName Breakpoint

This is what the IDE will do once the breakpoint has triggered and all logical conditions are Edit Property

met too

@ QK] [Cancel I

25. P Click the Resume button to run the program. If the Watch window does LIB
not immediately start updating, click the Suspend button and then the

Resume button again.

You should see the measured accelerometer values of x, y and z changing up and
down slightly. Changed values from the previous measurement are highlighted in yellow.
Tilt the boards back and forth. The directions of the axes are printed on the Educational
Boosterpack just left of button S1. You should quickly see the results on the display.

()= Variables &5 Expressions 52 =% [| g Lﬁ qﬁ‘| ey | 'f%'é-
Expressicn Type Value Address
()= uid2hcck unsigned int 2023 (020000050
(#)= uid2hccy unsigned int 211 (020000054
()= uid2hccs unsigned int 2838 020000058
mp Add new expression

» Note the range over which the variables change (not the rate of change, the amount).
Our ui32AccX value changed between approximately 2020 and 2030 when the board was
level. This can be the result of sensor noise, resolution or vibration. It would be a pretty
straightforward job to write some low-pass filter code to average the data, but the ADC
module already has this feature in hardware. Let’s try that.

5 - 14Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

Lab06: ADC12

Hardware averaging

26. P Click the Terminate button to return to the CCS Edit perspective. Iil

27. » Find the system peripheral initialization section of your code as shown below:

SysCtlPeripheralEnable(SYSCTL _PERIPH _ADCA);
SysCtlPeripheralEnable (SYSCTL PERIPH GPIOE);

Right after the SysCt1PeripheralEnable () APIs, » add the following line:
ADCHardwareOversampleConfigure (ADCO_BASE, 64);

Your code will look like this:

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCS);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
1 ADCHardwareOversampleConfigure(ADC® BASE, B64);

& W

J Pl P

The last parameter in the API call is the number of samples to be averaged. This number
can be 2, 4, 8, 16, 32 or 64. Our selection means that each sample in the ADC FIFO will
be the result of 64 measurements being averaged together.

28. » Build and download the code to your LaunchPad board. You may need to replace the
breakpoint as shown in step 22 if you cheated and loaded the solution. Run the program
and observe the variables in the Expressions window. You should notice that the range
over which it is changing is much smaller than before. Our ui32AccX value now changed
between approximately 2026 and 2029 when the board was level.

This code is saved inmain2 . txt in your project folder.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP5 - 15

Lab06: ADC12

Graphing

29. Watching the variables change in the Expressions view isn’t necessarily the
easiest way to visualize your data. Code Composer includes very powerful

30.

graphing features that allow you to see data, FFTs and even images.

» Halt code execution by clicking on the Suspend button.

» On the CCS menu bar,
click on Tools > Graph >
Single Time. When the

LI

Graph Properties

Property Value

a Data Properties

Graph Properties dlalog Acquisition Buffer Size 1 _

appears, make the Selections Dsp Data Type 32 bit unsigned integer _

shown on the right. Click IO”_dV‘“':llu”e”eme”t :

OK. Your graph will appear SarpG RAE e 1

at the bottom of the screen. Start Address Buid2AccX ==
4 Display Properties

» Click the Resume button Aods Display] true

Data Plot Style Line
to restart your code. Display Data Size 200
Grid Style Mo Grid

Since the graph
automatically scales
vertically, the display will
look pretty wild while the
noise is graphing. Tilt the
board left and right and
increase the maximum
values of the vertical axis.

Magnitude Display Scale Linear
Time Display Unit sample
Use Dc Value For Graph [false

If you like, you can add the
other two accelerometer
readings in order to see them
change simultaneously.

| Import Export | oK Cancel

[ta Single Time -1 L ;_‘ # »-RlEH =0
2800
2400
2000
1600

1200

T T T T T T T T T T T T T T T T T T T T
+70 +80 +80 +100 +110 +120 +130 +140 +150 +160 +170 +180 +190
sample

5 - 16Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

Lab06: ADC12

Calling APIs from ROM

31. Before we make any changes, let’s see how large the code section is for our existing

project.

» In the Project Explorer pane, expand the Debug folder under the 1lab06 project.
Double-click on 1ab06 .map.

» Click the Terminate button to return to the CCS Edit perspective.

32. When you build your project, CCS compiles and assembles your source files into
relocatable object files (.ol 7j). Then, in a multi-pass process, the linker creates an output
file (. out) using the device’s memory map as defined in the linker command (. cmd)
file along with any library (.1ib) files.. The build process also creates a map file (.map)
that explains how large the sections of the program are and where they were placed in the
memory map.

» In the 1ab06 .map file, find the SECTION ALLOCATION MAP and look for
. text like shown below. The .text section is where the linker positions your code.

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections

.intvecs B BapaaaEa BaBaE2E3

eoaeaene 280826208 tmdcl294ncpdt_startup_ccs.obj (.intwecs)
.init_array
* 5] geaaaane papapape UNINITIALIZED
text B BEBaE263 BaBaEdac
BeBBB205 aeaaalfc -1ib : sysctl.obj (.text:SysCtlClockFreqSet)
epaeaLaL BeBe8138 : gpio.obj (.text:6PIOPadConfigset)
534 b& main.obj (.text)

The length of our . text section is 8ach. P Check yours and write it here:

33. Remember that the Tiva C Series device on-board ROM contains the Peripheral Driver
Library. Rather than adding those library calls to our flash memory, we can call them
from ROM. This will reduce the code size of our program in flash memory. In order to do
so, we need to add support for the ROM in our code.

» Inmain.c, add the following include statement as the last ones in your list of
includes at the top of your code:

#tdefine TARGET_IS TM4C129 RA1l
#tinclude "driverlib/rom.h"

The TARGET _IS... definition will allow the linker to resolve the API’s locations in
ROM.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP5 - 17

Lab06: ADC12

34. » Now add ROM _to the beginning of every driverLib API call as shown below in
main.c:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/adc.h"
#define TARGET IS TM4C129 RA1l
#include "driverlib/rom.h"

int main (void)

{
uint32 t ui32ACCValues[4];
volatile uint32_ t ui32AccX;
volatile uint32 t ui32AccY;
volatile uint32 t ui32AccZ;

ROM SysCtlClockFregSet ((SYSCTL XTAL 25MHZ | SYSCTL OSC MAIN | SYSCTL USE PLL |
SYSCTL_CFG_VCO_480), 120000000) ;

ROM SysCtlPeripheralEnable (SYSCTL PERIPH ADCO) ;
ROM_SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOE) ;
ROM_ADCHardwareOversampleConfigure (ADCO_BASE, 64);

ROM GPIOPinTypeADC (GPIO PORTE BASE, GPIO PIN 0 | GPIO PIN 1 | GPIO PIN 2);

ROM_ADCSequenceConfigure (ADCO_BASE, 1, ADC_TRIGGER PROCESSOR, 0);

ROM ADCSequenceStepConfigure (ADCO_BASE, 1, 0, ADC CTL CH3);
ROM_ADCSequenceStepConfigure (ADCO BASE, 1, 1, ADC CTL CH2);

ROM ADCSequenceStepConfigure (ADCO BASE, 1, 2, ADC CTL CH1|ADC CTL IE|ADC CTL_END);

ROM_ADCSequenceEnable (ADCO_BASE, 1);

while (1)
{
ROM ADCIntClear (ADCO_BASE, 1);
ROM ADCProcessorTrigger (ADCO_BASE, 1);
while (!ROM ADCIntStatus (ADCO BASE, 1, false))
{
}
ROM ADCSequenceDataGet (ADCO_BASE, 1, ui32ACCValues);
ui32AccX = ui32ACCValues[0];
ui32AccY = ui32ACCValues[1l];
ui32AccZz = ui32ACCValues[2];

If you’re having issues, this code is saved in your lab folder as main3. txt.

5 - 18Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

Lab06: ADC12

Build, Download and Run Your Code

35. » Make sure that the breakpoint is still properly placed.

36. » Click the Debug button to build and download your code to flash memory. When the
process is complete, click the Resume button to run your code. When you’re sure that
everything is working correctly, click the Terminate button to return to the CCS Edit

perspective.

37. Check the SECTION ALLOCATION MAP in lab06.map. Our results are shown below:

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections

LAntvecs @ apaaazae aaeaa2as
BEERREEE aeRER2a83 tmdcl294ncpdt_startup_ccs.obj (.intwecs)

Linit_array
% @ apaaazae aaaaaaae UNINITIALIZED

.text @ aapaa2as aaeea3bc
BEaEa2aE Gaaealle . (.text)

The original length of our . text section was 8ach. The new size is 3bch.

This code takes less than half the flash memory that the previous one did.

Write your results here:

38. When you’re finished, close the graph, close the 1lab06 project and minimize Code
Composer Studio. Leave the Educational BoosterPack connected to your LaunchPad

board.

You’re done.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP5 - 19

Lab06: ADC12

5 - 20Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP

PWM and QEI

Introduction

Pulse width modulation or PWM is a method of digitally encoding analog signal levels. It is used
extensively in servo positioning, motor control, power supplies and lighting control. The QEI is
used to determine position and velocity information.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7-1

Chapter Topics

Chapter Topics
PWM and QEI 7-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens 7-2
Pulse Width MOGUIGTIONccc.ccoviviiciiiiiiiiiiiiiiiiiee ettt 7-3
TMACI29INCPDT PWM ...ttt ettt 7-4
PWM Generator and Control BIOCK FeQIUFESc.cccocimiciiiiiiniciiinieiieeeteeteee et 7-5
BIOCK DIGZFAINS ..ottt 7-6
OET MOGUIC..........coooeiiiiiiiii et ettt ettt 7-7
LD 07 PWM ..ot ettt ettt etttk ettt b ettt 7-9
(00) 1o 5 4 £ SRS 7-9
7-2 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI

Pulse Width Modulation

Pulse Width Modulation

Pulse Width Modulation

Pulse Width Modulation (PWM) is a method of digitally encoding
analog signal levels. High-resolution digital counters are used to
generate a square wave of a given frequency, and the duty cycle
of that square wave is modulated to encode the analog signal.

Typical applications for PWM are switching power supplies,
motor control, servo positioning and lighting control.

Features ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7-3

TM4C1294NCPDT PWM

TM4C1294NCPDT PWM

TM4C1294NCPDT PWM Module

The TM4C1294NCPDT has one PWM module with:
¢ four PWM generator blocks

¢ a control block which determines the polarity of the signals and which signals
are sent to the pins

Each PWM generator block produces:

¢ Two independent output signals of the same frequency or ...

¢ A pair of complementary signals with dead-band generation (for H-bridge circuit protection)
¢ For a total of eight outputs

Each PWM Generator has:

¢ Four hardware fault inputs for low-latency shutdown and motor protection

¢ One 16-bit counter:
Down or Up/Down count modes
Output frequency controlled by a 16-bit load value
Load value updates can be synchronized
Produces output signals at zero and load value

Generator Features ...

7-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI

PWM Generator and Control Block Features

PWM Generator and Control Block Features

PWM Generator Features

¢ Two PWM comparators ‘
Comparator value updates can be synchronized |

Additionally, each PWM Generator has: T r A AAT
|
Produces output signals on match ‘ ‘ | |

0

¢ PWM signal generator

Output PWM signal is constructed based on actions taken as a result of the
counter and PWM comparator output signals

Produces two independent PWM signals
¢ Dead-band generator

Produces two PWM signals with programmable dead-band delays suitable for
driving a half-H Bridge

Can be bypassed, leaving input PWM signals unmodified
¢ Candirectly initiate an ADC sample sequence

Control Block Features ...

PWM Control Block

The PWM Control Block has the following options:

PWM output enable of each PWM signal

Optional output inversion of each PWM signal (polarity control)

Optional fault handling for each PWM signal

Synchronization of timers in the PWM generator blocks

Synchronization of timer/comparator updates across the PWM generator blocks

L K JER JER R 2R 2

Extended PWM synchronization of timer/comparator updates across the
PWM generator blocks

*

Interrupt status summary of the PWM generator blocks

*

Extended PWM fault handling, with multiple fault signals, programmable polarities
and filtering

¢ PWM generators can be operated independently or synchronized with other generators

PWM module block diagram ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7-5

Block Diagrams

Block Diagrams

PWM Module Block Diagram

PVWM Clock e |
Triggers 1 Faults Ly P“’"'C““ - PWMO
e -
; PWM pwmiE’ >
8 Clock PWM 1
bl oo - Control and Generator() pwmbfault gt ——
-
Status
PWMCTL
PWMSYNC - .
PWMSTATUS L Ll > PWM 2
PWMPP o PWM pwm1E’ =
™| Generator 1 = PWM PWM 3
pwmfauit oy -
Output
Interrupt g
- Control
PWMINTEN > > M4
4F
LCL PWMRIS ; PWM pwm28 > Logic R
PWMISC Generator 2 " o °p
__Triggers
> pemSA . PWM &
- L 4’,
- Output o PWM pwm3E s
PWMENABLE —| Generator3 | . O L PMT gy
PWMINVERT Lagl
PWMFAULT ‘
PWMFAULTVAL
PWMENUPD

PWM generator block diagram ...

PWM Generator Block Diagram

SR et b e TR e e e e T e e e
| PWM Generator Block I

|
il Imerru[ns.i! |
W Tnggers | Interrupt and Fault |
: Trigger Condition |
P Generator | i

| Control - - BWMNELTSRCO Digital Trigger(s)

| | [PWMNINTEN PWMNFLTSRC1 | Faults)

| PWMnCTL - PWMnRIS PWMnMINFLTPER| ———
| — - PWMNISC PWMNFLTSEN |
I PWMNFLTSTATO I
: PWMNFLTSTATT I
|
| Timer i |
| load |

dir nfault

: PWMINLOAD | TR
| FAVMNCOUNT :
! I
I I
| : Dead-Band |

| - Signal pwmA Generator P
| Comparators - Generator Ll |

| cmpA > pwmB_ | [PWMNDBCTL ! pwmB'

AT | PWMNCMPA - [PWMnGENA | 1 [PWMnDBRISE
ock cmpB |
PWMNCMPB | | PWMNGENB | PWMRDBFALL |
! I
! I
O R -4
QEl ...

7-6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI

QEI Module

QEI Module

Quadrature Encoder Interface (QEI) Module Features

The QEI module interprets the signals produced by a quadrature encoder
wheel to integrate position over time and determine direction of rotation.

Also, it can create a running estimate of the encoder wheel velocity.

The TM4C1294NCPDT microcontroller has one QEI module
with the following features:

¢ Position integrator that tracks the encoder position
Programmable noise filter on the inputs

*

¢ Velocity capture using built-in timer

¢ Position, velocity and timer registers are 32-bit
*

The QEI input rate may be as high as
1/4 of the processor frequency

¢ Interrupts are generated on:
Index pulse
Velocity-timer expiration

Direction change

Quadrature error detection

Block diagram ...

QEI Module Block Diagram

Control & Status Velocity Timer

QEISTAT

Velocity Accumulator

Velocity QEICOUNT
l—:lk

Predivider QEISPEED

[

PhA —>

QEIMAXPOS
Paosition Integrator

IDX ?

—> QEIINTEN

Interrupt Control > Interrupt
QEISC

¢ The index (IDX) signal can be used to reset the position counter
when tracking longer events like conveyor belts

Quadrature

PhE Encoder | gir

Lab ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7-7

QEI Module

7-8 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI

Lab 07: PWM

Lab 07: PWM

Objective

In this lab you’ll use the PWM on the Tiva C Series device to control the illumination of the blue
segment of the RGB LED on the Educational BoosterPack. The PWM would support varying all
three LEDs, but in the interest of simplicity, we will just vary one.

Lab07: PWM

USB Emulation l

Connection

¢ Configure the PWM output, frequency
and duty cycle

¢ Add code to control the illumination of
the blue LED

¢ Test Agenda ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7-9

Lab 07: PWM

Procedure

1. We have already created the 1lab07 project for you with an empty main. c, a startup file
and all necessary project and build options set.

» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

w+ Import CCS Eclipse Projects

Select Existing CC5 Eclipse Project
Select a directory to search for existing CC5 Eclipse projects.

1@ Select search-directory: CA\TM4C1294_Connected_LaunchPad_Workshop\lah07 Browse...

| B

(71 Select archive file: Browse...

Discovered projects:
& 1ab0? [CATMAC1294_Connected_LaunchPad_Workshoptlab07] Select All
Deselect All

Refresh

["| Copy projects into workspace
[Autornatically import referenced projects

Open the Resource Explorer and browse available example projects...

Cancel

@ Finish |

_

7-10 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI

Lab 07: PWM

2. P Open main.c and add (or copy/paste) the following lines to the top of the file:

#include <stdint.h>

#include <stdbool.h>
#include <math.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/fpu.h"
#include "driverlib/gpio.h"
#include "driverlib/debug.h"
#include "driverlib/pwm.h"
#include "driverlib/pin map.h"
#include "inc/hw_gpio.h"

There are a couple of extra includes here:

math.h —needed because we’ll be using a sine function to vary the LED
fpu.h — some of the math is floating point, so this is needed
pwm.h — to support the calls to the PWM APIs

3. In order for the LED to not appear to blink, it needs the blink faster than 20 or 30Hz.
We’ll pick 100Hz. The STEPS definition is the number of light levels the loop will
calculate. You can figure out what APP_PI is for yourself. The trailing “f” casts it as a
floating point number.

» Skip a line and add the following definitions right below the includes:

#define PWM_FREQUENCY 100|

#define APP PI 3.1415926535897932384626433832795f
#define STEPS 256
main()

4. » Skip a line and enter the following lines after the error checking routine as a template
for main().

int main (void)

{
}

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7-11

Lab 07: PWM

10.

11

The following variables will be used to program the PWM. They are defined as “volatile”
to guarantee that the compiler will not eliminate them, regardless of the optimization set-
ting.

» Insert these lines as the first inmain () :

volatile uint32 t ui32Load; // PWM period

volatile uint32_t ui32BlueLevel; // PWM duty cycle for blue LED
volatile uint32_t ui32PWMClock; // PWM clock frequency

volatile uint32_t ui32SysClkFreq; // Value returned by SysClockFregSet ()
volatile uint32_t ui32Index; // Counts the calculation loops

float fAngle; // Value for sine math (radians)

Let’s run the CPU again at 120MHz. P Leave a line for spacing and add this line after
the previous ones inmain () .

ui32SysClkFreq = SysCtlClockFreqSet ((SYSCTL XTAL 25MHZ | SYSCTL OSC_MAIN
| SYSCTL USE PLL | SYSCTL_CFG_VCO_480), 120000000) ;

. We need to enable the PWMO and GPIOG modules (for the PWM output on PGO0) and

the GPIOF module (to make sure the red and green LEDs are off
» Skip a line and add the following lines of code after the last:

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOG) ;
SysCtlPeripheralEnable (SYSCTL PERIPH_ GPIOF) ;
SysCtlPeripheralEnable (SYSCTL PERIPH_ PWMO) ;

Let’s make sure that the red and green LEDs are off. They are on PF2 and PF3.
» Skip a line and add the following lines of code after the last:

GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, GPIO_PIN_2|GPIO_PIN_3);
GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN 2|GPIO_PIN 3, 0x00);

Now let’s set the PWM clock. The SysClk frequency is 120MHz. Let’s slow the PWM
clock down as far as it will go (/64). It’s important to make sure your choice of PWM
clock matches the application and range of values you want to run.

» Skip a line and add this line after the last:

PWMClockSet (PWMO BASE,PWM_SYSCLK DIV 64) ;

Now configure the PGO pin to PWM. » Skip a line and add these two lines after the last:

GPIOPinConfigure (GPIO_PGO_MOPWM4) ;
GPIOPinTypePWM(GPIO_PORTG_BASE, GPIO_PIN_O);

. Next we‘ll calculate the PWM clock and load values. The PWM clock is the SysClk/64.

The load value is the number of PWM clock cycles per the selected output period
(100Hz). Since the PWM reloads at zero, we subtract one.» Skip a line and add these
two after the last:

ui32PWMClock = ui32SysClkFreq / 64; // 120MHz/64
ui32Load = (ui32PWMClock / PWM _FREQUENCY) - 1; // 1875000/100

7-12

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI

Lab 07: PWM

12. This code will complete the PWM configuration. Line 1 sets PWM 0, generator 2 in
count-down mode. Line 2 sets the period as calculated earlier. This should be 18749.
Line 3 configures the output pin and a preliminary duty cycle. We’ll change this later.
Line 4 selects the desired output and line 5 enables the PWM generator.

» Skip a line and add this code below the last:

PWMGenConfigure (PWMO_BASE, PWM GEN_2, PWM GEN_MODE DOWN) ;
PWMGenPeriodSet (PWMO_BASE, PWM | GEN 2, u132Load)
PWMPulseW1dthSet(PWMO BASE, PWM | OUT_4, ui32Load/2);
PWMOutputState (PWMO_BASE, PWM OUT 4 BIT true) ;
PWMGenEnable (PWMO_ BASE, PWM | GEN 2) ;

13. Now that the PWM is configured and enabled, all that is necessary is to change the pulse
width in order the vary the LED intensity. The code below first calculates the angle (in
radians) based on the index. The next step shifts the sine value up by 1 (to avoid negative
values) and multiples it by a little less than }2 the number of PWM clock cycles per
period. Lowering the maximum value prevents the possibility of a result larger than
ui32Load. Then we can set the pulse width for output 4, adding 1 to prevent a zero
value. The 1 f construct makes sure the index stays between 0 and 255. Finally the delay
forces the entire 256 iterations to take about 3 seconds so that it’s visually pleasant.

» Skip a line and add the following code after the last inside the while (1) loop.

ui32Index = 0;

while (1)
{
fAngle = ui32Index * (2.0f * APP_PI/STEPS);
ui32Bluelevel = (uint32_t) (9370.0f * (1 + sinf(fAngle)));
PWMPulseWidthSet (PWMO_BASE, PWM OUT_4, ui32BlueLlevel + 1);
ui32Index++;
if (ui32Index == (STEPS - 1))
{
ui32Index = 0;

}
SysCtlDelay (ui32SysClkFreq/ (STEPS)) ;

» Save your changes.

Your final code should look something like the next page. If you’re having issues, you
can find this code in your lab07 project as main. txt.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7-13

Lab 07: PWM

#include <stdint.h>

#include <stdbool.h>

#include <math.h>

#include "inc/hw memmap.h"
#include "inc/hw types.h"
#include "driverlib/sysctl.h"
#include "driverlib/fpu.h"
#include "driverlib/gpio.h"
#include "driverlib/debug.h"
#include "driverlib/pwm.h"
#include "driverlib/pin map.h"
#include "inc/hw gpio.h"

#define PWM FREQUENCY 100
#define APP PI 3.1415926535897932384626433832795f
#define STEPS 256

int main (void)

{
volatile uint32 t ui32Load;
volatile uint32 t ui32Bluelevel;
volatile uint32 t ui32PWMClock;
volatile uint32 t ui32SysClkFreq;
volatile uint32 t ui32Index;
float fAngle;

ui328ysClkFreq = SysCtlClockFreqgSet ((SYSCTL XTAL 25MHZ | SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL | SYSCTL_CFG_VCO 480), 120000000) ;

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOG);
SysCtlPeripheralEnable (SYSCTL_ PERIPH GPIOF);
SysCtheripheralEnable(SYSCTLiPERIPHiPWMO);

GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 2|GPIO PIN 3);
GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 2|GPIO PIN 3, 0x00);

PWMClockSet (PWMO BASE, PWM SYSCLK DIV 64);

GPIOPinConfigure (GPIO PGO_MOPWM4) ;
GPIOPinTypePWM (GPIO PORTG BASE, GPIO PIN 0);

ui32PWMClock = ui32SysClkFreq / 64;
ui32Load = (ui32PWMClock / PWM_FREQUENCY) - 1;

PWMGenConfigure (PWMO BASE, PWM GEN 2, PWM GEN MODE DOWN) ;
PWMGenPeriodSet (PWMO_BASE, PWM GEN_2, ui32Load);

PWMPulseWidthSet (PWMO BASE, PWM OUT 4, ui32Load/2);
PWMOutputState (PWMO BASE, PWM OUT 4 BIT, true);
PWMGenEnable (PWMO BASE, PWM GEN 2);

ui32Index = 0;
while (1)

{
fAngle = ui32Index * (2.0f * APP PI/STEPS);

ui32BluelLevel = (uint32 t) (9370.0f * (1 + sinf (fAngle)));
PWMPulseWidthSet (PWMO_BASE, PWM OUT_4, ui32BluelLevel + 1);
ui32Index++;

if (ui32Index == (STEPS - 1)

{
ui32Index = 0;

}
SysCtlDelay (ui32SysClkFreq/ (STEPS)) ;

7-14 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI

Lab 07: PWM

Build and Run the Code

14. Make sure your LaunchPad is connected and that Educational BoosterPac is
properly installed. » Compile and download your application by clicking #;z_-.ﬁl
the Debug button. Correct any errors.

15. » Click the Resume button to run the program. You will see the blue Led B’
on the Educational BoosterPack dimming and brightening over about 3 I_I
seconds.

16. » When you’re finished, click the Terminate button to return to the Editing Iil
perspective, close the 1ab07 project and minimize Code Composer Studio.

Homework: Expand on this code to vary all three LEDs. If you look in the ek-tm4c123gx1
folder in TivaWare you’ll find an example that does something like this. A part of the code
performs a “color wheel” by mixing and matching all three LEDs to produce many different
colors. Give this a try.

You’re done with Lab07

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7-15

Lab 07: PWM

7-16 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI

I2C & SensorLib

Introduction

I°C or Inter-Integrated Circuit is a multi-master serial computer bus, mainly used for connecting
low speed peripherals to a microcontroller. One of the most popular uses today is to connect
environmental sensors that measure position, temperature, humidity, light, etc. to a
microcontroller for use in control, logging, gaming and other uses.

With that in mind, TI created a SensorHub BoosterPack with a number of different sensors
connected to a single I’C bus. A Sensor Library was created to make it easy to communicate with
those sensors.

The Educational BoosterPack has two I°C sensors; the TI TMP006 Infrared Temperature sensor
(address 0x40) and the TI OPT3001 ambient light sensor (address 0x44).

In this chapter we’ll learn about the I’C hardware on the TM4C1294NCPDT and we’ll take a
look at code to communicate with the ambient light sensor on the Educational BoosterPack. Then
we’ll use a Code Composer tool called GUI Composer to visualize the sensor data.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8- 1

Chapter Topics

Chapter Topics

I’C & SensorLib 8-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens §8-2
TMACI294NCPDT I C POFLS.........vveooeeeeeeeeeeo e 8-3
SEUSOTHUD. ..ottt ettt ettt bttt bttt ne e ene s 8-4
SEHSOF LIDFAFY ...ttt ettt ettt ettt et et e b e s e e ssesbaebeesseeneesaeensbeena e 8-5
GUI COMPOSET ...ttt ettt ettt ettt ettt §-7
Lab08: FC and Sensor Library USAe...................coo.oeeoeeeeeeeoeeeeeeeeeeeeeeeeeeee e 8-9

ODJECLIVE ..veeuveeieeieieeteeie et ete st et e et et et eesaeesee st ensaesaee st esseesseeseanseanseanseeaseensesnsesseenseensesnsesseennsenssenseens 8-9
PrOCEAUIE ...ttt ettt ettt et e et e ae e e s et e bt enteeseeebee b e enaeeeaeeneenes 8-10

8-2 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

TM4C1294NCPDT 12C Ports

TM4C1294NCPDT I°C Ports

TM4C1294NCPDT I2C Ports
dma_done: dma_req dee_seey intermupt
Four independent [T T, l __n‘ _{‘_ ‘} _________ |
“Inter-Integrated Circuit” ports : |r i cas | |
I | [| ‘
ey |
Each port supports: :) : TR : }
¢ Transmit or Receive as Master : e : = : [
or Slave : . : £ : - }
¢ Simultaneous master and slave T neeo © | [(mmemme | || pes }
operation : e e g |
¢ 8-entry TXand RX FIFOs : l:::_,:_,l o [} |
| ¢ 2CSCL
« 100, 400, 1000 & 3330 Kbps ! ! oy 1 P | 8 Lo
o Glitch suppression ! ‘ =1 L
+ DMA enabled i e B A : }
| oo
= | |
: crvosers = }
| el | |
| \
L
_:;?F.J:; RpuP
5 f "1] e e
e | 2 oo Each slave device has
Stetaris® | S rony Dere || e iy Deee its own unique address
SensorHub ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

8-3

SensorHub

SensorHub

Tiva™ SensorHub BoosterPack Features

¢ Sensor library was originally written to support the SensorHub
¢ All sensors connected to I2C bus:
Tl TMP0O06 no contact temperature sensor (0x41)
Bosch BMPP180 ambient pressure sensor (0x77)
Invensense MPU-9150 9-axis motion sensor (0x68)
Intersil ISL29023 ambient & infrared light sensor (0x44)
Sensirion SHT21 humidity & ambient temperature sensor (0x40)

¢ BoosterPack XL connectors T [
LI

(compatible with earlier BoosterPack L s
connectors)

¢ EM board connectors
(for TI's wireless RF evaluation kits)

¢ 2 buttons & 2 LEDs
¢ MSRP $49.99 USD

1,90

BOOSTXL-SENSHUB

Sensor Library ...

8-4

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

Sensor Library

Sensor Library

TivaWare™ Sensor Library

Drivers for the microcontroller I2C port
Examples for each SensorHub sensor
Functions for manipulating magnetometer readings
Direct Cosine Matrix (DCM) sensor fusion Algorithm

Combines 9 axes of motion (accelerometer, magnetometer & gyroscope)
sensed by the Invensense MPU-9150 into 3 Euler angles

Example c reads the sensors and applies
the DCM algorithm to the data

¢ Vector operations
VectorAdd ()
VectorCrossProduct ()
VectorDotProduct ()
VectorScale ()
¢ CCS, Keil & IAR IDEs
supported
¢ TivaWare DriverLib under
TI BSD-style license

* 6 o o

Sensor Library Examples ...

TivaWare™ Sensor Library Examples

airmouse

¢ fuses motion data into mouse and keyboard events
compdcm_mpu9150

¢ basic data gathering from the MPU-9150
drivers

« for buttons and LEDs
humidity_sht21

¢ periodic measurements of humidity
light_isl29023

¢ uses measurements of ambient visible and IR light to control the “white” LED
pressure_bmp180

¢ periodic measurements of air pressure and temperature
temperature_tmp006

¢ periodic measurements of ambient and IR temperatures to calculate actual
object temperature

Sensor Library Usage ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8-5

Sensor Library

TivaWare™ Sensor Library Usage

The Sensor library is a consistent APl with the following general
flow for all sensors, which makes it easy to leverage
the library for custom I2C sensors

For instance, to interface with the TMP006:

Initialize 12C pins and I2C peripheral normally

Initialize the 12C driver I2CMinit()

Initialize the TMP006 TMPOO06Init()

Configure the TMP006 TMPO06ReadModifyWrite()

Read data from the TMP006 TMPOO6DataRead()

Convert data into temperature TMP006DataTemperatureGetFloat()

® 6 6 O 0 o

GUI Composer ...

8-6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

GUI Composer

GUI Composer

Code Composer Studio GUI Composer

¢ Allows you to create GUI applications that provide:
Visibility into what is happening in the target application
The ability to control target variables

JTAG, Serial or
Ethernet

¢ Can be used while debugging with CCS (JTAG or serial
connections)
CCS Plug-in
¢ Or as a stand-alone application (serial or Ethernet connection)
¢ Requires GUI Composer runtime

Widgets ...

GUIs are Comprised of Widgets

¢ GUI Composer Applications are made up of HTML5 widgets
¢ Control widgets (dials, edit boxes...)

Lets you adjust the value of target variables
¢ Display widgets (meters, graphs, lights...)

Shows the value of target variables

Lab ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8-7

GUI Composer

8-8 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

Lab08: 12C and Sensor Library Usage

Lab08: I°C and Sensor Library Usage

Objective

In this lab you will examine a simple sensor application using the TI OPT3001 ambient light
sensor on the Educational Boosterpack using the Sensor Library. You will also use GUI

Composer to visualize the data.

Lab08: I2C and Sensor Library Usage

USB Emulation
Connection

OPT3001

¢ Create a simple program to read
data from the OPT3001 light sensor on
t?ce: Educational BoosterPack across the
I°C bus

¢ Display the results in Code Composer
¢ Use GUI Composer to create a simple

display interface

Agenda ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8- 9

Lab08: I12C and Sensor Library Usage

Procedure

Import the Project

1. » Make sure that the Educational BoosterPack is still connected to your LaunchPad
board. If you’ve skipped ahead to this lab, refer to 1ab07 for the proper connection of the

BoosterPack.

2. Creating this code from a blank page would be pretty tedious, so we have already created

the entire 1ab08 project for you to examine.

» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish

-

w» Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5 Eclipse projects.

1@ Select search-directory: CA\TM4C1294_Connected_LaunchPad_Workshop'lab0d

() Select archive file:

Discovered projects:

17 1ab08 [CATMAC1294_Connected_LaunchPad_Workshopilab08]

[C] Copy projects into workspace
[Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

Browse...

