
 

 

Creating IoT Solutions with the  
Tiva® C Series Connected LaunchPad 
Workshop 

Student Guide and Lab Manual 
 
 

 

 
 
 
Revision 1.04 
July 2014 

Technical Training 
Organization 



Important Notice 

ii Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop   

Important Notice 
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to 
discontinue any product or service without notice, and advise customers to obtain the latest version of 
relevant information to verify, before placing orders, that information being relied on is current and 
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order 
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. 

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in 
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the 
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not 
necessarily performed, except those mandated by government requirements. 

Customers are responsible for their applications using TI components. 

In order to minimize risks associated with the customer’s applications, adequate design and operating 
safeguards must be provided by the customer to minimize inherent or procedural hazards. 

TI assumes no liability for applications assistance or customer product design. TI does not warrant or 
represent that any license, either express or implied, is granted under any patent right, copyright, mask 
work right, or other intellectual property right of TI covering or relating to any combination, machine, or 
process in which such semiconductor products or services might be or are used. TI’s publication of 
information regarding any third party’s products or services does not constitute TI’s approval, warranty or 
endorsement thereof. 

Copyright  2014 Texas Instruments Incorporated 

Revision History 
March 2014  – Revision 1.00  Initial release 
March 2014 – Revision 1.01  TivaWare path change errata 
April 2014 – Revision 1.02  CCS version 6 release update 
May 2014 – Revision 1.03  lab04 enet_io.c changes 
July 2014 – Revision 1.04  errata 

 
 
Mailing Address 
Texas Instruments 
Training Technical Organization 
6550 Chase Oaks Blvd 
Building 2 
Plano, TX 75023 



 Table of Contents 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop -  iii 

Table of Contents 
 

Intro to TM4C Devices, LaunchPad and Cloud Services … Chapter 1 

Code Composer Studio ……………………………….…...… Chapter 2 

Initialization, GPIO and TivaWare ……………………...… Chapter 3 

Ethernet Port ……………………………………………...… Chapter 4 

Interrupts and the Timers ………………………………..… Chapter 5 

ADC and the Educational BoosterPack …………………… Chapter 6 

PWM and QEI …………………………………………….… Chapter 7 

I2C, SensorLib and GUI Composer ………………………... Chapter 8 

SPI and QSSI ………………………………………………... Chapter 9 

UART ………………………………………………………... Chapter 10 

USB …………………………………………………………... Chapter 11 

Memory, Security and the MPU …………………………… Chapter 12 

Floating Point Unit ………………………………………….. Chapter 13 

DMA …………………………………………………………. Chapter 14 

Low Power Modes ………………………………………...… Chapter 15 

Graphics Library …………………………………………… Chapter 16 

TM4C1294XL LaunchPad Schematic ………………..…… Appendix 

TM4C1294XL LaunchPad Bill of Material ……………..… Appendix 

Educational BoosterPack Mk. II Schematic ………………. Appendix 
 

 

  

  

  

 

 



Table of Contents 

iv Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop   

 

 

 

 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 1 - 1 

Introduction 

Introduction 
This chapter will introduce you to the basics of the Cortex-M4F and the Tiva™ C Series 
peripherals. The lab will step you through setting up the hardware and software required for the 
rest of the workshop. 

 

Agenda

Portfolio ...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 
 
The Wiki page for this workshop is located here: 
 
http://www.ti.com/ConnectedLaunchPadWorkshop  

http://www.ti.com/ConnectedLaunchPadWorkshop


Chapter Topics 

1 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

Chapter Topics 
Introduction ................................................................................................................................................1-1 

Chapter Topics .........................................................................................................................................1-2 

TI Processor Portfolio .............................................................................................................................1-3 

Roadmap ..................................................................................................................................................1-4 

TM4C129x Overview ...............................................................................................................................1-5 

TM4C1294NCPDT Microcontroller ........................................................................................................1-9 

TM4C1294NCPDT Memory Map .......................................................................................................... 1-10 

EK-TM4C1294XL LaunchPad ............................................................................................................... 1-11 

IoT Out of the Box .................................................................................................................................. 1-12 

Lab01: Hardware and Software Set Up ................................................................................................. 1-13 
Objective ........................................................................................................................................... 1-13 
Procedure ........................................................................................................................................... 1-14 

QuickStart IoT Application .................................................................................................................... 1-24 



 TI Processor Portfolio 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 3 

TI Processor Portfolio 
 

TI Embedded Processing Portfolio

Tiva C Roadmap ...  

 

 
  



TI Processor Portfolio 

1 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

Roadmap 
 

 

 

 
  



 TI Processor Portfolio 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 5 

TM4C129x Overview 

TM4C129x

Up to 1 MB Flash
Up to 256 KB SRAM

DMA (32 channels)

Real-time JTAG

8× UART
4× QSSI/SPI

10× I2C 

USB Full/High Speed
(Host/Device/OTG)

8× 32-bit Timer/PWM/CCP
EPI

2× Watchdog Timer

3× Analog Comparators

Battery-Backed Hibernate

AES, DES, SHA & MD5 
Accelerators

4x Tamper Inputs
2× CAN

Comms Peripherals

SysTick Timer

6 KB EEPROM

Debug

System Modules

Memory

2x 12ch, 12-bit ADCs
up to 2 MSPS

Analog

ROM

RTC

Precision Oscillator

Power & Clocking

CRC Accelerator

LDO Voltage Regulator

1-Wire (SW)

System Management

10/100 Ethernet MAC / PHY
(IEEE 1588)

Quadrature Encoder Inputs

Data Protection

8× MC PWM

Control Peripherals

LCD

Packages
• 212-BGA (10x10x1, 0.5)
• 128-TQFP (16x16x1.2, 0.4)

NVIC SWD/TETM

ARM®

Cortex™-M4F
Up to 120 MHz

FPU MPU

TM4C129x Overview
ARM® Cortex™-M4F Processor Core

• Up to 120 MHz, 150 DMIPS
• Single Precision Floating Point

On-chip Memory
• 1 MB Flash; 256 KB SRAM; 6KB EEPROM
• ROM with TivaWare DriverLib, BootLoader

Communication Interfaces
• 10/100 Ethernet MAC / PHY
• USB FS PHY, OTG / Host / Dev
• USB HS with external PHY via ULPI
• 8 UARTs, 10 I2Cs, 4 Quad SPI, 2 CAN
• DS-compliant 1-Wire Master I/F
• External Peripheral Interface

System Integration
• 32-channel DMA Controller
• Internal Precision 16MHz Oscillator
• Two watchdog timers with separate clock 

domains
• ARM Cortex Systick Timer
• Eight 32-bit general purpose timers
• Lower-power batt-backed hibernate module 

with RTC
• Flexible pin-muxing capability
• LCD controller

Motion Control
• Advanced timers with 8 PWM outputs
• QEI

Data Protection
• AES, DES, HASH & CRC hardware acceleration
• Four tamper inputs

Analog
• 24 Channels of 2x 12-bit ADC up to 2 MSPS
• On-chip voltage regulator

 

 

TM4C129x

Up to 1 MB Flash
Up to 256 KB SRAM

DMA (32 channels)

Real-time JTAG

8× UART
4× QSSI/SPI

10× I2C 

USB Full/High Speed
(Host/Device/OTG)

8× 32-bit Timer/PWM/CCP
EPI

2× Watchdog Timer

3× Analog Comparators

Battery-Backed Hibernate

AES, DES, SHA & MD5 
Accelerators

4x Tamper Inputs
2× CAN

Comms Peripherals

SysTick Timer

6 KB EEPROM

Debug

System Modules

Memory

2x 12ch, 12-bit ADCs
up to 2 MSPS

Analog

ROM

RTC

Precision Oscillator

Power & Clocking

CRC Accelerator

LDO Voltage Regulator

1-Wire (SW)

System Management

10/100 Ethernet MAC / PHY
(IEEE 1588)

Quadrature Encoder Inputs

Data Protection

8× MC PWM

Control Peripherals

LCD

Packages
• 212-BGA (10x10x1, 0.5)
• 128-TQFP (16x16x1.2, 0.4)

•32-bit core with DSP-oriented 
instructions
• IEEE754-compliant FPU
•SIMD vector processing unit
•Memory protection unit
•Several operating modes to 
reduce power consumption

TM4C129x Overview

NVIC SWD/TETM

ARM®

Cortex™-M4F
Up to 120 MHz

FPU MPU

 

 

 



TI Processor Portfolio 

1 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

 

TM4C129x

Up to 1 MB Flash
Up to 256 KB SRAM

DMA (32 channels)

Real-time JTAG

8× UART
4× QSSI/SPI

10× I2C 

USB Full/High Speed
(Host/Device/OTG)

8× 32-bit Timer/PWM/CCP
EPI

2× Watchdog Timer

3× Analog Comparators

Battery-Backed Hibernate

AES, DES, SHA & MD5 
Accelerators

4x Tamper Inputs
2× CAN

Comms Peripherals

SysTick Timer

6 KB EEPROM

Debug

System Modules

Memory

2x 12ch, 12-bit ADCs
up to 2 MSPS

Analog

ROM

RTC

Precision Oscillator

Power & Clocking

CRC Accelerator

LDO Voltage Regulator

1-Wire (SW)

System Management

10/100 Ethernet MAC / PHY
(IEEE 1588)

Quadrature Encoder Inputs

Data Protection

8× MC PWM

Control Peripherals

LCD

Packages
• 212-BGA (10x10x1, 0.5)
• 128-TQFP (16x16x1.2, 0.4)

TM4C129x Overview

NVIC SWD/TETM

ARM®

Cortex™-M4F
Up to 120 MHz

FPU MPU

 100,000 
Write/Erase 
Cycles

 500K write 
cycles

 Access 
protection per 
64 byte block

 

 

TM4C129x

Up to 1 MB Flash
Up to 256 KB SRAM

DMA (32 channels)

Real-time JTAG

8× UART
4× QSSI/SPI

10× I2C 

USB Full/High Speed
(Host/Device/OTG)

8× 32-bit Timer/PWM/CCP
EPI

2× Watchdog Timer

3× Analog Comparators

Battery-Backed Hibernate

AES, DES, SHA & MD5 
Accelerators

4x Tamper Inputs
2× CAN

Comms Peripherals

SysTick Timer

6 KB EEPROM

Debug

System Modules

Memory

2x 12ch, 12-bit ADCs
up to 2 MSPS

Analog

ROM

RTC

Precision Oscillator

Power & Clocking

CRC Accelerator

LDO Voltage Regulator

1-Wire (SW)

System Management

10/100 Ethernet MAC / PHY
(IEEE 1588)

Quadrature Encoder Inputs

Data Protection

8× MC PWM

Control Peripherals

LCD

Packages
• 212-BGA (10x10x1, 0.5)
• 128-TQFP (16x16x1.2, 0.4)

 Can be disabled/locked 
to help protect 
customer IP

TM4C129x Overview

NVIC SWD/TETM

ARM®

Cortex™-M4F
Up to 120 MHz

FPU MPU

 32-bit RTC 
 1/32,768 second 

resolution plus 15-bit 
sub-second counter 
with trim capabilities

 Hardware calendar
 VDD powers when valid 

(VBAT>VDD)
 Low battery 

management
 Multiple potential 

external wake sources 
in addition to WAKE pin

 

 

 



 TI Processor Portfolio 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 7 

 

TM4C129x

Up to 1 MB Flash
Up to 256 KB SRAM

DMA (32 channels)

Real-time JTAG

8× UART
4× QSSI/SPI

10× I2C 

USB Full/High Speed
(Host/Device/OTG)

8× 32-bit Timer/PWM/CCP
EPI

2× Watchdog Timer

3× Analog Comparators

Battery-Backed Hibernate

AES, DES, SHA & MD5 
Accelerators

4x Tamper Inputs
2× CAN

Comms Peripherals

SysTick Timer

6 KB EEPROM

Debug

System Modules

Memory

2x 12ch, 12-bit ADCs
up to 2 MSPS

Analog

ROM

RTC

Precision Oscillator

Power & Clocking

CRC Accelerator

LDO Voltage Regulator

1-Wire (SW)

System Management

10/100 Ethernet MAC / PHY
(IEEE 1588)

Quadrature Encoder Inputs

Data Protection

8× MC PWM

Control Peripherals

LCD

Packages
• 212-BGA (10x10x1, 0.5)
• 128-TQFP (16x16x1.2, 0.4)

 Passive & Active LCD 
support

 Character-based & OLED 
support

 QVGA (640x480)
 60Hz refresh
 25MHz pixel clock
 16bpp color
 ~50% BW @ 100MHz CPU

TM4C129x Overview

NVIC SWD/TETM

ARM®

Cortex™-M4F
Up to 120 MHz

FPU MPU

 8/16/32-bit parallel bus
 x16 SDRAM support up to 

50MHz (64MB max)
 x8/x16 Host-Bus support 

up to 256MB muxed
 PSRAM w/ iRDY support
 Up to 150MB/sec for gen 

purpose 32-bit interface
 Blocking & non-blocking 

reads

 

 

TM4C129x

Up to 1 MB Flash
Up to 256 KB SRAM

DMA (32 ch)

Real-time JTAG

8× UART
4× QSSI/SPI

10× I2C 

USB Full/High Speed
(Host/Device/OTG)

8× 32-bit Timer/PWM/CCP
EPI

2× Watchdog Timer

3× Analog Comparators

Battery-Backed Hibernate

AES, DES, SHA & MD5 
Accelerators

4x Tamper Inputs
2× CAN

Comms Peripherals

Systick Timer

6 KB EEPROM

Debug

System Modules

Memory

2x 12ch, 12-bit ADCs
up to 2 MSPS

Analog

ROM

RTC

Precision Oscillator

Power & Clocking

CRC Accelerator

LDO Voltage Regulator

1-Wire (SW)

System Management

10/100 Ethernet MAC / PHY
(IEEE 1588)

Quadrature Encoder Inputs

Data Protection

8× MC PWM

Control Peripherals

LCD

Packages
• 212-BGA (10x10x1, 0.5)
• 128-TQFP (16x16x1.2, 0.4)

 Active RMII & MII interfaces
 Several source/destination 

48-bit address filters
 64-bit multicast hash filter
 IEEE1588 w/ nanosecond 

resolution
 Advanced snapshot options
 Supports Magic Packet & 

wakeup frames 

 Supports use of internal or 
external regulator

TM4C129x Overview

NVIC SWD/TETM

ARM®

Cortex™-M4F
Up to 120 MHz

FPU MPU

 10 to 11-bit ENOB w/o 
hardware averaging

 24 shared input channels for 
flexible assignments

 8 digital comparators plus 4 
programmable conversion 
sequencers to reduce CPU 
overhead 

 

 

 



TI Processor Portfolio 

1 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

 

TM4C129x

Up to 1 MB Flash
Up to 256 KB SRAM

DMA (32 channels)

Real-time JTAG

8× UART
4× QSSI/SPI

10× I2C 

USB Full/High Speed
(Host/Device/OTG)

8× 32-bit Timer/PWM/CCP
EPI

2× Watchdog Timer

3× Analog Comparators

Battery-Backed Hibernate

AES, DES, SHA & MD5 
Accelerators

4x Tamper Inputs
2× CAN

Comms Peripherals

SysTick Timer

6 KB EEPROM

Debug

System Modules

Memory

2x 12ch, 12-bit ADCs
up to 2 MSPS

Analog

ROM

RTC

Precision Oscillator

Power & Clocking

CRC Accelerator

LDO Voltage Regulator

1-Wire (SW)

System Management

10/100 Ethernet MAC / PHY
(IEEE 1588)

Quadrature Encoder Inputs

Data Protection

8× MC PWM

Control Peripherals

LCD

Packages
• 212-BGA (10x10x1, 0.5)
• 128-TQFP (16x16x1.2, 0.4)

 Based on 16-bit counter
 Includes 4 fault inputs for 

low-latency shutdown
 Outputs can be 

independent or 
complements

 Dead-band generation 
supported

TM4C129x Overview

 32-bit based values

NVIC SWD/TETM

ARM®

Cortex™-M4F
Up to 120 MHz

FPU MPU

 

 

TM4C129x

Up to 1 MB Flash
Up to 256 KB SRAM

DMA (32 channel)

Real-time JTAG

8× UART
4× QSSI/SPI

10× I2C 

USB Full/High Speed
(Host/Device/OTG)

8× 32-bit Timer/PWM/CCP
EPI

2× Watchdog Timer

3× Analog Comparators

Battery-Backed Hibernate

AES, DES, SHA & MD5 
Accelerators

4x Tamper Inputs
2× CAN

Comms Peripherals

SysTick Timer

6 KB EEPROM

Debug

System Modules

Memory

2x 12ch, 12-bit ADCs
up to 2 MSPS

Analog

ROM

RTC

Precision Oscillator

Power & Clocking

CRC Accelerator

LDO Voltage Regulator

1-Wire (SW)

System Management

10/100 Ethernet MAC / PHY
(IEEE 1588)

Quadrature Encoder Inputs

Data Protection

8× MC PWM

Control Peripherals

LCD

Packages
• 212-BGA (10x10x1, 0.5)
• 128-TQFP (16x16x1.2, 0.4)

 Event logging with 
configurable level

 Weak pull-up & glitch filter
 Battery-backed RAM can be 

used for master key / 
password with option for 
tamper eviction

 Reduces CPU overhead for 
code verification & other 
related functions

TM4C129x Overview

NVIC SWD/TETM

ARM®

Cortex™-M4F
Up to 120 MHz

FPU MPU

 Reduces CPU overhead for 
data encryption / 
decryption in secured 
network and/or data 
applications

TM4C1294NCPDT Features ...  

 
 



 TM4C1294NCPDT Microcontroller 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 9 

TM4C1294NCPDT Microcontroller 

Tiva™ TM4C1294NCPDT Microcontroller
 32-bit ARM® CortexTMM4 120MHz / 150DMIPS CPU
 Thumb2 16/32-bit instruction set
 IEEE754-compliant single-precision Floating-Point Unit
 1 MB Flash / 256 kB RAM / 6 kB EEPROM / ROM with TivaWare driver library
 Nested Vectored Interrupt Controller for deterministic interrupt handling
 8/16/32-bit External Peripheral Interface
 Two 12-bit 2MSPS SAR ADCs with 16 digital comparators
 Memory Protection Unit with 64 programmable regions
 Three Analog Comparators with internal and external references
 Eight 16/32-bit General Purpose timers / Two watchdog timers / 24-bit SysTick timer
 One PWM module with 4 generator blocks (4 PWM output pairs)
 32-Channel DMA 
 Two CAN 2.0 A/B controllers
 4 QSSI / 8 UARTs / 10 I2C
 Integrated Full- & Low-speed USB 2.0
 10/100 Ethernet MAC + PHY

Memory Map ...  

 



TM4C1294NCPDT Memory Map 

1 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

TM4C1294NCPDT Memory Map 

Tiva™ TM4C1294NCPDT Memory Map

 Fixed memory map
 4G addressing range
 Bit-banding maps every bit

of SRAM and Peripheral 
memory to a separate address

 ROM contains:
 Bootloader
 Initial vector table
 Peripheral driver library
 AES crypto tables
 CRC error detection functionality

 The Hibernation module also has 16 
32-bit words of battery-backed 
SRAM for saving the processor state

 See the UG for more detail

Flash

Reserved

SRAM

Bit-band alias of SRAM

Bit-band alias of Peripherals

Peripherals

ROM

External Peripheral Interface

Private Peripheral Bus

0x0000 0000

0x0010 0000

0x2000 0000

0x2200 0000

0x4000 0000

0x6000 0000

0x4200 0000

0x0200 0000

0xE000 0000

LaunchPad Features ...  

 



 EK-TM4C1294XL LaunchPad 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 11 

EK-TM4C1294XL LaunchPad 
 

Tiva™ EK-TM4C1294XL LaunchPad
 32-bit TM4C1294NCPDT Microcontroller
 Two 40-pin BoosterPack stackable connectors 

(accepts earlier 20-pin )
 Four LEDs (2 user, 2 Ethernet activity)
Two User buttons
 Reset and Wake buttons
 User 10/100 Ethernet port
 User Full and low-speed USB 2.0 port
 USB in-Circuit Debug and External Debug 

connectors
 98 breadboard pin-outs
 Power measurement jumpers
 Edge connector offers 

additional expansion

ExoSite Cloud Services ...  
  



EK-TM4C1294XL LaunchPad 

1 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

IoT Out of the Box 

 

Cloud Service
Provider

Enabling rapid prototyping w/ 
LaunchPads + BoosterPacks
& get your creations 
connected to the 
cloud with Exosite

Tiva C IoT Out-of-Box Experience Partner

Tiva C 
TM4C129
(MCU + 
Ethernet)

LaunchPad
RF

Booster
Pack

Tiva C 
TM4C129 or 

TM4C123
LaunchPad Wi-Fi

Booster
Pack

IoT Gateways
Your portal to the 

cloud

Ethernet

Widgets
Alerts
Scripts
SMS
Mobile

TI Branded Seamless out of box 
Cloud experience:
• Low-cost hardware
• Link into Exosite Cloud within 

minutes
• iOS/Android app for interfacing with 

your cloud-connected platform

RF
Booster

Pack

RF
Booster

Pack
RF

Booster
Pack

Wi-Fi

Lab ...

Supported in 
TivaWare 2.1+

 

 



 Lab01: Hardware and Software Set Up 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 13 

Lab01: Hardware and Software Set Up 

Objective 
The objective of this lab exercise is to download and install Code Composer Studio, as well as 
download the various other support documents and software to be used with this workshop.  Then 
we’ll review the contents of the evaluation kit and verify its operation with the pre-loaded 
quickstart demo program. These development tools will be used throughout the remaining lab 
exercises in this workshop. 

 

Lab01: Setup and Out of Box Application Demo

 Install all needed software
 Open kit and verify contents
 Connect board and load driver
 Run preprogrammed IoT application

USB Emulation
Connection

Agenda ...

Cloud
Services

Ethernet

Ethernet
 

 

 

 

 

 



Lab01: Hardware and Software Set Up 

1 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

Procedure 

Hardware 
1. You will need the following hardware: 

 
• A 32 or 64-bit Windows XP, Windows7 or 8 laptop with 2G or more of free hard 

drive space. 1G of RAM should be considered a minimum … more is better. 
Apple laptops running any of the above OS’s are acceptable. Linux laptops are 
not recommended. 

• Wi-Fi is highly desirable 
• If you are working the labs from home, a second monitor will make the labs 

much easier to run. If you are attending a live workshop, you are welcome to 
bring one. 

• If you are attending a live workshop, please bring a set of earphones or ear-
buds. 

• If you are attending a live workshop, you will receive an evaluation board; 
otherwise you need to purchase one.  

• If you are attending a live workshop, a digital multi-meter will be provided; 
otherwise you need to purchase one to complete lab15. 

• If you are attending a live workshop, you will receive a second A-male to micro-
B-male USB cable. Otherwise, you will need to provide your own to complete 
lab11. 

• If you are attending a live workshop, a Kentec 3.5” TFT LCD Touch Screen 
BoosterPack (Part# EB-LM4F120-L35) will be provided.  Otherwise, you will 
need to provide your own to complete lab 16. 

• If you are attending a live workshop, TI’s Educational BoosterPack Mk.II will be 
provided.  Otherwise, you will need to provide your own to complete labs 6, 7 
and 8. 

• If you are attending a live workshop, a Olimex 8x8 LED array Boosterpack will 
be provided during the live workshop. Otherwise you will need to purchase your 
own and modify it to complete lab 9. 

 

 

 

As you complete each of the following steps, check the box in the title to assure that 
you have done everything in order. 

  

http://www.ti.com/tool/ek-tm4c1294gxl
http://www.harborfreight.com/catalogsearch/result?q=multimeter
http://www.newark.com/kentec-electronics/eb-lm4f120-l35/exp-board-lcd-boosterpack-stellaris/dp/48W2063?in_merch=Popular%20Products
http://www.newark.com/kentec-electronics/eb-lm4f120-l35/exp-board-lcd-boosterpack-stellaris/dp/48W2063?in_merch=Popular%20Products
http://boosterpackdepot.info/wiki/index.php?title=Educational_BoosterPack_MK_II
http://www.mouser.com/new/olimex/olimexLED8x8/


 Lab01: Hardware and Software Set Up 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 15 

Download and Install Code Composer Studio  
2. ► Download and start the latest version of Code Composer Studio (CCS) 6.x web 

installer from http://processors.wiki.ti.com/index.php/Download_CCS (do not download 
any beta versions). Bear in mind that the web installer will require Internet access until it 
completes. If the web installer version is unavailable or you can’t get it to work, 
download, unzip and run the offline version. The offline download will be much larger 
than the installed size of CCS since it includes all the possible supported hardware.  
 
This version of the workshop was constructed using CCS version 6.0.0.00190. Your 
version may be later. For this and the next few steps, you will need a my.TI account (you 
will be prompted to create one or log into your existing account).  

Note that the “free” license of CCS will operate with full functionality for free while 
connected to a Tiva™ C Series evaluation board.  

You may need to turn off your firewall and/or anti-virus software. 

 
3. If you downloaded the offline file, ► launch the ccs_setup_6.x.x.xxxxx.exe 

file in the folder created when you unzipped the download. 
 

4. ► Accept the Software License Agreement and click Next. 
 

 
 

  

http://processors.wiki.ti.com/index.php/Download_CCS


Lab01: Hardware and Software Set Up 

1 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

5. Unless you have a specific reason to install CCS in another location, ► accept the default 
installation folder and click Next. If you have another version of CCS and you want to 
keep it, we recommend that you install this version into a different folder. 

 

 
 

6. ► In the next dialog, select the processors that your CCS installation will support. Select 
at least 32-bit ARM MCUs order to run the labs in this workshop. You can select other ar-
chitectures, but the installation time and size will increase. ► Click Next. 
 

             

 
  



 Lab01: Hardware and Software Set Up 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 17 

7. In the Select Emulators dialog, keep the default selections and ► click Next. 

 

8. In the App Center dialog, ► expand the Software section and select GUI Composer. 
We’ll be using this tool in lab08.► Click Finish. 

 

 
 

The installation process will begin. If you are using the web installer, the installation will 
depend on the speed of your connection. The offline installation should take about 5 
minutes depending on your machine.  
 

  



Lab01: Hardware and Software Set Up 

1 - 18 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

9. When the installation is complete, ► uncheck the Launch Code Composer Studio 
checkbox and then click Finish.  

 
  



 Lab01: Hardware and Software Set Up 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 19 

Install TivaWare™ for C Series (Complete)  
10. ► Download and install the latest full version of TivaWare 

from: http://www.ti.com/tool/sw-tm4c . The filename is SW-TM4C-
2.x.x.xxxxx.exe . This workshop was built using version 2.1.0.12573. Your version 
may be a later one.  
If at all possible, please install TivaWare into the default folder named 
C:\TI\TivaWare_C_Series-2.x.x.xxxxx  

Install LM Flash Programmer   
 

11. ► Download, unzip and install the latest LM Flash Programmer 
(LMFLASHPROGRAMMER) from http://www.ti.com/tool/lmflashprogrammer  . 

Download and Install Workshop Lab Files  
12. ► Download and install the lab installation file from the workshop materials section of 

the Wiki site below. The program will install your lab files in:  

C:\TM4C1294_Connected_LaunchPad_Workshop 
 

http://www.ti.com/ConnectedLaunchPadWorkshop  

Download Workshop Workbook  
13. ► Download a copy of the workbook pdf file from the workshop materials section of the 

Wiki site below to your desktop. It will be handy for copying and pasting code. 
 
http://www.ti.com/ConnectedLaunchPadWorkshop  

Terminal Program  
 

14. If you are running WindowsXP, you can use HyperTerminal as your terminal program. 
Windows7 does not have a terminal program built-in, but there are many third-party 
alternatives. The instructions in the labs use PuTTY. You can download PuTTY from the 
address below. 
 
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe  

Windows-side USB Examples   
15. ► Download and install the Windows-side USB examples from this site: 

 
www.ti.com/sw-usb-win  

http://www.ti.com/tool/sw-tm4c
http://www.ti.com/tool/lmflashprogrammer
http://www.ti.com/ConnectedLaunchPadWorkshop
http://www.ti.com/ConnectedLaunchPadWorkshop
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.ti.com/sw-usb-win


Lab01: Hardware and Software Set Up 

1 - 20 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

Download and Install GIMP  
16. We will need a graphics manipulation tool capable of handling PNM formatted images. 

GIMP can do that. ► Download and install GIMP from here:  www.gimp.org  

LaunchPad Board Schematic 
17. For your reference, the schematics for the LaunchPad and Educational BoosterPack Mk. 

II are included at the end of this workbook. 

Helpful Documents and Sites 
 

18. There are many helpful documents that you should have, but at a minimum you should 
have the following documents at your fingertips.  
 
With TivaWare™ installed, look in  
C:\TI\TivaWare_C_Series-2.1.0.12573\docs and you’ll find:   
 
Peripheral Driver User’s Guide (SW-DRL-UG-x.x.pdf) 

 
USB Library User’s Guide (SW-USBL-UG-x.x.pdf) 
 
Graphics Library User’s Guide (SW-GRL-UG-x.x.pdf) 
 
LaunchPad Firmware User’s Guide (SW-EK-TM4C1294XL-UG-x.x.pdf  ) 
 
grlib_demo program User’s Guide (SW-EK-TM4C1294XL-BOOSTXL-KENTEC-L35-UG-x.x) 

 
19. Go to: http://www.ti.com/lit/gpn/tm4c1294ncpdt and download the TM4C1294NCPDT  

Microcontroller Data Sheet. Tiva™ C Series data sheets are actually the complete user’s 
guide to the device, so expect a large document. 

 
20. If you are migrating from an earlier Stellaris design, you will find this document 

ful: http://www.ti.com/litv/pdf/spma050a 
 

21. Download the latest ARM Optimizing C/C++ Compilers User Guide 
from http://www.ti.com/lit/pdf/spnu151 (SPNU151). Of particular interest are the sizes 
for all the different data types in table 6-2. You may see the use of TMS470 here … that 
is the TI product number for its ARM devices. 
 
 

  

http://www.gimp.org/
http://www.ti.com/lit/gpn/tm4c1294ncpdt
http://www.ti.com/litv/pdf/spma050a
http://www.ti.com/lit/pdf/spnu151


 Lab01: Hardware and Software Set Up 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 21 

Kit Contents 
22. ► Open up your kit 

 
You should find the following in your box: 

 
• The EK-TM4C1294XL LaunchPad Board  
• Retractable Ethernet cable 
• USB cable (A-male to micro-B-male) 
• README First card 

 

Initial Board Set-Up 
23. Connecting the board and installing the drivers 

 
The EK-TM4C1294XL LaunchPad Board ICDI USB port (marked DEBUG and 
shown in the picture below) implements a composite USB port and consists of 
three devices/connections:  
 
Stellaris ICDI JTAG/SWD Interface - debugger connection 
Stellaris ICDI DFU Device    - firmware update connection 
Stellaris Virtual Serial Port    - a serial data connection  
 

 
 
 
Using the included USB cable, ► connect the USB emulation connector on your 
evaluation board (marked DEBUG) to a free USB port on your PC. A PC’s USB 
port is capable of sourcing up to 500 mA for each attached device, which is suffi-
cient for the evaluation board. If connecting the board through a USB hub, it must 
be a powered hub. 
 
The drivers should install automatically.  

  



Lab01: Hardware and Software Set Up 

1 - 22 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

Verify Driver Installation 
 

24. ► In Windows 7 or 8, click the Start button and type Device Manager in the 
search box. Expand the Ports and Stellaris In-Circuit Debug Interface sections 
and verify that the devices are properly installed. 
 
Note the port number of the Stellaris Virtual COM Port here: ________ 
You’ll need this information several times during the workshop. 
 

 
 

 
If they are not properly installed they will appear in the Other Devices section. 
Expand that section, right-click on one of them and select Update Driver Software 
… Browse your computer and install the driver from the following location: 
 
C:\TI\TivaWare_C_Series-2.1.0.12573\windows_drivers 
 
Complete this process for all three devices. 

 
  



 Lab01: Hardware and Software Set Up 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 23 

Jumper Positions 
 

25. ► Check the jumper positions on your board. 

JP1 selects where the LaunchPad will be connected to power. The choices are 
power from ICDI (debug USB port), OTG (user USB port) or BoosterPack (like 
this Fuel Tank BoosterPack). Make sure the jumper is in the ICDI position. 

JP2 is a power measurement point for MCU current only.  Make sure this 
jumper is in place. 

JP3 is a power measurement point for the entire LaunchPad board’s current. 
Make sure this jumper is in place. 

JP4 and 5 configure the LaunchPad for either CAN or UART communication. 
Vertical is CAN and horizontal is UART (see the silkscreen). Make sure that all 
four jumpers are in the horizontal (UART) position. 

 

 

. 

 

.   
 

http://www.ti.com/tool/boostxl-battpack


QuickStart IoT Application 

1 - 24 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

QuickStart IoT Application  
 
Due to the logistical restrictions of providing wired Ethernet access to everyone in the 
workshop, the quickstart or out-of-box (OOB) code will be run as a demo. Feel free to 
run this yourself at your office or home. 

The EK-TM4C1294XL Connected LaunchPad features a TM4C1294NCPDT 
microcontroller device pre-programmed with an Internet of Things (IoT) quickstart 
application. This application records various information using the Connected LaunchPad 
and periodically reports it to a cloud server managed by TI’s cloud partner, Exosite,. 

Register with Exosite 
26. ► Go to http://ti.exosite.com and sign up for a Portal account. After activating 

your account, log in. 

Add your Board to Your Portal 
27. ► Under Getting Started Guide on the home page, click on the Click here link in 

Step 2. On the next page, under Select a supported device below, select EK-
TM4C1294XL Connected LaunchPad from the drop-down list. Click Continue. 
 
► On the next page, enter your device’s MAC address (look on the bottom of 
your board), then give the device a name and location. Click Continue. 
 
► On the next page, click QUIT. The next page will display the added device. 

Connect the Hardware 
 

28. ► Connect the included Ethernet cable from the Ethernet port of a router to the 
Ethernet port on the Connected LaunchPad. Press the reset button on the 
LaunchPad board (near the Ethernet connector) to restart the IoT code. LEDs D3 
and D4 will reflect Ethernet activity across the port. 
 
At this point the USB cable is only needed to power the board. No other data is currently 
being transmitted across the USB port. 

 
  

http://exosite.com/
http://ti.exosite.com/


 QuickStart IoT Application 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 25 

IoT Application 
 

29. ► On the far left of the TI Exosite webpage, click on Dashboards. Your added 
device will appear in the Portal Dashboards area.  
 
► Click anywhere on the listed device to go to that device’s dashboard. 
 

 
 

30. ► Click on the LED switches in the upper left of the page to control your LEDs. The 
change will take several seconds to occur. 
 

31. ► Place your finger on the microcontroller on the LaunchPad. Your finger is likely either 
warmer or cooler than the device. After several seconds you will see the displayed 
JUNCTION TEMERPATURE and the graph change. 
 

32. ► Press the user buttons a few times each. The BUTTON PUSHES area will report the 
number of presses for each button. 

  



QuickStart IoT Application 

1 - 26 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

Open PuTTY 
33. ► Click on your Windows Start button and type putty in the Search programs and files 

box. Click on putty.exe in the displayed list. Make the selections shown below: 

Select Serial as the 
Connection type. Enter 
your COM port number 
and 115200 for the speed. 
Click Serial at the bottom 
of the Category pane.  

Make the  
8, 1, None, None 
selections shown on the 
right and click Open. 

 

If you prefer some other terminal program, use these settings. 

 
34. ► Press the reset button for a few seconds (near the Ethernet connector) on the 

LaunchPad board to restart the IoT application. It may take a few moments for the appli-
cation to relink with the ExoSite servers. 
 

35. ► Type help in the terminal display and press Enter. This will present a complete list of 
commands that can be made to the application though the virtual serial port connection. 
 
 

36. ► Slide the ExoSite Dashboard down so that you can see the tic tac toe board. Type 
tictactoe in the terminal display and press Enter. Choose 2 or 3 and start playing. Re-
member that the Dashboard could be viewed anywhere on Earth, and even low Earth or-
bit. 
 

37. Dashboards are completely configurable and can perform additional analysis, data 
fusion and generate alerts to email addresses. ► When you are done, close PuT-
TY and the web browser. Disconnect and store the Ethernet cable for later use. 
 
 

  



 QuickStart IoT Application 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Introduction 1 - 27 

For more details about this application, see the readme file and the source files lo-
cated at: 
 

C:/ti/TivaWare_C_Series-2.1/examples/boards/ek-tm4c1294xl/qs_iot 
 

Visit ti.exosite.com to watch the tutorial video at the bottom of the page. 
 

Troubleshooting Notes: If you have trouble connecting or firewall issues, go 
to exosite.com/ti-faq. If your device is behind a proxy type setproxy help in the 
terminal window for configuration information. 

  You’re done. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://ti.exosite.com/
http://exosite.com/ti-faq


QuickStart IoT Application 

1 - 28 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 1 

Code Composer Studio 

Introduction 
This chapter will introduce you to the basics of Code Composer Studio. In the lab, we will 
explore some Code Composer features. 

 

Agenda
Intro to TM4C Devices, LaunchPad and Cloud Services

Code Composer Studio
Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

TI SW Ecosystem …  

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

2 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

Chapter Topics 
Code Composer Studio ..............................................................................................................................2-1 

Chapter Topics .........................................................................................................................................2-2 

TI Software and Tools Ecosystem ............................................................................................................2-3 

CCS Functional Overview .......................................................................................................................2-5 

Projects and Workspaces .........................................................................................................................2-5 

Adding Files to a Project .........................................................................................................................2-6 

Portable Projects .....................................................................................................................................2-7 

Path and Build Variables .........................................................................................................................2-8 

Build Configurations ................................................................................................................................2-9 

For More CCS Information .................................................................................................................... 2-10 

Tiva C Partners ...................................................................................................................................... 2-11 

Lab02: Code Composer Studio .............................................................................................................. 2-13 
Objective ........................................................................................................................................... 2-13 

Lab 2 Procedure .................................................................................................................................... 2-14 
Using .ini Files ................................................................................................................................... 2-18 
Link driverlib.lib to Your Project ...................................................................................................... 2-19 
Build, Load, Run ............................................................................................................................... 2-22 
Perspectives ....................................................................................................................................... 2-25 

LM Flash Programmer .......................................................................................................................... 2-27 

Optional: Creating a bin file for the flash programmer ........................................................................ 2-29 



 TI Software and Tools Ecosystem 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 3 

TI Software and Tools Ecosystem 

 High-level OS support and
TI-RTOS

 OS Independent support and 
TI-Wares software packages

Run-Time Software Development Tools

 TI Design Network: off-the-shelf 
software, tools and services

 Forums & Wikis

 In-person and online training

Support & 
Community

 CCStudio™ Integrated 
Development Environment 
(IDE) and other IDEs

 Optimizing compilers

 Design Kits & Evaluation 
Modules

TI Software and Tools Ecosystem

Development Software …  

 

Development Tools for Tiva C Series MCUs

Eval Kit 
License

32KB code size 
limited. 

Upgradeable

32KB code size 
limited. 

Upgradeable

Full function. 
Onboard 

emulation limited

Compiler IAR C/C++ RealView C/C++ TI C/C++

Debugger / 
IDE

C-SPY / 
Embedded 
Workbench

µVision CCS/Eclipse-
based suite

Full Upgrade 2700 USD
MDK-Basic (256 

KB) = €2000 
(2895 USD)

445 USD

JTAG 
Debugger 
(low cost)

I-Jet, 345 USD ULINK-ME, 
60 USD XDS100, 79 USD  

Run-time software …  

 

 



TI Software and Tools Ecosystem 

2 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

 

TI Wares: middle-ware that 
minimizes programming complexity 
with optimized drivers & 
OS independent support for TI 
solutions
 Low-level driver libraries
 Peripheral programming interface
 Tool-chain agnostic C code
 Available today 

TI-RTOS: provides an optimized real-time 
kernel at no charge that works with TI Wares 
 Real-time kernel (SYSBIOS) + optimized for 

TI devices:
• Scheduling
• Memory management
• Utilities

 Foundational software packages (TI Wares)
 Libraries and examples
 TI RTOS available today

SYSBIOS + TI Wares

SDK
Software Development Kit

TI-RTOS

+ • File systems
• Network stack
• USB

Run-Time Software

CCS Functional Overview …  
  



 TI Software and Tools Ecosystem 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 5 

CCS Functional Overview 

Code Composer Studio Functional Overview

Compiler

Assembler Linker

.c

.asm .obj

.asm

Edit Debug

Simulator

Emulator/ 
LaunchPad

Target
Config

File

 Integrated Development Environment (IDE) based on Eclipse
 Contains all development tools – compilers, assembler, linker,

debugger, BIOS and includes one target – the Simulator
 GEL files initialize the debugger so that it knows the location 

of the memory, peripherals, etc.

Standard 
Runtime 
Libraries

.lib

.mapUser.cmd

SYS/BIOS
Libraries

SYS/BIOS
Config
(.cfg) Bios.cmd

.out

.ccxml

Stand-Alone
Emulator

Target Board

.

.

.

.gel

Projects and Workspaces …  



Projects and Workspaces 

2 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

Projects and Workspaces 
Projects and Workspaces (viewed in CCS)

WORKSPACE

PROJECT
Source

Projects and Workspaces …  

 

Projects and Workspaces

 PROJECT folder contains:
• Build and tool settings (for use

in managed MAKE projects)
• Files can be linked to or 

reside in the project folder
• Deleting a linked file within the 

Project Explorer only deletes 
the link

Workspace
• Project 1
• Project 2
• Project 3
• Settings/preferences

Project
• Source Files
• Header Files
• Library Files
• Build/tool settings

Source Files
• Code and Data

Header Files
• Declarations

Library Files
• Code and Data

Link

Link

Link

Link

 WORKSPACE folder contains:
• IDE settings and preferences
• Projects can reside in the workspace 

folder or be linked from elsewhere
• When importing projects into the 

workspace, linking is recommended
• Deleting a project within the Project 

Explorer only deletes the link

Adding Files …  



 Adding Files to a Project 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 7 

Adding Files to a Project 

Adding Files to a Project
 Users can ADD (copy or link) files into their project

• SOURCE files are typically COPIED
• LIBRARY files are typically LINKED (referenced)

1 Right-click on project and select: 2 Select file(s) to add to the project:

3 Select “Copy” or “Link”  COPY
• Copies file from original location

to project folder (two copies)

 LINK
• References (points to) source

file in the original folder
• Can select a “reference” point –

typically PROJECT_LOC

Making a Project Portable …

But using a variable like PROJECT_LOC can make portability difficult …

 



Portable Projects 

2 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

Portable Projects 

Portable Projects
 Why make your projects “portable”?

• Project sharing is simplified
• Re-locating your projects is easier
• It’s simple to link to new releases of software libraries

Copied files are not a problem (they
move with the project folder)
Linked files may be an issue. They
are located outside the project 
folder via a:

• absolute path, or
• relative path

This is the Path Variable 
for a relative path. This 
can be specified for every 
linked file.

Path and Build Variables …  



 Path and Build Variables 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 9 

Path and Build Variables 

Path Variables and Build Variables
 Path Variables

• Used by CCS (Eclipse) to store the base path for relative linked files 
• Example: PROJECT_LOC is set to the path of your project, say

c:/Tiva_LaunchPad_Workshop/lab2/project

• Used as a reference point for relative paths, e.g.
${PROJECT_LOC}/../files/main.c

 Build Variables
• Used by CCS (Eclipse) to store base path for build libraries or files 
• Example: CG_TOOL_ROOT is set to the path for the code 

generation tools (compiler/linker)
• Used to find #include .h files, or object libraries, e.g.

