

Getting Started with the
MSP430 LaunchPad

Student Guide and Lab Manual

Revision 2.10
February 2013

Technical Training
Organization

Important Notice

ii Getting Started with the MSP430 LaunchPad

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright  2013 Texas Instruments Incorporated

Revision History
Oct 2010 – Revision 1.0
Dec 2010 – Revision 1.1 errata
Jan 2011 – Revision 1.2 errata
Feb 2011 – Revision 1.21 errata
June 2011 – Revision 1.30 update to include new parts
August 2011 – Revision 1.31 fixed broken hyperlinks, errata
August 2011 – Revision 1.40 added module 8 CapTouch material
September 2011 –Revision 1.50 added Grace module 9 and FRAM lunch session
September 2011 –Revision 1.51 errata
October 2011 –Revision 1.52 added QR codes
October 2011 –Revision 1.53 errata
January 2012 –Revision 2.0 update to CCS 5.1 and version 1.5 hardware
February 2012 –Revision 2.01 minor errata
February 2013 –Revision 2.10 price change, update to CCS5.3, minor errata

Mailing Address
Texas Instruments
Training Technical Organization
6550 Chase Oaks Blvd
Building 2
Plano, TX 75023

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1 - 1

Introduction to Value Line

Introduction
This module will cover the introduction to the MSP430 Value Line series of microcontrollers. In
the exercise we will download and install the required software for this workshop and set up the
hardware development tool – MSP430 LaunchPad.

Agenda

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

Portfolio …
2

For future reference, the main Wiki for this workshop is located here:

www.ti/com/LaunchPad-workshop

http://processors.wiki.ti.com/index.php/Getting_Started_with_the_MSP430_LaunchPad_Workshop

Module Topics

1 - 2 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Module Topics
Introduction to Value Line ..1-1

Module Topics ..1-2

Introduction to Value Line ...1-3
TI Processor Portfolio ..1-3
MSP430 Released Devices ..1-4
MSP430G2xx Value Line Parts ...1-4
MSP430 CPU ..1-5
Memory Map ...1-5
Value Line Peripherals ..1-6
LaunchPad Development Board ..1-7

Lab 1: Download Software and Setup Hardware ..1-9
Objective..1-9
Procedure ...1-10

 Introduction to Value Line

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1 - 3

Introduction to Value Line

TI Processor Portfolio

Introduction to Value Line

1 - 4 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

MSP430 Released Devices

MSP430G2xx Value Line Parts

 Introduction to Value Line

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1 - 5

MSP430 CPU

Memory Map

Memory Map

Interupt Vector Table

Flash

Information
Memory

RAM

16-bit
Peripherals

8-bit
Peripherals

8-bit Special
Function
Registers

 Flash programmable via JTAG or
In-System (ISP)

 ISP down to 2.2V. Single-byte or
Word

 Interruptible ISP/Erase
 Main memory: 512 byte segments

(0-n). Erasable individually or all
 Information memory: 64 byte

segments (A-D)
 Section A contains device-specific

calibration data and is lockable
 Programmable Flash Memory

Timing Generator

0Fh

0h

0FFh
010h

01FFh
0100h

03FFh
0200h

FFDFh
0C000h

0FFFFh
0FFE0h

Peripherals …

MSP430G2553 shown

010FFh
01000h

7

Introduction to Value Line

1 - 6 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Value Line Peripherals

Value Line Peripherals
 General Purpose I/O

 Independently programmable
 Any combination of input, output, and interrupt (edge

selectable) is possible
 Read/write access to port-control registers is supported by

all instructions
 Each I/O has an individually programmable pull-up/pull-down

resistor
 Some parts/pins are touch-sense enabled (PinOsc)

 16-bit Timer_A2 or A3
 2/3 capture/compare registers
 Extensive interrupt capabilities

 WDT+ Watchdog Timer
 Also available as an interval timer

 Brownout Reset
 Provides correct reset signal during power up and down
 Power consumption included in baseline current draw

Peripherals …
8

Value Line Peripherals
 Serial Communication

 USI with I2C and SPI support
 USCI with I2C, SPI and UART support

 Comparator_A+
 Inverting and non-inverting inputs
 Selectable RC output filter
 Output to Timer_A2 capture input
 Interrupt capability

 8 Channel/10-bit 200 ksps SAR ADC
 8 external channels (device dependent)
 Voltage and Internal temperature sensors
 Programmable reference
 Direct transfer controller send results to conversion memory

without CPU intervention
 Interrupt capable
 Some parts have a slope converter

Board …
9

 Introduction to Value Line

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1 - 7

LaunchPad Development Board

Introduction to Value Line

1 - 8 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

 Lab 1: Download Software and Setup Hardware

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1 - 9

Lab 1: Download Software and Setup Hardware

Objective
The objective of this lab exercise is to download and install Code Composer Studio, as well as
download the various other support documents and software to be used with the MSP430
LaunchPad. Then we will review the contents of the MSP430 LaunchPad kit and verify its
operation with the pre-loaded demo program. Basic features of the MSP430 LaunchPad running
the MSP430G2231 will be explored. Specific details of Code Composer Studio will be covered
in the next lab exercise. These development tools will be used throughout the remaining lab
exercises in this workshop.

Lab 1: Download Software and Setup Hardware

1 - 10 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Procedure

Note: If you have already installed CCSv5.3 or higher, please skip the CCS installation
procedure.

Download and Install Code Composer Studio 5.x
1. Click the following link to be directed to the CCS download Wiki:

http://processors.wiki.ti.com/index.php/Download_CCS

2. You can use either the web installer or offline installer. Using the web installer will limit
your download to only the components that you select. The offline installer contains all
the possible content, so will be much larger than the web installation. The following steps
will cover the web installation method. Click the web installer link as shown below:

3. This will direct you to the “my.TI Account” where you will need to log in (note you must
have a TI log in account to proceed). Once you agree to the export conditions you will
either be e-mailed a link or be directed to a web page with the link. Click on the link.