Select All

Deselect All

Refresh

@j Finish

Cancel

8-10 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

Lab08: 12C and Sensor Library Usage

Sensor Library and stack size 4 12 lab08 [Active - Debug]
, 91:;" Binaries

3. P Expand the lab08 project in the Project . &) Includes

Explorer pane. Since this project will be using

. . . e D h
the sensor library, note that it has been linked to ‘d’ e R
the project. (= targetCenfigs
- L] main.c

4. » Right-click on the 1ab08 project and select
Properties. Click on ARM Linker - Basic
Options. Note that the C system stack size has
been increased to 512. If your application uses
the stack heavily, it’s usually a good idea make
the stack larger than you think you’ll need
rather than track down stack overrun issues. An easy way to determine how much stack
you’re actually using is to initialize the stack with a known value like 0xDEADDEAD. If
you run out of these initialized locations, your code is dead. » Close the Properties
dialog by clicking Cancel.

+ [€ tm4c1294ncpdt_startup_ccs.c
- g tm4cl 294 ncpdt.omd

By driverlib.lib

5 main.tt

By sensorlib.lib

Heap size for C/C++ dynamic memaory allocation (--heap_size, -heap) 0

Set C system stack size (--stack_size, -stack) 512

Hardware

5. The I’C connections from the Educational BoosterPack need to be mapped to the correct
microcontroller pins and functions. Let’s keep the BoosterPack connected to BoosterPack
connector 1. The schematics and User’s Guide were used to come up with the table
below. It looks like we’ll be using I°C module 0.

BoosterPack | BoosterPack LaunchPad Configuration
Function Connector Pin/Function Parameter
12C_SCL J1-9 PB2 /12C0 Clock 12CO0SCL
12C_SDA J1-10 PB3 /12C0 Data [2COSDA

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8- 11

Lab08: I12C and Sensor Library Usage

Software

6. P Double-click on main. c to open it in the editing pane. We’ll be skipping around the
code, but let’s begin at the top.

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_ints.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "sensorlib/i2cm_drv.h"

You probably recognize most of these except for the last one. 12cm_drv. h provides
access to the I’C master software in the sensor library.

7. Just below the includes you’ll define a single define and some global variables. The
define is the I°C address of the OPT3001from the Educational BoosterPack schematic.
The variables from top to bottom are the I°C configuration instance, the data ready and
error flags and finally the variable for our resulting light reading.

#tdefine OPT3001 I2C_ADDRESS ox44
tI2CMInstance g_sI2CInst;

volatile uint_fast8 t g vuiB8DataFlag;
volatile uint_fast8_t g vui8ErrorFlag;
volatile uintl6_t uil6Ambient;

8. Below the globals are three functions; OPT3001AppCallBack (),
OPT3001AppErrorHandler and OPT3001I2CIntHandler. We’ll look more at
the first two later. The third is the interrupt handler for I2CO that calls the sensor library’s
built-in interrupt handler. » Double-click on tm4c1294ncpdt startup ccs.c
and find the entry for I2C0 Master and Slave. You’ll see that the vector points to this
handler. » Close the startup file.

IntDefaultHandler, // SSIO@ Rx and Tx
OPT3001I2CIntHandler, // I2C0@ Master and Slave
IntDefaultHandler, // PWM Fault

8- 12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

Lab08: 12C and Sensor Library Usage

main()

9. Next is the first part of the setup code.

Local variables are first ... the last two are the data and commands that will be sent
across I°C port 0.

Set SysClk to 120MHz.
The next nine lines were taken from the Pin Muxing tool output:

Enable modules 12C0, GPIOB (where the 12C0 pins are) and GPION (where the users
LEDs are).

Configure 12C0 SDA and SCL pins, then configure the user LED pins as outputs and
make sure they’re off.

Last, turn on the master interrupt enable.

uintl6_t uil6Result;
uintl6_t uil6Exponent;
uint32_t ui32SysClkFreq;
uint8_t ui8RegisterOne;
uint8_t ui8RegisterZero;
uint8_t pui8Data[2];
uint8 t pui8Command[3];

ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL 25MHZ |
SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 120000000);

SysCtlPeripheralEnable(SYSCTL_PERIPH_I2(C9);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION);

GPIOPinConfigure(GPIO_PB3_I2COSDA);
GPIOPinTypeI2C(GPIO_PORTB_BASE, GPIO PIN_3);

GPIOPinConfigure(GPIO_PB2_I2COSCL);
GPIOPinTypeI2CSCL(GPIO PORTB_BASE, GPIO PIN_2);

GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_O|GPIO_PIN_1);
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN ©|GPIO_PIN 1, 0x00);

IntMasterEnable();

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8- 13

Lab08: I12C and Sensor Library Usage

10. These steps finalize the initialization. » You’ll find it helpful to open the Sensorlib
user’s guide located in the docs folder inside your TivaWare installation.

I2CMInit () prepares the 12C port and driver for operation. We select our instance, 12CO0, the
interrupt number, the TX and RX DMA channels (0xFF means OFF) and the clock frequency.

Next we can initialize the commands to be sent to the OPT3001. » Open the OPT3001
datasheet to see the command structure. Then we can send these commands over 12CO to
the OPT3001. Note the callback function is one that we looked at earlier. This function is
called when the write has been completed.

OPT3001AppCallback () is a blocking function since it will wait for the write to
complete before setting the data and error flags. This function is also available from the
sensor library as a non-blocking call.

The following code either waits for the flags or calls the
OPT3001AppErrorHandler () function if an error has occurred.

I2CMInit(&g_sI2CInst, I2C@ BASE, INT_I2CO, oxff, Oxff, ui32SysClkFreq);

pui8Command[@] = 1; // register to be written
pui8Command[1] = OxCC; // auto, 800ms, continuous mode
pui8Command[2] = 0x10; // latch mode on.

I2CMWrite(&g_sI2CInst, OPT3001_I2C_ADDRESS, pui8Command, 3,
OPT3001AppCallback, 0);

//
// Wait for the OPT3001 to signal that data is ready.

//
while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0))
{
}

//

// If an error occurred call the error handler immediately.

//
if(g_vui8ErrorFlag)

{
OPT3001AppErrorHandler(__FILE_, _ LINE_);

8- 14 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

Lab08: 12C and Sensor Library Usage

while(1) loop

11. The code on the next page is the beginning of the while () loop.

Right before the loop we’ll initialize a couple of variables. The sensor library API calls
we’ll be using need pointers to these variables, so we can’t use the numbers themselves.

We’ve configured the OPT3001 to sample continuously every .8 seconds. The
SysCtlDelay () delay of .2 seconds will cause the sample to occur once per second.
The GPIOPinWrite () API will turn off the user LEDs will be turned on after the data
read is successful.

The innermost while (1) loop performs a read every 0.1 seconds of register one in the
OPT3001 to determine if the sample of the light sensor has been completed If it has
completed successfully, the last i £ () statement breaks from the while (1) loop.

Now we can use the sensor library API 2CMRead() to read the data from OPT3001
register 0. If that read completes successfully we’re ready to format the received data.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8- 15

Lab08: I12C and Sensor Library Usage

ui8RegisterOne = 1;
ui8RegisterZero = 0;

while(1)
{
SysCtlDelay(ui32SysClkFreq / (3 * 10));
GPIOPinWrite(GPIO PORTN_BASE, GPIO PIN ©|GPIO PIN 1, 0x00);

while(1)
{
/7
// Delay for 0.1 second. Default readings occur every 800ms.
/7

SysCtlDelay(ui32SysClkFreq / (3 * 100));

I2CMRead(&g_sI2CInst, OPT3001_I2C_ADDRESS, &ui8RegisterOne, 1,
pui8Command, 2, OPT30@01AppCallback, 0);

while((g_vui8DataFlag == @) && (g_vui8ErrorFlag == 0))

{
}

!/

// If an error occurred call the error handler immediately.

//
if(g_vui8ErrorFlag)

{
}

OPT3001AppErrorHandler(__FILE__, _ LINE_);

if(pui8Command[1] & 0x80)
{

}

break;

}

I2CMRead(&g_sI2CInst, OPT3001_I2C_ADDRESS, &ui8RegisterzZero, 1,
pui8Data, 2, OPT3001AppCallback, 0);

//

// wait for the OPT3001 to signal that data is ready.
//

while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0))
{

}

//

// If an error occurred call the error handler immediately.
//

if(g_vui8ErrorFlag)

{
¥

OPT3001AppErrorHandler(__FILE__, _ LINE_);

8-16 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

Lab08: 12C and Sensor Library Usage

Data Formatting
12. The first line resets the data ready flag for the next iteration.

At this point the light sensor data is sitting in the pui8Data array, with the upper 8-bits
inpui8Data[0] and the lower 8-bits in pui8Data [1]. The first three lines format
that data into a single 16-bit number.

It’s not quite that simple though, since the upper 4-bits are the exponent and the lower
12-bits are the mantissa. In order to get a single 16-bit integer result we need to scale the
mantissa. This will result in the correct result for all but the very largest readings from the
OPT3001, which we’re unlikely to achieve in the workshop without shining a laser in the
Sensor.

The final line of code turns on the LaunchPad’s user LEDs to indicate the successful
sensor read. At this point ui16Result contains the formatted data value in lux. We’ll
drop that into the global variable uil 6Ambient ... more on the reason for that in a bit.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8- 17

Lab08: I12C and Sensor Library Usage

g vui8DataFlag = 0; // Reset the flag

uil6Result = pui8Datal[0];
uilo6Result <<= 8;
uil6Result |= pui8Datall];

uil6Exponent = (uil6Result >> 12) & 0x000F;
uil6Result = uil6Result & OxOFFEF;

//convert raw readings to LUX
switch (uil6Exponent) {

case 0: //*0.015625
uil6Result = uilo6oResult>>6;
break;

case 1: //*0.03125
uil6Result = uil6Result>>5;
break;

case 2: //*0.0625
uilo6Result = uiloResult>>4;
break;

case 3: //*0.125
uil6Result = uilo6Result>>3;
break;

case 4: //*0.25
uilo6Result = uiloResult>>2;
break;

case 5: //*0.5
uil6Result = uil6Result>>1;
break;

case 6:
uil6Result = uil6Result;
break;

case 7: //*2
uilo6Result = uiloResult<<l;
break;

case 8: //*4
uil6Result = uil6Result<<2;
break;

case 9: //*8
uilo6Result = uiloResult<<3;
break;

case 10: //*16
uil6Result = uil6Result<<4;
break;

case 11: //*32
uil6Result = uil6Result<<5;
break;

}
GPIOPinWrite (GPIO PORTN BASE, GPIO PIN 0|GPIO PIN 1, GPIO PIN 0 | GPIO PIN 1);
uil6Ambient = uil6Result;

8- 18 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

Lab08: 12C and Sensor Library Usage

Build and Download your Project

13. » Build and download the program to the flash memory of the
TM4C1292NCPDT by clicking on the Debug button on the CCS menu bar. If ﬁ:\

you accidentally made any changes to main. c, don’t save them.

Watch Expressions and Breakpoints

14. » Click on the Expressions tab in the Watch and Expressions pane. If there are any
Expressions in the window, right click in the window and select Remove All.

15. » Find uil6Ambient in the last line of the code. Double-click on it to select it. Right-
click on it and select Add Watch Expression ... Click OK to leave the name as-is.

16. » Page down to the end of main. c and find the final instruction in the file. Double-click
in the blue area just left of the line number to set a breakpoint on this line. You’ll see a
blue dot with a check mark appear. When code execution reaches this point, control will
be returned to CCS (before the line of code executes).

}
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_@|GPIO_PIN_1, GPIO_PIN @ | GPIO_PIN_1);

uil6Ambient = wilBResult;

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8- 19

Lab08: I12C and Sensor Library Usage

Run the Code

17. » Click the Resume button or press F8 on your keyboard to run your code.

18. » Note the uil 6Ambient value in the Expressions pane. Typical office UE‘
lighting is somewhere in the 300 — 500 lux range. P Click the Resume but-
ton or press F8 on your keyboard repeatedly.

Continuously clicking the Resume button can get pretty tedious. We can change the
behavior of the breakpoint we set so that it doesn’t stay halted.

P Right-click on the breakpoint symbol (it will now have a blue arrow
on it indicating that the program counter is pointed here) and select
Breakpoint Properties ...

» On the row containing Action, click on the Remain Halted value. When the down-
arrow appears on the right, click on it. Select Refresh All Windows from the list and click
OK. This is a great trick to watch changing variables when debugging your code.

Bear in mind that the breakpoint still stops the code, allowing the data to be read by Code
Composer, then restarts code execution. This can affect the real-time behavior of the

code.

v Properties for = =
Breakpoint Properties & Breakpoint Properties e .
Properties Values
4 Hardware Configuration
. Type Breakpoint
4 Debugger Response
Cendition
- Skip Count 0
Action Refresh All Windows -
4 Miscellaneous Centrol Profiling
Group Disable 3 Group
Name Enable a Group
Execute Expression (GEL)
Read Data from File
Refresh All Windows
Remain Halted
Update View
Write Data to File
This is what the IDE will do once the breakpoint has triggered and all legical conditions are Edit Property
met too
s

19. » Click the Resume button or press F8 on your keyboard to run your code.
Now the while (1) loop will run to the breakpoint, stop, update the [
uil6Ambient value in the Expressions pane and restart code execution.
Every time the value changes, CCS will highlight it in yellow.

The OPT3001 light sensor is just above the LCD on the Educational BoosterPack. Pass
your hand over it to shadow it or shine a bright light on it.

» Note your maximum value of uil6Ambient here:

8-20 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

Lab08: 12C and Sensor Library Usage

GUI Composer

20. Earlier in the workshop we used CCS graphing to visulaize our ADC12 data. TI debuted
a new feature in CCS version 5.3 called GUI Composer. Let’s use it to visulaize the data

from the light sensor.

» Click the Suspend button to halt your program. Remove any breakpoints by
clicking Run = Remove all Breakpoints > Yes.

21. » From the CCS menu bar, click View - GUI Composer.

L

If you don’t see GUI Composer on the menu, it probably isn’t installed. If you have
Internet access, you can click Help > CCS App Center. The App Center is an exciting

new feature debuting in CCS version 6.

» When you see the New Project button, click it. Insert the name of your choice (no

spaces) in the dialog and click OK

22. When the GUI Composer tab and workspace appears, P click
GUI Composer and then Instrumentation on the left.

23. » Find the Digital Gauge and drag it to the open design area. Resize the ()

gauge to make it as large as possible.

24. P Make sure the digital gauge widget is selected (if it
doesn’t have a blue outline around it, click on it) and click
the Widget tab on the far right. Find the 7itle box and enter
“Light Level” into it. Type “lux” in the Unit box. Click the

Show LCD checkbox. Find the Maximum
Value box and enter a value somewhat
greater (10 or 20%) than the maximum value
of uil6Ambient you noted in step 19. Set
the Threshold Value to 500 (just below your
measured maxium) and the Fractional
Decimals to 0. Feel free to be creative with
the Frame and Background designs.

«# GUI Compaser
LB Common

8% Instrumentation

Digital

Gauge

Widget

Binding

Title:

Unit:

Show LCD:
Minimum Value:
Maximum Value:
Current Value:
Thresheald Value:
Number Format:
Fracticnal Decimals:
Gradient Ratio:
Frame Design:
Badkground Design:
Disabled:

Visible:

Read Only:

Tooltip:

Light Level
luz

[+

0

00

o

500

standard El

glossyhMetal

[«][+]

brushedStainless

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib 8- 21

Lab08: I12C and Sensor Library Usage

25.

26.

27.

28.

29.

30.

» Click the Binding tab on the far right. In the Value
box, enter &uil6Ambient. Be careful with the Valus: |uil@Ambisnt
spelling and case. It’s important that the variable is

global in scope. Local variables cannot be displayed.

» Click the Save button in the top-left corner of the GUI Composer pane. Save | ™

» Click the Preview button to run the GUI Composer widget.
When the running widget appears, click the Resume button. E

[
» Observe the widget as you pass your hand over the sensor.
Whenever the data value exceeds the threshold that you set the red “LED” on the display
will light. GUI Composer has many styles a data displays and can also control program
functions via dials, switches, button, etc. You can run the widget as we’ve done here or
you can generate a CCS Plug-in. You can also run the widgets as a stand-alone
application without Code Composer.

» Close the GUI Composer pane and click Terminate to return to the CCS Edit
perspective. Close the 1lab08 project and minimize Code Composer Studio.

» Disconnect the USB cable from you LaunchPad board and carefully remove the
Educational BoosterPack. If you are attending a live workshop, please return it to your
instructor. Replace your USB cable.

You’re done with Lab14b

8-22 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - 12C & SensorLib

Quad Synchronous Serial Interface

Introduction

This chapter will introduce you to the capabilities of the Quad Synchronous Serial Interface
(QSSI) . The lab uses an Olimex 8x8 LED BoosterPack to explore programming the SPI portion
of the SSI. In order to do the lab you will need to purchase and modify the BoosterPack.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI/ 9-1

Chapter Topics

Chapter Topics

Quad Synchronous Serial Interface 9-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens 9-2
Features and BIOCKk DIGQUAML..................c.c.ccoooveiuiiiiiciiiieeieeit ettt sae et ebeesseenaens 9-3
Interrupts and PDMA OPEFALIONc.ccoueveiceeiiieiieeeeie ettt ereese et saaesaeeseenseesbeebeesaeas 9-4
Lab 09: SPI Bus and the Olimex LED BOOSIErPACKcc.cccecueiiieiiiiiiiieciieie e 9-5

(0]0) 1515 4 < RS SR PSS 9-5
PrOCEAULE ...ttt ettt ettt ettt et b bbbttt a b e 9-6

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSS/

Features and Block Diagram

Features and Block Diagram

M e
Fwl

I
4

i
LR gt

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9-3

Interrupts and uDMA QOperation

Interrupts and uDMA Operation

9-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI/

Lab 09: SPI Bus and the Olimex LED BoosterPack

Lab 09: SPI Bus and the Olimex LED BoosterPack
Objective

In this lab you will use the Olimex LED BoosterPack to explore the capabilities and
programming of the SPI bus on the QSSI peripheral.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9-5

Lab 09: SPI Bus and the Olimex LED BoosterPack

Procedure

Hardware

1.

If you want to run this lab, you’re going to need a BoosterPack with a SPI connection.
We chose the Olimex 8x8 LED BoosterPack:
(https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-
BOOSTERPACK/)

The LED BoosterPack is cheap and fun, but there are two issues with it out of the box.
The first is that it has male Molex pins rather than Molex female connectors. The other is
that the pinout does not match the modern BoosterPack connectors. So we re-mapped the
pins using a proto-board.

Comparing the Olimex BoosterPack schematic found at

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x 8-
BOOSTERPACK /resources/MSP430-LED-BOOSTERPACK-schematic.pdf

to the LaunchPad schematic, we came up with the following connections for the proto-
board (There are a number of possible solutions here). Bear in mind that the correct way
to number the BoosterPack pins is 1 to 10 from the top of the board to the bottom. The
pin names and functions on the right are for BoosterPack connector 2 on the Connected
LaunchPad. We’ve ignored any other connections than the ones for SPI and power.

Olimex Olimex Via LaunchPad | LaunchPad Pin Pin
Header Function proto | Header Pin Name Function
Pin board
wiring
J1-7 SR _SCK > J2-7 PA2 SSI0CIk
J1-6 SR LATCH S J2-6 PA3 SSIOFss
J2-7 SR DATA IN S J3-9 PA4 SSI0Tx
J2-1 Ground S J2-1 Ground -
J1-1 3.3V S J1-1 3.3V -

2. While you’ve got the Olimex BoosterPack schematic out, take a look at the circuit.

You’ll see that the board is pretty simple; 16-bits of shift register, a Darlington seven
transistor array (for drive strength) plus one more single transistor to make 8 and the 8x8
LED array. In order for the LEDs to light properly, the upper byte of the 16-bit word
must be the bit-reversed version of the lower byte. That will be done in software.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSS/

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf

Lab 09: SPI Bus and the Olimex LED BoosterPack

Connect the BoosterPack

3. P If you have modified you own Olimex BoosterPack or you’ve borrowed one from
your instructor, disconnect your USB cable from the LaunchPad carefully connect it to
the BoosterPack 2 pins as shown below in the bottom photo. Reconnect your USB cable.

~N VMM dd-iZEL ®
o TNSBHEXH

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSS/ 9-7

Lab 09: SPI Bus and the Olimex LED BoosterPack

Import lab09

4. P Maximize Code Composer. Import 1lab09 with the settings shown below.

Make sure the Copy projects into workspace checkbox is not checked and click Finish.

-

s+ Import CCS Eclipse Projects

Select CCS Projects to Import

Select a directory to search for existing CCS Eclipse projects.

@ Select search-directory: CATM4C1294_Connected_LaunchPad_Workshop'lab09

(7 Select archive file:

Discovered projects:

1T 1ab09 [C:\TM4C1294_Connected_LaunchPad_Workshop'lab03

[T Automatically import referenced projects found in same search-directory
[7] Copy projects into workspace

Open the Resource Explorer and browse available example projects...

@

ol

Browsze...

Browse...

Select All

Dezelect All

Refresh

Finish

Cancel

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSS/

Lab 09: SPI Bus and the Olimex LED BoosterPack

5. P Expand the project and open main. c for editing. Place the following lines at the top
of the file:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw memmap.h"
#include "inc/hw_ssi.h"
#include "inc/hw_types.h"
#include "driverlib/ssi.h"
#include "driverlib/gpio.h"
#include "driverlib/pin map.h"
#include "driverlib/sysctl.h"

uint32 t ui32SysClkFreq;

We’re going to need all the regular include files along with the ones that give us access to
the QSSI peripheral.

6. P Skip a line for spacing and add the next lines:

#define NUM SSI DATA 8
const uint8 t pui8DataTx[NUM SSI DATA] =
{0x88, 0xF8, 0xF8, 0x88, 0x01, Ox1F, Ox1F, 0x01};

This array of 8-bit numbers defines which of the LEDs in the array will be on or off in the
following fashion, where red is on and the open circle is off.

{A7-0, B7-0, C7-0, D7-0, E7-0, F7-0, G7-0, H7-0}
TOP
H G

<

|

0000000 L
00000000 -
000 0000® -
OO00000@ ~
Q@OOO@VVD =
Q0000000 >
00000000
000 000

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI/ 9-9

Lab 09: SPI Bus and the Olimex LED BoosterPack

7.

» Leave a line for spacing and add the following code. This code will take the 8-bit
number from the array above and bit-reverse it front to back .Then those 8-bits will be
concatenated (in the code that calls this function) with the original number to create a 16-
bit number that will be sent over the SPI port.

// Bit-wise reverses a number.
uint8_t
Reverse (uint8_t ui8Number)

{

8.

uint8_t ui8Index;
uint8_t ui8ReversedNumber = 0;
for (ui8Index=0; ui8Index<8; ui8Index++)
{
ui8ReversedNumber = ui8ReversedNumber << 1;
ui8ReversedNumber |= ((1 << ui8Index) & ui8Number) >> ui8Index;
}

return ui8ReversedNumber;

» Leave a line for spacing and add the template for main () below:

int main(void)

{
}

10.

11.

» Insert the next two lines as the first ones inmain () . We’ll need these variables for
temporary data and index purposes.

uint32 t ui32Index;
uint32 t ui32Data;

» Leave a line for spacing and set the clock to 120MHz as we’ve done before:

ui32SysClkFreq = SysCtlClockFreqSet ((SYSCTL XTAL 25MHZ |
SYSCTL_OSC_MAIN | SYSCTL USE_PLL | SYSCTL CFG_VCO_480),
120000000) ;

» Space down a line and add the next two lines. Since SSI0 is on GPIO port A, we’ll
need to enable both peripherals:

SysCtlPeripheralEnable (SYSCTL PERIPH SSIO) ;
SysCtlPeripheralEnable (SYSCTL PERIPH GPIOA) ;

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSS/

Lab 09: SPI Bus and the Olimex LED BoosterPack

12. » Space down a line and add the following four lines. These will configure the muxing
and GPIO settings to bring the SSI functions out to the pins. Since the BoosterPack only
accepts data, we won’t program the receive pin.

GPIOPinConfigure (GPIO_PA2 SSIOCLK) ;
GPIOPinConfigure (GPIO_PA3 SSIOFSS) ;
GPIOPinConfigure (GPIO_PA4_SSIOXDATO) ;
GPIOPinTypeSSI (GPIO_PORTA BASE,GPIO_PIN 4|GPIO_PIN 3|GPIO_PIN 2);

13. Next we need to configure the SPI port on SSIO for the type of operation that we want.
Given that there are two bits (SPH — clock polarity and SPO — idle state), there are four
modes (0-3). » Leave a line for spacing and add the next two lines after the last. Then
double-click on SST FRF MOTO_ MODE 0 and press F3 to see all four definitions in
ssi.h:

SSIConfigetExpClk (SSIO_BASE, ui32SysClkFreq, SSI_FRF_MOTO MODE O,
SSI_MODE_ MASTER, 10000, 16);
SSIEnable (SSI0O_BASE) ;

The API specifies the SSI module, the clock source (this is hard wired), the mode, master
or slave, the bit rate and the data width.

14. » The LED array has no latch, so the data must be continuously streamed in order for a
static image to appear. We’ll do that with a while () loop, so add a lines for spacing
and then add the while () loop below:

while (1)
{
}

15. We’re going to need to step through the data, sending each 16-bit word on at the time.
» Add the following for () construct inside the while () loop you just added:

for(ui32Index = 0; ui32Index < NUM _SSI DATA; ui32Index++)
{

}

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI/ 9-11

Lab 09: SPI Bus and the Olimex LED BoosterPack

16. » Place the lines below inside the for () construct you just added. Those lines have
these functions:

1) Create the 16-bit data word using the Reverse () function we added earlier

2) Place the data in the transmit FIFO using a blocking function (a non-blocking version is
also available)

3) Wait until the data has been transmitted

ui32Data = (Reverse (pui8DataTx[ui32Index]) << 8) + (1 << ui32Index);
SSIDataPut(SSIO_BASE, ui32Data) ;

while (SSIBusy (SSIO_BASE))

{

}

Admittedly, this isn’t the most efficient technique. It would be less wasteful of CPU cycles to
use the uDMA to perform these transfers, but we haven’t covered the uDMA yet.

You might think about fixing the indentation too. » Save your work.

9-12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSS/

Lab 09: SPI Bus and the Olimex LED BoosterPack

Build and Load

17. » Build and load the code. If you have errors, compare your main. c to the code below:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_ssi.h"
#include "inc/hw _types.h"
#include "driverlib/ssi.h"
#include "driverlib/gpio.h"
#include "driverlib/pin map.h"
#include "driverlib/sysctl.h"

uint32 t ui32SysClkFreq;

#define NUM SSI DATA 8
const uint8 t pui8DataTx[NUM_SSI_ DATA] =
{0x88, 0xF8, 0xF8, 0x88, 0x01, OxlF, Ox1lF, 0x01};

// Bit-wise reverses a number.
uint8 t
Reverse (uint8 t ui8Number)
{
uint8 t ui8Index;
uint8 t ui8ReversedNumber = 0;
for (ui8Index=0; ui8Index<8; ui8Index++)
{
ui8ReversedNumber = ui8ReversedNumber << 1;
ui8ReversedNumber |= ((1 << ui8Index) & ui8Number) >> ui8Index;
}
return ui8ReversedNumber;

}

int main (void)

{
uint32 t ui32Index;
uint32_ t ui32Data;

ui32SysClkFreq = SysCtlClockFreqgSet ((SYSCTL XTAL 25MHZ | SYSCTL OSC MAIN |
SYSCTL_USE_PLL | SYSCTL CFG VCO_480), 120000000);

SysCtlPeripheralEnable (SYSCTL PERIPH SSIO);
SysCtlPeripheralEnable (SYSCTL PERIPH GPIOA);

GPIOPinConfigure (GPIO PA2 SSIOCLK) ;
GPIOPinConfigure (GPIO PA3 SSIOFSS);
GPIOPinConfigure (GPIO PA4 SSIOXDATO) ;

GPIOPinTypeSSI (GPIO PORTA BASE,GPIO PIN 4|GPIO_PIN 3|GPIO PIN 2);

SSIConfigSetExpClk (SSI0O BASE, ui32SysClkFreq, SSI_ FRF MOTO MODE O,
SSI_MODE MASTER, 10000, 16);
SSIEnable (SSI0O BASE);

while (1)
{
for (ui32Index = 0; ui32Index < NUM_SSI DATA; ui32Index++)
{
ui32Data = (Reverse(pui8DataTx[ui32Index]) << 8) + (1 << ui32Index);
SSIDataPut (SSI0 BASE, ui32Data);
while (SSIBusy (SSI0O_BASE))
{
}

If you’re still having problems you can find this code in the 1ab09 folder as
main.txt.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI/ 9-13

Lab 09: SPI Bus and the Olimex LED BoosterPack

Run and Test

18. » Run the code by clicking the Resume button. You should see “TI” displayed
on the LED array. If you like you can play with the data structure to draw
something different. Keep it clean.

19. If you have a SPI protocol analyzer, now would be a good time to dust it off and
take a look at the serial data stream. These analyzers can save you weeks spent
troubleshooting communication problems. The screen captures on the next page
were taken with a Saleae Logic8 logic analyzer/communications analyzer made
by Saleae LLC (www.saleae.com) Beware of counterfeits!

20. When you’re done, P click the Terminate button to return to the CCS Edit
perspective. Close the project and minimize Code Composer Studio.

21. » Disconnect your LaunchPad board from the USB port, carefully remove the
modified Olimex BoosterPack and return it to your instructor. Re-connect your
LaunchPad.

You’re done.

9-14 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSS/

http://www.saleae.com/

Lab 09: SPI Bus and the Olimex LED BoosterPack

ds

1ds

euy 4

pee=|70-TL|

SJUBLLRINSE3N &

I

100 . TP

1

440

1R

i 00 080

1T

il

3

1L

130

1L

L

ey NIVYOYS -2

B g NIVIVa NS -2

9-15

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI/

Lab 09: SPI Bus and the Olimex LED BoosterPack

9-16 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSS/

UART

Introduction

This chapter will introduce you to the capabilities of the Universal Asynchronous
Receiver/Transmitter (UART). The lab uses the LaunchPad board and the Stellaris Virtual Serial
Port running over the debug USB port.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART 10 - 1

UART Features and Block Diagram

Chapter Topics

UART 10-1
UART Features and BIOck DIiGIAMccccciiiiiiiiiiieeeeee e 10-3
BASIC OPEFALION ...ttt ettt ettt ettt et e e et e et e e s ab e e et e et eenteeenteas 10-4
UART Interrupts QNA FIFOSccccoeiiiiecie et ettt sas ettt sse s sneeseannes 10-5
UART “stdio” Functions and Other FEATUFEScccccovvviieaviiaeiieieiieeieeieeieeeeeae e 10-6
LADT0 ..ottt ettt ettt n et a e bt a bbbt ene et e 10-7

(0]0) 1515 A< SR 10-7
PLOCEAULE ...ttt ettt ettt b ettt bbb s bt sbe b bt e b e b 10-8

10-2

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART

UART Features and Block Diagram

UART Features and Block Diagram

TM4C1294NCPDT UART Features

The microcontroller contains 8 UARTS with the following features:

¢ Programmable baud-rate generator
7.5 Mbps for regular speed (divide by 16)
15 Mbps for high speed (divide by 8)

¢ Separate 16x8 TX and RX FIFOs

¢ Programmable FIFO length, including 1-byte deep operation
providing conventional double-buffered interface

¢ FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8

Fully programmabile serial interface characteristics
5, 6, 7, or 8 data bits
Even, odd, stick, or no-parity bit generation/detection
1 or 2 stop bit generation

IrDA encoder/decoder

ISO 7816 smart card support

EIA-485 9-bit support

Separate DMA channels for TX and RX

*

* 6 o o

Block Diagram...

Block Diagram

PRSC Cloek Control
System Clock o
T Baud Ciock
DMA Requast DMz Cantrol
UARTOMACTL
Inteupt Intarmupt controd THFIFO
1648
TRRTIFLS
— UARTTM
UARTMIE
Idsntification Registers UARTRIS
d UARTICR.
UARTPCEIIDO —
UARTPCEIID
UARTPCEIIDZ Baua Rats |,J
| | Generator
UARTRCEIIDS UARTOR. UARTIERD
™ [UARTFERD |
UARTPenpnIDO UARTFERD
UARTPerphIDY Controvstatus
UARTPenpnIDZ UARTRIRECR prp—
UARTFR Text
UARTPenpnIDs Py W L |
UARTPenpnIDd UARTCTL
S
UARTPenpniDs UARTILPR
UARTPepIDS UARTLCTL
UARTLSS
UARTPenphiD?
UARTLTIM
UARTSSITADDR.
UARTIBITAMASK
UARTPP

T

Basic Operation...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART

10-3

Basic Operation

Basic Operation

Basic Operation

¢ Initialize the UART
- Enable the UART peripheral, e.g.