${CG_TOOL_ROOT}/include or ${CG_TOOL_ROOT}/lib

 How are these variables defined?
• The variables in these examples are automatically defined

when you create a new project (PROJECT_LOC) and when you
install CCS with the build tools (CG_TOOL_ROOT) 

• What about TivaWare or additional software libraries? You can define
some new variables yourself

Adding Variables …  

 

Adding Variables the Easy Way
 You can add variables manually, but there’s an easier way …
 CCS allows the creation of variables in two imported files: 

• Macros.ini … import this file into your project (project scope)
• Vars.ini … import this file into your workspace (all projects in workspace scope)

 From the CCS menu bar click File  Import  Code Composer Studio 
Build Variables  Next then select the vars.ini file (as shown) and click 
Finish

Build Configurations …

 You can then then use the TIVAWARE_INSTALL variable for your path and 
build in every project in the workspace

 



Build Configurations 

2 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

Build Configurations 

Build Configurations
 Code Composer has two pre-defined BUILD CONFIGURATIONS:

• Debug (symbols, no optimization) – great for LOGICAL debug
• Release (no symbols, optimization) – great for PERFORMANCE

 Users can create their own custom build configurations
• Right-click on the project and select Properties
• Then click “Processor Options” or any other category:

More Info …  



 For More CCS Information 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 11 

For More CCS Information 

CCSv5 – For More Information

http://processors.wiki.ti.com/index.php/Category:CCS_Training Partners …  



Tiva C Partners 

2 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

Tiva C Partners 
 

Tiva C Middleware & Protocol Partners

TI-RTOS & NDK
• Real-Time RTOS fully supported in CCS
• Support for IAR coming soon
• Robust IPv4 & IPv6 Protocol Stacks
• Created for MPU platforms, now optimized 

for MCUs

• Unison RTOS with POSIX compliant API
• Supported in CCS, IAR, Keil-RV & CodeBench
• Robust IPv4 & IPv6 Protocol & Security Stacks
• Complete IoT & M2M Examples on Tiva C HW

Coming soon
to TM129x

GUI-X
• ThreadX Real-Time RTOS 
• Supported in CCS & IAR
• NetX IPv4 & IPv6 Protocol & Security Stacks
• TM4C129x will be among the first devices with 

GUI-X builder and runtime support

• embOS Real-Time RTOS 
• Supported in CCS & IAR
• emWin GUI Library ported to TM4C129x  with 

full support in PC GUI Builder Tools
• embOS/IP IPv4 & IPv6 Protocol Stacks

• Nucleus RTOS 
• Supported in CCS & CodeBench
• Nucleus Net IPv4 & IPv6 Protocol & Security
• Industrial EE Examples tailored to Tiva C HW

Ready Start™
• RTX CMSIS Compliant RTOS 
• Supported in Keil MDK Professional Version
• TCP/IP, USB, CAN, File and GUI (emWIN)
• Full CMSIS Platform Support

Lab …  

 

 



 Lab02: Code Composer Studio 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 13 

Lab02: Code Composer Studio 

Objective 
In this lab, we’ll create a project that contains two source files, main.c and 
tm4c1294ncpdt_startup_ccs.c, which contain the code to blink the two user LEDs on 
your LaunchPad board. The purpose of this lab is to practice creating projects and getting to 
know the look and feel of Code Composer Studio. In later labs we’ll examine the code in more 
detail. So far now, don’t worry about the C code we’ll be using in this lab. 

 

Lab02: Code Composer Studio

 Create a new project
 Experiment with some CCS features
 Use the LM Flash Programmer 

Agenda ...

USB Emulation
Connection

 

 

 

 

 

 

 

 

 

 



Lab 2 Procedure 

2 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

Lab 2 Procedure 

Folder Structure for the Labs 
1. Browse the directory structure for the workshop labs 

► Using Windows Explorer, locate the following folder: 

C:\TM4C1294_Connected_LaunchPad_Workshop  

In this folder, you will find all the lab folders for the workshop. If you don’t see this folder on 
your C:\ drive, check to make sure you have installed the workshop lab files. Expand the folder 
and you’ll see the lab folders and a single workshop folder. The labxx folders will contain your 
project settings and files for the projects that you create and the projects we created for you to 
import. They will also contain solution files saved as .txt files. You will be able to see these 
files in Code Composer’s Project Explorer and easily cut/paste the contents into your files if and 
when you need to. 

Note: When you create a project, you have a choice to store the project in the “default 
location” which is the CCS workspace or to select another location. In this workshop, we’ll 
use this folder: 
 
C:\TM4C1294_Connected_LaunchPad_Workshop\workspace  
The workspace will only contain CCS settings, and links to the projects we create or import. 

  



 Lab 2 Procedure 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 15 

Create a New CCS Project 
2. Create a new project 

► Launch Code Composer Studio. When the Select a workspace dialog appears, ► browse to: 

C:\TM4C1294_Connected_LaunchPad_Workshop\workspace 

Do not check the Use this as the default and do not ask again checkbox. If at some point you 
accidentally check this box, it can be changed in CCS. 

► Click OK. 

 

If you are prompted to install additional tools, follow the on-screen prompts to do so. A 
restart of CCS may be required 

 

3. Select a CCS License 

If you haven’t already licensed Code Composer, you may be asked to do so in the next few 
installation steps. You can do this step manually from the CCS Help menu. 

► Click on Help → Code Composer Studio Licensing Information.  

► Select the “Upgrade” tab, and then select the “Free” license. As long as your PC is connected 
to the LaunchPad board, CCS will have full functionality, free of charge.  

4. New Products Discovered 

If the “New Product Discovered” window appears, click the Select All button and then click 
Finish.  

5. Close Welcome screen 

When the “Getting Started” window appears, close it using the “X” on the tab. 

 
  



Lab 2 Procedure 

2 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

6. Create a New Project 

To create a new project, ► select Project → New CCS Project: 

 

 

► In the New CCS Project dialog, select Tiva C Series as the target and Tiva TM4C1294NCPDT 
for the part. Be careful making this selection. 

► For the Connection, pick Stellaris In-Circuit Debug Interface. This is the built-in emulator on 
the LaunchPad board. 

► Name the project lab02 

► Uncheck the Use default location checkbox and browse to: 
C:\TM4C1294_Connected_LaunchPad_Workshop\lab02 

► In the Project templates and examples box, pick Empty Project (with main.c) and click 
Finish. 

  



 Lab 2 Procedure 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 17 

7. Review the CCS Editing GUI 

In the Project Explorer pane, click on the  to the left of lab02 to expand the project. Note 
that main.c is already open for editing in the Editor pane. 

 
 
 
8. You probably noticed that the New Project wizard added a source file called 

tm4c1294ncpdt_startup_ccs.c into the project automatically. We’ll look more 
closely at the contents of this file later. 

  

Project Explorer 
pane 

Editor 
pane 

Problems 
pane 



Lab 2 Procedure 

2 - 18 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

Using .ini Files 
If you recall in the variables part of the presentation: 

• Path variable – when you ADD (link) a file to your project, you can specify a “relative 
to” path. The default is PROJECT_LOC which means that your linked resource (like 
a .lib file) will be linked relative to your project directory. 

• Build variable – used for items such as the search path for include files associated with a 
library – i.e. it is used when you build your project. 

Variables can either have a PROJECT scope (that they only work for this project) or a 
WORKSPACE scope (that they work across all projects in the workspace). 

We will need to add (link) a library file and then add a search path for our include files. We’re 
going to use a quick and easy way to add a variable into your WORKSPACE that will make this 
process very portable. 

9. We’ve included a file called vars.ini in the 
C:\TM4C1294_Connected_LaunchPad_Workshop folder. It contains a single line 
that defines a variable called TIVAWARE_INSTALL as follows: 
TIVAWARE_INSTALL = C:\TI\TivaWare_C_Series-2.1.0.12573 

Code Composer allows the use of a vars.ini file to 
define workspace variables and a macros.ini file to 
define project variables. 

► Right-click on lab02 in the Project Explorer pane of 
CCS. Select Import, and then Import … In the next dialog, 
expand Code Composer Studio. 

 

► Select Build Variables and click Next. 

 

► In the next dialog (shown below), browse to  
C:\TM4C1294_Connected_LaunchPad_Workshop\vars.ini and click Finish. 

 
Now you can use this variable for the paths that CCS will need to find your files. If, at a later 
date, you update TivaWare and it has a new folder name, the only edit you need to make is 
here in vars.ini. If you change workspaces, you will have to re-import vars.ini.  



 Lab 2 Procedure 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 19 

Link driverlib.lib to Your Project 
10. Link the TivaWare driverlib.lib file to your project  

► Select Project-Add Files… Navigate to: 
 
C:\TI\TivaWare_C_Series-2.1.0.12573 
\driverlib\ccs\Debug\driverlib.lib 
 

  … and ► click Open. The File Operation dialog will open … 

 

Now we’ll use the TIVAWARE_INSTALL path variable that you created earlier. This means 
that the LINK (or reference to the library) file will be RELATIVE to the location of the 
TivaWare installation. If you hand this project to someone else, they can install the project 
anywhere on their file system and this link will still work. If you choose PROJECT_LOC, 
you would get a path that is relative to the location of your project and it would require the 
project to be installed at the same “level” in the directory structure. Another advantage of this 
approach is that if you wanted to link to a new version, say TivaWare_C_Series-2.9, 
all you have to do is modify the variable to the new folder name. 

  
 

► Make the selections shown and click OK.  
 
Your project should now look something like the screen capture below. Note 
the symbol for driverlib.lib denotes a linked file. 
 

 
  



Lab 2 Procedure 

2 - 20 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

11. Copy main.txt contents into main.c 

Code Composer placed a starter template in the main.c file it added to our project during 
the New Project wizard. We need to replace this code with the code that will blink the LED’s. 
We placed a file called main.txt in the lab02 folder for this purpose. 

► Find main.txt in the Project Explorer pane and double-click on it to open it in the 
editor. Press Ctrl-A to select all the code and then Ctrl-C to copy it. Click on the 
main.c tab in the Editor pane and press Ctrl-A and then Ctrl-V to replace the template 
with the copied code. Click on the main.txt tab and then click the X on the right side of 
the tab to close the file. 

Note the asterisk on the left of the main.c tab. This indicates that unsaved changes have 
been made to the file. 

 
  



 Lab 2 Procedure 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 21 

12. Add the INCLUDE search paths for the header files 

► Note that the top of the code includes 6 header files. While some of these can be found in the 
default tools path, others cannot. We need to tell Code 
Composer where to find them. 

► Right-click on your lab02 project in the Project 
Explorer pane and select Properties.  
 
► Click on Build → ARM Compiler → Include Options (as 
shown): 

► In the Add dir to #include search path pane, click the 
“+” sign next to Add dir to #include search path  

(Depending on your CCS version, this may be the upper or lower right pane) 
 

 
and add the following path using the build variable you created earlier. Place the variable name 
inside braces, after the $ as shown (you may want to copy and paste this from the pdf file): 

${TIVAWARE_INSTALL} 

► Click OK. 

 

► Click OK again. Problem solved.  



Lab 2 Procedure 

2 - 22 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

13. Check your stack size 

Many software programmers waste precious SRAM memory by depending on default values 
or failing to set the stack sizes. 

►Right-click on lab02 and select Properties. Expand ARM Linker and then Basic Options. 
Set the Heap size to 0 and the C system stack size to 100 as shown below. We won’t be using 
dynamic memory allocation (so we won’t need a heap) and our stack utilization will be 
minimal (or none). 

 
Click OK.  

 

Build, Load, Run 
14. Test build your project and fix any errors 

► Make sure your project is active by clicking on lab02 in the Project 
Explorer pane. Test build lab02 by clicking on the HAMMER (Build) button. 
You should note a new pane will appear at the bottom center of CCS called the 
Console. The console will display the steps that the compiler and linker have just completed. You 
can ignore any optimization advice for the present. Correct any problems you may have. 

15. Build, Load and Run 

► Assure that your LaunchPad is connected to your laptop. Build and load your 
project to the TM4C1294NCPDT flash memory by clicking the Debug button. 

 

► If you encounter the error shown, your 
board is disconnected, your power jumpers 
are in the wrong position or your drivers 
are incorrectly installed. 

 

 

 

 

The program counter will run to main() and stop. 

 
  



 Lab 2 Procedure 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 23 

16. Getting to know the CCS Debug GUI 

 
 
Note the names of the Code Composer panes above. There are two pre-defined perspectives 
in Code Composer; CCS Edit and CCS Debug (at the arrow above). Perspectives are only 
a “view” of the available data … you can edit your code here without changing perspectives. 
And you can modify these or create as many additional perspectives as you like. More on that 
in a moment.  

Debug Pane Watch & Expressions Panes 

Code/Editor Pane 

Console and Problems Panes 



Lab 2 Procedure 

2 - 24 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

17. Run your program. 

► Click the Resume button or press the F8 key on your keyboard:  

 

The D1 and D2 LEDs on your target board should blink. If not, attempt to solve the problem 
yourself for a few minutes, and then ask your instructor for help. 

To stop your program running, ► click the Suspend button:  

 

If the code stops with a “No source available …” indication, click on the main.c tab. Most of 
the time in the while() loop is spent inside the SysCtlDelay() function. Only the library 
file for this function is linked into the project, the source file is not. 

18. Set a Breakpoint 

In the code pane in the middle of your screen, double-click in the blue area to the left of the line 

number GPIOPinWrite() instruction. This will set a breakpoint (it will look like this: ). 

Click the Resume  button to restart the code. The program will stop at the breakpoint and 
you will see an arrow on the left of the line number, indicating that the program counter has 
stopped on this line of code. Click the Resume button a few times or press the F8 key to run the 
code. Observe the LEDs on the LaunchPad board as you do this.  

19. View/Watch memory and variables. 

► Click on the Expressions tab in the Watch and Expressions pane. 

► Double-click on the ui8PinData variable anywhere in main() to highlight it. 

► Right-click on ui8PinData and select  
Add Watch Expression … 

► Click OK. Right-click on ui8PinData in the 
Expressions pane (upper-right of CCS), and select Number Format  Hex. Note the value of 
ui8PinData. 

Of course, the ui8PinData variable is located in SRAM. You can see the address in the 
expressions view. But let’s go see it in memory.  

► Select View → Memory Browser: 

 

► Type &ui8PinData into the memory 
window (where you see Enter location here) to 
display ui8PinData in memory. Only 8-bits of 
that 32-bit memory location correspond to the 
variable. Select 8-bit Hex – TI Style from the 
dropdown box for a better view. 

  



 Lab 2 Procedure 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 25 

20. View Registers 

► Select View → Registers and notice that you can see the contents of all of the registers in your 
target CPU’s architecture. This is very handy for debugging purposes.  

 
► Click on the arrow on the left to expand each register view. Note that non-system peripherals 
that have not been enabled cannot be read. In this project you can view Core Registers, 
GPIO_PORTN (where the LEDs are), SYSEXC (the system exception module), HIB, 
FLASH_CTRL, SYSCTL, NVIC and FPU.  

Perspectives 
CCS perspectives are quite flexible. You can customize the perspective(s) and save them as your 
own custom views if you like. It’s easy to resize, maximize, open different views, close views, 
and occasionally, you might wonder “How do I get things back to normal?”  

21. Let’s move some windows around and then reset the perspective. 

► Left-click and hold the Console window tab and move the window to a new location. ► 
Release the left mouse button to drop it. 

 

In the editing pane, ► double-click on the main.c tab  

Notice that the editor window maximizes to full screen.  
Double-click on the tab again to restore it. 

 

► Move some windows around on your desktop by clicking-and-holding on the tabs. 

Whenever you get lost or some windows seem to have disappeared in either the CCS Edit, CCS 
Debug or your own perspectives, you can restore the window arrangement back to the default.  

► You can save your layout by clicking Windows → Save Perspective As … You can save it as a 
default perspective or give it your own name. If you want to reset the view to the factory default 
you can also choose Window → Reset Perspective. 

 

NOTE: Do not use the CCS Edit and CCS Debug perspective tabs to move back and forth 
between perspectives. Clicking the CCS Debug tab only changes the view (perspective); 
it does not connect to the device, download the code or start a debug session. Likewise, 
clicking the CCS Edit tab does not terminate a debug session.  
 
Only use the Debug and Terminate buttons to move between perspectives in this 
workshop. 



Lab 2 Procedure 

2 - 26 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

22. Remove all breakpoints 

► Click Run  Remove All Breakpoints Yes from the menu bar or double-click on the 
breakpoint symbol in the editor pane. Again, breakpoints can only be removed when the 
processor is not running. 

Terminate the debug session. 
23. Terminate the Debug Session 

► Click the red Terminate button to terminate the debug session and return to 
the CCS Edit perspective.  

24. If you don’t plan on doing the optional steps at the end of this chapter, close any 
open files in the editor pane, collapse the lab02 project in the Project Explorer pane and 
minimize Code Composer Studio. 

 



 LM Flash Programmer 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 27 

LM Flash Programmer 
The LM Flash Programmer is a standalone programming GUI that allows you to program the 
flash memory of a Tiva C Series device through multiple ports (along with some other features). 
Creating the files required for this is a separate build step in Code Composer that is shown on the 
next page. If you have not done so already, install the LM Flash Programmer onto your PC.  

Make sure that Code Composer Studio is not actively running code in the CCS Debug 
perspective… otherwise CCS and the Flash Programmer may conflict for control of the USB 
port. 

25. Open LM Flash Programmer 

There should be a shortcut to the LM Flash Programmer on your desktop, 
double-click it to open the tool. If the shortcut does not appear, go to Start  
All Programs  Texas Instruments  Stellaris  LM Flash Programmer and 
click on LM Flash Programmer (or just type “LM” into the Windows search 
box) 

Your evaluation board should currently be programmed with the lab02 application and it should 
be running. If the user LEDs aren’t blinking, press the RESET button on the board.  
We’re going to program the original application back into the TM4C1294NCPDT flash memory. 
 
► Click the Configuration tab. Select the TM4C1294XL LaunchPad from the Quick Set pull-
down menu under the Configuration tab.  

See the user’s guide for information on how to manually configure the tool for targets that are not 
evaluation boards.  
 

  



LM Flash Programmer 

2 - 28 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

26. Click the Program Tab, then click the Browse button and navigate to: 
C:\TI\TivaWare_C_Series-2.1.0.12573\examples\boards\ 
ek-tm4c1294xl\qs_iot\ccs\Debug\qs_iot.bin 
 

and ► click Open. You may find that clicking on the symbol rather than the file name is 
easier to navigate. 

qs-iot is the application that was programmed into the flash memory of the 
TM4C1292NCPDT when you removed it from the box.  
 
Note that all applications have been built with all four supported IDEs.  
 
► Make sure that the following checkboxes are selected: 

 

 
 

27. Program 

► Click the Program button. You should see the programming and verification status at the 
bottom of the window. After these steps are complete, the quickstart application should be 
running on your LaunchPad. 

28. Close the LM Flash Programmer 
 



 Optional: Creating a bin file for the flash programmer 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 2 - 29 

Optional: Creating a bin file for the flash programmer 
 

If you want to create a .bin file for use by the stand-alone programmer in any of the labs in this 
workshop or in your own project, use the steps below.  

Remember that the project will have to be open before you can change its properties. 

 

29. Set Post-Build step to call “tiobj2bin” utility 

► In CCS Project Explorer, right-click on your project and select Properties. On the left, click 
Build and then the Steps tab. Paste the following commands into the Post-build steps Command 
box. 

Note: The following four commands should be entered as a single line in the Command 
box. To make this easier, we included a text file from which you can copy-paste. 
Find postbuild.txt in the workshop folder. 

"${CCS_INSTALL_ROOT}/utils/tiobj2bin/tiobj2bin" 
"${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin" 
"${CG_TOOL_ROOT}/bin/armofd" "${CG_TOOL_ROOT}/bin/armhex" 
"${CCS_INSTALL_ROOT}/utils/tiobj2bin/mkhex4bin" 
 

30. Rebuild your project 

These post-build steps will run after your project builds and the .bin file will be in 
the \labxx\project\debug folder. You can access this .bin in the CCS Project 
Explorer in your project by expanding the Debug folder. 

If you try to re-build and you receive a message “gmake: Nothing to be done for 
‘all’.”, this indicates that no files have changed in your project since the last time you 
built it. You can force the project to build by first right-clicking the project and then select 
Clean Project. Now you should be able to re-build your project which will run the post-build 
step to create the .bin file. 

31. Close any open files in the editor pane, collapse the lab02 project in the Project Explorer pane 
and minimize Code Composer Studio. 

 

   You’re done. 

 

 

 



Optional: Creating a bin file for the flash programmer 

2 - 30 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - CCS 

 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 1 

TivaWare™, Initialization and GPIO 

Introduction 
This chapter will introduce you to TivaWare, the initialization of the device and the operation of 
the GPIO. The lab exercise uses TivaWare API functions to set up the clock, and to configure and 
write to the GPIO port. 

 

Agenda

TivaWare Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 

 

 
 



Chapter Topics 

3 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

Chapter Topics 
TivaWare™, Initialization and GPIO ......................................................................................................3-1 

Chapter Topics .........................................................................................................................................3-2 

TivaWare ..................................................................................................................................................3-3 

Clocking ...................................................................................................................................................3-4 

TM4C1294NCPDT Main Clock Tree .......................................................................................................3-5 

GPIO ........................................................................................................................................................3-6 

GPIO Address Masking ...........................................................................................................................3-7 

Critical Function GPIO Protection .........................................................................................................3-8 

Lab03: Initialization and GPIO ...............................................................................................................3-9 
Objective .............................................................................................................................................3-9 
Procedure ........................................................................................................................................... 3-10 



 TivaWare 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 3 

TivaWare 

Peripheral Driver Library 
 High-level API interface to complete peripheral set
 License & royalty free use for TI Cortex-M parts
 Available as object library and as source code
 Programmed into the on-chip ROM

TivaWare™ for C Series Features

Graphics Library 
 Graphics primitive and widgets
 153 fonts plus Asian and Cyrillic
 Graphics utility tools

USB Stacks and Examples
 USB Device and Embedded Host compliant
 Device, Host, OTG and Windows-side examples
 Free VID/PID sharing program

Ethernet
 lwip and uip stacks with 1588 PTP modifications
 Extensive examples

Extras
 Wireless protocols
 IQ math examples
 Bootloaders
 Windows side applications

In System Programming ...

Sensor Library 
 An interrupt driven I2C master driver for 

handling I2C transfers
 A set of drivers for I2C connected sensors
 A set of routines for common sensor operations
 Three layers: Transport, Sensor and 

Processing

 

 

In System Programming

Tiva Boot Loader
 Preloaded in ROM or can be programmed at the beginning of flash to act as an 

application loader 
 Can also be used as an update mechanism for an application running on a Tiva

microcontroller.
 Interface via UART (default), I2C, SSI, Ethernet, USB (DFU H/D)
 Included in the Tiva Peripheral Driver Library with full applications examples

Fundamental Clocks...  

 

 



Clocking 

3 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

Clocking 

Fundamental Clock Sources

Precision Internal Oscillator
 16 MHz ± 3%

Main Oscillator using…
 An external single-ended clock source
 An external crystal

Internal 30 kHz Oscillator
 30 kHz ± 50%
 Intended for use during Deep-Sleep power-saving modes

Hibernation Module Clock Source
 32,768Hz crystal or oscillator
 Real-Time Clock

SysClk Sources...  

 

System (CPU) Clock Sources
The CPU can be driven by any of the fundamental clocks …
 Precision 16MHz internal oscillator
 Main oscillator
 Internal 30 kHz oscillator
 Real-Time Clock
- Plus -
 An internal 320 or 480 MHz PLL driven by the internal 16MHz or main 

oscillator
 The internal 16MHz oscillator divided by four (4MHz ± 3%)

Clock Source Drive PLL? Used as SysClk?
Internal 16MHz Yes Yes
Internal 16Mhz/4 No Yes
Main Oscillator Yes Yes
Internal 30 kHz No Yes
Hibernation Module No Yes
PLL - Yes

Clock Tree...  
  



 TM4C1294NCPDT Main Clock Tree 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 5 

TM4C1294NCPDT Main Clock Tree 

 

The TivaWare driverLib SysCtlClockFreqSet()API: 

• Configures the crystal frequency 
• Selects either the Main or Internal oscillator 
• Selects whether to use the PLL or not 
• Configures the PLL frequency to 320MHz or 480MHz 
• Indicates the desired frequency 

The API will return the actual frequency set, which may be different than the desired frequency if 
the choices made do not allow it. 



GPIO 

3 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

GPIO 

General Purpose IO

 Any GPIO can be an interrupt:
• Edge-triggered on rising, falling or both
• Level-sensitive on high or low values

 Can directly initiate an ADC sample sequence or µDMA 
transfer

 Toggle rate up to the CPU clock speed on the Advanced 
High-Performance Bus. ½ CPU clock speed on the 
Standard.

 Programmable Drive Strength (2, 4, 8, 10 and 12mA …     
8, 10, 12mA with slew rate control)

 Programmable weak pull-up, pull-down, and open drain
 Pin state can be held during hibernation

Pin Mux Utility...  

 

Pin Mux Utility

Masking...

 Allows the user to graphically configure the device pin-out
 Generates source and header files for use with any of the supported IDE’s

http://www.ti.com/tool/tm4c_pinmux
 

http://www.ti.com/tool/tm4c_pinmux  

 

http://www.ti.com/tool/tm4c_pinmux


 GPIO Address Masking 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 7 

GPIO Address Masking  

0 0 1 0 0 1 1 0 0 0000…

GPIO Address Masking

The register we want to change is GPIO Port D (0x4005.8000)
Current contents of the register is: 0 0 0 1 1 1 0 1

Instead of writing to GPIO Port D directly, write to 
0x4005.8098.  Bits 9:2 (shown here) become a bit-mask 

for the value you write.

0 0 1 1 1 0 1 1

1 1 1 0 1 0 1 1

Only the bits marked as “1” in the bit-mask are 
changed.

GPIO Port D (0x4005.8000)

The value we will write is 0xEB:
Write Value (0xEB)

New value in GPIO Port D (note 
that only the red bits were written)

Each GPIO port has a base address. You can write an 8-bit value directly to this base 
address and all eight pins are modified. If you want to modify specific bits, you can use a 
bit-mask to indicate which bits are to be modified. This is done in hardware by mapping 
each GPIO port to 256 addresses. Bits 9:2 of the address bus are used as the bit mask. 

GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_5|GPIO_PIN_2|GPIO_PIN_1, 0xEB);
Note: you specify base address, bit mask, and value to write. 

The GIPOPinWrite() function determines the correct address for the mask.
GPIOLOCK ...  

 

 

The masking technique used on Tiva C Series GPIO is somewhat similar to the “bit-banding” 
technique used in memory. To aid in the efficiency of software, the GPIO ports allow for the 
modification of individual bits in the GPIO Data (GPIODATA) register by using bits [9:2] of 
the address bus as a mask. In this manner, software can modify individual GPIO pins in a single, 
atomic read-modify-write (RMW) instruction without affecting the state of the other pins on the 
port. This method is more efficient than the conventional method of performing a RMW 
operation to set or clear an individual GPIO pin. To implement this feature, the GPIODATA 
register covers 256 locations in the memory map. 

. 



Critical Function GPIO Protection 

3 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

Critical Function GPIO Protection 
 

Critical Function GPIO Protection
 Five pins on the device are protected against accidental 

programming:
• PC3,2,1 & 0: JTAG/SWD
• PD7: NMI

 Any write to the following registers for these pins will not be 
stored unless the GPIOLOCK register has been unlocked:
• GPIO Alternate Function Select register
• GPIO Pull Up or Pull Down select registers
• GPIO Digital Enable register

 The following sequence will unlock the GPIOLOCK register for 
PF0 using direct register programming:

HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
HWREG(GPIO_PORTC_BASE + GPIO_O_CR) |= 0x01;
HWREG(GPIO_PORTFC_BASE + GPIO_O_LOCK) = 0;

 Reading the GPIOLOCK register returns it to lock status

Lab...  

 
 

 



 Lab03: Initialization and GPIO 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 9 

Lab03: Initialization and GPIO 

Objective 
In this lab we’ll learn how to initialize the clock system and the GPIO peripheral using TivaWare. 
We’ll then blink LEDs on the evaluation board. 
 

Lab03: Initialization and GPIO

 Configure the system clock
 Enable and configure GPIO
 Use a software delay to light LEDs on 

the LaunchPad board

Agenda ...

USB Emulation
Connection

2 User 
LEDs

 

 

 

 

 

 

 

 

  



Lab03: Initialization and GPIO 

3 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

Procedure 

Create lab03 Project 
 

1. ► Maximize Code Composer. On the CCS menu bar select File  New  CCS Project. 
Make the selections shown below. Make sure to uncheck the “Use default location” 
checkbox and select the correct path to the project folder as shown. Click Finish. 

 

When the wizard completes, click the  next to lab03 in the Project Explorer pane to 
expand the project. Note that Code Composer has automatically added a mostly empty 
main.c file to your project as well as the startup file. 
 
Note: We placed a file called main.txt in the lab03 folder which contains the final 
code for the lab. If you run into trouble, you can refer to this file.  



 Lab03: Initialization and GPIO 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 11 

Header Files 
2. ► Delete the current contents of main.c.  

 
TivaWare™ is written using the ISO/IEC 9899:1999 (or C99) C programming standards 
along with the Hungarian standard for variable naming. The C99 C programming 
conventions make better use of available hardware, including the IEE754 floating point 
unit. In order for our code to resemble TivaWare, we’re going to use those guidelines.  

► Type (or cut/paste from this pdf file) the following lines into the now empty main.c 
file to include the header files needed to access the TivaWare APIs as well as a variable 
definition: 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/gpio.h" 
 

uint8_t ui8PinData=1; 

 

The use of the < > restricts the search path to only the specified path. Using the " " 
causes the search to start in the project directory. For includes like the two standard ones, 
you want to assure that you’re accessing the original, standard files … not any that may 
have been modified. 

 
stdint.h: Variable definitions for the C99 standard 

stdbool.int: Boolean definitions for the C99 standard 

hw_memmap.h : Macros defining the memory map of the Tiva C Series device. This 
includes defines such as peripheral base address locations such as GPIO_PORTN_BASE. 

hw_types.h : Defines common types and macros 

sysctl.h : Defines and macros for System Control API of DriverLib. This includes 
API functions such as SysCtlClockSet and SysCtlClockGet. 

gpio.h : Defines and macros for GPIO API of DriverLib. This includes API functions 
such as GPIOPinTypeGPIOOutput and GPIOPinWrite. 

uint8_t ui8PinData=1; : Creates an integer variable called ui8PinData and 
initializes it to 1. This will be used to light the two user LEDs one at a time. Note that the 
C99 type is an 8-bit unsigned integer and that the variable name reflects this. 

You will see question marks to the left of the include lines in main.c displayed in the 
edit pane, telling us that the include files can’t be found. We’ll fix this later. 

  



Lab03: Initialization and GPIO 

3 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

main() Function 
3. Let’s drop in a template for our main function.  

► Leave a line for spacing and add this code after the previous declarations: 

int main(void) 

{ 

} 
 

If you type this in, notice that the editor will automatically add the closing brace when 
you add the opening one. Why wasn’t this thought of sooner? 

Clock Setup 
4. Configure the system clock to run using a 25MHz crystal on the main oscillator, driving 

the PLL at 480MHz. The PLL oscillates at either of these frequencies and can be driven 
by crystals or oscillators running between 5 and 25MHz. The PLL is connected to a 
single 10-bit divider. The division value (+1) is calculated by the 
SysCtlClockFreqSet() API and loaded into the PSYSDIV field of the 
RSCLKCFG register. This register also contains the 10-bit OSYSDIV field for dividing 
clock signal without the PLL. Bear in mind that improperly selected PLL and 
SYSCLK values will result in non-integral divisions that will cause SYSCLK jitter. 

► Enter this single line of code inside main(): 
  

SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
SYSCTL_CFG_VCO_480), 120000000); 

 
Refer to the figure of the clock 
tree on page 3-5 of the 
workbook to see how these 
selections are made. 

 
The diagram here is an excerpt 
from the LaunchPad board 
schematic. 

The 25MHz crystal drives 
both the main oscillator and 
the Ethernet clock (saving a 
crystal in your system). The 
32.768kHz crystal drives the 
hibernation (Real-time) clock. 
The remaining 16 MHz crystal 
(not shown here) is connected 
to the USB/JTAG emulation microcontroller. 

  



 Lab03: Initialization and GPIO 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 13 

GPIO Configuration 
5. Before calling any peripheral specific driverLib function, we must enable the clock 

for that peripheral. If you fail to do this, it will result in a Fault ISR (address fault).This is 
a common mistake for new Tiva C Series users.  The second statement below configures 
the two GPIO pins connected to the D1 and D2 LEDs as outputs. LEDs D3 and D4 are 
used to indicate Ethernet activity and are not 
directly user programmable. The third line 
assures that both LEDs are off. 

The excerpt of the LaunchPad board schematic on 
the right shows GPIO pins PN0 and PN1 are 
connected to the LEDs.  

► Leave a line for spacing, then enter these three 
lines of code inside main() after the line in the 
previous step. 

 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
 GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 

GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00); 

The base addresses of the GPIO ports listed in 
the User Guide are shown here. Note that they 
are all within the memory map’s peripheral 
section shown in module 1. APB refers to the 
Advanced Peripheral Bus, while AHB refers to 
the Advanced High-Performance Bus. The AHB 
offers better back-to-back performance than the 
APB bus. GPIO ports accessed through the AHB 

can toggle every clock cycle vs. once 
every two cycles for ports on the APB. 
The chart only shows the AHB base 
addresses. 

_________________________________________________ 

NOTE: There is a delay of 3 to 6 clock cycles between enabling a peripheral and being 
able to use that peripheral. In most cases, the amount of time required by the API coding 
itself prevents any issues, but there are situations where you may be able to cause a 
system fault by attempting to access the peripheral before it becomes available.  

A good programming habit is to interleave your peripheral enable statements as follows: 

Enable ADC 
Enable GPIO 
Config ADC 
Config GPIO 

This will prevent any possible system faults without incorporating software delays. 
______________________________________________________________________  



Lab03: Initialization and GPIO 

3 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

while() Loop 
6. Finally, create a while(1) loop to send a “1” and “0” to the selected GPIO pins, with 

an equal delay between the two.  
 
SysCtlDelay() is a loop timer provided in TivaWare. The count parameter is the loop 
count, not the actual delay in clock cycles. Each loop is 3 CPU cycles. 
 
To write to the GPIO pin, use the GPIO API function call GPIOPinWrite. Make sure 
to read and understand how the GPIOPinWrite function is used in the datasheet. The 
third data argument is not simply a 1 or 0, but represents the entire 8-bit data port. The 
second argument is a bit-packed mask of the data being written.  
 
In our example below, we are writing the value in the ui8PinData variable to both 
GPIO pins that are connected to the user LEDs. Only those two pins will be written to 
based on the bit mask specified. The final instruction cycles through the LEDs by making 
ui8PinData equal to 1, 2, 1, 2, 1, 2 and so on. Note that the values sent to the pins match 
their positions; a “one” in the bit two position can only reach the bit two pin on the port. 
 
Now might be a good time to look at the Datasheet for your Tiva C Series device. Check 
out the GPIO chapter to understand the unique way the GPIO data register is designed 
and the advantages of this approach. 
 
► Leave a line for spacing, and then add this code after the code in the previous step. 
 

 while(1) 
 { 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1, ui8PinData); 
  SysCtlDelay(2000000); 
  if(ui8PinData==4) {ui8PinData=1;} else {ui8PinData=ui8PinData*2;} 
 } 
 

 If you find that the indentation of your code doesn’t look quite right, ► select all of your 
code by clicking CTRL-A and then right-click on the selected code. Select Source  
Correct Indentation. Notice the other great stuff under the Source and Surround With 
selections. 
 
 

  



 Lab03: Initialization and GPIO 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 15 

7. ► Click the Save button to save your work. Your code should look something like this: 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/gpio.h" 
 
uint8_t ui8PinData=1; 
 
int main(void) 
{ 
 SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
 GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 
 GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00); 
 
 while(1) 
 { 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1, ui8PinData); 
  SysCtlDelay(2000000); 
  if(ui8PinData==4) {ui8PinData=1;} else {ui8PinData=ui8PinData*2;} 
 } 

} 

If you’re having problems, you can cut/paste this code into main.c or you can cut/paste 
from the main.txt file in your Project Explorer pane. 

If you were to try building this code now (please don’t), it would fail since we still need 
to set our build options. 

 

  



Lab03: Initialization and GPIO 

3 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

Startup Code 
8. In addition to the main file you have created, you will also need a startup file specific to 

the tool chain you are using. This file contains the vector table, startup routines to copy 
initialized data to RAM and clear the bss section, and default fault ISRs. The New Project 
wizard automatically added a copy of this file into the project for us. 

► Double-click on tm4c1294ncpdt_startup_ccs.c in your Project Explorer 
pane and take a look around. Don’t make any changes at this time. Close the file. 

Set the Build Options 
9. ► Right-click on Lab03 in the Project Explorer pane and select Properties. 

Click Include Options under ARM Compiler. In the #include search path 
pane, click the Add button and add the following search path:    

${TIVAWARE_INSTALL} 

Those are braces, not parentheses. This is the path we created earlier by using the 
vars.ini file in the lab02 project. Since those paths are defined at the workspace 
level, we can simply use it again here.  

Depending on your version of CCS, the Add dir to #include search path may be the 
upper or lower right pane. 

 

 
 

► Click OK.  
 
  



 Lab03: Initialization and GPIO 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 17 

10. Add the Driver Library File 

The driverlib.lib file needs to be in the lab03 project. In lab02 we added a link to this 
file. You can see it under your lab02 project in the Project Explorer pane. Can it be as 
simple as copy/pasting it?  Let’s try. 
 
► Expand the lab02 project in the Project Explorer pane (if you closed the project, 
right-click on it and select Open Project). Right-click on driverlib.lib under the 
lab02 project and select Copy. ► Right-click on the lab03 project and select Paste. 
You should now see the linked file under lab03. 

11. It can be easy to get confused and mistakenly build or work on the wrong project or file. 
To reduce that possibility, ► right-click on lab02 and select Close Project. This will 
collapse the project and close any open files you have from the project. You can open it 
again at any time. ► Click on the lab03 project name to make sure the project is active. It 
will say lab03 [Active – Debug]. This tells you that the lab03 project is active and 
that the build configuration is debug. 

12. Stack Considerations 

►  Right-click on the lab03 project in the Project Explorer pane and select Properties. 
Expand Build  ARM Linker and click on Basic Options. Find the Heap size and Set C 
system stack size boxes as shown below. 

 

 

► Enter 0 for the Heap size and 100 for the C system stack size and click OK. We won’t be 
using the heap in these labs and our need for a C stack is very limited. Failure to monitor 
the size of your stack(s) can result in a significant amount of memory being wasted.  

 These settings will be made for you in the rest of the labs. 

13. Test Build 

►Test build lab03 to check for errors by clicking the Build (Hammer) button. 
You can ignore any optimization advice for the present. Correct any other 
warnings or errors. 

 
  



Lab03: Initialization and GPIO 

3 - 18 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

Compile, Download and Run the Code 
 

14. ► Compile and download your application by clicking the Debug button on 
the menu bar. If you are prompted to save changes, do so. If you have any 
issues, correct them, and then click the Debug button again. After a successful 
build, the CCS Debug perspective will appear.  
 
► Click the Resume button to run the program that was downloaded to the 
flash memory of your device. You should see the LEDs flashing. If you want 
to edit the code to change the delay timing or which LEDs are flashing, go 
ahead. 

If you suspend the code and get the message “No source available for …”, simply click 
on the main.c editor tab. The source code for SysCtlDelay() is not present in our 
project. It is only present as a library file. 
 
► Click on the Terminate button to return to the CCS Edit perspective. 

  



 Lab03: Initialization and GPIO 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 3 - 19 

Examine the Tiva C Series Pin Masking Feature 
 

15. Let’s change the code so that both LEDs are on all the time. Make the following changes: 
 
► Find the line containing uint8_t ui8PinData=1; and change it to  
uint8_t ui8PinData=3; That’s 1+2=3, meaning both LEDs will light. 
 
► Find the line containing if(ui8PinData … and comment it out by adding // to 
the start of the line. 
 
► Click the Save button to save your changes. 
 

16. ► Compile and download your application by clicking the Debug button on the menu 
bar. ► Click the Resume button to run the code. Verify that both LEDs illuminate. 
 

17. Now let’s use the pin masking feature to light the LEDs one at the time. Remember that 
we don’t have to go back to the CCS Edit perspective to edit the code. We can do it right 
here. In the code window, look at the first line containing GPIOPinWrite(). The pin 
mask here is GPIO_PIN_0| GPIO_PIN_1, meaning that both of these bit positions, 
corresponding to the positions of the LEDs will be sent to the GPIO port. ► Change the 
bit mask to GPIO_PIN_0. The line should look like this: 
 
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0, ui8PinData); 
 

18. ► Compile and download your application by clicking the Debug button on the menu 
bar. When prompted to save your work, click OK. When you are asked if you want to 
terminate the debug sessions, click Yes. 
 
Before clicking the Resume button, predict which LED you expect to light: _________ 
 
► Click the Resume button. If you predicted D2, you were correct. 

19. In the code window, ► change  the first GPIOPinWrite() line to: 
 
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, ui8PinData); 

20. ► Compile and download your application by clicking the Debug button on the menu 
bar. When prompted to save your work, click OK. When you are asked if you want to 
terminate the debug sessions, click Yes. 
 
Before clicking the Resume button, predict which LED you expect to light: _________ 
 
► Click the Resume button. If you predicted D1, you were correct. 

  



Lab03: Initialization and GPIO 

3 - 20 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Initialization 

21. Let’s change the code back to the original set up: Make the following changes: 
 
► Find the line containing uint8_t ui8PinData=3; and change it back to  
uint8_t ui8PinData=1; 
 
► Find the line containing if(ui8PinData … and uncomment it  

► Find the line containing the GPIOPinWrite() and change it back to:  
 
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0| GPIO_PIN_1, ui8PinData); 
 

22. ► Compile and download your application by clicking the Debug button on the menu 
bar. When prompted to save your work, click OK. When you are asked if you want to 
terminate the debug sessions, click Yes. Click the Resume button and verify that the code 
works like it did before. 

23. ► Click on the Terminate button to return to the CCS Edit perspec-
tive. Close the lab03 project. Minimize Code Composer Studio. 

 

Homework idea: Look at the use of the ButtonsPoll() API call in the EK-
TM4C1294XL Firmware Development Package User’s Guide in the docs folder in your 
TivaWare installtion. Write code to use that API function to turn the LEDs on and off us-
ing the pushbuttons. 

 

    You’re done.  

 

 

 

 

 

 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4 - 1 

Ethernet Port 

Introduction 
In this chapter we’ll take a closer look at the Ethernet port, stacks and IEEE 1588. In the lab we’ll 
control the LaunchPad via a web page that we open and modify. 

 

Agenda

Ethernet Features ...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 

 

 
 



Chapter Topics 

4 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 

Chapter Topics 
Ethernet Port ..............................................................................................................................................4-1 

Chapter Topics .........................................................................................................................................4-2 

Features and Block Diagram ...................................................................................................................4-3 

Ethernet Module Clocking .......................................................................................................................4-3 

Port Hardware Design .............................................................................................................................4-4 

IEEE 1588 ................................................................................................................................................4-5 

Included Open Source Stacks ...................................................................................................................4-7 

Lab04: Ethernet Lab ................................................................................................................................4-9 
Description: .........................................................................................................................................4-9 
Procedure ........................................................................................................................................... 4-10 



 Features and Block Diagram 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4 - 3 

Features and Block Diagram 
 

Ethernet Peripheral Features
 10BASE-T/100BASE-TX IEEE-802.3 compliant
 Full-duplex and half-duplex 10/100 Mbps data transmission rates
 Flow control and back pressure with full-featured and enhanced auto-negotiation
 IEEE 802.1Q VLAN tag detection
 Conforms to IEEE 1588-2002 Timestamp Precision Time Protocol (PTP) protocol and the 

IEEE 1588-2008 Advanced Timestamp specification
 Four MAC address filters
 Programmable 64-bit Hash Filter for multicast address filtering
 Promiscuous mode support
 Processor offloading
 Programmable insertion (TX) or deletion (RX) of preamble and start-of-frame data
 Programmable generation (TX) or deletion (RX) of CRC and pad data
 IP header and hardware checksum checking (IPv4, IPv6, TCP/UDP/ICMP)
 LED activity selection
 Supports network statistics with RMON/MIB counters
 Supports Magic Packet and wakeup frames
 Efficient transfers using integrated Direct Memory Access (DMA)
 MDI/MDI-X cross-over support
 Register-programmable transmit amplitude
 Automatic polarity correction and 10BASE-T signal reception

Block diagram ...  

 

Ethernet Block Diagram

 TX and RX FIFO’s are 2kB and separate from system memory
 Ethernet module acts as a DMA bus master

Clocking ...  



Ethernet Module Clocking 

4 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 

Ethernet Module Clocking  
 

Ethernet Clocking

320 or 480MHz PLL

 EMAC circuitry is run on the SYSCLK
 The PHY clock can be run from:

• The main oscillator with a 25MHz crystal
• The PLL through a divider
• PM4 with a 50Mhz oscillator. ÷ 20 for 10Mbps and ÷ 2 for 100Mbps operation

 A separate 25MHz PHY crystal is not required

SYSCLK

Port design ...  



 Port Hardware Design 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4 - 5 

Port Hardware Design 
 

Ethernet Port Hardware Design

 U10 – Ethernet isolation transformer
 U13 – Diode ESD protection array
 U14 – RJ45 connector

PTP ...  



IEEE 1588 

4 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 

IEEE 1588 
 

Ethernet Port - IEEE1588
 Supports IEEE 1588-2002 Timestamp Precision Time 

Prototcol (PTP) and IEEE1588 Advanced Timestamp 
features

 Provides “CAN bus” type features over an Ethernet network
 IEEE 1588 is a protocol designed to synchronize real-time 

clocks in the nodes of a distributed system that 
communicate using a network (Ethernet UDP/IP) at a high 
degree of accuracy

 Ethernet port 1588 HW intercepts PTP time packets entering 
or leaving the port. SW implementation takes place above 
the UDP layer.

 Microsecond accuracy is easily achievable

Ethernet network

Master Slave Slave Slave
Stacks ...  