4. Be sure to disconnect any evaluation board that you have connected to your PCs USB
port(s). When you are prompted to run or save the executable file, select Run.

5. When the installation program runs, accept the license agreement and click Next.

http://processors.wiki.ti.com/index.php/Download_CCS

 Lab 1: Download Software and Setup Hardware

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1 - 11

6. When the Choose Installation Location dialog appears, we suggest that you install Code
Composer in the default C:/ti folder. Click Next.

7. In the Setup Type dialog, select Custom and click Next.

Lab 1: Download Software and Setup Hardware

1 - 12 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

8. In the Select Processor Support dialog, you will select the devices that Code Composer
will support. More devices mean a larger installation and a longer installation time. The
free 16kb code size limited version is available if you only select MSP430. If you are also
attending another workshop, like the Stellaris LaunchPad workshop, you should also se-
lect Stellaris Cortex M MCUs. At a minimum, select MSP430 Low Power MCUs and
click Next.

9. When the Select Components dialog appears, click Next.

10. When the Select Emulators dialog appears, unselect MSP430 Parallel Port FET (un-
less you actually have one) and click Next.

 Lab 1: Download Software and Setup Hardware

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1 - 13

11. The CCS Install Options dialog summarizes the installation. In our case, the total down-
load size will be 339MB. Click Next to start the download/installation process. The in-
stallation time will depend greatly on your download speed. When you are done with the
installation, do not start Code Composer … we’ll cover the startup and licensing issues in
a later module.

Download and Install Workshop Lab and Solution Files

12. Click the following link to be directed to the MSP430 LaunchPad Workshop download
Wiki and save the MSP430_LaunchPad_Workshop.exe file to your desktop:

http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Wo
rkshop/MSP430_LaunchPad_Workshop.exe

13. Double-click the MSP430_LaunchPad_Workshop.exe file to install the labs and solutions
for this workshop. Once installed, you can delete the installation file from the desktop.
The workshop files will be installed in C:\MSP430_LaunchPad and the directory
structure is as follows:

http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/MSP430_LaunchPad_Workshop.exe
http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/MSP430_LaunchPad_Workshop.exe

Lab 1: Download Software and Setup Hardware

1 - 14 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Capacitive Touch Software

14. Download and install the following Capacitive Touch support files:

• BoosterPack User’s Guide - http://www.ti.com/lit/pdf/slau337

• Demo code, GUI, etc - http://www.ti.com/litv/zip/slac490

• Capacitive Touch Library - http://www.ti.com/litv/zip/slac489

• CT Lib Programmer’s Guide - http://www.ti.com/litv/pdf/slaa490a

• Getting Started with Capacitive Touch - http://www.ti.com/lit/slaa491

Download Supporting Documents and Software
15. Next, download and save the following documents and software to your computer:

• LaunchPad User’s Guide: http://www.ti.com/lit/slau318

• MSP430x2xx User’s Guide: http://www.ti.com/lit/slau144

• C Compiler User’s Guide http://www.ti.com/lit/slau132

• MSP430G2xx code examples: http://www.ti.com/lit/zip/slac463

• Temperature demo source and GUI: http://www.ti.com/lit/zip/slac435

• A copy of the workshop workbook pdf: http://www.ti.com/launchpad-workshop

Additional information: www.ti.com/launchpadwiki
www.ti.com/launchpad
www.ti.com/captouch

Third Party Websites
16. There are many, many third party MSP430 websites out there. A couple of good ones are:

• http://www.joesbytes.com
• http://www.43oh.com

http://www.ti.com/lit/pdf/slau337
http://www.ti.com/litv/zip/slac490
http://www.ti.com/litv/zip/slac489
http://www.ti.com/litv/pdf/slaa490a
http://www.ti.com/lit/slaa491
http://www.ti.com/lit/slau318
http://www.ti.com/lit/slau144
http://www.ti.com/lit/slau132
http://www.ti.com/lit/zip/slac463b
http://www.ti.com/lit/zip/slac435
http://www.ti.com/launchpad-workshop
http://www.ti.com/launchpadwiki
http://www.ti.com/launchpad
http://www.ti.com/captouch
http://www.joesbytes.com/
http://www.43oh.com/

 Lab 1: Download Software and Setup Hardware

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1 - 15

MSP-EXP430G2 LaunchPad Experimenter Board
The MSP-EXP430G2 is a low-cost experimenter board, also known as LaunchPad. It
provides a complete development environment that features integrated USB-based emulation
and all of the hardware and software necessary to develop applications for the MSP430G2xx
Value Line series devices.

17. Look on the side of your LaunchPad kit and find the revision number. At the time this
workshop was written, version 1.5 is the current version. The steps in this workshop will
cover both the 1.4 and 1.5 revisions.

Open the MSP430 LaunchPad kit box and inspect the contents. The kit includes:

• LaunchPad emulator socket board (MSP-EXP430G2)

• Mini USB-B cable

• In the Revision 1.5 kit…
A MSP430G2553 (pre-installed and pre-loaded with demo program) and
a MSP430G2452

• In the Revision 1.4 kit…
A MSP430G2231 (pre-installed and pre-loaded with demo program) and
a MSP430G2211

• In the Revision 1.5 kit…
10-pin PCB connectors are soldered to the board and two female also
included

• In the Revision 1.4 kit…
Two male and two female 10-pin PCB connectors

• 32.768 kHz micro crystal

• Quick start guide and two LaunchPad stickers

Hardware Setup
The LaunchPad experimenter board includes a pre-programmed MSP430 device which is
already located in the target socket. When the LaunchPad is connected to your PC via USB,
the demo starts with an LED toggle sequence. The on-board emulator generates the supply
voltage and all of the signals necessary to start the demo.

18. Connect the MSP430 LaunchPad to your PC using the included USB cable. The driver
installation starts automatically. If prompted for software, allow Windows to install the
software automatically.