SysCtlPeripheralEnable (SYSCTL_PERIPH_UARTO) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOA) ;

- Set the Rx/Tx pins as UART pins

GPIOPinConfigure (GPIO_PAO UORX) ;
GPIOPinConfigure (GPIO_PAl UOTX) ;
GPIOPinTypeUART (GPIO PORTA BASE, GPIO PIN 0 | GPIO PIN 1);
- Configure the UART baud rate, data configuration
ROMiUARTConfigSetExpClk(UARTOiBASE, ROMﬁSySCthlockGet(), 115200,
UART CONFIG_WLEN 8 | UART_CONFIG_STOP ONE |
UART CONFIG_PAR NONE)) ;

- Configure other UART features (e.g. interrupts, FIFO)
¢ Send/receive a character
- Single register used for transmit/receive

- Blocking/non-blocking functions in driverlib:
UARTCharPut (UARTO_BASE, ‘a’);
newchar = UARTCharGet (UARTO BASE) ;
UARTCharPutNonBlocking (UARTO_BASE, ‘a’);
newchar = UARTCharGetNonBlocking (UARTO_BASE) ;

Interrupts...

10-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART

UART Interrupts and FIFOs

UART Interrupts and FIFOs

L 4

L 2BR 2R 2R 2

*

*

UART Interrupts

Single interrupt per module, cleared automatically
Interrupt conditions:

Overrun error

Break error

Parity error

Framing error

Receive timeout — when FIFO is not empty and no further data is
received over a 32-bit period

Transmit — generated when no data present (if FIFO enabled, see next
slide)

Receive — generated when character is received (if FIFO enabled, see
next slide)

Interrupts on these conditions can be enabled individually

Your handler code must check to determine the source
of the UART interrupt and clear the flag(s)

FIFOs...

Using the UART FIFOs

Transmit FIFO Level
FIFO

Select

¢ Both FIFOs are accessed via the

UART Data register (UARTDR)

UART_FIFO_TX1_8

bit in UARTLCRH, e.g.

UARTFIFODisable (UARTO BASE) ;

UART_FIFO_TX4_8

UARTFIFOLevelSet (UARTO_BASE,

UART_FIFO_TX6_8 UART FIFO TX4 8,

UART FIFO RX4 8);

UART_FIFO_TX7_8

* Note: the datasheet says FIFOs are disabled at reset

stdio Functions...

¢ After reset, the FIFOs are enabled*,
UART_FIFO_TX2_8 you can disable by resetting the FEN

¢ Trigger points for FIFO interrupts can
be set at 1/8, 1/4, 1/2,3/4, 7/8 full, e.g.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART

10-5

UART “stdio” Functions and Other Features

UART “stdio” Functions and Other Features

UART “stdio” Functions

¢ TivaWare “utils” folder contains functions for C stdio console
functions:
c:\TivaWare\utils\uartstdio.h

c:\TivaWare\utils\uartstdio.c

¢ Usage example:
UARTStdioInit (0); //use UARTO, 115200
UARTprintf (“Enter text: “);

¢ See uartstdio.h for other functions

¢ Notes:

Use the provided interrupt handler uarTstdiointHandler () code in
uartstdio.c

Buffering is provided if you define UART_BUFFERED symbol
- Receive buffer is 128 bytes
- Transmit buffer is 1024 bytes

Lab...

10-6

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART

Lab10

Lab10
Objective

In this lab you will send data through the UART. The UART is connected to the emulator’s virtual serial
port that runs over the debug USB cable.

Lab10: UART

USB Emulation
Connection

¢ Connect to the UART through the
USB’s virtual COM port

¢ Initialize UART and echo characters
using polling

¢ Use interrupts

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART 10-7

Lab10

Procedure

Import lab10

1.

We have already created the lab10 project for you with a main.c file, a startup file, and all the

necessary project and build options set.

P Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

w» Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5 Eclipse projects.

@) Select search-directory: CATM4C1294_Connected_LaunchPad_Workshop'Jabl0

() Select archive file:

Discovered projects:

[#] &7 labl0 [C:ATM4C1294_Connected_LaunchPad_Workshop'labl0]

[C] Copy projects into workspace
[Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

Browse...

Browse...

Select All

Deselect All

Refresh

® Finish

Cancel

10-8

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART

Lab10

2. P Expand the lab10 project in the Project Explorer pane

viewing. The code looks like this:

. Double-click on main. c to open it for

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw _memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/pin map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
uint32 t ui32SysClkFreq;

int main(void)
{
ui32SysClkFreq = SysCtlClockFregSet ((SYSCTL_XTAL 25MHZ |
SYSCTL_OSC_MAIN | SYSCTL _USE_ PLL |
SYSCTL_CFG VCO 480), 120000000);

SysCtlPeripheralEnable (SYSCTL PERIPH UARTO) ;
SysCtlPeripheralEnable (SYSCTL PERIPH GPIOA);

GPIOPinConfigure (GPIO PAO UORX) ;
GPIOPinConfigure (GPIO PAl UO0TX) ;
GPIOPinTypeUART (GPIO_PORTA BASE, GPIO PIN 0 | GPIO PIN 1);

UARTConfigSetExpClk (UARTO BASE, ui32SysClkFreq, 115200, (UART CONFIG WLEN 8 |
UART CONFIG STOP ONE | UART CONFIG PAR NONE));

UARTCharPut(UARTOiBASE, 'E
UARTCharPut (UARTO BASE, 'n
UARTCharPut(UARTO_BASE, 't
UARTCharPut (UARTO_BASE, 'e
UARTCharPut(UARTOiBASE, 'r
UARTCharPut(UARTOiBASE, v
UARTCharPut (UARTO_BASE, '
(
(
(
(
(

UARTCharPut (UARTO BASE, '
UARTCharPut (UARTO BASE, '
UARTCharPut (UARTO_ BASE, ':'
UARTCharPut (UARTO_ BASE, ' '

T
UARTCharPut (UARTO_BASE, 'e'
b4
t

while (1)

{

if (UARTCharsAvail (UARTO BASE)) UARTCharPut (UARTO BASE, UARTCharGet (UARTO_ BASE));
}

This code is also saved as mainl.txt in the lab10 folder.

3. Inmain (), notice the initialization sequence for using the UART:
e Set up the system clock
e Enable the UARTO and GPIOA peripherals (the UART pins are on GPIO Port A)
e Configure the pins for the receiver and transmitter using GPIOPinConfigure
e Initialize the parameters for the UART: 115200, 8-1-N-N
e Use simple UARTCharPut () calls to create a prompt.

e Aninfinite loop. In this loop, if there is a character in the receiver, it is read, and then written to
the transmitter. This echos what you type in the terminal window.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART 10-9

Lab10

Build, Download, and Run the UART Example Code

4. P Make sure that JP4 and 5, the serial
comm jumpers on the LaunchPad are in
the horizontal UART position as shown.

5. P Click the Debug button to build and
download your program to flash memory.

wu.ti.com/Yaunchpad
7_?621

We can communicate with the board
through the UART, which is connected as
a virtual serial port through the emulator
USB connection. You can find the COM
port number for this serial port back in the
chapter one lab exercise of this workbook.

6. P Run PuTTY or your favorite terminal
program. Make the settings shown here
and then click Open.

Your COM port number will be the one
you noted earlier in chapter one.

ﬁ PUTTY Configuration = ﬁ PuTTY Configuration B9
Category: Category:
[=- Session Basic options for your PuTTY session & S_ess\nn Options controlling local serial lines
- Logging Specify the destination you wart to connect to . wlogang Select a serial line
= Terminal o rminal
i-- Keyboard Seril line Speed Keyboard Serial line to connect to COM48
COom4s 115200
i Bell Bell o
i Features Connection type : Features Canfigure the seral line
= Window (O Raw (D) Telnet () Rlogin (01 55H @ Serial E1- Window Speed lbaud) 115200
) Appea!ance Load, save or delete a stored session fppearance Data bits 8
- Behaviour X ¢ e Behaviour
Translation Saved Sessions Translation Stop bits 1
- Selection i i Selection Party
H a lone =
- CUIU?‘"S Defautt Settings Load i - Colours
= Connection [Connection Flow cortrol
- Data = - Data
D E-
-~ Teinet - Tehet
Rlogin Rlogin
- S5H - S5H
- Serial Close window on ext: ai=
) Mways () Never (@ Only on clean exit
ghas dhous

7. When the terminal window opens P click the Resume button in CCS. Click on the terminal to focus it
in Windows and then type some characters. You should see the characters echoed into the terminal
window.

10-10 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART

Lab10

Using UART Interrupts

Instead of continually polling for characters (which is what the line of code in the while () loop does),
we’ll make some modifications to our code to allow the use of interrupts to receive and transmit characters.
In the first part of this lab, the only indication we had that our code was running was to open the terminal
window to type characters and see them echoed back. In this part of the lab, we’ll add a visual indicator to
show that we received and transmitted a character. So we’ll need to add code similar to previous labs to
blink the LED inside the interrupt handler.

8. First, let’s add the code in main () to enable the UART interrupts we want to handle. » Click on the
Terminate button to return to the CCS Edit perspective. We need to add two additional header files at
the top of the file:

#include "inc/hw_ints.h"
#include "driverlib/interrupt.h"

9. Now we need to add the code to enable processor interrupts, then enable the UART interrupt, and then
select which individual UART interrupts to enable. We will select receiver interrupts (RX) and
receiver timeout interrupts (RT). The receiver interrupt is generated when a single character has been
received (when FIFO is disabled) or when the specified FIFO level has been reached (when FIFO is
enabled). The receiver timeout interrupt is generated when a character has been received, and a second
character has not been received within a 32-bit period. » Add the following code just below
the UARTConfigSetExpClk () function call:

IntMasterEnable () ;
IntEnable (INT_UARTO) ;
UARTIntEnable (UARTO_BASE , UART_INT_RX | UART_INT_RT) ;

10. We also need to initialize the GPIO peripheral and pins for the user LEDs. P> Just before the
function UARTConfigSetExpClk () is called, add these two lines:

SysCtlPeripheralEnable (SYSCTL PERIPH GPION) ;
GPIOPinTypeGPIOOutput (GPIO PORTN BASE, GPIO PIN 0|GPIO PIN 1);

11. » Create an empty while (1) loop at the end of main by commenting out the line of code that’s
already there. The UART will interrupt this loop.

while (1)

{

// if (UARTCharsAvail (UARTO_BASE)) UARTCharPut (UARTO_BASE, UARTCharGet (UARTO_BASE)) ;
}

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART 10- 11

Lab10

12. Now we need to write the UART interrupt handler. The interrupt handler needs to read the UART in-
terrupt status register to know which specific interrupt event(s) just occurred. This value is then used to
clear the interrupt status bits (we only enabled RX and RT interrupts, so those are the only possible
sources for the interrupt). The next step is to receive and transmit all the characters that have been re-
ceived. After each character is “echoed” to the terminal, the LED is blinked for about .1 seconds.

P Insert this code just above main () :

void UARTIntHandler (void)
{
uint32_t ui32Status;

ui32Status = UARTIntStatus (UARTO_BASE, true); //get interrupt status
UARTIntClear (UARTO_BASE, ui32Status); //clear the asserted interrupts

while (UARTCharsAvail (UARTO_BASE)) //loop while there are chars

{
UARTCharPutNonBlocking (UARTO_BASE, UARTCharGetNonBlocking (UARTO_BASE)) ; // echo
GPIOPinWrite (GPIO_PORTN BASE, GPIO_PIN 0|GPIO_PIN 1, OxFF); // LEDs on
SysCtlDelay (ui32SysClkFreq / (3 * 10)); // delay .1 sec
GPIOPinWrite (GPIO_PORTN_BASE, GPIO_PIN 0|GPIO_PIN_ 1, 0); // LEDs off

Save your work.

13. We’re almost done. The final step is to insert the address of the UART interrupt handler into the
interrupt vector table. » Open the tm4c1294ncpdt startup ccs.c file. Just below the
prototype for ¢ int00 (void), add the UART interrupt handler prototype:
extern void UARTIntHandler (void) ;

14. On about line 92, you’ll find the interrupt vector table entry for UARTO Rx and Tx. It’s just below the

entry for GPIO Port E. The default interrupt handler is named IntDefaultHandler. P Replace
this name with UARTIntHandler so the line looks like:

UARTIntHandler, // UARTO Rx and Tx

10-12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART

Lab10

15. Save your work. Your main.c code should look like this. This code is saved in main?2 . txt. The
modified startup file is in start. txt.

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/pin map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "inc/hw_ints.h"
#include "driverlib/interrupt.h"

uint32 t ui32SysClkFreq;

void UARTIntHandler (void)
{
uint32_t ui32status;

ui32Status = UARTIntStatus (UARTO BASE, true); //get interrupt status
UARTIntClear (UARTO BASE, ui32Status); //clear the asserted interrupts

while (UARTCharsAvail (UARTO_BASE)) //loop while there are chars
{
UARTCharPutNonBlocking (UARTO_BASE, UARTCharGetNonBlocking (UARTO_BASE)) ; //echo
GPIOPinWrite (GPIO PORTN BASE, GPIO PIN 0|GPIO PIN 1, OxFF); // LEDs on
SysCtlDelay (ui32SysClkFreq / (3 * 10)); // delay .1 sec
GPIOPinWrite (GPIO PORTN BASE, GPIO PIN 0|GPIO _PIN 1, 0); // LEDs off
}

}

int main (void)
{
ui32sysClkFreq = SysCtlClockFreqgSet ((SYSCTL_ XTAL 25MHZ |
SYSCTL OSC MAIN | SYSCTL USE PLL
SYSCTL _CFG_VCO 480), 120000000);

SysCtlPeripheralEnable (SYSCTL PERIPH UARTO) ;
SysCtlPeripheralEnable (SYSCTL PERIPH GPIOA);

GPIOPinConfigure (GPIO PAO UORKX) ;
GPIOPinConfigure (GPIO PAl UOTX);
GPIOPinTypeUART (GPIO PORTA BASE, GPIO PIN 0 | GPIO PIN 1);

SysCtlPeripheralEnable (SYSCTL PERIPH GPION) ;
GPIOPinTypeGPIOOutput (GPIO PORTN BASE, GPIO PIN 0|GPIO_PIN 1);

UARTConfigSetExpClk (UARTO_BASE, ui32SysClkFreq, 115200,
(UART CONFIG WLEN 8 | UART CONFIG STOP ONE | UART CONFIG PAR NONE)) ;

IntMasterEnable () ;
IntEnable (INT_ UARTO) ;
UARTIntEnable (UARTO BASE, UART INT RX | UART INT RT);

UARTCharPut (UARTO BASE, 'E');
UARTCharPut (UARTO BASE, 'n');
UARTCharPut (UARTO BASE, 't');
UARTCharPut (UARTO BASE, 'e');
UARTCharPut (UARTO BASE, 'r');
UARTCharPut (UARTO_BASE, ' ');
UARTCharPut (UARTO_BASE, 'T');
UARTCharPut (UARTO_BASE, 'e');
UARTCharPut (UARTO_BASE, 'x');
UARTCharPut (UARTO_BASE, 't');
UARTCharPut (UARTO_BASE, ':');
UARTCharPut (UARTO_BASE, ' ')

while (1)

{
//if (UARTCharsAvail (UARTO BASE)) UARTCharPut (UARTO BASE, UARTCharGet (UARTO_ BASE));
}

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART 10-13

Lab10

16. » Click the Debug button to build and download your program to flash memory.

17. » Right-click on the top portion of the PuTTY window and click Reset Terminal. If you’ve closed
PuTTY, open and configure it as before.

18. P Click the Resume button in CCS. Click on PuTTY to refocus Windows and type some characters.
You should see the characters echoed in the terminal window. Note the user LEDs on the LaunchPad
board.

19. » Close PuTTY. Click the Terminate button to return to the CCS Edit perspective. » Close the lab10
project and minimize Code Composer Studio.

You’re done.

10- 14 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART

USB

Introduction

This chapter will introduce you to the basics of USB and the implementation of a USB port on
Tiva C Series devices. In the lab you will experiment with sending data back and forth across a

bulk transfer-mode USB connection.

11-1

th the Tiva C Series Connected LaunchPad Workshop - USB

1ons wi

Creating loT Solut

Chapter Topics

Chapter Topics

USB 11-1
CRAPICE TOPICS .ee.vv ettt ettt et e e ettt e s e e et e e eb e e taeestaeensbeessbeesnbeesabeensseesseataeeenseas 11-2
USB FOAIUFES ...ttt ettt ettt ettt ettt e 11-3
High Speed OPErALION.cc.ccoeceeeieeiiieieieieeie ettt ettt ettt eae b eae s e 11-4

BIOCK DIAGIAM.......iiuiiiiiiiieiicie sttt ettt et te et esteesseesseessessaesseesseesseesaessasssesssessaesseessenseennns 11-5
USB Library and ADStraction LeVeLSccccocuviiiiiiciiiriiiisiiiee sttt ettt 11-6
LADTT: USB.....ooooieeeeee ettt ettt b et b ettt ea et ettt ene et s 11-7

(0] 1515 A< U 11-7

PrOCEAUIE ...ttt ettt ettt et e et e ae e e s et e bt enteeseeebee b e enaeeeaeeneenes 11-8

11-2

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

USB Features

USB Features

TMA4C1294NCPDT USB Features

KUSB 2.0 full speed (12 Mbps) and low speed (1.5 Mbps) operationm
integrated PHY

USB 2.0 high-speed (480 Mbps) operation with external PHY using the
ULPI interface

Link power management support

On-the-go (OTG), Host and Device functions

Four transfer types: Control, Interrupt, Bulk and Isochronous
Device Firmware Update (DFU) host and device in ROM bootloader

2

L IR B 2R 4

Tiva collateral

¢ Texas Instruments is a member of the
USB Implementers Forum.

Tiva is approved to use the m‘@j Vendor ID/
USB logo Product ID
¢ Vendor/Product ID sharing sharing program

http://www.ti.com/lit/pdf/spmI001

High speed operation ...

Sublicense application: http://www.ti.com/lit/pdf/spml001

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11-3

http://www.ti.com/lit/pdf/spml001

High Speed Operation

High Speed Operation

High Speed Operation with ULPI

High-speed operation (480 Mbps) using external PHY and ULPI
¢ ULPI = UTMI+ Low Pin Interface
¢ UTMI+ = USB Transceiver Macrocell Interface with support for OTG and Host
at all speeds
¢ Parallel interface between USB controller and PHY
Relatively static UTMI+ signals accessed through registers

12 additional signals: clock, 8-bit bi-directional data, 3 control signals
Supports Single Data Rate (8-bit data) ULPI standard

TIVA TM4C129x
MU ULPI PHY vaus

DATA[7:0]

Block diagram ...

11-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

High Speed Operation

Block Diagram

USB Peripheral Block Diagram

Endpoint Control

[«—> DMA Controller fe—»
4‘ T [P— |AHB Master Bus
EPo-7
Control
F—— reese]|

CPU Interface

Interrupts

USBODM &
USBODP

AHB bus -
Slave mode

um Pa
Synchronization Encode/Decode
Packel Encode.

USBOCLK o>
USBODIR HNPISRE Packet Decode

USBONXT
USBOSTP
USBOD[T:0]

CRC Gen/Chedk
USBPC.ULPIEN

¢ 16 Endpoints
¢ 1 dedicated control IN endpoint and 1 dedicated control OUT endpoint
¢ 7 configurable IN endpoints and 7 configurable OUT endpoints
¢ 4 KB dedicated endpoint memory (not part of device SRAM)
¢ 1 endpoint may be defined for double-buffered 1023-bytes isochronous packet size
¢ Integrated USB DMA with bus master capability for up to 8 TX and 8 RX endpoint channels,

USBLIb...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

11-5

USB Library and Abstraction Levels

USB Library and Abstraction Levels

TivaWare™ USBLib

¢ License & royalty-free drivers, stack and example applications for Tiva MCUs
¢ Built on the driverLib API

Adds framework for generic Host and Device functionality

Includes implementations of common USB classes

¢ Layered API abstraction structure

¢ Includes these device ¢ Includes these ¢ Includes an
class driver functions: host functions: OTG stack

+ Controller driver

Class driver

+ Device Interface

Audio

Bulk

CDC
Composite
DFU

HID

HID Mouse
HID Keyboard
HID Gamepad
Mass Storage

*

L R R JER R R R 2R 2R 4

Abstraction Levels...

USB API Abstraction Levels

HIGH - : ~ :
A 5 E = E Application 3 Application 4
= =
© 1 [v] 1
0 1 o 1
a ' a '
a 1 aQ 1
c < : < : usB Device Class
. 1 1 Buffer |
5 1 1 |
® i i
— 1 1
2 H ' Device Class
© H ' Driver API
5 : '
1
[:
5 : USB Device API
- 1
USB DriverLib API
LOW
Low Level of customization HIGH

¢ AIll APl layers can be accessed from any of the shown applications

Lab...

11-6

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

Lab11: USB

Lab11: USB
Objective

In this lab you will experiment with sending data back and forth across a bulk transfer-mode USB

connection.

Lab11: USB

USB Emulation l
Connection

¢ Run usb_bulk_example code
and windows side app

¢ Inspect stack setup
¢ Observe data on device

USB Device
Connection

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

11-7

Lab11: USB

Procedure

Example Code

There are four types of transfer/endpoint types in the USB specification: Control transfers
(for command and status operations), Interrupt transfers (to quickly get the attention of
the host), Isochronous transfers (continuous and periodic transfers of data) and Bulk
transfers (to transfer large, bursty data).

Before we start poking around in the code, let’s take the usb bulk example fora
test drive. We’ll be using a Windows host command line application to transfer strings
over the USB connection to the LaunchPad board. The program there will change upper-
case to lower-case and vice-versa, then transfer the data back to the host.

Import The Project

1.

The usb_dev bulk project is one of the TivaWare examples. When you import the
project, you should copy them into your workspace, and preserve the original files. If you
want to access these project files through Windows Explorer, the files you are working
on are in your workspace folder, not the TivaWare folder. If you delete the project in
CCS, the imported project will still be in your workspace unless you tell the dialog to
delete the files from the disk.

» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish.

Make sure that the Copy projects into workspace checkbox is checked.

v+ Import CCS Eclipse Projects L@éj
-

Select CCS Projects to Import r N
Select a directory to search for existing CC5 Eclipse projects. 4

L.&
© Select search-directory: CATNTivaWare_C_Series-2.1.0.12573\examples\boards\ek-tmé c1294xN\usb_dev_bulk

() Select archive file: Browse

Discovered projects:

[¥] & usb_dev_bulk [C:\TI\TivaWare_C_Series-2.1.0.12573\ examples\boards'ek-tmd c1294xl\usb_dev_bulk!ccs] Select All

Deselect All

Refresh

[] Automatically import referenced projects found in same search-directory

[¥] Copy projects into workspace

Open the Resource Explorer and browse available example projects...

@) Finish] ’ Cancel

11-8

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

Lab11: USB

Build, Download and Run The Code

2. Make sure your evaluation board’s USB DEBUG port is connected to your PC and that
the usb dev bulk project is active. » Right-click on the project and click Properties.
Click General on the left and check the Compiler version. Make sure that it is 7/ v5.1.5
or later. If it isn’t, change it. Click OK.

Advanced settings
Compiler version: ﬁ"l'[vS.l.S v] ’ Mare...
Output type: Executable
Output format: ’eabi (ELF) v]
3. Build and download your application by clicking the Debug button on the
menu bar. #;5:\

4. W Click the Terminate button, and when CCS returns to the CCS Edit
perspective, unplug the USB cable from the LaunchPad’s DEBUG USB port. .II
Move the JP1 POWER SELECT jumper on the board to the OTG position. —

This will allow the User USB port to power the LaunchPad board.

P Plug your USB cable into the user USB connector nearest to the Ethernet connector.
The green power LED of the LaunchPad should be lit, verifying that the board is
powered.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11-9

Lab11: USB

5. Ina few moments, your computer will detect that a generic bulk device has been
plugged into the USB port. P> If necessary, install the driver for this device from:

C:\TI\TivaWare C Series-2.1.0.12573\windows drivers

» Verify that the device installed properly by looking in your Windows Device Manag-
er. The Generic Bulk Device will appear under TivaWare Bulk Devices.

6. P Make sure that you installed the StellarisWare Windows-side USB examples
from www.ti.com/sw-usb-win as shown in module one. In Windows, » click Start > All
Programs > Texas Instruments -> Stellaris > USB Examples > USB Bulk Example.

The window below will appear:

® ° CA\Program Files (x86)\Texas Instruments\Stellaris\usb_examplesiusb_bulk_example.exe

m| s

Stellarisz Bulk USE Device Example

a partner application to the ush_dev_bulk example

with Stellarislare software releases for USB—enabled
. Strings entered here are sent to the hoard which
of the characters in the string and returns

the host.

string (ERIT to exit>:

7. > Type something in the window and press Enter. For instance “TI” as shown below:

e e |

8 CA\Program Files (x86)\Texas Instruments\Stellaris\usb_examplesiusb_bulk_example.exe

m| »

Stellaris Bulk USB Device Example

a partner application to the ush_dev_bulk example

with StellarisWare software releases for USB-enahled
. Strings entered here are sent to the hoard which

the c of the characters in the string and returns

the host.

string (EXIT to exit»: TI

bytes to the device. Expected 2
[Read 2 bytes from device. Expected 2

Returned string: "ti"

Enter a string (EXIT to exit)»:

The host application sent the two ASCII bytes representing “TI” over the USB port to the
LaunchPad board. The code there will change uppercase to lowercase and echo the
transmission. Then the host application will display the returned string. Feel free to
experiment. Now that we’re assured that our data is traveling across the DEVICE USB

port, we can look into the code a little more.

11-10 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

http://www.ti.com/sw-usb-win

Lab11: USB

Digging Deeper
8. P Type EXIT to terminate the USB Bulk Example program on your PC.

9. » Move the JP1 POWER SELECT jumper on your LaunchPad board to the ICDI
position. Connect your other USB cable from your PC to the DEBUG USB port the on
the LaunchPad The green power LED on the LaunchPad should be lit, verifying that the
board is powered. You should now have both ports connected to your PC, with the board
being powered by the ICDI port.

10. » In Code Composer Studio, if usb dev_ bulk.c is not already open, expand the
usb_dev_bulk project in the Project Explorer pane and double-click on
usb dev bulk. c to open it for editing.

The program is made up of five sections:

SysTickIntHandler —an ISR that handles interrupts from the SysTick timer to keep
track of “time”.

EchoNewDataToHost — a routine that takes the received data from a buffer, flips the case
and sends it to the USB port for transmission.

TxHandler — an ISR that will report when the USB transmit process is complete.

RxHandler — an ISR that handles the interaction with the incoming data, then calls the
EchoNewDataHost routine.

main () — primarily initialization, but a while loop keeps an eye on the number of bytes
transferred

Note the UARTprintf () APIs sprinkled throughout the code. This technique “instruments”
the code, allowing us to monitor its status via a serial port.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11-11

Lab11: USB

Watching the Instrumentation

11.

12.

13.

14.

As shown in earlier labs, P> start your terminal program and connect it to the Stellaris
Virtual Serial Port. Arrange the terminal window so that it takes up no more than a
quarter of your screen and position it in the upper left of your laptop’s screen.

» Resize CCS so that it takes up the lower half of your screen. » Click the Debug
button to build and download the code and reconnect to your LaunchPad. » Run the
code by clicking the Resume button. Note that the USB Bulk Device doesn’t exist until
the program is running.

» Start the USB Bulk Example Windows application as shown earlier. Place the window
in the upper right corner of your screen. This would be much easier with multiple
screens, wouldn’t it?

» Note the status on your terminal display and type something, like
TEXAS INSTRUMENTS into the USB Bulk Example Windows application and press
Enter. Note that the terminal program will display

E8 COMA4T - PuTTY

Enter a string (EXIT to exit>: TEXAS INSTRUMENTS

lirote 17 hytes to the device. Expected 17
Read 17 bytes from device. Expected 17

Returned string: "texas instruments'

Enter a string (EXIT to exit)>:

"
C:\Program Files (x86)\Texas Instruments\Stellaris\usb_examplesiusb_bulk_example.exe |ﬂ|ﬁ]

a partner application to the ush_dev_bulk example
with Stellarisllare software releases for USB-enabled

. Strings entered here are sent to the hoard which
the case of the characters in the string and returns
the host.

11-12

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

Lab11: USB

15. » Click the Suspend button in CCS to halt the program.

To summarize, we’re sending bulk data across the DEVICE USB connection. At the
same time we are performing emulation control and sending UART serial data across the

DEBUG USB connection.

If you get things out of sync here and find that the USB Bulk Example won’t run,
remember that it must be started after the usb_dev_bulk code on the LaunchPad is

running.

Watch the Buffers

16. » Remove all expressions (if there are any) from the Expressions pane by right-clicking
inside the pane and selecting Remove All.

17. » At about line 450 in
usb dev bulk.c, find the code
shown to the right:

USBBufferInit (&g sTxBuffer);
UsBBufferInit(&g sRxBuffer);

» One at the time, highlight g sTxBuffer and g sRxBuffer and add them as watch
expressions by right-clicking on them, selecting Add Watch Expression ... and then OK
(by the way, we could have watched the buffers in the Memory Browser, but this method

is more elegant).

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11-13

Lab11: USB

18. » Expand both buffers as shown below:

(%)= Variables &9 Expressions 3 | ©g Breakpoints 4 '—'| o] q-ﬁ'| o ‘{‘}| &

Expression Type Value Address

4 5 g_s [xBuffer struct <unnamed:= Tond 0x00003ELC
()= bTransmitBuffer unsigned char : 0x00003E1C
. % pfnCallback unsigned int (*)J{unknown®,... 000003781 0x00003E20
> w pvCBData void * 0x20000C9C 00000324
: w pfnTransfer unsigned int (*}J{unknown®,... 0x:000027CE 0x00003E28
. m pfnAvailable unsigned int (*J{unknown®) 000003945 000003E2C
. = pvHandle void * 0x20000C9C 0x00003E30
> w puiBBuffer unsigned char * (020000610 "texas inst” <:':{IGGGBB£1
()= ui32BufferSize unsigned int 256 0:00003E38
. w pvWorkspace void * (20000868 00000363 C

4 E g_sRxBuffer struct <unnamed:> [0x00003DF8
()= bTransmitBuffer unsigned char : 0:00003DF8
> w pfnCallback unsigned int (*){unknown®,... 000002589 0x00003DFC
. » pvCBData void * 0200009 C 0x00003E00
. m pfnTransfer unsigned int (*}J{unknown®,... 0x00001FAD 0x00003E04
- w pfnAvailable unsigned int (*J{unknown®} 000003460 000003E08
: w pvHandle void * (x20000C9C 0x00003E0C
. w puiBBuffer unsigned char * (020000510 "TEXAS INST" <:|JCICICIBF_1CI
()= ui32BufferSize unsigned int 256 0:00003E14
> W pvWorkspace void * (20000850 0:00003E18

The arrows above point out the memory addresses of the buffers as well as the contents.
Note that the Expressions window only shows the first 10 bytes in the buffer.

The usb_dev_bulk. c code uses both buffers as “circular” buffers ... rather than
clearing out the buffer each time data is received. The code just appends the new data
after the previous data in the buffer. When the end of the buffer is reached, the code starts
again from the beginning. You can use the Memory Browser to view the rest of the
buffers, if you like.

19. » Resize the code window in the Debug Perspective so you can see a few lines of code.
Around line 293 in usb_dev bulk. c, find the line containing i f (ulEvent . This
is the first line in the TxHandler ISR. At this point the buffers hold the last received
and transmitted values. » Double-click in the gray area to the left on the line number to
set a breakpoint. Resize the windows again so you can see the entire Expressions pane.

i $'295 if(ui32Event == USB_EVENT_TX_COMPLETE)

204 I

» Right-click on the breakpoint and select Breakpoint Properties ... Click on the Action
property value Remain Halted and change it to Refresh All Windows. Click OK.

20. P Click the Core Reset button to reset the device. !

Make sure your buffers are expanded in the Expressions pane and P click
the Resume button to run the code. The previous contents of the buffers shown in the
Expressions pane will be erased when the code runs for the first time.

» Resize CCS back to the bottom half of your screen.

11-14 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

Lab11: USB

21. P Restart the USB Bulk example Windows application so that it can reconnect with the
device.

22. » Since the Expressions view will only display 10 characters, type something short into
the USB Bulk Example window like “TI”.

23. > When the code reaches the breakpoint, the Expressions pane will update with the
contents of the buffer. Try typing “IS” and “AWESOME”. Notice that the “E” is the 11"
character and will not be displayed in the Expressions pane.

24. » When you’re done, close the USB Bulk Example and Terminal program windows.
» Click the Terminate button in CCS to return to the CCS Edit perspective.
» Close the usb _dev_bulk project in the Project Explorer pane.

» Minimize Code Composer Studio.