  



 IEEE 1588 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4 - 7 

Included Open Source Stacks 

 

Open Source TCP/IP Stacks Included in Examples
uip – Micro IP

• Protocols supported
 Transmission Control Protocol (TCP)
 User Datagram Protocol (UDP)
 Internet Protocol (IP)
 Internet Control Message Protocol 

(ICMP)
 Address Resolution Protocol (ARP)

• Memory requirements
 Typical code size on the order of a few 

kilobytes
 RAM usage can be as low as a few 

hundred bytes.
 Memory conserved by limiting to one 

outstanding transmit packet

lwip – Light-weight IP
• Protocols supported

 Internet Protocol (IP) including packet 
forwarding over multiple network 
interfaces

 Internet Control Message Protocol (ICMP) 
for network maintenance and debugging

 User Datagram Protocol (UDP) including 
experimental UDP-lite extensions

 Transmission Control Protocol (TCP) with 
congestion control, RTT estimations, and 
fast recovery/transmit

 Dynamic Host Configuration Protocol 
(DHCP)

 Point-to-Point Protocol (PPP)
 Address Resolution Protocol (ARP) for 

Ethernet
 Specialized raw API for enhanced 

performance
 Optional Berkeley-like socket API

• Memory Requirements
 Typical code size is on the order of 25 to 40 

kilobytes
 RAM requirements are approximately 15 to 

a few tens of kilobytes

uip and lwip licenses
 No restriction in shipping in real products
 Redistribution of stack source or binaries 

(such as in our kit) must carry copyright

 TI-RTOS stack also available
 Other 3rd party stacks are available (higher cost / more capabilities / larger memory footprint)

Lab ...  

 
  



IEEE 1588 

4 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 

 



 Lab04: Ethernet Lab 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4 - 9 

Lab04: Ethernet Lab 

Description: 
In this lab we’ll control an LED on the LaunchPad with webpages served up from the 
microcontroller’s flash memory. We’ll experiment with two methods of control and then modify 
the web page in memory. 

 

Lab04: Ethernet Port

 Import and run the enet_io example
 Examine program details
 Experiment with 2 methods of web control
 Modify web page

Agenda ...

USB Emulation
Connection

Ethernet

 

 

 

 

 
 



Lab04: Ethernet Lab 

4 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 

Procedure 

Maximize Code Composer  
1. Maximize Code Composer. Click on Project, and then select Import CCS Projects …. 

When the Import dialog appears, make the selections shown below. The Copy projects 
into workspace checkbox will automatically be checked. Since we will be using TivaWare 
example code, this will make a copy of the project in our workspace and preserve the 
original example. Click Finish.  

 
 

  



 Lab04: Ethernet Lab 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4 - 11 

2. In the Project Explorer pane, expand the enet_io project. Double-click on enet_io.c 
to open it for editing. 
 
We will be running two examples that illustrate different ways of controlling the 
LaunchPad via web pages. 

I/O Control Demo 1 uses JavaScript running in the web browser to send HTTP requests 
to particular URLs.  These URLs are intercepted by the file system support layer 
(io_fs.c) and used to control the LED.  Responses generated by the board are returned 
to the browser and inserted into the page HTML dynamically by more JavaScript code. 
 
I/O Control Demo 2 uses standard HTML forms to pass parameters to CGI (Common 
Gateway Interface) handlers running on the LaunchPad.  These handlers process the form 
data and control the LED as requested before sending a response page (in this case, the 
original form) back to the browser.  The application registers the names and handlers for 
each of its CGIs with the HTTPD server during initialization and the server calls these 
handlers after parsing URL parameters each time one of the CGI URLs is requested. 
 

enet_io.c is made up of several modules: 

 
ControlCGIHandler()    Called when the web browser requests I/O control 
SSIHandler()     Called by the HTTP server when it encounters an SSI tag 
DisplayIPAddress()    Displays the lwIP type IP address 
SysTickIntHandler()    Handles the SysTick interrupt 
lwIPHostTimerHandler() Supports host timer functions 
main()      Sets up the clock, Ethernet and I/O ports, configures SysTick    
                                             timer and enables interrupts 

 
3. Change the DHCP Usage  

 
► Find the following line of code at line 640 in enet_io.c and make the indicated 
change below. This change and the following one will prevent a lengthy wait for the stack 
to receive a DHCP address.  
 
From: lwIPInit(g_ui32SysClock, pui8MACArray, 0, 0, 0, IPADDR_USE_DHCP); 

 
To: lwIPInit(g_ui32SysClock, pui8MACArray, 0, 0, 0, IPADDR_USE_AUTOIP); 
 

  



Lab04: Ethernet Lab 

4 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 

4. Comment out a loop 
 
If you are using a version of TivaWare later than 2.1.0.12573 you can skip this step. 
 
Find lines 533 through 546 in enet_io.c as shown below: 
 

 
 
Comment out the loop by inserting “/*” and “*/” on lines 533 and 546 as shown below: 
 

 
 
This loop of code was intended to produce an LED animation on an earlier development 
board and was accidentally left in this release of the code. 
 

  



 Lab04: Ethernet Lab 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4 - 13 

5. Connect and Build 
 
► Connect the LaunchPad’s’ Ethernet port to the Ethernet port of your PC us-
ing the included cable.  If your PCs wireless or other ports are enabled, you 
should disable it now. If you have problems connecting to the board in later 
steps, you may also need to disable your firewall software. 
 
► Click the Debug button now to build and load the project to your board. 
 
Move the CCS window down so that most of the desktop is visible but you can still see the 
Resume button. 
 
 
Since the Connected LaunchPad does not have any kind of a display, we need a way to see 
information that the enet_io program needs to present. We’ll do that by connecting a 
terminal program (like PuTTY) to the USB virtual serial port and displaying the transmit-
ted data on our laptop.  The following steps will use PuTTY, but you can adapt them to 
your favorite terminal program. The USB port on the LaunchPad is a composite port that 
implements two emulator ports and a single virtual serial port. 

 

6. Open PuTTY 

► Click on your Windows Start button and type putty in the Search programs and files 
box. Click on putty.exe in the displayed list. Make the selections shown below: 

 

Select Serial as the 
Connection type. Enter the 
COM port number you found 
in chapter 1 and 115200 for 
the speed. Click Serial at the 
bottom of the Category pane.  

Make the  
8, 1, None, None selections 
shown on the right and click 
Open. 

 

If you prefer some other terminal program, use these settings. 
 
  



Lab04: Ethernet Lab 

4 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 

7. Run enet_io 
 

► Click the Resume button  in CCS. After a few 
seconds PuTTY will display the information shown on the 
right.  
 
Since we aren’t using a DHCP server, the program will 
assign the port its own address as shown in the second 
screen capture. It may take several minutes for the stack to 
timeout. Your address may be different. 
 

8. Assign your Laptop’s Ethernet port a compatible address 
 
► Click on your Windows Start button and type network connections in the Search pro-
grams and files box. Click on View network connections under the Control Panel heading. 
 
► Find the correct Local Area Connection for your Ethernet port and right-click on it.  
Select Properties.  
 

► Click on Internet Protocol Version 4 and then click 
the Properties button. 

 
IPV4 addresses are 32-bits (232 possible addresses, alt-
hough some are reserved) and written as four fields, 
each 8-bits in length (0-255). We must assign the 
Ethernet port a compatible address with the one as-
signed to the LaunchPad port in order for them to 
communicate. This means that the first three fields 
must be identical and the fourth must be different. 

 
 
 
 
 
In the screen captures here, the LaunchPad address is 169.254.31.238 .  
Yours will likely be different.  
 
► Click the Use the following IP address: selection 
and assign your port a compatible address. In our case, 
a compatible address could be 169.254.31.001 
(there are many). 
 
The Subnet mask will automatically default to 
255.255.0.0 
 
► Click OK 
 
  



 Lab04: Ethernet Lab 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4 - 15 

 

9. ► Start your web browser, enter the address shown in PuTTY (not the one you used for 
your Ethernet port’s address) and press Enter. A web page served from the Connected 
LaunchPad should appear. If the page doesn’t look like this, try changing the compatibility 
settings of your browser. 

 

If you are having issues seeing the web page on your browser, you may have one or more 
of the following issues: 
 
1) You typed the IP address incorrectly for either your Ethernet port or in your browser.     
Remember that the Ethernet port’s address and the board address cannot be exactly the 
same. 

2) Your firewall software is getting in the way … disable it for now. 

3) You didn’t disable your wireless or other unused ports and your browser is trying to 
access the address over one of those connections instead of the wired Ethernet connection. 
 
4) You may not have the Java Runtime Engine installed. Go to www.java.com and install 
the JRE. 

  

http://www.java.com/


Lab04: Ethernet Lab 

4 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 

10. I/O Control 

► On the web page, click any of the first five links on the left. Bear in mind that the third 
and fourth will not work without Internet access. All of the text and graphics for the others 
is programmed in the microcontroller’s on-board flash memory. 

► Click the link to I/O Control Demo 1. Press the Toggle LED button a few times, and 
observe LED D2 on the LaunchPad board. You can also change the rate that LED D1 
flashes by clicking the Set Speed button. LEDs D3 and D4 indicate Ethernet activity.  
 
► Click the link to I/O Control Demo 2. Click on the box under New and click the Update 
Settings button to change the state of LED D1. You can also change the rate that LED D1 
flashes. Try typing some text in the Display this text over the UART: box and click Send 
Text. The text that you typed should appear in the PuTTY terminal display on your laptop.  
 
► When you’re done, close the web browser. Don’t forget that you will need to 
reset the IP address and firewall settings later. Click the Terminate button in 
CCS to return to the CCS Edit perspective.  

11. The embedded web server used in the enet_io example uses the open source lwIP 
TCP/IP stack. When you first start the application, the index.htm file is displayed in 
your web browser. 

In this part of the lab, we will modify the web page using notepad as our editor. We will 
create a new file system image to embed into the application. There is a command line tool 
in the \TivaWare_C_Series-2.1.0.12573\tools\bin folder that will 
generate a header file with an array for each file in the \fs folder. 

Since we copied the original example code into our workspace, we’ll need to edit the code 
there instead of the original location.  
► Using Windows Explorer, find the index.htm file in the 
C:\TM4C1294_Connected_LaunchPad_Workshop\workspace\enet_io\fs folder. 
Right-click on index.htm and select Open with, then click Notepad to open the file for 
editing using Notepad.  

12. ► About halfway into the file, find the code that looks like this: 

<div id="heading_h2"> 

EK-TM4C1294XL 

</div> 

► Change the line of code so that it looks like this: 

<div id="heading_h2"> 

This EK-TM4C1294XL belongs to YourName! 

</div> 

► Save the file and close your Notepad. 



 Lab04: Ethernet Lab 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 4 - 17 

13. Convert the HTML files to a Header File 

Back in Code Composer Studio; examine the io_fs.c file in the enet_io project. You 
will find the command line and options that are needed to run the makefsfile utility in 
the comments around line 40.  

► Open a DOS command window by clicking on your Windows Start button and typing 
cmd in the Search programs and files box. Click Enter. 

► Type cd\ and press Enter to return to the root directory C:\ 
 
► Type cd C:\TM4C1294_Connected_LaunchPad_Workshop\workspace\enet_io and 
press Enter. You can also copy/paste this from the pdf file if you use the mouse to paste 
and not the keyboard shortcut. 
 
► Now we can call the makefsfile utility. Type (or copy/paste) the following and then 
press Enter. 

C:\TI\TivaWare_C_Series-2.1.0.12573\tools\bin\ 
makefsfile.exe -i fs -o io_fsdata.h -r –h 

Note the successful completion message. A new io_fsdata.h header file has been 
created with the changes that you made to index.htm.  io_fs.c includes this header 
file. Close the command window when you are finished.  

 
  



Lab04: Ethernet Lab 

4 - 18 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Ethernet Port 

13. Rebuild the enet_io Example Application 

► Maximize Code Composer Studio. We just modified one of the files in the project without 
the IDE knowing it, so we need to perform a clean build. Right-click on enet_io in 
the Project Explorer pane and select Clean Project. Click the Debug button to 
build/load the project. 
 

14. Load the Modified Website in your Browser 
 
► Move CCS so that you can see both the CCS Resume button and the PuTTY window. 
Make sure that your Ethernet port address is still compatible with the IP address that the 
LaunchPad board reports. Open a web browser and type in the LaunchPad’s address like 
before (it’s possible that the address has changed). 
 

 
 

15. Restore your network settings 
 
► Remember your original network settings on your PC? Restore those and re-
enable your firewall, wireless and other connections (if necessary). Terminate the 
CCS Debug session, close the enet_io project and minimize CCS. Close 
PuTTY.. 
 

    You’re done.  

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 - 1 

Interrupts and the Timers 

Introduction 
This chapter will introduce you to the use of interrupts on the ARM® Cortex-M4® and the general 
purpose timer module (GPTM). The lab will use the timer to generate interrupts. We will write a 
timer interrupt service routine (ISR) that will blink the LED. 

 

Agenda

NVIC Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

5 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

Chapter Topics 
Interrupts and the Timers .........................................................................................................................5-1 

Chapter Topics .........................................................................................................................................5-2 

Cortex-M4 NVIC ......................................................................................................................................5-3 

Cortex-M4 Interrupt Handing and Vectors ..............................................................................................5-7 

General Purpose Timer Module...............................................................................................................5-9 

Lab05: Interrupts and the Timer ............................................................................................................ 5-11 
Objective ........................................................................................................................................... 5-11 
Procedure ........................................................................................................................................... 5-12 

 



 Cortex-M4 NVIC 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 - 3 

Cortex-M4 NVIC 
 

Nested Vectored Interrupt Controller (NVIC)
 Handles exceptions and interrupts (7 exceptions and 106 interrupts)
 8 programmable dynamically reprogrammable priority levels, priority grouping
 Automatic state save and restoration
 Automatic reading of the vector table entry
 Pre-emptive/Nested Interrupts
 Tail-chaining
 Deterministic: always 12 cycles or 6 cycles with tail-chaining
 Level and pulse interrupt signal detection

t

Motor control ISRs (e.g. PWM, ADC)

Communication ISRs (e.g. CAN)

Main application (foreground)

Tail Chaining...  

 

 

 

 

 
  



Cortex-M4 NVIC 

5 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

 

 

PUSH POPISR 1 POP ISR 2

PUSH ISR 1 POPISR 2

12
Cycles

IRQ1

IRQ2

Typical 
processor

Cortex-M4
NVIC

6
Cycles

12
Cycles

Interrupt Latency - Tail Chaining

Highest
Priority

Tail-chaining

Pre-emption …

PUSH

 

 

 

 

In the above example, two interrupts occur simultaneously.  

In most processors, interrupt handling is fairly simple and each interrupt will start a  
PUSH PROCESSOR STATE – RUN ISR – POP PROCESSOR STATE process. Since IRQ1 was 
higher priority, the NVIC causes the CPU to run it first. When the interrupt handler (ISR) for the 
first interrupt is complete, the NVIC sees a second interrupt pending, and runs that ISR. This is 
quite wasteful since the middle POP and PUSH are moving the exact same processor state back 
and forth to stack memory. If the interrupt handler could have seen that a second interrupt was 
pending, it could have “tail-chained” into the next ISR, saving power and cycles. 

The Tiva C Series NVIC does exactly this. It takes only 12 cycles to PUSH and POP the 
processor state. When the NVIC sees a pending ISR during the execution of the current one, it 
will “tail-chain” the execution using just 6 cycles to complete the process.  

If you are depending on interrupts to be run quickly, the Tiva C Series devices offer a huge 
advantage here. 

 

 
  



 Cortex-M4 NVIC 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 - 5 

 

 

Interrupt Latency – Pre-emption

ISR 1 ISR 2

ISR 1 POP ISR 2

1-
12

Cycles

IRQ1

6
Cycles

Highest
Priority

POP

12
Cycles

Late arrival...

PUSHPOP POP
Typical 

processor

Cortex-M4
NVIC

IRQ2

 

 

 

 

In this example, the processor was in the process of popping the processor status from the stack 
for the first ISR when a second ISR occurred. 

In most processors, the interrupt controller would complete the process before starting the entire 
PUSH-ISR-POP process over again, wasting precious cycles and power doing so. 

The Tiva C Series NVIC is able to stop the POP process, return the stack pointer to the proper 
location and “tail-chain” into the next ISR with only 6 cycles. 

Again, this is a huge advantage for interrupt handling on Tiva C Series devices. 

 
  



Cortex-M4 NVIC 

5 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

 

 

ISR 2

Interrupt Latency – Late Arrival

IRQ1

IRQ2

ISR 2ISR 1

PUSH POP

Highest
Priority

12
Cycles

6
Cycles

ISR 1

Interrupt handling...

PUSH POPPUSH PUSH POPTypical 
processor

Cortex-M4
NVIC

 

 

 

 

In this example, a higher priority interrupt has arrived just after a lower priority one. 

In most processors, the interrupt controller is smart enough to recognize the late arrival of a 
higher priority interrupt and restart the interrupt procedure accordingly. 

The Stellaris NVIC takes this one step further. The PUSH is the same process regardless of the 
ISR, so the Stellaris NVIC simply changes the fetched ISR. In between the ISRs, “tail chaining” 
is done to save cycles. 

Once more, Stellaris devices handle interrupts with lower latency. 

 

 



 Cortex-M4 Interrupt Handing and Vectors 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 - 7 

Cortex-M4 Interrupt Handing and Vectors 
 

Interrupt handling is automatic. No instruction overhead.

Entry
 Automatically pushes registers R0–R3, R12, LR, PSR, and PC onto the 

stack (eight 32-bit words)
 In parallel, ISR is pre-fetched on the instruction bus. ISR ready to start 

executing as soon as stack PUSH complete
 Interrupt pending bit is cleared for single-input interrupts

Exit
 Processor state is automatically restored from the stack
 In parallel, interrupted instruction is pre-fetched ready for execution 

upon completion of stack POP

Exception types...

NVIC Interrupt Handling

 

 

Exception Types
Vector

Number
Exception 

Type
Priority Vector 

address
Descriptions

0 - 0x00 Stack top address
1 Reset -3 0x04 Reset
2 NMI -2 0x08 Non-Maskable Interrupt
3 Hard Fault -1 0x0C Error during exception processing
4 Memory 

Management 
Fault

Programmable 0x10 MPU violation

5 Bus Fault Programmable 0x14 Bus error (Prefetch or data abort)
6 Usage Fault Programmable 0x18 Exceptions due to program errors

7-10 Reserved - 0x1C - 0x28
11 SVCall Programmable 0x2C SVC instruction
12 Debug Monitor Programmable 0x30 Exception for debug
13 Reserved - 0x34
14 PendSV Programmable 0x38
15 SysTick Programmable 0x3C System Tick Timer

16 and above Interrupts Programmable 0x40 External interrupts (Peripherals)

Vector Table...  

 



Cortex-M4 Interrupt Handing and Vectors 

5 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

 

 

Vector Table

 After reset, the vector table is located 
at address 0

 Each entry contains the address of 
the function to be executed

 The value in address 0x00 is used as 
starting address of the Main Stack 
Pointer (MSP)

 Vector table can be relocated by 
writing to the VTABLE register 
(must be aligned on a 1024-byte 
boundary)

 Open 
tm4c1294ncpdt_startup_ccs.c
to see vector table coding

GPTM...  

 

 

 

 



 General Purpose Timer Module 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 5 - 9 

General Purpose Timer Module 
 

General Purpose Timer Module

 16 or 32-bit programmable one-shot timer
 16 or 32-bit programmable periodic timer
 16-bit general purpose timer with 8-bit pre-scaler
 32-bit Real-Time Clock (RTC) when external 32,768Hz clock used as input
 16-bit input-edge count or time-capture modes with 8-bit pre-scaler
 16-bit PWM mode with an 8-bit pre-scaler and software-programmable output 
inversion of the PWM signal
 Either the SYSCLK or ALTCLK can be used as the timer clock source. ALTCLK can 
be the PIOSC, Hib. module RTC or the low frequency internal oscillator
 Count up/down
 Can be daisy-chained and loads can be synchronized
 Can trigger on ADC events
 Can be configured to stall when user asserts CPU Halt during debug
 DMA enabled

Lab...

Contains eight 16/32-bit GPTM blocks with the following features: 

 

 

 

 

 

 

 

  



General Purpose Timer Module 

5 - 10Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

  



 Lab05: Interrupts and the Timer 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 11 

Lab05: Interrupts and the Timer 

Objective 
In this lab we’ll set up the timer to generate interrupts, and then write the code that responds to 
the interrupt … flashing the LED. We’ll also experiment with generating a system level 
exception, by attempting to configure a peripheral before it’s been enabled. 

 

Lab05: Interrupts and the GP Timer

 Enable and configure the Timer
 Enable and configure Interrupts
 Write the ISR code and test
 Generate an exception

Agenda ...

USB Emulation
Connection

 

 

 

 

 

 

 

 



Lab05: Interrupts and the Timer 

5 - 12Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

Procedure 

Import lab05 Project 
1. We have already created the lab05 project for you with an empty main.c, a startup file 

and all necessary project and build options set.  
 
► Maximize Code Composer and click Project  Import CCS Projects…  
Make the settings show below and click Finish.  
 
Make sure that the “Copy projects into workspace” checkbox is unchecked. 

 

 
  
   



 Lab05: Interrupts and the Timer 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 13 

Header Files 

2. ► Expand the lab by clicking the  to the left of lab05 in the Project Explorer pane. 
Open main.c for editing by double-clicking on it.  
 
► Type (or copy/paste) the following seven lines into main.c to include the header files 
needed to access the TivaWare APIs : 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/tm4c1294ncpdt.h" 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/interrupt.h" 
#include "driverlib/gpio.h" 
#include "driverlib/timer.h" 

 
Several new include headers are needed to support the hardware we’ll be using in this 
code: 
 
tm4c1294ncpdt.h: Definitions for the interrupt and register assignments on the Tiva 
C Series device on the LaunchPad board 

interrupt.h : Defines and macros for NVIC Controller (Interrupt) API of 
driverLib. This includes API functions such as IntEnable and 
IntPrioritySet. 

timer.h : Defines and macros for Timer API of driverLib. This includes API 
functions such as TimerConfigure and TimerLoadSet. 

Note that there are no question marks shown in the editor pane beside your include 
statements. The paths have already been set up for you in the imported project. 

  



Lab05: Interrupts and the Timer 

5 - 14Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

main()  
3. We’re going to compute our timer delays using the variable ui32Period. Create main() 

along with an unsigned 32-bit integer (that’s why the variable is called ui32Period) for 
this computation. ui32SysClkFreq will be the return value when we configure the 
system clock. 
 
► Leave a line for spacing and type (or cut/paste) the following after the previous lines: 
 
int main(void) 
{ 
 uint32_t ui32Period; 
 uint32_t ui32SysClkFreq; 
} 

Clock Setup 
4. Configure the system clock to run at 120MHz (like in lab04) with the following call.  

 
► Leave a blank line for spacing and enter this single line of code inside main(): 
 
ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN 
| SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480), 120000000); 

GPIO Configuration 
5. Like the previous lab, we need to enable the GPIO peripheral and configure the pins 

connected to the LEDs as outputs. 
 
► Leave a line for spacing and add these lines after the last ones. Leave a line between 
them. 
 

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 

 GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 

  



 Lab05: Interrupts and the Timer 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 15 

Timer Configuration 
6. Again, before calling any peripheral specific driverLib function we must enable the 

clock to that peripheral. If you fail to do this, it will result in a Fault ISR (address fault). 
 
The second statement configures Timer 0 as a 32-bit timer in periodic mode. Note that 
when Timer 0 is configured as a 32-bit timer, it combines the two 16-bit timers Timer 0A 
and Timer 0B. See the General Purpose Timer chapter of the device datasheet for more 
information. TIMER0_BASE is the start of the timer registers for Timer0 in, you guessed 
it, the peripheral section of the memory map.  
 
► Remember that we should interleave the peripheral enable statements to prevent 
possible timing issues? Place the first statement below after the first one in step 5 and the 
second one as last: 

SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0); 

 
TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC); 

Calculate Delay 
7. To toggle a GPIO at 1Hz and a 50% duty cycle, you need to generate an interrupt at ½ of 

the desired period. First, calculate the number of clock cycles required for a 1Hz period 
by calling SysCtlClockGet() and dividing it by your desired frequency (here that is 
1, so the division is omitted).  Then divide that by two, since we want a count that is ½ of 
that for the interrupt. 
 
This calculated period is then loaded into the Timer’s Interval Load register using the 
TimerLoadSet function of the driverLib Timer API. Note that you have to subtract 
one from the timer period since the interrupt fires at the zero count.  
 
► Add a line for spacing and add the following  lines of code after the previous ones: 

ui32Period = ui32SysClkFreq/2; 
TimerLoadSet(TIMER0_BASE, TIMER_A, ui32Period -1); 

  



Lab05: Interrupts and the Timer 

5 - 16Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

Interrupt Enable 
8. Next, we have to enable the interrupt … not only in the timer module, but also in the 

NVIC (the Nested Vector Interrupt Controller, the Cortex M4’s interrupt controller). 
IntMasterEnable() is the master interrupt enable API for all interrupts. 
IntEnable enables the specific vector associated with Timer0A. TimerIntEnable, 
enables a specific event within the timer to generate an interrupt. In this case we are 
enabling an interrupt to be generated on a timeout of Timer 0A.  
 
► Add a line for spacing and type the next three lines of code after the previous ones: 

IntEnable(INT_TIMER0A); 
TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT); 
IntMasterEnable(); 

Timer Enable 
9. Finally we can enable the timer. This will start the timer and interrupts will begin 

triggering on the timeouts.  
 
► Add a line for spacing and type the following line of code after the previous ones: 

TimerEnable(TIMER0_BASE, TIMER_A); 

while(1) Loop 
10. The main loop of the code is simply an empty while(1) loop since the toggling of the 

GPIO will happen in the interrupt service routine.  
 
► Add a line for spacing and add the following lines of code after the previous ones: 

while(1) 
{ 
} 



 Lab05: Interrupts and the Timer 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 17 

Timer Interrupt Handler 
11. Since this application is interrupt driven, we must add an interrupt handler or ISR for the 

Timer. In the interrupt handler, we must first clear the interrupt source and then toggle 
the GPIO pin based on the current state. Just in case your last program left any of the 
LEDs on, the first GPIOPinWrite() call turns off both user LEDs. Writing a 2 to pin 
2 lights the D1 LED.  
 
► Add a line for spacing and add the following lines of code after the final closing brace 
of main(). 
 
void Timer0IntHandler(void) 
{ 
 // Clear the timer interrupt 
 TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT); 
 
 // Read the current state of the GPIO pin and 
 // write back the opposite state 
 if(GPIOPinRead(GPIO_PORTN_BASE, GPIO_PIN_1)) 
 { 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, 0); 
 } 
 else 
 { 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, 2); 
 } 

} 

► If your indentation looks wrong, select all the code by pressing Ctrl-A, right-click on 
the selected code and pick Source  Correct Indentation. 

 
  



Lab05: Interrupts and the Timer 

5 - 18Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

12. ► Click the Save button to save your work.  
 
Your code should look something like this: 
 

#include <stdint.h> 
#include <stdbool.h> 
#include "inc/tm4c1294ncpdt.h" 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/interrupt.h" 
#include "driverlib/gpio.h" 
#include "driverlib/timer.h" 
 
 
int main(void) 
{ 
 uint32_t ui32Period; 
 uint32_t ui32SysClkFreq; 
 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | 
SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);  
 
 GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 
 TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC); 
 
 ui32Period = ui32SysClkFreq/2; 
 TimerLoadSet(TIMER0_BASE, TIMER_A, ui32Period -1); 
 
 IntEnable(INT_TIMER0A); 
 TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT); 
 IntMasterEnable(); 
 
 TimerEnable(TIMER0_BASE, TIMER_A); 
 
 while(1) 
 { 
 } 
} 
 
void Timer0IntHandler(void) 
{ 
 // Clear the timer interrupt 
 TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT); 
 
 // Read the current state of the GPIO pin and 
 // write back the opposite state 
 if(GPIOPinRead(GPIO_PORTN_BASE, GPIO_PIN_1)) 
 { 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, 0); 
 } 
 else 
 { 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, 2); 
 } 
} 

 
 
If you’re having problems, this code is contained in main.txt in your project folder. 
 



 Lab05: Interrupts and the Timer 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 19 

Startup Code 

13. ► Open tm4c1294ncpdt_startup_ccs.c for editing. This file contains the 
vector table that was discussed during the presentation.  
 
► Open the file and look for the Timer 0 subtimer A vector.  
 
When that timer interrupt occurs, the NVIC will look in this vector location for the 
address of the ISR (interrupt service routine). That address is where the next code fetch 
will happen. 

► You need to carefully find the appropriate vector position and replace 
IntDefaultHandler with the name of your Interrupt handler (We suggest that you 
copy/paste this). In this case you will add Timer0IntHandler to the position with the 
comment “Timer 0 subtimer A” as shown below: 

 

You also need to declare this function at the top of this file as external. This is necessary 
for the compiler to resolve this symbol. 
 
► Find the line containing: 
  
extern void _c_int00(void);  
 
► and add: 
  
extern void Timer0IntHandler(void);   
 
right below it as shown below: 

 

By the way, the IntDefaultHandler handler will catch any “unintentional” 
interrupts that may occur. Since this handler is also a while(1) loop, you might want 
to consider changing it for your production system. 

► Click the Save button. 



Lab05: Interrupts and the Timer 

5 - 20Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

Pre-defined Name 
14. In order for the compiler to find the correct interrupt mapping it needs to know exactly 

which part is being used. We do that through a build option called a pre-defined name. 
 
► Right-click on lab05 in your Project Explorer and select Properties. 
 
► Under Build  ARM Compiler  Advanced Options  Predefined 
Symbols, add PART_TM4C1294NCPDT to the list as shown below.  

 

 

 

This property, along with the others that we’ve already seen, will already be set in the 
remaining labs in this workshop 

 

► Click OK.  



 Lab05: Interrupts and the Timer 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers5 - 21 

Compile, Download and Run The Code 
15. ► Click the Debug button on the menu bar to compile and download your 

application. If you have any issues, correct them, and then click the Debug 
button again. (You were careful about that interrupt vector placement, 
weren’t you?) After a successful build, the CCS Debug perspective will 
appear. Again, ignore any optimization advice. 
 
► Click the Resume button to run the program that was downloaded to the 
flash memory of your device. The blue LED should be flashing quickly on 
your LaunchPad board. 
 
When you’re done, ► click the Terminate button to return to the Editing 
perspective. 

 

Exceptions 
16. ► Find the line of code that enables the GPIO peripheral and comment it out as shown 

below: 

 

Now our code will be accessing the peripheral without the peripheral clock being 
enabled. This should generate an exception. 

17. ► Compile and download your application by clicking the Debug button on the menu 
bar. Save your changes when you’re prompted.  Click the Resume button to run the 
program.  

What?! The program seems to run just fine doesn’t it? The D1 LED is flashing. The 
problem is that we enabled the peripheral in our earlier run of the code … and we never 
disabled it or power cycled the part. 

18. ► Click the Terminate button to return to the editing perspective. Cycle the power on the 
board by removing and reconnecting the USB cable. This will return the peripheral 
registers to their default power-up states. 
 
The code with the enable line commented out is now running, but note that the D1 LED 
isn’t flashing. 

19. ► Just so you’re sure what’s going on, compile and download your application by 
clicking the Debug button on the menu bar, then click the Resume button to run the 
program. Again, the D1 LED should not be blinking.  

  



Lab05: Interrupts and the Timer 

5 - 22Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Interrupts & Timers 

20. ► Click the Suspend button to stop execution. You should see that 
execution has trapped inside the FaultISR() interrupt routine. All of 
the exception ISRs trap in while(1) loops in the provided code. That 
probably isn’t the behavior you want in your production code. 

21. ► Back in main.c, uncomment the line enabling the GPIO port. Compile, download 
and run your code to make sure everything works properly. When you’re done, click the 
Terminate button to return to the Editing perspective 

22. ► Close the lab05 project. Minimize CCS. 

Homework Idea: Investigate the Pulse-Width Modulation capabilities of the general 
purpose timer. Program the timer to blink the LED faster than your eye can see, usually 
above 30Hz and use the pulse width to vary the apparent intensity. Write a loop to make 
the intensity vary periodically. 

 

   You’re done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 1 

ADC12 and the Educational BoosterPack 

Introduction 
This chapter will introduce you to the use of the analog to digital conversion (ADC) peripheral on 
the TM4C1294NCPDT. The lab will use the ADC and the sequencer to sample the analog 
accelerometers on the Educational BoosterPack. 

 

Agenda

ADC ...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

5 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

Chapter Topics 
ADC12 and the Educational BoosterPack ................................................................................................5-1 

Chapter Topics .........................................................................................................................................5-2 

ADC12 .....................................................................................................................................................5-3 

Sample Sequencers and Educational BoosterPack ..................................................................................5-4 

Lab06: ADC12 .........................................................................................................................................5-5 
Objective .............................................................................................................................................5-5 
Procedure .............................................................................................................................................5-6 
Hardware averaging ........................................................................................................................... 5-15 
Graphing ............................................................................................................................................ 5-16 
Calling APIs from ROM .................................................................................................................... 5-17 

 



 ADC12 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 3 

ADC12 
 

Analog-to-Digital Converter

 The TM4C1294NCPDT contains two 12-bit 
ADC modules that can be used to convert 
continuous analog voltages to discrete 
digital values

 Each ADC module operates independently 
and can:
• Execute different sample sequences
• Sample any of the shared analog input 

channels
• Generate interrupts & triggers

ADC
VIN VOUT

Input 
Channels

Triggers

Interrupts/ 
Triggers

Interrupts/ 
Triggers

20

V I
N

V O
U

T

000
001

011
010

100
101

t

t
ADC1

ADC0

Features...  

 

TM4C1294NCPDT ADC Features

 Single ended & differential input 
configurations

 On-chip temperature sensor

 Maximum sample rate of two million 
samples/second (2MSPS). 

 Uses VREFA+ and GNDA pins for 
voltage reference

 4 programmable sample conversion 
sequencers per ADC

 Separate analog power & ground pins

 Flexible trigger control
• Controller/ software
• Timers
• Analog comparators
• PWM
• GPIO

 2x to 64x hardware averaging

 8 Digital comparators per ADC + 2 
Analog comparators per device

 DMA enabled

ADC
VIN VOUT

Sequencers...

The microcontroller has two ADC modules sharing 20 input channels. 
Each module has:

 

 



Sample Sequencers and Educational BoosterPack 

5 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

Sample Sequencers and Educational BoosterPack 
 

ADC Sample Sequencers

 Tiva TM4C ADC’s collect and sample data using programmable sequencers.
 Each sample sequence is a fully programmable series of consecutive (back-to-back) 

samples that allows the ADC module to collect data from multiple input sources without 
having to be re-configured.

 Each ADC module has 4 sample sequencers that control sampling and data capture.
 All sample sequencers are identical except for the number of samples they can capture 

and the depth of their FIFO.
 To configure a sample sequencer, the following information is required:

• Input source for each sample
• Mode (single-ended, or differential) for each sample
• Interrupt generation on sample completion for each sample
• Indicator for the last sample in the sequence

 Each sample sequencer can transfer data 
independently through a dedicated DMA channel.

Sequencer Number of 
Samples Depth of FIFO

SS 3 1 1
SS 2 4 4
SS 1 4 4
SS 0 8 8

Educational Boosterpack ...  

 

Educational BoosterPack MK II

 Part #: EDUBOOSTMKII
 MSRP: $34.95
 Feature List:

 128x128pixel color TFT display (SPI)
 3 axis accelerometer (analog)
 TI TMP006 IR temperature sensor 

(I2C address 0x40)
 TI Ambient Light Sensor 

(I2C address 0x44)
 RGB LED (GPIO)
 Microphone (analog)
 Buzzer (GPIO)
 Servo connector (PWM or GPIO)
 2-axis joystick (analog)
 Push buttons (GPIO)

Lab...  

 



 Lab06: ADC12 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 5 

Lab06: ADC12 

Objective 
In this lab we’ll use the ADC12 and sample sequencers to measure the data from the Educational 
BoosterPack’s analog accelerometers. We’ll use Code Composer to display the changing values. 

 

Lab06: ADC12

 Connect Educational BoosterPack to 
LaunchPad Board

 Enable and configure ADC and sequencer
 Measure and display values from 

the accelerometers on the Educational 
BoosterPack

 Add hardware averaging
 Use CCS graphing features
 Use ROM peripheral driver library calls and 

note code size difference
Agenda ...

USB Emulation
Connection

 

 

 

 

 

 

 

 



Lab06: ADC12 

5 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

Procedure 

Import la06 Project 
1. We have already created the lab06 project for you with an empty main.c, a startup file 

and all necessary project and build options set.  
 
► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish.  
Make sure that the “Copy projects into workspace” checkbox is unchecked. 

 

 
  



 Lab06: ADC12 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 7 

Header Files 
2. ► Add the following lines into main.c to include the header files needed to access the 

TivaWare APIs:  
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/debug.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/gpio.h" 
#include "driverlib/adc.h" 
 

adc.h: definitions for using the ADC driver  

main() 
 

3. ► Set up the main() routine by adding the three lines below: 
 
int main(void) 
{ 
} 
 

4. The following definition will create an array that will be used for storing the data read 
from the ADC FIFO. It must be as large as the FIFO for the sequencer in use.  We will be 
using sequencer 1 which has a FIFO depth of 4.  If another sequencer was used with a 
smaller or deeper FIFO, then the array size would have to be changed. For instance, se-
quencer 0 has a depth of 8.  
 
► Add the following line of code as the first line of code in main(): 
 
uint32_t ui32ACCValues[4]; 
 

5. We’ll need some variables for displaying to values from the accelerometer sensor data. 
The first variable is for storing the average of the temperature. The remaining variables 
are used to store the temperature values for Celsius and Fahrenheit. All are declared as 
'volatile' so that each variable cannot be optimized out by the compiler and will be avail-
able to the 'Expression' or 'Local' window(s) at run-time.  
 
► Add these lines after the one in step 4: 
 
volatile uint32_t ui32AccX; 
volatile uint32_t ui32AccY; 
volatile uint32_t ui32AccZ; 
 

  



Lab06: ADC12 

5 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

6. Set up the system clock again to run at 120MHz. ► Add a line for spacing and add this 
single line after the last ones: 
 
SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
SYSCTL_CFG_VCO_480), 120000000); 

7. Later, we’re going to connect the Educational BoosterPack to BoosterPack Connector 1 
(the one furthest from the Ethernet connector) on the Connected LaunchPad. We could 
have picked connector 2 … it was a coin-toss. According to the schematics, that will 
connect the following signals from left to right: 
 

BoosterPack 
Function 

BoosterPack 
Connector 

LaunchPad 
Pin/Function 

Configuration 
Parameter 

ACC_XOUT J3-3 PE0 / Analog Input 3 ADC_CTL_CH3 

ACC_YOUT J3-4 PE1 / Analog Input 2 ADC_CTL_CH2 

ACC_ZOUT J3-5 PE2 / Analog Input 1 ADC_CTL_CH1 

 
We can enable both ADC0 and GPIO Port E ► Add a line for spacing and add these 
lines after the last one: 
 
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);  

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE); 
 

8. Next we need to configure the three GPIO pins to be analog inputs: Leave a line for 
spacing and add this one after the last: 
 
GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 ); 

9. For this lab, we’ll allow the ADC12 to run at its default 1MSPS rate from the 16MHz 
ADC clock. Reprogramming the sampling rate and input clock is left as an exercise for 
the student. The reference voltage will remain configured as the internal default. 
 
Next, we can configure the ADC sequencer. We want to use ADC0, sample sequencer 1, 
we want the processor to trigger the sequence and we want to use the highest priority.  
 
► Add a line for spacing and add this line of code: 

ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0); 

 
  



 Lab06: ADC12 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 9 

10. Now we need to configure three steps in the ADC sequencer. The first and second 
configuration steps will instruct the ADC to sample the X and Y accelerometer outputs 
(see the table in step 7 above). The third configuration step instructs the ADC to sample 
the Z output, generate an interrupt and also tells the sequencer that this is the final sample 
in the sequence. Just to keep things simple we won’t actually be interrupting the code, 
just using the bit to indicate a ready state. 
 
► Add the following three lines after the last: 

 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_CH3); 
 ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_CH2); 

ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_CH1|ADC_CTL_IE|ADC_CTL_END); 

 
11. Now we can enable ADC sequencer 1. This is the last step to ready the sequencer and 

ADC before we start them. 
 
► Add a line for spacing and then add this one: 
 
ADCSequenceEnable(ADC0_BASE, 1); 

12. Still within main(), add a while loop to the bottom of your code.  
 
► Add a line for spacing and enter these three lines of code: 
 
while(1) 
{ 
} 

13. ► Save your work.  
 
As a sanity-check, click on the Build button. If you are having issues, 
check the code on the next page: 

  



Lab06: ADC12 

5 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/debug.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/gpio.h" 
#include "driverlib/adc.h" 
 
int main(void) 
{ 
 uint32_t ui32ACCValues[4]; 
 volatile uint32_t ui32AccX; 
 volatile uint32_t ui32AccY; 
 volatile uint32_t ui32AccZ; 
 
 SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0); 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE); 
 
 GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 ); 
 
 ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0); 
 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_CH3); 
 ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_CH2); 
 ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_CH1|ADC_CTL_IE|ADC_CTL_END); 
 
 ADCSequenceEnable(ADC0_BASE, 1); 
 
 while(1) 
 { 
 } 
} 

When you build this code, may get a warning that the ui32ACCX, Y and Z values were 
created but never used. Ignore this warning for now, we’ll add the code to use this array 
later. 

Inside the while(1) Loop 
14. The indication that the sequencer and ADC processes are complete will be the ADC 

interrupt status flag. It’s always good programming practice to make sure that the flag is 
cleared before writing code that depends on it. This step will also clear the bit each time 
our code completes the loop. 
 
► Add the following line as your first line of code inside the while(1) loop: 

ADCIntClear(ADC0_BASE, 1); 
  



 Lab06: ADC12 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 11 

15. Now we can trigger the ADC conversion with software. ADC conversions can be 
triggered by many other sources.  
 
► Add the following line directly after the last: 
 
ADCProcessorTrigger(ADC0_BASE, 1); 

16. We need to wait for the conversion to complete. Obviously, a better way to do this would 
be to use an actual interrupt, rather than waste CPU cycles waiting, but this is intended to 
be a simple example of the ADC and sequencer in action.  
 
► Add a line for spacing and then add the following three lines of code: 

while(!ADCIntStatus(ADC0_BASE, 1, false)) 
{ 
} 

17. When code execution exits the loop in the previous step, we know that the conversion is 
complete and that we can read the ADC value from the ADC Sample Sequencer 1 FIFO. 
The function we’ll be using copies data from the specified sample sequencer output FIFO 
to a buffer in memory. The number of samples available in the hardware FIFO are copied 
into the buffer, which must be large enough to hold that many samples. This will only 
return the samples that are presently available, which might not be the entire sample 
sequence if you attempt to access the FIFO before the conversion is complete.  
 
► Add a line for spacing and add the following line after the last: 
 
ADCSequenceDataGet(ADC0_BASE, 1, ui32ACCValues); 
 

18. ► Add these final three lines to move the values into some variables with more friendly 
sounding names: 
 

 ui32AccX = ui32ACCValues[0]; 
 ui32AccY = ui32ACCValues[1]; 
 ui32AccZ = ui32ACCValues[2]; 

  



Lab06: ADC12 

5 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

19. ► Save your work and compare it with our code below: 
 

#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/debug.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/gpio.h" 
#include "driverlib/adc.h" 
 
int main(void) 
{ 
 uint32_t ui32ACCValues[4]; 
 volatile uint32_t ui32AccX; 
 volatile uint32_t ui32AccY; 
 volatile uint32_t ui32AccZ; 
 
 SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0); 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE); 
 
 GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 ); 
 
 ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0); 
 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_CH3); 
 ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_CH2); 
 ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_CH1|ADC_CTL_IE|ADC_CTL_END); 
 
 ADCSequenceEnable(ADC0_BASE, 1); 
 
 while(1) 
 { 
  ADCIntClear(ADC0_BASE, 1); 
  ADCProcessorTrigger(ADC0_BASE, 1); 
  while(!ADCIntStatus(ADC0_BASE, 1, false)) 
  { 
  } 
  ADCSequenceDataGet(ADC0_BASE, 1, ui32ACCValues); 
  ui32AccX = ui32ACCValues[0]; 
  ui32AccY = ui32ACCValues[1]; 
  ui32AccZ = ui32ACCValues[2]; 
 } 

} 

 
You can also find this code in main1.txt in your project folder. 
  



 Lab06: ADC12 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 13 

Connect the Educational 
BoosterPack 

20. Disconnect the USB cable from your 
LaunchPad and carefully connect the 
Educational BoosterPack as shown to 
BoosterPack connector 1. Connector 1 is 
furthest from the Ethernet jack. 
Reconnect your USB cable. If the LCD 
backlight fails to illuminate, check your 
connection. 

Build and Run the Code 
21. ► Compile and download your 

application by clicking the Debug button 
on the menu bar. If you have any issues, 
correct them, and then click the Debug 
button again. After a successful build, the 
CCS Debug perspective will appear.  

22. ► Click on the Expressions tab (upper 
right). Remove all expressions (if there are any) from the Expressions pane by right-
clicking inside the pane and selecting Remove All. 
 
► Find the ui32AccX, ui32AccY and ui32AccZ  variables in the last three lines of 
code. Double-click on each variable to highlight it, then right-click on it, select Add 
Watch Expression and then click OK. Do this for all three variables, one at the time.  
 