19. At this point, the on-board red and green LEDs should toggle back and forth. This lets us
know that the hardware is working and has been set up correctly.

Lab 1: Download Software and Setup Hardware

1 - 16 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Running the Application Demo Program
The pre-programmed application demo takes temperature measurements using the internal
temperature sensor. This demo exercises the various on-chip peripherals of the MSP430
device and can transmit the temperature via UART to the PC for display.

20. Press button P1.3 (lower-left) to switch the application to the temperature measurement
mode. A temperature reference is taken at the beginning of this mode and the LEDs on
the LaunchPad signal a rise or fall in temperature by varying the brightness of the on-
board red LED for warmer or green LED for colder.

Rub your fingertip on your pants to warm it up and place it on the top of the MSP430
device on the LaunchPad board. After a few seconds the red Led should start to light,
indicating a temperature rise. When the red LED is solidly lit, remove your finger and
press button P1.3 again. This will set the temperature reference at the higher temperature.
As the part cools, the green LED will light, indicating decreasing temperature. Bear in
mind that ambient temperatures will affect this exercise.

21. Determine the COM port used for the board by clicking (in Windows XP) Start  Run
then type devmgmt.msc in the box and select OK. (In Windows 7, just type
devmgmt.msc into the Search programs and files box)

In the Device Manager window that opens, left-click the symbol left of
Ports (COM & LPT) and record the COM port number for
MSP430 Applications UART (COMxx):________. Close the Device Manager.

22. Next we will be using the GUI to display the temperature readings on the PC. Be sure
that you have installed the downloaded GUI source files (LaunchPad_Temp_GUI.zip).

23. Start the GUI by clicking on LaunchPad_Temp_GUI.exe. This file is found under
<Install Directory>\LaunchPad_Temp_GUI\application.window. You may have to select
Run in the “Open File – Security Warning” window.

24. It will take a few seconds for the GUI to start. Be sure that the MSP430 application is
running (i.e. button P1.3 has been pressed). In the GUI, select the COM port found in
step 16 and press Enter (this is a DOS window; your mouse will not work in it). The
current temperate should be displayed. Try increasing and decreasing the temperature on
the device and notice the display reading changes. Note that the internal temperature
sensor is not calibrated, so the reading displayed will not be accurate. We are just
looking for the temperature values to change.

25. Close the temperature GUI .

 You’re done.

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2 - 1

Code Composer Studio

Introduction
This module will cover a basic introduction to Code Composer Studio. In the lab exercise we
show how a project is created and loaded into the flash memory on the MSP430 device.
Additionally, as an optional exercise we will provide details for soldering the crystal on the
LaunchPad.

Agenda

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

12

Module Topics

2 - 2 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Module Topics
Code Composer Studio ..2-1

Module Topics ..2-2

Code Composer Studio ..2-3

Lab 2: Code Composer Studio ...2-7
Objective..2-7
Procedure ...2-8

Optional Lab Exercise – Crystal Oscillator ...2-14
Objective..2-14
Procedure ...2-14

 Code Composer Studio

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2 - 3

Code Composer Studio

Code Composer Studio

2 - 4 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Project
Source files
Header Files
Library files
Build and tool settings

Project
Source files
Header Files
Library files
Build and tool settings

Workspaces and Projects

Workspace
Project 1
Project 2
Project 3
Settings and preferences

A workspace contains
your settings and
preferences, as well as
links to your projects.
Deleting projects from
the workspace deletes
the links, not the files

Project
Source files
Header files
Library files
Build and tool settings

A project contains
your build and tool
settings, as well as
links to your input
files.
Deleting files from the
workspace deletes the
links, not the files

Source files
Code and Data

Header files
Declarations/Defines

Library files
Code and Data

Link
Link

Link

Link

Project Wizard…
16

 Code Composer Studio

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2 - 5

Code Composer Studio

2 - 6 Getting Started with the MSP430 LaunchPad - Code Composer Studio

 Lab 2: Code Composer Studio

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2 - 7

Lab 2: Code Composer Studio

Objective
The objective of this lab is to learn the basic features of Code Composer Studio. In this exercise
you will create a new project, build the code, and program the on-chip flash on the MSP430
device. An optional exercise will provide details for soldering the crystal on the LaunchPad.

Since none of the Value Line MSP430 devices have more than 16K of flash memory, the free,
16K license of Code Composer Studio can be considered fully functional. If you want to work
with larger MSP430 (or other) devices, you’ll need to purchase a license.

Lab 2: Code Composer Studio

2 - 8 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Procedure

Note: CCS5.x should have already been installed during the Lab1 exercise.

Start Code Composer Studio and Open a Workspace
1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or

selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt
you for the location of a workspace folder. Browse to:
C:\MSP430_LaunchPad\WorkSpace and do not check the “Use this as the default …”
checkbox. Click OK.

This folder contains all CCS custom settings, which includes project settings and views
when CCS is closed, so that the same projects and settings will be available when CCS is
opened again. It also contains a list of your current projects. The workspace is saved
automatically when CCS is closed.

 Lab 2: Code Composer Studio

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2 - 9

2. The first time CCS opens, the “License Setup Wizard” should appear. In case you started
CCS before and made the wrong choices, you can open the wizard by clicking Help 
Code Composer Studio Licensing Information then click the Upgrade
tab and the Launch License Setup… .

If you’re planning on working with the LaunchPad and value-line parts only, the
CODE SIZE LIMITED version of Code Composer with its 16kB code size limit will
fully support every chip in the family.

If you are attending another workshop in conjunction with this one, like the Stellaris
LaunchPad workshop, you can return here and change this to the FREE LICENSE
version. This license is free when connected to the Stellaris LaunchPad (and many other
boards), but not the MSP430 LaunchPad board. When not connected to those boards, you
will have 30 days to evaluate the tool, but you can extend that period by 90 days.