25. » Disconnect and store the USB cable connected to the DEVICE USB port.

You’re done.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11-15

Lab11: USB

11-16 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB

Memory

Introduction

In this chapter we will take a look at some memory issues:

How to write to FLASH in-system.

How to read/write from EEPROM.

How to use bit-banding.

How to configure the Memory Protection Unit (MPU) and deal with faults.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8-1

Chapter Topics

Chapter Topics

Memory 8-1
CRAPICE TOPICS..c.ve ettt et ettt et e b e et e st e s s e e st e e st e e bt aeesbeessbeeesseesseanseeensaesenseenens §8-2
TRECFNAL MEMOTY ...ttt ettt et ettt e et e e b e st e eteesatesseesseenbensaeerneas §-3
BUE-BANAING ...ttt ettt ettt ettt bbbt ae et be b erae s 8-5
MEMOTY PrOTECHION UNIEoocueeiiii ettt ettt ettt e ettt e st e et eesat e e s st e enstteensaeenseesnseesnsee e 8-6
SECUFTLY ..ottt e ettt ettt et ettt et et ettt §-7
Labl2: Memory and the MPUcccocioiiiiiiiiiiiiiet ittt 8-9

ODJECLIVE ..veeuveeieeieieeteeie et ete st et e et et et eesaeesee st ensaesaee st esseesseeseanseanseanseeaseensesnsesseenseensesnsesseennsenssenseens 8-9
PrOCEAUIE ...ttt ettt ettt et e et e ae e e s et e bt enteeseeebee b e enaeeeaeeneenes 8-10

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Internal Memory

Internal Memory

Flash

/ ¢ 1MB starting at 0x0000 0000 organized by 8KB sectors

Configured in 4 banks of 16Kx128-bits (4*256KB total),
256-bit pre-fetch buffer
32-word write buffer

L 2K R IR R 2

100,000 program/erase cycles with 20 years data retention

Programmable write and execution protection available

\0 Simple programming interface _

~

2-way interleaved

Reserved

ROM

SRAM

Bit-band alias of SRAM

Peripherals

Bit-band alias of Peripherals

External Peripheral Interface

Private Peripheral Bus

ROM ...

ROM

¢ Bootloader

< |Initial vector table

¢ Peripheral driver library

¢ AES crypto tables

¢ CRC error detection functionality

¢ There are no provisions for custom-coding the

/0 The on-chip ROM starts at address 0x0100 0000 and contains: \

K ROM at this time

Flash

Reserved

SRAM

Bit-band alias of SRAM

Peripherals

Bit-band alias of Peripherals

External Peripheral Interface

Private Peripheral Bus

EEPROM ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

8-3

Internal Memory

EEPROM

¢ 6KB of memory starting at 0x400A F000 in Peripheral space
¢ Accessible as 1536 32-bit words
96 blocks of 16 words (64 bytes) with access protection per block
Built-in wear leveling with endurance of 500K writes
Lock protection option for the whole peripheral as well as per
64-byte block using 32-bit to 96-bit unlock codes
¢ Interrupt support for write completion Flash

to avoid polling
¢ Random and sequential read/write
K access (4 cycles max/word)

L 2

2
2

Reserved

ROM

SRAM

Bit-band alias of SRAM

External Peripheral Interface

Private Peripheral Bus

SRAM ...

SRAM

/ ¢ 256KB starting at 0x2000 0000 \
¢ Bit banded to 0x2200 0000
¢ Can hold code or data

¢ Implemented using 4-way 32-bit wide interleaved banks for
increased speed between accesses

k Flash

Reserved

ROM

Peripherals

Bit-band alias of Peripherals

External Peripheral Interface

Private Peripheral Bus

Bit-Banding...

8-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Bit-Banding

Bit-Banding

Bit-Banding

Reduces the number of read-modify-write operations

¢ SRAM and Peripheral space use address aliases to access
individual bits in a single, atomic operation

¢ SRAM starts at base address 0x2000 0000

Bit-banded SRAM starts at base address 0x2200 0000

¢ Peripheral space starts at base address 0x4000 0000
Bit-banded peripheral space starts at base address 0x4200 0000

L 4

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number *

For example, bit-7 at address 0x2000 2000 is:

0x2000 2000 + (0x2000 * 0x20) + (7 * 4) = 0x2204 001C

4)

MPU ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

8-5

Memory Protection Unit

Memory Protection Unit

Memory Protection Unit (MPU)

Defines 8 separate memory regions plus a background region

¢ Regions that are 256 bytes or more are divided into 8 equal-
sized sub-regions

¢ MPU definitions for all regions include:
Location
Size
Access permissions
Memory attributes

¢ Accessing a prohibited region causes a memory management
fault

L 4

IP Security ...

8-6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Security

Security

Securing Your IP

¢ Flash memory can be protected (per 2KB memory block).
Prohibited access attempts will generate a bus fault.

FMFPFEn FMPREn |Protection

i} o Execute-only protection. The block may only be executed and may not be written or erased
This mode is used to protect code.
o The block may be written, erased or executed, but not read. This combination is unlikely to
be usad.
o 1 Read-only protection. The block may be read or executed but may not be written or erased.

This mode is used to lock the block from further modification while allowing any read or
execute access.

Mo protection. The block may be written, erased, executed or read.

¢ The JTAG and SWD ports can be disabled. DBGO = 0 and DBG1 =
1 (in BOOTCFG register) for debug to be available. The user should
be careful to provide a mechanism, for instance via the bootloader of
enabling the ports since this is permanent.

¢ There is a set of steps in the UG for recovering a “locked”
microcontroller, but this will result in the mass erase of flash
memory.

Tamper Module ...

Tamper Module

¢ The Tamper module provides a user with mechanisms to detect,
respond to, and log system tampering events

¢ The Tamper module is designed to be low power and operate either
from a battery or the MCU 1/O voltage supply

¢ This module is a sub-module of the Hibernate module

¢ A state transition on any up to 4 tamper-designated GPIO pins triggers
a tamper event

¢ Failure of the Hibernation crystal can also trigger a tamper event and
switch the clock source to the low frequency internal oscillator

¢ Possible tamper event responses:

Set Tamper Status bit
Generate an NMI TampderFDletect Control ——{—p Tamper Event NMI

an iiter

TMPR[3:0] HIBTPCTL | ———— BBRAM Clear
Clear some or all HIB memory HETEE] [HBTESTAT] | e
Wake from hibernate ey
Log up to 4 events ————
XOSCO0 — g
Detector
HIBTPCTL.TPEN T
RTC

Cryptographic accelerators ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8-7

Security

Crytographic Accelerators

Encryption and Decryption
Cyclical Redundancy Check (CRC) engine
- Accelerates CRC and TCP checksum operations
- 32- and 16-bit signature used to check accuracy of data
Symmetric - encryption and decryption keys are identical
- Advance Encryption Standard (AES) accelerator
- Data Encryption Standard (DES) accelerator
- Useful for encrypting/decrypting large amounts of data
¢ Hash — used to verify the integrity of files or messages
- Secure Hash Algorithm (SHA)
SHA-1 — 160-bit hash function
SHA-2 — SHA-224 and SHA-256 algorithm
- Message Digest 5 (MD5) algorithm

L R 2

*

Lab ...

8-8 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Lab12: Memory and the MPU

Lab12: Memory and the MPU

Objective
In this lab you will
e write to FLASH in-system.
e read/write EEPROM.
e Experiment with using the MPU
e Experiment with bit-banding

Lab12: Memory and the MPU

USB Emulation l
Connection

¢ Create code to write to Flash
¢ Create code to read/write EEPROM

¢ Experiment with MPU and
bit-banding

Agenda ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8-9

Lab12: Memory and the MPU

Procedure

Import lab12

1. We have already created the lab12 project for you with an empty main. c, a startup file
and all necessary project and build options set.

» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish

Make sure that the “Copy projects into workspace” checkbox is unchecked.

wr Import CCS Eclipse Projects . CIRE N

Select Existing CCS Eclipse Project
Select a directory to search for existing CCS Eclipse projects.

| &

@ Select search-directory: CATM4C1294_Connected_LaunchPad_Waorkshoptlabl2 Browse...

() Select archive file: Browse...

Discovered projects:
& labl2 [CATMAC1294_Connected_LaunchPad_Workshoptlabl2] Select All
Deselect All

Refresh

[7] Copy projects into workspace
[Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

@ [Finish |

Cancel

2. P Expand the lab12 project in the Project Explorer pane. Double-click on main. c to
open it for editing.

8-10 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Lab12: Memory and the MPU

3. Let’s start out with a straightforward set of starter code.

» Copy the code below and paste it into your empty main. c file.

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"

uint32_t ui32SysClkFreq;

int main(void)
{
ui32SysClkFreq = SysCtlClockFreqgSet ((SYSCTL XTAL 25MHZ |
SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 120000000);

SysCtlPeripheralEnable (SYSCTL PERIPH GPION) ;
GPIOPinTypeGPIOOutput (GPIO_PORTN BASE, GPIO_PIN 0|GPIO_PIN 1);
GPIOPinWrite (GPIO_PORTN_BASE, GPIO_PIN 0|GPIO_PIN 1, 0x00);
SysCtlDelay (ui32SysClkFreq/3) ;

while (1)

{

}
}
You should already know what this code does, but a quick review won’t hurt. The
included header files support all the usual stuff including GPIO. Inside main (), we
configure the clock speed to 120MHz, set the pins connected to the LEDs as outputs and
then make sure both user LEDs are off. Next is a one second delay followed by a
while (1) trap.

» Save your work.

If you’re having problems, this code is in your 1ab12 folder asmainl.txt.

Writing to Flash

4. We need to find a writable block of flash memory. Right now, that would be flash
memory that won’t be holding the program we’ll be executing. » Under Project on the
menu bar, click Build All. This will build the project without attempting to download it to
the TM4C1294NCPDTflash memory.

5. As we’ve seen before, CCS creates a map file of the program during the build process.
» Look in the Debug folder of 1ab12 in the Project Explorer pane and double-click
on 1abl2.map to open it.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8-11

Lab12: Memory and the MPU

6. P Find the MEMORY CONFIGURATION and SEGMENT ALLOCATION MAP
sections as shown below:

MEMORY CONFIGURATION

name origin length used unused attr fill
FLASH BEBaBaEE Geleacaa eeeeeb22 eBATf4de R X
SRAM 286000680 80040000 0OPBPAT7C @DO3TTE4 RW X

SEGMENT ALLOCATION MAP

run origin load origin length init length attrs members

b28 b28 r-x
208 288 r-- .intvecs

Beaaa2a3 Baaaa283 Beaea71e BaEaa71e r-x .text
2eaaa9238 Baeapa2s geaealcd eaeaalcd r-- .const
paaaaate paaaBate Beae8033 BaEaBE33 r-- .cinit

2 2 7c rw-
2 2 G4 rw- .stack
20808064 2860664 peaeaa14 2aeaaa88 rw- .data
208080875 2e8a8a73 geaeaaad gaaaaapa rw- .bss

From the map file we can see that the amount of flash memory used is 0x0b22 in length
that starts at 0x0. That means that pretty much anywhere in flash located at an address
greater than 0x1000 (for this program) is writable. Let’s play it safe and pick the block
starting at 0x1 0000. Remember that flash memory is erasable in 8K sectors. Close
labl2 .map.

7. » Backinmain.c, add the following include to the end of the include statements to
add support for flash APIs:

#tinclude "driverlib/flash.h"

8. P Atthetop of main (), enter the following four lines to add buffers for read and write
data and to initialize the write data:

uint32_t pui32Data[2];
uint32_t pui32Read[2];
pui32Data[@] = ©x12345678;
pui32Data[1l] = ©x56789abc;

8-12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Lab12: Memory and the MPU

9. P Just above the while(1) loop at the end of main(), add these four lines of code:

FlashErase (0x10000) ;

FlashProgram(pui32Data, 0x10000, sizeof (pui32Data)) ;
GPIOPinWrite (GPIO_PORTN_ BASE,GPIO_PIN 0|GPIO_PIN 1, 0x02);
SysCtlDelay (ui32SysClkFreq/3) ;

Line:

1: Erases the block of flash we identified earlier.

2: Programs the data array we created, to the start of the block, of the length of the array.
3: Lights user LED D1 to indicate success.

4: Delays about one second before the program traps in the while (1) loop.

10. Your code should look like the code below. If you’re having issues, this code is located in
the 1ab12 folder asmain2 . txt.

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_types.h"

#include "inc/hw_memmap.h"

#include "driverlib/sysctl.h"

#include "driverlib/pin_map.h"

#include "driverlib/debug.h"

#include "driverlib/gpio.h"

#include "driverlib/flash.h"

uint32_t ui32SysClkFreq;

int main(void)

{
uint32_t pui32Data[2];
uint32 t pui32Read[2];
pui32Data[@] = 0x12345678;
pui32Data[l] = @x56789abc;
ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |

SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 120000000);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION);
GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO _PIN_©|GPIO_PIN 1);
GPIOPinWrite(GPIO_PORTN_BASE, GPIO PIN_©|GPIO PIN 1, 0x00);
SysCtlDelay(ui32SysClkFreq/3);
FlashErase(0x10000);
FlashProgram(pui32Data, ©x10000, sizeof(pui32Data));
GPIOPinWrite(GPIO_PORTN_BASE,GPIO_PIN ©|GPIO PIN_ 1, 0x02);
SysCtlDelay(ui32SysClkFreq/3);
while(1)
{
}

¥

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8-13

Lab12: Memory and the MPU

Build, Download and Run the Flash Programming Code

11. » Click the Debug button to build and download your program to the
TMA4C1294NCPDT memory. Ignore the warning about variable pui32Read not being
referenced (we’ll use it later). When the process is complete, P set a breakpoint on the
line containing the FlashProgram () API function call.

12. » Click the Resume button to run the code.

Execution will quickly stop at the breakpoint. W Meawy B 33

» On the CCS menu bar, click View = (-10000
Memory Browser. In the provided entry 0x10000 <Memery Rendering 2> 3
window, enter 0x1 0000 as shown and press

32-BitHex-TIStyle ~

. @x@@0100080 FFFFFFFF FFFFFFFF A
Erased flash should read as all ones, since P O0O10849 FEEFEEFE FEEFEEEF F

programming flash memory only writes zeros. Ax@AA1PESe FFFEFFFF FEFFFEEF H

Because of this, writing to un-erased flash
memory will produce unpredictable results.

Enter.

[Memory Browser &2

13. » Click the Resume button to run the code. stiblonl

The last line of code before the while (1) 0:10000 <Memory Rendering 2> E3
loop will light the user LEDs. » Click the | 32-Bit Hex - T Style o
Suspend button. Your Memory Browser will
axeaale888 12345678 56789ABC FF

update, displaying your successful write to
flash memory. @x@0010840 FFFFFFFF FFFFFFFF FF

14. » Close the Memory Browser and remove the breakpoint from your code.

15. » Click the Terminate button to stop debugging and return to the CCS Edit perspective.

Bear in mind that if you repeat this exercise, the values you just programmed in flash will
remain there until that flash block is erased.

8-14 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Lab12: Memory and the MPU

Reading and Writing EEPROM

16. » Backinmain.c, add the following line to the end of the include statements to add
support for EEPROM APIs:

#include "driverlib/eeprom.h"

17. » Just above the while(1) loop, enter the following seven lines of code:

SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROM®);
EEPROMInit();

EEPROMMassErase();

EEPROMRead (pui32Read, 0x0, sizeof(pui32Read));
EEPROMProgram(pui32Data, ©x0, sizeof(pui32Data));
EEPROMRead (pui32Read, 0x0, sizeof(pui32Read));
GPIOPinWrite(GPIO_PORTN_BASE,GPIO_PIN_©|GPIO_PIN_1, 0x01);

Line:

1:
2:

~N N »n b

Turns on the EEPROM peripheral.

Performs a recovery if power failed during a previous write operation.

: Erases the entire EEPROM. This isn’t strictly necessary because, unlike flash,

EEPROM does not need to be erased before it is programmed. But this will allow
us to see the result of our programming more easily in the lab.

: Reads the erased values into puiRead (offset address)

: Programs the data array, to the beginning of EEPROM, of the length of the array.
: Reads that data into array puiRead.

: Turns off LED D1 and turns on LED D2.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8-15

Lab12: Memory and the MPU

18. » Save your work.

Your code should look like the code below. If you’re having issues, this code is located in
the 1ab12 folder asmain3.txt

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw types.h"
#include "inc/hw memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/flash.h"
#include "driverlib/eeprom.h"

uint32 t ui32SysClkFreq;

int main (void)

{

uint32 t pui32Datal2];
uint32 t pui32Read[2];
pui32Data[0] = 0x12345678;
pui32Datal[l] = 0x56789%abc;

ui32SysClkFreqg = SysCtlClockFregSet ((SYSCTL XTAL 25MHZ |
SYSCTL 0OSC MAIN | SYSCTL USE PLL |
SYSCTL CFG VCO 480), 120000000) ;

SysCtlPeripheralEnable (SYSCTL PERIPH GPION);
GPIOPinTypeGPIOOutput (GPIO PORTN BASE, GPIO PIN 0|GPIO PIN 1);
GPIOPinWrite (GPIO PORTN BASE, GPIO PIN 0|GPIO PIN 1, 0x00);
SysCtlDelay (ui32SysClkFreq/3) ;

FlashErase (0x10000) ;

FlashProgram(pui32Data, 0x10000, sizeof (pui32Data));
GPIOPinWrite (GPIO PORTN BASE,GPIO PIN 0|GPIO PIN 1, 0x02);
SysCtlDelay (ui32SysClkFreq/3) ;

SysCtlPeripheralEnable (SYSCTL PERIPH EEPROMO) ;

EEPROMInit () ;

EEPROMMassErase () ;

EEPROMRead (pui32Read, 0x0, sizeof (pui32Read))
EEPROMProgram (pui32Data, 0x0, sizeof (pui32Data));
EEPROMRead (pui32Read, 0x0, sizeof (pui32Read));
GPIOPinWrite (GPIO PORTN BASE,GPIO PIN 0|GPIO PIN 1, 0x01);

while (1)
{
}

8-16

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Lab12: Memory and the MPU

Build, Download and Run the EEPROM Programming Code

19. » Click the Debug button to build and download your program to flash memory. Code
Composer does not currently have a browser for viewing EEPROM memory located in
the peripheral area. The code we’ve written will let us read the values and display them
as array values.

20. » Click on the Variables tab and expand both of the arrays P Right-click on the first
variable’s row and select Number Format = Hex. Do this for all four variables.

09= Variables 23 | €7 Expressions| 9 Breakpoints| i} Registers % = | f%.) | et~ =0
Mame Type Value Location
4 (= puid2Data unsigned int[2] 020000200 0x20000200
- [0] Select Al Ctrl+A 020000200
9= [1] . 0x20000204
4 (= puis2Read| (= Copy Variables Ctri+C 00208 0x20000208
)= [0] Enable 0x20000208
(9= [1] Disable (x2000020C
MNumber Format 3 Default
¢ @, Cast To Type... Hex :
View Memory Decimal
View Memory at Value Octal
Find... Ctrl+F Binary
Add Global Variables... String
Remove Global Variables Restore To Preference
Remove All Global Variables
Q-Values »
%Y Watch
Graph
Breakpoint (Cede Composer Studic) 4

21. P Set a breakpoint on the line containing EEPROMProgram (). We want to verify the
previous contents of the EEPROM. P Click the Resume button to run to the breakpoint.

22. Since we included the EEPROMMassErase () in the code, the values read from
memory should be all F’s as shown below:

4= Variables 57 | 7 Expressions| O Breakpoints | i1} Registers +t [| & i ™ =08
MNarne Type Value Location
4 (= pui32Data unsigned int[2] 0x200001E8 0x200001E8
(= [0] unsigned int 062345678 (Hex) 0200001 E8
0= [1] unsigned int (:G6TEIABC (Hex) 0x200001EC
4 (= pui32Read unsigned int[2] (x200001F0 0x200001F0
()= [0] unsigned int OxFFFFFFFF (Hex) 0x200001F0
69= [1] unsigned int OxFFFFFFFF (Hex) 0200001 F4
< W 3

23. P Click the Resume button to run the code from the breakpoint. When the D2 LED on
the board lights, click the Suspend button. The values read from memory should now be
the same as those in the write array:

)= ariabies 52 | G Expressions| ® Breakpoints| Wi! Registers =t [‘ =} | et~ =0
Name Type Value Location
4 (= pui32Data unsigned int[2] 0:200001E8 (0:200001E8
&)= [0] unsigned int 0x12345678 (Hex) 0200001 E8
9= [1] unsigned int 0x56783ABC (Hex) (0x200001EC
4 = pui32Read unsigned int[2] 0x:200001F0 (0200001 F0
9= [0] unsigned int (12345678 (Hex) (0200001 F0
9= [1] unsigned int 0x56789ABC (Hex) 0200001 F4
] T b

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8-17

Lab12: Memory and the MPU

Further EEPROM Information

24. EEPROM is unlocked at power-up. Your locking scheme, if you choose to use one, can
be simple or complex. You can lock the entire EEPROM or individual blocks. You can
enable reading without a password and writing with one if you desire. You can also hide
blocks of EEPROM, making them invisible to further accesses.

25. EEPROM reads and writes are multi-cycle instructions. The ones used in the lab code are
“blocking calls”, meaning that program execution will stall until the operation is
complete. There are also “non-blocking” calls that do not stall program execution. When
using those calls you should either poll the EEPROM or enable an interrupt scheme to
assure the operation completes properly.

26. » Remove your breakpoint, click Terminate to return to the CCS Edit perspective and
close the lab12 project.

8-18 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Lab12: Memory and the MPU

Bit-Banding

27. The LaunchPad board TivaWare examples include a bit-banding project. » Click Project
- Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.

Make sure that the Copy projects to workspace checkbox is checked.

-

w+ Import CCS Eclipse Projects

Select CCS Projects to Import
Select a directory to search for existing CCS Eclipse projects.

| o

@) Select search-directory: CATIVTivaWare_C_Series-2.1.0.12573\examples\boards'ek-tmd c1294x M bithand Browse...

() Select archive file: Browse...

Discovered projects:

[¥] & bitband [C:ATITivaWare_C_Series-2.1.0.1257 3 examples\boards'ek-tmdc1294xM\bitband'.ccs) Select All

Deselect All

Refresh

[7] Automatically import referenced projects found in same search-directory
[¥] Copy projects into workspace

Open the Resource Explorer and browse available example projects...

@ [Finish |

Cancel

28. P Expand the bithand project and double-click on bitband. c to open it for viewing.
Page down until you reach main () . You should recognize most of the setup code, but
note that the UART is also configured. We’ll be able to watch the code run via
UARTprintf () statements that send data to a terminal program running on your lap-
top. Also note that this example uses ROM API function calls.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8-19

Lab12: Memory and the MPU

29.

30.

» Continue paging down until you find the

for (ui32Idx=0;ui32Idx<32;ui32Idx++) loop around line 200. This 32-step
loop will write Oxdecafbad into memory bit by bit using bit-banding. This will be
done using the HWREGBITW () macro.

» Right-click on HWREGBITW () and select Open Declaration.

The HWREGBITW (x,b) macro is an alias from:

HWREG (((uint32_t) (x) & O0xF0000000) | 0x02000000 |
(((uint32_t) (x) & OxOO00FFFFF) << 5) | ((b) << 2))

which is C code for:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

This is the calculation for the bit-banded address of bit b of location x. HWREG is a
macro that programs a hardware register (or memory location) with a value. This macro
can be very useful for those times when your code can’t tolerate the extra cycles a
TivaWare API might incur.

The loop in bitband. c reads the bits from 0xdecafbad and programs them into the
calculated bit- band addresses of g ui32Value. Throughout the loop the program
transfers the value in g_ui32Value to the UART for viewing on the host. Once all bits
have been written to g_ui32Value, the variable is read directly (all 32 bits) to make
sure the value is Oxdecafbad. There is another loop that reads the bits individually to
make sure that they can be read back using bit-banding

» Click the Debug button to build and download the program to flash memory. If you
see a warning about the compiler version, you can ignore that for now.

8-20

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Lab12: Memory and the MPU

31. » Open PuTTY and make the selections shown below. Remember that your COM port

number is probably different. Click Open.

r N P ~
#R PUTTY Configuration ﬂ $% PuTTY Configuration &
(BT — feteaon;
= Session Basic options for your PuTTY session - Session Options cortroling local sedal ines
: Loggng Specify the destination you want to connect to - Logging Select a serial line
= Teminal S —- Terminal
Y b Serial line Speed _ J Keyboand Serial line to connect to COM46
- Bdl COM46 115200 Bel
i Features Connection type: | L. Features Corfigure the serial line
= Window D Raw (O Telnet O Riogn O SSH @ Senal = Window Speed (baud) 115200
Appea!ance Load, save or delete a stored session ’ .-\noea.aﬂce Data bits 8
- Behaviour ; Behaviour
Translation Saved Sessions Translation Stop bits 1
- Selection - Selection Pty ™
El one -
e Colours Defaut Settings m s Colours 2
= Connection = Connection Fow coritrol None -
Data Data
o oes
Teinet Teknet
Rlagn Rlogin
il- S5H 31+ SSH
=L Close window on exit: Sedal
Aways) Never @ Only on clean exit
About [Open] | Cancel About Open | Cancel
J

32. » Click the Resume button in CCS and watch the bits drop into place in your terminal
window. The Delay () in the loop causes this process to take about 3 seconds.

33. » Close your terminal window. Click Terminate in CCS to return to the CCS Edit
perspective and close the bitband project.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

8-21

Lab12: Memory and the MPU

Memory Protection Unit (MPU)
The LaunchPad board TivaWare examples include an mpu fault project. » Click Project

- Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.

Make sure that the Copy projects to workspace checkbox is checked.

-

«'+ Import CCS Eclipse Projects

Select CCS Projects to Import
Select a directory to search for existing CCS Eclipse projects.

@) Select search-directory: CATI\TivaWare_C_Series-2.1.0.12573\ exampleshboards\ ek-trmd c1 204xM\ mpu_fault

) Select archive file:

Discovered projects:

[¥] & mpu_fault [CATINTivaWare C_Series-2.1.01257 3\ examples\boardshek-tmd c1294xl\mpu_fault\ccs]

[7] Automatically import referenced projects found in same search-directory

[#] Copy projects into workspace

Open the Resource Explorer and browse available example projects...

Browse...

w
=]
m

Select All

Deselect All

Refresh

@j Finish

Cancel

Again, things should look pretty normal in the setup, so let’s look at where things are

different.

34. » Expand the mpu fault project and double-click on mpu_fault.c for viewing.

Find the function called MPUFaultHandler around line 175. This exception handler

looks just like an ISR. The main purpose of this code is to preserve the address of the

problem that caused the fault, as well as the status register.

» Open startup ccs.c and find where MPUFaultHandler has been placed in

the vector table. Close startup ccs.c.

8-22

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Lab12: Memory and the MPU

35. » Inmpu_fault.c, findmain () around line 214. Using the memory map shown in
the comments, the MPURegionSet () calls will configure 6 different regions and
parameters for the MPU. The code following the final MPURegionSet () call triggers
(or doesn’t trigger) the fault conditions. Status messages are sent to the UART for display

on the host.

MPURegionSet () uses the following parameters:

e Region number to set up

e Address of the region (as aligned by the flags)

o Flags

Flags are a set of parameters (OR’d together) that determine the attributes of the region
(size | execute permission | read/write permission | sub-region disable | enable/disable)

The size flag determines the size of a region and must be one of the following:

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K

MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

The execute permission flag must be one of the following:

MPU_RGN_PERM_EXEC cnables the region for execution of code
MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user
modes. The read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, no user access
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only
MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, no user access
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8-23

Lab12: Memory and the MPU

36.

37.

38.

Each region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-
regions can only be used in regions of size 256 bytes or larger. Any of these 8 sub-
regions can be disabled, allowing for creation of “holes” in a region which can be left
open, or overlaid by another region with different attributes. Any of the 8 sub-regions can
be disabled with a logical OR of any of the following flags:

MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

MPU_RGN_ENABLE
MPU_RGN_DISABLE

» Start your terminal program as shown earlier. Click the Debug button to build and
download the program to flash memory. You can ignore any compiler version warnings
that may appear. Click the Resume button to run the program.

The tests are as follows:

e Attempt to write to the flash. This should cause
a protection fault due to the fact that this region @
is read-only. If this fault occurs, the terminal
program will show OK.

e Attempt to read from the disabled section of
flash. If this fault occurs, the terminal
program will show OK. EAM write...

Success!

e Attempt to read from the read-only area of
RAM. If a fault does not occur, the terminal program will show OK.

e Attempt to write to the read-only area of RAM. If this fault occurs, the
terminal program will show OK.

» When you are done, close your terminal program. Click the Terminate button in CCS
to return to the CCS Edit perspective. Close the mpu fault project and minimize Code
Composer Studio.

You’re done.

8-24

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory

Floating-Point Unit

Introduction

This chapter will introduce you to the Floating-Point Unit (FPU) on the LM4F series devices. In
the lab we will implement a floating-point sine wave calculator and profile the code to see how
many CPU cycles it takes to execute.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13- 1

Chapter Topics

Chapter Topics

Floating-Point Unit «.13-1
CRAPICE TOPICS .ee.vv ettt ettt et e e ettt e s e e et e e eb e e taeestaeensbeessbeesnbeesabeensseesseataeeenseas 13-2
What is Floating-Point Gnd IEEE-7547?c..cccooiiiiiiieiieeiieeeeeie ettt et sve e enaens 13-3
FIOQEING-POINE URIL.............coooueeiiieiieie ettt ettt ettt be e st e saeenseenseeneesneense e 13-4
LADI3: FPU ...ttt ettt ettt b ettt bttt et e 13-7

(0]0) 1515 A< PSR 13-7
PrOCEAULE ...ttt ettt ettt b ettt bbbt sae b bt e b e enes 13-8

13-2 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU

What is Floating-Point and IEEE-754?

What is Floating-Point and IEEE-7547

What is Floating-Point?

¢ Floating-point is a way to represent real numbers on
computers

¢ IEEE floating-point formats:

sign exponent fraction

S

+ Half (16-bit) > (LT RN

+ Single (32-bit) > i]]]]]]]_

+ Double (64-bit) > i]]]]]]]__
 Quadruple (128-bit) > . | +oo [T

What is IEEE-7547...

What is IEEE-7547

Bit 31 3029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
Symbol Sign (s) Exponent (e) Fraction (f)
\ J\)

Y Y
1 bit 8 bits 23 bits

Decimal Value = (-1)s (1+f) 2¢-bias

where: f=3[(b;)27]Vie(1,23)
bias = 127 for single precision floating-point

Symbol s e f
Example 0 1 0000 110110100001000000000O0O0OO0OO0O0
\ J\)
Y Y
sign = (-1)° exponent = [10000110], = [134],, fraction = [0.110100001000000000000000], = [0.814453],,

=[1ho
Decimal Value = (-1)s x (1+f) x 2¢-bias
= [1140 x ([1]4o + [0.814453],,) x [2'34127],
= [1. 814453],, x 128
=[232.249],,

FPU...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13- 3

Floating-Point Unit

Floating-Point Unit

Floating-Point Unit (FPU)

¢ The FPU provides floating-point RN RN
computation functionality that is compliant & — — |
with the IEEE 754 standard o 2= B fty m
¢ Enables conversions between fixed-point E Beeevererrreeed %
and floating-point data formats, and floating- B | ot | =
point constant instructions - -
¢ The Cortex-M4F FPU fully supports single- - m
precision: m E _ m
Add [g . Bus Matrix j
o ode SRAM &
Subtract | Interface peripheral I/F]
Multiply SRR RS SESS e |
Divide
Single cycle multiply and accumulate (MAC)
Square root
) Cmm) o) (e (o JC_vom JC_ev) _vow) C_vor)
D | T YC_mov) _vmRs _)(___vwsR___) wmuL D | B YO _vhmia) vewis_)
| T | G | T | G | G | G Cortex-Md4F
Modes of Operation...

Modes of Operation

¢ There are three different modes of operation for the FPU:

ﬁFull-Compliance mode - In Full-Compliance mode, the FPU
processes all operations according to the IEEE 754 standard in
hardware. No support code is required.

= Flush-to-Zero mode — A result that is very small, as described in the
IEEE 754 standard, where the destination precision is smaller in
magnitude than the minimum normal value before rounding, is
replaced with a zero.

= Default NaN (not a number) mode — In this mode, the result of any
arithmetic data processing operation that involves an input NaN, or

that generates a NaN result, returns the default NaN. (0/0 = NaN)

FPU Registers...

13-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU

Floating-Point Unit

FPU Registers

— D0 —

¢ Thirty-two dedicated
32-bit single-word registers,
S0-S31
also addressable as sixteen
64-bit double-word registers,
D0-D15

— D1 -

— D2 —

— D3 -

528

529

L D14

530

531

D15+

Usage...

Control (CPAC) register.

not support user-mode traps.

information to the stack.