 
 

Breakpoint 
Let’s set up the debugger so that it will update our watch windows each time the code 
runs. Since there’s no line of code after the variables are updated, we’ll choose the one 
right before them and display the result of the last calculation. 

23. ► Set a breakpoint on the first 
line of code in the while(1) 
loop by double-clicking in the 
blue area left of the line num-
ber.  



Lab06: ADC12 

5 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

24. ► Right-click on the breakpoint symbol and select Breakpoint Properties … 
Find the Action line and click on the Remain Halted value.  
 
► Click on the down-arrow that appears on the right and select Refresh All 
Windows from the list.  ► Click OK. 

 

 
 

 

25. ► Click the Resume button to run the program. If the Watch window does 
not immediately start updating, click the Suspend button and then the 
Resume button again. 

You should see the measured accelerometer values of x, y and z changing up and 
down slightly. Changed values from the previous measurement are highlighted in yellow. 
Tilt the boards back and forth. The directions of the axes are printed on the Educational 
Boosterpack just left of button S1. You should quickly see the results on the display.  

 

► Note the range over which the variables change (not the rate of change, the amount). 
Our ui32AccX value changed between approximately 2020 and 2030 when the board was 
level. This can be the result of sensor noise, resolution or vibration. It would be a pretty 
straightforward job to write some low-pass filter code to average the data, but the ADC 
module already has this feature in hardware. Let’s try that. 

  



 Lab06: ADC12 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 15 

Hardware averaging 
26. ► Click the Terminate button to return to the CCS Edit perspective.  

 
 

27. ► Find the system peripheral initialization section of your code as shown below: 
 

 
 
Right after the SysCtlPeripheralEnable() APIs, ► add the following line: 
 
ADCHardwareOversampleConfigure(ADC0_BASE, 64); 
 
Your code will look like this: 
 

 
 
The last parameter in the API call is the number of samples to be averaged. This number 
can be 2, 4, 8, 16, 32 or 64. Our selection means that each sample in the ADC FIFO will 
be the result of 64 measurements being averaged together.  
 

28. ► Build and download the code to your LaunchPad board. You may need to replace the 
breakpoint as shown in step 22 if you cheated and loaded the solution. Run the program 
and observe the variables in the Expressions window. You should notice that the range 
over which it is changing is much smaller than before. Our ui32AccX value now changed 
between approximately 2026 and 2029 when the board was level. 
 
This code is saved in main2.txt in your project folder. 

  



Lab06: ADC12 

5 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

Graphing  
29. Watching the variables change in the Expressions view isn’t necessarily the 

easiest way to visualize your data. Code Composer includes very powerful 
graphing features that allow you to see data, FFTs and even images.  
 
► Halt code execution by clicking on the Suspend button. 
 

30. ► On the CCS menu bar, 
click on Tools  Graph  
Single Time. When the 
Graph Properties dialog 
appears, make the selections 
shown on the right. Click 
OK. Your graph will appear 
at the bottom of the screen. 

► Click the Resume button 
to restart your code. 

Since the graph 
automatically scales 
vertically, the display will 
look pretty wild while the 
noise is graphing. Tilt the 
board left and right and 
increase the maximum 
values of the vertical axis. 

If you like, you can add the 
other two accelerometer 
readings in order to see them 
change simultaneously. 

 
 
 
 
 

  



 Lab06: ADC12 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 17 

Calling APIs from ROM 
31. Before we make any changes, let’s see how large the code section is for our existing 

project.  
 
► Click the Terminate button to return to the CCS Edit perspective.  
 
► In the Project Explorer pane, expand the Debug folder under the lab06 project. 
Double-click on lab06.map. 
 

32. When you build your project, CCS compiles and assembles your source files into 
relocatable object files (.obj). Then, in a multi-pass process, the linker creates an output 
file (.out) using the device’s memory map as defined in the linker command (.cmd) 
file along with any library (.lib) files.. The build process also creates a map file (.map) 
that explains how large the sections of the program are and where they were placed in the 
memory map. 
 
► In the lab06.map file, find the SECTION ALLOCATION MAP and look for 
.text like shown below. The .text section is where the linker positions your code. 
 

 
 

 
The length of our .text section is 8ach. ► Check yours and write it here: ________ 
 

33. Remember that the Tiva C Series device on-board ROM contains the Peripheral Driver 
Library. Rather than adding those library calls to our flash memory, we can call them 
from ROM. This will reduce the code size of our program in flash memory. In order to do 
so, we need to add support for the ROM in our code. 
 
► In main.c, add the following include statement as the last ones in your list of 
includes at the top of your code: 
 
#define TARGET_IS_TM4C129_RA1 
#include "driverlib/rom.h" 
 
The TARGET_IS… definition will allow the linker to resolve the API’s locations in 
ROM.  



Lab06: ADC12 

5 - 18 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

34. ► Now add ROM_ to the beginning of every driverLib API call as shown below in 
main.c: 
 

#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/debug.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/gpio.h" 
#include "driverlib/adc.h" 
#define TARGET_IS_TM4C129_RA1 
#include "driverlib/rom.h" 
 
 
int main(void) 
{ 
 uint32_t ui32ACCValues[4]; 
 volatile uint32_t ui32AccX; 
 volatile uint32_t ui32AccY; 
 volatile uint32_t ui32AccZ; 
 
 ROM_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
SYSCTL_CFG_VCO_480), 120000000); 
 
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0); 
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE); 
 ROM_ADCHardwareOversampleConfigure(ADC0_BASE, 64); 
 
 ROM_GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 ); 
 
 ROM_ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0); 
 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_CH3); 
 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_CH2); 
 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_CH1|ADC_CTL_IE|ADC_CTL_END); 
 
 ROM_ADCSequenceEnable(ADC0_BASE, 1); 
 
 while(1) 
 { 
  ROM_ADCIntClear(ADC0_BASE, 1); 
  ROM_ADCProcessorTrigger(ADC0_BASE, 1); 
  while(!ROM_ADCIntStatus(ADC0_BASE, 1, false)) 
  { 
  } 
  ROM_ADCSequenceDataGet(ADC0_BASE, 1, ui32ACCValues); 
  ui32AccX = ui32ACCValues[0]; 
  ui32AccY = ui32ACCValues[1]; 
  ui32AccZ = ui32ACCValues[2]; 
 } 
} 

 

If you’re having issues, this code is saved in your lab folder as main3.txt. 
  



 Lab06: ADC12 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 5 - 19 

Build, Download and Run Your Code 
35. ► Make sure that the breakpoint is still properly placed.  

 
36. ► Click the Debug button to build and download your code to flash memory. When the 

process is complete, click the Resume button to run your code. When you’re sure that 
everything is working correctly, click the Terminate button to return to the CCS Edit 
perspective. 
 

37. Check the SECTION ALLOCATION MAP in lab06.map. Our results are shown below: 

 

The original length of our .text section was 8ach. The new size is 3bch.  

This code takes less than half the flash memory that the previous one did.  
 
Write your results here: ________ 

38. When you’re finished, close the graph, close the lab06 project and minimize Code 
Composer Studio. Leave the Educational BoosterPack connected to your LaunchPad 
board. 

 

   You’re done. 

 

 

 

 

 

 

 



Lab06: ADC12 

5 - 20 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - ADC12 & Edu. BP 

 

 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7 - 1 

PWM and QEI 

Introduction 
Pulse width modulation or PWM is a method of digitally encoding analog signal levels. It is used 
extensively in servo positioning, motor control, power supplies and lighting control. The QEI is 
used to determine position and velocity information. 

 

Agenda

PWM ...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

7 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 

Chapter Topics 
PWM and QEI ............................................................................................................................................7-1 

Chapter Topics .........................................................................................................................................7-2 

Pulse Width Modulation ..........................................................................................................................7-3 

TM4C1294NCPDT PWM ........................................................................................................................7-4 

PWM Generator and Control Block Features .........................................................................................7-5 

Block Diagrams .......................................................................................................................................7-6 

QEI Module ..............................................................................................................................................7-7 

Lab 07: PWM ...........................................................................................................................................7-9 
Objective .............................................................................................................................................7-9 

 



 Pulse Width Modulation 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7 - 3 

Pulse Width Modulation 
 

Pulse Width Modulation

Pulse Width Modulation (PWM) is a method of digitally encoding 
analog signal levels. High-resolution digital counters are used to 
generate a square wave of a given frequency, and the duty cycle 
of that square wave is modulated to encode the analog signal.
Typical applications for PWM are switching power supplies, 
motor control, servo positioning and lighting control.

Features ...  

 



TM4C1294NCPDT PWM 

7 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 

TM4C1294NCPDT PWM  
 

TM4C1294NCPDT PWM Module
The TM4C1294NCPDT has one PWM module with:
 four PWM generator blocks 
 a control block which determines the polarity of the signals and which signals 

are sent to the pins

Each PWM generator block produces:
 Two independent output signals of the same frequency or …
 A pair of complementary signals with dead-band generation (for H-bridge circuit protection )
 For a total of eight outputs
Each PWM Generator has:
 Four hardware fault inputs for low-latency shutdown and motor protection
 One 16-bit counter:

• Down or Up/Down count modes
• Output frequency controlled by a 16-bit load value
• Load value updates can be synchronized
• Produces output signals at zero and load value

Generator Features …  

 



 PWM Generator and Control Block Features 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7 - 5 

PWM Generator and Control Block Features 
 

PWM Generator Features

Additionally, each PWM Generator has:
 Two PWM comparators

• Comparator value updates can be synchronized
• Produces output signals on match

 PWM signal generator
• Output PWM signal is constructed based on actions taken as a result of the 

counter and PWM comparator output signals
• Produces two independent PWM signals

 Dead-band generator
• Produces two PWM signals with programmable dead-band delays suitable for 

driving a half-H Bridge
• Can be bypassed, leaving input PWM signals unmodified

 Can directly initiate an ADC sample sequence

Control Block Features …  

 

PWM Control Block

PWM module block diagram …

The PWM Control Block has the following options:
 PWM output enable of each PWM signal
 Optional output inversion of each PWM signal (polarity control)
 Optional fault handling for each PWM signal
 Synchronization of timers in the PWM generator blocks
 Synchronization of timer/comparator updates across the PWM generator blocks
 Extended PWM synchronization of timer/comparator updates across the 

PWM generator blocks
 Interrupt status summary of the PWM generator blocks
 Extended PWM fault handling, with multiple fault signals, programmable polarities 

and filtering
 PWM generators can be operated independently or synchronized with other generators

 

 



Block Diagrams 

7 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 

Block Diagrams 
 

PWM Module Block Diagram

PWM generator block diagram …  

 

PWM Generator Block Diagram

QEI …  
  



 QEI Module 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7 - 7 

QEI Module 
 

Quadrature Encoder Interface (QEI) Module Features

Block diagram …

The QEI module interprets the signals produced by a quadrature encoder 
wheel to integrate position over time and determine direction of rotation.
Also, it can create a running estimate of the encoder wheel velocity.

The TM4C1294NCPDT microcontroller has one QEI module 
with the following features:
 Position integrator that tracks the encoder position
 Programmable noise filter on the inputs
 Velocity capture using built-in timer
 Position, velocity and timer registers are 32-bit
 The QEI input rate may be as high as 

1/4 of the processor frequency 
 Interrupts are generated on:

• Index pulse
• Velocity-timer expiration
• Direction change
• Quadrature error detection

A
B

 

 

QEI Module Block Diagram

Lab …

 The index (IDX) signal can be used to reset the position counter 
when tracking longer events like conveyor belts

 
  



QEI Module 

7 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 

 

 



 Lab 07: PWM 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7 - 9 

Lab 07: PWM 

Objective 
In this lab you’ll use the PWM on the Tiva C Series device to control the illumination of the blue 
segment of the RGB LED on the Educational BoosterPack. The PWM would support varying all 
three LEDs, but in the interest of simplicity, we will just vary one. 

 

Lab07: PWM

Agenda ...

 Configure the PWM output, frequency 
and duty cycle

 Add code to control the illumination of 
the blue LED

 Test

USB Emulation
Connection

RGB
LED

 

 

 

 

 

 

 

 

 

 

  



Lab 07: PWM 

7 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 

  

 
Procedure 

1. We have already created the lab07 project for you with an empty main.c, a startup file 
and all necessary project and build options set.  
 
► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish.  
 
Make sure that the “Copy projects into workspace” checkbox is unchecked. 

 

  



 Lab 07: PWM 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7 - 11 

2. ► Open main.c and add (or copy/paste) the following lines to the top of the file: 
 
#include <stdint.h> 
#include <stdbool.h> 
#include <math.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/fpu.h" 
#include "driverlib/gpio.h" 
#include "driverlib/debug.h" 
#include "driverlib/pwm.h" 
#include "driverlib/pin_map.h" 
#include "inc/hw_gpio.h" 

 
There are a couple of extra includes here: 
 
math.h – needed because we’ll be using a sine function to vary the LED 
fpu.h    – some of the math is floating point, so this is needed 
pwm.h   – to support the calls to the PWM APIs 
 

3. In order for the LED to not appear to blink, it needs the blink faster than 20 or 30Hz. 
We’ll pick 100Hz. The STEPS definition is the number of light levels the loop will 
calculate. You can figure out what APP_PI is for yourself. The trailing “f” casts it as a 
floating point number.  

► Skip a line and add the following definitions right below the includes: 
 
#define PWM_FREQUENCY 100| 
#define APP_PI        3.1415926535897932384626433832795f 
#define STEPS       256 

main() 
 

4. ► Skip a line and enter the following lines after the error checking routine as a template 
for main(). 
 
int main(void) 
{ 
 
} 
 

  



Lab 07: PWM 

7 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 

5. The following variables will be used to program the PWM. They are defined as “volatile” 
to guarantee that the compiler will not eliminate them, regardless of the optimization set-
ting.  
 
► Insert these lines as the first in main() :  
 

 volatile uint32_t ui32Load;  // PWM period 
 volatile uint32_t ui32BlueLevel;  // PWM duty cycle for blue LED 
 volatile uint32_t ui32PWMClock;  // PWM clock frequency 
 volatile uint32_t ui32SysClkFreq; // Value returned by SysClockFreqSet() 
 volatile uint32_t ui32Index;  // Counts the calculation loops 
 float fAngle;     // Value for sine math (radians) 
 

6. Let’s run the CPU again at 120MHz. ► Leave a line for spacing and add this line after 
the previous ones in main(). 
 
ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN 
| SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480), 120000000);  
 

7. We need to enable the PWM0 and GPIOG modules (for the PWM output on PG0) and 
the GPIOF module (to make sure the red and green LEDs are off  
► Skip a line and add the following lines of code after the last: 
 
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG); 
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); 
SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM0); 
 

8. Let’s make sure that the red and green LEDs are off. They are on PF2 and PF3.  
► Skip a line and add the following lines of code after the last: 
 
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2|GPIO_PIN_3); 
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2|GPIO_PIN_3, 0x00); 
 

9. Now let’s set the PWM clock. The SysClk frequency is 120MHz. Let’s slow the PWM 
clock down as far as it will go (/64). It’s important to make sure your choice of PWM 
clock matches the application and range of values you want to run.  
► Skip a line and add this line after the last: 
 
PWMClockSet(PWM0_BASE,PWM_SYSCLK_DIV_64); 
 

10. Now configure the PG0 pin to PWM. ► Skip a line and add these two lines after the last: 
 
GPIOPinConfigure(GPIO_PG0_M0PWM4); 
GPIOPinTypePWM(GPIO_PORTG_BASE, GPIO_PIN_0); 
 

11. Next we‘ll calculate the PWM clock and load values. The PWM clock is the SysClk/64. 
The load value is the number of PWM clock cycles per the selected output period 
(100Hz). Since the PWM reloads at zero, we subtract one.► Skip a line and add these 
two after the last:  

 
ui32PWMClock = ui32SysClkFreq / 64;   // 120MHz/64 
ui32Load = (ui32PWMClock / PWM_FREQUENCY) - 1; // 1875000/100 

  



 Lab 07: PWM 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7 - 13 

12. This code will complete the PWM configuration. Line 1 sets PWM 0, generator 2 in 
count-down mode. Line 2 sets the period as calculated earlier. This should be 18749. 
Line 3 configures the output pin and a preliminary duty cycle. We’ll change this later. 
Line 4 selects the desired output and line 5 enables the PWM generator. 
► Skip a line and add this code below the last: 

 

PWMGenConfigure(PWM0_BASE, PWM_GEN_2, PWM_GEN_MODE_DOWN); 
PWMGenPeriodSet(PWM0_BASE, PWM_GEN_2, ui32Load); 
PWMPulseWidthSet(PWM0_BASE, PWM_OUT_4, ui32Load/2); 
PWMOutputState(PWM0_BASE, PWM_OUT_4_BIT, true); 
PWMGenEnable(PWM0_BASE, PWM_GEN_2); 

 
13. Now that the PWM is configured and enabled, all that is necessary is to change the pulse 

width in order the vary the LED intensity. The code below first calculates the angle (in 
radians) based on the index. The next step shifts the sine value up by 1 (to avoid negative 
values) and multiples it by a little less than ½ the number of PWM clock cycles per 
period. Lowering the maximum value prevents the possibility of a result larger than 
ui32Load. Then we can set the pulse width for output 4, adding 1 to prevent a zero 
value. The if construct makes sure the index stays between 0 and 255. Finally the delay 
forces the entire 256 iterations to take about 3 seconds so that it’s visually pleasant. 
► Skip a line and add the following code after the last inside the while(1) loop. 
 
 
ui32Index = 0; 

 
 while(1) 
 { 
  fAngle = ui32Index * (2.0f * APP_PI/STEPS); 
  ui32BlueLevel = (uint32_t) (9370.0f * (1 + sinf(fAngle))); 
  PWMPulseWidthSet(PWM0_BASE, PWM_OUT_4, ui32BlueLevel + 1); 
  ui32Index++; 
  if (ui32Index == (STEPS - 1)) 
  { 
   ui32Index = 0; 
  } 
  SysCtlDelay(ui32SysClkFreq/(STEPS));    
   
 } 
 

 
► Save your changes. 
 

 

Your final code should look something like the next page. If you’re having issues, you 
can find this code in your lab07 project as main.txt. 

  



Lab 07: PWM 

7 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 

#include <stdint.h> 
#include <stdbool.h> 
#include <math.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/fpu.h" 
#include "driverlib/gpio.h" 
#include "driverlib/debug.h" 
#include "driverlib/pwm.h" 
#include "driverlib/pin_map.h" 
#include "inc/hw_gpio.h" 
 
 
#define PWM_FREQUENCY  100 
#define APP_PI         3.1415926535897932384626433832795f 
#define STEPS  256 
 
int main(void) 
{ 
 volatile uint32_t ui32Load; 
 volatile uint32_t ui32BlueLevel; 
 volatile uint32_t ui32PWMClock; 
 volatile uint32_t ui32SysClkFreq; 
 volatile uint32_t ui32Index; 
 float fAngle; 
 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | 
SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG); 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM0); 
 
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2|GPIO_PIN_3); 
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2|GPIO_PIN_3, 0x00);  
 
 PWMClockSet(PWM0_BASE,PWM_SYSCLK_DIV_64);       
 
 GPIOPinConfigure(GPIO_PG0_M0PWM4); 
 GPIOPinTypePWM(GPIO_PORTG_BASE, GPIO_PIN_0); 
 
 ui32PWMClock = ui32SysClkFreq / 64; 
 ui32Load = (ui32PWMClock / PWM_FREQUENCY) - 1;      
 
 PWMGenConfigure(PWM0_BASE, PWM_GEN_2, PWM_GEN_MODE_DOWN); 
 PWMGenPeriodSet(PWM0_BASE, PWM_GEN_2, ui32Load); 
 
 PWMPulseWidthSet(PWM0_BASE, PWM_OUT_4, ui32Load/2); 
 PWMOutputState(PWM0_BASE, PWM_OUT_4_BIT, true); 
 PWMGenEnable(PWM0_BASE, PWM_GEN_2); 
 
 ui32Index = 0; 
 
 while(1) 
 { 
  fAngle = ui32Index * (2.0f * APP_PI/STEPS); 
  ui32BlueLevel = (uint32_t) (9370.0f * (1 + sinf(fAngle)));  
  PWMPulseWidthSet(PWM0_BASE, PWM_OUT_4, ui32BlueLevel + 1);  
  ui32Index++; 
  if (ui32Index == (STEPS - 1)) 
  { 
   ui32Index = 0; 
  } 
  SysCtlDelay(ui32SysClkFreq/(STEPS));       
 } 
} 

 
 
 



 Lab 07: PWM 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 7 - 15 

Build and Run the Code 
14. Make sure your LaunchPad is connected and that Educational BoosterPac is 

properly installed. ► Compile and download your application by clicking 
the Debug button.  Correct any errors. 

15. ► Click the Resume button to run the program. You will see the blue Led 
on the Educational BoosterPack dimming and brightening over about 3 
seconds. 

16. ► When you’re finished, click the Terminate button to return to the Editing 
perspective, close the lab07 project and minimize Code Composer Studio. 

 

 

Homework: Expand on this code to vary all three LEDs. If you look in the ek-tm4c123gxl 
folder in TivaWare you’ll find an example that does something like this. A part of the code 
performs a “color wheel” by mixing and matching all three LEDs to produce many different 
colors. Give this a try. 

 
 

 

   You’re done with Lab07 

 

 
  



Lab 07: PWM 

7 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - PWM & QEI 

 

 

 

 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 1 

I2C & SensorLib 

Introduction 
I2C or Inter-Integrated Circuit is a multi-master serial computer bus, mainly used for connecting 
low speed peripherals to a microcontroller. One of the most popular uses today is to connect 
environmental sensors that measure position, temperature, humidity, light, etc. to a 
microcontroller for use in control, logging, gaming and other uses. 

With that in mind, TI created a SensorHub BoosterPack with a number of different sensors 
connected to a single I2C bus. A Sensor Library was created to make it easy to communicate with 
those sensors. 

The Educational BoosterPack has two I2C sensors; the TI TMP006 Infrared Temperature sensor 
(address 0x40) and the TI OPT3001 ambient light sensor (address 0x44).  

In this chapter we’ll learn about the I2C hardware on the TM4C1294NCPDT and we’ll take a 
look at code to communicate with the ambient light sensor on the Educational BoosterPack. Then 
we’ll use a Code Composer tool called GUI Composer to visualize the sensor data. 

 

Agenda

I2C ...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 
 

 



Chapter Topics 

8 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

Chapter Topics 
I2C & SensorLib .........................................................................................................................................8-1 

Chapter Topics .........................................................................................................................................8-2 

TM4C1294NCPDT I2C Ports ...................................................................................................................8-3 

SensorHub ................................................................................................................................................8-4 

Sensor Library .........................................................................................................................................8-5 

GUI Composer .........................................................................................................................................8-7 

Lab08: I2C and Sensor Library Usage .....................................................................................................8-9 
Objective .............................................................................................................................................8-9 
Procedure ........................................................................................................................................... 8-10 

 



 TM4C1294NCPDT I2C Ports 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 3 

TM4C1294NCPDT I2C Ports 
 

TM4C1294NCPDT I2C Ports

Four independent 
“Inter-Integrated Circuit” ports

Each port supports:
 Transmit or Receive as Master 

or Slave
 Simultaneous master and slave 

operation
 8-entry TX and RX FIFOs
 100, 400, 1000 & 3330 Kbps
 Glitch suppression
 DMA enabled

Each slave device has
its own unique address

Tiva Master

SensorHub ...  

 

 

 

 

 

 



SensorHub 

8 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

SensorHub 
 

 Sensor library was originally written to support the SensorHub
 All sensors connected to I2C bus:

• TI TMP006 no contact temperature sensor (0x41)
• Bosch BMPP180 ambient pressure sensor (0x77)
• Invensense MPU-9150 9-axis motion sensor (0x68)
• Intersil ISL29023 ambient & infrared light sensor (0x44)
• Sensirion SHT21 humidity & ambient temperature sensor (0x40)

 BoosterPack XL connectors 
(compatible with earlier BoosterPack 
connectors)

 EM board connectors 
(for TI’s wireless RF evaluation kits)

 2 buttons & 2 LEDs
 MSRP $49.99 USD 

Tiva™ SensorHub BoosterPack Features

BOOSTXL-SENSHUB

Sensor Library ...  

 

 

 

 

 

 



 Sensor Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 5 

Sensor Library 
 

TivaWare™ Sensor Library
 Drivers for the microcontroller I2C port
 Examples for each SensorHub sensor
 Functions for manipulating magnetometer readings 
 Direct Cosine Matrix (DCM) sensor fusion Algorithm

• Combines 9 axes of motion (accelerometer, magnetometer & gyroscope)  
sensed by the Invensense MPU-9150 into 3 Euler angles

• Example c reads the sensors and applies 
the DCM algorithm to the data

 Vector operations
• VectorAdd()

• VectorCrossProduct()

• VectorDotProduct()

• VectorScale()

 CCS, Keil & IAR IDEs 
supported

 TivaWare DriverLib under 
TI BSD-style license

Sensor Library Examples ...  

 

TivaWare™ Sensor Library Examples
airmouse

 fuses motion data into mouse and keyboard events

compdcm_mpu9150
 basic data gathering from the MPU-9150

drivers
 for buttons and LEDs

humidity_sht21
 periodic measurements of humidity

light_isl29023
 uses measurements of ambient visible and IR light to control the “white” LED

pressure_bmp180
 periodic measurements of air pressure and temperature

temperature_tmp006
 periodic measurements of ambient and IR temperatures to calculate actual 

object temperature

Sensor Library Usage ...  

 



Sensor Library 

8 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

 

 

TivaWare™ Sensor Library Usage

GUI Composer ...

For instance, to interface with the TMP006:
 Initialize I2C pins and I2C peripheral normally
 Initialize the I2C driver I2CMInit()
 Initialize the TMP006 TMP006Init()
 Configure the TMP006 TMP006ReadModifyWrite()
 Read data from the TMP006 TMP006DataRead()
 Convert data into temperature TMP006DataTemperatureGetFloat()

The Sensor library is a consistent API with the following general 
flow for all sensors, which makes it easy to leverage 
the library for custom I2C sensors

 

 

 



 GUI Composer 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 7 

GUI Composer 
 

Code Composer Studio GUI Composer

 Allows you to create GUI applications that provide:
• Visibility into what is happening in the target application
• The ability to control target variables

JTAG, Serial or 
Ethernet

 Can be used while debugging with CCS (JTAG or serial 
connections)
• CCS Plug-in

 Or as a stand-alone application (serial or Ethernet connection)
 Requires GUI Composer runtime

Widgets ...  

 

GUIs are Comprised of Widgets

 GUI Composer Applications are made up of HTML5 widgets
 Control widgets (dials, edit boxes…)

• Lets you adjust the value of target variables
 Display widgets (meters, graphs, lights…)

• Shows the value of target variables

Lab ...  

 



GUI Composer 

8 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

 

 

 

 

  



 Lab08: I2C and Sensor Library Usage 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 9 

Lab08: I2C and Sensor Library Usage 

Objective 
In this lab you will examine a simple sensor application using the TI OPT3001 ambient light 
sensor on the Educational Boosterpack using the Sensor Library. You will also use GUI 
Composer to visualize the data. 

.  

Lab08: I2C and Sensor Library Usage

 Create a simple program to read
data from the OPT3001 light sensor on 
the Educational BoosterPack across the 
I2C bus

 Display the results in Code Composer
 Use GUI Composer to create a simple 

display interface

Agenda ...

USB Emulation
Connection

OPT3001

 

 

 

 

 

  



Lab08: I2C and Sensor Library Usage 

8 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

Procedure 

Import the Project 
1. ► Make sure that the Educational BoosterPack is still connected to your LaunchPad 

board. If you’ve skipped ahead to this lab, refer to lab07 for the proper connection of the 
BoosterPack. 

2. Creating this code from a blank page would be pretty tedious, so we have already created 
the entire lab08 project for you to examine. 

 
► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish 

 

 
  



 Lab08: I2C and Sensor Library Usage 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 11 

Sensor Library and stack size 
3. ► Expand the lab08 project in the Project 

Explorer pane. Since this project will be using 
the sensor library, note that it has been linked to 
the project. 

4. ► Right-click on the lab08 project and select 
Properties. Click on ARM Linker  Basic 
Options. Note that the C system stack size has 
been increased to 512. If your application uses 
the stack heavily, it’s usually a good idea make 
the stack larger than you think you’ll need 
rather than track down stack overrun issues. An easy way to determine how much stack 
you’re actually using is to initialize the stack with a known value like 0xDEADDEAD. If 
you run out of these initialized locations, your code is dead. ► Close the Properties 
dialog by clicking Cancel. 

 
 

Hardware 
5. The I2C connections from the Educational BoosterPack need to be mapped to the correct 

microcontroller pins and functions. Let’s keep the BoosterPack connected to BoosterPack 
connector 1. The schematics and User’s Guide were used to come up with the table 
below. It looks like we’ll be using I2C module 0. 

 

BoosterPack 
Function 

BoosterPack 
Connector 

LaunchPad 
Pin/Function 

Configuration 
Parameter 

I2C_SCL J1-9 PB2 / I2C0 Clock I2C0SCL 

I2C_SDA J1-10 PB3 / I2C0 Data I2C0SDA 

 

  



Lab08: I2C and Sensor Library Usage 

8 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

Software 
6. ► Double-click on main.c to open it in the editing pane. We’ll be skipping around the 

code, but let’s begin at the top. 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_ints.h" 
#include "driverlib/debug.h" 
#include "driverlib/gpio.h" 
#include "driverlib/interrupt.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/sysctl.h" 
#include "sensorlib/i2cm_drv.h" 

 

You probably recognize most of these except for the last one. i2cm_drv.h provides 
access to the I2C master software in the sensor library. 
 

7. Just below the includes you’ll define a single define and some global variables. The 
define is the I2C address of the OPT3001from the Educational BoosterPack schematic. 
The variables from top to bottom are the I2C configuration instance, the data ready and 
error flags and finally the variable for our resulting light reading. 
 
#define OPT3001_I2C_ADDRESS      0x44 
tI2CMInstance g_sI2CInst; 
volatile uint_fast8_t g_vui8DataFlag; 
volatile uint_fast8_t g_vui8ErrorFlag; 
volatile uint16_t ui16Ambient; 
 

8. Below the globals are three functions; OPT3001AppCallBack(), 
OPT3001AppErrorHandler and OPT3001I2CIntHandler.  We’ll look more at 
the first two later. The third is the interrupt handler for I2C0 that calls the sensor library’s 
built-in interrupt handler. ► Double-click on tm4c1294ncpdt_startup_ccs.c 
and find the entry for I2C0 Master and Slave. You’ll see that the vector points to this 
handler. ► Close the startup file. 

 
    IntDefaultHandler,                      // SSI0 Rx and Tx 
    OPT3001I2CIntHandler,                   // I2C0 Master and Slave 
    IntDefaultHandler,                      // PWM Fault  



 Lab08: I2C and Sensor Library Usage 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 13 

main() 
 

9. Next is the first part of the setup code.  
 
Local variables are first … the last two are the data and commands that will be sent 
across I2C port 0. 
 
Set SysClk to 120MHz. 
 
The next nine lines were taken from the Pin Muxing tool output: 
 
Enable modules I2C0, GPIOB (where the I2C0 pins are) and GPION (where the users 
LEDs are). 
 
Configure I2C0 SDA and SCL pins, then configure the user LED pins as outputs and 
make sure they’re off. 
 
Last, turn on the master interrupt enable. 
 

   uint16_t ui16Result; 
   uint16_t ui16Exponent; 
   uint32_t ui32SysClkFreq; 
   uint8_t ui8RegisterOne; 
   uint8_t ui8RegisterZero; 
   uint8_t pui8Data[2]; 
   uint8_t pui8Command[3]; 
 
   ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
                                          SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
                                          SYSCTL_CFG_VCO_480), 120000000); 
 
   SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C0); 
   SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB); 
   SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
 
   GPIOPinConfigure(GPIO_PB3_I2C0SDA); 
   GPIOPinTypeI2C(GPIO_PORTB_BASE, GPIO_PIN_3); 
 
   GPIOPinConfigure(GPIO_PB2_I2C0SCL); 
   GPIOPinTypeI2CSCL(GPIO_PORTB_BASE, GPIO_PIN_2); 
 

GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00); 

 
IntMasterEnable(); 
 

  



Lab08: I2C and Sensor Library Usage 

8 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

10. These steps finalize the initialization. ► You’ll find it helpful to open the Sensorlib 
user’s guide located in the docs folder inside your TivaWare installation. 

I2CMInit()prepares the I2C port and driver for operation. We select our instance, I2C0, the 
interrupt number, the TX and RX DMA channels (0xFF means OFF) and the clock frequency. 

Next we can initialize the commands to be sent to the OPT3001. ► Open the OPT3001 
datasheet to see the command structure. Then we can send these commands over I2C0 to 
the OPT3001. Note the callback function is one that we looked at earlier. This function is 
called when the write has been completed. 

OPT3001AppCallback() is a blocking function since it will wait for the write to 
complete before setting the data and error flags. This function is also available from the 
sensor library as a non-blocking call. 

The following code either waits for the flags or calls the 
OPT3001AppErrorHandler() function if an error has occurred. 
 

    I2CMInit(&g_sI2CInst, I2C0_BASE, INT_I2C0, 0xff, 0xff, ui32SysClkFreq); 
 
    pui8Command[0] = 1;   // register to be written 
    pui8Command[1] = 0xCC;  // auto, 800ms, continuous mode 
    pui8Command[2] = 0x10;   // latch mode on. 
 
    I2CMWrite(&g_sI2CInst, OPT3001_I2C_ADDRESS, pui8Command, 3, 
             OPT3001AppCallback, 0); 
 
    // 
    // Wait for the OPT3001 to signal that data is ready. 
    // 
    while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0)) 
    { 
    } 
 
    // 
    // If an error occurred call the error handler immediately. 
    // 
    if(g_vui8ErrorFlag) 
    { 
        OPT3001AppErrorHandler(__FILE__, __LINE__); 

    } 

 

  



 Lab08: I2C and Sensor Library Usage 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 15 

while(1) loop 
 

11. The code on the next page is the beginning of the while() loop. 

 

Right before the loop we’ll initialize a couple of variables. The sensor library API calls 
we’ll be using need pointers to these variables, so we can’t use the numbers themselves. 

 

We’ve configured the OPT3001 to sample continuously every .8 seconds. The 
SysCtlDelay() delay of .2 seconds will cause the sample to occur once per second. 
The GPIOPinWrite() API will turn off the user LEDs will be turned on after the data 
read is successful.  

The innermost while(1) loop performs a read every 0.1 seconds of register one in the 
OPT3001 to determine if the sample of the light sensor has been completed If it has 
completed successfully, the last if() statement breaks from the while(1) loop. 

Now we can use the sensor library API I2CMRead() to read the data from OPT3001 
register 0. If that read completes successfully we’re ready to format the received data. 

 
 

  



Lab08: I2C and Sensor Library Usage 

8 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

 
 
 

    ui8RegisterOne = 1; 
    ui8RegisterZero = 0; 
 
    while(1) 
    { 
        SysCtlDelay(ui32SysClkFreq / (3 * 10) ); 
        GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00); 
 
     while(1) 
     { 
       // 
   // Delay for 0.1 second.  Default readings occur every 800ms. 
   // 
   SysCtlDelay(ui32SysClkFreq / (3 * 100)); 
 
    I2CMRead(&g_sI2CInst, OPT3001_I2C_ADDRESS, &ui8RegisterOne, 1, 
       pui8Command, 2, OPT3001AppCallback, 0); 
 
   while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0)) 
   { 
   } 
 
   // 
   // If an error occurred call the error handler immediately. 
   // 
   if(g_vui8ErrorFlag) 
   { 
    OPT3001AppErrorHandler(__FILE__, __LINE__); 
   } 
 
 
    if(pui8Command[1] & 0x80) 
    { 
     break; 
    } 
 
     } 
 
        I2CMRead(&g_sI2CInst, OPT3001_I2C_ADDRESS, &ui8RegisterZero, 1, 
                 pui8Data, 2, OPT3001AppCallback, 0); 
 
        // 
        // wait for the OPT3001 to signal that data is ready. 
        // 
        while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0)) 
        { 
        } 
 
        // 
        // If an error occurred call the error handler immediately. 
        // 
        if(g_vui8ErrorFlag) 
        { 
            OPT3001AppErrorHandler(__FILE__, __LINE__); 
        } 

 
  



 Lab08: I2C and Sensor Library Usage 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 17 

Data Formatting 
12. The first line resets the data ready flag for the next iteration. 

At this point the light sensor data is sitting in the pui8Data array, with the upper 8-bits 
in pui8Data[0] and the lower 8-bits in pui8Data[1]. The first three lines format 
that data into a single 16-bit number. 

It’s not quite that simple though, since the upper 4-bits are the exponent and the lower 
12-bits are the mantissa. In order to get a single 16-bit integer result we need to scale the 
mantissa. This will result in the correct result for all but the very largest readings from the 
OPT3001, which we’re unlikely to achieve in the workshop without shining a laser in the 
sensor. 

The final line of code turns on the LaunchPad’s user LEDs to indicate the successful 
sensor read. At this point ui16Result contains the formatted data value in lux. We’ll 
drop that into the global variable ui16Ambient … more on the reason for that in a bit. 

 
  



Lab08: I2C and Sensor Library Usage 

8 - 18 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

 
        g_vui8DataFlag = 0;  // Reset the flag 
 
        ui16Result = pui8Data[0]; 
        ui16Result <<= 8; 
        ui16Result |= pui8Data[1]; 
 
        ui16Exponent = (ui16Result >> 12) & 0x000F; 
        ui16Result = ui16Result & 0x0FFF; 
 
        //convert raw readings to LUX 
         switch(ui16Exponent){ 
          case 0: //*0.015625 
           ui16Result = ui16Result>>6; 
           break; 
          case 1: //*0.03125 
           ui16Result = ui16Result>>5; 
           break; 
          case 2: //*0.0625 
           ui16Result = ui16Result>>4; 
           break; 
          case 3: //*0.125 
           ui16Result = ui16Result>>3; 
           break; 
          case 4: //*0.25 
           ui16Result = ui16Result>>2; 
           break; 
          case 5: //*0.5 
           ui16Result = ui16Result>>1; 
           break; 
          case 6: 
           ui16Result = ui16Result; 
           break; 
          case 7: //*2 
           ui16Result = ui16Result<<1; 
           break; 
          case 8: //*4 
           ui16Result = ui16Result<<2; 
           break; 
          case 9: //*8 
           ui16Result = ui16Result<<3; 
           break; 
          case 10: //*16 
           ui16Result = ui16Result<<4; 
           break; 
          case 11: //*32 
           ui16Result = ui16Result<<5; 
           break; 
         } 
        GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, GPIO_PIN_0 | GPIO_PIN_1); 
    ui16Ambient = ui16Result;  
    } 

} 



 Lab08: I2C and Sensor Library Usage 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 19 

Build and Download your Project 
 

13. ► Build and download the program to the flash memory of the 
TM4C1292NCPDT by clicking on the Debug button on the CCS menu bar. If 
you accidentally made any changes to main.c, don’t save them.  

Watch Expressions and Breakpoints 
 

14. ► Click on the Expressions tab in the Watch and Expressions pane. If there are any 
Expressions in the window, right click in the window and select Remove All. 
 

15. ► Find ui16Ambient in the last line of the code. Double-click on it to select it. Right-
click on it and select Add Watch Expression … Click OK to leave the name as-is.  
 

16. ► Page down to the end of main.c and find the final instruction in the file. Double-click 
in the blue area just left of the line number to set a breakpoint on this line. You’ll see a 
blue dot with a check mark appear. When code execution reaches this point, control will 
be returned to CCS (before the line of code executes). 
 

 
 

  



Lab08: I2C and Sensor Library Usage 

8 - 20 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

Run the Code 
 

17. ► Click the Resume button or press F8 on your keyboard to run your code. 
18. ► Note the ui16Ambient value in the Expressions pane. Typical office 

lighting is somewhere in the 300 – 500 lux range. ► Click the Resume but-
ton or press F8 on your keyboard repeatedly.  

Continuously clicking the Resume button can get pretty tedious. We can change the 
behavior of the breakpoint we set so that it doesn’t stay halted. 

 ► Right-click on the breakpoint symbol (it will now have a blue arrow 
on it indicating that the program counter is pointed here) and select 
Breakpoint Properties …  
 
► On the row containing Action, click on the Remain Halted value. When the down-
arrow appears on the right, click on it. Select Refresh All Windows from the list and click 
OK. This is a great trick to watch changing variables when debugging your code.  

Bear in mind that the breakpoint still stops the code, allowing the data to be read by Code 
Composer, then restarts code execution. This can affect the real-time behavior of the 
code. 

 

 
 

19. ► Click the Resume button or press F8 on your keyboard to run your code. 
Now the while(1) loop will run to the breakpoint, stop, update the 
ui16Ambient value in the Expressions pane and restart code execution. 
Every time the value changes, CCS will highlight it in yellow.  
 
The OPT3001 light sensor is just above the LCD on the Educational BoosterPack. Pass 
your hand over it to shadow it or shine a bright light on it. 

► Note your maximum value of ui16Ambient here: ___________________   



 Lab08: I2C and Sensor Library Usage 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 8 - 21 

GUI Composer 
20. Earlier in the workshop we used CCS graphing to visulaize our ADC12 data. TI debuted 

a  new feature in CCS version 5.3 called GUI Composer. Let’s use it to visulaize the data 
from the light sensor. 

► Click the Suspend button to halt your program. Remove any breakpoints by 
clicking Run  Remove all Breakpoints  Yes.  

21. ► From the CCS menu bar, click View  GUI Composer.  

If you don’t see GUI Composer on the menu, it probably isn’t installed. If you have 
Internet access, you can click Help  CCS App Center. The App Center is an exciting 
new feature debuting in CCS version 6. 
 
► When you see the New Project button, click it. Insert the name of your choice (no 
spaces) in the dialog and click OK 

 

22. When the GUI Composer tab and workspace appears, ► click 
GUI Composer and then Instrumentation on the left. 

 

  

23. ► Find the Digital Gauge and drag it to the open design area. Resize the 
gauge to make it as large as possible. 

 

24. ► Make sure the digital gauge widget is selected (if it 
doesn’t have a blue outline around it, click on it) and click 
the Widget tab on the far right. Find the Title box and enter 
“Light Level” into it. Type “lux” in the Unit box. Click the 
Show LCD checkbox. Find the Maximum 
Value box and enter a value somewhat 
greater (10 or 20%) than the maximum value 
of ui16Ambient you noted in step 19. Set 
the Threshold Value to 500 (just below your 
measured maxium) and the Fractional 
Decimals to 0. Feel free to be creative with 
the Frame and Background designs. 

 

 
  



Lab08: I2C and Sensor Library Usage 

8 - 22 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - I2C & SensorLib 

25. ► Click the Binding tab on the far right. In the Value 
box, enter &ui16Ambient. Be careful with the 
spelling and case. It’s important that the variable is 
global in scope. Local variables cannot be displayed. 

26. ► Click the Save button in the top-left corner of the GUI Composer pane. 

27. ► Click the Preview button to run the GUI Composer widget. 
When the running widget appears, click the Resume button. 

28. ► Observe the widget as you pass your hand over the sensor. 
Whenever the data value exceeds the threshold that you set the red “LED” on the display 
will light. GUI Composer has many styles a data displays and can also control program 
functions via dials, switches, button, etc. You can run the widget as we’ve done here or 
you can generate a CCS Plug-in. You can also run the widgets as a stand-alone 
application without Code Composer. 

29. ► Close the GUI Composer pane and click Terminate to return to the CCS Edit 
perspective. Close the lab08 project and minimize Code Composer Studio. 

30. ► Disconnect the USB cable from you LaunchPad board and carefully remove the 
Educational BoosterPack. If you are attending a live workshop, please return it to your 
instructor. Replace your USB cable. 
 

  You’re done with Lab14b 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9 - 1 

Quad Synchronous Serial Interface 

Introduction 
This chapter will introduce you to the capabilities of the Quad Synchronous Serial Interface 
(QSSI) . The lab uses an Olimex 8x8 LED BoosterPack to explore programming the SPI portion 
of the SSI. In order to do the lab you will need to purchase and modify the BoosterPack. 

 

Agenda

QSSI Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

9 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 

Chapter Topics 
Quad Synchronous Serial Interface ..........................................................................................................9-1 

Chapter Topics .........................................................................................................................................9-2 

Features and Block Diagram ...................................................................................................................9-3 

Interrupts and µDMA Operation .............................................................................................................9-4 

Lab 09: SPI Bus and the Olimex LED BoosterPack ................................................................................9-5 
Objective .............................................................................................................................................9-5 
Procedure .............................................................................................................................................9-6 

 



 Features and Block Diagram 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9 - 3 

Features and Block Diagram 
 

Agenda

QSSI Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

Agenda

QSSI Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 



Interrupts and µDMA Operation 

9 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 

Interrupts and µDMA Operation 
 

Agenda

QSSI Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

Agenda

QSSI Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 



 Lab 09: SPI Bus and the Olimex LED BoosterPack 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9 - 5 

Lab 09: SPI Bus and the Olimex LED BoosterPack 

Objective 
In this lab you will use the Olimex LED BoosterPack to explore the capabilities and 
programming of the SPI bus on the QSSI peripheral.  