Select the CODE SIZE LIMITED radio button and click Finish.

You can change your CCS license at any time by following the steps above.

Lab 2: Code Composer Studio

2 - 10 Getting Started with the MSP430 LaunchPad - Code Composer Studio

3. You should now see the open TI Resource Explorer tab open in Code Composer.
The Resource Explorer provides easy access to code examples, support and Grace2™.
Grace2™ will be covered in a later module. Click the X in the tab to close the
Resource Explorer.

4. At this point you should see an empty CCS workbench. The term workbench refers to
the desktop development environment. Maximize CCS to fill your screen.

The workbench will open in the “CCS Edit” view. Notice the tab in the upper right-hand
corner. A perspective defines the initial layout views of the workbench windows,
toolbars, and menus which are appropriate for a specific type of task (i.e. code
development or debugging). This minimizes clutter to the user interface. The “CCS
Edit” perspective is used to create or build C/C++ projects. A “CCS Debug” perspective
will automatically be enabled when the debug session is started. This perspective is used
for debugging your projects. You can customize the perspectives and save as many as
you like.

 Lab 2: Code Composer Studio

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2 - 11

Create a New Project
5. A project contains all the files you will need to develop an executable output file (.out)

which can be run on the MSP430 hardware. To create a new project click:
File  New  CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c) and then click Finish.

6. Code Composer will add the named project to your workspace and display it in the

Project Explorer pane. Based on your template selection, it will also add a file
called main.c and open it for editing. Click on Temperature_Sense_Demo in the
Project Explorer pane to make the project active. Click on the left of the project name
to expand the project.

Lab 2: Code Composer Studio

2 - 12 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Source Files
7. Next, we will add code to main.c. Rather than create a new program, we will use the

original source code that was preprogrammed into the MSP430 device (i.e. the program
used in Lab1).

Click File  Open File… and navigate to
C:\MSP430_LaunchPad\Labs\Lab2\Files.

Open the Temperature_Sense_Demo.txt file. Copy and paste its contents into
main.c, erasing the original contents of main.c, then close the
Temperature_Sense_Demo.txt file.

Near the top of the file, note the statement
#include “msp430g2553.h”

If you are using an earlier revision of the board, change this statement to:
#include “msp430g2231.h”

Be sure to save main.c by clicking the Save button in the upper left.

Build and Load the Project
8. CCS can automatically save modified source files, build the program, open the debug

perspective view, connect and download it to the target (flash device), and then run the
program to the beginning of the main function.

Click on the “Debug” button . When the Ultra-Low-Power Advisor (ULP Advisor)
appears, click the Proceed button. We’ll take a look at the MSP430’s ultra-low-power
abilities in a later lab.

When the download completes, CCS is in the Debug perspective. Notice the Debug tab
in the upper right-hand corner indicating that we are now in the “CCS Debug” view.
Click and drag the perspective tabs to the left until you can see all of both tabs. The
program ran through the C-environment initialization routine in the runtime support
library and stopped at main() in main.c.

 Lab 2: Code Composer Studio

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2 - 13

Debug Environment
9. The basic buttons that control the debug environment are located in the top of the Debug

pane. If you ever accidentally close the pane, your Debug controls will vanish. They can
be brought back by clicking View  Debug on the menu bar.

Hover over each button to see its function.

10. At this point your code should be at the beginning of main(). Look for a small blue arrow
left of the opening brace of main() in the middle window. The blue arrow indicates where

the Program Counter (PC) is pointing to. Click the Resume button to run the code.
Notice the red and green LEDs are toggling, as they did before.

11. Click Suspend . The code should stop somewhere in the PreApplicationMode()
function.

12. Next single-step (Step Into) the code once and it will enter the timer ISR for
toggling the LEDs. Single-step a few more times (you can also press the F5 key) and
notice that the red and green LEDs alternate on and off.

13. Click Reset CPU and you should be back at the beginning of main().

Terminate Debug Session and Close Project
14. The Terminate button will terminate the active debug session, close the debugger and

return CCS to the “CCS Edit” perspective. It also sends a reset to the LaunchPad board,
and you will see the LEDs flashing again. Click the Terminate button:

15. Next, close the project by right-clicking on Temperature_Sense_Demo in the
Project Explorer window and select Close Project.

Optional Lab Exercise – Crystal Oscillator

2 - 14 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Optional Lab Exercise – Crystal Oscillator

Objective
The MSP430 LaunchPad kit includes an optional 32.768 kHz clock crystal that can be soldered
on the board. The board as-is allows signal lines XIN and XOUT to be used as multipurpose
I/Os. Once the crystal is soldered in place, these lines will be a digital frequency input. Please
note that this is a delicate procedure since you will be soldering a very small surface mount
device with leads 0.5mm apart on to the LaunchPad.

The crystal was not pre-soldered on the board because these devices have a very low number of
general purpose I/O pins available. This gives the user more flexibility when it comes to the
functionality of the board directly out of the box. It should be noted that there are two 0 ohms
resistors (R28 and R29) that extend the crystal pin leads to the single-in-line break out connector
(J2). In case of oscillator signal distortion which leads to a fault indication at the basic clock
module, these resistors can be used to disconnect connector J2 from the oscillating lines.

Procedure

Solder Crystal Oscillator to LaunchPad
1. Very carefully solder the included clock crystal to the LaunchPad board. The crystal

leads provides the orientation. They are bent in such a way that only one position will
have the leads on the pads for soldering. Be careful not to bridge the pads. The small size
makes it extremely difficult to manage and move the crystal around efficiently so you
may want to use tweezers and tape to arranging it on the board. Be sure the leads make
contact with the pads. You might need a magnifying device to insure that it is lined up
correctly. You will need to solder the leads to the two small pads, and the end opposite
of the leads to the larger pad.