FPU Usage

¢ The FPU is disabled from reset. You must enable it* before you
can use any floating-point instructions. The processor must be in
privileged mode to read from and write to the Coprocessor Access

* with a TivaWare API function call

¢ Exceptions: The FPU sets the cumulative exception status flag in
the FPSCR register as required for each instruction. The FPU does

¢ The processor can reduce the exception latency by using lazy
stacking®. This means that the processor reserves space on the
stack for the FPU state, but does not actually write that state

Lab ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU

13-56

Floating-Point Unit

13-6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU

Lab13: FPU

Lab13: FPU
Objective

In this lab you will enable the FPU to run and profile floating-point code.

Lab13: FPU

USB Emulation
Connection

¢ Experiment with the FPU
+ Profile floating-point code

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13-7

Lab13: FPU

Procedure

Import lab13

1.

We have already created the lab13 project for you with main. c, a startup file and all

necessary project and build options set.

» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish

Make sure that the Copy projects into workspace checkbox is unchecked.

-

w» Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5 Eclipse projects.

(") Select archive file:

Discovered projects:

o7 Labl3 [CATM4C1294 Connected_LaunchPad_Workshop'labl3]

[Copy projects into workspace
[T Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

@) Select search-directory: C\TM4C1294_Connected_LaunchPad_Workshop'abl3

Browse...

Select All

Deselect All

JLRICY

Refrezh

@:‘ Finish

Cancel

» Expand the project.

13-8

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU

Lab13: FPU

Browse the Code

2. In order to save some time, we’re going to browse existing code rather than enter it line
by line. » Open main. c in the editor pane and copy/paste the code below into it. The
code is fairly simple. We’ll use the FPU to calculate a full sine wave cycle inside a 100
datapoint long array. This file is saved in your 1ab13 folder as main. txt.

#include <stdint.h>

#include <stdbool.h>
#include <math.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/fpu.h"
#include "driverlib/sysctl.h"
#include "driverlib/rom.h"

#ifndef M PI
#define M PI 3.14159265358979323846f
#endif

#define SERIES_LENGTH 100
float gSeriesData[SERIES_LENGTH] ;

uint32_t ui32SysClkFreq;
int32_t i32DataCount = 0;

int main(void)
{
float fRadians;

FPULazyStackingEnable () ;
FPUEnable () ;

ui32SysClkFreq = SysCtlClockFregSet ((SYSCTL XTAL_25MHZ |
SYSCTL _OSC_MAIN | SYSCTL USE_PLL |
SYSCTL_CFG_VCO_480), 120000000) ;

fRadians = ((2 * M_PI) / SERIES_LENGTH) ;

while (i32DataCount < SERIES_LENGTH)

{
gSeriesData[i32DataCount] = sinf (fRadians * i32DataCount) ;
i32DataCount++;

}

while (1)
{
}

3. Atthetop ofmain.c, look first at the includes, because there are a couple of new ones:
e math.h —the code uses the sinf () function prototyped by this header file

e fpu.h — support for Floating Point Unit

4. Nextisan ifndef construct. Justin case M_PI is not already defined, this code will do
that for us.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13-9

Lab13: FPU

5. Types and defines are next:

SERIES_LENGTH - this is the depth of our data buffer

float gSeriesData[SERIES_ LENGTH] - an array of floats

SERIES LENGTH long

i32dataCount — a counter for our computation loop

6. Now we’ve reached main():

e We’ll need a variable of type float called fRadians to calculate sine

e Turn on Lazy Stacking (as covered in the presentation)

e Turn on the FPU (remember that from reset it is off)

o A full sine wave cycle is 2n radians. Divide 27 by the depth of the array.

Set up the system clock for 120MHz

e Thewhile () loop will calculate the sine value for each of the 100 values of the
angle and place them in our data array

e An endless loop at the end

Build, Download and Run the Code

7. ® Click the Debug button to build and download the code to flash memory. When the
process completes, » click the Resume button to run the

code.

8. P Click the Suspend button to halt code execution. Note
that execution was trapped in the while (1) loop.

while(l}

9. » If your Memory Browser isn’t currently visible, Click View = Memory Browser on
the CCS menu bar. Enter gSeriesData in the address box and press Enter. In the box
that says Hex 32 Bit — TI Style, click the down arrow and select 32 Bit Floating Point.

You will see the sine wave data in memory like the screen capture below. Close the
Memory Browser.

Bx26008030
Bx26000048
Bx2p0a0060
Bx26000078
Bx26000096
Bx200080A5
ex26ea80C0
Bx28088808
Bx200080F0
Bx26000188
Bx2ppaal2e
Bx28060138
Bx260680156
Bx2eppel6s
Bx26888156

®
L
@
b
i
e
B
o

e e
o
el
=
=
=
o
=

R

7705131
B.4817536
©8.125333
-8.2486981
-8.5877853
-9.8443279
-8.9822873
-8.9822873
-9.8443279
-8.5877849
-8.2436894

020000000 - gSeriesData < Memory Rendering 1> &1

32-Bit Floating Point =
gSeriesData
X — . cc: 75052

B8.4257793
B8.7289687
©.9297765
1.8
©8.9297765
©8.7289685
B.4257792
8.86279845

-9.
-8.
-8.

-2

-8

-2

3898172
6374241
8763067

.9921147
-8.

9685832

.8898169
-8.

5358264

.1873812

Lo R R

o
®

-8.
-8.

-8

-8.

-8
-8
-8

1253332
4817537
7785133
9518565
9988267
984827
6845471
3681244
.742278e-88
.3681248
65845472
9848271
.9988267
9518566
.7795132
4817533
.1253331

1873813
5358269
809817
9685832
9921147
8763866
637424
3899168
-8.86279063
-8.4257795
-8.7289686
-8.9297765
-1.8
-8.9297765
-8.7289686
-8.4257789
-8.86279037

S

a8
5]
=]
8
a.
e
8
5]

-8
-8

-8.
-8.
-8.
-8.
-8.
-8.

. 2486899
.5877852
.8443279
.9822873

9822872

. 8443278
.5877852
. 2486897

.1253334
4817539
7785132
9518566
9988267
9848271
6845468
3681241

D00 060

IR
® ®

-8.
-8.

-8

-8.

-8

-8.

389817
.637424
.8763867
.9921147
. 9685832
. 8898169
.5358267

1873811

.1873815
.5358269
8098159
9685832
.9921147
8763867
.6374237
3898165

13-10

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU

Lab13: FPU

10. Is that data really a sine wave? It’s hard to see
from numbers alone. We can fix that. On the CCS

Graph Properties

menu bar, click Tools = Graph = Single Time.
When the Graph Properties dialog appears, make
the selections show below and click OK.

Property
[= Data Properties
Acquisition Buffer Size
Dsp Data Type
Index Increment
Q_Value
Sampling Rate Hz
Start Address
= Display Properties
Axis Display
Data Plot Style
Display Data Size
Grid Style
Magnitude Display Scale
Time Display Unit
Lse Dc Yalue For Graph

The graph below will appear at the bottom of your screen:

El console | [Single Time -0 &3

1.100
9.000x10%

7.000x 1092

5.000x10°%

3.000x10-% <
1.000x 102
-1,000%10°92
-3,000x10-%
-5,000x10°%1
-7.000x10-92 o

-3.000x10-%
-1.100

Value

100

32 bit floating point
1

i}

1

goeriesData

] true
Line
100

Mo Grid
Linear
sample
| false

%
1%
)
[

-]
e
&

T T T T
+25 +30 +35 +50
sample

T T T T
0 +5 +10 +15 +20 +40 445

Profiling the Code

T T T T T
+55 +80 +85 +70 +75

T T
+85 +80 +85

11. It would be interesting thing to know how much time (or how many cycles) it takes to

calculate those 100 sine values.

» On the CCS menu bar, click View = Breakpoints. Look in the upper right area of the

CCS display for the Breakpoints tab.
12.

» Remove any existing breakpoints by clicking Run = Remove All Breakpoints. In the

main.c, set a breakpoint by double-clicking in the gray area to the left of the line

containing:

fRadians ((2 * M _PI) / SERIES_LENGTH) ;

fRadians = ((2 * M_PI) / SERIES_LENGTH);

while(i32DataCount < SERIES_LENGTH)

{

gseriesData[i32DataCount] =

sinf(fRadians * i32DataCount);

i32DataCount++;

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU

13- 11

Lab13: FPU

13.

14.

15.

16.

17.

18.

19.

20.

» Click the Restart button to restart the code from main () , and then
click the Resume button to run to the breakpoint. .-":'EP

» Right-click in the Breakpoints pane and select Breakpoint (Code
Composer Studio) > Count event. Leave the Event to Count as Clock Cycles in the next
dialog and click OK.

» Set another Breakpoint on the line containing while (1) at the end of the code. This
will allow us to measure the number of clock cycles that occur between the two
breakpoints.

» Right-click on Count Event in the Properties Values
Breakpoints pane and select 4 Hardware Configuration

Properties. Check the box next to > Type Count Event
Reset Count on Run. This will set the

4 Debugger Response

B Reset Count on Run | true
count to zero when the code is run. PR
Group Default Group
Mame Count Event

» Click the Resume button to run to the second breakpoint. When code execution
reaches the breakpoint, execution will stop and the cycle count will be updated. Our
result is show below:

()= Variables &9 Expressions ©g Breakpoints 537 & T| ® g = |
Identity MName Condition Count

[#] &5 Count Event Count Event 48385

[#] £+ main.c, line. Breakpoint 00

[¥] £ main.c, line. Breakpoint 0 (0

A cycle count of 48385 means that it took about 480 clock cycles to run each calculation
and update the 1 32dataCount variable (plus the looping overhead). Since the System
Clock is running at 120 MHz, each loop took about 4uS, and the entire 100 sample loop
required about 400 uS.

P Right-click in the Breakpoints pane and select Remove All, and then click Yes to
remove all of your breakpoints.

» Close the graph pane and then click the Terminate button to return to the CCS Edit
perspective. » Close the 1ab13 project and minimize CCS.

You’re done.

13-12

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU

DMA

Introduction

This chapter will introduce you to the TM4C1294NCPDT DMA module (ARM devices call this
a uDMA). In the lab we’ll experiment with DMA transfers in memory and to/from the UART.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 -1

Chapter Topics

Chapter Topics

DMA 14-1
CRAPICE TOPICS .ee.vv ettt ettt et e e ettt e s e e et e e eb e e taeestaeensbeessbeesnbeesabeensseesseataeeenseas 14-2
Features and Transfer TYPESc..ccuecieveeieeie ettt ettt sse et enseeaseese s 14-3
Block Diagram and Channel ASSIGIIMENEc..ccoccvevveiieieiieaieeieeiie et eeseeae s 14-4
LD DIMA ...t et bttt et 14-4

(0]0) 1515 A< PSR 14-5
PrOCEAULE ...ttt ettt ettt b ettt bbbt sae b bt e b e enes 14-6

14 -2

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA

Features and Transfer Types

Features and Transfer Types

DMA Features

¢ ARM terminology uses the term uDMA for Cortex-M4 DMA operations
32 channels with two priority levels

*

¢ Memory to memory, memory to peripheral and peripheral to pheripheral
transfers in multiple modes:

Basic (simple transfers)

Ping-pong (continuous data flow)

Scatter-gather (via a task list up of up to 256 transfers)
8, 16 and 32-bit data element sizes
Transfer sizes of 1 to 1024 elements (in binary steps)
CPU bus accesses outrank DMA controller

L 2ER JER 2R 2

Source and destination address increment sizes:
size of element, half-word, word, no increment

Interrupt on transfer completion (per channel)
Hardware and software triggers
Single and Burst requests

L 2R JER JER 2

Each channel can specify a minimum # of transfers before relinquishing to
a higher priority transfer. Known as “Burst” or “Arbitration”

Channel operation ...

Highly Configurable DMA Channel Operation

el
==

|

T
i g [Pt [Pt] Papte

g
H

¢ Channels are independently e s e e e
configured and operated

¢ Each channel has 5 possible
assignments

¢ Dedicated channels for supported

e

5
H

e
o

~Femved| e - TR (58 e — e -
e
' [Fesaven| - (e - (201 T 58 e - e -

esened| - |sowe B 262 X 50| e - esenea -
e

esened| - [Sowae| B 262 X 50| eseneS| ~ eenea -
e

50070 (55 Sowas 5 |eseved - e - e -

0T[50 masev - |eseved - e < e

Qe T |55 e - [Fasead - e - R -

on-chip modu'es favu;m & ‘;c‘n%mm,mm,mm,wm,
¢ One channel each for receive and o= f-a

transmit path for bidirectional et s

modules il

¢ Dedicated channel for software-

initiated transfers i o i
¢ Per-channel configurable priority o o

[£3 [GFtmer | & [EP1OT| & [WARTT |68 P0
® lsotwae | [T

scheme e e

¢ Optional software-initiated requests
for any channel

e - [Rea - [Faarea - R - e -

™
Gemer |8 E1

E

o

E

B

DENICY EYCY EXICY

S =Single B =Burst SB =Both

Block Diagram ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 -3

Block Diagram and Channel Assignment

Block Diagram and Channel Assignment

DMA Block Diagram

DMA eror uDMA System Memory
Controller
CH Control Table
. %%TCTFA& DMASRCENDP
General — DMACTLBASE DMADSTENDE
IRQ Peripheral N dma_sn DMAALTBASE
DMAWAITSTAT i
Registers gma done DMASWREQ .
: DMAUSEBURSTSET .
. DMAUSEBURSTCLR DMASRCENDP
. DMAREQMASKSET DMADSTENDP
% DMAREQMASKCLR DMACHCTRL
- = . DMAENASET
este DMAENACLR
dma_req
Vectored | General DMAALTSET
Interrupt je———| Peripheral N |dma sreq) DMAALTCLR Transfer Buffers
Controller gma_done DMAPRIOSET Used by nDMA
(NVIC) DMAPRIOCLR e
1 DMAERRCLR
l DMACHASGN
DMACHMAPN
ARM
Cortex-M4F

Channel configuration ...

Channel Configuration

Channel control is done via a set of control structures in a table
The table must be located on a 1024-byte boundary
Each channel can have one or two control structures; a primary and an alternate

The primary structure is for BASIC transfers. The alternate is for Ping-Pong and
Scatter-gather

L R 2R R 4

Control Structure Memory Map Channel Control Structure

Offset Channel Offset Description
0x0 0, Primary 0x000 Source End Pointer
0x10 1, Primary 0x004 Destination End Pointer
0x008 Control Word
0x1FO0 31, Primary 0x00C Unused
0x200 0, Alternate
0x210 1, Alternate A
Control word contains:
0x3F0 31, Alternate ¢ Source and Destination data sizes

Source and Destination address increment
size

Number of transfers before bus arbitration
Total number of elements to transfer
Useburst flag

Transfer mode

L 2R 2R 2NN 2

Lab...

14 -4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA

Lab14: DMA

Lab14: DMA
Objective

In this lab you will experiment with the DMA module, transferring arrays of data in memory and

then transferring data to and from the UART.

USB Emulation l
Connection

& Perform an array to array memory
transfer

¢ Transfer data to and from the UART

Lab14: Transferring Data with the DMA

Agenda ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA

14-5

Lab14: DMA

Procedure

Import Lab14

1. We have already created the lab14 project for you with main. ¢, a startup file and all
necessary project and build options set.

» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

w« Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CCS Eclipse projects.

| Bk

@) Select search-directory: CATM4C1294_Connected_LaunchPad_Workshop'labl4 Browse...

() Select archive file: Browse...

Discovered projects:

17 labld [CATMAC1294 Connected LaunchPad_Workshop'labl4] Select All

Deselect All

Refresh

[] Copy projects into workspace
[] Autornatically import referenced projects

Open the Resource Explorer and browse available example projects...

Cancel

@ Finish |

14-6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA

Lab14: DMA

Browse the Code

2. In order to save some time, we’re going to browse this existing code rather than enter it
line by line. » Expand the project, open main. c in the editor pane and we’ll get started.
If you accidentally make a change, this code is also in main. txt in the 1ab14 folder.

This code is a stripped-down version of the uDMA demo example in:
C:\TI\TivaWare C Series-2.1\examples\boards\ek-
tm4cl294x1\udma demo . To make things a little simpler, the UART portion of that
code has been removed.

At the top of the code you’ll find all the normal includes, and the addition of udma.h
since we’ll be using that peripheral.

3. Just under includes are the definitions for the source and destination buffers, two error
counter variables and a counter to track the number of transfers.

#define MEM_BUFFER_SIZE 1024
static uint32_t g ui32SrcBuf[MEM_BUFFER_SIZE];
static uint32_t g ui32DstBuf[MEM_BUFFER_SIZE];

static uint32_t g ui32DMAErrCount = ©;
static uint32_t g ui32BadISR = 0;

static uint32_t g ui32MemXferCount = 0;

4. Below that, the DMA control table is defined. Remember that the table must be aligned
to a 1024-byte boundary. The #pragma will do that for us. If you are using a different
IDE, this construct may be different. The table probably doesn’t need to be 1K in length,
but that’s fine for this example.

#pragma DATA_ALIGN(pui8ControlTable, 1024)
uint8_t pui8ControlTable[1024];

5. Below the control table definition is the library error handler that we’ve covered earlier.

Next is the uDMA error handler code. If the uDMA controller encounters a bus or memory
protection error as it attempts to perform a data transfer, it disables the uDMA channel that
caused the error and generates an interrupt on the WDMA error interrupt vector. The handler here
will clear the error and increment the error count.

void uDMAErrorHandler(void)
{
uint32_t ui32Status;
ui32Status = ubDMAErrorStatusGet();
if(ui32Status)
{
UDMAErrorStatusClear();
g Ui32DMAErrCount++;
¥
}

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14-7

Lab14: DMA

6. Below the error handler is the uDMA interrupt handler. The interrupt that runs this
handler is triggered by the completion of the programmed transfer. The code first checks
to see if the uDMA channel is in stop mode. If it is, the transfer count is incremented, the
uDMA is set up for another transfer and the next transfer is triggered. If this interrupt was
triggered in error, the bad ISR variable will be incremented.

The last two lines inside the if () trigger the second and every subsequent uDMA
request.

{

void uDMAIntHandler(void)

uint32_t ui32Mode;

ui32Mode = uDMAChannelModeGet (UDMA_CHANNEL_SW);
if(ui32Mode == UDMA_MODE_STOP)

{
g ui32MemXferCount++;
ubDMAChannelTransferSet (UDMA_CHANNEL_SW, UDMA_MODE_AUTO,
g ui32SrcBuf, g ui32DstBuf, MEM_BUFFER_SIZE);
uDMAChannelEnable (UDMA_CHANNEL_SW);
ubDMAChannelRequest (UDMA_CHANNEL_SW);
}
else
{
g ui32BadISR++;
}

14 -8

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA

Lab14: DMA

7. Nextis the InitSWTransfer() function. This code initializes the uDMA software
channel to perform a memory to memory transfer. We’ll be triggering these transfers
from software, so we’ll use the software uDMA channel (UDMA_CHANNEL_SW).

The for () construct at the top initializes the source array with a simple pattern.
The next line enables the uDMA interrupt to the NVIC.

The next line disables the listed attributes of the software uDMA channel so that it’s in a
known state.

The uDMAChannelControlSet() API sets up the control parameters for the software channel
uDMA control structure. Notice that we’ll be using the primary (not the alternate set) and that
the element size and increment sizes are 32-bits. The arbitration count is 8.

The uDMAChannelTransferSet () API sets up the transfer parameters for the software channel
uDMA control structure. Again, this is for the primary set, auto mode (continue transfer
until completion even if request is removed ... common for software requests), the source
and destination buffer addresses and the size of the transfer.

Finally, the code enables the software channel and makes the first uDMA request.

void InitSWTransfer(void)
{
uint32_t ui32Idx;

for(ui32Idx = @; ui32Idx < MEM_BUFFER_SIZE; ui32Idx++)
{

}

IntEnable(INT_UDMA);

g ui32SrcBuf[ui32Idx] = ui32Idx;

uDMAChannelAttributeDisable (UDMA CHANNEL_SW,
UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT |
(UDMA_ATTR_HIGH_PRIORITY |
UDMA_ATTR_REQMASK));

uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
UDMA_SIZE 32 | UDMA_SRC_INC_32 | UDMA_DST_INC_32 |
UDMA_ARB_8);

ubDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
UDMA_MODE_AUTO, g ui32SrcBuf, g ui32DstBuf,
MEM_BUFFER_SIZE);

ubDMAChannelEnable (UDMA_CHANNEL_SW);
uDMAChannelRequest (UDMA_ CHANNEL SW);

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14-9

Lab14: DMA

8. Lastly, we’ll look at the code in main().

e Lazy stacking allows floating point to be used inside interrupt handlers, but uses
additional stack space. This isn’t strictly needed since we aren’t doing any
floating-point operations in the handler.

e Set up the clock to 120MHz.

e Enable the uDMA peripheral.

e Then enable the uDMA error interrupt and then the uDMA itself.

e Make sure the control channel base address is set to the one we created.

e (all the InitSWTransfer() function and start the first transfer, then have the
CPU wait in the while(1) loop. In your actual code this would be where you’d
either sleep or do something else with those CPU cycles.

int main (void)

{
FPULazyStackingEnable() ;
ui32SysClkFreq = SysCtlClockFregSet ((SYSCTL XTAL 25MHZ |
SYSCTL_OSC_MAIN | SYSCTL USE_PLL |
SYSCTL_CFG_VCO_480) , 120000000) ;
SysCtlPeripheralEnable (SYSCTL PERIPH UDMA) ;

IntEnable (INT_UDMAERR) ;
uDMAEnable () ;

uDMAControlBaseSet (pui8ControlTable) ;
InitSWTransfer () ;
while (1)

{
}

9. » You may also want to check the startup file to see the placement of the interrupt han-
dler vectors.

14-10 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA

Lab14: DMA

Build, Download and Run the Code
10. » Click the Debug button to build and download the code to flash memory.

11. » If the Memory Browser pane is not already visible, click View = Memory Browser to
open it. Move/resize the window if you have to. Type g_ui32SrcBuf in the —
Enter location here box and press Enter. » Click the Open New View button, L
and type g_ui32DstBuf in the new Enter location here box and press Enter.
Note that both arrays are zeroed out. Arrange the Memory Browser panes so that you can
see both.

12. » We want to see the contents of the source array before any transfers begin. Find the
line containing IntEnable (INT UDMA) ; (about line 94) inside the
InitSWTransfer () function. Double-click on the line of code to select it, then right-
click and select Run to Line.

13. » In the Memory Browser, note the initialized values in the source array. Check the
destination array to make sure it’s still clear. When values change, the Memory Browser
will change their color to red.

14. » We want to see the results after the transfer is completed and the transfer count has
been incremented, but before the next transfer has begun. Find the line containing the
final closing brace in the uDMAIntHandler function (around line 125).
Double-click on the line to select it, then right-click and select Run to Line.

15. Note that the contents of the destination array have changed.

16. » Add a watch expressions on g_ui32MemXferCount, g_ui32BadISR and
g_ui32DMAErrCount (these are easiest found in the definitions at the top of the file).

17. » Click Resume. Wait a few moments and click the Suspend button. We saw over
250,000 transfers and 0 errors.

(= Variables &7 Expressions 52 | 9g Breakpoints k= | & B % -:-ﬁ’| B wa | €
Expression Type Value Address
= g_uiz2MemXferCount unsigned int 250342 (Decimal) 020002470
=)= g_uid2BadI5R unsigned int 0 (Decimal) (ac2000246C
)= g_ui32DMAErrCount unsigned int 0 (Decimal) 020002468

gm Add new expression

18. » Remove all of the watch expressions by right-clicking in the Expressions pane and
selecting Remove All > Yes. Close the Memory Browser panes.

19. » Click the Terminate button to return to the CCS Edit perspective.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 - 11

Lab14: DMA

Streaming Data To and From the UART using a Ping-Pong Buffer

In real-world applications, incoming or outgoing data doesn’t usually stop. If you are receiving
data from an ADC or sending/receiving data to/from a UART, the best way to make sure the data
always has a place to go to or from is to use a Ping-Pong buffer. Let’s examine a filtering
application like the one shown below:

et o e o) e e = =g

CPU

O
c
—

!

Here the DMA on the left is responsible for bringing data from the ADC into memory. When the
PING IN buffer is full, the DMA signals the CPU (with an interrupt) and switches its destination
to the PONG IN buffer (and vice versa). The CPU filters the frame of data from the PING IN
buffer, sends the result to the PING OUT buffer and triggers the DMA on the right to send it to
the DAC (and vice versa). This is a straight-forward Input — Process — Output technique. When
properly synchronized and timed, all three processes happen simultaneously and there is no
chance for a “skip” or “miss” of even a single bit a data, as long as the CPU is capable of
processing the buffer of data in the same amount of time that it takes to fill or empty the buffer
from/to the outside world.

This example will be a little simpler. We’ll have a single transmit buffer, since the data in it won’t
change. The transmit DMA will send that buffer to the UART transmit register continuously. The
UART will be configured in loopback mode so that data will be streaming back in continuously.
The receive DMA will stream the data received from the UART data receive register into a Ping-
Pong buffer that we can observe.

What makes this DMA programming interesting is that the primary and alternate modes must be
used in order for the DMA to switch Ping-Pong buffers automatically. Also, the DMA transfers
that point to the UART must not increment, otherwise they would write data into the wrong
location. At the same time, the DMA must increment through the Ping and Pong buffer to fill
them.

14-12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA

Lab14: DMA

Import udma _demo Example

20. The udma_demo example in TivaWare demonstrates the ping/pong dma process.
» Import the project by clicking Project = Import Existing CCS Eclipse Project ... from
the CCS menu bar. Make the selections shown below and click Finish.

Make sure that the Copy projects into workspace checkbox is checked.

-

«w Import CCS Eclipse Projects

Select CCS Projects to Import
Select a directory to search for existing CC5 Eclipse projects.

@ Select search-directory: CATI\TivaWare_C_Series-2.1.0.12573\examples\boards\ ek-tm4c1294:d\ udma_dermo Browse...

() Select archive file:

Discovered projects:

[¥] & udma_demo [CATITivaWare C_Series-2.1.0.12573\examples\boards'ek-tmdc1294xM\udma_demo'ccs] Select All

Deselect All

e

Refresh

[] Automnatically import referenced projects found in same search-directory

[¥] Copy projects into workspace

Open the Resource Explorer and browse available example projects...

Cancel

@ Finish |

Browse the Code
21. » Expand the udma_demo project and open udma_demo . ¢ for editing.

22. P Starting at the top of the file, notice the definitions for the single UART TX and 2
UART RX buffers.

This example is instrumented to display CPU usage percent by using the SysTick timer.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14-13

Lab14: DMA

23.

24.

The heart of this code is the UART1IntHandler () interrupt handler. This ISR is run
when the receive ping (primary) or pong (alternate) buffer is full or when the transmit
buffer is empty. Note the ui32Mode = lines that determine which event triggered the
interrupt.

In the receive buffers the mode is verified to be stopped and the proper transfer count is
incremented. You’ll see in the initialization that both the primary and alternate
parameters are already set up. When the Ping side of the transfer causes an interrupt, the
uDMA is already processing the Pong side, so the TransferSet API resets the
parameters for the flowing Ping transfer. Note that the source is the UART data register.

The transmit transfer is a basic transfer and needs to be re-enabled each time it completes.
Note that the destination is the same UART data register.

The uDMA and UART must be initialized and the next function,
InitUART1Transfer() does that.

The for () loop at the beginning initializes the transmit buffer with some count data.

The next seven lines configure the UART clock, the FIFO utilization, enable it, enable it
to use the DMA, set loopback mode and enable the interrupt.

Next up are the uDMA control and transfer programming steps.

uDMAChannelAttributeDisable() turns off all the indicated parameters to assure
the starting point.

The next two uDMAChannelControlSet () lines set up the control parameters for the
Ping (primary) and Pong (alternate) sets. Note that the transfer element size is 8-bits, the
source increment is none (since it should be pointing to the UART data register all the
time) and the destination increment is 8-bits.

The next two uDMAChannelTransferSet () lines program the transfer parameters
for both the Ping (primary) and Pong (alternate) sets. Note that the mode is PINGPONG,
the source is the UART data register and the destination is the appropriate Ping or Pong
buffer.

The next four lines set up the control and transfer parameters for the transmit channel.
Note that the destination is the UART data register and the source is the single transmit
buffer. The element transfer size is 8-bits, the source increment is 8-bits and the
destination increment is none.

In all of these setting the priority has been left as HIGH. It doesn’t make sense to
prioritize the transmit over the receive or vice versa.

The final two lines enable both uDMA transfers.

14 - 14

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA

Lab14: DMA

Build, Load and Run

25.
26.

27.

28.

29.

30.

31.

32.

» Click the Debug button to build and load the program.

In order to determine of the program is operating properly, we need to see the buffers.
» Click View = Memory Browser to open it. Move/resize the window if you have to.
Type g_ui8BufA in the Enter location here box and press Enter.

The g_ui8RxBufA, g _ui8RxBufB and g_ui8TxBuf buffers are all close together, so
you should be able to see them in the same window if you size it correctly. To see the 8-
bit values better, change the data format to 8-bit UnSigned Int.

Notice that the g ui8TxBuf buffer is all zeros. » Set a breakpoint in the
InitUART1Transfer () function on the line containing

ROM SysCtlPeripheralEnable (SYSCTL PERIPH UARTL1); (about line 439). This
is right after the g ui8TxBuf buffer is initialized with data. (Run to Line won’t work
inside an ISR)

» Click the Resume button to run to the breakpoint. Note in the Memory Browser that
the g_ui8TxBuf buffer is now filled with data.

» Remove the breakpoint and set another in UART1IntHandler () on the line
containing ui32Status = (about line 309). This breakpoint will trip when the first
transfer completes.

» Click the Resume button to run to the breakpoint. Note in the Memory Browser that
the g ui8RxBufA buffer is now filled with data. » Click Resume twice and the
g _ui8RxBufB buffer will fill.

» Add watch expressions for g ui32RxBufACount and g_ui32RxBufBCount (lines
128 and 129). » Add another watch expression for g ui32DMAErrCount (line 113).
» Change the properties of the breakpoint at line 309 so that its Action is Refresh All
Windows.

» Click Resume. The transfer counters should track and the error count should be zero.

The Memory browser isn’t very interesting since the g_ui8TxBuf buffer never changes.
Let’s fix that.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14-15

Lab14: DMA

33. » Click the Suspend button and find the g_ui8TxBuf buffer portion of the
UART1IntHandler. » Add the line highlighted below at about line 400. This will

increment the first location in the g_ui8TxBuf buffer.

if(!ROM_uDMAChannelIsEnabled(UDMA_CHANNEL_UART1TX))

{
//
// Start another DMA transfer to UART1 TX.

//
g _ui8TxBuf[0]++;
ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
UDMA_MODE_BASIC, g ui8TxBuf,

(void *)(UART1_BASE + UART_O DR),
sizeof(g_ui8TxBuf));

34. » Build and load. You may need to press Enter after selecting the location in the
Memory Browser again. Click Resume to run the code. The first location in all three

buffers should be incrementing.
35. When you’re done, P click the Terminate button to return to the CCS Edit perspective.

36. » Close the 1ab14 and udma demo projects. Minimize Composer Studio.

You’re done.