 

Agenda

QSSI Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 

 

 



Lab 09: SPI Bus and the Olimex LED BoosterPack 

9 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 

Procedure 

Hardware 
1. If you want to run this lab, you’re going to need a BoosterPack with a SPI connection. 

We chose the Olimex 8x8 LED BoosterPack: 
(https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-
B00STERPACK/ ) 

 

The LED BoosterPack is cheap and fun, but there are two issues with it out of the box. 
The first is that it has male Molex pins rather than Molex female connectors. The other is 
that the pinout does not match the modern BoosterPack connectors. So we re-mapped the 
pins using a proto-board. 

 
Comparing the Olimex BoosterPack schematic found at  

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-
B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf  

to the LaunchPad schematic, we came up with the following connections for the proto-
board (There are a number of possible solutions here). Bear in mind that the correct way 
to number the BoosterPack pins is 1 to 10 from the top of the board to the bottom. The 
pin names and functions on the right are for BoosterPack connector 2 on the Connected 
LaunchPad. We’ve ignored any other connections than the ones for SPI and power. 
 

Olimex 
Header 

Pin 

Olimex 
Function 

Via 
proto 
board 
wiring 

LaunchPad 
Header Pin 

LaunchPad Pin 
Name 

Pin 
Function 

J1-7 SR_SCK  J2-7 PA2 SSI0Clk 

J1-6 SR_LATCH  J2-6 PA3 SSI0Fss 

J2-7 SR_DATA_IN  J3-9 PA4 SSI0Tx 

J2-1 Ground  J2-1 Ground - 

J1-1 3.3V  J1-1 3.3V - 

 

2. While you’ve got the Olimex BoosterPack schematic out, take a look at the circuit. 
You’ll see that the board is pretty simple; 16-bits of shift register, a Darlington seven 
transistor array (for drive strength) plus one more single transistor to make 8 and the 8x8 
LED array. In order for the LEDs to light properly, the upper byte of the 16-bit word 
must be the bit-reversed version of the lower byte. That will be done in software. 

  

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf


 Lab 09: SPI Bus and the Olimex LED BoosterPack 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9 - 7 

Connect the BoosterPack 
3. ► If you have modified you own Olimex BoosterPack or you’ve borrowed one from 

your instructor, disconnect your USB cable from the LaunchPad carefully connect it to 
the BoosterPack 2 pins as shown below in the bottom photo. Reconnect your USB cable. 

 

               

  



Lab 09: SPI Bus and the Olimex LED BoosterPack 

9 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 

Import lab09 
 

4. ► Maximize Code Composer. Import lab09 with the settings shown below.  
 
Make sure the Copy projects into workspace checkbox is not checked and click Finish. 
 

 
  



 Lab 09: SPI Bus and the Olimex LED BoosterPack 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9 - 9 

5. ► Expand the project and open main.c for editing. Place the following lines at the top 
of the file: 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_ssi.h" 
#include "inc/hw_types.h" 
#include "driverlib/ssi.h" 
#include "driverlib/gpio.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/sysctl.h" 
 
uint32_t ui32SysClkFreq; 

 

We’re going to need all the regular include files along with the ones that give us access to 
the QSSI peripheral. 

6. ► Skip a line for spacing and add the next lines: 
 

#define NUM_SSI_DATA 8 
const uint8_t pui8DataTx[NUM_SSI_DATA] = 
{0x88, 0xF8, 0xF8, 0x88, 0x01, 0x1F, 0x1F, 0x01}; 
 

This array of 8-bit numbers defines which of the LEDs in the array will be on or off in the 
following fashion, where red is on and the open circle is off. 
 

{A7-0, B7-0, C7-0, D7-0, E7-0, F7-0, G7-0, H7-0} 

     TOP 

        H    G    F    E    D   C    B    A 

 

 

 

 

 

 

         
  

7 

0 



Lab 09: SPI Bus and the Olimex LED BoosterPack 

9 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 

7. ► Leave a line for spacing and add the following code. This code will take the 8-bit 
number from the array above and bit-reverse it front to back .Then those 8-bits will be 
concatenated (in the code that calls this function) with the original number to create a 16-
bit number that will be sent over the SPI port. 

 
// Bit-wise reverses a number. 
uint8_t 
Reverse(uint8_t ui8Number) 
{ 
 uint8_t ui8Index; 
 uint8_t ui8ReversedNumber = 0; 
 for(ui8Index=0; ui8Index<8; ui8Index++) 
 { 
  ui8ReversedNumber = ui8ReversedNumber << 1; 
  ui8ReversedNumber |= ((1 << ui8Index) & ui8Number) >> ui8Index; 
 } 
 return ui8ReversedNumber; 
} 

 

8. ► Leave a line for spacing and add the template for main() below: 
 

int main(void) 
{ 
} 

 

9. ► Insert the next two lines as the first ones in main(). We’ll need these variables for 
temporary data and index purposes. 
 

 uint32_t ui32Index; 
 uint32_t ui32Data; 
 

10. ► Leave a line for spacing and set the clock to 120MHz as we’ve done before: 
 
ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480), 
120000000); 
  
 

11. ► Space down a line and add the next two lines. Since SSI0 is on GPIO port A, we’ll 
need to enable both peripherals: 
 

   SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0); 
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); 
 

  



 Lab 09: SPI Bus and the Olimex LED BoosterPack 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9 - 11 

12. ► Space down a line and add the following four lines. These will configure the muxing 
and GPIO settings to bring the SSI functions out to the pins. Since the BoosterPack only 
accepts data, we won’t program the receive pin. 
 
GPIOPinConfigure(GPIO_PA2_SSI0CLK); 
GPIOPinConfigure(GPIO_PA3_SSI0FSS); 
GPIOPinConfigure(GPIO_PA4_SSI0XDAT0); 

   GPIOPinTypeSSI(GPIO_PORTA_BASE,GPIO_PIN_4|GPIO_PIN_3|GPIO_PIN_2); 
 

13. Next we need to configure the SPI port on SSI0 for the type of operation that we want. 
Given that there are two bits (SPH – clock polarity and SPO – idle state), there are four 
modes (0-3). ► Leave a line for spacing and add the next two lines after the last. Then 
double-click on SSI_FRF_MOTO_MODE_0 and press F3 to see all four definitions in 
ssi.h: 

 
SSIConfigetExpClk(SSI0_BASE, ui32SysClkFreq, SSI_FRF_MOTO_MODE_0, 
SSI_MODE_MASTER, 10000, 16); 
SSIEnable(SSI0_BASE); 

 
The API specifies the SSI module, the clock source (this is hard wired), the mode, master 
or slave, the bit rate and the data width. 

14. ► The LED array has no latch, so the data must be continuously streamed in order for a 
static image to appear. We’ll do that with a while() loop, so add a lines for spacing 
and then add the while() loop below: 
 

    while(1) 
    { 
    } 

 

15. We’re going to need to step through the data, sending each 16-bit word on at the time.  
► Add the following for() construct inside the while() loop you just added: 
 

 for(ui32Index = 0; ui32Index < NUM_SSI_DATA; ui32Index++) 
{ 
 
} 
 

  



Lab 09: SPI Bus and the Olimex LED BoosterPack 

9 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 

16. ► Place the lines below inside the for() construct you just added. Those lines have 
these functions: 

 

1) Create the 16-bit data word using the Reverse() function we added earlier 

2) Place the data in the transmit FIFO using a blocking function (a non-blocking version is 
also available) 

3) Wait until the data has been transmitted 
 

 ui32Data = (Reverse(pui8DataTx[ui32Index]) << 8) + (1 << ui32Index); 
 SSIDataPut(SSI0_BASE, ui32Data); 
 while(SSIBusy(SSI0_BASE)) 
   { 

} 
 

Admittedly, this isn’t the most efficient technique. It would be less wasteful of CPU cycles to 
use the µDMA to perform these transfers, but we haven’t covered the µDMA yet. 

You might think about fixing the indentation too. ► Save your work. 

  



 Lab 09: SPI Bus and the Olimex LED BoosterPack 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9 - 13 

Build and Load 
17. ► Build and load the code. If you have errors, compare your main.c to the code below: 

#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_ssi.h" 
#include "inc/hw_types.h" 
#include "driverlib/ssi.h" 
#include "driverlib/gpio.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/sysctl.h" 
 
uint32_t ui32SysClkFreq; 
 
#define NUM_SSI_DATA 8 
const uint8_t pui8DataTx[NUM_SSI_DATA] = 
{0x88, 0xF8, 0xF8, 0x88, 0x01, 0x1F, 0x1F, 0x01}; 
 
// Bit-wise reverses a number. 
uint8_t 
Reverse(uint8_t ui8Number) 
{ 
 uint8_t ui8Index; 
 uint8_t ui8ReversedNumber = 0; 
 for(ui8Index=0; ui8Index<8; ui8Index++) 
 { 
  ui8ReversedNumber = ui8ReversedNumber << 1; 
  ui8ReversedNumber |= ((1 << ui8Index) & ui8Number) >> ui8Index; 
 } 
 return ui8ReversedNumber; 
} 
 
int main(void) 
{ 
 uint32_t ui32Index; 
 uint32_t ui32Data; 
 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | 
SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0); 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); 
 
 GPIOPinConfigure(GPIO_PA2_SSI0CLK); 
 GPIOPinConfigure(GPIO_PA3_SSI0FSS); 
 GPIOPinConfigure(GPIO_PA4_SSI0XDAT0); 
 GPIOPinTypeSSI(GPIO_PORTA_BASE,GPIO_PIN_4|GPIO_PIN_3|GPIO_PIN_2); 
 
 SSIConfigSetExpClk(SSI0_BASE, ui32SysClkFreq, SSI_FRF_MOTO_MODE_0, 
SSI_MODE_MASTER, 10000, 16); 
 SSIEnable(SSI0_BASE); 
 
 while(1) 
 { 
  for(ui32Index = 0; ui32Index < NUM_SSI_DATA; ui32Index++) 
  { 
  ui32Data = (Reverse(pui8DataTx[ui32Index]) << 8) + (1 << ui32Index); 
  SSIDataPut(SSI0_BASE, ui32Data); 
  while(SSIBusy(SSI0_BASE)) 
  { 
  } 
  } 
 } 
} 

If you’re still having problems you can find this code in the lab09 folder as 
main.txt.  



Lab 09: SPI Bus and the Olimex LED BoosterPack 

9 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 

Run and Test 
18. ► Run the code by clicking the Resume button. You should see “TI” displayed 

on the LED array. If you like you can play with the data structure to draw 
something different. Keep it clean. 

19. If you have a SPI protocol analyzer, now would be a good time to dust it off and 
take a look at the serial data stream. These analyzers can save you weeks spent 
troubleshooting communication problems. The screen captures on the next page 
were taken with a Saleae Logic8 logic analyzer/communications analyzer made 
by Saleae LLC (www.saleae.com) Beware of counterfeits!  

20. When you’re done, ► click the Terminate button to return to the CCS Edit 
perspective. Close the project and minimize Code Composer Studio. 

21. ► Disconnect your LaunchPad board from the USB port, carefully remove the 
modified Olimex BoosterPack and return it to your instructor. Re-connect your 
LaunchPad. 

   You’re done. 

 

 
  

http://www.saleae.com/


 Lab 09: SPI Bus and the Olimex LED BoosterPack 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 9 - 15 

             



Lab 09: SPI Bus and the Olimex LED BoosterPack 

9 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - QSSI 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - UART 10 - 1 

UART 

Introduction 
This chapter will introduce you to the capabilities of the Universal Asynchronous 
Receiver/Transmitter (UART). The lab uses the LaunchPad board and the Stellaris Virtual Serial 
Port running over the debug USB port. 

 

Agenda

UART Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

  



UART Features and Block Diagram 

10 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 

Chapter Topics 
UART ........................................................................................................................................................ 10-1 

UART Features and Block Diagram ...................................................................................................... 10-3 
Basic Operation ..................................................................................................................................... 10-4 
UART Interrupts and FIFOs .................................................................................................................. 10-5 
UART “stdio” Functions and Other Features ....................................................................................... 10-6 
Lab10 ..................................................................................................................................................... 10-7 

Objective ........................................................................................................................................... 10-7 
Procedure ........................................................................................................................................... 10-8 

 



 UART Features and Block Diagram 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 10 - 3 

UART Features and Block Diagram 
 

TM4C1294NCPDT UART Features

 Programmable baud-rate generator
• 7.5 Mbps for regular speed (divide by 16)
• 15 Mbps for high speed (divide by 8)

 Separate 16x8 TX and RX FIFOs 
 Programmable FIFO length, including 1-byte deep operation 

providing conventional double-buffered interface
 FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
 Fully programmable serial interface characteristics

• 5, 6, 7, or 8 data bits
• Even, odd, stick, or no-parity bit generation/detection
• 1 or 2 stop bit generation

 IrDA encoder/decoder
 ISO 7816 smart card support
 EIA-485 9-bit support
 Separate DMA channels for TX and RX

Block Diagram...

The microcontroller contains 8 UARTS with the following features:

 

 

Block Diagram

Basic Operation...  

 



Basic Operation 

10 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 

Basic Operation 
 

Basic Operation
 Initialize the UART

• Enable the UART peripheral, e.g.
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

• Set the Rx/Tx pins as UART pins
GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

• Configure the UART baud rate, data configuration
ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,

UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));

• Configure other UART features (e.g. interrupts, FIFO)
 Send/receive a character

• Single register used for transmit/receive
• Blocking/non-blocking functions in driverlib:

UARTCharPut(UART0_BASE, ‘a’);
newchar = UARTCharGet(UART0_BASE);
UARTCharPutNonBlocking(UART0_BASE, ‘a’);
newchar = UARTCharGetNonBlocking(UART0_BASE);

Interrupts...  

 

 

 

 



 UART Interrupts and FIFOs 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 10 - 5 

UART Interrupts and FIFOs 
 

UART Interrupts
Single interrupt per module, cleared automatically
Interrupt conditions:

 Overrun error
 Break error
 Parity error
 Framing error
 Receive timeout – when FIFO is not empty and no further data is 

received over a 32-bit period
 Transmit – generated when no data present (if FIFO enabled, see next 

slide)
 Receive – generated when character is received (if FIFO enabled, see 

next slide)
Interrupts on these conditions can be enabled individually
Your handler code must check to determine the source 
of the UART interrupt and clear the flag(s)

FIFOs...  

 

Using the UART FIFOs

 Both FIFOs are accessed via the 
UART Data register (UARTDR)

 After reset, the FIFOs are enabled*, 
you can disable by resetting the FEN 
bit in UARTLCRH, e.g.

UARTFIFODisable(UART0_BASE);

 Trigger points for FIFO interrupts can 
be set at 1/8, 1/4, 1/2,3/4, 7/8 full, e.g.

UARTFIFOLevelSet(UART0_BASE,

UART_FIFO_TX4_8,

UART_FIFO_RX4_8);

Transmit 
FIFO

UART_FIFO_TX4_8

UART_FIFO_TX1_8

UART_FIFO_TX2_8

UART_FIFO_TX6_8

UART_FIFO_TX7_8

FIFO Level 
Select

* Note: the datasheet says FIFOs are disabled at reset

stdio Functions...  

 



UART “stdio” Functions and Other Features 

10 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 

UART “stdio” Functions and Other Features 
 

UART “stdio” Functions
 TivaWare “utils” folder contains functions for C stdio console 

functions:
c:\TivaWare\utils\uartstdio.h

c:\TivaWare\utils\uartstdio.c

 Usage example:
UARTStdioInit(0); //use UART0, 115200

UARTprintf(“Enter text: “);

 See uartstdio.h for other functions
 Notes:

• Use the provided interrupt handler UARTStdioIntHandler() code in 
uartstdio.c

• Buffering is provided if you define UART_BUFFERED symbol
- Receive buffer is 128 bytes
- Transmit buffer is 1024 bytes

Lab...  

  



 Lab10 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 10 - 7 

Lab10 

Objective 
In this lab you will send data through the UART. The UART is connected to the emulator’s virtual serial 
port that runs over the debug USB cable. 

 

 Connect to the UART through the 
USB’s virtual COM port

 Initialize UART and echo characters 
using polling

 Use interrupts

Lab10: UART
USB Emulation

Connection

Agenda …  

 

 

 

 
  



Lab10 

10 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 

Procedure 
Import lab10 
1. We have already created the lab10 project for you with a main.c file, a startup file, and all the 

necessary project and build options set.  
 
► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish 
 
Make sure that the “Copy projects into workspace” checkbox is unchecked. 

 

 
 
  



 Lab10 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 10 - 9 

2. ► Expand the lab10 project in the Project Explorer pane. Double-click on main.c to open it for 
viewing. The code looks like this: 

 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/gpio.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/uart.h" 
 
uint32_t ui32SysClkFreq; 
 
int main(void) 
{ 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
   SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
   SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0); 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); 
 
 GPIOPinConfigure(GPIO_PA0_U0RX); 
 GPIOPinConfigure(GPIO_PA1_U0TX); 
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1); 
 
 UARTConfigSetExpClk(UART0_BASE, ui32SysClkFreq, 115200,(UART_CONFIG_WLEN_8 | 
UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE)); 
 
 UARTCharPut(UART0_BASE, 'E'); 
 UARTCharPut(UART0_BASE, 'n'); 
 UARTCharPut(UART0_BASE, 't'); 
 UARTCharPut(UART0_BASE, 'e'); 
 UARTCharPut(UART0_BASE, 'r'); 
 UARTCharPut(UART0_BASE, ' '); 
 UARTCharPut(UART0_BASE, 'T'); 
 UARTCharPut(UART0_BASE, 'e'); 
 UARTCharPut(UART0_BASE, 'x'); 
 UARTCharPut(UART0_BASE, 't'); 
 UARTCharPut(UART0_BASE, ':'); 
 UARTCharPut(UART0_BASE, ' '); 
 
 while (1) 
 { 
 if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE)); 
 } 
} 

 

This code is also saved as main1.txt in the lab10 folder. 

 

3. In main(), notice the initialization sequence for using the UART: 

• Set up the system clock 

• Enable the UART0 and GPIOA peripherals (the UART pins are on GPIO Port A) 

• Configure the pins for the receiver and transmitter using GPIOPinConfigure 

• Initialize the parameters for the UART: 115200, 8-1-N-N 

• Use simple UARTCharPut() calls to create a prompt. 

• An infinite loop. In this loop, if there is a character in the receiver, it is read, and then written to 
the transmitter. This echos what you type in the terminal window.  



Lab10 

10 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 

Build, Download, and Run the UART Example Code 
 

4. ► Make sure that JP4 and 5, the serial 
comm jumpers on the LaunchPad are in 
the horizontal UART position as shown. 

5. ► Click the Debug button to build and 
download your program to flash memory. 

 We can communicate with the board 
through the UART, which is connected as 
a virtual serial port through the emulator 
USB connection. You can find the COM 
port number for this serial port back in the 
chapter one lab exercise of this workbook. 

6. ► Run PuTTY or your favorite terminal 
program. Make the settings shown here 
and then click Open.  

Your COM port number will be the one 
you noted earlier in chapter one. 

 

 

7. When the terminal window opens ► click the Resume button in CCS. Click on the terminal to focus it 
in Windows and then type some characters. You should see the characters echoed into the terminal 
window. 

  



 Lab10 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 10 - 11 

Using UART Interrupts 
Instead of continually polling for characters (which is what the line of code in the while() loop does), 
we’ll make some modifications to our code to allow the use of interrupts to receive and transmit characters. 
In the first part of this lab, the only indication we had that our code was running was to open the terminal 
window to type characters and see them echoed back. In this part of the lab, we’ll add a visual indicator to 
show that we received and transmitted a character. So we’ll need to add code similar to previous labs to 
blink the LED inside the interrupt handler.  

8. First, let’s add the code in main() to enable the UART interrupts we want to handle. ► Click on the 
Terminate button to return to the CCS Edit perspective. We need to add two additional header files at 
the top of the file: 
 
#include "inc/hw_ints.h" 
#include "driverlib/interrupt.h" 
 

9. Now we need to add the code to enable processor interrupts, then enable the UART interrupt, and then 
select which individual UART interrupts to enable. We will select receiver interrupts (RX) and 
receiver timeout interrupts (RT). The receiver interrupt is generated when a single character has been 
received (when FIFO is disabled) or when the specified FIFO level has been reached (when FIFO is 
enabled). The receiver timeout interrupt is generated when a character has been received, and a second 
character has not been received within a 32-bit period. ► Add the following code just below 
the UARTConfigSetExpClk() function call: 
 

 IntMasterEnable();    
 IntEnable(INT_UART0);    
 UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);  
 

10. We also need to initialize the GPIO peripheral and pins for the user LEDs. ► Just before the 
function UARTConfigSetExpClk() is called, add these two lines: 
 

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 
 

11. ► Create an empty while(1) loop at the end of main by commenting out the line of code that’s 
already there. The UART will interrupt this loop. 
 

 while (1) 

 { 

// if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE)); 

 } 
 
  



Lab10 

10 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 

12. Now we need to write the UART interrupt handler. The interrupt handler needs to read the UART in-
terrupt status register to know which specific interrupt event(s) just occurred. This value is then used to 
clear the interrupt status bits (we only enabled RX and RT interrupts, so those are the only possible 
sources for the interrupt). The next step is to receive and transmit all the characters that have been re-
ceived. After each character is “echoed” to the terminal, the LED is blinked for about .1 seconds.  
 
► Insert this code just above main(): 
 

void UARTIntHandler(void) 
{ 
 uint32_t ui32Status; 
 
 ui32Status = UARTIntStatus(UART0_BASE, true); //get interrupt status 
 
 UARTIntClear(UART0_BASE, ui32Status); //clear the asserted interrupts 
 
 while(UARTCharsAvail(UART0_BASE)) //loop while there are chars 
 { 
  UARTCharPutNonBlocking(UART0_BASE, UARTCharGetNonBlocking(UART0_BASE)); // echo 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0xFF); // LEDs on 
  SysCtlDelay(ui32SysClkFreq / (3 * 10));    // delay .1 sec 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0);  // LEDs off 
 } 
} 

         Save your work. 

13. We’re almost done. The final step is to insert the address of the UART interrupt handler into the 
interrupt vector table. ► Open the tm4c1294ncpdt_startup_ccs.c file. Just below the 
prototype for _c_int00(void), add the UART interrupt handler prototype: 

extern void UARTIntHandler(void); 

14. On about line 92, you’ll find the interrupt vector table entry for UART0 Rx and Tx. It’s just below the 
entry for GPIO Port E. The default interrupt handler is named IntDefaultHandler. ► Replace 
this name with UARTIntHandler so the line looks like: 

UARTIntHandler,                      // UART0 Rx and Tx 

  



 Lab10 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 10 - 13 

15. Save your work. Your main.c code should look like this. This code is saved in main2.txt. The 
modified startup file is in start.txt. 

 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/gpio.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/uart.h" 
#include "inc/hw_ints.h" 
#include "driverlib/interrupt.h" 
 
uint32_t ui32SysClkFreq; 
 
void UARTIntHandler(void) 
{ 
 uint32_t ui32Status; 
 
 ui32Status = UARTIntStatus(UART0_BASE, true); //get interrupt status 
 
 UARTIntClear(UART0_BASE, ui32Status); //clear the asserted interrupts 
 
 while(UARTCharsAvail(UART0_BASE)) //loop while there are chars 
 { 
 UARTCharPutNonBlocking(UART0_BASE, UARTCharGetNonBlocking(UART0_BASE)); //echo 
 GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0xFF); // LEDs on 
 SysCtlDelay(ui32SysClkFreq / (3 * 10));    // delay .1 sec 

GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0);  // LEDs off 
} 

} 
 
int main(void) 
{ 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
                         SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
                         SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0); 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); 
 
 GPIOPinConfigure(GPIO_PA0_U0RX); 
 GPIOPinConfigure(GPIO_PA1_U0TX); 
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
 GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 

 UARTConfigSetExpClk(UART0_BASE, ui32SysClkFreq, 115200,  
 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE)); 

 IntMasterEnable(); 
 IntEnable(INT_UART0); 
 UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT); 
 
 UARTCharPut(UART0_BASE, 'E'); 
 UARTCharPut(UART0_BASE, 'n'); 
 UARTCharPut(UART0_BASE, 't'); 
 UARTCharPut(UART0_BASE, 'e'); 
 UARTCharPut(UART0_BASE, 'r'); 
 UARTCharPut(UART0_BASE, ' '); 
 UARTCharPut(UART0_BASE, 'T'); 
 UARTCharPut(UART0_BASE, 'e'); 
 UARTCharPut(UART0_BASE, 'x'); 
 UARTCharPut(UART0_BASE, 't'); 
 UARTCharPut(UART0_BASE, ':'); 
 UARTCharPut(UART0_BASE, ' '); 
 
 while (1) 
 { 
 //if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE)); 
 } 
} 

  



Lab10 

10 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop  - UART 

16. ► Click the Debug button to build and download your program to flash memory. 

17. ► Right-click on the top portion of the PuTTY window and click Reset Terminal. If you’ve closed 
PuTTY, open and configure it as before. 

18. ► Click the Resume button in CCS. Click on PuTTY to refocus Windows and type some characters. 
You should see the characters echoed in the terminal window. Note the user LEDs on the LaunchPad 
board. 

19. ► Close PuTTY. Click the Terminate button to return to the CCS Edit perspective. ► Close the lab10 
project and minimize Code Composer Studio. 

 

 

 

   You’re done. 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11 - 1 

USB 

Introduction 
This chapter will introduce you to the basics of USB and the implementation of a USB port on 
Tiva C Series devices. In the lab you will experiment with sending data back and forth across a 
bulk transfer-mode USB connection. 

 

Agenda

USB Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 

 

 
 



Chapter Topics 

11 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 

Chapter Topics 
USB ............................................................................................................................................................ 11-1 

Chapter Topics ....................................................................................................................................... 11-2 

USB Features ......................................................................................................................................... 11-3 

High Speed Operation ............................................................................................................................ 11-4 
Block Diagram ................................................................................................................................... 11-5 

USB Library and Abstraction Levels ..................................................................................................... 11-6 

Lab11: USB ............................................................................................................................................ 11-7 
Objective ........................................................................................................................................... 11-7 
Procedure ........................................................................................................................................... 11-8 

 



 USB Features 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11 - 3 

USB Features 
 

TM4C1294NCPDT USB Features

 USB 2.0 full speed (12 Mbps) and low speed (1.5 Mbps) operation with 
integrated PHY

 USB 2.0 high-speed (480 Mbps) operation with external PHY using the 
ULPI interface

 Link power management support
 On-the-go (OTG), Host and Device functions
 Four transfer types: Control, Interrupt, Bulk and Isochronous
 Device Firmware Update (DFU) host and device in ROM bootloader

Tiva collateral 
 Texas Instruments is a member of the 

USB Implementers Forum.
 Tiva is approved to use the 

USB logo
 Vendor/Product ID sharing

http://www.ti.com/lit/pdf/spml001

FREE 
Vendor ID/ 
Product ID 

sharing program

High speed operation ...  

 

Sublicense application: http://www.ti.com/lit/pdf/spml001 

 

http://www.ti.com/lit/pdf/spml001


High Speed Operation 

11 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 

High Speed Operation 
 

High Speed Operation with ULPI
High-speed operation (480 Mbps) using external PHY and ULPI
 ULPI = UTMI+ Low Pin Interface
 UTMI+ = USB Transceiver Macrocell Interface with support for OTG and Host 

at all speeds
 Parallel interface between USB controller and PHY

• Relatively static UTMI+ signals accessed through registers
• 12 additional signals: clock, 8-bit bi-directional data, 3 control signals
• Supports Single Data Rate (8-bit data) ULPI standard

TIVA TM4C129x 
MCU ULPI PHY

CLK

DIR

NXT

STP

DATA[7:0]

D+

D-

VBUS

ID

Block diagram …  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 High Speed Operation 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11 - 5 

Block Diagram 
 

USB Peripheral Block Diagram

 16 Endpoints
 1 dedicated control IN endpoint and 1 dedicated control OUT endpoint
 7 configurable IN endpoints and 7 configurable OUT endpoints

 4 KB dedicated endpoint memory (not part of device SRAM)
 1 endpoint may be defined for double-buffered 1023-bytes isochronous packet size

 Integrated USB DMA with bus master capability for up to 8 TX and 8 RX endpoint channels

USBLib...  

 



USB Library and Abstraction Levels 

11 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 

USB Library and Abstraction Levels 
 

TivaWare™ USBLib
 License & royalty-free drivers, stack and example applications for Tiva MCUs
 Built on the driverLib API

• Adds framework for generic Host and Device functionality
• Includes implementations of common USB classes

 Layered API abstraction structure
 Includes these device

class driver functions:
 Audio
 Bulk
 CDC
 Composite
 DFU
 HID
 HID Mouse
 HID Keyboard
 HID Gamepad
 Mass Storage

Abstraction Levels...

 Includes these
host functions:
 Controller driver
 Class driver
 Device Interface

 Includes an 
OTG stack

 

 

USB API Abstraction Levels

Level of customization

Le
ve

l o
f a

bs
tra

ct
io

n

LOW HIGH

HIGH

LOW

Lab...

 All API layers can be accessed from any of the shown applications

 

 



 Lab11: USB 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11 - 7 

Lab11: USB 

Objective 
In this lab you will experiment with sending data back and forth across a bulk transfer-mode USB 
connection. 

 

Lab11: USB

 Run usb_bulk_example code 
and windows side app

 Inspect stack setup
 Observe data on device

Agenda ...

USB Device
Connection

USB Emulation
Connection

 

 

 

 

 

 

 

 

 

 



Lab11: USB 

11 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 

Procedure 

Example Code 
There are four types of transfer/endpoint types in the USB specification: Control transfers 
(for command and status operations), Interrupt transfers (to quickly get the attention of 
the host), Isochronous transfers (continuous and periodic transfers of data) and Bulk 
transfers (to transfer large, bursty data). 
 
Before we start poking around in the code, let’s take the usb_bulk_example for a 
test drive. We’ll be using a Windows host command line application to transfer strings 
over the USB connection to the LaunchPad board. The program there will change upper-
case to lower-case and vice-versa, then transfer the data back to the host. 

Import The Project 
1. The usb_dev_bulk project is one of the TivaWare examples. When you import the 

project, you should copy them into your workspace, and preserve the original files. If you 
want to access these project files through Windows Explorer, the files you are working 
on are in your workspace folder, not the TivaWare folder. If you delete the project in 
CCS, the imported project will still be in your workspace unless you tell the dialog to 
delete the files from the disk. 
 
► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish. 
 
 Make sure that the Copy projects into workspace checkbox is checked.  
 

  



 Lab11: USB 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11 - 9 

Build, Download and Run The Code 
2. Make sure your evaluation board’s USB DEBUG port is connected to your PC and that 

the usb_dev_bulk project is active. ► Right-click on the project and click Properties. 
Click General on the left and check the Compiler version. Make sure that it is TI v5.1.5 
or later. If it isn’t, change it. Click OK. 

 
 

3. Build and download your application by clicking the Debug button on the 
menu bar. 

4. ► Click the Terminate button, and when CCS returns to the CCS Edit 
perspective, unplug the USB cable from the LaunchPad’s DEBUG USB port. 
Move the JP1 POWER SELECT jumper on the board to the OTG position. 
This will allow the User USB port to power the LaunchPad board. 

 

► Plug your USB cable into the user USB connector nearest to the Ethernet connector. 
The green power LED of the LaunchPad should be lit, verifying that the board is 
powered. 

                                                  
  



Lab11: USB 

11 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 

5. In a few moments, your computer will detect that a generic bulk device has been 
plugged into the USB port. ► If necessary, install the driver for this device from:  
 
C:\TI\TivaWare_C_Series-2.1.0.12573\windows_drivers  

 
► Verify that the device installed properly by looking in your Windows Device Manag-
er. The Generic Bulk Device will appear under TivaWare Bulk Devices. 

6. ► Make sure that you installed the StellarisWare Windows-side USB examples 
from www.ti.com/sw-usb-win as shown in module one. In Windows, ► click Start  All 
Programs  Texas Instruments  Stellaris  USB Examples  USB Bulk Example.  
 
The window below will appear: 

 

7. ► Type something in the window and press Enter. For instance “TI” as shown below: 

 

The host application sent the two ASCII bytes representing “TI” over the USB port to the 
LaunchPad board. The code there will change uppercase to lowercase and echo the 
transmission. Then the host application will display the returned string. Feel free to 
experiment. Now that we’re assured that our data is traveling across the DEVICE USB 
port, we can look into the code a little more. 

  

http://www.ti.com/sw-usb-win


 Lab11: USB 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11 - 11 

Digging Deeper 
8. ► Type EXIT to terminate the USB Bulk Example program on your PC.  

9. ► Move the JP1 POWER SELECT jumper on your LaunchPad board to the ICDI 
position. Connect your other USB cable from your PC to the DEBUG USB port the on 
the LaunchPad The green power LED on the LaunchPad should be lit, verifying that the 
board is powered. You should now have both ports connected to your PC, with the board 
being powered by the ICDI port. 

10. ► In Code Composer Studio, if usb_dev_bulk.c is not already open, expand the 
usb_dev_bulk project in the Project Explorer pane and double-click on 
usb_dev_bulk.c to open it for editing. 

The program is made up of five sections: 

SysTickIntHandler – an ISR that handles interrupts from the SysTick timer to keep 
track of “time”. 

EchoNewDataToHost – a routine that takes the received data from a buffer, flips the case 
and sends it to the USB port for transmission. 

TxHandler – an ISR that will report when the USB transmit process is complete. 

RxHandler – an ISR that handles the interaction with the incoming data, then calls the 
EchoNewDataHost routine. 

main() – primarily initialization, but a while loop keeps an eye on the number of bytes 
transferred 

Note the UARTprintf() APIs sprinkled throughout the code. This technique “instruments” 
the code, allowing us to monitor its status via a serial port. 
  



Lab11: USB 

11 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 

Watching the Instrumentation 

11. As shown in earlier labs, ► start your terminal program and connect it to the Stellaris 
Virtual Serial Port. Arrange the terminal window so that it takes up no more than a 
quarter of your screen and position it in the upper left of your laptop’s screen. 

12. ► Resize CCS so that it takes up the lower half of your screen. ► Click the Debug 
button to build and download the code and reconnect to your LaunchPad. ► Run the 
code by clicking the Resume button. Note that the USB Bulk Device doesn’t exist until 
the program is running. 

13. ► Start the USB Bulk Example Windows application as shown earlier. Place the window 
in the upper right corner of your screen. This would be much easier with multiple 
screens, wouldn’t it? 

14. ► Note the status on your terminal display and type something, like  
TEXAS INSTRUMENTS into the USB Bulk Example Windows application and press 
Enter. Note that the terminal program will display 

 

 
  



 Lab11: USB 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11 - 13 

15. ► Click the Suspend button in CCS to halt the program.  
 
To summarize, we’re sending bulk data across the DEVICE USB connection. At the 
same time we are performing emulation control and sending UART serial data across the 
DEBUG USB connection. 

If you get things out of sync here and find that the USB Bulk Example won’t run, 
remember that it must be started after the usb_dev_bulk code on the LaunchPad is 
running. 

Watch the Buffers 
16. ► Remove all expressions (if there are any) from the Expressions pane by right-clicking 

inside the pane and selecting Remove All. 

17. ► At about line 450 in 
usb_dev_bulk.c, find the code 
shown to the right: 

 

► One at the time, highlight g_sTxBuffer and g_sRxBuffer and add them as watch 
expressions by right-clicking on them, selecting Add Watch Expression … and then OK 
(by the way, we could have watched the buffers in the Memory Browser, but this method 
is more elegant). 
  



Lab11: USB 

11 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 

18. ► Expand both buffers as shown below: 

 

The arrows above point out the memory addresses of the buffers as well as the contents. 
Note that the Expressions window only shows the first 10 bytes in the buffer.  
 
The usb_dev_bulk.c code uses both buffers as “circular” buffers … rather than 
clearing out the buffer each time data is received. The code just appends the new data 
after the previous data in the buffer. When the end of the buffer is reached, the code starts 
again from the beginning. You can use the Memory Browser to view the rest of the 
buffers, if you like. 

19. ► Resize the code window in the Debug Perspective so you can see a few lines of code. 
Around line 293 in usb_dev_bulk.c, find the line containing if(ulEvent . This 
is the first line in the TxHandler ISR. At this point the buffers hold the last received 
and transmitted values. ► Double-click in the gray area to the left on the line number to 
set a breakpoint. Resize the windows again so you can see the entire Expressions pane. 

 
 
► Right-click on the breakpoint and select Breakpoint Properties … Click on the Action 
property value Remain Halted and change it to Refresh All Windows. Click OK. 

20. ► Click the Core Reset button to reset the device.  
 
Make sure your buffers are expanded in the Expressions pane and ► click 
the Resume button to run the code. The previous contents of the buffers shown in the 
Expressions pane will be erased when the code runs for the first time. 

► Resize CCS back to the bottom half of your screen.  



 Lab11: USB 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 11 - 15 

21. ► Restart the USB Bulk example Windows application so that it can reconnect with the 
device. 

22. ► Since the Expressions view will only display 10 characters, type something short into 
the USB Bulk Example window like “TI”. 

23. ► When the code reaches the breakpoint, the Expressions pane will update with the 
contents of the buffer. Try typing “IS” and “AWESOME”. Notice that the “E” is the 11th 
character and will not be displayed in the Expressions pane. 

24. ► When you’re done, close the USB Bulk Example and Terminal program windows. 
 
► Click the Terminate button in CCS to return to the CCS Edit perspective.  
 
► Close the usb_dev_bulk project in the Project Explorer pane.  
 
► Minimize Code Composer Studio. 

25. ► Disconnect and store the USB cable connected to the DEVICE USB port. 

 

   You’re done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lab11: USB 

11 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - USB 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 1 

Memory 

Introduction 
In this chapter we will take a look at some memory issues: 

• How to write to FLASH in-system. 
• How to read/write from EEPROM. 
• How to use bit-banding. 
• How to configure the Memory Protection Unit (MPU) and deal with faults. 

 

Agenda

Flash memory …

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

8 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

Chapter Topics 
Memory .......................................................................................................................................................8-1 

Chapter Topics .........................................................................................................................................8-2 

Internal Memory ......................................................................................................................................8-3 

Bit-Banding ..............................................................................................................................................8-5 

Memory Protection Unit ..........................................................................................................................8-6 

Security ....................................................................................................................................................8-7 

Lab12: Memory and the MPU .................................................................................................................8-9 
Objective .............................................................................................................................................8-9 
Procedure ........................................................................................................................................... 8-10 

 



 Internal Memory 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 3 

Internal Memory 
 

Flash
 1MB starting at 0x0000 0000 organized by 8KB sectors
 100,000 program/erase cycles with 20 years data retention
 Configured in 4 banks of 16Kx128-bits (4*256KB total), 2-way interleaved
 256-bit pre-fetch buffer
 32-word write buffer
 Programmable write and execution protection available
 Simple programming interface

ROM ...

Flash

Reserved

SRAM

Bit-band alias of SRAM

Bit-band alias of Peripherals

Peripherals

ROM

External Peripheral Interface

Private Peripheral Bus

 

 

ROM
 The on-chip ROM starts at address 0x0100 0000 and contains:

 Bootloader
 Initial vector table
 Peripheral driver library
 AES crypto tables
 CRC error detection functionality

 There are no provisions for custom-coding the 
ROM at this time

EEPROM ...

Flash

Reserved

SRAM

Bit-band alias of SRAM

Bit-band alias of Peripherals

Peripherals

ROM

External Peripheral Interface

Private Peripheral Bus

 

 



Internal Memory 

8 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

 

 

EEPROM
 6KB of memory starting at 0x400A F000 in Peripheral space
 Accessible as 1536 32-bit words
 96 blocks of 16 words (64 bytes) with access protection per block
 Built-in wear leveling with endurance of 500K writes 
 Lock protection option for the whole peripheral as well as per 

64-byte block using 32-bit to 96-bit unlock codes
 Interrupt support for write completion 

to avoid polling
 Random and sequential read/write 

access (4 cycles max/word)

SRAM ...

Flash

Reserved

SRAM

Bit-band alias of SRAM

Bit-band alias of Peripherals

Peripherals

ROM

External Peripheral Interface

Private Peripheral Bus

 

 

SRAM
 256KB starting at 0x2000 0000
 Bit banded to 0x2200 0000
 Can hold code or data
 Implemented using 4-way 32-bit wide interleaved banks for 

increased speed between accesses

Bit-Banding...

Flash

Reserved

SRAM

Bit-band alias of SRAM

Bit-band alias of Peripherals

Peripherals

ROM

External Peripheral Interface

Private Peripheral Bus

 

 



 Bit-Banding 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 5 

Bit-Banding 
 

Bit-Banding
 Reduces the number of read-modify-write operations
 SRAM and Peripheral space use address aliases to access 

individual bits in a single, atomic operation
 SRAM starts at base address 0x2000 0000

Bit-banded SRAM starts at base address 0x2200 0000
 Peripheral space starts at base address 0x4000 0000

Bit-banded peripheral space starts at base address 0x4200 0000

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

For example, bit-7 at address 0x2000 2000 is:

0x2000 2000 + (0x2000 * 0x20) + (7 * 4) = 0x2204 001C

MPU ...  

 

 

 



Memory Protection Unit 

8 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

Memory Protection Unit 
 

Memory Protection Unit (MPU)
 Defines 8 separate memory regions plus a background region
 Regions that are 256 bytes or more are divided into 8 equal-

sized sub-regions
 MPU definitions for all regions include:

• Location
• Size
• Access permissions
• Memory attributes

 Accessing a prohibited region causes a memory management 
fault

IP Security ...  

 

 

 

 

 



 Security 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 7 

Security 
 

Securing Your IP
 Flash memory can be protected (per 2KB memory block). 

Prohibited access attempts will generate a bus fault.

 The JTAG and SWD ports can be disabled. DBG0 = 0 and DBG1 = 
1 ( in BOOTCFG register) for debug to be available. The user should 
be careful to provide a mechanism, for instance via the bootloader of 
enabling the ports since this is permanent.

 There is a set of steps in the UG for recovering a “locked” 
microcontroller, but this will result in the mass erase of flash 
memory.

Tamper Module ...  

 

Tamper Module
 The Tamper module provides a user with mechanisms to detect, 

respond to, and log system tampering events 
 The Tamper module is designed to be low power and operate either 

from a battery or the MCU I/O voltage supply 
 This module is a sub-module of the Hibernate module
 A state transition on any up to 4 tamper-designated GPIO pins triggers 

a tamper event
 Failure of the Hibernation crystal can also trigger a tamper event and 

switch the clock source to the low frequency internal oscillator
 Possible tamper event responses:

• Set Tamper Status bit
• Generate an NMI 
• Clear some or all HIB memory
• Wake from hibernate
• Log up to 4 events

Cryptographic accelerators …  

 



Security 

8 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

 

 

Crytographic Accelerators
 Encryption and Decryption
 Cyclical Redundancy Check (CRC) engine

• Accelerates CRC and TCP checksum operations
• 32- and 16-bit signature used to check accuracy of data

 Symmetric - encryption and decryption keys are identical
• Advance Encryption Standard (AES) accelerator
• Data Encryption Standard (DES) accelerator
• Useful for encrypting/decrypting large amounts of data

 Hash – used to verify the integrity of files or messages
• Secure Hash Algorithm (SHA)

- SHA-1 – 160-bit hash function
- SHA-2 – SHA-224 and SHA-256 algorithm

• Message Digest 5 (MD5) algorithm

Lab …  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 Lab12: Memory and the MPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 9 

Lab12: Memory and the MPU 

Objective 
In this lab you will  

• write to FLASH in-system. 
• read/write EEPROM. 
• Experiment with using the MPU 
• Experiment with bit-banding 

 

Lab12: Memory and the MPU

 Create code to write to Flash
 Create code to read/write EEPROM
 Experiment with MPU and 

bit-banding

Agenda ...

USB Emulation
Connection

 

 

 

 

 

 

 

 

 

 



Lab12: Memory and the MPU 

8 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

Procedure 

Import lab12 
 

1. We have already created the lab12 project for you with an empty main.c, a startup file 
and all necessary project and build options set.  
 
► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish 
 
Make sure that the “Copy projects into workspace” checkbox is unchecked. 
 

 
 

2. ► Expand the lab12 project in the Project Explorer pane. Double-click on main.c to 
open it for editing. 

  



 Lab12: Memory and the MPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 11 

3. Let’s start out with a straightforward set of starter code.  

► Copy the code below and paste it into your empty main.c file. 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_types.h" 
#include "inc/hw_memmap.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/debug.h" 
#include "driverlib/gpio.h" 
 
uint32_t ui32SysClkFreq; 
 
int main(void) 
{ 

  ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
             SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 

            SYSCTL_CFG_VCO_480), 120000000); 
  
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
 GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 
 GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00); 
 SysCtlDelay(ui32SysClkFreq/3); 
 
 while(1) 
 { 
 } 
} 

You should already know what this code does, but a quick review won’t hurt. The 
included header files support all the usual stuff including GPIO. Inside main(), we 
configure the clock speed to 120MHz, set the pins connected to the LEDs as outputs and 
then make sure both user LEDs are off. Next is a one second delay followed by a 
while(1) trap. 