Click this link to see how one user soldered the crystal to their board:

http://justinstech.org/2010/07/msp430-launchpad-dev-kit-how-too/

http://justinstech.org/2010/07/msp430-launchpad-dev-kit-how-too/

 Optional Lab Exercise – Crystal Oscillator

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2 - 15

Verify Crystal is Operational
2. Create a new project by clicking File  New  CCS Project and then make the

selections shown below. Again, if you are using the MSP430G2231, make the proper
choices. Make sure to select the Empty Project (with main.c) template. Click
Finish.

3. Click File  Open File… and navigate to
C:\MSP430_LaunchPad\Labs\Lab2\Files.

Open the Verify_Crystal.txt file. Copy and paste its contents into main.c,
erasing all the previous contents of main.c. Then close the Verify_Crystal.txt
file – it is no longer needed.

4. If you are using the MSP430G2231, find the #include <msp430g2553.h>
statement near the top of the code and replace it with #include <msp430g2231.h>
Save your changes to main.c.

5. Click the “Debug” button When the Ultra-Low-Power Advisor (ULP Advisor)
appears, click the Proceed button. The “CCS Debug” view should open, the program will
load automatically, and you should now be at the start of main().

Optional Lab Exercise – Crystal Oscillator

2 - 16 Getting Started with the MSP430 LaunchPad - Code Composer Studio

6. Run the code. If the crystal is installed correctly the red LED will blink slowly. (It
should not blink quickly). If the red LED blinks quickly, you’ve probably either failed to
get a good connection between the crystal lead and the pad, or you’ve created a solder
bridge and shorted the leads. A good magnifying glass will help you find the problem.

Terminate Debug Session and Close Project

7. Terminate the active debug session using the Terminate button . This will close
the debugger and return CCS to the “CCS Edit” view.

8. Next, close the project by right-clicking on Verify_Crystal in the Project
Explorer pane and select Close Project.

 You’re done.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 1

Initialization and GPIO

Introduction
This module will cover the steps required for initialization and working with the GPIO. Topics
will include describing the reset process, examining the various clock options, and handling the
watchdog timer. In the lab exercise you will write initialization code and experiment with the
clock system.

Agenda

Reset State …

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

21

Module Topics

3 - 2 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Module Topics
Initialization and GPIO ...3-1

Module Topics ..3-2

Initialization and GPIO ...3-3
Reset and Software Initialization ...3-3
Clock System ...3-4
G2xxx - No Crystal Required - DCO ..3-4
Run Time Calibration of the VLO ...3-5
System MCLK & Vcc ...3-5
Watchdog Timer ..3-6

Lab 3: Initialization and GPIO ..3-7
Objective..3-7
Procedure ...3-8

 Initialization and GPIO

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 3

Initialization and GPIO

Reset and Software Initialization

Software Initialization

After a system reset the software must:
 Initialize the stack pointer (SP), usually to the top of

RAM
 Reconfigure clocks (if desired)
 Initialize the watchdog timer to the requirements of

the application, usually OFF for debugging
 Configure peripheral modules

Clock System …
23

Initialization and GPIO

3 - 4 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Clock System

MCLK
CPU

SMCLK
Peripherals

ACLK
Peripherals

16MHz
DCO

Min. Puls
Filter

VLO

OSC_Fault

Clock System
 Very Low Power/Low Frequency

Oscillator (VLO)*
 4 – 20kHz (typical 12kHz)
 500nA standby
 0.5%/ C and 4%/Volt drift
 Not in ’21x1 devices

 Crystal oscillator (LFXT1)
 Programmable capacitors
 Failsafe OSC_Fault
 Minimum pulse filter

 Digitally Controlled Oscillator
(DCO)
 0-to-16MHz
 + 3% tolerance
 Factory calibration in Flash

DCO …

On PUC, MCLK and SMCLK are
sourced from DCOCLK at ~1.1 MHz.
ACLK is sourced from LFXT1CLK in
LF mode with an internal load
capacitance of 6pF. If LFXT1 fails,
ACLK defaults to VLO.

* Not on all devices. Check the datasheet
24

G2xxx - No Crystal Required - DCO

 Initialization and GPIO

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 5

Run Time Calibration of the VLO

Run Time Calibration of the VLO

 Calibrate the VLO during runtime
 Clock Timer_A runs on calibrated 1MHz DCO
 Capture with rising edge of ACLK/8 from VLO
 fVLO = 8MHz/Counts
 Code library on the web (SLAA340)

TAR

Calibrated 1 MHz DCO

CCRx

ACLK/8 from VLO

fVLO = 8MHz/Counts

MCLK & Vcc …
26

System MCLK & Vcc

Initialization and GPIO

3 - 6 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Watchdog Timer

Watchdog Timer Failsafe Operation

 If ACLK / SMCLK fail, clock
source = MCLK
(WDT+ fail safe feature)

 If MCLK is sourced from a
crystal, and the crystal
fails, MCLK = DCO
(XTAL fail safe feature)

Fail-Safe
Logic

16-bit
Counter

A EN

SMCLK

ACLK

MCLK

1

1

CLK

WDTSSEL WDTHOLD

WDT clock source …
28

Watchdog Timer Clock Source

 Active clock source cannot be disabled (WDT mode)
 May affect LPMx behavior & current consumption
 WDT(+) always powers up active

Clock
Request

Logic
SMCLK Active

MCLK Active

ACLK Active

WDTIS0
WDTIS1

WDTSSEL

WDTCNTCL

WDTTMSEL

WDTNMI

WDTNMIES

WDTHOLD

WDTCTL (16-Bit)

Lab …
29

 Lab 3: Initialization and GPIO

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 7

Lab 3: Initialization and GPIO

Objective
The objective of this lab is to learn about steps used to perform the initialization process on the
MSP430 Value Line devices. In this exercise you will write initialization code and run the device
using various clock resources.

Lab 3: Initialization and GPIO

3 - 8 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Procedure

Create a New Project
1. Create a new project by clicking:

File  New  CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to select the Empty Project (with main.c)template, and then click
Finish.

