Introduction

The Real-Time Clock (RTC) peripheral is a sophisticated timer that keeps track of Calendar, Month, and Time information. It operates in Binary or BCD modes; whichever is most useful for your application.

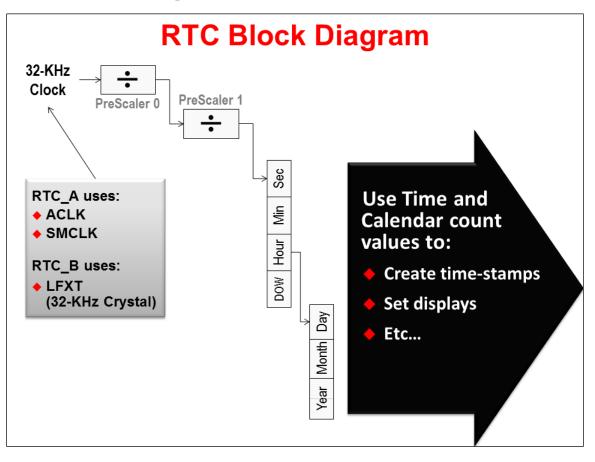
The RTC affords you the ability to set Calendar/Time based Alarms (i.e. Interrupts).

This peripheral is extremely power sensitive and operates in many low-power modes. In fact, on the MSP430FR5969, it even operates in LPM3.5 mode.

Learning Objectives

- Describe the architecture of the Real-Time Clock module.
- Learn to set alarms/interrupts for the RTC.

Chapter Topics


Real-Time Clock (RTC)8	3-1
What is a Real-Time Clock?	3-3
How Does the RTC Work?	
RTC Interrupts	
Programming the RTC	3-6
Additional Considerations	3-7
Summary	3-8

What is a Real-Time Clock?

How Does the RTC Work?

RTC Block Diagram



RTC Interrupts

Programming the RTC

Setting RTC using GRACE					
Setting RIC using GRAA	 Grace supports: Devices F2xx, G2xx FR5xx RTC use cases Calendar mode only BCD or Hex modes Creates interrupt handler template: Alarm Events Ready Osc Fault 				
Grace RTC_B 💥 Clock System (CS)					

Additional Considerations

Additional Features Using RTC in LPM3.5 Mode All RTC's work in LPM3 mode Since <u>RTC B</u> and <u>RTC C</u> can directly access the LF crystal, they can operate in the "3.5" low-power mode LPM3.5 provides the lowest possible power dissipation with RTC wake-up capability Machine Mathematical Structure (as a structure) Priver Library function provides easy access to this hardware feature Mathematical Structure (as a structure) Counter mode generates overflow interrupts at 8-, 16-, 24- and 32-bits

Exercise Caution					
 Clear bit-fields before setting counters and alarms 					
 Prior to setting an alarms, clear all alarm registers, including the alarm enable (AE) bits 					
 To prevent potential erroneous alarms when setting time values, clear the interrupt enable (IE) bits, as well as the AE bits 					
 Writes to count registers takes effect immediately. Note that the RTC clock is stopped during the write and both pre-scale registers are reset. This could result in losing up to 1 second during a write. 					
 Invalid time and alarm settings are not validated or handled via hardware (measure twice, program once) 					
 Reading Registers 					
 Care should be taken when reading (or writing) RTC time/calendar/prescale registers so that your actions do not occur during counter transitions 					
These options can help to prevent erroneous results:					
 Let the RTC Ready (RTCRDY) interrupt you just after an update – you'll have ~1 sec before the next update 					
2. Check the RTCRDY bit before reading or writing the registers					
3. Read the registers multiple times and take the majority vote					
4. Hold the RTC before reading or writing any registers					

Summary

RTC Comparison						
	Feature	RTC_A	RTC_B	RCT_C		
	Highlights	32-bit Counter Mode	LPM3.5, Calendar Mode Only	Protection Plus Improved Calibration & Compensation		
Modes	Calendar Mode with Programmable Alarms	Yes	Yes	Yes		
	Counter Mode	Yes	No	Device-dependent		
	Input Clocks	ALCK, SMCLK	32-kHz crystal	32-kHz crystal		
	LPM3.5 Support	No	Yes	Yes		
Compensation & Calibration	Offset Calibration Register	Yes	Yes	Yes		
	Temperature Compensation Register	No	No	Yes		
	Temperature Compensation	With software, manipulating offset calibration value		With software using separate temperature compensation register		
	Calibration and Compensation Period	64 min	60 min	1 min		
Features	BCD to Binary Conversion	Integrated for Calendar Mode				
	Event/Tamper Detect With Time Stamp	No	No	Device-dependent		
	Password Protected Calendar Registers	No	No	Yes		