14 -16 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA

Hibernation Module

Introduction

In this chapter we’ll take a look at the hibernation module and the low power modes of the Tiva C
Series device. The lab will show you how to place the device in sleep mode and you’ll measure
the current draw as well.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 15-1

Chapter Topics

Chapter Topics

Hibernation Module 15-1
CRAPICE TOPICS .ee.vv ettt ettt et e e ettt e s e e et e e eb e e taeestaeensbeessbeesnbeesabeensseesseataeeenseas 15-2
Hibernation Module FEQTUTES................cccc.ooeieeeeeeei e 15-3
BIOCK DIQFAM ...ttt ettt et aeese et saaeeneeae e ena e 15-3
Power Management and CORSUMPIIONc.c.ccoeeieeueeieeieeieseesieeeseste et ese e eesesseeseenns 15-4
LaunchPad CONSIACTALIONScccc.eeeeieeeeeeeeeeeee ettt e e 15-5
Lab15: LOW POWEE MOUES ...ttt 15-7

(0] 1515 A< U 15-7
g (0101t L Vg OO 15-8
(000) 3 T3 Ta 1< 15 (o) o - 15-12

15-2

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation

Hibernation Module Features

Hibernation Module Features

Hibernation Module Features

¢ 32-bit real-time seconds counter (RTC) with ¢ Dedicated pin for waking using an external
1/32,768 second resolution and a 15-bit sub- signal

seconds counter Capability to configure external reset pin

*
¢ 32-bit RTC seconds match register and a 15-bit and/or up to four GPIO port pins as wake

sub seconds match for timed wake-up and source, with programmable wake level
interrupt generation with 1/32,768 second
resolution ¢ RTC is operational and hibernation memory is

valid as long as Vpp or Vg, is valid

¢ aR(;l}Ss%eégg'?f {ggmclg%rkT:tlgng fine ¢ Low-battery detection, signaling, and interrupt

generation, with optional wake on low battery
¢ Hardware calendar function for:

Year, Month, Day, Day of Week, Hours ¢ GPIO pin state can be retained during
Minutes, Seconds hibernation
Four-year leap compensation ¢ Clock source from an internal low frequency

oscillator (HIB LFIOSC) or a 32.768-kHz
external crystal or oscillator

¢ Sixteen 32-bit words of battery-backed

24-hour or AM/PM configuration
¢ Two mechanisms for power control

System power control using discrete external memory to save state during hibernation
regulator .)
On-chip power control using internal switches ¢ Programmable interrupts for:
under register control + RTC match
¢ Vpp supplies power when valid, Z . External wake
even if Vgar > Vpp =z
% - Low battery

Block diagram ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 165-3

Block Diagram

Block Diagram

Hib tion Module Block Di
Alternate Clock Clock Source for
for LPC System Clock To GPIi) Module
HIBCTL.CLK32EN
& HIBCTL OSCSEL
1/O Config.
Low
Frequency HIBIO
Oscillator
XO0SsCo [32.786 kHz|
Oscillator -
XOSC1 Pre-Divider Interrupts
HIBRTCT HIBIM
HIBRIS || | . Intermupts
HIBCTL.CLK32EN & HIBMIS to CPU
HIBCTL OSCSEL HIBIC
Battery-Backed HIBRTCC 4 A
Memory HIBRTCLD MATCH
16 words HIBRTCMO
HIBDATA HIBRTCSS » RTCCLK
— HIBCTLRTCEN
WAKE
LOWBAT |
A
Low Battel Power —
Vo Detect . Sequence [» HIB
Logic
B j] [
HIBCTL.VBATSEL HIBCTL RTCWEN
HIBCTL.BATCHK HIBCTL.PINWEN
HIBCTL.VABORT
HIBCTL HIBREQ
HIBCTL.BATWKEN
Power management ...

15-4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation

Power Management and Consumption

Power Management and Consumption

¢ Individual peripheral modules
can be enabled to run during
sleep modes (clock dependent)

¢ Power modes:
- Run mode

- Sleep mode stops the processor
clock

- Deep Sleep mode stops the
system clock and switches off the
PLL and Flash memory

- Hibernate mode with only
hibernate module powered
(multiple options)

Power Management

Power Consumption ...

code, what peripherals are operating, etc

*

Run mode 1 = All peripherals ON
Run mode 2 = All peripherals OFF

Hib mode (VDD30ON/no tamper) | 0.0067
Hib mode (VDD3ON/tamper on) | 0.0075
Hib mode (ext wake/no RTC) | 0.012
Hib mode (RTCon) | 0.013
Deep sleep mode (SysClk - PIOOSC) 0.42
Deep sleep mode (SysClk - LFIOSC) 0.72
Sleep mode (1MHz / FLASHPM bit = 0x2) 6
Sleep mode (16MHz / FLASHPM bit = 0x2) 9
Sleep mode (1MHz / FLASHPM bit = 0x0) 11
Sleep mode (16MHz / FLASHPM bit = 0x0) 14
Sleep mode (120MHz / FLASHPM bit = 0x2) 23
Sleep mode (120MHz / FLASHPM bit = 0x0) 28
Run mode 2 (flash loop / 120MHz)
Run mode 2 (SRAM loop / 120MHz)
Run mode 1 (SRAM loop / 120MHz)
Run mode 1 (flash loop / 120MHz)

42
43

Power Consumption

¢ Current consumption is highly dependent on processor speed, what memory is being exercised by the

¢ The nominal current consumption below was measured at 25C, 3.3V VDD and VDDA(except in
hibernation mode where it is 0V) and 120MHz (except where noted)

¢ FLASHPM bit enables low power flash memory mode (0x2)

82

99

0 10 20 30 40

50

Nominal current (mA)

60

LaunchPad Considerations ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation

15-56

LaunchPad Considerations

LaunchPad Considerations

LaunchPad Considerations

¢ The low-cost LaunchPad board does not have a battery holder

¢ VDD and VBAT are wired together on the board
(this disables battery-only powered low-power modes)

JP2 can be used to measure MCU current
consumption with a multi-meter.

\N&K 2 ; JP2
+ = -
i c— S—
F’ _ 23
,

SWITCH_TACTILE Tpip

TP
. 1M R39

¥
R42 51 0

— T b R38
AE | B85 0.1uF Ra8 and C3 Used to maet
WARE ;:f; : VBAT risa time requiremants
VBAT — TP13
vooa |-E58 GND T Rd1
/REFA+ o A
VDD P§7 R41 may be removed and precisio
VDD P§I§ reference applied to TP13
vop |-Ps26

Lab ...

15-6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation

Lab15: Low Power Modes

Lab15: Low Power Modes

Objective

In this lab we’ll use the hibernation module to place the device in a low power state. Then we’ll
wake up from both the wake-up pin and the Real-Time Clock (RTC). We’ll also measure the
current draw to see the effects of the different power modes.

Lab15: Low Power Modes

USB Emulation 1l
Connection \

Power
Measurement
Jumper

Place device in low power modes
Wake from pin

Wake from RTC

Measure current

* 6 o o

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 165-7

Lab15: Low Power Modes

Procedure

Import hibernate Example

1.

To speed things up for this lab we’ll import one of the examples rather than create the

code from a blank page.

» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish

Make sure that the “Copy projects into workspace” checkbox is checked.

-

w# Import CCS Eclipse Projects

Select CCS5 Projects to Import

Select a directory to search for existing CCS Eclipse projects.

@ Select search-directory: CA\TI\TivaWare_C_Series-2.1.0.1257 3\ examples\boards\ ek-tmé4 c1294x\hibernate

() Select archive file:

Discovered projects:

[¥] & hibernate [CATTivaWare_C_Series-2.1.0.12573\ examplestboards\ ek-tmd c1294xM hibernate\ces)

[Automatically import referenced projects found in same search-directory
[¥] Copy projects into workspace

Open the Resource Explorer and browse available example projects...

Select All

Decelect All

Refresh

@ | Finish

Cancel

This example implements three wake modes; the WAKE pin, a GPIO interrupt and an
RTC match. Since accessing the GPIO interrupt would require some extra hardware,
we’ll just experiment with the other two. Let’s try out the code, then we’ll take a closer

look at how it works.

15-8

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation

Lab15: Low Power Modes

Build, Download and Run

2. P Compile and download your application by clicking the Debug button on
the menu bar. If you have any issues, correct them, and then click the Debug
button again. After a successful build, the CCS Debug perspective will
appear. Ignore any compiler version warnings.

3. P Click the Terminate button. This may seem like a strange way to run the
code, but if you were to click the Resume button, the LaunchPad board will 1
power-off as soon as it hibernates. Emulators don’t really like to have this
happen. In most cases CCS will recover, but you won’t actually be

debugging after the power-down. When you press Terminate, a reset signal is
sent to the LaunchPad, which runs the code in Flash memory.

Measure the Current

4. P Remove jumper JP2 and place it
somewhere for safekeeping. This will
interrupt power to the LaunchPad
board.

5. P Configure your digital multi-
meter (DMM) to measure DC current
greater than 50mA.Connect the test
leads to the JP2 pins with the positive
lead nearest the microcontroller.
Double check the lead connections
on the meter.

6. P Watch the meter display and press
the Reset button next to the Ethernet
connector.

DR » wR9
POUWER

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 15-9

Lab15: Low Power Modes

7. » Press user switch 1 on the LaunchPad. Quickly switch your DMM to measure <ImA
and record your reading in the second row of the chart below. If you take more than 5
seconds the RTC will match and restore full power. Just try again.

Mode Workbook Step Your Reading | Our Reading
Run (120MHz) 6 mA 53.3 mA
Hibernate
GPIO Retention 7 BA 343 pA
RTC On

8. P Switch your DMM to measure DC current greater than 50mA. The equivalent series
resistance (ESR) of the DMM in low current settings can be too high to allow the
microcontroller enough current to operate in Run mode.

9. P Press user switch 1 on the LaunchPad. Before 5 seconds have elapsed, press the
WAKE button located next to the Ethernet connector. Note the current on the DMM.
The WAKE pin has been programmed to wake the device from hibernation.

10. » If you haven’t done so yet, press user switch 1 and allow the RTC to time out and
restore power. Watch the DMM to see when you are in Run or Hibernate mode. The RTC
match has been programmed to wake the device from hibernation.

11. » Remove your DMM leads from the JP2 pins and turn off the multimeter. Return
jumper JP2 to its place on the pins. Return the DMM to your instructor.

12. P Start your terminal program (like puTTY) as shown earlier and watch the messages as
you exercise the code. It the puTTY display gets confused, right-click on the top of the
puTTY border and select Reset Terminal. Note that the RTC is presented as a calendar
(with the wrong date now) and that a count is kept of hibernations. At the top of the
terminal display the cause of the last wake event is reported. When you’re done
experimenting, close your terminal program.

15-10

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation

Lab15: Low Power Modes

Explore the Code

13. » Back in the CCS Edit perspective, let’s look into the code in hibernate.c. We’ll
skip the variables and includes and jump to the following functions:

DateTimeGet () — Uses the HibernateCalendarGet () API to read the current
time into a structure called sTime and verify its validity. Note the contents of the
structure.

DateTime DisplayGet () — Formats the time for display on the terminal display. If
the time is invalid, it is reset to a default time value.

DateTimeSet () — Sets the date and time in the hibernation module. Note the values
used ... those can be changed to be closer to the actual time if you like in the next
function called DateTimeDefaultSet () .

DateTimeUpdateSet () — A function for updating the individual date/time buffers

GetDaysInMonth () — A function to determine the number of days in this month for
calculation purposes

GetCalendarMatchValue () — Returns the value in the RTC match register. This is
the register that will be used to determine when the RTC wake will occur. The function
adds 5 seconds to the current time for the purpose of this lab. Since the structure of
sTime isn’t simply “seconds elapsed”, the calculation is a little involved.

AppHibernateEnter () — This function performs some crucial activities required
before entering hibernate. Primary activities are to set the wakeup time to be 5 seconds
from now using the HibernateCalendarMatchSet () API, clear the hibernate
status bits and to set the conditions that will wake the device using the
HibernateWakeSet () APIL At that point the HibernateRequest () can be
called. Since there may be other activities that can delay entering the Hibernate state, the
delay and while (1) loop are added.

SysTickHandler () — The SysTick timer is used to generate an interrupt every .1

seconds. The initialization for the timer is done in main () . This handler is called to
poll to see if user button S1 has been pressed. This will flag the code to go into hibernate
mode.

14. »Now in main (), normal initialization occurs until about line 655. This 1 £ ()
construct determines the following if the hibernate mode is active, meaning that the
part may have just woke up from hibernation;

Clear the hibernation status bits and send the reason for wake to the terminal

e Parse the status to determine whether wake was due to RTC match, reset, WAKE pin
or GPIO

o If the wake was due to any of these sources, get the first location from the battery-
backed memory. This location holds the hibernate count.

o Ifthe wake wasn’t due to the previous sources, it was from a system reset.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 15- 11

Lab15: Low Power Modes

15. » Now around line 762, enable the RTC and set it to 24-hour calendar mode. Configure
the GPIO pin PK6 as a wake source. Initialize the LaunchPad buttons, SysTick timer
and enable processor interrupts. The remainder of the code mostly handles the UART and
also calls AppHibernateEnter () to begin hibernation.

Considerations

16. The hibernate example code

only sleeps when triggered to do Erer et & B ot
s0, so the following issue doesn’t Frequency is aut of range.
apply. If you did try to build and
load code to a sleeping processor,
CCS will report an error like this
one.

Cancel Retry

Remember that the device is
essentially powered-down while in hibernate mode and the emulation hardware and
debugger can’t communicate with it.

If your sleep code wakes on an external signal like WAKE or GPIO, you can hold that
signal (i.e. — press and hold the WAKE button) while you write to the device. This also
applies if you try to reprogram the device using LM Flash Programmer, although you
will need to assure that the device is awake from before you start the programmer until
the programming process begins.

If, on the other hand, if you managed to place the device in hibernate without a method
for waking it up, there is a technique for recovering it. First, the reset must be asserted
and held. Then power the device and start LM Flash Programmer. Click the Flash
Utilities tab and check the Fury...
checkbox. Click the Unlock buttop an.d {* Fury, DustDevil, TM4C123 and TM4C129 Classes
follow the on-screen prompts. This will ~ :

erase evervthing in flash Tempest and Firestorm Classes

memory, including your MAC address.

That can be restored using the User
Register Programming section at the top of the page. Your MAC address is written on the
bottom of the LaunchPad board.

Debug Port Unlodk

17. » Close the lab15 project and minimize Code Composer Studio.

You’re done.

165-12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation

Graphics Library

Introduction

This chapter will take a look at the currently available BoosterPacks for the LaunchPad board.
We’ll take a closer look at the Kentec Display LCD TouchScreen BoosterPack and then dive into
the TivaWare graphics library.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 1

Chapter Topics

Chapter Topics

Graphics Library. 16-1
CRAPICE TOPICS .ee.vv ettt ettt et e e ettt e s e e et e e eb e e taeestaeensbeessbeesnbeesabeensseesseataeeenseas 16-2
GFAPIICS LIDTATY ...ttt ettt b e e e et e et e et e be b e esbeesaebeesbeenns 16-3
DUSPIAY DFIVEF ...ttt ettt ettt be e e st e s ae e b e e st eaeeae e eae e 16-3
GTAPIICS PFIMILIVES ...ttt ettt e et e et e aeesse e eteesbeesseesseesaebeenseenees 16-5
WidGet FFAMEWOFK.........cc.ccuiiiiiiiiiiiiite ettt ettt ene e 16-5
SPECIAL UBIIITIES ...ttt et bbbttt es et nne e 16-6
LCD Display Module and KenTec LCD DiSplayc.ccccovioiiiiiiiiiiiiiiniiieiisese st 16-7
Lab16: GrapRiCs LiDFATYc.cccooioiaiieiieaieee ettt ettt ettt et e e 16-9

(0] 11015 4 SRR 16-9
PIOCEAULIE ...ttt ettt et et et bbbt bt ebe e e ne e 16-10

16 -2

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Graphics Library

Graphics Library

Graphics Library Overview

The Tiva C Series Graphics Library provides graphics primitives and widgets sets for
creating graphical user interfaces on Tiva controlled displays.

The LCD connection can be made through the LCD interface (not on the
TM4C1294NCPDT), serial or parallel ports.

The graphics library consists of three layers to interface your application to the
display:

Your Application Code
l l Widget Layer

Display Driver Layer* :> ’

* = user modified

Graphics Library Overview

The design of the graphics library is governed by the following goals:

K Components are written entirely in C except where absolutely not possible\
¢ Your application can call any of the layers
¢ The graphics library is easy to understand

¢ The components are reasonably efficient in terms of memory and processor
usage

¢ Components are as self-contained as possible

¢ Where possible, computations that can be performed at compile time are
k done there instead of at run time /

Some implications of these goals are:

optimizations could make them hard to understand

¢ Widgets may be somewhat more generalized and complex than what is
strictly needed for a given application

¢ The APIs have a means of removing all error checking code.

¢ The primitives may not be as efficient as they could be since further
This will improve code size and speed

Display Driver...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 -3

Display Driver

Display Driver

Display Driver

Low level interface to the display hardware

ﬁoutines for display-dependent operations like:

Initialization
Backlight control
Contrast
Translation of 24-bit RGB values to display dependent color map
¢ Drawing routines for the graphics library like: Widget Layer

Flush of cached drawing operations
Line and pixel drawing
Rectangle drawing and fill

¢ User-modified hardware dependent code
Connectivity of your display to the Tiva device
Changes to the existing code to match your

display (like color depth and size)
K- Low level support for any local display buffer

Graphics Primitives Layer

Display Driver Layer

Graphics Primitives...

This document: http://www.ti.com/lit/an/spma039/spma039.pdf has suggestions for modifying
the display driver to connect to your display.

16 -4 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

http://www.ti.com/lit/an/spma039/spma039.pdf

Graphics Primitives

Graphics Primitives

Graphics Primitives

Low level drawing operations:

Drawing lines, circles, text and bitmap images \
¢ Support for off-screen buffering
¢ Foreground and background drawing contexts
Colors are represented as a 24-bit RGB value (8-bits per color)
150+ colors are pre-defined
Color swatch provided

¢ 153 pre-defined fonts based on the Computer Modern typeface
¢ Support for Asian and Cyrillic languages

Widget Layer

Graphics Primitives Layer

Display Driver Layer

Widgets...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16-5

Widget Framework

Widget Framework

Widget Framework

- Widgets are graphic elements that provide user
control elements

- Widgets combine the graphical and touch screen
elements on-screen with a parent/child hierarchy so
that objects appear in front or behind each other
correctly

/ Canvas — a simple drawing surface with no user \
interaction

Checkbox — select/unselect
Container — a visual element to group on-screen widgets

Push Button — an on-screen button that can be pressed
to perform an action

Radio Button — selections that form a group; like low,
medium and high

Slider — vertical or horizontal to select a value from a
predefined range

K ListBox — selection from a list of options /

Widget Layer

Graphics Primitives Layer

| Display Driver Layer pecial Ues...

16 -6 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Special Utilities

Special Utilities

Special Utilities

Utilities to produce graphics library compatible data structures

library format.

Windows® FNT.
Imi-button

pnmtoc

others.

mkstringtable

¢ Supported fonts include: TrueType®, OpenType®, PostScript® Type 1 and

¢ Creates custom shaped buttons using a script plug-in for GIMP. Produces
images for use by the pushbutton widget.

¢ Converts a NetPBM image file into a graphics library compatible file.
¢ NetPBM image formats can be produced by: GIMP, NetPBM, ImageMajik and

ﬁasterize \
¢ Uses the FreeType font rendering package to convert your font into a graphic

¢ Converts a comma separated file (.csv) into a table of strings usable by graphics
library for pull down menus.

LCD Module ...

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

16-7

LCD Display Module and KenTec LCD Display

LCD Display Module and KenTec LCD Display

LCD Display Module and Driver

LeD Biock |

¢ LCD module is a DMA bus master S ————1
¢ Character-based panels
- Support for 2 character panels (CS0 &
CS1) with independent & programmable
bus timing parameters when in
asynchronous Hitachi, Motorola & Intel
modes

Support for one character panel (CS0)
with programmable bus timing
parameters when in synchronous (
Motorola & Intel modes Chyesd)
¢ Passive matrix LCD panels
Panel types including STN, DSTN, and
C-DSTN
AC Bias Control
¢ Active matrix LCD panels
Panel types including TN TFT
1, 2, 4, or 8 bits per pixel with palette

Output
FIFO

LCDDATAR30]

LIDD
Controller

LCOMOLK

RAM and 16 or 24 bits per pixel without ¢ LCD display driver
palette RAM . See DK-TM4C129X examples for a LCD
¢ OLED Panels display driver

Passive Matrix (PM OLED) with frame
buffer and controller IC inside the panel
Active Matrix (AM OLED)

KenTec LCD BoosterPack ...

KenTec TouchScreen TFT LCD Display

¢ Part# EB-LM4F120-L35

¢ Designed for XL BoosterPack pinout
¢ Parallel interface (not LCD)

*

3.5” QVGA TFT 320x240x16 color LCD with LED
backlight

¢ Driver circuit and connector are compatible with 4.3”,
57, 7” & 9”displays

¢ Resistive Touch Overlay
Lab ...

16 -8 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

Lab16: Graphics Library
Objective

In this lab you will connect the KenTec display to your LaunchPad board. You will experiment
with the example code and then write a program using the graphics library.

Lab16: Graphics Library

USB Emulation l
Connection

T

= B3
o=
L

.

__‘LJE

Sliders

¢ Connect Kentec LCD
Boosterpack

¢ Experiment with demo
project

¢ Write graphics library code

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16-9

Lab16: Graphics Library

Procedure

Connect the KenTec Display to your LaunchPad Board

1. » Carefully connect the KenTec LCD
display to your LaunchPad board on
BoosterPack connector 2 (the one nearest the
Ethernet connector). Either connector would
work, but the code has been written for
connector 2. Note the part numbers on the
front of the LCD display. Those part
numbers should be at the end of the

LaunchPad board nearest the Ethernet

connector when oriented correctly. Make

sure that all the BoosterPack pins are
correctly engaged into the connectors on the
bottom of the display.

1

SINIWMIISN]

16 - 10 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

Import Project

2. We’re going to use the Kentec example project provided by the manufacturer.
» Maximize Code Composer and click Project = Import CCS Projects...
Make the settings shown below and click Finish

Make sure the Copy projects into workspace checkbox is checked.

-
v+ Import CCS Eclipse Projects

Select CCS Projects to Import

Select a directory to search for existing CCS Eclipse projects.

il

(@ Select search-directory: C:\TI\TivaWare_C_Series-2.1.012573\examples\boards\ek-tmé c1294:d-boostd-kentec-135\grlib_demo Browse...
() Select archive file: Browse...
Discovered projects:
[¥] & grlib_demo [CATI\TivaWare_C_Series-2.1.0.12573\examples\boards\ek-tm4c1294xl-boostd-kentec-135\grlib_demo'ccs] Select All
Deselect All

Refresh

[] Automatically import referenced projects found in same search-directory

Copy projects into workspace

Open the Resource Explorer and browse available example projects...

@ [Finish |

w/

Cancel

L

3. P Expand the project in the Project Explorer pane. The two files
Kentec320x240x16 ssd2119 8bit.c and touch.c (in the driver folder) are
the drivers for the display and the touch overlay. » Open the files and take a look
around. Some of these files were derived from earlier examples, so you may see
references to earlier development boards.

Kentec320x240x16 ssd2119 8bit.c contains the low level Display Driver
interface to the LCD hardware, including the pin mapping, contrast controls and simple
graphics primitives.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 11

Lab16: Graphics Library

Build, Download and Run the Demo

4. » Right-click on the grl1ib demo project in the Project Explorer pane and select
Properties. On the General page, find the compiler version and update it to the latest one
available. Click OK.

Advanced settings

Cormpiler version: @I'I'[vS.l.S v‘ I More...
Cutput type: Executable

Output format: Ieabi (ELF} v‘

5. P Make sure your board is connected to your computer, and then click the Debug button
to build and download the program to flash memory. The project should build and link
without any warnings or errors.

6. P Watch your LCD display and click the Resume button to run the demo program. Using
the + and — buttons on-screen, navigate through the eight screens. Make sure to try out
the checkboxes, push buttons, radio buttons and sliders. When you’re done
experimenting, click Terminate on the CCS menu bar to return to the CCS Edit
perspective.

16-12 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

Create an Image File

7. The first task that our lab software will do is to display an image. So we need to create an
image in a format that the graphics library can understand. If you have not done so
already, download GIMP from www.gimp.org and install it on your PC. The steps below
will go through the process of clipping the photo below and displaying it on the LCD
display. If you prefer to use an existing image or photograph, or one taken from your
smartphone camera now, simply adapt the steps below.

8. P Make sure that this page
of the workbook pdf is open
for viewing and press PrtScn
on your keyboard. This will
copy the screen to your
clipboard. The dimensions of
the photo below approximate
that of the 320x240 KenTec
LCD.

9. » Open GIMP (make sure it is version 2.8 or later) and click Edit > Paste. On the menu
bar, click Tools = Selection Tools > Rectangle Select. Select the image of the candy,
leaving a generous margin of white space around it.

10. » Click Image > Crop to Selection, then click Image > Zealous Crop. This will
automatically crop the image as closely as possible.

11. » Click Image > Scale Image, change the image size width/height to
320x240 and click Scale. You may need to click the “chain” symbol to the
right of the pixel boxes to stop GIMP from preserving the wrong dimensions.

]
l

12. » Convert the image to indexed mode by clicking Image = Mode > Indexed. Select
Generate optimum palette and change the Maximum number of colors box to /6 (the
color depth of the LCD). Click Convert.

13. » Save the file by clicking File = Export... In the upper left box, name the image pic
and change the save folder to c: \TI\TivaWare C Series-
2.1.0.12573\tools\bin.

Select PNM image as the file type by clicking + Select File Type just above the Help
button. Click Export. When prompted, select Raw as the data formatting and click
Export. Close GIMP and select Close without Saving.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16-13

http://www.gimp.org/

Lab16: Graphics Library

14. Now that we have a source image file in PNM format, we can convert it to something that

15.

the graphics library can handle. We’ll use the pnmtoc (PNM to C array) conversion
utility to do the translation.

» Open a command prompt window. In Windows XP click Start = Run, then type cmd
in the window and press Enter. In Windows 7, click Start and then type cmd in the
Search dialog and press Enter.

The pnmtoc utility is in c: \TI\TivaWare C Series-2.1.0.12573\tools\bin.
Copy this command to your clipboard:

cd c:\TI\TivaWare C Series-2.1.0.12573\tools\bin

Right-click anywhere in the command window, and then select Paste. Press Enter to
change the folder to that location.

» Finally, perform the conversion by typing pnmtoc -c pic.pnm > pic.c inthe
command window and press Enter (for some reason copy/paste won’t work here)dir.
When the process completes correctly, the cursor will simply drop to a new line. » Close
the command window.

<+ File Operation LJ&

Select how files should be imported into the project:
@ Copy files
) Link to files

» In CCS, make sure the
grlib demo projectis Active.
Add the C file to the project by
clicking Project > Add Files... and ® ok J[conce
browsing to the file:

Create link locations relative to: | PROJECT_LOC

Configure Drag and Drop Settings...

c:\TI\TivaWare C Series-2.1.0.12573\tools\bin\pic.c

Select Copy files and click OK.

16 - 14

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

Modify pic.c

16. » Open pic. c and add the following lines to the very top of the file:

#include <stdint.h>

#tinclude <stdbool.h>

#include "grlib/grlib.h"

Your pic. c file should look something like this (your data will vary greatly):

{

96,
64,

OV
OV

15,

0x00,
0x18,
0x28,
0x38,
0x44,
0x54,
0x62,
0x72,
0x81,
0x93,
Oxa2,
0xb3,
Oxc4,
0xd7,
Oxe8,
0xf4,

Oxff,
0x07,
0x07,
0x23,
0x04,
0x2c,
0x£fo0,
Oxee,
Oxe9,
ox4f,

many,

0x77,
0x20,
0x78,
0x03,
0x05,
0x00,
0x01,
0x2f,

0x02,
Oxla,
0x2a,
0x3a,
0x46,
0x57,
0x65,
0x75,
0x84,
0x96,
0xa5,
0xb6,
0xc7,
Oxda,
Oxeb,
0xf8,

0x07,
0x07,
0x07,
0x77,
Oxde,
0x03,
0x07,
0xao,
Oxee,
Oxee,

many more lines of this

0x2c,
0x07,
0x£f9,
Oxee,
Oxad,
0x27,
0x00,
0x07,

#include <stdint.h>
#include <stdbool.h>
#include "grlib/grlib.h"

0x00,
0x19,
0x28,
0x38,
0x44,
0x55,
0x63,
0x73,
0x82,
0x94,
Oxa3,
0xb4,
0xc5,
0xd8,
Oxe9,
0xf5,

0x07,
0x07,
0x07,
o0x77,
Oxee,
Oxcf,
0x07,
0x07,
0x90,
Oxe9,

0x19,
0x07,
0x07,
Oxee,
Oxee,
0x9d,
0x00,
0x07,

IMAGE FMT 4BPP COMP,

0x07,
0x07,
Oxfc,
Oxe9,
Oxee,
0x00,
0x77,
0x07,
0xfo0,
Oxee,

Oxfe,
Oxcl,
0x07,
Oxee,
Oxfe,
0x0f,
0x28,
0x07,

const unsigned char g pui8Image[]

0x07,
0x07,
0x07,
0x77,
Oxee,
Oxee,
0x2c,
0x77,
0x07,
0x90,

Oxee,
0x77,
0x77,
Oxee,
Oxee,
Oxed,
0x9%a,
0x07,

0x07,
0x07,
0x07,
0x78,
Oxe9,
Oxee,
0x03,
0x2c,
0x07,
0x07,

data ..

Oxef,
0x2c,
0x2d,
0xf9,
Oxfc,
Oxee,
Oxcc,
0x07,

0x07,
Oxff,
0x07,
0x70,
0x3c,
Oxee,
Oxcf,
0x04,
0x77,
0x07,

0x03,
0x05,
0x01,
0x10,
0x78,
Oxec,
0xa9,
0xcO,

0x07,
0x07,
0x07,
0x07,
Oxee,
Oxef,
Oxee,
0x03,
0x2c,
0x77,

Oxee,
0xdf,
0x8d,
0x07,
0x20,
0x40,
0x30,
0x07,

0x07,
0x07,
0x07,
0x07,
Oxal,
Oxee,
Oxee,
Oxcf,
0x03,
0x2c,

Oxee,
Oxee,
Oxee,
0x07,
0x07,
0x07,
0x07,
0x07,

Oxff,
0x07,
0x07,
Oxcl,
0x07,
Oxef,
0x4f,
Oxee,
Oxcf,
0x04,

Oxee,
Oxee,
o0x2f,
0xcO,
0x07,
0x07,
Oxff,

0x07,
0x07,
0x03,
0x77,
0x07,
Oxfe,
Oxee,
Oxee,
Oxee,
0x03,

Oxee,
Oxee,
Oxee,
0x77,
0x77,
0x77,
0x07,

0x07,
0x07,
0x77,
0x2c,
0x77,
0xal,
Oxe9,
Oxee,
Oxee,
Oxcf,

0xfb,
Oxe9,
Oxee,
0x2f,
ox2f,
0x2f,
0x77,

17. » Save your changes and close the pic. c editor pane. If you’re having issues with this
process. You’ll find a copy of pic. c located in the

C:\TM4C1294 Connected LaunchPad Workshop\lablé6 folder.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

16 - 15

Lab16: Graphics Library

main.c

18. To speed things up, we’re going to use the entire demo project as a template for our own

main () code. » On the CCS menu bar, click File 2 New = Source File. Make the
selections shown below and click Finish:

«'v Mew Source File l Gl ﬁ]
Source File
Create a new source file. C
Source folder: grlib_demo
Source file: main.c
Template: <MNonex» v“ Configure...]
'@:‘ [Finish] I Cancel I

19. Now that we’ve added main.c, we can’t also have grlib demo. c in the project

20.

21.

since it has amain () . P In the Project Explorer, right-click on grlib demo.c and
select Exclude from Build. In this manner we can keep the old file in the project, but it
will not be used during the build process. This is a valuable technique when you are
building multiple versions of a system that shares much of the code between them.

» Open main.c for editing. Copy/paste the following lines to the top:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw memmap.h"

#include "inc/hw types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "Kentec320x240x16 ssd2119 8bit.h"

uint32_t ui32SysClkFreq;

Pointer to the Image Array

The declaration of the image array needs to be made, as well as the declaration of two
variables. The variables defined below are used for initializing the Context and Rect
structures. Context is a definition of the screen such as the clipping region, default

color and font. Rect is a simple structure for drawing rectangles. Look up these APIs in
the Graphics Library user’s guide.

» Add a line for spacing and add the following lines after the previous ones:

extern const uint8 t g pui8Imagel];

tContext sContext;
tRectangle sRect;

16 - 16

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

main()

22. Themain () routine will be next. » Leave a blank line for spacing and enter these lines
of code after the lines above:

int main (void)
{
}

Initialization

23. P Set the system clock to run at 120 MHz. Insert this line as the first one inside main():

ui32SysClkFreq = SysCtlClockFreqgSet ((SYSCTL_XTAL 25MHZ |
SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480) , 120000000) ;

» The first line below initializes the display driver. The second line initializes a drawing
context, preparing it for use. The provided display driver will be used for all subsequent
graphics operations, and the default clipping region will be set to the size of the LCD
screen. Skip a line and insert these lines after the last:

Kentec320x240x16_SSD2119Init(ui32SysClkFreq) ;
GrContextInit (&sContext, &g sKentec320x240x16_ SSD2119) ;

24. P Let’s add a call to a function that will clear the screen. We’ll create that function in a
moment. Add the following line after the last ones:

ClrScreen() ;

25. P The following function will create a rectangle that covers the entire screen, set the
foreground color to black, and fill the rectangle by passing the structure sRect by
reference. The top left corner of the LCD display is the point (0,0) and the bottom right
corner is (319,239). P Add the following code after the final closing brace of the
program inmain.c.

void ClrScreen ()

{
sRect.il1l6XMin = 0;
sRect.i16YMin 0;
sRect.il6XMax = 319;
sRect.il6YMax = 239;
GrContextForegroundSet (&sContext, ClrBlack);
GrRectFill (&sContext, &sRect);
GrFlush (&sContext) ;

}
26. P Declare the function at the top of your code right below your variable definitions:

void ClrScreen (void) ;

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16- 17

Lab16: Graphics Library

Displaying the Image

27. Display the image by passing the global image variable g pui8Image into
GrImageDraw (...) and place the image on the screen by locating the top-left corner
at (0,0) ...we’ll adjust this later if needed. » Leave a line for spacing, then insert this line
after the ClrScreen () callinmain () :

GrImageDraw (&sContext, g_pui8Image, 0, 0);

28. The function call below flushes any cached drawing operations. For display drivers that
draw into a local frame buffer before writing to the actual display, calling this function
will cause the display to be updated to match the contents of the local frame buffer.