 Lab 3: Initialization and GPIO

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 9

Source File
2. In the main.c editing window, replace the existing code with the following code. Again, if

you are using the MSP430G2231, use that include header file. The short #ifdef structure
corrects an inconsistency between the 2231 and 2553 header files. This inconsistency
should be corrected in future releases. Rather than typing all the following code, you can
feel free to cut and paste it from the workbook pdf file.

#include <msp430g2553.h>

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
// code goes here

}

Running the CPU on the VLO
We will initially start this lab exercise by running the CPU on the VLO. This is the slowest clock
which runs at about 12 kHz. So, we will visualize it by blinking the red LED slowly at a rate of
about once every 3 seconds. We could have let the clock system default to this state, but instead
we’ll set it specifically to operate on the VLO. This will allow us to change it later in the
exercise. We won’t be using any ALCK clocked peripherals in this lab exercise, but you should
recognize that the ACLK is being sourced by the VLO.

3. In order to understand the following steps, you need to have the following two resources
at hand:

• MSP430G2553.h header file – search your drive for the msp430g2553.h
header file and open it (or msp430g2231.h). This file contains all the register
and bit definitions for the MSP430 device that we are using.

• MSP430G2xx User’s Guide – this document (slau144h) was downloaded in
Lab1. This is the User’s Guide for the MPS430 Value Line family. Open the
.pdf file for viewing.

4. For debugging purposes, it would be handy to stop the watchdog timer. This way we
need not worry about it. In main.c right at //code goes here type:
WDTCTL = WDTPW + WDTHOLD;

(Be sure not to forget the semicolon at the end).

The WDTCTL is the watchdog timer control register. This instruction sets the password
(WDTPW) and the bit to stop the timer (WDTHOLD). Look at the header file and User’s
Guide to understand how this works. (Please be sure to do this – this is why we asked
you to open the header file and document).

Lab 3: Initialization and GPIO

3 - 10 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

5. Next, we need to configure the LED that’s connected to the GPIO line. The green LED
is located on Port 1 Bit 6 and we need to make this an output. The LED turns on when
the output is set to a “1”. We’ll clear it to turn the LED off. Leave a line for spacing and
type the next two lines of code.
P1DIR = 0x40;
P1OUT = 0;

 (Again, check the header file and User’s Guide to make sure you understand the
concepts).

6. Now we’ll set up the clock system. Enter a new line, then type:

BCSCTL3 |= LFXT1S_2;

The BCSCTL3 is one of the Basic Clock System Control registers. In the User’s Guide,
section 5.3 tells us that the reset state of the register is 005h. Check the bit fields of this
register and notice that those settings are for a 32768 Hz crystal on LFXT1 with 6pF
capacitors and the oscillator fault condition set. This condition would be set anyway
since the crystal would not have time to start up before the clock system faulted it.
Crystal start-up times can be in the hundreds of milliseconds.

The operator in the statement logically OR’s LFXT1S_2 (which is 020h) into the
existing bits, resulting in 025h. This sets bits 4 & 5 to 10b, enabling the VLO clock.
Check this with the documents.

7. The clock system will force the MCLK to use the DCO as its source in the presence of a
clock fault (see the User’s Guide section 5.2.7). So we need to clear that fault flag. On
the next line type:

IFG1 &= ~OFIFG;

The IFG1 is Interrupt Flag register 1. A bit field in the register is the Oscillator Fault
Interrupt Flag - OFIFG (the first letter is an “O”, and not a zero). Logically ANDing
IFG1 with the NOT of OFIFG (which is 2) will clear bit 1. Check this in section 5 of
the User’s Guide and in the header file.

8. We need to wait about 50 µs for the clock fault system to react. Running on the 12kHz
VLO, stopping the DCO will buy us that time. On the next line type:

_bis_SR_register(SCG1 + SCG0);

SR is the Status Register. Find the bit definitions for the status register in the User’s
Guide (section 4). Find the definitions for SCG0 and SCG1 in the header file and notice
how they match the bit fields to turn off the system clock generator in the register. By the
way, the underscore before bis defines this is an assembly level call from C. _bis is a bit
set operation known as an intrinsic.

9. There is a divider in the MCLK clock tree. We will use divide-by-eight. Type this
statement on the next line and look up its meaning:

BCSCTL2 |= SELM_3 + DIVM_3;

The operator logically ORs the two values with the existing value in the register.
Examine these bits in the User’s Guide and header file.

 Lab 3: Initialization and GPIO

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 11

10. At this point, your code should look like the code below. We have added the comments
to make it easier to read and understand. Click the Save button on the menu bar to save
the file.

#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup

 P1DIR = 0x40; // I/O setup
 P1OUT = 0;

 BCSCTL3 |= LFXT1S_2; // clock system setup
 IFG1 &= ~OFIFG;
 _bis_SR_register(SCG1 + SCG0);

 BCSCTL2 |= SELM_3 + DIVM_3;
}

11. Just one more thing – the last piece of the puzzle is to toggle the green LED. Leave
another line for spacing and enter the following code:
while(1)
{
 P1OUT = 0x40; // LED on
 _delay_cycles(100);
 P1OUT = 0; // LED off
 _delay_cycles(5000);
}

The P1OUT instruction was already explained. The delay statements are built-in intrinsic
function for generating delays. The only parameter needed is the number of clock cycles
for the delay. Later in the workshop we will find out that this isn’t a very good way to
generate delays – so don’t get used to using it. The while(1) loop repeats the next four
lines forever.

Lab 3: Initialization and GPIO

3 - 12 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

12. Now, the complete code should look like the following. Be sure to save your work.
#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup

 P1DIR = 0x40; // I/O setup
 P1OUT = 0;

 BCSCTL3 |= LFXT1S_2; // clock system setup
 IFG1 &= ~OFIFG;
 _bis_SR_register(SCG1 + SCG0);
 BCSCTL2 |= SELM_3 + DIVM_3;

 while(1)
 {
 P1OUT = 0x40; // LED on
 _delay_cycles(100);
 P1OUT = 0; // LED off
 _delay_cycles(5000);
 }
}

Great job! You could have just cut and pasted the code from VLO.txt in the Files folder,
but what fun would that have been? 