► Save your work. 

If you’re having problems, this code is in your lab12 folder as main1.txt. 

Writing to Flash 
4. We need to find a writable block of flash memory. Right now, that would be flash 

memory that won’t be holding the program we’ll be executing. ► Under Project on the 
menu bar, click Build All. This will build the project without attempting to download it to 
the TM4C1294NCPDTflash memory. 

5. As we’ve seen before, CCS creates a map file of the program during the build process. 
► Look in the Debug folder of lab12 in the Project Explorer pane and double-click 
on lab12.map to open it. 

  



Lab12: Memory and the MPU 

8 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

6. ► Find the MEMORY CONFIGURATION and SEGMENT ALLOCATION MAP 
sections as shown below: 

 
 

From the map file we can see that the amount of flash memory used is 0x0b22 in length 
that starts at 0x0. That means that pretty much anywhere in flash located at an address 
greater than 0x1000 (for this program) is writable. Let’s play it safe and pick the block 
starting at 0x10000. Remember that flash memory is erasable in 8K sectors. Close 
lab12.map. 

7. ► Back in main.c, add the following include to the end of the include statements to 
add support for flash APIs: 

 
#include "driverlib/flash.h" 
 

8. ► At the top of main(), enter the following four lines to add buffers for read and write 
data and to initialize the write data: 

 
 uint32_t pui32Data[2]; 
 uint32_t pui32Read[2]; 
 pui32Data[0] = 0x12345678; 
 pui32Data[1] = 0x56789abc; 

 
  



 Lab12: Memory and the MPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 13 

9. ► Just above the while(1) loop at the end of main(), add these four lines of code: 

 
 FlashErase(0x10000); 
 FlashProgram(pui32Data, 0x10000, sizeof(pui32Data)); 
 GPIOPinWrite(GPIO_PORTN_BASE,GPIO_PIN_0|GPIO_PIN_1, 0x02); 
 SysCtlDelay(ui32SysClkFreq/3); 

 

Line: 

1: Erases the block of flash we identified earlier. 

2: Programs the data array we created, to the start of the block, of the length of the array. 

3: Lights user LED D1 to indicate success. 

4: Delays about one second before the program traps in the while(1) loop. 

10. Your code should look like the code below. If you’re having issues, this code is located in 
the lab12 folder as main2.txt. 
 

#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_types.h" 
#include "inc/hw_memmap.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/debug.h" 
#include "driverlib/gpio.h" 
#include "driverlib/flash.h" 
 
uint32_t ui32SysClkFreq; 
 
int main(void) 
{ 
 uint32_t pui32Data[2]; 
 uint32_t pui32Read[2]; 
 pui32Data[0] = 0x12345678; 
 pui32Data[1] = 0x56789abc; 
 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
   SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
   SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
 GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 
 GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00); 
 SysCtlDelay(ui32SysClkFreq/3); 
 
 FlashErase(0x10000); 
 FlashProgram(pui32Data, 0x10000, sizeof(pui32Data)); 
 GPIOPinWrite(GPIO_PORTN_BASE,GPIO_PIN_0|GPIO_PIN_1, 0x02); 
 SysCtlDelay(ui32SysClkFreq/3); 
 
 while(1) 
 { 
 } 
} 

  



Lab12: Memory and the MPU 

8 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

Build, Download and Run the Flash Programming Code 
11. ► Click the Debug button to build and download your program to the 

TM4C1294NCPDT memory. Ignore the warning about variable pui32Read not being 
referenced (we’ll use it later). When the process is complete, ► set a breakpoint on the 
line containing the FlashProgram() API function call. 

12. ► Click the Resume button to run the code. 
Execution will quickly stop at the breakpoint. 
► On the CCS menu bar, click View  
Memory Browser. In the provided entry 
window, enter 0x10000 as shown and press 
Enter. 

Erased flash should read as all ones, since 
programming flash memory only writes zeros. 

Because of this, writing to un-erased flash 
memory will produce unpredictable results. 

13. ► Click the Resume button to run the code. 
The last line of code before the while(1) 
loop will light the user LEDs. ► Click the 
Suspend button. Your Memory Browser will 
update, displaying your successful write to 
flash memory. 

14. ► Close the Memory Browser and remove the breakpoint from your code. 

15. ► Click the Terminate button to stop debugging and return to the CCS Edit perspective.  
 
Bear in mind that if you repeat this exercise, the values you just programmed in flash will 
remain there until that flash block is erased. 

  



 Lab12: Memory and the MPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 15 

Reading and Writing EEPROM 
16. ► Back in main.c, add the following line to the end of the include statements to add 

support for EEPROM APIs: 
 
#include "driverlib/eeprom.h" 

 

17. ► Just above the while(1) loop, enter the following seven lines of code: 
 

 SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROM0); 
 EEPROMInit(); 
 EEPROMMassErase(); 
 EEPROMRead(pui32Read, 0x0, sizeof(pui32Read)); 
 EEPROMProgram(pui32Data, 0x0, sizeof(pui32Data)); 
 EEPROMRead(pui32Read, 0x0, sizeof(pui32Read)); 
 GPIOPinWrite(GPIO_PORTN_BASE,GPIO_PIN_0|GPIO_PIN_1, 0x01); 

  
  

Line: 

1: Turns on the EEPROM peripheral. 

2: Performs a recovery if power failed during a previous write operation. 

3: Erases the entire EEPROM. This isn’t strictly necessary because, unlike flash,       
EEPROM does not need to be erased before it is programmed. But this will allow  
us to see the result of our programming more easily in the lab. 

4: Reads the erased values into puiRead (offset address) 

5: Programs the data array, to the beginning of EEPROM, of the length of the array. 

6: Reads that data into array puiRead. 

7: Turns off LED D1 and turns on LED D2. 
  



Lab12: Memory and the MPU 

8 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

18. ► Save your work. 
 
Your code should look like the code below. If you’re having issues, this code is located in 
the lab12 folder as main3.txt. 
 

#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_types.h" 
#include "inc/hw_memmap.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/debug.h" 
#include "driverlib/gpio.h" 
#include "driverlib/flash.h" 
#include "driverlib/eeprom.h" 
 
uint32_t ui32SysClkFreq; 
 
int main(void) 
{ 
 uint32_t pui32Data[2]; 
 uint32_t pui32Read[2]; 
 pui32Data[0] = 0x12345678; 
 pui32Data[1] = 0x56789abc; 
 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
   SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
   SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
 GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 
 GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00); 
 SysCtlDelay(ui32SysClkFreq/3); 
 
 FlashErase(0x10000); 
 FlashProgram(pui32Data, 0x10000, sizeof(pui32Data)); 
 GPIOPinWrite(GPIO_PORTN_BASE,GPIO_PIN_0|GPIO_PIN_1, 0x02); 
 SysCtlDelay(ui32SysClkFreq/3); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROM0); 
 EEPROMInit(); 
 EEPROMMassErase(); 
 EEPROMRead(pui32Read, 0x0, sizeof(pui32Read)); 
 EEPROMProgram(pui32Data, 0x0, sizeof(pui32Data)); 
 EEPROMRead(pui32Read, 0x0, sizeof(pui32Read)); 
 GPIOPinWrite(GPIO_PORTN_BASE,GPIO_PIN_0|GPIO_PIN_1, 0x01); 
 
 while(1) 
 { 
 } 
} 

 

  



 Lab12: Memory and the MPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 17 

Build, Download and Run the EEPROM Programming Code 
19. ► Click the Debug button to build and download your program to flash memory. Code 

Composer does not currently have a browser for viewing EEPROM memory located in 
the peripheral area. The code we’ve written will let us read the values and display them 
as array values. 

20. ► Click on the Variables tab and expand both of the arrays ► Right-click on the first 
variable’s row and select Number Format  Hex. Do this for all four variables. 

 
 

 

 

 

 

 

 

21. ► Set a breakpoint on the line containing EEPROMProgram(). We want to verify the 
previous contents of the EEPROM. ► Click the Resume button to run to the breakpoint. 

22. Since we included the EEPROMMassErase() in the code, the values read from 
memory should be all F’s as shown below: 

 
23. ► Click the Resume button to run the code from the breakpoint. When the D2 LED on 

the board lights, click the Suspend button. The values read from memory should now be 
the same as those in the write array: 

 



Lab12: Memory and the MPU 

8 - 18 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

Further EEPROM Information  
24. EEPROM is unlocked at power-up. Your locking scheme, if you choose to use one, can 

be simple or complex. You can lock the entire EEPROM or individual blocks. You can 
enable reading without a password and writing with one if you desire. You can also hide 
blocks of EEPROM, making them invisible to further accesses.  

25. EEPROM reads and writes are multi-cycle instructions. The ones used in the lab code are 
“blocking calls”, meaning that program execution will stall until the operation is 
complete. There are also “non-blocking” calls that do not stall program execution. When 
using those calls you should either poll the EEPROM or enable an interrupt scheme to 
assure the operation completes properly. 

26. ► Remove your breakpoint, click Terminate to return to the CCS Edit perspective and 
close the lab12 project. 

  



 Lab12: Memory and the MPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 19 

Bit-Banding 
27. The LaunchPad board TivaWare examples include a bit-banding project. ► Click Project 
 Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.  

Make sure that the Copy projects to workspace checkbox is checked. 

 

 
 

28. ► Expand the bitband project and double-click on bitband.c to open it for viewing. 
Page down until you reach main(). You should recognize most of the setup code, but 
note that the UART is also configured. We’ll be able to watch the code run via 
UARTprintf() statements that send data to a terminal program running on your lap-
top. Also note that this example uses ROM API function calls. 

  



Lab12: Memory and the MPU 

8 - 20 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

29. ► Continue paging down until you find the 
for(ui32Idx=0;ui32Idx<32;ui32Idx++) loop around line 200. This 32-step 
loop will write 0xdecafbad into memory bit by bit using bit-banding. This will be 
done using the HWREGBITW() macro. 
 

► Right-click on HWREGBITW() and select Open Declaration. 
 
The HWREGBITW(x,b) macro is an alias from: 
  
HWREG(((uint32_t)(x) & 0xF0000000) | 0x02000000 |                 

(((uint32_t)(x) & 0x000FFFFF) << 5) | ((b) << 2)) 
 
 which is C code for: 

 
bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4) 

 

This is the calculation for the bit-banded address of bit b of location x. HWREG is a  
macro that programs a hardware register (or memory location) with a value. This macro 
can be very useful for those times when your code can’t tolerate the extra cycles a 
TivaWare API might incur. 

 
The loop in bitband.c reads the bits from 0xdecafbad and programs them into the 
calculated bit- band addresses of g_ui32Value. Throughout the loop the program 
transfers the value in g_ui32Value to the UART for viewing on the host. Once all bits 
have been written to g_ui32Value, the variable is read directly (all 32 bits) to make 
sure the value is 0xdecafbad.  There is another loop that reads the bits individually to 
make sure that they can be read back using bit-banding 

30. ► Click the Debug button to build and download the program to flash memory. If you 
see a warning about the compiler version, you can ignore that for now. 

  



 Lab12: Memory and the MPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 21 

31. ► Open PuTTY and make the selections shown below. Remember that your COM port 
number is probably different. Click Open. 

 

 

 

32. ► Click the Resume button in CCS and watch the bits drop into place in your terminal 
window. The Delay() in the loop causes this process to take about 3 seconds. 

33. ► Close your terminal window. Click Terminate in CCS to return to the CCS Edit 
perspective and close the bitband project. 



Lab12: Memory and the MPU 

8 - 22 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

Memory Protection Unit (MPU) 
The LaunchPad board TivaWare examples include an mpu fault project. ► Click Project 
 Import Existing CCS Eclipse Project. Make the settings shown below and click Finish. 

 Make sure that the Copy projects to workspace checkbox is checked. 

 

 
 

34. ► Expand the mpu_fault project and double-click on mpu_fault.c for viewing. 

Again, things should look pretty normal in the setup, so let’s look at where things are 
different.  

Find the function called MPUFaultHandler around line 175. This exception handler 
looks just like an ISR. The main purpose of this code is to preserve the address of the 
problem that caused the fault, as well as the status register. 

► Open startup_ccs.c and find where MPUFaultHandler has been placed in 
the vector table. Close startup_ccs.c. 

  



 Lab12: Memory and the MPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 8 - 23 

35. ► In mpu_fault.c, find main() around line 214. Using the memory map shown in 
the comments, the MPURegionSet() calls will configure 6 different regions and 
parameters for the MPU. The code following the final MPURegionSet() call triggers 
(or doesn’t trigger) the fault conditions. Status messages are sent to the UART for display 
on the host. 

MPURegionSet() uses the following parameters: 

• Region number to set up 

• Address of the region (as aligned by the flags) 

• Flags 

Flags are a set of parameters (OR’d together) that determine the attributes of the region 
(size | execute permission | read/write permission | sub-region disable | enable/disable) 

 
The size flag determines the size of a region and must be one of the following: 
 
MPU_RGN_SIZE_32B 
MPU_RGN_SIZE_64B 
MPU_RGN_SIZE_128B 
MPU_RGN_SIZE_256B 
MPU_RGN_SIZE_512B 
MPU_RGN_SIZE_1K 
MPU_RGN_SIZE_2K 
MPU_RGN_SIZE_4K 
MPU_RGN_SIZE_8K 
MPU_RGN_SIZE_16K 
MPU_RGN_SIZE_32K 
MPU_RGN_SIZE_64K 
MPU_RGN_SIZE_128K 
MPU_RGN_SIZE_256K 

MPU_RGN_SIZE_512K 
MPU_RGN_SIZE_1M 
MPU_RGN_SIZE_2M 
MPU_RGN_SIZE_4M 
MPU_RGN_SIZE_8M 
MPU_RGN_SIZE_16M 
MPU_RGN_SIZE_32M 
MPU_RGN_SIZE_64M 
MPU_RGN_SIZE_128M 
MPU_RGN_SIZE_256M 
MPU_RGN_SIZE_512M 
MPU_RGN_SIZE_1G 
MPU_RGN_SIZE_2G 
MPU_RGN_SIZE_4G 

 
The execute permission flag must be one of the following: 
 
MPU_RGN_PERM_EXEC enables the region for execution of code 
MPU_RGN_PERM_NOEXEC disables the region for execution of code 
 
The read/write access permissions are applied separately for the privileged and user 
modes. The read/write access flags must be one of the following: 
 
MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode 
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, no user access 
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only 
MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write 
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, no user access 
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only 
 

  



Lab12: Memory and the MPU 

8 - 24 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- Memory 

Each region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-
regions can only be used in regions of size 256 bytes or larger. Any of these 8 sub-
regions can be disabled, allowing for creation of “holes” in a region which can be left 
open, or overlaid by another region with different attributes. Any of the 8 sub-regions can 
be disabled with a logical OR of any of the following flags: 
 
MPU_SUB_RGN_DISABLE_0 
MPU_SUB_RGN_DISABLE_1 
MPU_SUB_RGN_DISABLE_2 
MPU_SUB_RGN_DISABLE_3 
MPU_SUB_RGN_DISABLE_4 
MPU_SUB_RGN_DISABLE_5 
MPU_SUB_RGN_DISABLE_6 
MPU_SUB_RGN_DISABLE_7 
 
Finally, the region can be initially enabled or disabled with one of the following flags: 
 
MPU_RGN_ENABLE 
MPU_RGN_DISABLE 
 

36. ► Start your terminal program as shown earlier. Click the Debug button to build and 
download the program to flash memory. You can ignore any compiler version warnings 
that may appear. Click the Resume button to run the program. 

37. The tests are as follows: 

• Attempt to write to the flash.  This should cause 
a protection fault due to the fact that this region 
is read-only. If this fault occurs, the terminal 
program will show OK. 

• Attempt to read from the disabled section of 
flash. If this fault occurs, the terminal 
program will show OK. 

• Attempt to read from the read-only area of 
RAM. If a fault does not occur, the terminal program will show OK. 

• Attempt to write to the read-only area of RAM. If this fault occurs, the 
terminal program will show OK. 

38. ► When you are done, close your terminal program. Click the Terminate button in CCS 
to return to the CCS Edit perspective. Close the mpu_fault project and minimize Code 
Composer Studio. 

   You’re done. 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13 - 1 

Floating-Point Unit 

Introduction 
This chapter will introduce you to the Floating-Point Unit (FPU) on the LM4F series devices. In 
the lab we will implement a floating-point sine wave calculator and profile the code to see how 
many CPU cycles it takes to execute. 

 

Agenda

Floating point ...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

13 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 

Chapter Topics 
Floating-Point Unit ................................................................................................................................... 13-1 

Chapter Topics ....................................................................................................................................... 13-2 

What is Floating-Point and IEEE-754? ................................................................................................. 13-3 

Floating-Point Unit ................................................................................................................................ 13-4 

Lab13: FPU ........................................................................................................................................... 13-7 
Objective ........................................................................................................................................... 13-7 
Procedure ........................................................................................................................................... 13-8 

 



 What is Floating-Point and IEEE-754? 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13 - 3 

What is Floating-Point and IEEE-754? 
 

What is Floating-Point?

 Floating-point is a way to represent real numbers on 
computers

 IEEE floating-point formats:

 Half (16-bit) 

 Single (32-bit) 

 Double (64-bit) 

 Quadruple (128-bit) 

What is IEEE-754?...  

 

What is IEEE-754?

FPU...

exponent = [10000110]2 = [134]10 fraction =  [0.110100001000000000000000]2 = [0.814453]10sign = (-1)0 

= [1]10

Decimal Value = (-1)s x (1+f) x 2e-bias

= [1]10 x ([1]10 + [0.814453]10) x [2134-127]10 

= [1. 814453]10 x 128
= [232.249]10

Symbol s e f
Example 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X
Symbol Sign (s) Exponent (e) Fraction (f)

8 bits 23 bits1 bit

Decimal Value = (-1)s (1+f) 2e-bias

where: f = ∑[(b-i)2-i] ∀ i ϵ (1,23)
bias = 127 for single precision floating-point

 

 



Floating-Point Unit 

13 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 

Floating-Point Unit 
 

Floating-Point Unit (FPU)

 The FPU provides floating-point 
computation functionality that is compliant 
with the IEEE 754 standard

 Enables conversions between fixed-point 
and floating-point data formats, and floating-
point constant instructions

 The Cortex-M4F FPU fully supports single-
precision:
• Add
• Subtract
• Multiply
• Divide
• Single cycle multiply and accumulate (MAC)
• Square root

Modes of Operation...  

 

Modes of Operation
 There are three different modes of operation for the FPU:

 Full-Compliance mode – In Full-Compliance mode, the FPU 
processes all operations according to the IEEE 754 standard in 
hardware. No support code is required.

 Flush-to-Zero mode – A result that is very small, as described in the 
IEEE 754 standard, where the destination precision is smaller in 
magnitude than the minimum normal value before rounding, is 
replaced with a zero.

 Default NaN (not a number) mode – In this mode, the result of any 
arithmetic data processing operation that involves an input NaN, or 
that generates a NaN result, returns the default NaN. ( 0 / 0 = NaN )

FPU Registers...  

 



 Floating-Point Unit 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13 - 5 

 

FPU Registers

 Thirty-two dedicated
32-bit single-word registers, 
S0-S31 
also addressable as sixteen 
64-bit double-word registers, 
D0-D15

Usage...  

 

FPU Usage
 The FPU is disabled from reset. You must enable it* before you 

can use any floating-point instructions. The processor must be in 
privileged mode to read from and write to the Coprocessor Access 
Control (CPAC) register.

 Exceptions: The FPU sets the cumulative exception status flag in 
the FPSCR register as required for each instruction. The FPU does 
not support user-mode traps.

 The processor can reduce the exception latency by using lazy 
stacking*. This means that the processor reserves space on the 
stack for the FPU state, but does not actually write that state 
information to the stack. 

Lab ...
* with a TivaWare API function call

 

 

 



Floating-Point Unit 

13 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 

 

 

 

 

 



 Lab13: FPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13 - 7 

Lab13: FPU 

Objective 
In this lab you will enable the FPU to run and profile floating-point code.  

 

Lab13: FPU

 Experiment with the FPU
 Profile floating-point code

Agenda ...

USB Emulation
Connection

 

 

 

 

 

 

 

 

 

 



Lab13: FPU 

13 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 

Procedure 

Import lab13 
1. We have already created the lab13 project for you with main.c, a startup file and all 

necessary project and build options set.  
 
► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish 

Make sure that the Copy projects into workspace checkbox is unchecked. 
 

 
 

► Expand the project. 
 

  



 Lab13: FPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13 - 9 

Browse the Code 
2. In order to save some time, we’re going to browse existing code rather than enter it line 

by line. ► Open main.c in the editor pane and copy/paste the code below into it. The 
code is fairly simple. We’ll use the FPU to calculate a full sine wave cycle inside a 100 
datapoint long array. This file is saved in your lab13 folder as main.txt. 
 

#include <stdint.h> 
#include <stdbool.h> 
#include <math.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/fpu.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/rom.h" 
 
#ifndef M_PI 
#define M_PI                    3.14159265358979323846f 
#endif 
 
#define SERIES_LENGTH 100 
float gSeriesData[SERIES_LENGTH]; 
 
uint32_t ui32SysClkFreq; 
int32_t i32DataCount = 0; 
 
int main(void) 
{ 
    float fRadians; 
 
    FPULazyStackingEnable(); 
    FPUEnable(); 
 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
            SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
                  SYSCTL_CFG_VCO_480), 120000000); 
 
    fRadians = ((2 * M_PI) / SERIES_LENGTH); 
 
    while(i32DataCount < SERIES_LENGTH) 
    { 
     gSeriesData[i32DataCount] = sinf(fRadians * i32DataCount); 
     i32DataCount++; 
    } 
 
    while(1) 
    { 
    } 
} 

 

3. At the top of main.c, look first at the includes, because there are a couple of new ones: 

• math.h – the code uses the sinf() function prototyped by this header file 

• fpu.h – support for Floating Point Unit 
4. Next is an ifndef construct. Just in case M_PI is not already defined, this code will do 

that for us. 



Lab13: FPU 

13 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 

5. Types and defines are next: 

• SERIES_LENGTH – this is the depth of our data buffer 

• float gSeriesData[SERIES_LENGTH] – an array of floats 
SERIES_LENGTH long 

• i32dataCount – a counter for our computation loop 

6. Now we’ve reached main(): 

• We’ll need a variable of type float called fRadians to calculate sine 

• Turn on Lazy Stacking (as covered in the presentation) 

• Turn on the FPU (remember that from reset it is off) 

• Set up the system clock for 120MHz 

• A full sine wave cycle is 2π radians. Divide 2π by the depth of the array. 

• The while() loop will calculate the sine value for each of the 100 values of the 
angle and place them in our data array 

• An endless loop at the end 

Build, Download and Run the Code 
7. ► Click the Debug button to build and download the code to flash memory. When the 

process completes, ► click the Resume button to run the 
code. 

8. ► Click the Suspend button to halt code execution. Note 
that execution was trapped in the while(1) loop. 

 

9. ► If your Memory Browser isn’t currently visible, Click View  Memory Browser on 
the CCS menu bar. Enter gSeriesData in the address box and press Enter. In the box 
that says Hex 32 Bit – TI Style, click the down arrow and select 32 Bit Floating Point. 
You will see the sine wave data in memory like the screen capture below. Close the 
Memory Browser. 

 
  



 Lab13: FPU 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 13 - 11 

10. Is that data really a sine wave? It’s hard to see 
from numbers alone. We can fix that. On the CCS 
menu bar, click Tools  Graph  Single Time. 
When the Graph Properties dialog appears, make 
the selections show below and click OK. 
 

 

 

 

 

 

 

 

The graph below will appear at the bottom of your screen: 

 

 

Profiling the Code 
11. It would be interesting thing to know how much time (or how many cycles) it takes to 

calculate those 100 sine values. 
 
► On the CCS menu bar, click View  Breakpoints. Look in the upper right area of the 
CCS display for the Breakpoints tab. 

12. ► Remove any existing breakpoints by clicking Run  Remove All Breakpoints. In the 
main.c, set a breakpoint by double-clicking in the gray area to the left of the line 
containing: 
 
fRadians = ((2 * M_PI) / SERIES_LENGTH); 
 

 



Lab13: FPU 

13 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop- FPU 

13. ► Click the Restart button to restart the code from main(), and then 
click the Resume button to run to the breakpoint. 

14. ► Right-click in the Breakpoints pane and select Breakpoint (Code 
Composer Studio)  Count event. Leave the Event to Count as Clock Cycles in the next 
dialog and click OK. 

15. ► Set another Breakpoint on the line containing while(1) at the end of the code. This 
will allow us to measure the number of clock cycles that occur between the two 
breakpoints. 

16. ► Right-click on Count Event in the 
Breakpoints pane and select 
Properties. Check the box next to 
Reset Count on Run. This will set the 
count to zero when the code is run. 

 

 
 

17.  ► Click the Resume button to run to the second breakpoint. When code execution 
reaches the breakpoint, execution will stop and the cycle count will be updated. Our 
result is show below: 

 
18. A cycle count of 48385 means that it took about 480 clock cycles to run each calculation 

and update the i32dataCount variable (plus the looping overhead). Since the System 
Clock is running at 120 MHz, each loop took about 4µS, and the entire 100 sample loop 
required about 400 µS. 

19. ► Right-click in the Breakpoints pane and select Remove All, and then click Yes to 
remove all of your breakpoints. 

20. ► Close the graph pane and then click the Terminate button to return to the CCS Edit 
perspective. ► Close the lab13 project and minimize CCS. 
 

   You’re done. 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 - 1 

DMA 

Introduction 
This chapter will introduce you to the TM4C1294NCPDT  DMA module  (ARM devices call this 
a µDMA). In the lab we’ll experiment with DMA transfers in memory and to/from the UART. 

 

Agenda

DMA Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

14 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 

Chapter Topics 
DMA .......................................................................................................................................................... 14-1 

Chapter Topics ....................................................................................................................................... 14-2 

Features and Transfer Types ................................................................................................................. 14-3 

Block Diagram and Channel Assignment .............................................................................................. 14-4 

Lab14: DMA .......................................................................................................................................... 14-4 
Objective ........................................................................................................................................... 14-5 
Procedure ........................................................................................................................................... 14-6 

 



 Features and Transfer Types 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 - 3 

Features and Transfer Types 
 

DMA Features

Channel operation ...

 ARM terminology uses the term uDMA for Cortex-M4 DMA operations
 32 channels with two priority levels
 Memory to memory, memory to peripheral and peripheral to pheripheral

transfers in multiple modes:
• Basic (simple transfers)
• Ping-pong (continuous data flow)
• Scatter-gather (via a task list up of up to 256 transfers)

 8, 16 and 32-bit data element sizes
 Transfer sizes of 1 to 1024 elements (in binary steps)
 CPU bus accesses outrank DMA controller 
 Source and destination address increment sizes: 

size of element, half-word, word, no increment
 Interrupt on transfer completion (per channel)
 Hardware and software triggers
 Single and Burst requests
 Each channel can specify a minimum # of transfers before relinquishing to 

a higher priority transfer. Known as “Burst” or “Arbitration”

 

 

Highly Configurable DMA Channel Operation

 Channels are independently 
configured and operated

 Each channel has 5 possible 
assignments 

 Dedicated channels for supported 
on-chip modules

 One channel each for receive and 
transmit path for bidirectional 
modules

 Dedicated channel for software-
initiated transfers

 Per-channel configurable priority 
scheme

 Optional software-initiated requests 
for any channel

S = Single B = Burst SB = Both

Block Diagram ...  

 



Block Diagram and Channel Assignment 

14 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 

Block Diagram and Channel Assignment 
 

DMA Block Diagram

Channel configuration ...  

 

Channel Configuration
 Channel control is done via a set of control structures in a table
 The table must be located on a 1024-byte boundary
 Each channel can have one or two control structures; a primary and an alternate
 The primary structure is for BASIC transfers. The alternate is for Ping-Pong and 

Scatter-gather

Control Structure Memory Map Channel Control Structure

Control word contains:
 Source and Destination data sizes
 Source and Destination address increment 

size
 Number of transfers before bus arbitration
 Total number of elements to transfer
 Useburst flag
 Transfer mode

Lab...  



 Lab14: DMA 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 - 5 

Lab14: DMA 

Objective 
In this lab you will experiment with the DMA module, transferring arrays of data in memory and 
then transferring data to and from the UART. 

 

Lab14: Transferring Data with the DMA

 Perform an array to array memory 
transfer

 Transfer data to and from the UART

Agenda ...

USB Emulation
Connection

 

 

 

 

 

 

 

 

 

 

 

 



Lab14: DMA 

14 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 

Procedure 

Import Lab14 
1. We have already created the lab14 project for you with main.c, a startup file and all 

necessary project and build options set. 

 
► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish 
 
Make sure that the “Copy projects into workspace” checkbox is unchecked. 
 

 
 

 
 

  



 Lab14: DMA 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 - 7 

Browse the Code 
2. In order to save some time, we’re going to browse this existing code rather than enter it 

line by line. ► Expand the project, open main.c in the editor pane and we’ll get started. 
If you accidentally make a change, this code is also in main.txt in the lab14 folder. 

This code is a stripped-down version of the uDMA_demo example in: 
C:\TI\TivaWare_C_Series-2.1\examples\boards\ek-
tm4c1294xl\udma_demo . To make things a little simpler, the UART portion of that 
code has been removed. 

At the top of the code you’ll find all the normal includes, and the addition of udma.h 
since we’ll be using that peripheral. 

3. Just under includes are the definitions for the source and destination buffers, two error 
counter variables and a counter to track the number of transfers. 

 
#define MEM_BUFFER_SIZE         1024 
static uint32_t g_ui32SrcBuf[MEM_BUFFER_SIZE]; 
static uint32_t g_ui32DstBuf[MEM_BUFFER_SIZE]; 
 
static uint32_t g_ui32DMAErrCount = 0; 
static uint32_t g_ui32BadISR = 0; 
 
static uint32_t g_ui32MemXferCount = 0; 
 

4. Below that, the DMA control table is defined. Remember that the table must be aligned 
to a 1024-byte boundary. The #pragma will do that for us. If you are using a different 
IDE, this construct may be different. The table probably doesn’t need to be 1K in length, 
but that’s fine for this example. 
 
#pragma DATA_ALIGN(pui8ControlTable, 1024) 
uint8_t pui8ControlTable[1024]; 
 

5. Below the control table definition is the library error handler that we’ve covered earlier. 
Next is the µDMA error handler code. If the µDMA controller encounters a bus or memory 
protection error as it attempts to perform a data transfer, it disables the µDMA channel that 
caused the error and generates an interrupt on the µDMA error interrupt vector. The handler here 
will clear the error and increment the error count. 
 
void uDMAErrorHandler(void) 
{ 
    uint32_t ui32Status; 
    ui32Status = uDMAErrorStatusGet(); 
 
    if(ui32Status) 
    { 
        uDMAErrorStatusClear(); 
        g_ui32DMAErrCount++; 
    } 
} 

  



Lab14: DMA 

14 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 

6. Below the error handler is the µDMA interrupt handler. The interrupt that runs this 
handler is triggered by the completion of the programmed transfer. The code first checks 
to see if the µDMA channel is in stop mode. If it is, the transfer count is incremented, the 
µDMA is set up for another transfer and the next transfer is triggered. If this interrupt was 
triggered in error, the bad ISR variable will be incremented. 

The last two lines inside the if() trigger the second and every subsequent µDMA 
request. 

 
void uDMAIntHandler(void) 
{ 
    uint32_t ui32Mode; 
 
    ui32Mode = uDMAChannelModeGet(UDMA_CHANNEL_SW); 
    if(ui32Mode == UDMA_MODE_STOP) 
    { 
        g_ui32MemXferCount++; 
 
        uDMAChannelTransferSet(UDMA_CHANNEL_SW, UDMA_MODE_AUTO, 
                  g_ui32SrcBuf, g_ui32DstBuf, MEM_BUFFER_SIZE); 
 
        uDMAChannelEnable(UDMA_CHANNEL_SW); 
        uDMAChannelRequest(UDMA_CHANNEL_SW); 
    } 
    else 
    { 
        g_ui32BadISR++; 
    } 
} 

  



 Lab14: DMA 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 - 9 

7. Next is the InitSWTransfer() function. This code initializes the µDMA software 
channel to perform a memory to memory transfer. We’ll be triggering these transfers 
from software, so we’ll use the software µDMA channel (UDMA_CHANNEL_SW).  

The for() construct at the top initializes the source array with a simple pattern.  

The next line enables the µDMA interrupt to the NVIC.  

The next line disables the listed attributes of the software µDMA channel so that it’s in a 
known state.  

The uDMAChannelControlSet() API sets up the control parameters for the software channel  
µDMA control structure. Notice that we’ll be using the primary (not the alternate set) and that 
the element size and increment sizes are 32-bits. The arbitration count is 8. 

The uDMAChannelTransferSet() API sets up the transfer parameters for the software channel  
µDMA control structure. Again, this is for the primary set, auto mode (continue transfer 
until completion even if request is removed … common for software requests), the source 
and destination buffer addresses and the size of the transfer. 

Finally, the code enables the software channel and makes the first µDMA request. 

 
void InitSWTransfer(void) 
{ 
    uint32_t ui32Idx; 
 
    for(ui32Idx = 0; ui32Idx < MEM_BUFFER_SIZE; ui32Idx++) 
    { 
        g_ui32SrcBuf[ui32Idx] = ui32Idx; 
    } 
 
    IntEnable(INT_UDMA); 
 
    uDMAChannelAttributeDisable(UDMA_CHANNEL_SW, 
                                    UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT | 
                                    (UDMA_ATTR_HIGH_PRIORITY | 
                                    UDMA_ATTR_REQMASK)); 
 
    uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT, 
                            UDMA_SIZE_32 | UDMA_SRC_INC_32 | UDMA_DST_INC_32 | 
                            UDMA_ARB_8); 
 
    uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT, 
                               UDMA_MODE_AUTO, g_ui32SrcBuf, g_ui32DstBuf, 
                               MEM_BUFFER_SIZE); 
 
    uDMAChannelEnable(UDMA_CHANNEL_SW); 
    uDMAChannelRequest(UDMA_CHANNEL_SW); 
} 
  



Lab14: DMA 

14 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 

8. Lastly, we’ll look at the code in main().  

• Lazy stacking allows floating point to be used inside interrupt handlers, but uses 
additional stack space. This isn’t strictly needed since we aren’t doing any 
floating-point operations in the handler. 

• Set up the clock to 120MHz. 

• Enable the µDMA peripheral. 

• Then enable the µDMA error interrupt and then the µDMA itself. 

• Make sure the control channel base address is set to the one we created. 

• Call the InitSWTransfer() function and start the first transfer, then have the 
CPU wait in the while(1) loop. In your actual code this would be where you’d 
either sleep or do something else with those CPU cycles. 

 
int main(void) 
{ 
 
    FPULazyStackingEnable(); 
 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
            SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
                  SYSCTL_CFG_VCO_480), 120000000); 
     
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA); 
     
    IntEnable(INT_UDMAERR); 
    uDMAEnable(); 
 
    uDMAControlBaseSet(pui8ControlTable); 
 
    InitSWTransfer(); 
 
    while(1) 
    { 
    } 
} 
 

9. ► You may also want to check the startup file to see the placement of the interrupt han-
dler vectors. 

  



 Lab14: DMA 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 - 11 

Build, Download and Run the Code 
10. ► Click the Debug button to build and download the code to flash memory.  

11. ► If the Memory Browser pane is not already visible, click View  Memory Browser to 
open it. Move/resize the window if you have to. Type g_ui32SrcBuf in the 
Enter location here box and press Enter. ► Click the Open New View button, 
and type g_ui32DstBuf in the new Enter location here box and press Enter. 
Note that both arrays are zeroed out. Arrange the Memory Browser panes so that you can 
see both. 

12. ► We want to see the contents of the source array before any transfers begin. Find the 
line containing IntEnable(INT_UDMA); (about line 94) inside the 
InitSWTransfer() function. Double-click on the line of code to select it, then right-
click and select Run to Line.  

13. ► In the Memory Browser, note the initialized values in the source array. Check the 
destination array to make sure it’s still clear. When values change, the Memory Browser 
will change their color to red. 

14. ► We want to see the results after the transfer is completed and the transfer count has 
been incremented, but before the next transfer has begun. Find the line containing the 
final closing brace in the uDMAIntHandler function (around line 125).  
Double-click on the line to select it, then right-click and select Run to Line. 

15. Note that the contents of the destination array have changed.  

16. ► Add a watch expressions on g_ui32MemXferCount, g_ui32BadISR and 
g_ui32DMAErrCount (these are easiest found in the definitions at the top of the file).  

17. ► Click Resume. Wait a few moments and click the Suspend button. We saw over 
250,000 transfers and 0 errors. 

 
18. ► Remove all of the watch expressions by right-clicking in the Expressions pane and 

selecting Remove All  Yes. Close the Memory Browser panes. 

19. ► Click the Terminate button to return to the CCS Edit perspective. 

  



Lab14: DMA 

14 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 

Streaming Data To and From the UART using a Ping-Pong Buffer 
In real-world applications, incoming or outgoing data doesn’t usually stop. If you are receiving 
data from an ADC or sending/receiving data to/from a UART, the best way to make sure the data 
always has a place to go to or from is to use a Ping-Pong buffer. Let’s examine a filtering 
application like the one shown below: 

  

Here the DMA on the left is responsible for bringing data from the ADC into memory. When the 
PING IN buffer is full, the DMA signals the CPU (with an interrupt) and switches its destination 
to the PONG IN buffer (and vice versa). The CPU filters the frame of data from the PING IN 
buffer, sends the result to the PING OUT buffer and triggers the DMA on the right to send it to 
the DAC (and vice versa). This is a straight-forward Input – Process – Output technique. When 
properly synchronized and timed, all three processes happen simultaneously and there is no 
chance for a “skip” or “miss” of even a single bit a data, as long as the CPU is capable of 
processing the buffer of data in the same amount of time that it takes to fill or empty the buffer 
from/to the outside world. 

This example will be a little simpler. We’ll have a single transmit buffer, since the data in it won’t 
change. The transmit DMA will send that buffer to the UART transmit register continuously. The 
UART will be configured in loopback mode so that data will be streaming back in continuously. 
The receive DMA will stream the data received from the UART data receive register into a Ping-
Pong buffer that we can observe. 

What makes this DMA programming interesting is that the primary and alternate modes must be 
used in order for the DMA to switch Ping-Pong buffers automatically. Also, the DMA transfers 
that point to the UART must not increment, otherwise they would write data into the wrong 
location. At the same time, the DMA must increment through the Ping and Pong buffer to fill 
them. 

 
  



 Lab14: DMA 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 - 13 

Import udma_demo Example 
20. The udma_demo example in TivaWare demonstrates the ping/pong dma process.  

► Import the project by clicking Project  Import Existing CCS Eclipse Project … from 
the CCS menu bar. Make the selections shown below and click Finish.  

Make sure that the Copy projects into workspace checkbox is checked. 

 

 

Browse the Code 
21. ► Expand the udma_demo project and open udma_demo.c for editing. 

22. ► Starting at the top of the file, notice the definitions for the single UART TX and 2 
UART RX buffers.  

This example is instrumented to display CPU usage percent by using the SysTick timer.  
  



Lab14: DMA 

14 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 

23. The heart of this code is the UART1IntHandler() interrupt handler. This ISR is run 
when the receive ping (primary) or pong (alternate) buffer is full or when the transmit 
buffer is empty. Note the ui32Mode = lines that determine which event triggered the 
interrupt. 

In the receive buffers the mode is verified to be stopped and the proper transfer count is 
incremented. You’ll see in the initialization that both the primary and alternate 
parameters are already set up. When the Ping side of the transfer causes an interrupt, the 
uDMA is already processing the Pong side, so the TransferSet API resets the 
parameters for the flowing Ping transfer. Note that the source is the UART data register. 

The transmit transfer is a basic transfer and needs to be re-enabled each time it completes. 
Note that the destination is the same UART data register. 

24. The µDMA and UART must be initialized and the next function, 
InitUART1Transfer() does that. 

The for() loop at the beginning initializes the transmit buffer with some count data. 

The next seven lines configure the UART clock, the FIFO utilization, enable it, enable it 
to use the DMA, set loopback mode and enable the interrupt. 

Next up are the µDMA control and transfer programming steps. 

uDMAChannelAttributeDisable() turns off all the indicated parameters to assure 
the starting point. 

The next two uDMAChannelControlSet() lines set up the control parameters for the 
Ping (primary) and Pong (alternate) sets. Note that the transfer element size is 8-bits, the 
source increment is none (since it should be pointing to the UART data register all the 
time) and the destination increment is 8-bits. 

The next two uDMAChannelTransferSet() lines program the transfer parameters 
for both the Ping (primary) and Pong (alternate) sets. Note that the mode is PINGPONG, 
the source is the UART data register and the destination is the appropriate Ping or Pong 
buffer. 

The next four lines set up the control and transfer parameters for the transmit channel. 
Note that the destination is the UART data register and the source is the single transmit 
buffer. The element transfer size is 8-bits, the source increment is 8-bits and the 
destination increment is none. 

In all of these setting the priority has been left as HIGH. It doesn’t make sense to 
prioritize the transmit over the receive or vice versa. 

The final two lines enable both µDMA transfers. 
  



 Lab14: DMA 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 14 - 15 

Build, Load and Run 
25. ► Click the Debug button to build and load the program. 

26. In order to determine of the program is operating properly, we need to see the buffers.  
► Click View  Memory Browser to open it. Move/resize the window if you have to. 
Type g_ui8BufA in the Enter location here box and press Enter. 

The g_ui8RxBufA, g_ui8RxBufB and g_ui8TxBuf buffers are all close together, so 
you should be able to see them in the same window if you size it correctly. To see the 8-
bit values better, change the data format to 8-bit UnSigned Int. 

27. Notice that the g_ui8TxBuf buffer is all zeros. ► Set a breakpoint in the 
InitUART1Transfer() function on the line containing 
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1); (about line 439). This 
is right after the g_ui8TxBuf buffer is initialized with data. (Run to Line won’t work 
inside an ISR) 

28. ► Click the Resume button to run to the breakpoint. Note in the Memory Browser that 
the g_ui8TxBuf buffer is now filled with data. 

29. ► Remove the breakpoint and set another in UART1IntHandler() on the line 
containing ui32Status = (about line 309). This breakpoint will trip when the first 
transfer completes. 

30. ► Click the Resume button to run to the breakpoint. Note in the Memory Browser that 
the g_ui8RxBufA buffer is now filled with data. ► Click Resume twice and the 
g_ui8RxBufB buffer will fill. 

31. ► Add watch expressions for g_ui32RxBufACount and g_ui32RxBufBCount (lines 
128 and 129).► Add another watch expression for g_ui32DMAErrCount (line 113).  
► Change the properties of the breakpoint at line 309 so that its Action is Refresh All 
Windows. 

32. ► Click Resume. The transfer counters should track and the error count should be zero.  
 
The Memory browser isn’t very interesting since the g_ui8TxBuf buffer never changes. 
Let’s fix that. 

  



Lab14: DMA 

14 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - DMA 

33. ► Click the Suspend button and find the g_ui8TxBuf buffer portion of the 
UART1IntHandler. ► Add the line highlighted below at about line 400. This will 
increment the first location in the g_ui8TxBuf buffer.  

 
    if(!ROM_uDMAChannelIsEnabled(UDMA_CHANNEL_UART1TX)) 
    { 
        // 
        // Start another DMA transfer to UART1 TX. 
        // 
     g_ui8TxBuf[0]++; 
        ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT, 
                                   UDMA_MODE_BASIC, g_ui8TxBuf, 
                                   (void *)(UART1_BASE + UART_O_DR), 
                                   sizeof(g_ui8TxBuf)); 

 

 

34. ► Build and load. You may need to press Enter after selecting the location in the 
Memory Browser again. Click Resume to run the code. The first location in all three 
buffers should be incrementing. 

35. When you’re done, ► click the Terminate button to return to the CCS Edit perspective.  

36. ► Close the lab14 and udma_demo projects. Minimize Composer Studio. 

 

   You’re done. 

 

 

 

 

 

 

 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 15 - 1 

Hibernation Module 

Introduction 
In this chapter we’ll take a look at the hibernation module and the low power modes of the Tiva C 
Series device.  The lab will show you how to place the device in sleep mode and you’ll measure 
the current draw as well. 

 

Agenda

Hibernation Module Features...

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes

Graphics Library

 

 

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

15 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 

Chapter Topics 
Hibernation Module ................................................................................................................................. 15-1 

Chapter Topics ....................................................................................................................................... 15-2 

Hibernation Module Features ................................................................................................................ 15-3 

Block Diagram ....................................................................................................................................... 15-3 

Power Management and Consumption .................................................................................................. 15-4 

LaunchPad Considerations .................................................................................................................... 15-5 

Lab15: Low Power Modes ..................................................................................................................... 15-7 
Objective ........................................................................................................................................... 15-7 
Procedure ........................................................................................................................................... 15-8 
Considerations ................................................................................................................................. 15-12 

 



 Hibernation Module Features 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 15 - 3 

Hibernation Module Features 
 

Hibernation Module Features
 32-bit real-time seconds counter (RTC) with 

1/32,768 second resolution and a 15-bit sub-
seconds counter

 32-bit RTC seconds match register and a 15-bit 
sub seconds match for timed wake-up and 
interrupt generation with 1/32,768 second 
resolution

 RTC pre-divider trim for making fine 
adjustments to the clock rate

 Hardware calendar function for: 
Year, Month, Day, Day of Week, Hours, 
Minutes, Seconds
• Four-year leap compensation
• 24-hour or AM/PM configuration

 Two mechanisms for power control
• System power control using discrete external 

regulator
• On-chip power control using internal switches 

under register control

 VDD supplies power when valid, 
even if VBAT > VDD

Block diagram ...