» Insert this line after the last:

GrFlush (&sContext) ;

29. We will be stepping through a series of displays in this lab, so we want to leave each
display on the screen long enough to see it before it is erased. The delay below will give
you a chance to appreciate your work. » Leave a line for spacing, then insert this line
after the last:

SysCtlDelay (ui32SysClkFreq) ;

This will cause a 3 second delay.

30. Before we go any further, we’d like to take the code for a test run. With that in mind
we’re going to add the final code pieces now, and insert later lab code in front of this.

LCD displays are not especially prone to burn in, but clearing the screen will mark a clear
break between one step in the code and the next. This performs the same function as step
24 and also flushes the cache. P Leave several lines for spacing and add this line below
the last:

ClrScreen() ;

31. » Add a while loop to the end of the code to stop execution. Leave a line for spacing,
then insert these line after the last:

while (1)
{
}

Don’t forget that you can auto-correct the indentation if needed.

Save your work.

16- 18 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

If you’re having issues, you can find this code inmainl . txt inthe labl6 folder.
Your code should look like this:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "Kentec320x240x16 ssd2119 8bit.h"

uint32 t ui32SysClkFreq;

extern const uint8 t g pui8Imagel];
tContext sContext;
tRectangle sRect;

void ClrScreen (void);

int main (void)
{
ui32SysClkFreq = SysCtlClockFregSet ((SYSCTL XTAL 25MHZ |
SYSCTL OSC MAIN | SYSCTL USE PLL |
SYSCTL CFG_VCO 480), 120000000);

Kentec320x240x16_SSD2119Init (ui32SysClkFreq);
GrContextInit (&sContext, &g sKentec320x240x16 SSD2119);
ClrScreen();

GrImageDraw (&sContext, g pui8Image, 0, 0);

GrFlush (&sContext) ;

SysCtlDelay (ui32SysClkFreq) ;
// later lab steps are between here

// and here
ClrScreen();
while (1)
{
}

}

void ClrScreen ()
{
sRect.i16XMin = 0;
sRect.il16YMin = 0;
sRect.il6XMax 319;
sRect.il6YMax = 239;
GrContextForegroundSet (&sContext, ClrBlack);
GrRectFill (&sContext, &sRect);
GrFlush (&sContext) ;

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 19

Lab16: Graphics Library

32. » Right-click on grlib demo in the Project Explorer pane and select Properties. Un-
der ARM Compiler, click on Include Options. Add the following search path:

C:\TI\TivaWare_C_Series-2.1l\examples\boards\ek-tm4cl294x1l-boostxl-kentec-135\drivers

to the bottom box as shown. Click OK

Add dir to #include search path (--include_path, -I) & = &3 5l H
"SICG_TOOL_ROOTYinclude”
"CATR TiwvaWare_C_Series-2.1\examplesiboardshek-tmd cl 294xl- boostul-kentec- 35N drivers”

"SSW_ROOT) exarnples/boards/ek-tmd c1294xl-boostd-kentec-135"
"SISW_RCOOTY"

Build and Run the Code

33. Make sure 1ab16 is the active project. » Compile and download your application by
clicking the Debug button. » Click the Resume button to run the program that was just
downloaded to the flash memory. If your coding efforts were successful, you should see
your image appear on the LCD display for 3 seconds, then disappear when the
ClrScreen () function clears the screen.

» When you’re finished, click the Terminate button to return to the CCS Edit
perspective.

When you are including images in your projects, remember that they can be quite large in
terms of memory space. This might possibly require a external memory device, and
increase your system cost.

16 - 20 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

Display Text On-Screen

34. Refer back to the code on page 16-19. In main. c find the area marked:
// Later lab steps go between here
// and here
» Insert the following function call to clear the screen and flush the buffer:

ClrScreen() ;

35. Next we’ll display the text. Display text starting at (x,y) with the no background color.
The third parameter (-1) simply tells the API function to send the entire string, rather than
having to count the characters.

GrContextForegroundSet (.. .) : Setthe foreground for the text to be red.
GrContextFontSet (.. .) : Setthe font to be a max height of 30 pixels.
GrRectDraw (.. .) : Put a white border around the screen.

GrFlush(. . .) : And refresh the screen by matching the contents of the local frame
buffer.

Note the colors that are being used. If you’d like to try other colors, fonts or sizes, look in
the back of the Graphics Library User’s Guide.

» Add the following lines after the previous ones:

sRect.il6XMin = 1;

sRect.il6YMin = 1;

sRect.il6XMax = 318;

sRect.il6YMax = 238;
GrContextForegroundSet(&sContext, ClrRed);
GrContextFontSet(&sContext, &g sFontCmss30b);
GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);
GrStringDraw(&sContext, "Graphics", -1, 100, 62, 9);
GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet(&sContext, ClrWhite);
GrRectDraw(&sContext, &sRect);

GrFlush(&sContext);

36. » Add a delay so you can view your work.

SysCtlDelay (ui32SysClkFreq) ;

» Save your work.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 21

Lab16: Graphics Library

If you’re having issues, you can find this code inmain?2 . txt inthe 1abl6 folder.

Your added code should look like this:

// Later lab steps go between here
ClrScreen() ;

sRect.ilé6XMin = 1;

sRect.il6YMin 1;

sRect.il6XMax = 318;

sRect.il6YMax = 238;

GrContextForegroundSet (&sContext, ClrRed) ;
GrContextFontSet (&sContext, &g_sFontCmss30Db) ;
GrStringDraw (&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw (&sContext, "Instruments", -1, 80, 32, 0);
GrStringDraw (&sContext, "Graphics", -1, 100, 62, 0);
GrStringDraw (&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet (&sContext, ClrWhite) ;
GrRectDraw (&sContext, &sRect);

GrFlush (&sContext) ;

SysCtlDelay (ui32SysClkFreq) ;

// and here

Build, Load and Test

37. » Build, load and run your code. If your changes are correct, you should see the image
again for a few seconds, followed by the on-screen text in a box for a few seconds. Then
the display will blank out. » Click Terminate to return to the CCS Edit perspective when
you’re done.

16 - 22

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

Drawing Shapes

38. Let’s add a filled-in blue circle. Make the foreground yellow and center the circle at
(80,182) with a radius of 50.

» Add a line for spacing and then add these lines after the SysCt1Delay () added in
step 36:

GrContextForegroundSet (&sContext, ClrBlue) ;
GrCircleFill (&sContext, 80, 182, 50);

39. Draw an empty green rectangle starting with the top left corner at (160,132) and finishing
at the bottom right corner at (312,232).

» Add a line for spacing and add the following lines after the last ones:

sRect.il6XMin = 160;
sRect.il6YMin = 132;
sRect.il6XMax = 312;
sRect.il6YMax = 232;

GrContextForegroundSet(&sContext, ClrGreen);
GrRectDraw(&sContext, &sRect);

40. Add a 3 second delay to appreciate your work.
» Add a line for spacing and add the following line after the last ones:

SysCtlDelay (ui32SysClkFreq) ;

» Save your work.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 23

Lab16: Graphics Library

If you’re having issues, you can find this code inmain3. txt inthe 1abl6 folder.

Your added code should look like this:

// Later lab steps go between here
ClrScreen();

sRect.il6XMin = 1;

sRect.ileYMin = 1;

sRect.il6XMax = 318;

sRect.iléYMax = 238;

GrContextForegroundSet (&sContext, ClrRed);
GrContextFontSet(&sContext, &g sFontCmss30b);
GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw(&sContext, "Instruments"”, -1, 80, 32, 0);
GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);
GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet (&sContext, ClrWhite);
GrRectDraw(&sContext, &sRect);

GrFlush(&sContext);

SysCtlDelay(ui32SysClkFreq) ;

GrContextForegroundSet(&sContext, ClrBlue);
GrCircleFill(&sContext, 80, 182, 50);

sRect.il6XMin = 160;

sRect.iléYMin = 132;

sRect.il6XMax = 312;

sRect.il6YMax = 232;
GrContextForegroundSet(&sContext, ClrGreen);
GrRectDraw(&sContext, &sRect);

SysCtlDelay(ui32SysClkFreq) ;

// and here

16 - 24 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

For reference, the final code should look like this:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "Kentec320x240x16 ssd2119 8bit.h"

uint32_t ui32SysClkFreq;

extern const uint8 t g pui8Imagel];
tContext sContext;
tRectangle sRect;

void ClrScreen (void) ;

int main(void)
{
ui32SysClkFreq = SysCtlClockFregSet ((SYSCTL_XTAL_25MHZ
SYSCTL _OSC MAIN | SYSCTL USE PLL |
SYSCTL_CFG_VCO_480), 120000000);

Kentec320x240x16_SSD2119Init (ui32SysClkFreq) ;

ClrScreen();
GrImageDraw (&sContext, g _pui8Image, 0, 0);
GrFlush (&sContext) ;

SysCtlDelay (ui32SysClkFreq) ;

ClrScreen();

sRect.i16XMin = 1;

sRect.il6YMin = 1;

sRect.il6XMax = 318;

sRect.il6YMax = 238;

GrContextForegroundSet (&sContext, ClrRed);
GrContextFontSet (&sContext, &g sFontCmss30b);
GrStringDraw (&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw (&sContext, "Instruments", -1, 80, 32, 0);
GrStringDraw (&sContext, "Graphics", -1, 100, 62, 0);
GrStringDraw (&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet (&sContext, ClrWhite);
GrRectDraw (&sContext, &sRect);

GrFlush (&sContext) ;

SysCtlDelay (ui32SysClkFreq) ;

GrContextForegroundSet (&sContext, ClrBlue);
GrCircleFill (&sContext, 80, 182, 50);
sRect.i116XMin = 160;

sRect.i116YMin = 132;

sRect.il6XMax = 312;

sRect.il6YMax = 232;

GrContextForegroundSet (&sContext, ClrGreen);
GrRectDraw (&sContext, &sRect);

SysCtlDelay (ui32SysClkFreq) ;

ClrScreen() ;
while (1)
{
}
}

void ClrScreen()
{
sRect.i16XMin = 0;
sRect.il6YMin = 0;
sRect.il6XMax = 319;
sRect.il6YMax = 239;
GrContextForegroundSet (&sContext, ClrBlack);
GrRectFill (&sContext, &sRect);
GrFlush (&sContext) ;

GrContextInit (&sContext, &g sKentec320x240x16_SSD2119);

This is the code inmain3. txt.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 25

Lab16: Graphics Library

Build, Load and Test

41. » Build, load and run your code to make sure that your changes work.

» Click the Terminate button to return to the CCS Edit perspective when you are done.

16 - 26 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

Widgets

42. Now let’s play with some widgets. In this case, we’ll create a screen with a title header
and a large rectangular button that will toggle the user LEDs on and off. Modifying the
existing code would be a little tedious, so we’ll create a new file.

43. » In the Project Explorer pane, right-click on main. c and select Exclude from Build.

44. » On the CCS menu bar, click File 2 New = Source File. Make the selections shown
below and click Finish:

45. » Add the following support files to the top of MyWidget.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

uint32 t

-

Source folder griib_demo

T ~
v+ New Source File LI_I—JEI e
Source File
Create a new source file. c
==

Browse...

Source file: MyWidget.d

Template: <Mone>

v” Configure...]

@ [Finish

) [e

%

<stdint.h>

<stdbool.h>
"inc/hw_memmap.h"
"inc/hw_types.h"
"driverlib/interrupt.h"
"driverlib/sysctl.h"
"driverlib/gpio.h"
"grlib/grlib.h"
"grlib/widget.h"
"grlib/canvas.h"
"grlib/pushbutton.h"
"Kentec320x240x16 ssd2119 8bit.h"
"touch.h"

ui32SysClkFreq;

46. The next two lines provide names for structures needed to create the background canvas
and the button widget. » Add a line for spacing, then add these lines below the last:

extern tCanvasWidget g_sBackground;
extern tPushButtonWidget g_sPushBtn;

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 27

Lab16: Graphics Library

47.

48.

49.

When the button widget is pressed, a handler called OnButtonPress () will toggle the
LEDs. » Add a line for spacing, then add this prototype below the last:

void OnButtonPress (tWidget *pWidget) ;

Widgets are arranged on the screen in a parent-child relationship, where the parent is in
the background. This relationship can extend multiple levels. In our example, we’re
going to have the background be the parent or root and the heading will be a child of the
background. The button will be a child of the heading. » Add a line for spacing and then
add the following two global variables (one for the background and one for the button)
below the last:

Canvas(g_sHeading, &g _sBackground, ©, &g sPushBtn,
&g sKentec320x240x16_SSD2119, o0, O, 320, 23,
(CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT),
ClrBlack, ClrWhite, ClrRed, g_psFontCm20, "LED Control”, 9, 0);

Canvas(g_sBackground, WIDGET_ROOT, O, &g sHeading,
&g_sKentec320x240x16_SSD2119, 0, 23, 320, (240 - 23),
CANVAS_STYLE_FILL, ClrBlack, @, 0, 0, @, 0, 0);

Rather than re-print the parameter list for these declarations, refer to the Graphics Library
User’s Guide. The short description is that there will be a black background. In front of
that is a white rectangle at the top of the screen with “LED Control” inside it.

Next up is the definition for the rectangular button we’re going to use. The button is
functionally in front of the heading, but physically located below it (refer to the picture in
step 52). It will be a red rectangle with a gray background and “Toggle LEDs” inside it.
When pressed it will fill with white and the handler named OnButtonPress will be
called. » Add a line for spacing and then add the following code below the last:

RectangularButton(g_sPushBtn, &g_sHeading, 0, O,
&g_sKentec320x240x16_sSsD2119, 60, 60, 200, 40,
(PB_STYLE OUTLINE | PB_STYLE TEXT OPAQUE | PB_STYLE TEXT |
PB_STYLE FILL), ClrGray, ClrWhite, ClrRed, ClrRed,
g_psFontCmss22b, "Toggle LEDs", 0, 0, 0, O, OnButtonPress);

The last detail before the actual code is a flag variable to indicate whether the LEDs are
on or off.

» Add a line for spacing and then add the following code below the last:

bool g LedsOn = false;

16 - 28 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

50. When the button is pressed, a handler called OnButtonPress () will be called. This
handler uses the flag to switch between turning the user LEDs on and off.

» Add a line for spacing and then add the following code below the last:

void OnButtonPress (tWidget *pWidget)

{
g_LedsOn = !g_LedsOn;

if (g_LedsOn)

{
GPIOPinWrite (GPIO_PORTN BASE, GPIO_PIN O | GPIO_PIN 1, OxFF);

}

else

{
GPIOPinWrite (GPIO_PORTN_ BASE, GPIO_PIN 0 | GPIO_PIN 1, 0x00);

}
}

51. Lastly is the main () routine. The steps are: initialize the clock, initialize the GPIO,
initialize the display, initialize the touchscreen, enable the touchscreen callback so that
the routine indicated in the button structure will be called when it is pressed, add the
background and paint it to the screen (parents first, followed by the children) and finally,
loop while the widget polls for a button press.

» Add a line for spacing and then add the following code below the last:

int main(void)

{

ui32SysClkFreq = SysCtlClockFregSet ((SYSCTL_ XTAL 25MHZ |
SYSCTL_OSC_MAIN | SYSCTL USE_PLL |
SYSCTL_CFG_VCO_480), 120000000) ;

SysCtheripheralEnable(SYSCTL_PERIPH_GPION);

GPIOPinTypeGPIOOutput (GPIO_PORTN_BASE, GPIO_PIN_ 0|GPIO_PIN 1);

GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_OlGPIO_PIN_l, 0x00) ;

Kentec320x240x16_SSD2119Init (ui32SysClkFreq) ;

TouchScreenInit (ui32SysClkFreq) ;

TouchScreenCallbackSet (WidgetPointerMessage) ;

WidgetAdd (WIDGET_ROOT, (tWidget *)&g_sBackground) ;

WidgetPaint (WIDGET_ROOT) ;

while (1)

{

WidgetMessageQueueProcess() ;

}

» Save your work.

If you’re having issues, you can find this code in MyWidget . txt in the 1abl6 folder.

Your code should look like the next page:

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 29

Lab16: Graphics Library

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "grlib/grlib.h"
#include "grlib/widget.h"
#include "grlib/canvas.h"
#include "grlib/pushbutton.h"
#include "Kentec320x240x16_ssd2119_8bit.h"
#include "touch.h"

uint32_t ui32SysClkFreq;

extern tCanvasWidget g_sBackground;
extern tPushButtonWidget g_sPushBtn;

void OnButtonPress (tWidget *pWidget) ;

Canvas (g_sHeading, &g_sBackground, 0, &g_sPushBtn,
&g_sKentec320x240x16_SsD2119, 0, 0, 320, 23,
(CANVAS_STYLE FILL | CANVAS_STYLE OUTLINE | CANVAS_STYLE_ TEXT),
ClrBlack, ClrWhite, ClrRed, g psFontCm20, "LED Control", 0, 0);

Canvas (g_sBackground, WIDGET ROOT, 0, &g_sHeading,
&g_sKentec320x240x16_sSsD2119, 0, 23, 320, (240 - 23),
CANVAS_STYLE FILL, ClrBlack, 0, 0, 0, 0, 0, 0);

RectangularButton (g_sPushBtn, &g_sHeading, 0, O,

&g_sKentec320x240x16_SsD2119, 60, 60, 200, 40,

(PB_STYLE OUTLINE | PB_STYLE TEXT OPAQUE | PB_STYLE TEXT |

PB_STYLE_FILL), ClrGray, ClrWhite, ClrRed, ClrRed,

g_psFontCmss22b, "Toggle LEDs", 0, 0, 0, O, OnButtonPress);
bool g_LedsOn = false;

void OnButtonPress (tWidget *pWidget)

{

g_LedsOn = !'g_LedsOn;
if (g_LedsOn)
{
GPIOPinWrite (GPIO_PORTN BASE, GPIO_PIN 0 | GPIO_PIN_1, OxFF);
else

GPIOPinWrite (GPIO_PORTN BASE, GPIO_PIN 0 | GPIO_PIN 1, 0x00);

}

int main(void)

{

ui32SysClkFreq = SysCtlClockFreqSet ((SYSCTL_XTAL_25MHZ |
SYSCTL_OSC_MAIN | SYSCTL USE_PLL |
SYSCTL_CFG_VCO_480) , 120000000) ;

SysCtlPeripheralEnable (SYSCTL PERIPH GPION) ;

GPIOPinTypeGPIOOutput (GPIO PORTN BASE, GPIO PIN 0|GPIO_PIN 1);

GPIOPinWrite (GPIO_PORTN BASE, GPIO_PIN 0|GPIO_PIN 1, 0x00);

Kentec320x240x16_SSD2119Init (ui32SysClkFreq) ;

TouchScreenInit (ui32SysClkFreq) ;

TouchScreenCallbackSet (WidgetPointerMessage) ;

WidgetAdd (WIDGET ROOT, (tWidget *)&g_sBackground) ;

WidgetPaint (WIDGET_ROOT) ;

while (1)

{

WidgetMessageQueueProcess () ;

}

16 - 30 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

Build, Load and Test

52. » Build, load and run your code to make sure that everything works. Press the
rectangular button and the user LEDs on the LaunchPad will light, press it again and they
will turn off.

s “Lounchifogi==

53. P Click the Terminate button to return to the CCS Edit perspective when you are done.
Close the grlib_demo project and close Code Composer Studio.

54. » Disconnect the LaunchPad from the USB cable. Carefully remove the Kentec display
and return it to your instructor. Pack your LaunchPad and cables for transport home.

Homework ideas:

e Change the background of the button so that it stays on when the LED is lit

e Add more buttons to control the user LEDs individually

e Use the ADCI12 lab code to display the measured temperature from the on-chip
temperature sensor on the LCD in real time.

e Use the Hibernation Module RTC to display the time of day on screen.

e Use the Hibernation lab code to make the device sleep, and the backlight go off,
after no screen touch for 10 seconds

e Use the USB lab code to send data to the LCD and touch screen presses back to
the PC.

e Use the FPU lab sine wave code to create a program that displays the sine wave
data on the LCD screen.

You’re done.

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 31

Lab16: Graphics Library

Thanks for Attending!

/ ¢ Make sure to take your LaunchPad boards and\
workbooks with you

¢ Please leave the TTO flash drives, meters and
other instructor supplied hardware here

¢ Please fill out the email survey when it arrives
K ¢ Have safe trip home! /

I3 TEXAS
INSTRUMENTS

Presented by

Texas Instruments
Technical Training Organization

www.ti.com/training

16 - 32 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

Lab16: Graphics Library

Appendix

Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 33

Lab16: Graphics Library

16 - 34 Creating loT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib

1 2 3 4 [5 1ps [6
) . [_TARGET VBUS/3.4C b4
convienence test points for ground fel=1lal TP5 /UZG$-1
TP14 I ¢ E; ‘E/”E\;AUS
USBD_N
U1G$1 - P3
L TP6 h] O
N PAQ P33 [pag PBo | 2595 PRO [Us80F $ P5 | e
PA1 834 1 pay PB1 CTARGET VBUS/3.40 | TP7
‘t PA2 PS35 | pao B2 | _P891 PB2
| PA3 PS36 | pas poy | _P892 PR3 [T $ | 1 11 U7G$
P16 PA4 P$37 | pax pps | PS121 PB4 =
PAR P$38 | e pps | P$120 PR5 aND
PAG P$40 PAB L
| PA P$41 PA7 C32 _1_ Né
TP17 2y
PCO PDo |-£3! E00 3300pF
T E22 Foi PD1 (—£S2 BD1 u2]
b 398 1 pco pp2 |E33 PD2 TPD4S012_DRY_6
97 Pc3 PD3 | £t B03 —
PC4 P$25 | oy PD. | _P8125 PD4 GND
PCh ps24 | ol PD5 |_P$126 PD5 Ri8 I VBUS
PCH P$23 | pce D6 | D127 -~ [PBoBaC M 2 o NC. |2
Gﬁ% PC7 P$22 PC7 PD7 P$128 PD 100 3 D GND 4
PEQ P$15 P$42 PEQ
PEO PFO
PE1 P$14 | ppy pri |_P$43 PF1
PE2 PS15 | ppp pro | _PS44 PF2 GND
PE3 Psi2 | oo prs | D845 PE3
PF4 P$123 PE4 PF4 P$46 PF4 NOTE: TPD4S012 all protection circuits are identical.
PES P$124 | pEg Connections chosen for simple routing.
PGO P$49 P$29 PHQ
P PHI
PG1 P$50 | boy Y [Cesao PH1
PHz |P851 PH2
P.J0 P$116 | oo pHs | D832 PH3
P.J1 P$117 P
PKQO P$18 P$81 PLO
PK1 Psio | PKO PO Ipss2 PL1 o -
PK2 P$20 | oyo pL2 |-Ps83 Pl 2 a o
PK3 P21 | s pls | PS84 PL3
PK4 PS63 | pyy pLs | Psss plL4
PK5 P$62 | o pLs | Ps86 PL5
PKe PS61] pke Pl (DS
P$60 P$93 S S
PK PK7 PL7 <'3 ©
PMO P$78 P$107 PNO
PM PN
PM1 PST7 | b PNy [Cestos PN1
e PS76 1 pm2 PNz |PS109 PN2 D D
PM3 PS75 | pyia PNg |_PS110 PN3
PM4. P$74 PM4 PN4 P$111 PN4 See PF0 and PF4 for additional LED's used for
PM5 P$73 PMS5 PN5 P$112 PN& Ethernet or user application
PM6 P72 | oo
PM7 PSTL | py USR_SW1
+
PPQ P$118 P$5 PQO
PPO PQO PJ0/3.4D
PP1 P$119 | pps P& P$6 PQ1 [] 1
pp2 P$103 PP2 PQ2 P$11 PQ2 SWITCH_TACTILE
PP3 P$104 | opo b5 |_Ps27 PQ3
PP4 iggg PP4 pQa |—E8102 PQ4 USB_SWZ
PP3 PP5 A
-PJLE.AID
TM4C1294NCPDT]

SWITCH_TACTILE

arD

TITLE: EK-TM4C1284XL REUV C

Document Number: REU:

Date: 1/9/2014 1:26:14 PM Sheet: 1/6

+5V
;3 X8-2
TSW-110-02-S-D ®
X8-1 * TSW-110-02-S-D X9-2
X8-4 X9-1 o o
X8-3 mm—FEA] X9-3 X9-4
co23 X8-5 — — X8-6 Co4 X9-5 BE — X9-6
X8-7 S e X8-8 X9-7 — — X9-8
X8-9 — — X8-10 X9-O we—FPl4 R ["TARGET RESET/3.4D) X9-10
0-1uF X8-11 — — X8-12 0-1uF oy m—ois | -
X8-13 - — X8-14 X9-13 LD — X9-12
X8-15 - PAG X8-16 X9-15 — - X9-14
GND X8-17 — S x8-18 GND X9-17 — - X9-16
X8-19 PR Pls X8-20 X9-19 = - X9-18
B2 e X9-20
BoosterPack 1 Interface
5V X7-2
JP4 and JP5 CAN and ICDI UART Selection:
| PM7 e X7-4 Populate Jumpers from 1-2 and 3-4 for Default Mode
o PP5 X7-6 This enables ROM UART boot loader. UART 0 to ICDI
2 T S
- -02-S- X7-8 Populate from 1-3 and 2-4 for controller area network
TSw-110 Q§1S D C'+') X6-2 TSW-110-02-S-D on the boosterpack. UART2 is then availabe to ICDI.
X6-4 X7-1 me——EG1 GET RESET/3.4D X7-10
X6-3 mm—0PD2] X7-3 mm—PK4 | 0
2! R19 and R20 can be populated to enable 12C on P4
C25 X6-5mm—PPO R PBA XG5 Cc26 X7-5 — PAL AN X7-12 Right side of BP2 interface. This is for legacy J 7 D‘ >
0.1uF X6-7 mm——PP1 R PBE o ¥pg X7-7 wm—PBM0 | R19 I support and the Sensor Hub BoosterPack. TARGET RXD/6.1D —0O O~ PA/3.4C |
" UX6-9 K0 X5-10 X7-9 e —) [PD4/1.4B 30 04 BP2_A25 |
— 0.1uF o0 oA A U 12C and SS| are available on the corresponding -
X6-11 LK X6-12 X7-11 VWW\ X7-14 BoosterPack 1 interface pins without modification to Y_T
X6-13mm—PQO R PK2 o x5 14 X7-13 mm—PHO | R20 I the board.
GND X6-15 m—ERA g PKA e X616 X7-15 S =0 PAB and PA7 are also used by the onboard radio.
X617 me—ENS R PAL w548 GND X717 mm——LEKE R PPI e ¥7.16 Configure the radio to tri-state these GPIO before JP5 [
X6-19 me——BN4 R PAR o %5 00 X7-19wm——PBKZ R PO1 o ¥7.48 using them on the boosterpack interface.
|—EMS ————a X7-20 TARGET_TXD/6.1D ! 2 PA1/3.4C |
[PD5/1.48 3O C4 BP2 A2.6 |
BoosterPack 2 Interface [
Document Number: REU:

Date: 1/9/2014 1:26:14 PM

Sheet: 2/6

2 +5V
2 ®
This is the breadboard connection header.
C27 Samtec TSW-149-08-F-S-RA and TSW-149-09-F-S-RE C28
can be used together to create a breadboard
0.1uF :ggqﬁ;‘%rsers Manual for more information. 0.1uF
TSW-149-02-S-D
X11-1 X112 me————————
GND X11-3 X11-4
. X11-5 X11-6 A
. X11-7 X11-8 £
EHa X11-9 X11-10 AL
EH X11-11 X11-12 PAS
EH X11-13 X11-14 PED
EH X11-15 X11-16 PEL
O X11-17 X11-18 EE
e X11-19 X11-20 EE
S X121 X11-22 S
. X11-23 X11-24 EE
PAS. X11-25 X11-26 KO,
A X11-27 X11-28 Bl
PG1 X11-29 X11-30 K
GO X11-31 X11-32 B3
M X11-33 X11-34
X11-35 X11-36
M2 X11-37 X11-38 PO
— X11-39 X11-40 -
— X11-41 X11-42 —_
kLo X11-43 X11-44 P06
— X11-45 X11-46 —
£l X11-47 X11-48 S
El X11-49 X11-50 S~
— X11-51 X11-52 D
P01 X11-53 X11-54 o
zg X11-55 X11-56 ;’;;
X11-57 X11-58)
= X159 X11-60 Confguratons wih 8 Signets cspecialy in USB
X11-61 X11-62 Host or OTG mode. Be aware the 5V may be
PKE X11-63 X11-64 PE4 present on these pins depending on system jumper
pl4 X11-65 X11-66 PEQ configuration
— X11-67 X11-68 — These pins are only 5V tolerant when configured for
PB: X11-69 X11-70 PFE; USB mode applications.
S X171 X11-72 -
- X11-73 X11-74 PAQ
— X11-75 X11-76 e
. X11-77 X11-78 .
Pl5 X11-79 X11-80 PE;
o X11-81 X11-82 210
2N X11-83 X11-84 B
ENa X11-85 X11-86 -~
N1 X11-87 X11-88 EMa
BN X11-89 X11-90 LS
— X11-91 X11-92 —
£os X11-93 X11-94 (TARGET RESET/52A | A @
W5V X11-95 X11-96 /[\ ®
X11-97 X11-98 *
C30 C29
0.1uF 0.1uF
GND GND

TITLE: EK-TM4C1284XL REUV C

Document Number: REU:

Date: 1/9/2014 1:26:14 PM Sheet: 3/6

1 [2 3 4 5 6

Place pull up resistors and C16-C17 near TM4C MCU.

C17 v;,, C16
s=d -
0.1uF V2T ggg 0.1uF
243 ;
P2 oLy
GND S > GND , ,
> Place C18 and C22 near pin 2 and pin 7 of U$10
uio
P$16
[EN0TXO_P/5.38 P$1
=) u1
=4 \| P$2 = =R Uta
© w/le I % CHASSIS P
[ENOTXO_N/5.38 — P$3 2 Tx-
5] P$14 2 = 7 | 3
R32 F2 P$ RX+
AW P$15 | ' 4 TERM1A
75 8l A53 Pye—{C 5 TERM1B
esi [] [Q | |
TERM2A
[ENORX P5.38 Pg6l 4 T2 PP T8 terwes chassis |10
[a]
= \| P$7 I I ©
B /1y P$8 . IR
ENORXI_N/5.38 — 0
: N R43 © SEEE E‘E;LQ 5
MW S g
® o=
) I\
U10 May be populated with either HX1188FNL or HX1198FNL. C31 L
HX1198FNL preferred for best Ethernet performance.
P P 4700pF 'Ec\é?-
G
¢V FAVAS
~— (=]
55 255

GND GND

For Ethernet example Applications:
LED4 is default configured as Ethernet Link OK
LED3 is default configured as Ethernet TX/RX activity

User may re-configure these pins / LED's for any
application usage.

TITLE: EK-TM4C1284XL REUV C

Document Number: REU:

Date: 1/9/2014 1:26:14 PM Sheet: 4/6

JP2 can be used to measure MCU current
consumption with a multi-meter.