13. Click the “Debug” button . Click the Proceed button when the ULP Advisor
appears. The “CCS Debug” view should open, the program will load automatically, and
you should now be at the start of main().

14. Run the code. If everything is working correctly the green LED should be blinking about
once every three or four seconds. Running the CPU on the other clock sources will speed
this up considerably. This will be covered in the remainder of the lab exercise.

15. Click on the Terminate button to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File  Save As and select the parent
folder as Lab3. Name the file Lab3a.c. Click OK.

Expand the Lab3 project by clicking on to the left of the Lab3 project name.

Close the Lab3a.c editor tab and double click on main.c in the Project Explorer pane.
Unfortunately, Eclipse has added Lab3a.c to our project, which will cause us grief later
on (you can’t have two main() functions in the same program).

Right-click on Lab3a.c in the Project Explorer pane and select Resource
Configurations, then Exclude from build… Check both boxes and click OK.

 Lab 3: Initialization and GPIO

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 13

Note: If you have decided NOT to solder the crystal on to LaunchPad, then skip to the
“Running the CPU on the DCO without a Crystal” section. But, you should
reconsider; as this is important information to learn.

Running the CPU on the Crystal
The crystal frequency is 32768 Hz, about three times faster than the VLO. If we run the previous
code using the crystal, the green LED should blink at about once per second. Do you know why
32768 Hz is a standard? It is because that number is 215, making it easy to use a simple digital
counting circuit to get a once per second rate – perfect for watches and other time keeping.
Recognize that we will also be sourcing the ACLK with the crystal.

16. This part of the lab exercise uses the previous code as the starting point. We will start at
the top of the code and will be using both LEDs. Make both LED pins (P1.0 and P1.6)
outputs by
Changing: P1DIR = 0x40;
To: P1DIR = 0x41;

And we also want the red LED (P1.0) to start out ON, so
Change: P1OUT = 0;
To: P1OUT = 0x01;

17. We need to select the external crystal as the low-frequency clock input.
Change: BCSCTL3 |= LFXT1S_2;
To: BCSCTL3 |= LFXT1S_0 + XCAP_3;

Check the User’s Guide to make sure this is correct. The XCAP_3 parameter selects the
12pF load capacitors. A higher load capacitance is needed for lower frequency crystals.

18. In the previous code we cleared the OSCFault flag and went on with our business, since
the clock system would default to the VLO anyway. Now we want to make sure that the
flag stays cleared, meaning that the crystal is up and running. This will require a loop
with a test. Modify the code to
Change: IFG1 &= ~OFIFG;
To: while(IFG1 & OFIFG)
 {
 IFG1 &= ~OFIFG;

 _delay_cycles(100000);
}

The statement while(IFG1 & OFIFG) tests the OFIFG in the IFG1 register. If that
fault flag is clear we will exit the loop. We need to wait 50 µs after clearing the flag until
we test it again. The _delay_cycles(100000); is much longer than that. We need it
to be that long so we can see the red LED light at the beginning of the code. Otherwise it
would flash so quickly that we wouldn’t be able to see it.

19. Finally, we need to add a line of code to turn off the red LED, indicating that the fault test
has been passed. Add the new line after the while loop:

P1OUT = 0;

Lab 3: Initialization and GPIO

3 - 14 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

20. Since we made a lot of changes to the code (and had a chance to make a few errors),
check to see that your code looks like:

#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup

 P1DIR = 0x41; // I/O setup
 P1OUT = 0x01;

 BCSCTL3 |= LFXT1S_0 + XCAP_3; // clock system setup

 while(IFG1 & OFIFG) // wait for OSCFault to clear
 {
 IFG1 &= ~OFIFG;
 _delay_cycles(100000);
 }

 P1OUT = 0; // both LEDs off

 _bis_SR_register(SCG1 + SCG0); // clock system setup
 BCSCTL2 |= SELM_3 + DIVM_3;

 while(1)
 {
 P1OUT = 0x40; // LED on
 _delay_cycles(100);
 P1OUT = 0; // LED off
 _delay_cycles(5000);
 }
}

Again, you could have cut and pasted from XT.txt, but you’re here to learn. 

21. Click the “Debug” button . Click the Proceed button in the ULP Advisor. The “CCS
Debug” perspective should open, the program will load automatically, and you should
now be at the start of main().

22. Look closely at the LEDs on the LaunchPad and Run the code. If everything is working
correctly, the red LED should flash very quickly (the time spent in the delay and waiting
for the crystal to start) and then the green LED should blink every second or so. That’s
about three times the rate it was blinking before due to the higher crystal frequency.
When done, halt the code by clicking the suspend button .

 Lab 3: Initialization and GPIO

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 15

23. Click on the Terminate button to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File  Save As and select the parent
folder as Lab3. Name the file Lab3b.c and click OK. Make sure to exclude Lab3b.c
from the build. Close the Lab3b editor tab and double click on main.c in the Project
Explorer pane.

Running the CPU on the DCO and the Crystal
The slowest frequency that we can run the DCO is about 1MHz (this is also the default speed).
So we will get started switching the MCLK over to the DCO. In most systems, you will want the
ACLK to run either on the VLO or the 32768 Hz crystal. Since ACLK in our current code is
running on the crystal, we will leave it that way and just turn on and calibrate the DCO.

24. We could just let the DCO run, but let’s calibrate it. Right after the code that stops the
watchdog timer, add the following code:
 if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
 {
 while(1); // If cal constants erased, trap CPU!!
 }

 BCSCTL1 = CALBC1_1MHZ; // Set range
 DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

Notice the trap here. It is possible to erase the segment A of the information flash
memory. Blank flash memory reads as 0xFF. Plugging 0xFF into the calibration of the
DCO would be a real mistake. You might want to implement something similar in your
own fault handling code.