 Dedicated pin for waking using an external 
signal

 Capability to configure external reset pin 
and/or up to four GPIO port pins as wake 
source, with programmable wake level

 RTC is operational and hibernation memory is 
valid as long as VDD or VBAT is valid

 Low-battery detection, signaling, and interrupt 
generation, with optional wake on low battery

 GPIO pin state can be retained during 
hibernation

 Clock source from an internal low frequency 
oscillator (HIB LFIOSC) or a 32.768-kHz 
external crystal or oscillator

 Sixteen 32-bit words of battery-backed 
memory to save state during hibernation

 Programmable interrupts for:
• RTC match
• External wake
• Low battery

 



Block Diagram 

15 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 

Block Diagram 
 

Hibernation Module Block Diagram

Power management ...  



 Power Management and Consumption 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 15 - 5 

Power Management and Consumption 
 

Power Management

 Individual peripheral modules 
can be enabled to run during 
sleep modes (clock dependent)

 Power modes:
• Run mode
• Sleep mode stops the processor 

clock
• Deep Sleep mode stops the 

system clock and switches off the 
PLL and Flash memory

• Hibernate mode with only 
hibernate module powered 
(multiple options) TBD

Power Consumption …  

 

Power Consumption
 Current consumption is highly dependent on processor speed, what memory is being exercised by the 

code, what peripherals are operating, etc
 The nominal current consumption below was measured at 25C, 3.3V VDD and VDDA(except in 

hibernation mode where it is 0V) and 120MHz (except where noted) 
 FLASHPM bit enables low power flash memory mode (0x2)
 Run mode 1 = All peripherals ON
 Run mode 2 = All peripherals OFF

99
82

43
42

28
23

14
11

9
6

0.72
0.42
0.013
0.012
0.0075
0.0067

0 10 20 30 40 50 60 70 80 90 100

Run mode 1 (flash loop / 120MHz)
Run mode 1 (SRAM loop / 120MHz)
Run mode 2 (SRAM loop / 120MHz)

Run mode 2 (flash loop / 120MHz)
Sleep mode (120MHz / FLASHPM bit = 0x0)
Sleep mode (120MHz / FLASHPM bit = 0x2)

Sleep mode (16MHz / FLASHPM bit = 0x0)
Sleep mode (1MHz / FLASHPM bit = 0x0)

Sleep mode (16MHz / FLASHPM bit = 0x2)
Sleep mode (1MHz / FLASHPM bit = 0x2)

Deep sleep mode (SysClk - LFIOSC)
Deep sleep mode (SysClk - PIOOSC)

Hib mode (RTC on)
Hib mode (ext wake/no RTC)

Hib mode (VDD3ON/tamper on)
Hib mode (VDD3ON/no tamper)

Nominal current (mA)

LaunchPad Considerations …  



LaunchPad Considerations 

15 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 

LaunchPad Considerations 
 

LaunchPad Considerations

 The low-cost LaunchPad board does not have a battery holder
 VDD and VBAT are wired together on the board 

(this disables battery-only powered low-power modes)

Lab ...  

 

 

 

 

 



 Lab15: Low Power Modes 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 15 - 7 

Lab15: Low Power Modes 

Objective 
In this lab we’ll use the hibernation module to place the device in a low power state. Then we’ll 
wake up from both the wake-up pin and the Real-Time Clock (RTC). We’ll also measure the 
current draw to see the effects of the different power modes. 

  

Lab15: Low Power Modes

 Place device in low power modes
 Wake from pin
 Wake from RTC
 Measure current

Agenda ...

Power
Measurement

Jumper

USB Emulation
Connection

 

 

 

 

 

 

 

 

 



Lab15: Low Power Modes 

15 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 

Procedure 

Import hibernate Example 
1. To speed things up for this lab we’ll import one of the examples rather than create the 

code from a blank page.  
 
► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish 
 
Make sure that the “Copy projects into workspace” checkbox is checked. 

 

 

This example implements three wake modes; the WAKE pin, a GPIO interrupt and an 
RTC match. Since accessing the GPIO interrupt would require some extra hardware, 
we’ll just experiment with the other two. Let’s try out the code, then we’ll take a closer 
look at how it works.



 Lab15: Low Power Modes 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 15 - 9 

Build, Download and Run  
2. ► Compile and download your application by clicking the Debug button on 

the menu bar. If you have any issues, correct them, and then click the Debug 
button again. After a successful build, the CCS Debug perspective will 
appear. Ignore any compiler version warnings. 

3. ► Click the Terminate button. This may seem like a strange way to run the 
code, but if you were to click the Resume button, the LaunchPad board will 
power-off as soon as it hibernates. Emulators don’t really like to have this 
happen. In most cases CCS will recover, but you won’t actually be 
debugging after the power-down. When you press Terminate, a reset signal is 
sent to the LaunchPad, which runs the code in Flash memory. 

Measure the Current 
4. ► Remove jumper JP2 and place it 

somewhere for safekeeping. This will 
interrupt power to the LaunchPad 
board. 

5. ► Configure your digital multi-
meter (DMM) to measure DC current 
greater than 50mA.Connect the test 
leads to the JP2 pins with the positive 
lead nearest the microcontroller. 
Double check the lead connections 
on the meter.  

6. ► Watch the meter display and press 
the Reset button next to the Ethernet 
connector.  
 
► Record this reading in the first row of the chart in the next step. 

 
  

WAKE 

S1

 

 

 

 

 

RESET 



Lab15: Low Power Modes 

15 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 

7. ► Press user switch 1 on the LaunchPad. Quickly switch your DMM to measure <1mA 
and record your reading in the second row of the chart below. If you take more than 5 
seconds the RTC will match and restore full power. Just try again. 
 

Mode Workbook Step Your Reading Our Reading 

 
Run (120MHz) 

 
6 

 
mA 

 
53.3 mA 

Hibernate 
GPIO Retention  

RTC On 

 
7 

 
µA 

 
343 µA 

 
8. ► Switch your DMM to measure DC current greater than 50mA. The equivalent series 

resistance (ESR) of the DMM in low current settings can be too high to allow the 
microcontroller enough current to operate in Run mode. 
 

9. ► Press user switch 1 on the LaunchPad. Before 5 seconds have elapsed, press the 
WAKE button located next to the Ethernet connector.  Note the current on the DMM. 
The WAKE pin has been programmed to wake the device from hibernation. 
 

10. ► If you haven’t done so yet, press user switch 1 and allow the RTC to time out and 
restore power. Watch the DMM to see when you are in Run or Hibernate mode. The RTC 
match has been programmed to wake the device from hibernation. 
 

11. ► Remove your DMM leads from the JP2 pins and turn off the multimeter. Return 
jumper JP2 to its place on the pins. Return the DMM to your instructor. 
 

12. ► Start your terminal program (like puTTY) as shown earlier and watch the messages as 
you exercise the code. It the puTTY display gets confused, right-click on the top of the 
puTTY border and select Reset Terminal. Note that the RTC is presented as a calendar 
(with the wrong date now) and that a count is kept of hibernations. At the top of the 
terminal display the cause of the last wake event is reported. When you’re done 
experimenting, close your terminal program. 
 

  



 Lab15: Low Power Modes 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 15 - 11 

Explore the Code 
13. ► Back in the CCS Edit perspective, let’s look into the code in hibernate.c. We’ll 

skip the variables and includes and jump to the following functions: 

DateTimeGet() – Uses the HibernateCalendarGet() API to read the current 
time into a structure called sTime and verify its validity. Note the contents of the 
structure. 

DateTime DisplayGet() – Formats the time for display on the terminal display. If 
the time is invalid, it is reset to a default time value.  

DateTimeSet() – Sets the date and time in the hibernation module. Note the values 
used … those can be changed to be closer to the actual time if you like in the next 
function called DateTimeDefaultSet(). 

DateTimeUpdateSet() – A function for updating the individual date/time buffers 

GetDaysInMonth() – A function to determine the number of days in this month for 
calculation purposes 

GetCalendarMatchValue() – Returns the value in the RTC match register. This is 
the register that will be used to determine when the RTC wake will occur. The function 
adds 5 seconds to the current time for the purpose of this lab. Since the structure of 
sTime isn’t simply “seconds elapsed”, the calculation is a little involved. 

AppHibernateEnter() – This function performs some crucial activities required 
before entering hibernate. Primary activities are to set the wakeup time to be 5 seconds 
from now using the HibernateCalendarMatchSet() API, clear the hibernate 
status bits and to set the conditions that will wake the device using the 
HibernateWakeSet() API. At that point the HibernateRequest() can be 
called. Since there may be other activities that can delay entering the Hibernate state, the 
delay and while(1) loop are added. 

SysTickHandler() – The SysTick timer is used to generate an interrupt every .1 
seconds. The initialization for the timer is done in main(). This handler is called to 
poll to see if user button S1 has been pressed. This will flag the code to go into hibernate 
mode. 

14. ►Now in main(), normal initialization occurs until about line 655. This if() 
construct determines the following if the hibernate mode is active, meaning that the 
part may have just woke up from hibernation; 

• Clear the hibernation status bits and send the reason for wake to the terminal 
• Parse the status to determine whether wake was due to RTC match, reset, WAKE pin 

or GPIO 
• If the wake was due to any of these sources, get the first location from the battery-

backed memory. This location holds the hibernate count.  
• If the wake wasn’t due to the previous sources, it was from a system reset. 

  



Lab15: Low Power Modes 

15 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Hibernation 

15. ► Now around line 762, enable the RTC and set it to 24-hour calendar mode. Configure 
the GPIO pin PK6 as a wake source. Initialize the LaunchPad buttons, SysTick timer 
and enable processor interrupts. The remainder of the code mostly handles the UART and 
also calls AppHibernateEnter() to begin hibernation. 

Considerations 
 

16. The hibernate example code 
only sleeps when triggered to do 
so, so the following issue doesn’t 
apply. If you did try to build and 
load code to a sleeping processor, 
CCS will report an error like this 
one. 
 
Remember that the device is 
essentially powered-down while in hibernate mode and the emulation hardware and 
debugger can’t communicate with it. 

If your sleep code wakes on an external signal like WAKE or GPIO, you can hold that 
signal (i.e. – press and hold the WAKE button) while you write to the device. This also 
applies if you try to reprogram the device using LM Flash Programmer, although you 
will need to assure that the device is awake from before you start the programmer until 
the programming process begins. 

If, on the other hand, if you managed to place the device in hibernate without a method 
for waking it up, there is a technique for recovering it. First, the reset must be asserted 
and held. Then power the device and start LM Flash Programmer. Click the Flash 
Utilities tab and check the Fury… 
checkbox. Click the Unlock button and 
follow the on-screen prompts. This will 
erase everything in flash 
memory, including your MAC address. 
That can be restored using the User 
Register Programming section at the top of the page. Your MAC address is written on the 
bottom of the LaunchPad board. 

17. ► Close the lab15 project and minimize Code Composer Studio. 

 
 

   You’re done. 



Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 1 

Graphics Library 

Introduction 
This chapter will take a look at the currently available BoosterPacks for the LaunchPad board. 
We’ll take a closer look at the Kentec Display LCD TouchScreen BoosterPack and then dive into 
the TivaWare graphics library. 

 

Agenda

Graphics Library Overview …

Intro to TM4C Devices, LaunchPad and Cloud Services
Code Composer Studio

Initialization, GPIO and TivaWare®

Ethernet Port
Interrupts and the Timers

ADC and the Educational BoosterPack
PWM and QEI

I2C, SensorLib and GUI Composer
SPI and QSSI

UART
USB

Memory, Security and the MPU
Floating Point Unit

DMA
Low Power Modes
Graphics Library

 

 

 

 

 

 

 

 

 

 
 

 



Chapter Topics 

16 - 2 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

Chapter Topics 
Graphics Library ...................................................................................................................................... 16-1 

Chapter Topics ....................................................................................................................................... 16-2 

Graphics Library ................................................................................................................................... 16-3 

Display Driver ....................................................................................................................................... 16-3 

Graphics Primitives ............................................................................................................................... 16-5 

Widget Framework ................................................................................................................................. 16-5 

Special Utilities ...................................................................................................................................... 16-6 

LCD Display Module and KenTec LCD Display ................................................................................... 16-7 

Lab16: Graphics Library ....................................................................................................................... 16-9 
Objective ........................................................................................................................................... 16-9 
Procedure ......................................................................................................................................... 16-10 

 
 

 

 

 

 



 Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 3 

Graphics Library 

Graphics Library Overview

The Tiva C Series Graphics Library provides graphics primitives and widgets sets for 
creating graphical user interfaces on Tiva controlled displays.
The LCD connection can be made through the LCD interface (not on the 
TM4C1294NCPDT), serial or parallel ports.
The graphics library consists of three layers to interface your application to the 
display:

Display Driver Layer*
Graphics Primitives Layer

Widget Layer

Your Application Code

* = user modified
 

 

Graphics Library Overview
The design of the graphics library is governed by the following goals:

 Components are written entirely in C except where absolutely not possible
 Your application can call any of the layers
 The graphics library is easy to understand
 The components are reasonably efficient in terms of memory and processor 

usage
 Components are as self-contained as possible
 Where possible, computations that can be performed at compile time are 

done there instead of at run time

Display Driver...

Some implications of these goals are:

 The primitives may not be as efficient as they could be since further 
optimizations could make them hard to understand

 Widgets may be somewhat more generalized and complex  than what is 
strictly needed for a given application

 The APIs have a means of removing all error checking code. 
This will improve code size and speed

 



Display Driver 

16 - 4 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

Display Driver 
 

Display Driver

 Routines for display-dependent operations like:
• Initialization
• Backlight control
• Contrast
• Translation of 24-bit RGB values to display dependent color map

 Drawing routines for the graphics library like:
• Flush of cached drawing operations
• Line and pixel drawing
• Rectangle drawing and fill

 User-modified hardware dependent code
• Connectivity of your display to the Tiva device
• Changes to the existing code to match your 

display (like color depth and size)
• Low level support for any local display buffer

Low level interface to the display hardware

Graphics Primitives...

Display Driver Layer

Graphics Primitives Layer

Widget Layer

 

 

This document: http://www.ti.com/lit/an/spma039/spma039.pdf has suggestions for modifying 
the display driver to connect to your display. 

 

http://www.ti.com/lit/an/spma039/spma039.pdf


 Graphics Primitives 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 5 

Graphics Primitives 

Graphics Primitives
Low level drawing operations:

 Drawing lines, circles, text and bitmap images
 Support for off-screen buffering
 Foreground and background drawing contexts
 Colors are represented as a 24-bit RGB value (8-bits per color)

• 150+ colors are pre-defined
• Color swatch provided

 153 pre-defined fonts based on the Computer Modern typeface
 Support for Asian and Cyrillic languages

Widgets...

Display Driver Layer

Graphics Primitives Layer

Widget Layer

 



Widget Framework 

16 - 6 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

Widget Framework 

Widget Framework
- Widgets are graphic elements that provide user 
control elements
- Widgets combine the graphical  and touch screen 
elements on-screen with a parent/child hierarchy so 
that objects appear in front or behind each other 
correctly

Canvas – a simple drawing surface with no user 
interaction

Checkbox – select/unselect
Container – a visual element to group on-screen widgets
Push Button – an on-screen button that can be pressed 

to perform an action
Radio Button – selections that form a group; like low, 

medium and high
Slider – vertical or horizontal to select a value from a

predefined range
ListBox – selection from a list of options

Special Utilities...Display Driver Layer

Graphics Primitives Layer

Widget Layer

 



 Special Utilities 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 7 

Special Utilities 

Special Utilities
Utilities to produce graphics library compatible data structures

ftrasterize
 Uses the FreeType font rendering package to convert your font into a graphic

library format.
 Supported fonts include: TrueType®, OpenType®, PostScript® Type 1 and

Windows® FNT. 

lmi-button
 Creates custom shaped buttons using a script plug-in for GIMP. Produces

images for use by the pushbutton widget.

pnmtoc
 Converts a NetPBM image file into a graphics library compatible file.
 NetPBM image formats can be produced by: GIMP, NetPBM, ImageMajik and

others.

mkstringtable
 Converts a comma separated file (.csv) into a table of strings usable by graphics 

library for pull down menus.

LCD Module ...  



LCD Display Module and KenTec LCD Display 

16 - 8 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

LCD Display Module and KenTec LCD Display  
 

 LCD module is a DMA bus master
 Character-based panels

• Support for 2 character panels (CS0 & 
CS1) with independent & programmable 
bus timing parameters when in 
asynchronous Hitachi, Motorola & Intel 
modes

• Support for one character panel (CS0) 
with programmable bus timing 
parameters when in synchronous
Motorola & Intel modes

 Passive matrix LCD panels
• Panel types including STN, DSTN, and 

C-DSTN
• AC Bias Control

 Active matrix LCD panels
• Panel types including TN TFT
• 1, 2, 4, or 8 bits per pixel with palette 

RAM and 16 or 24 bits per pixel without 
palette RAM

 OLED Panels
• Passive Matrix (PM OLED) with frame 

buffer and controller IC inside the panel
• Active Matrix (AM OLED)

LCD Display Module and Driver

 LCD display driver
• See DK-TM4C129X examples for a LCD 

display driver

KenTec LCD BoosterPack …  

 

KenTec TouchScreen TFT LCD Display

 Part# EB-LM4F120-L35
 Designed for XL BoosterPack pinout
 Parallel interface (not  LCD)
 3.5” QVGA TFT 320x240x16 color LCD with LED 

backlight
 Driver circuit and connector are compatible with 4.3”, 

5”, 7” & 9”displays
 Resistive Touch Overlay

Lab …  

 



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 9 

Lab16: Graphics Library 

Objective 
In this lab you will connect the KenTec display to your LaunchPad board. You will experiment 
with the example code and then write a program using the graphics library. 

 

Lab16: Graphics Library

 Connect Kentec LCD 
Boosterpack

 Experiment with demo 
project

 Write graphics library code

Wrap-up …

USB Emulation
Connection

 

 

 

 

 

 

 

 

 



Lab16: Graphics Library 

16 - 10 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

Procedure 

Connect the KenTec Display to your LaunchPad Board 
1. ► Carefully connect the KenTec LCD 

display to your LaunchPad board on 
BoosterPack connector 2 (the one nearest the 
Ethernet connector). Either connector would 
work, but the code has been written for 
connector 2. Note the part numbers on the 
front of the LCD display. Those part 
numbers should be at the end of the 
LaunchPad board nearest the Ethernet 
connector when oriented correctly. Make 
sure that all the BoosterPack pins are 
correctly engaged into the connectors on the 
bottom of the display.  

 
 

 
       

 

  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 11 

Import Project 
2. We’re going to use the Kentec example project provided by the manufacturer.  

► Maximize Code Composer and click Project  Import CCS Projects...  
Make the settings shown below and click Finish 
 
Make sure the Copy projects into workspace checkbox is checked. 
 

 
3. ► Expand the project in the Project Explorer pane. The two files  

Kentec320x240x16_ssd2119_8bit.c and touch.c (in the driver folder) are 
the drivers for the display and the touch overlay. ► Open the files and take a look 
around. Some of these files were derived from earlier examples, so you may see 
references to earlier development boards. 

Kentec320x240x16_ssd2119_8bit.c contains the low level Display Driver 
interface to the LCD hardware, including the pin mapping, contrast controls and simple 
graphics primitives. 

  



Lab16: Graphics Library 

16 - 12 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

Build, Download and Run the Demo 
4. ► Right-click on the grlib_demo project in the Project Explorer pane and select 

Properties. On the General page, find the compiler version and update it to the latest one 
available. Click OK. 

 
5. ► Make sure your board is connected to your computer, and then click the Debug button 

to build and download the program to flash memory. The project should build and link 
without any warnings or errors. 

6. ► Watch your LCD display and click the Resume button to run the demo program. Using 
the + and – buttons on-screen, navigate through the eight screens. Make sure to try out 
the checkboxes, push buttons, radio buttons and sliders. When you’re done 
experimenting, click Terminate on the CCS menu bar to return to the CCS Edit 
perspective. 

  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 13 

Create an Image File 
7. The first task that our lab software will do is to display an image. So we need to create an 

image in a format that the graphics library can understand. If you have not done so 
already, download GIMP from www.gimp.org and install it on your PC. The steps below 
will go through the process of clipping the photo below and displaying it on the LCD 
display. If you prefer to use an existing image or photograph, or one taken from your 
smartphone camera now, simply adapt the steps below. 

8. ► Make sure that this page 
of the workbook pdf is open 
for viewing and press PrtScn 
on your keyboard. This will 
copy the screen to your 
clipboard. The dimensions of 
the photo below approximate 
that of the 320x240 KenTec 
LCD. 
 

 

 

 

 
9. ► Open GIMP (make sure it is version 2.8 or later) and click Edit  Paste. On the menu 

bar, click Tools  Selection Tools  Rectangle Select. Select the image of the candy, 
leaving a generous margin of white space around it.  
 

10. ► Click Image  Crop to Selection, then click Image  Zealous Crop. This will 
automatically crop the image as closely as possible. 
 

11. ► Click Image  Scale Image, change the image size width/height to 
320x240 and click Scale. You may need to click the “chain” symbol to the 
right of the pixel boxes to stop GIMP from preserving the wrong dimensions. 
 

12. ► Convert the image to indexed mode by clicking Image  Mode  Indexed. Select 
Generate optimum palette and change the Maximum number of colors box to 16 (the 
color depth of the LCD). Click Convert. 
 

13. ► Save the file by clicking File  Export… In the upper left box, name the image pic 
and change the save folder to c:\TI\TivaWare_C_Series-
2.1.0.12573\tools\bin.  
 
Select PNM image as the file type by clicking + Select File Type just above the Help 
button. Click Export. When prompted, select Raw as the data formatting and click 
Export. Close GIMP and select Close without Saving. 
 

  

http://www.gimp.org/


Lab16: Graphics Library 

16 - 14 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

14. Now that we have a source image file in PNM format, we can convert it to something that 
the graphics library can handle. We’ll use the pnmtoc (PNM to C array) conversion 
utility to do the translation. 
 
► Open a command prompt window. In Windows XP click Start  Run, then type cmd 
in the window and press Enter. In Windows 7, click Start and then type cmd in the 
Search dialog and press Enter. 
 
 The pnmtoc utility is in c:\TI\TivaWare_C_Series-2.1.0.12573\tools\bin. 
Copy this command to your clipboard:  
 
cd c:\TI\TivaWare_C_Series-2.1.0.12573\tools\bin   
 
Right-click anywhere in the command window, and then select Paste. Press Enter to 
change the folder to that location. 

► Finally, perform the conversion by typing  pnmtoc –c pic.pnm > pic.c in the 
command window and press Enter (for some reason copy/paste won’t work here)dir. 
When the process completes correctly, the cursor will simply drop to a new line. ► Close 
the command window. 
 
 
 

15. ► In CCS, make sure the 
grlib_demo project is Active. 
Add the C file to the project by 
clicking Project  Add Files… and 
browsing to the file:  
 
c:\TI\TivaWare_C_Series-2.1.0.12573\tools\bin\pic.c  
 
Select Copy files and click OK.  
 
 

  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 15 

Modify pic.c 
16. ► Open pic.c and add the following lines to the very top of the file: 

 
#include <stdint.h> 
#include <stdbool.h> 
#include "grlib/grlib.h" 
 
Your pic.c file should look something like this (your data will vary greatly): 

 
#include <stdint.h> 
#include <stdbool.h>  
#include "grlib/grlib.h" 
 
const unsigned char g_pui8Image[] = 
{ 
    IMAGE_FMT_4BPP_COMP, 
    96, 0, 
    64, 0, 
 
    15, 
    0x00, 0x02, 0x00, 
    0x18, 0x1a, 0x19, 
    0x28, 0x2a, 0x28, 
    0x38, 0x3a, 0x38, 
    0x44, 0x46, 0x44, 
    0x54, 0x57, 0x55, 
    0x62, 0x65, 0x63, 
    0x72, 0x75, 0x73, 
    0x81, 0x84, 0x82, 
    0x93, 0x96, 0x94, 
    0xa2, 0xa5, 0xa3, 
    0xb3, 0xb6, 0xb4, 
    0xc4, 0xc7, 0xc5, 
    0xd7, 0xda, 0xd8, 
    0xe8, 0xeb, 0xe9, 
    0xf4, 0xf8, 0xf5, 
 
    0xff, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0xff, 0x07, 0x07, 
    0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0xff, 0x07, 0x07, 0x07, 0x07, 0x07, 
    0x07, 0x07, 0x07, 0xfc, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x03, 0x77, 
    0x23, 0x77, 0x77, 0xe9, 0x77, 0x78, 0x70, 0x07, 0x07, 0xc1, 0x77, 0x2c, 
    0x04, 0xde, 0xee, 0xee, 0xee, 0xe9, 0x3c, 0xee, 0xa1, 0x07, 0x07, 0x77, 
    0x2c, 0x03, 0xcf, 0x00, 0xee, 0xee, 0xee, 0xef, 0xee, 0xef, 0xfe, 0xa0, 
    0xf0, 0x07, 0x07, 0x77, 0x2c, 0x03, 0xcf, 0xee, 0xee, 0x4f, 0xee, 0xe9, 
    0xee, 0xa0, 0x07, 0x07, 0x77, 0x2c, 0x04, 0x03, 0xcf, 0xee, 0xee, 0xee, 
    0xe9, 0xee, 0x90, 0xf0, 0x07, 0x07, 0x77, 0x2c, 0x03, 0xcf, 0xee, 0xee, 
    0x4f, 0xee, 0xe9, 0xee, 0x90, 0x07, 0x07, 0x77, 0x2c, 0x04, 0x03, 0xcf, 
     
    many, many more lines of this data … 
 
    0x77, 0x2c, 0x19, 0xfe, 0xee, 0xef, 0x03, 0xee, 0xee, 0xee, 0xee, 0xfb, 
    0x20, 0x07, 0x07, 0xc1, 0x77, 0x2c, 0x05, 0xdf, 0xee, 0xee, 0xee, 0xe9, 
    0x78, 0xf9, 0x07, 0x07, 0x77, 0x2d, 0x01, 0x8d, 0xee, 0x2f, 0xee, 0xee, 
    0x03, 0xee, 0xee, 0xee, 0xee, 0xf9, 0x10, 0x07, 0x07, 0xc0, 0x77, 0x2f, 
    0x05, 0xad, 0xee, 0xfe, 0xee, 0xfc, 0x78, 0x20, 0x07, 0x07, 0x77, 0x2f, 
    0x00, 0x27, 0x9d, 0x0f, 0xed, 0xee, 0xec, 0x40, 0x07, 0x07, 0x77, 0x2f, 
    0x01, 0x00, 0x00, 0x28, 0x9a, 0xcc, 0xa9, 0x30, 0x07, 0xff, 0x07, 0x77, 
    0x2f, 0x07, 0x07, 0x07, 0x07, 0x07, 0xc0, 0x07, 0x07, 
}; 

 

17. ► Save your changes and close the pic.c editor pane. If you’re having issues with this 
process. You’ll find a copy of pic.c located in the 
C:\TM4C1294_Connected_LaunchPad_Workshop\lab16 folder. 



Lab16: Graphics Library 

16 - 16 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

main.c  
18. To speed things up, we’re going to use the entire demo project as a template for our own 

main() code. ► On the CCS menu bar, click File  New  Source File. Make the 
selections shown below and click Finish: 

 

19. Now that we’ve added main.c, we can’t also have grlib_demo.c in the project 
since it has a main().► In the Project Explorer, right-click on grlib_demo.c and 
select Exclude from Build. In this manner we can keep the old file in the project, but it 
will not be used during the build process. This is a valuable technique when you are 
building multiple versions of a system that shares much of the code between them. 

20. ► Open main.c for editing. Copy/paste the following lines to the top: 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/debug.h" 
#include "driverlib/sysctl.h" 
#include "grlib/grlib.h" 
#include "Kentec320x240x16_ssd2119_8bit.h" 

 
uint32_t ui32SysClkFreq; 
 

Pointer to the Image Array 
21. The declaration of the image array needs to be made, as well as the declaration of two 

variables. The variables defined below are used for initializing the Context and Rect 
structures. Context is a definition of the screen such as the clipping region, default 
color and font. Rect is a simple structure for drawing rectangles. Look up these APIs in 
the Graphics Library user’s guide. 
 
► Add a line for spacing and add the following lines after the previous ones: 
 
extern const uint8_t g_pui8Image[]; 
tContext sContext; 
tRectangle sRect; 



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 17 

main() 
 

22. The main() routine will be next. ► Leave a blank line for spacing and enter these lines 
of code after the lines above: 

 
int main(void) 
{ 
} 

Initialization 
 

23. ► Set the system clock to run at 120 MHz. Insert this line as the first one inside main(): 
 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 

SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
SYSCTL_CFG_VCO_480), 120000000); 
 

► The first line below initializes the display driver. The second line initializes a drawing 
context, preparing it for use. The provided display driver will be used for all subsequent 
graphics operations, and the default clipping region will be set to the size of the LCD 
screen. Skip a line and insert these lines after the last: 
 
Kentec320x240x16_SSD2119Init(ui32SysClkFreq); 
GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119); 
 

24. ► Let’s add a call to a function that will clear the screen. We’ll create that function in a 
moment. Add the following line after the last ones: 

ClrScreen(); 

25. ► The following function will create a rectangle that covers the entire screen, set the 
foreground color to black, and fill the rectangle by passing the structure sRect by 
reference. The top left corner of the LCD display is the point (0,0) and the bottom right 
corner is (319,239).  ► Add the following code after the final closing brace of the 
program in main.c. 
 
void ClrScreen() 
{ 
   sRect.i16XMin = 0; 
   sRect.i16YMin = 0; 
   sRect.i16XMax = 319; 
   sRect.i16YMax = 239; 
   GrContextForegroundSet(&sContext, ClrBlack); 
   GrRectFill(&sContext, &sRect); 
   GrFlush(&sContext); 
} 
 

26. ► Declare the function at the top of your code right below your variable definitions: 
 
void ClrScreen(void); 



Lab16: Graphics Library 

16 - 18 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

Displaying the Image 
27. Display the image by passing the global image variable g_pui8Image into 

GrImageDraw(...) and place the image on the screen by locating the top-left corner 
at (0,0) …we’ll adjust this later if needed. ► Leave a line for spacing, then insert this line 
after the ClrScreen() call in main(): 
 
GrImageDraw(&sContext, g_pui8Image, 0, 0); 
 

28. The function call below flushes any cached drawing operations. For display drivers that 
draw into a local frame buffer before writing to the actual display, calling this function 
will cause the display to be updated to match the contents of the local frame buffer. 
► Insert this line after the last: 
 
GrFlush(&sContext); 
 

29. We will be stepping through a series of displays in this lab, so we want to leave each 
display on the screen long enough to see it before it is erased. The delay below will give 
you a chance to appreciate your work. ► Leave a line for spacing, then insert this line 
after the last: 
 
SysCtlDelay(ui32SysClkFreq); 
 
This will cause a 3 second delay. 

30. Before we go any further, we’d like to take the code for a test run. With that in mind 
we’re going to add the final code pieces now, and insert later lab code in front of this. 
 
LCD displays are not especially prone to burn in, but clearing the screen will mark a clear 
break between one step in the code and the next. This performs the same function as step 
24 and also flushes the cache. ► Leave several lines for spacing and add this line below 
the last: 
 
ClrScreen(); 
 

31. ► Add a while loop to the end of the code to stop execution. Leave a line for spacing, 
then insert these line after the last: 
 
while(1) 
{ 
} 
 
Don’t forget that you can auto-correct the indentation if needed. 
 
Save your work. 
 

  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 19 

If you’re having issues, you can find this code in main1.txt in the lab16 folder. 
Your code should look like this: 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/debug.h" 
#include "driverlib/sysctl.h" 
#include "grlib/grlib.h" 
#include "Kentec320x240x16_ssd2119_8bit.h" 
 
uint32_t ui32SysClkFreq; 
 
extern const uint8_t g_pui8Image[]; 
tContext sContext; 
tRectangle sRect; 
 
void ClrScreen(void); 
 
int main(void) 
{ 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
   SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
   SYSCTL_CFG_VCO_480), 120000000); 
 
 Kentec320x240x16_SSD2119Init(ui32SysClkFreq); 
 GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119); 
 ClrScreen(); 
 GrImageDraw(&sContext, g_pui8Image, 0, 0); 
 GrFlush(&sContext); 
 
 SysCtlDelay(ui32SysClkFreq); 
 // later lab steps are between here 
 
 // and here 
 ClrScreen(); 
 while(1) 
 { 
 } 
} 
 
void ClrScreen() 
{ 
 sRect.i16XMin = 0; 
 sRect.i16YMin = 0; 
 sRect.i16XMax = 319; 
 sRect.i16YMax = 239; 
 GrContextForegroundSet(&sContext, ClrBlack); 
 GrRectFill(&sContext, &sRect); 
 GrFlush(&sContext); 
}  
 



Lab16: Graphics Library 

16 - 20 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

32. ► Right-click on grlib_demo in the Project Explorer pane and select Properties. Un-
der ARM Compiler, click on Include Options. Add the following search path: 
 
C:\TI\TivaWare_C_Series-2.1\examples\boards\ek-tm4c1294xl-boostxl-kentec-l35\drivers  

 
to the bottom box as shown. Click OK 
 

 

Build and Run the Code 
33. Make sure lab16 is the active project. ► Compile and download your application by 

clicking the Debug button. ► Click the Resume button to run the program that was just 
downloaded to the flash memory. If your coding efforts were successful, you should see 
your image appear on the LCD display for 3 seconds, then disappear when the 
ClrScreen() function clears the screen. 
 
► When you’re finished, click the Terminate button to return to the CCS Edit 
perspective. 

 

 

When you are including images in your projects, remember that they can be quite large in 
terms of memory space. This might possibly require a external memory device, and 
increase your system cost.  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 21 

Display Text On-Screen 
34. Refer back to the code on page 16-19. In main.c find the area marked: 

 
// Later lab steps go between here 
 
// and here 
 
► Insert the following function call to clear the screen and flush the buffer: 
 
ClrScreen(); 

35. Next we’ll display the text. Display text starting at (x,y) with the no background color. 
The third parameter (-1) simply tells the API function to send the entire string, rather than 
having to count the characters. 

GrContextForegroundSet(...): Set the foreground for the text to be red. 

GrContextFontSet(...): Set the font to be a max height of 30 pixels. 

GrRectDraw(...): Put a white border around the screen. 

GrFlush(...): And refresh the screen by matching the contents of the local frame 
buffer. 
Note the colors that are being used. If you’d like to try other colors, fonts or sizes, look in 
the back of the Graphics Library User’s Guide. 
 
► Add the following lines after the previous ones: 
 
   sRect.i16XMin = 1; 
   sRect.i16YMin = 1; 
   sRect.i16XMax = 318; 
   sRect.i16YMax = 238; 
   GrContextForegroundSet(&sContext, ClrRed); 
   GrContextFontSet(&sContext, &g_sFontCmss30b); 
   GrStringDraw(&sContext, "Texas", -1, 110, 2, 0); 
   GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0); 
   GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0); 
   GrStringDraw(&sContext, "Lab", -1, 135, 92, 0); 
   GrContextForegroundSet(&sContext, ClrWhite); 
   GrRectDraw(&sContext, &sRect); 
   GrFlush(&sContext); 
    

36. ► Add a delay so you can view your work. 
 
  SysCtlDelay(ui32SysClkFreq);  

► Save your work. 
  



Lab16: Graphics Library 

16 - 22 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

If you’re having issues, you can find this code in main2.txt in the lab16 folder. 

Your added code should look like this: 
   // Later lab steps go between here 
 
   ClrScreen(); 
 
   sRect.i16XMin = 1; 
   sRect.i16YMin = 1; 
   sRect.i16XMax = 318; 
   sRect.i16YMax = 238; 
   GrContextForegroundSet(&sContext, ClrRed); 
   GrContextFontSet(&sContext, &g_sFontCmss30b); 
   GrStringDraw(&sContext, "Texas", -1, 110, 2, 0); 
   GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0); 
   GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0); 
   GrStringDraw(&sContext, "Lab", -1, 135, 92, 0); 
   GrContextForegroundSet(&sContext, ClrWhite); 
   GrRectDraw(&sContext, &sRect); 
   GrFlush(&sContext); 
 
   SysCtlDelay(ui32SysClkFreq); 
 
   // and here 

Build, Load and Test 
37. ► Build, load and run your code. If your changes are correct, you should see the image 

again for a few seconds, followed by the on-screen text in a box for a few seconds. Then 
the display will blank out. ► Click Terminate to return to the CCS Edit perspective when 
you’re done. 

 
  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 23 

Drawing Shapes 
38. Let’s add a filled-in blue circle. Make the foreground yellow and center the circle at 

(80,182) with a radius of 50. 
 
► Add a line for spacing and then add these lines after the SysCtlDelay() added in 
step 36: 
 
GrContextForegroundSet(&sContext, ClrBlue); 
GrCircleFill(&sContext, 80, 182, 50); 
 

39. Draw an empty green rectangle starting with the top left corner at (160,132) and finishing 
at the bottom right corner at (312,232).  
 
► Add a line for spacing and add the following lines after the last ones: 

      sRect.i16XMin = 160; 
    sRect.i16YMin = 132; 
    sRect.i16XMax = 312; 
    sRect.i16YMax = 232; 

GrContextForegroundSet(&sContext, ClrGreen); 
    GrRectDraw(&sContext, &sRect); 

40. Add a 3 second delay to appreciate your work.  
 
► Add a line for spacing and add the following line after the last ones: 
 
SysCtlDelay(ui32SysClkFreq); 

► Save your work. 
  



Lab16: Graphics Library 

16 - 24 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

If you’re having issues, you can find this code in main3.txt in the lab16 folder. 

Your added code should look like this: 

 
   // Later lab steps go between here 
 
   ClrScreen(); 
 
   sRect.i16XMin = 1; 
   sRect.i16YMin = 1; 
   sRect.i16XMax = 318; 
   sRect.i16YMax = 238; 
   GrContextForegroundSet(&sContext, ClrRed); 
   GrContextFontSet(&sContext, &g_sFontCmss30b); 
   GrStringDraw(&sContext, "Texas", -1, 110, 2, 0); 
   GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0); 
   GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0); 
   GrStringDraw(&sContext, "Lab", -1, 135, 92, 0); 
   GrContextForegroundSet(&sContext, ClrWhite); 
   GrRectDraw(&sContext, &sRect); 
   GrFlush(&sContext); 
 
   SysCtlDelay(ui32SysClkFreq); 
 
   GrContextForegroundSet(&sContext, ClrBlue); 
   GrCircleFill(&sContext, 80, 182, 50); 
 
   sRect.i16XMin = 160; 
   sRect.i16YMin = 132; 
   sRect.i16XMax = 312; 
   sRect.i16YMax = 232; 
   GrContextForegroundSet(&sContext, ClrGreen); 
   GrRectDraw(&sContext, &sRect); 
 
   SysCtlDelay(ui32SysClkFreq); 
 
   // and here 

 
  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 25 

For reference, the final code should look like this: 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/debug.h" 
#include "driverlib/sysctl.h" 
#include "grlib/grlib.h" 
#include "Kentec320x240x16_ssd2119_8bit.h" 
 
uint32_t ui32SysClkFreq; 
 
extern const uint8_t g_pui8Image[]; 
tContext sContext; 
tRectangle sRect; 
 
void ClrScreen(void); 
 
int main(void) 
{ 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
   SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
   SYSCTL_CFG_VCO_480), 120000000); 
 
 Kentec320x240x16_SSD2119Init(ui32SysClkFreq); 
 GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119); 
 ClrScreen(); 
 GrImageDraw(&sContext, g_pui8Image, 0, 0); 
 GrFlush(&sContext); 
 
 SysCtlDelay(ui32SysClkFreq); 
 
 ClrScreen(); 
 sRect.i16XMin = 1; 
 sRect.i16YMin = 1; 
 sRect.i16XMax = 318; 
 sRect.i16YMax = 238; 
 GrContextForegroundSet(&sContext, ClrRed); 
 GrContextFontSet(&sContext, &g_sFontCmss30b); 
 GrStringDraw(&sContext, "Texas", -1, 110, 2, 0); 
 GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0); 
 GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0); 
 GrStringDraw(&sContext, "Lab", -1, 135, 92, 0); 
 GrContextForegroundSet(&sContext, ClrWhite); 
 GrRectDraw(&sContext, &sRect); 
 GrFlush(&sContext); 
 SysCtlDelay(ui32SysClkFreq); 
 
 GrContextForegroundSet(&sContext, ClrBlue); 
 GrCircleFill(&sContext, 80, 182, 50); 
 sRect.i16XMin = 160; 
 sRect.i16YMin = 132; 
 sRect.i16XMax = 312; 
 sRect.i16YMax = 232; 
 GrContextForegroundSet(&sContext, ClrGreen); 
 GrRectDraw(&sContext, &sRect); 
 SysCtlDelay(ui32SysClkFreq); 
 
 
 ClrScreen(); 
 while(1) 
 { 
 } 
} 
 
void ClrScreen() 
{ 
 sRect.i16XMin = 0; 
 sRect.i16YMin = 0; 
 sRect.i16XMax = 319; 
 sRect.i16YMax = 239; 
 GrContextForegroundSet(&sContext, ClrBlack); 
 GrRectFill(&sContext, &sRect); 
 GrFlush(&sContext); 
} 

 
This is the code in main3.txt.  



Lab16: Graphics Library 

16 - 26 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

Build, Load and Test 
41. ► Build, load and run your code to make sure that your changes work.  

 
► Click the Terminate button to return to the CCS Edit perspective when you are done. 

 
   

  

 

  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 27 

Widgets 
42. Now let’s play with some widgets. In this case, we’ll create a screen with a title header 

and a large rectangular button that will toggle the user LEDs on and off. Modifying the 
existing code would be a little tedious, so we’ll create a new file. 
 

43. ► In the Project Explorer pane, right-click on main.c and select Exclude from Build. 

44. ► On the CCS menu bar, click File  New  Source File. Make the selections shown 
below and click Finish: 

 

45. ► Add the following support files to the top of MyWidget.c: 
 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/interrupt.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/gpio.h" 
#include "grlib/grlib.h" 
#include "grlib/widget.h" 
#include "grlib/canvas.h" 
#include "grlib/pushbutton.h" 
#include "Kentec320x240x16_ssd2119_8bit.h" 
#include "touch.h" 
 
uint32_t ui32SysClkFreq; 
 
 

46. The next two lines provide names for structures needed to create the background canvas 
and the button widget. ► Add a line for spacing, then add these lines below the last: 
 
extern tCanvasWidget g_sBackground; 
extern tPushButtonWidget g_sPushBtn; 
 

  



Lab16: Graphics Library 

16 - 28 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

47. When the button widget is pressed, a handler called OnButtonPress() will toggle the 
LEDs. ► Add a line for spacing, then add this prototype below the last: 
 
void OnButtonPress(tWidget *pWidget); 

48. Widgets are arranged on the screen in a parent-child relationship, where the parent is in 
the background. This relationship can extend multiple levels. In our example, we’re 
going to have the background be the parent or root and the heading will be a child of the 
background. The button will be a child of the heading. ► Add a line for spacing and then 
add the following two global variables (one for the background and one for the button) 
below the last: 
 
Canvas(g_sHeading, &g_sBackground, 0, &g_sPushBtn, 
       &g_sKentec320x240x16_SSD2119, 0, 0, 320, 23, 
       (CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT), 
       ClrBlack, ClrWhite, ClrRed, g_psFontCm20, "LED Control", 0, 0); 
 
Canvas(g_sBackground, WIDGET_ROOT, 0, &g_sHeading, 

&g_sKentec320x240x16_SSD2119, 0, 23, 320, (240 - 23), 
CANVAS_STYLE_FILL, ClrBlack, 0, 0, 0, 0, 0, 0); 

Rather than re-print the parameter list for these declarations, refer to the Graphics Library 
User’s Guide. The short description is that there will be a black background. In front of 
that is a white rectangle at the top of the screen with “LED Control” inside it.  

49. Next up is the definition for the rectangular button we’re going to use. The button is 
functionally in front of the heading, but physically located below it (refer to the picture in 
step 52). It will be a red rectangle with a gray background and “Toggle LEDs” inside it. 
When pressed it will fill with white and the handler named OnButtonPress will be 
called. ► Add a line for spacing and then add the following code below the last:  
 
RectangularButton(g_sPushBtn, &g_sHeading, 0, 0, 
                  &g_sKentec320x240x16_SSD2119, 60, 60, 200, 40, 
                  (PB_STYLE_OUTLINE | PB_STYLE_TEXT_OPAQUE | PB_STYLE_TEXT | 

  PB_STYLE_FILL), ClrGray, ClrWhite, ClrRed, ClrRed, 
  g_psFontCmss22b, "Toggle LEDs", 0, 0, 0, 0, OnButtonPress); 

 
The last detail before the actual code is a flag variable to indicate whether the LEDs are 
on or off.  
 