WAKE
by £ up2
~ 2 1
I 2
ca7 48 SWITCH_TACTILE Tp1o .
< CRIYATL_32K_SMD Gﬁ7D M R39
<
o 12pF ﬂw—'@l—*’w— 12pF WAKE/3.3D, AW 2 A
Power Control Jumper: Y3 TP9 R42 51 0
TWW—I
1) To power from Debug install jumper on pins 5 - 6 GND GND . U1GS2 . R38
$66 s 65)
2) To power from Target USB install jumper on pins 3 - 4 Ps67 | éggg? WAI—:(IE P$64 0.1uF \F/{gi??gggn?:fgqﬁrz‘:?ms
3) To power from BoosterPack 5V install jumper on pins 1 - 2 - T VBAT P$68 TP13
This is also the off position if BoosterPack does not w O P$70 RESET
supply power Die = 0.1uF P$8
w = VDDA GND R41
When powered from BoosterPack TPS2052B does not o %) R4S P$8s | 0SCo VREFA+ |_P$9 A
provide current limit protection. A P$89 0SC1 0
——VWy .
When powered by BoosterPack, USB host mode does not 2k VDD P$7 R41 may be re_moved and precision
supply power to connected devices > M ENORXIN VDD P$16 reference applled to TP13
JP1 b b ENOTXO N P$56 P$28
; > GND = P857 ENOTXON VDD P$39
0 02 ENOTXO P PS$57 f g\orxop VDD MCU_3V3/6.2A
—gO Og_ C44 =~ N e P59] RBIAS VDD §$g? C40 C41 C42 C43
—0 O°— g==2 N T~
oL 3
Y T2pF Si:t/s) 228 P310 | arnon V0D Ipsgs ! 0.40F | 04U | 0.1uF | To.uF
ST 8 = VDD | P878 I I
5 @ P$17 1 &ND vDD (P80 ¢
<
P$48 P$101
GND GND VDD
$——P55 1 e vDD |-PS113 GND
GND 858 1 G\p vDp |-F8122 TP12
H4 P$80 | nbD
MOUNT-HOLE3.2 LG5 P$114 1 Gnp vope [E387
p— P$115
12pF VDDC
H6 ﬁ7 C4| C14] C15(
MOUNT-HOLES.2 N - =<
G§7D 0.1uF | 1.0uF| 2.2uF
H1
MOUNT-HOLES 2 aND
5V
o TPS2052B provides current limit for main 5V power.
o U4 -
o TPS2052 BiD R 878 TP8 Also provides power switching for USB host/OTG modes
O For Host/OTG:
2 IN OUT1 7 R36 PD6 configured as USBOEPEN peripheral function.
3 n * 8
EN1 OC1 PQ4 configure as individual pin interrupt. Indicates
4 100k power fault on the USB bus. USBOPFLT peipheral pin
é 8 *EN2 not available due to pin mux and use on BoosterPacks.
Primary 3.3V regulator o i
D\Isconigect JP?%u power device from 3V3 BoosterPack - ; GND< < < < < < OUT2 g TARGET VBUSac | dﬁgﬂiﬁ er?:éife' g:‘e: gglo ssrgggcﬁ(omr to devices
>>>>>
g EPAD 0c2 Q4830 For Applications that do not use USB:
+5V (2 Sl e] o] ©f Configure PD6 as input with internal pull-down
G; l>l>l> S| >| enabled. Turns off power to TARGET_VBUS
(sl
c20_ |4 [E
us 2.2UF\ GﬁB
S TPS73733_DRV_6 AV
o= = - 2 8
- 6 1
ca1| TP3 IN ouT g?_<
T~ 4 EN =
0.1uF 2
3 NR/FB >
7] &N = £ 5 Cc19 0328
EPAD > > NC —-— P YR TITLE: EK-TM4C1284XL REUV C
>1 Nl 0.1uF
>
Y Document Number: REU:
GND
aND aND
Date: 1/9/2014 1:26:14 PM Sheet: 5/6

JTAG PULL-UPS 56k 10K Use this for JTAG IN from external debugger. See X1
10k jumpers for information about debug out to an
[[7ARGET TorswerieA———AMWM—MCU_3V3/5.68 - R28 R29 © external target.
R1 GND 3 R40 must be removed for debug out.
+ R40 must be instaled for debug in.
10k
([Tercer TeswooT MW L, .
R2 R40 VTARGET TMS DEBUG_PC1/TMS/SWDIO
A ['veP_Rxp iﬂ 1 PAo PBO —rﬁf’ m;’?’ EXTDBG TCK DEBUG PooTckiswoik | A
o [ver o P$ 8 { past u20 PB1 P 5 0 P5 GND TDO
10k & [DEBUG_PCOTTCK/SWCLK, P$;9 PA2 TMAC123GH6RI> Pf PL P$7 DI
[icoTekoO—AMWN——8 | DEBUG_PC1/TMS/SWDIO Péz? PA3 PB3 [52 9 | GND1 RESET DEBUG_RESET_OUT
R4 [DEBUG_PC3/TDO/SWO PA4 PB4 £
10k TP2 P$22 1 pas pBs |£357 JTAG_ARM_10PIN
0 B2 | pas pas (£
R5 [EXTERNAL_DEBUG, P$24 | pp7 pR7 |-P%4 Gm7D
] EXTERNAL_DEBUG pull low to use external debugger P$52]
to debug the target. Causes ICDI chip to tri-state the JTAG lines P$51 ig?g,\cﬂé ﬁg? P§62
P$50 P$63 TP1 3
psag | HC2TD! PD2 I Pgea N'd P1
PC3/TDO PD3 M DEBUG_ACTIVE | [DEBUG_VBUS/5.1B VBUS
NC S P$16 | poy PD4 P$43 ICDI USRD N p2 DM
ICDI TCK P$15 PC5 PD5 P$44 ICDI 1ISBD P P3 DP
anp |- IGDL TS Pid | pcg PDS [
B e PHS 1 pe7 pp7 |E810 B PS_{ anp B
AToK . pso | e oro |_ps2s
RESET s PEAETM ENnLomveOpen oo PET pF1 (£520 [[]]]] V2292
4 + use GPIO Internal weak pullup. P:ﬂs— PE2 PF2 B 31
VTREF PE5 LS_PRESENTn Leave Open P$L59 PE3 PF3 JP@S
use GPIO internal weak pullup P$60 | PE4 PF4
00 QL 60 pes as s
<
- TRST |2 GND G
OMIT 3300pF
Tk 4 P$38 | RESET WAKE %]
™S |2 HB |-£838 GND GND N
s 0OSsC1 P$37 GND
TDI 0SCo VBAT @
(5]
C P$34 | xosco vbpa |2 + C
vz P$35 | GNDX
R50 P36 _{ xosct vbpo |—E5M C10_1CT1_1C12 1C138
o b GND vDD1 |—£326 TS
= o N P$3 | nDA vDD2 |_P$42 0.1uF| 0.1uF| 0.1uF| 0.1uF
? cs g g vDD3 |—P$54] \
: T2pF Feze] oo
mg‘é 618 psag | GNDI P$25 N
|| ry S 3 S Pass] GND2 VDDCO [—(e=2 L
o5 GND3 vbpc1 ¥ .
|CDI_RESET, GND S
I - % 8 = TM4C123xH6PMI G5 C6 C7
omrl G2 9 g T~
~ 0.1UF| 1.00F| 2.2uF
- - VERSION RESISTOR TABLE:
0.1uF pry Gm7D *use internal GPIO weak pullups.
o o d ALL OMITTED: Legacy mode. (Stellaris ICDI)
ALL POPULATED: Everything enabled
Version 0 populated: UART CTS/RTS and Analog inputs
co U3
D _ _ anb —< TPD4S012 DRY 6 GND R13 D
Jumpers to bridge from ICDI to Target portion of LaunchPad 1 2pF
0 5.6k
o veus R14
R6 21 b NC. -
0 aND S 1 GND 4 5.6k
Ri2
R7
- 0 GND 5.6k -
oM
R8 G
0 [TARGET TxD/2.5D X1-14 X1-13
DEBUG_PC1/TMS/SWDIO | | TARGET_RXD/2.5D X1-12 X1-11 B
R10 [TARGET_TCK/SWCLK/1.2A, X1-10 X1-9
0 [_TARGET_TMS/SWDIO/1.2B X1-8 X1-7 DEBUG_PC1/TMS/SWDIO
DEBUG_PC2/TDI | [TARGET TDI/1.28 X1-6 X1-5 DEBUG_PC2/TDI
E R11 TARG X1-4 X1-3 E
0 Xi2 X1 (DEBUG_RESET_OUT | TITLE: EK-TM4C412394XL REU C
DEBUG_PC3/TDO/SWO | TSW-107-02-S-D
R15 X1 omitted by default D N 5 REU
0 ocument umbers: :
—— ————————— To debug out from ICDI to off board MCU remove
0 ohm Jugmper resistors. To go back from debug
R16 out to debugging the target MCU install X1 and
place jumpers on all pins.
Date: 1/9/2814 1:26:14 PM Sheet: 6/6

Texas Instruments
Assembly BOM for EK-TM4C1294XL

Part Number

Bill Of Materials Created 12/24/2013
Item |Ref Qty |Description Mfg Part Number
1 |C1 1 |Capacitor, 1000pF, 2kV, 20%, X7R, 1210 [Kemet C1210C102MGRACTU
2 |C3, C4, C5, C10, 26 |Capacitor, 0.1uF 16V, 10% 0402 X7R Taiyo Yuden EMK105B7104KV-F
C11, Ci12, C13,
Cle, C17, C18,
C19, C21, C22,
C23, C24, C25,
C2e6, C27, C28,
C29, C30, C4o0,
C41, C42, C43,
C46
3 |C31 1 [|Capacitor, 4700pF, 2kV, 10%, X7R, 1812 |AVX 1812GC472KAT1A
4 |C32, C33 2 |Capacitor, 3300pF, 50V, 10%, X7R, 0603 |TDK C1608X7R1H332K
5 Ce6, C14 2 |Capacitor, 1uF , X5R, 10V, Low ESR, Johanson 100R0O7X105KVAT
0402 Dielectrics Inc
6 |C7, C15, C20 3 |Capacitor, 2.2uF, 16V, 10%, 0603, X5R |Murata GRM188R61C225KE15D
7 |C8, C9, C44, C45,| 6 |Capacitor, 12pF, 50V 5%, 0402, COG Murata GRM1555C1H120JZ01D
C47, C48
8 Do, D1, D2, D3, 5 |Green LED 0603 Everlight 19-217/G7C-AL1M2B/3T
D4
9 |J1, 2,33, 34, J5, 7 |Jumper, 0.100, Gold, Black, Open 3M 969102-0000-DA
J6, J7
Kobiconn 151-8000-E
10 |JP1 1 [|Header, 2x3, 0.100, T-Hole, Vertical FCl 67996-206HLF
Unshrouded, 0.230 Mate, gold
11 |JP2, JP3 2 |Header, 1x2, 0.100, T-Hole, Vertical 3M 961102-6404-AR
Unshrouded, 0.220 Mate
FCl 68001-102HLF
Anyone 1x2-head
12 |JP4, JP5 2 |Header, 2x2, 0.100, T-Hole, Vertical FCl 67997-104HLF
Unshrouded, 0.230 Mate
4UCON 00998
13 |R1, R2, R3, R4, 8 |[Resistor, 10k ohm, 1/10W, 5%, 0402 Yageo RC0402FR-0710KL
R5, R29, R35, Thick Film
R44
14 |R17, R26, R36 100k 5% 0402 resistor smd Rohm MCRO1MRTJ104
15 |R18, R51 Resistor 0402 100 ohm 5% Rohm MCR1IMRTJ101
16 |R23, R21, R22, Resistor 49.9 ohm 0402. 1 % Rohm MCRO1MRTF49R9
R24
17 |R25 Resistor 4.87k 1% 0402 smd Rohm MCRO1MRTF4871
18 |R28 Resistor, 5.6k ohm, 1/10W, 5%, 0402 Panasonic ERJ-2GEJ562X
19 |R32, R43, R45, 4 |resistor 75 ohm 0402 5% Rohm MCRO1MRTJ750
R46
20 |[R34, R52 2 |Resistor, 1M OHM 1/10W 5% 0603 SMD |Panasonic ERJ-3GEYJ105V
21 |R38 1 [|Resistor, 51 ohm, 1/10W, 5%, 0402 Panasonic ERJ-2GEJ510X
22 [R42 1 |Resistor, 1M Ohm 1/10W, 5%, 0402 Rohm MCRO1MRTF1004
23 |R47 RES 1M OHM 5% 1206 TF Panasonic ERJ-8GEYJ105V
24 |R49, R50 2 |Resistor, 2.0k ohm, 1/10W, 5%, 0402 Panasonic ERJ-3GEYJ202V

Texas Instruments
Assembly BOM for EK-TM4C1294XL

Part Number

Bill Of Materials Created 12/24/2013
Item |Ref Qty |Description Mfg Part Number
25 |R6, R7, R8, R10, 12 |Resistor, 0 ohm, 1/10W, 5%, 0402 Panasonic ERJ-2GEOROOX
R11, R15, R16,
R19, R20, R39,
RA0 RA1
26 |[R9, R27, R30, 5 |Resistor, 330 ohm, 1/10W, 5%, 0402 Yageo RC0402FR-07330RL
R31. R33
27 |RESET, 4 |Switch, Tact 6mm SMT, 160gf Omron B3S-1000
USR_SW1,
USR_SW2, WAKE
28 |ul 1 |[Tiva, MCU TM4C1294NCPDT 128 QFP Texas TM4C1294NCPDT
with Ethernet MAC + PHY Instruments
Texas XM4C1294NCPDT
Instruments
29 |U10 1 [Transformer, ethernet, 1 to 1. SOIC 16 |Pulse Electronics |HX1198FNL
30 |Ul13 1 |Diode, 8 chan, +/-15KV, ESD Protection |Semtech SLVU2.8-4.TBT
Array. SO-8
31 |Ul1l4 1 |Connector, RJ45 NO MAG, shielded THRU |TE Connectivity [1-406541-5
HOLE
32 U2, U3 2 IC 4CH ESD SOLUTION W/CLAMP 6SON |Texas TPD4S012DRYR
Instruments
33 |U20 1 |Stellaris TIVA MCU TM4C123GH6PMI Texas TM4C123GH6PMI
Instruments
34 |U22 1 |USB Micro B receptical right angle with |FCI 10118194-0001LF
quides
35 |U4 1 |Fault protected power switch, dual Texas TPS2052BDRBR
channel., 8-SON Instruments
36 |U5 1 |3.3VLDO TI TPS73733DRV fixed out 5V |[Texas TPS73733DRV
in Instruments
37 |U6 1 |Header 2x5, 0.050, SM, Vertical Samtec SHF-105-01-S-D-SM
Shrouded
Don Connex C44-10BSA1-G
Electronics
38 |U7 1 |USB Micro AB receptacle. Right angle Hirose ZX62D-AB-5P8
with throuagh guides
39 (X6, X7, X8, X9 4 |Header, 2x10, T-Hole Vertical Samtec SSW-110-23-S-D
unshrouded stacking
Major League SSHQ-110-D-08-F-LF
Electronics
40 |Y1 1 |Crystal 25 Mhz 3.2 x 2.5 mm NDK nx3225ga-25.000m-std-
crg-2
41 |Y2 1 |crystal 16 mhz 3.2x2.5 mm 4 pin NDK NX3225GA-16.000M-STD-
CRG-2
42 |Y3 1 |Crystal, 32.768KHz Radial Can Citizen Finetech |CMR200T-32.768KDZY-UT
Mivota
PCB Do Not Populate List (Shown for information only)
43 |C2 1 |Capacitor, 0.1uF 16V, 10% 0402 X7R Taiyo Yuden EMK105B7104KV-F
44 [H1, H4, H6 3 |Screw, #4 x 0.625" Pan Head, Sheet McMaster 90077A112
Metal, Phillips/Slotted (for fan)
45 |[R12, R13, R14 3 |Resistor, 5.6k ohm, 1/10W, 5%, 0402 Panasonic ERJ-2GEJ562X
46 |R48 1 |Resistor 0402 1% 52.3k Rohm TRRO1MZPF5232
47 |TP1, TP2, TP3, 17 |Terminal, Test Point Miniature Loop, Red, |Keystone 5000
TP4, TP5, TP6, T-Hole
TP7, TP8, TP9,
TP10, TP11,
TP12, TP13,
TP14, TP15,
IDi1c TDA17
48 (X1 1 |Header, 2x7, 0.100, T-Hole, Vertical, FCl 67997-114HLF

Unshrouded, 0.230 Mate

Texas Instruments Part Number
Assembly BOM for EK-TM4C1294XL

Bill Of Materials Created 12/24/2013
Item |Ref Qty |Description Mfg Part Number
49 ([X11A 1 |Valvano style bread board connect. Right [Samtec TSW-149-09-F-S-RE

Angle extended, 1 x 49 0.100 pitch.

50 ([X11B 1 [|valvano style breadboard header. Samtec TSW-149-08-F-S-RA

Final Assembly Bill Of Materials

| Del | | 1 |OMIT BOM EK-TM4C1294XL REV C

r-——r———— """ """ """ " ">""""">"""""""""""""®"""""""""""""""""""">"""">"""">”"">”""”"">”">"=>™""\"”"”"\"”">"” > -~“"“="=""/—"”"™= laTrr—>~—"—"~"F—FFT">""7""™®>"«"*"""™"""™>""™""~>"™""™""™>""™""™"">""™"™7 il
\ +3U3 +5U \ } }
+3U3 +5U
} J1 J3 J4 } | RGB LED |
% é % m | MAX CURRENT = 38mA R23 |
\ 8 \ | @R, 8603, DNI |
- (ACC_XOUT | P———————PuM_GRN]|
I E 2 [|
5 =
| 6 3 6 |
= - ‘ ‘
\ 2 i ‘
@
| 5 o [|
| I L o ‘
‘ ‘ ‘ o] CLULA-FKB-CJ1M1F1BB7R4S3 ‘
hvd
eko
\ BOOSTERPACK HEADERS | } }
Lo J |
F T T T T 2 il |
| [| | |
‘ Il +3U3 +3U3 ‘ | |
| +3U3 +3U3 (. | | |
| [|
| |
| [| | |
| ! (. |
| |
L L L
| J O 1—3 o be oo U2 - T6a B, N |
Sos Sop S . E B
‘ R g w S - || ‘
g
| o . R37 | [12C_sbaA S son T mWT P2 e _INT| | ! !
[f2c_scL 3 1 seL > o R . j | |
| [o ADRL MW [[12c_scL SCL_ ADDR MM | | |
12C_sbA 3] som . E R39
| = ; core ALy (. 2 B3 | | ‘
| [TEMP_DRDY DROY oL 888 [OPT3801DNP | ‘ ‘ ‘
| z 7 [[| |
\ DA I \
\ N TMPBBSATYZFR | I |
B
| [eXo Xo [|
| (. (. |
| TEMPERATURE SENSOR oXD | | AMBIENT LIGHT SENSOR (I Q2 |
| 12C ADDRESS: @b1800000 | | 12C ADDRESS: 051000100 | MMBT22226-7-F
AMBIENT TEMP RANGE: -40C TO + 125C MESUREMENT RANGE: 1.01 LUX TO 83 KLUX | |
| SUPPORTS FAST AND HS 12C MODES, DATA TRANSFERRED MSB FIRST || SUPPORTS NORMAL, FAST AND HS I2C MODES [|
| MAX CURRENT CONSUMPTION = 18 mA | | MAX CURRENT CONSUMPTION = 1@ uA I |
REQUIRES TO BE PLACED AT UNOBSTRUCTED LOCATION L REQUIRES TO BE PLACED AT UNOBSTRUCTED LOCATION N
—— | |
‘ 0) ‘
r——— """ """ "> "> "> "> "/ ">">">"¥"=>"”"=-"“""=/-"-""=""=-"=""=>"=/""”"= ar-- - sT T 1 \
+5U +3U3
[ANALOG ACCELEROMETER || POWER INDICATORS [|
| |
| +3U3 +3V3 MODE 8@: EN=1 FOR NORMAL OP | | Il ‘
ST: HI=SELF TEST, GND=NOT USED | [@3 ‘
| QUTPUT LOWPASS BANDWIDTH = 5@Hz | [2o PEE || MMBT22220-7—F |
| MAX CURRENT CONSUMPTION = 316uA | | |
| . QUTPUT SENSITIVITY = 668mU/g | | |
o U3 & I |
‘ - o ‘ } 03 04 } ‘ ‘
| < < RN S s N (e | ‘ 14 ¥ ‘ | |
SRS SR7
| =0, DI $OR 2 { res xouT & ACC_X0UT | | ‘ LTST-C17@KGKT LTST*Ci?@KGKT‘ | % |
‘ 3 1 5T vouT |2 ACC_Y0UT | ‘ ‘ ‘
| . . | \ GKD 6KD [|
EN =] z0UT —
‘ 2 ACC_Z0UT] oL ____ L N
| Zns KXTC3-2050 |
B o
e - | | BOOSTERPACKDEPQOT.COM
L]
} } } |z PWM SELECTOR HEADER }
| \ ‘ [PUM_LED/LCO>——F= MOUE SHUNT JUMPER TO SELECT ‘ TITLE: Educational-II
A4 _j' WHICH COMPONENT IS CONTROLLED
! e o o ! | PECO3SARN By THE PUM SIGNAL: | |Document Number: REU:
| | LED RED OR LCD BACKLIGHT : :
L L. N X1.2
Date: 10/16/2013 3:20:50 PM Sheet: 1/3

77777777777777777777 - T T
+3U3
+3U3 I
[|
Js1 | |
U+ | R20 st |
[JOY_VER/L U | 10k ™ ‘
u- o N
S BUTTONL/1 T
4’: W B I [S— g \
[JOY_HOR/1 H @ | B3F-1000 |
f= 8
< [|
RIS SEL+ GKD
Fiok SEL- [|
[Jov_SEL/L JovsTickPTH | | |
9 _lcie _|cia [|
2.010 |0.814 |0.01u Il ‘
[|
GND GND GND GND ‘ ‘ ‘
[|
[|
ANALOG THUMB JOYSTICK [|
UERTICAL & HORIZONTAL POT: 18K [|
SELECT BUTTON: PRESSED=0 | | GPIO = LOW WHEN PRESSED |
AIN UOLTAGE RANGE? GPIO = HIGH IF NOT PRESSED
,,,,,,,,,,,,,,,,,,,, Jd o --_ - - - ___
+3U3 +3U3 +3U3
R26
100k
R24 AWW
2.2k R28 &
16k 3
3
MICL . R25 wf U4
— 1 o ESl
n A : L MIC_IN/1]
= +
2 o OPA344NA
CMA-4544PF -l o ELECTRET MICROPHONE
Rz =~ 0.1u SENSITIVITY = -44dB
2 FREQUENCY = 28 - 208kHz
MAX CURRENT CONSUMPTION = 1@ mA
6K XD XD oKX
,,, |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1
+3U3 ‘
BUZL }
MAGNETIC BUZZER |
- SOUND QUTPUT = 95 dBA |
K RATED FREQUENCY = 2,848 Hz ‘
HLEEnE MAX CURRENT CONSUMPTION = 35 mA
\
CEM-1203¢42> ‘
R31 ‘
2.2k o |
BUZZER, OUT/4 a MMBT2222A-7-F |
\
\
\
oo |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _

77777777777777777777 T |
+5U [|
[|
[|
J5 [|
: Il |
= I ‘
PECB3SAAN [|
} } GATOR2 }
X
[|
[|
[|
[|
[Xo |
[|
[|
GATOR HOLES
SERUO MOTOR HEADER I | ENSURE THE SIZE OF |
PIN 1: GND (BLACK OR BROWN) || EACH GATOR HOLE IS |
PIN 2: POUER (RED> | | BIG ENOUGH FOR [
PIN 3: SIGNAL C(YELLOW, ORANGE, OR WHITE) N ALLIGATOR CLIPS]
1 r-—r—————>~~~~~""™"""™""7"""7""7"7"7/7Y7/ 77777 -~ 1
\ | COLOR GRAPHIC LCD ‘
‘ I Lco penEL PN CRAF1281288-0145T +5U ‘
\ | COLOR DEPTH: 128xRGBx128 [
| | SPI3W: @ = 3-WIRE SPI, 1 = 4-WIRE SPI |
| NCS: @ = SELECTED, 1 = NOT SELECTED |
| nRST: @ = RESET, 1 = NORMAL
| | D/nC: 8 = COMMAND, 1 = DATA 30 |
| LED: IMAX = 15mA, U = 3.2U, P = 48mk L1800, oeoa |
\ | LCD POWER CONSMPT = 7 ml ’ |
+3U3 +3U3 +3U3
} | |
‘ | Jé |
| ‘ | ALEDo ‘
| |]|
| 8 El % |
‘ gg 5 ULOGIC
R34 $—— GND
\ ‘ OR, DNI o — ‘
| [CCOo_RST/1 WW- < T |
| [CCo_spA/t £ spa
‘ | [Cep_scL/st o scL |
| [CCD_RS/1 D/C |
} ‘ SFY10R-2STELHLF ‘
| |
| o8Z oo |
neS
| Rz |
| 4.7k |
a7 R36
} MMBT2222A-7-F @R, DNI }
| |
| |
| oo |
| |
| |
- - - |

BOOSTERPACKDEPOT.COM

TITLE: Educational-II

Document Number:

REU:
X1.2

Date: 10/16/2013 3:20:58 PM

Sheet: 2/3

REU CHANGES BY
X1.1 INITIAL SCHEMATIC HD
X1.2 MOVUE LCD REGISTER SELECT LCD_RS FROM J1.8 TO J2.8

UPDATE FOOTPRINTS OF ALL ICS
ADD POWER INDICATORS

Prhwive

MOVUE LIGHT SENSOR INTERRUPT LIGHT_INT FROM J2.3 TO J1.8
ADD ZERO OHM R3/7, R38, R3S TO TEMP & LIGHT SENSOR CIRCUITS

BOOSTERPACKDEPOT.COM

TITLE: Educational-II

Document Number:

REU:
X1.2

Date: 10/16/2013 3:20:50 PM

Sheet: 3/3

	TM4C1294XL-Connected-LaunchPad-00
	Important Notice
	Revision History
	Mailing Address

	Table of Contents

	TM4C1294XL-Connected-LaunchPad-01
	Introduction
	Chapter Topics
	TI Processor Portfolio
	TM4C1294NCPDT Microcontroller
	TM4C1294NCPDT Memory Map
	EK-TM4C1294XL LaunchPad
	Lab01: Hardware and Software Set Up
	Objective
	Procedure
	Hardware
	Download and Install Code Composer Studio (
	Install TivaWare™ for C Series (Complete) (
	Install LM Flash Programmer (
	Download and Install Workshop Lab Files (
	Download Workshop Workbook (
	Terminal Program (
	Windows-side USB Examples (
	Download and Install GIMP (
	LaunchPad Board Schematic
	Helpful Documents and Sites
	Kit Contents
	Initial Board Set-Up
	Verify Driver Installation
	Jumper Positions

	QuickStart IoT Application
	Register with Exosite
	Add your Board to Your Portal
	Connect the Hardware
	IoT Application
	Open PuTTY

	TM4C1294XL-Connected-LaunchPad-02
	Code Composer Studio
	Chapter Topics
	TI Software and Tools Ecosystem
	Projects and Workspaces
	Adding Files to a Project
	Portable Projects
	Path and Build Variables
	Build Configurations
	For More CCS Information
	Tiva C Partners
	Lab02: Code Composer Studio
	Objective

	Lab 2 Procedure
	Folder Structure for the Labs
	Create a New CCS Project
	Using .ini Files
	Link driverlib.lib to Your Project
	Build, Load, Run
	Perspectives
	Terminate the debug session.

	LM Flash Programmer
	Optional: Creating a bin file for the flash programmer

	TM4C1294XL-Connected-LaunchPad-03
	TivaWare™, Initialization and GPIO
	Chapter Topics
	TivaWare
	Clocking
	TM4C1294NCPDT Main Clock Tree
	GPIO
	GPIO Address Masking
	Critical Function GPIO Protection
	Lab03: Initialization and GPIO
	Objective
	Procedure
	Create lab03 Project
	Header Files
	main() Function
	Clock Setup
	GPIO Configuration
	The base addresses of the GPIO ports listed in the User Guide are shown here. Note that they are all within the memory map’s peripheral section shown in module 1. APB refers to the Advanced Peripheral Bus, while AHB refers to the Advanced High-Perform...
	while() Loop
	Startup Code
	Set the Build Options
	Compile, Download and Run the Code
	Examine the Tiva C Series Pin Masking Feature

	TM4C1294XL-Connected-LaunchPad-04
	Ethernet Port
	Chapter Topics
	Features and Block Diagram
	Ethernet Module Clocking
	Port Hardware Design
	IEEE 1588
	Lab04: Ethernet Lab
	Description:
	Procedure
	Maximize Code Composer

	TM4C1294XL-Connected-LaunchPad-05
	Interrupts and the Timers
	Chapter Topics
	Cortex-M4 NVIC
	Cortex-M4 Interrupt Handing and Vectors
	General Purpose Timer Module
	Lab05: Interrupts and the Timer
	Objective
	Procedure
	Import lab05 Project
	Header Files
	main()
	Clock Setup
	GPIO Configuration
	Timer Configuration
	Calculate Delay
	ui32Period = ui32SysClkFreq/2; TimerLoadSet(TIMER0_BASE, TIMER_A, ui32Period -1);
	Interrupt Enable
	Timer Enable
	while(1) Loop
	Timer Interrupt Handler
	Startup Code
	Pre-defined Name
	Compile, Download and Run The Code
	Exceptions

	TM4C1294XL-Connected-LaunchPad-06
	ADC12 and the Educational BoosterPack
	Chapter Topics
	ADC12
	Sample Sequencers and Educational BoosterPack
	Lab06: ADC12
	Objective
	Procedure
	Import la06 Project
	Header Files
	main()
	Inside the while(1) Loop
	Connect the Educational BoosterPack
	Build and Run the Code
	Breakpoint

	Hardware averaging
	Graphing
	Calling APIs from ROM
	Build, Download and Run Your Code

	TM4C1294XL-Connected-LaunchPad-07
	PWM and QEI
	Chapter Topics
	Pulse Width Modulation
	TM4C1294NCPDT PWM
	PWM Generator and Control Block Features
	Block Diagrams
	QEI Module
	Lab 07: PWM
	Objective
	main()
	Build and Run the Code

	TM4C1294XL-Connected-LaunchPad-08
	I2C & SensorLib
	Chapter Topics
	TM4C1294NCPDT I2C Ports
	SensorHub
	Sensor Library
	GUI Composer
	Lab08: I2C and Sensor Library Usage
	Objective
	Procedure
	Import the Project
	Sensor Library and stack size
	Hardware
	Software
	main()
	while(1) loop
	Data Formatting
	Build and Download your Project
	Watch Expressions and Breakpoints
	Run the Code
	GUI Composer

	TM4C1294XL-Connected-LaunchPad-09
	Quad Synchronous Serial Interface
	Chapter Topics
	Features and Block Diagram
	Interrupts and µDMA Operation
	Lab 09: SPI Bus and the Olimex LED BoosterPack
	Objective
	Procedure
	Hardware
	Connect the BoosterPack
	Import lab09
	Build and Load
	Run and Test

	TM4C1294XL-Connected-LaunchPad-10
	UART
	UART Features and Block Diagram
	Basic Operation
	UART Interrupts and FIFOs
	UART “stdio” Functions and Other Features
	Lab10
	Objective
	Procedure
	Import lab10
	Build, Download, and Run the UART Example Code
	Using UART Interrupts

	TM4C1294XL-Connected-LaunchPad-11
	USB
	Chapter Topics
	USB Features
	High Speed Operation
	Block Diagram

	USB Library and Abstraction Levels
	Lab11: USB
	Objective
	Procedure
	Example Code
	Import The Project
	Build, Download and Run The Code
	Digging Deeper
	Watch the Buffers

	TM4C1294XL-Connected-LaunchPad-12
	Memory
	Chapter Topics
	Internal Memory
	Bit-Banding
	Memory Protection Unit
	Security
	Lab12: Memory and the MPU
	Objective
	Procedure
	Import lab12
	Writing to Flash
	Build, Download and Run the Flash Programming Code
	Reading and Writing EEPROM
	Build, Download and Run the EEPROM Programming Code
	Further EEPROM Information
	Bit-Banding
	Memory Protection Unit (MPU)

	TM4C1294XL-Connected-LaunchPad-13
	Floating-Point Unit
	Chapter Topics
	What is Floating-Point and IEEE-754?
	Floating-Point Unit
	Lab13: FPU
	Objective
	Procedure
	Import lab13
	Browse the Code
	Build, Download and Run the Code
	Profiling the Code

	TM4C1294XL-Connected-LaunchPad-14
	DMA
	Chapter Topics
	Features and Transfer Types
	Block Diagram and Channel Assignment
	Lab14: DMA
	Objective
	Procedure
	Import Lab14
	Browse the Code
	Build, Download and Run the Code
	Streaming Data To and From the UART using a Ping-Pong Buffer
	Import udma_demo Example
	Browse the Code
	Build, Load and Run

	TM4C1294XL-Connected-LaunchPad-15
	Hibernation Module
	Chapter Topics
	Hibernation Module Features
	Block Diagram
	Power Management and Consumption
	LaunchPad Considerations
	Lab15: Low Power Modes
	Objective
	Procedure
	Import hibernate Example
	This example implements three wake modes; the WAKE pin, a GPIO interrupt and an RTC match. Since accessing the GPIO interrupt would require some extra hardware, we’ll just experiment with the other two. Let’s try out the code, then we’ll take a closer...
	Measure the Current
	Explore the Code

	Considerations

	TM4C1294XL-Connected-LaunchPad-16
	Graphics Library
	Chapter Topics
	Graphics Library
	Display Driver
	Graphics Primitives
	Widget Framework
	Special Utilities
	LCD Display Module and KenTec LCD Display
	Lab16: Graphics Library
	Objective
	Procedure
	Connect the KenTec Display to your LaunchPad Board
	Import Project
	Build, Download and Run the Demo
	Create an Image File
	Modify pic.c
	main.c
	Pointer to the Image Array
	main()
	Initialization
	Displaying the Image
	Build and Run the Code
	Display Text On-Screen
	Build, Load and Test
	Drawing Shapes
	Build, Load and Test
	Widgets
	Build, Load and Test

	za_EK-TM4C1294XL REV C Schematic
	zb_EK-TM4C1294XL REV C Public Bill Of Materials
	Bill Of Materials

	zc_EducationalBP-II-Schematic