► Add a line for spacing and then add the following code below the last: 
 
bool g_LedsOn = false; 

  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 29 

50. When the button is pressed, a handler called OnButtonPress() will be called. This 
handler uses the flag to switch between turning the user LEDs on and off.  
 
► Add a line for spacing and then add the following code below the last: 
 
void OnButtonPress(tWidget *pWidget) 
{ 
    g_LedsOn = !g_LedsOn; 
 
    if(g_LedsOn) 
    { 
        GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1, 0xFF); 
    } 
    else 
    { 
        GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1, 0x00); 
    } 
} 

51. Lastly is the main() routine. The steps are: initialize the clock, initialize the GPIO, 
initialize the display, initialize the touchscreen, enable the touchscreen callback so that 
the routine indicated in the button structure will be called when it is pressed, add the 
background and paint it to the screen (parents first, followed by the children) and finally, 
loop while the widget polls for a button press.  
 
► Add a line for spacing and then add the following code below the last: 
 

int main(void) 
{ 
 

     ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
   SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 

   SYSCTL_CFG_VCO_480), 120000000); 
 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
    GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 
    GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00); 
 
    Kentec320x240x16_SSD2119Init(ui32SysClkFreq); 
 
    TouchScreenInit(ui32SysClkFreq); 
 
    TouchScreenCallbackSet(WidgetPointerMessage); 
 
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sBackground); 
 
    WidgetPaint(WIDGET_ROOT); 
 
    while(1) 
    { 
        WidgetMessageQueueProcess(); 
    } 
} 

 

► Save your work. 

If you’re having issues, you can find this code in MyWidget.txt in the lab16 folder. 

Your code should look like the next page: 



Lab16: Graphics Library 

16 - 30 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/interrupt.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/gpio.h" 
#include "grlib/grlib.h" 
#include "grlib/widget.h" 
#include "grlib/canvas.h" 
#include "grlib/pushbutton.h" 
#include "Kentec320x240x16_ssd2119_8bit.h" 
#include "touch.h" 
 
uint32_t ui32SysClkFreq; 
 
extern tCanvasWidget g_sBackground; 
extern tPushButtonWidget g_sPushBtn; 
 
void OnButtonPress(tWidget *pWidget); 
 
Canvas(g_sHeading, &g_sBackground, 0, &g_sPushBtn, 
  &g_sKentec320x240x16_SSD2119, 0, 0, 320, 23, 
  (CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT), 
  ClrBlack, ClrWhite, ClrRed, g_psFontCm20, "LED Control", 0, 0); 
 
Canvas(g_sBackground, WIDGET_ROOT, 0, &g_sHeading, 
  &g_sKentec320x240x16_SSD2119, 0, 23, 320, (240 - 23), 
  CANVAS_STYLE_FILL, ClrBlack, 0, 0, 0, 0, 0, 0); 
 
RectangularButton(g_sPushBtn, &g_sHeading, 0, 0, 
  &g_sKentec320x240x16_SSD2119, 60, 60, 200, 40, 
  (PB_STYLE_OUTLINE | PB_STYLE_TEXT_OPAQUE | PB_STYLE_TEXT | 
  PB_STYLE_FILL), ClrGray, ClrWhite, ClrRed, ClrRed, 
  g_psFontCmss22b, "Toggle LEDs", 0, 0, 0, 0, OnButtonPress); 
 
bool g_LedsOn = false; 
 
void OnButtonPress(tWidget *pWidget) 
{ 
 g_LedsOn = !g_LedsOn; 
 
 if(g_LedsOn) 
 { 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1, 0xFF); 
 } 
 else 
 { 
  GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1, 0x00); 
 } 
} 
 
int main(void) 
{ 
 
 ui32SysClkFreq = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
   SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | 
   SYSCTL_CFG_VCO_480), 120000000); 
 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION); 
 GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1); 
 GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00); 
 
 Kentec320x240x16_SSD2119Init(ui32SysClkFreq); 
 
 TouchScreenInit(ui32SysClkFreq); 
 
 TouchScreenCallbackSet(WidgetPointerMessage); 
 
 WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sBackground); 
 
 WidgetPaint(WIDGET_ROOT); 
 
 while(1) 
 { 
  WidgetMessageQueueProcess(); 
 } 
} 

  



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 31 

Build, Load and Test     
52. ► Build, load and run your code to make sure that everything works. Press the 

rectangular button and the user LEDs on the LaunchPad will light, press it again and they 
will turn off. 

 

 

53. ► Click the Terminate button to return to the CCS Edit perspective when you are done. 
Close the grlib_demo project and close Code Composer Studio.  

54. ► Disconnect the LaunchPad from the USB cable. Carefully remove the Kentec display 
and return it to your instructor. Pack your LaunchPad and cables for transport home. 

Homework ideas:  
 

• Change the background of the button so that it stays on when the LED is lit 
• Add more buttons to control the user LEDs individually 
• Use the ADC12 lab code to display the measured temperature from the on-chip 

temperature sensor on the LCD in real time. 
• Use the Hibernation Module RTC to display the time of day on screen. 
• Use the Hibernation lab code to make the device sleep, and the backlight go off, 

after no screen touch for 10 seconds 
• Use the USB lab code to send data to the LCD and touch screen presses back to 

the PC. 
• Use the FPU lab sine wave code to create a program that displays the sine wave 

data on the LCD screen. 

   You’re done. 



Lab16: Graphics Library 

16 - 32 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

 

 

Thanks for Attending!

 Make sure to take your LaunchPad boards and 
workbooks with you

 Please leave the TTO flash drives, meters and 
other instructor supplied hardware here

 Please fill out the email survey when it arrives
 Have safe trip home!

 

 

Presented by

Texas Instruments
Technical Training Organization

www.ti.com/training

 
 



 Lab16: Graphics Library 

Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 16 - 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Appendix 
 
 
 
 
 



Lab16: Graphics Library 

16 - 34 Creating IoT Solutions with the Tiva C Series Connected LaunchPad Workshop - Graphics Lib 

 
 



GND

3
3
0

GND

GND

SWITCH_TACTILE

SWITCH_TACTILE

GND

3
3
0

GND

TPD4S012_DRY_6

GND

100GND

1
M

3300pF

TP4

TP5

TP6

TP7

D
1

R
3
3

USR_SW1

USR_SW2

D
2

R
2
7

D+
1

D-
2

GND
4

ID
3

N.C.
5

VBUS
6

U2

R18

DM
P2

DP
P3

GND
P5

ID
P4

VBUS
P1

TP14

TP15

TP16

TP17

PA0
P$33

PA1
P$34

PA2
P$35

PA3
P$36

PA4
P$37

PA5
P$38

PA6
P$40

PA7
P$41

PB0
P$95

PB1
P$96

PB2
P$91

PB3
P$92

PB4
P$121

PB5
P$120

PC0
P$100

PC1
P$99

PC2
P$98

PC3
P$97

PC4
P$25

PC5
P$24

PC6
P$23

PC7
P$22

PD0
P$1

PD1
P$2

PD2
P$3

PD3
P$4

PD4
P$125

PD5
P$126

PD6
P$127

PD7
P$128

PE0
P$15

PE1
P$14

PE2
P$13

PE3
P$12

PE4
P$123

PE5
P$124

PF0
P$42

PF1
P$43

PF2
P$44

PF3
P$45

PF4
P$46

PG0
P$49

PG1
P$50

PH0
P$29

PH1
P$30

PH2
P$31

PH3
P$32

PJ0
P$116

PJ1
P$117

PK0
P$18

PK1
P$19

PK2
P$20

PK3
P$21

PK4
P$63

PK5
P$62

PK6
P$61

PK7
P$60

PL0
P$81

PL1
P$82

PL2
P$83

PL3
P$84

PL4
P$85

PL5
P$86

PL6
P$94

PL7
P$93

PM0
P$78

PM1
P$77

PM2
P$76

PM3
P$75

PM4
P$74

PM5
P$73

PM6
P$72

PM7
P$71

PN0
P$107

PN1
P$108

PN2
P$109

PN3
P$110

PN4
P$111

PN5
P$112

PP0
P$118

PP1
P$119

PP2
P$103

PP3
P$104

PP4
P$105

PP5
P$106

PQ0
P$5

PQ1
P$6

PQ2
P$11

PQ3
P$27

PQ4
P$102

R
5
2C32

GPIO

PA0
PA1
PA2
PA3

PA5
PA6
PA7

PA4

PB0

PB0/3.4C

TARGET_VBUS/3.4C

TARGET_VBUS/3.4C

TARGET_VBUS/3.4C

PB2
PB3
PB4
PB5

PC4
PC5
PC6
PC7

PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7

PF0
PF1
PF2
PF3
PF4

PE0
PE1
PE2
PE3
PE4
PE5

PG0
PG1

PH0
PH1
PH2
PH3PJ0

PJ0/3.4D

PJ1

PJ1/3.4D

PK0
PK1
PK2
PK3
PK4
PK5
PK6
PK7

PL0
PL1
PL2
PL3
PL4
PL5

USBD_P

USBD_P

USBD_P

USBD_N

USBD_N

USBD_N

PM0
PM1
PM2
PM3
PM4
PM5
PM6
PM7

PP0
PP1
PP2
PP3
PP4
PP5

PN0

PN0/3.3D

PN1

PN1/3.3D

PN2
PN3
PN4
PN5

PQ0
PQ1
PQ2
PQ3
PQ4

TARGET_TCK/SWCLK/6.1A

TARGET_TMS/SWDIO/6.1A

TARGET_TDI/6.1E

TARGET_TDO/SWO/6.1E TARGET_ID

TARGET_ID

A

B

C

D

E

A

B

C

D

E

1 2 3 4 5 6

U7G$1

U1G$1

TM4C1294NCPDT

See PF0 and PF4 for additional LED's used for
Ethernet or user application

NOTE: TPD4S012 all protection circuits are identical.  
Connections chosen for simple routing.

convienence test points for ground



TSW-110-02-S-D
TSW-110-02-S-D

TSW-110-02-S-D
TSW-110-02-S-D

0

0

+
3
V

3
+

3
V

3

+5V

+5V

0.1uF 0.1uF

0.1uF
0.1uF

GNDGND

GND
GND

X6-1 X6-2

X6-3
X6-4

X6-5 X6-6
X6-7 X6-8

X6-9 X6-10
X6-11 X6-12

X6-13 X6-14
X6-15 X6-16
X6-17 X6-18
X6-19 X6-20

X7-1

X7-2

X7-3

X7-4

X7-5

X7-6

X7-7

X7-8

X7-9

X7-10

X7-11

X7-12

X7-13
X7-14

X7-15
X7-16X7-17
X7-18X7-19
X7-20

X8-1

X8-2

X8-3
X8-4

X8-5 X8-6
X8-7 X8-8
X8-9 X8-10

X8-11 X8-12
X8-13 X8-14
X8-15 X8-16
X8-17 X8-18
X8-19 X8-20

X9-1
X9-2

X9-3 X9-4
X9-5 X9-6
X9-7 X9-8
X9-9 X9-10

X9-11
X9-12X9-13
X9-14X9-15
X9-16X9-17
X9-18X9-19
X9-20

R19

R20

JP4
1 2
3 4

JP5
1 2
3 4

C23 C24

C25
C26

PB2

PB3

PL0

PP2

PH2

GND/1.6B

GND/1.6B

GND/1.6B

GND/1.6B

TARGET_RESET/3.4D

TARGET_RESET/3.4D

PA0/3.4C

BP2_A2.5BP2_A2.5

TARGET_RXD/6.1D

TARGET_TXD/6.1D PA1/3.4C

BP2_A2.6

BP2_A2.6

PE4

PE5

PC5

PC4

PM3

PM4

PM5

PL4

PD5/1.4B

PC6

PD3

PC7

PE0

PE1

PE2

PE3

PD4/1.4B

PD7

PF1

PF2

PF3

PG0

PL5

PL1

PL2

PL3

PH3

PD1

PD0

PN2

PN3

PD2

PP0

PP1

PQ0

PP4

PN5

PN4

PB4

PB5

PK0

PK1

PK2

PK3

PA4

PA5

PG1

PK4

PK5

PM0

PM1

PM2

PH0

PH1

PK6

PK7

PM7

PA7

PA3

PA2

PQ3

PQ2

PP3

PQ1

PM6

PP5

PA6

BoosterPack 2 Interface

BoosterPack 1 Interface

A

B

C

D

E

A

B

C

D

E

1 2 3 4 5 6

JP4 and JP5 CAN and ICDI UART Selection:
Populate Jumpers from 1-2 and 3-4 for Default Mode
This enables ROM UART boot loader.  UART 0 to ICDI

Populate from 1-3 and 2-4 for controller area network
on the boosterpack.  UART2 is then availabe to ICDI.

R19 and R20 can be populated to enable I2C on 
Right side of BP2 interface.  This is for legacy 
support and the Sensor Hub BoosterPack.

I2C and SSI are available on the corresponding
BoosterPack 1 interface pins without modification to
the board.

PA6 and PA7 are also used by the onboard radio. 
Configure the radio to tri-state these GPIO before 
using them on the boosterpack interface.



TSW-149-02-S-D

+
3
V

3

+
3
V

3

+5V

+5V

0.1uF 0.1uF

0.1uF0.1uF

GND GND

GND GND

X11-1 X11-2
X11-3 X11-4
X11-5 X11-6
X11-7 X11-8
X11-9 X11-10
X11-11 X11-12
X11-13 X11-14
X11-15 X11-16
X11-17 X11-18
X11-19 X11-20
X11-21 X11-22
X11-23 X11-24
X11-25 X11-26
X11-27 X11-28
X11-29 X11-30
X11-31 X11-32
X11-33 X11-34
X11-35 X11-36
X11-37 X11-38
X11-39 X11-40
X11-41 X11-42
X11-43 X11-44
X11-45 X11-46
X11-47 X11-48
X11-49 X11-50
X11-51 X11-52
X11-53 X11-54
X11-55 X11-56
X11-57 X11-58
X11-59 X11-60
X11-61 X11-62
X11-63 X11-64
X11-65 X11-66
X11-67 X11-68
X11-69 X11-70
X11-71 X11-72
X11-73 X11-74
X11-75 X11-76
X11-77 X11-78
X11-79 X11-80
X11-81 X11-82
X11-83 X11-84
X11-85 X11-86
X11-87 X11-88
X11-89 X11-90
X11-91 X11-92
X11-93 X11-94
X11-95 X11-96
X11-97 X11-98

C27 C28

C29C30

VREF+/5.5B

TARGET_RESET/5.2A

GND/4.1A

GND/2.3C GND/4.1A

GND/2.3C GND/4.1A

PB4

PB5

PH0

PH1

PH2

PH3

PC7

PC6

PC5

PC4

PA6

PA7

PG1

PM3

PM2

PM1

PM0

PL0

PL2

PL3

PQ0

PQ1

PK7

PK6

PL4

PB2

PB3

PP2

PP3

PK5

PK4

PL5

PN4

PN5

PG0

PL1

PQ2

PQ3

PN0

PN1

PN2

PN3

PQ4

WAKE/5.5A

PA2

PA3

PA4

PA5

PE0

PE1

PE2

PE3

PE4

PE5

PK0

PK1

PK2

PK3

PD5

PD4

PD7

PD6

PD3

PD1

PD0

PD2

PP0

PP1

PB0

TARGET_VBUS/5.1B

PF4

PF0

PF1

PF2

PF3

PA0

PA1

PP4

PP5

PJ0

PJ1

PM7

PM6

PM5

PM4

A

B

C

D

E

A

B

C

D

E

1 2 3 4 5 6

NOTE: PB0 and PB1 are used in some 
configurations with 5V signals especially in USB 
Host or OTG mode.  Be aware the 5V may be 
present on these pins depending on system jumper 
configuration

These pins are only 5V tolerant when configured for
USB mode applications.

This is the breadboard connection header.
Samtec TSW-149-08-F-S-RA and TSW-149-09-F-S-RE
can be used together to create a breadboard 
connector
see the Users Manual for more information.



4
9
.9

4
9
.9

4
9
.4

4
9
.9

3
3
0

GND

3
3
0

GND

0.1uF0.1uF

GNDGND

0
.1

u
F

0
.1

u
F

75

75

G
N

D
G

N
D

7
5

7
5

GND

4700pF

1
M

1
0
0
0
p
F

R
2
1

R
2
2

R
2
3

R
2
4

D
4

R
3
0

D
3

R
3
1

C16C17

C
1
8

C
2
2

P$1
P$1

P$2
P$2

P$3
P$3

P$6
P$6

P$7
P$7

P$8
P$8

P$9
P$9

P$10
P$10

P$11
P$11

P$14
P$14

P$15
P$15

P$16
P$16

P$1
1

P$2
2

P$3
3

P$4
4

P$5
5

P$6
6

P$7
7

P$8
8

R32

R43

CHASSIS
9

CHASSIS
10

RX+
3

RX-
6

TERM1A
4

TERM1B
5

TERM2A
7

TERM2B
8

TX+
1

TX-
2

R
4
5

R
4
6

C31

R
4
7

C
1

EN0RXI_N/5.3B

EN0RXI_P/5.3B

EN0TXO_N/5.3B

EN0TXO_P/5.3B

PF4/3.4C PF0/3.4C

MCU_3V3/5.2A

A

B

C

D

E

A

B

C

D

E

1 2 3 4 5 6

U10

U13

U14

For Ethernet example Applications: 
LED4 is default configured as Ethernet Link OK
LED3 is default configured as Ethernet TX/RX activity

User may re-configure these pins / LED's for any
application usage.

Place pull up resistors and C16-C17 near TM4C MCU.

Place C18 and C22 near pin 2 and pin 7 of U$10

U10 May be populated with either HX1188FNL or HX1198FNL. 
HX1198FNL preferred for best Ethernet performance.



+
3
V

3

+5V

GND

0.1uF

2.2uF

0.1uF

GND

3
3
0

GND

1
0
0
k

4
.8

7
k
 1

%

GND

GND 0.1uF 1.0uF 2.2uF

0.1uF 0.1uF 0.1uF 0.1uF

GND

0

0

GND

1M

S
W

IT
C

H
_
T
A

C
T

IL
E

12pF

12pF

1
0
k

0.1uF

12pF 12pF

SWITCH_TACTILE

GND

MOUNT-HOLE3.2

MOUNT-HOLE3.2

GND

GND

GND

GND GND

TPS2052B_DRB_8

+5V

1
0
k

100k

GND

51

0.1uF

GND

+
3
V

3

1
0
0
k

TPS73733_DRV_6

O
M

IT

2k

MOUNT-HOLE3.2

100

CRYATL_32K_SMD

C19

C20

C21

D
0

R
9

R
1
7

TP3

R
2
5

C4 C14 C15

C40 C41 C42 C43

TP9

TP10
TP11

TP12

R39

TP13

R41

R42

R
E

S
E

T

C44

C45

N
C

2
P

$
2

N
C

4
P

$
4

O
S

C
0

P
$

1

O
S

C
1

P
$

3

R
4
4

C46

C47 C48

WAKE

H4

H6

*EN1
3

*EN2
4

*OC1
8

*OC2
5

EPAD
9

GND
1

IN
2

OUT1
7

OUT2
6

V
IA

V

V
IA

V
_

2

V
IA

V
_

3

V
IA

V
_

4

V
IA

V
_

5

V
IA

V
_

6

U4

JP1
1 2
3 4
5 6

JP2
1
2

J
P

3

12

R
3
5

R36

TP8

R38
C3

R
2
6

EN
4

EPAD
7

GND
3

IN
6

NC
5

NR/FB
2

OUT
1

V
IA

V

V
IA

V
_

2

U5

R
4
8

R49

H1

R51
HIB

P$65

RESET
P$70

WAKE
P$64

EN0RXIN
P$53

EN0RXIP
P$54

EN0TXON
P$56

EN0TXOP
P$57

GND
P$17

GND
P$48

GND
P$55

GND
P$58

GND
P$80

GND
P$114

GNDA
P$10

OSC0
P$88

OSC1
P$89

RBIAS
P$59

VBAT
P$68

VDD
P$7

VDD
P$16

VDD
P$26

VDD
P$28

VDD
P$39

VDD
P$47

VDD
P$51

VDD
P$52

VDD
P$69

VDD
P$79

VDD
P$90

VDD
P$101

VDD
P$113

VDD
P$122

VDDA
P$8

VDDC
P$87

VDDC
P$115

VREFA+
P$9

XOSC0
P$66

XOSC1
P$67

P$1
P$1

P$2
P$2

Y3

TARGET_VBUS/3.4C

TARGET_VBUS/3.4C

DEBUG_VBUS/6.4A

EN0RXI_N
EN0RXI_P
EN0TXO_N
EN0TXO_P
RBIAS

WAKE/3.3D

MCU_3V3/6.2A

MCU_3V3/4.1A

VBUS

VBUS

VBUS

PQ4/3.3D

PD6/3.4B

TARGET_RESET/3.4D

A

B

C

D

E

A

B

C

D

E

1 2 3 4 5 6

Y
1

2
5
M

h
z

U1G$2

Power Control Jumper:

1) To power from Debug install jumper on pins 5 - 6

2) To power from Target USB install jumper on pins 3 - 4

3) To power from BoosterPack 5V install jumper on pins 1 - 2
    This is also the off position if BoosterPack does not 
    supply power

    When powered from BoosterPack TPS2052B does not 
    provide current limit protection.
   
    When powered by BoosterPack, USB host mode does not 
    supply power to connected devices

Primary 3.3V regulator
Disconnect JP3 to power device from 3V3 BoosterPack

JP2 can be used to measure MCU current 
consumption with a multi-meter.

TPS2052B provides current limit for main 5V power.

Also provides power switching for USB host/OTG modes

For Host/OTG: 
PD6 configured as USB0EPEN peripheral function.

PQ4 configure as individual pin interrupt. Indicates 
power fault on the USB bus. USB0PFLT peipheral pin 
not available due to pin mux and use on BoosterPacks.

USB Host mode does not supply power to devices
when powered from a BoosterPack

For Applications that do not use USB:
Configure PD6 as input with internal pull-down 
enabled.  Turns off power to TARGET_VBUS

R38 and C3 Used to meet 
VBAT rise time requirements

R41 may be removed and precision
reference applied to TP13



OMIT

TSW-107-02-S-D

OMIT

+
3
V

3
1
0
k

0.1uF

OMIT
0.1uF 1.0uF

12pF

12pF

0.1uF 0.1uF 0.1uF 0.1uF

+
3
V

3

+
3
V

3

2.2uF

5.6k

OMIT

5.6k

OMIT

5.6k

OMIT

10k

10k

10k

10k

+
3
V

3

0

0

0

0

0

0

0

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

0

+
3
V

3

TPD4S012_DRY_6

5.6k 10k

GND

2k

GND

1
M

3300pF

GND

TRST
9

GND
3

NC
5

RESET
10

RTCK
7

TCK
4

TDI
8

TDO
6

TMS
2

VTREF
1

U21

X1-1X1-2
X1-3X1-4
X1-5X1-6
X1-7X1-8
X1-9X1-10

X1-11X1-12
X1-13X1-14

R
3

C2
C5 C6

C8

C9

C10 C11 C12 C13

N
C

2
P

$
2

N
C

4
P

$
4

O
S

C
0

P
$

1

O
S

C
1

P
$

3

C7

R12

R13

R14

R1

R2

R4

R5

TP2

TP1

R6

R7

R8

R10

R11

R15

R16

EXTDBG
P3

RESET
P10

GND
P5

GND1
P9

P$7
P7

TCK
P4

TDI
P8

TDO
P6

TMS
P2

VTARGET
P1

R40

HIB
P$33

RESET
P$38

WAKE
P$32

GND0
P$12

GND1
P$27

GND2
P$39

GND3
P$55

GNDA
P$3

GNDX
P$35

OSC0
P$40

OSC1
P$41

PA0
P$17

PA1
P$18

PA2
P$19

PA3
P$20

PA4
P$21

PA5
P$22

PA6
P$23

PA7
P$24

PB0
P$45

PB1
P$46

PB2
P$47

PB3
P$48

PB4
P$58

PB5
P$57

PB6
P$1

PB7
P$4

PC0/TCK
P$52

PC1/TMS
P$51

PC2/TDI
P$50

PC3/TDO
P$49

PC4
P$16

PC5
P$15

PC6
P$14

PC7
P$13

PD0
P$61

PD1
P$62

PD2
P$63

PD3
P$64

PD4
P$43

PD5
P$44

PD6
P$53

PD7
P$10

PE0
P$9

PE1
P$8

PE2
P$7

PE3
P$6

PE4
P$59

PE5
P$60

PF0
P$28

PF1
P$29

PF2
P$30

PF3
P$31

PF4
P$5

VBAT
P$37

VDD0
P$11

VDD1
P$26

VDD2
P$42

VDD3
P$54

VDDA
P$2

VDDC0
P$25

VDDC1
P$56

XOSC0
P$34

XOSC1
P$36

DM
P2

DP
P3

GND
P5

ID
P4

VBUS
P1

D+
1

D-
2

GND
4

ID
3

N.C.
5

VBUS
6

U3

R28 R29

R50

R
3
4C33

ICDI_TDI
ICDI_TMS

ICDI_TMS

ICDI_TCK

ICDI_TCK

ICDI_TDO

ICDI_TDO

ICDI_RESET

ICDI_RESET

VCP_RXD

VCP_RXD

VCP_RXD

VCP_TXD

VCP_TXD

VCP_TXD

DEBUG_PC1/TMS/SWDIO

DEBUG_PC1/TMS/SWDIO

DEBUG_PC1/TMS/SWDIO

DEBUG_PC1/TMS/SWDIO

DEBUG_PC1/TMS/SWDIO

DEBUG_PC3/TDO/SWO

DEBUG_PC3/TDO/SWO

DEBUG_PC3/TDO/SWO

DEBUG_PC3/TDO/SWO

DEBUG_PC3/TDO/SWO

DEBUG_PC2/TDI

DEBUG_PC2/TDI DEBUG_PC2/TDI

DEBUG_PC2/TDI

DEBUG_RESET_OUT

DEBUG_RESET_OUT

DEBUG_RESET_OUT

DEBUG_RESET_OUT

EXTERNAL_DEBUG

EXTERNAL_DEBUG

ICDI_VDDC

VERSION_1

VERSION_1

VERSION_2

VERSION_2

VERSION_0

VERSION_0

DEBUG_ACTIVEDEBUG_ACTIVE
ICDI_USBD_N

ICDI_USBD_N

ICDI_USBD_P

ICDI_USBD_PTARGET_TXD/2.5D

TARGET_TXD/2.5D

TARGET_RXD/2.5D

TARGET_RXD/2.5D

TARGET_TCK/SWCLK/1.2A

TARGET_TCK/SWCLK/1.2A

TARGET_TCK/SWCLK/1.2A

TARGET_TMS/SWDIO/1.2B

TARGET_TMS/SWDIO/1.2B

TARGET_TMS/SWDIO/1.2B

TARGET_TDI/1.2B TARGET_TDI/1.2B

TARGET_TDO/SWO/1.2B

TARGET_TDO/SWO/1.2B

TARGET_RESET/5.2A

TARGET_RESET/5.2A

DEBUG_VBUS/5.1B

DEBUG_VBUS/5.1B

DEBUG_VBUS/5.1B

DEBUG_PC0/TCK/SWCLK

DEBUG_PC0/TCK/SWCLK

DEBUG_PC0/TCK/SWCLK

DEBUG_PC0/TCK/SWCLK

DEBUG_PC0/TCK/SWCLK

MCU_3V3/5.6B

A

B

C

D

E

A

B

C

D

E

1 2 3 4 5 6

Y
2

1
6
M

U6

JTAG_ARM_10PIN

U20

TM4C123GH6PMI

TM4C123xH6PMI

U22G$1

PE4 ETM_ENn Leave Open 
use GPIO Internal weak pullup.

PE5 LS_PRESENTn Leave Open
use GPIO internal weak pullup

VERSION RESISTOR TABLE:
*use internal GPIO weak pullups.
ALL OMITTED: Legacy mode. (Stellaris ICDI)
ALL POPULATED: Everything enabled
Version 0 populated: UART CTS/RTS and Analog inputs 

JTAG PULL-UPS

Jumpers to bridge from ICDI to Target portion of LaunchPad

EXTERNAL_DEBUG pull low to use external debugger
to debug the target.  Causes ICDI chip to tri-state the JTAG lines

Use this for JTAG IN from external debugger.  See X1 
jumpers for information about debug out to an 
external target. 
R40 must be removed for debug out.
R40 must be instaled for debug in.

X1 omitted by default

To debug out from ICDI to off board MCU remove 
0 ohm jumper resistors.  To go back from debug 
out to debugging the target MCU install X1 and 
place jumpers on all pins.



Texas Instruments Part Number
Assembly BOM for EK-TM4C1294XL
Bill Of Materials Created 12/24/2013

Item Ref Qty Description Mfg Part Number

1 C1 1 Capacitor, 1000pF, 2kV, 20%, X7R, 1210 Kemet C1210C102MGRACTU

2 C3, C4, C5, C10, 
C11, C12, C13, 
C16, C17, C18, 
C19, C21, C22, 
C23, C24, C25, 
C26, C27, C28, 
C29, C30, C40, 
C41, C42, C43, 
C46

26 Capacitor, 0.1uF 16V, 10% 0402 X7R Taiyo Yuden EMK105B7104KV-F

3 C31 1 Capacitor, 4700pF, 2kV, 10%, X7R, 1812 AVX 1812GC472KAT1A

4 C32, C33 2 Capacitor, 3300pF, 50V, 10%, X7R, 0603 TDK C1608X7R1H332K

5 C6, C14 2 Capacitor, 1uF , X5R, 10V, Low ESR, 
0402

Johanson 
Dielectrics Inc

100R07X105KV4T

6 C7, C15, C20 3 Capacitor, 2.2uF, 16V, 10%, 0603, X5R Murata GRM188R61C225KE15D

7 C8, C9, C44, C45, 
C47, C48

6 Capacitor, 12pF, 50V 5%, 0402, COG Murata GRM1555C1H120JZ01D

8 D0, D1, D2, D3, 
D4

5 Green LED 0603 Everlight 19-217/G7C-AL1M2B/3T

3M 969102-0000-DA

Kobiconn 151-8000-E 

10 JP1 1 Header, 2x3, 0.100, T-Hole, Vertical 
Unshrouded, 0.230 Mate, gold 

FCI 67996-206HLF

3M 961102-6404-AR

FCI 68001-102HLF

Anyone 1x2-head

FCI 67997-104HLF

4UCON 00998

13 R1, R2, R3, R4, 
R5, R29, R35, 
R44

8 Resistor, 10k ohm, 1/10W, 5%, 0402 
Thick Film

Yageo RC0402FR-0710KL

14 R17, R26, R36 3 100k 5% 0402 resistor smd Rohm MCR01MRTJ104

15 R18, R51 2 Resistor 0402 100 ohm 5% Rohm MCR1MRTJ101

16 R23, R21, R22, 
R24

4 Resistor 49.9 ohm 0402. 1 % Rohm MCR01MRTF49R9

17 R25 1 Resistor 4.87k 1% 0402 smd Rohm MCR01MRTF4871

18 R28 1 Resistor, 5.6k ohm, 1/10W, 5%, 0402 Panasonic ERJ-2GEJ562X

19 R32, R43, R45, 
R46

4 resistor 75 ohm 0402 5% Rohm MCR01MRTJ750

20 R34, R52 2 Resistor, 1M OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ105V

21 R38 1 Resistor, 51 ohm, 1/10W, 5%, 0402 Panasonic ERJ-2GEJ510X

22 R42 1 Resistor, 1M Ohm 1/10W, 5%, 0402 Rohm MCR01MRTF1004

23 R47 1 RES 1M OHM 5% 1206 TF Panasonic ERJ-8GEYJ105V

24 R49, R50 2 Resistor, 2.0k ohm, 1/10W, 5%, 0402 Panasonic ERJ-3GEYJ202V

9 J1, J2, J3, J4, J5, 
J6, J7

7 Jumper, 0.100, Gold, Black, Open

11 JP2, JP3 2 Header, 1x2, 0.100, T-Hole, Vertical 
Unshrouded, 0.220 Mate

12 JP4, JP5 2 Header, 2x2, 0.100, T-Hole, Vertical 
Unshrouded, 0.230 Mate



Texas Instruments Part Number
Assembly BOM for EK-TM4C1294XL
Bill Of Materials Created 12/24/2013

Item Ref Qty Description Mfg Part Number

25 R6, R7, R8, R10, 
R11, R15, R16, 
R19, R20, R39, 
R40, R41

12 Resistor, 0 ohm, 1/10W, 5%, 0402 Panasonic ERJ-2GE0R00X

26 R9, R27, R30, 
R31, R33

5 Resistor, 330 ohm, 1/10W, 5%, 0402 Yageo RC0402FR-07330RL

27 RESET, 
USR_SW1, 
USR_SW2, WAKE

4 Switch, Tact 6mm SMT, 160gf Omron B3S-1000

Texas 
Instruments

TM4C1294NCPDT

Texas 
Instruments

XM4C1294NCPDT

29 U10 1 Transformer, ethernet, 1 to 1. SOIC 16 Pulse Electronics HX1198FNL

30 U13 1 Diode, 8 chan, +/-15KV, ESD Protection 
Array, SO-8

Semtech SLVU2.8-4.TBT

31 U14 1 Connector, RJ45 NO MAG, shielded THRU 
HOLE

TE Connectivity 1-406541-5

32 U2, U3 2 IC 4CH ESD SOLUTION W/CLAMP 6SON Texas 
Instruments

TPD4S012DRYR

33 U20 1 Stellaris TIVA MCU TM4C123GH6PMI Texas 
Instruments

TM4C123GH6PMI

34 U22 1 USB Micro B receptical right angle with 
guides

FCI 10118194-0001LF

35 U4 1 Fault protected power switch, dual 
channel, 8-SON

Texas 
Instruments

TPS2052BDRBR

36 U5 1 3.3V LDO TI TPS73733DRV  fixed out 5V 
in

Texas 
Instruments

TPS73733DRV

Samtec SHF-105-01-S-D-SM

Don Connex 
Electronics

C44-10BSA1-G

38 U7 1 USB Micro AB receptacle. Right angle 
with through guides

Hirose ZX62D-AB-5P8

Samtec SSW-110-23-S-D

Major League 
Electronics

SSHQ-110-D-08-F-LF

40 Y1 1 Crystal 25 Mhz 3.2 x 2.5 mm NDK nx3225ga-25.000m-std-
crg-2

41 Y2 1 crystal 16 mhz 3.2x2.5 mm 4 pin NDK NX3225GA-16.000M-STD-
CRG-2

42 Y3 1 Crystal, 32.768KHz Radial Can Citizen Finetech 
Miyota

CMR200T-32.768KDZY-UT

PCB Do Not Populate List (Shown for information only)
43 C2 1 Capacitor, 0.1uF 16V, 10% 0402 X7R Taiyo Yuden EMK105B7104KV-F

44 H1, H4, H6 3 Screw, #4 x 0.625" Pan Head, Sheet 
Metal, Phillips/Slotted  (for fan )

McMaster 90077A112

45 R12, R13, R14 3 Resistor, 5.6k ohm, 1/10W, 5%, 0402 Panasonic ERJ-2GEJ562X

46 R48 1 Resistor 0402 1% 52.3k Rohm TRR01MZPF5232

47 TP1, TP2, TP3, 
TP4, TP5, TP6, 
TP7, TP8, TP9, 
TP10, TP11, 
TP12, TP13, 
TP14, TP15, 
TP16  TP17

17 Terminal, Test Point Miniature Loop, Red, 
T-Hole

Keystone 5000

48 X1 1 Header, 2x7, 0.100, T-Hole, Vertical, 
Unshrouded, 0.230 Mate

FCI 67997-114HLF

39 X6, X7, X8, X9 4 Header, 2x10, T-Hole Vertical 
unshrouded stacking 

28 U1 1 Tiva, MCU TM4C1294NCPDT 128 QFP 
with Ethernet MAC + PHY

37 U6 1 Header 2x5, 0.050, SM, Vertical 
Shrouded



Texas Instruments Part Number
Assembly BOM for EK-TM4C1294XL
Bill Of Materials Created 12/24/2013

Item Ref Qty Description Mfg Part Number

49 X11A 1 Valvano style bread board connect. Right 
Angle extended, 1 x 49 0.100 pitch.

Samtec TSW-149-09-F-S-RE

50 X11B 1 valvano style breadboard header. Samtec TSW-149-08-F-S-RA

Final Assembly Bill Of Materials
Del 1 OMIT BOM EK-TM4C1294XL REV C








	TM4C1294XL-Connected-LaunchPad-00
	Important Notice
	Revision History
	Mailing Address

	Table of Contents

	TM4C1294XL-Connected-LaunchPad-01
	Introduction
	Chapter Topics
	TI Processor Portfolio
	TM4C1294NCPDT Microcontroller
	TM4C1294NCPDT Memory Map
	EK-TM4C1294XL LaunchPad
	Lab01: Hardware and Software Set Up
	Objective
	Procedure
	Hardware
	Download and Install Code Composer Studio (
	Install TivaWare™ for C Series (Complete) (
	Install LM Flash Programmer (
	Download and Install Workshop Lab Files (
	Download Workshop Workbook (
	Terminal Program (
	Windows-side USB Examples (
	Download and Install GIMP (
	LaunchPad Board Schematic
	Helpful Documents and Sites
	Kit Contents
	Initial Board Set-Up
	Verify Driver Installation
	Jumper Positions


	QuickStart IoT Application
	Register with Exosite
	Add your Board to Your Portal
	Connect the Hardware
	IoT Application
	Open PuTTY



	TM4C1294XL-Connected-LaunchPad-02
	Code Composer Studio
	Chapter Topics
	TI Software and Tools Ecosystem
	Projects and Workspaces
	Adding Files to a Project
	Portable Projects
	Path and Build Variables
	Build Configurations
	For More CCS Information
	Tiva C Partners
	Lab02: Code Composer Studio
	Objective

	Lab 2 Procedure
	Folder Structure for the Labs
	Create a New CCS Project
	Using .ini Files
	Link driverlib.lib to Your Project
	Build, Load, Run
	Perspectives
	Terminate the debug session.


	LM Flash Programmer
	Optional: Creating a bin file for the flash programmer


	TM4C1294XL-Connected-LaunchPad-03
	TivaWare™, Initialization and GPIO
	Chapter Topics
	TivaWare
	Clocking
	TM4C1294NCPDT Main Clock Tree
	GPIO
	GPIO Address Masking
	Critical Function GPIO Protection
	Lab03: Initialization and GPIO
	Objective
	Procedure
	Create lab03 Project
	Header Files
	main() Function
	Clock Setup
	GPIO Configuration
	The base addresses of the GPIO ports listed in the User Guide are shown here. Note that they are all within the memory map’s peripheral section shown in module 1. APB refers to the Advanced Peripheral Bus, while AHB refers to the Advanced High-Perform...
	while() Loop
	Startup Code
	Set the Build Options
	Compile, Download and Run the Code
	Examine the Tiva C Series Pin Masking Feature




	TM4C1294XL-Connected-LaunchPad-04
	Ethernet Port
	Chapter Topics
	Features and Block Diagram
	Ethernet Module Clocking
	Port Hardware Design
	IEEE 1588
	Lab04: Ethernet Lab
	Description:
	Procedure
	Maximize Code Composer




	TM4C1294XL-Connected-LaunchPad-05
	Interrupts and the Timers
	Chapter Topics
	Cortex-M4 NVIC
	Cortex-M4 Interrupt Handing and Vectors
	General Purpose Timer Module
	Lab05: Interrupts and the Timer
	Objective
	Procedure
	Import lab05 Project
	Header Files
	main()
	Clock Setup
	GPIO Configuration
	Timer Configuration
	Calculate Delay
	ui32Period = ui32SysClkFreq/2; TimerLoadSet(TIMER0_BASE, TIMER_A, ui32Period -1);
	Interrupt Enable
	Timer Enable
	while(1) Loop
	Timer Interrupt Handler
	Startup Code
	Pre-defined Name
	Compile, Download and Run The Code
	Exceptions




	TM4C1294XL-Connected-LaunchPad-06
	ADC12 and the Educational BoosterPack
	Chapter Topics
	ADC12
	Sample Sequencers and Educational BoosterPack
	Lab06: ADC12
	Objective
	Procedure
	Import la06 Project
	Header Files
	main()
	Inside the while(1) Loop
	Connect the Educational BoosterPack
	Build and Run the Code
	Breakpoint

	Hardware averaging
	Graphing
	Calling APIs from ROM
	Build, Download and Run Your Code




	TM4C1294XL-Connected-LaunchPad-07
	PWM and QEI
	Chapter Topics
	Pulse Width Modulation
	TM4C1294NCPDT PWM
	PWM Generator and Control Block Features
	Block Diagrams
	QEI Module
	Lab 07: PWM
	Objective
	main()
	Build and Run the Code




	TM4C1294XL-Connected-LaunchPad-08
	I2C & SensorLib
	Chapter Topics
	TM4C1294NCPDT I2C Ports
	SensorHub
	Sensor Library
	GUI Composer
	Lab08: I2C and Sensor Library Usage
	Objective
	Procedure
	Import the Project
	Sensor Library and stack size
	Hardware
	Software
	main()
	while(1) loop
	Data Formatting
	Build and Download your Project
	Watch Expressions and Breakpoints
	Run the Code
	GUI Composer




	TM4C1294XL-Connected-LaunchPad-09
	Quad Synchronous Serial Interface
	Chapter Topics
	Features and Block Diagram
	Interrupts and µDMA Operation
	Lab 09: SPI Bus and the Olimex LED BoosterPack
	Objective
	Procedure
	Hardware
	Connect the BoosterPack
	Import lab09
	Build and Load
	Run and Test




	TM4C1294XL-Connected-LaunchPad-10
	UART
	UART Features and Block Diagram
	Basic Operation
	UART Interrupts and FIFOs
	UART “stdio” Functions and Other Features
	Lab10
	Objective
	Procedure
	Import lab10
	Build, Download, and Run the UART Example Code
	Using UART Interrupts




	TM4C1294XL-Connected-LaunchPad-11
	USB
	Chapter Topics
	USB Features
	High Speed Operation
	Block Diagram

	USB Library and Abstraction Levels
	Lab11: USB
	Objective
	Procedure
	Example Code
	Import The Project
	Build, Download and Run The Code
	Digging Deeper
	Watch the Buffers




	TM4C1294XL-Connected-LaunchPad-12
	Memory
	Chapter Topics
	Internal Memory
	Bit-Banding
	Memory Protection Unit
	Security
	Lab12: Memory and the MPU
	Objective
	Procedure
	Import lab12
	Writing to Flash
	Build, Download and Run the Flash Programming Code
	Reading and Writing EEPROM
	Build, Download and Run the EEPROM Programming Code
	Further EEPROM Information
	Bit-Banding
	Memory Protection Unit (MPU)




	TM4C1294XL-Connected-LaunchPad-13
	Floating-Point Unit
	Chapter Topics
	What is Floating-Point and IEEE-754?
	Floating-Point Unit
	Lab13: FPU
	Objective
	Procedure
	Import lab13
	Browse the Code
	Build, Download and Run the Code
	Profiling the Code




	TM4C1294XL-Connected-LaunchPad-14
	DMA
	Chapter Topics
	Features and Transfer Types
	Block Diagram and Channel Assignment
	Lab14: DMA
	Objective
	Procedure
	Import Lab14
	Browse the Code
	Build, Download and Run the Code
	Streaming Data To and From the UART using a Ping-Pong Buffer
	Import udma_demo Example
	Browse the Code
	Build, Load and Run




	TM4C1294XL-Connected-LaunchPad-15
	Hibernation Module
	Chapter Topics
	Hibernation Module Features
	Block Diagram
	Power Management and Consumption
	LaunchPad Considerations
	Lab15: Low Power Modes
	Objective
	Procedure
	Import hibernate Example
	This example implements three wake modes; the WAKE pin, a GPIO interrupt and an RTC match. Since accessing the GPIO interrupt would require some extra hardware, we’ll just experiment with the other two. Let’s try out the code, then we’ll take a closer...
	Measure the Current
	Explore the Code

	Considerations



	TM4C1294XL-Connected-LaunchPad-16
	Graphics Library
	Chapter Topics
	Graphics Library
	Display Driver
	Graphics Primitives
	Widget Framework
	Special Utilities
	LCD Display Module and KenTec LCD Display
	Lab16: Graphics Library
	Objective
	Procedure
	Connect the KenTec Display to your LaunchPad Board
	Import Project
	Build, Download and Run the Demo
	Create an Image File
	Modify pic.c
	main.c
	Pointer to the Image Array
	main()
	Initialization
	Displaying the Image
	Build and Run the Code
	Display Text On-Screen
	Build, Load and Test
	Drawing Shapes
	Build, Load and Test
	Widgets
	Build, Load and Test




	za_EK-TM4C1294XL REV C Schematic
	zb_EK-TM4C1294XL REV C Public Bill Of Materials
	Bill Of Materials

	zc_EducationalBP-II-Schematic