25. We need to comment out the line that stops the DCO. Comment out the following line:

// __bis_SR_register(SCG1 + SCG0);

26. Finally, we need to make sure that MCLK is sourced by the DCO.
Change: BCSCTL2 |= SELM_3 + DIVM_3;
To: BCSCTL2 |= SELM_0 + DIVM_3;

 Double check the bit selection with the User’s Guide and header file.

Lab 3: Initialization and GPIO

3 - 16 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

27. The code should now look like:
#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup

 if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
 {
 while(1); // If cal constants erased,
 } // trap CPU!!

 BCSCTL1 = CALBC1_1MHZ; // Set range
 DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

 P1DIR = 0x41; // I/O setup
 P1OUT = 0x01;

 BCSCTL3 |= LFXT1S_0 + XCAP_3; // clock system setup

 while(IFG1 & OFIFG) // wait for OSCFault to clear
 {
 IFG1 &= ~OFIFG;
 _delay_cycles(100000);
 }

 P1OUT = 0; // both LEDs off

// _bis_SR_register(SCG1 + SCG0); // clock system setup
 BCSCTL2 |= SELM_0 + DIVM_3;

 while(1)
 {
 P1OUT = 0x40; // LED on
 _delay_cycles(100);
 P1OUT = 0; // LED off
 _delay_cycles(5000);
 }
}

The code can be found in DCO_XT.txt, if needed. Save your changes.

28. Click the “Debug” button . Click the Proceed button in the ULP Advisor. The “CCS
Debug” perspective should open, the program will load automatically, and you should
now be at the start of main().

 Lab 3: Initialization and GPIO

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 17

29. Look closely at the LEDs on the LaunchPad and Run the code. If everything is working
correctly, the red LED should be flash very quickly (the time spent in the delay and
waiting for the crystal to start) and the green LED should blink very quickly. The DCO
is running at 1MHz, which is about 33 times faster than the 32768 Hz crystal. So the
green LED should be blinking at about 30 times per second.

30. Click the Terminate button to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File  Save As and select the parent
folder as Lab3. Name the file Lab3c.c. Click OK. Make sure to exclude Lab3c.c from
the build. Close the Lab3c.c editor tab and double click on main.c in the Project Explorer
pane.

Optimized Code Running the CPU on the DCO and the Crystal
The previous code was not optimized, but very useful for educational value. Now we’ll look at
an optimized version. Delete the code from your main.c editor window (click anywhere in the
text, Ctrl-A, then delete). Copy and paste the code from OPT_XT.txt into main.c. Examine the
code and you should recognize how everything works. A function has been added that
consolidates the fault issue, removes the delays and tightens up the code. Build, load, and run as
before. The code should work just as before. If you would like to test the fault function, short the
XIN and XOUT pins with a jumper before clicking the Run button. That will guarantee a fault
from the crystal. You will have to power cycle the LaunchPad to reset the fault.

Click on the Terminate button to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File  Save As and select the parent folder as
Lab3. Name the file Lab3d.c. Click OK. Make sure to exclude Lab3d.c from the build. Close the
Lab3d.c editor tab.

Lab 3: Initialization and GPIO

3 - 18 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Running the CPU on the DCO without a Crystal
The lowest frequency that we can run the DCO is 1MHz. So we will get started switching the
MCLK over to the DCO. In most systems, you will want the ACLK to run either on the VLO or
the 32768 Hz crystal. Since ACLK in our current code is running on the VLO, we will leave it
that way and just turn on and calibrate the DCO.

31. Double-click on main.c in the Project Explorer pane. Delete all the code from the file
(Ctrl-A, Delete). Copy and paste the code from your previously saved Lab3a.c into
main.c.

32. We could just let the DCO run, but let’s calibrate it. Right after the code that stops the
watchdog timer, add the following code:

 if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
 {
 while(1); // If cal constants erased,
 } // trap CPU!!

 BCSCTL1 = CALBC1_1MHZ; // Set range

 DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

Notice the trap here. It is possible to erase the segment A of the information flash
memory that holds the calibration constants. Blank flash memory reads as 0xFF.
Plugging 0xFF into the calibration of the DCO would be a real mistake. You might want
to implement something similar in your own fault handling code.

33. We need to comment out the line that stops the DCO. Comment out the following line:

// __bis_SR_register(SCG1 + SCG0);

34. Finally, we need to make sure that MCLK is sourced by the DCO.
Change: BCSCTL2 |= SELM_3 + DIVM_3;
To: BCSCTL2 |= SELM_0 + DIVM_3;

Double check the bit selection with the User’s Guide and header file. Save your work.

 Lab 3: Initialization and GPIO

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3 - 19

35. The code should now look like:
#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup

 if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
 {
 while(1); // If cal constants erased,
 } // trap CPU!!

 BCSCTL1 = CALBC1_1MHZ; // Set range
 DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

 P1DIR = 0x40; // I/O setup
 P1OUT = 0;

 BCSCTL3 |= LFXT1S_2; // clock system setup
 IFG1 &= ~OFIFG;
// _bis_SR_register(SCG1 + SCG0);
 BCSCTL2 |= SELM_0 + DIVM_3;

 while(1)
 {
 P1OUT = 0x40; // LED on
 _delay_cycles(100);
 P1OUT = 0; // LED off
 _delay_cycles(5000);
 }
}

The code can be found in DCO_VLO.txt, if needed. Save your changes.

36. Click the “Debug” button . Click the Proceed button in the ULP Advisor. The
“CCS Debug” perspective should open, the program will load automatically, and you
should now be at the start of main().

37. Run the code. If everything is working correctly, the green LED should blink very
quickly. With the DCO running at 1MHz, which is about 30 times faster than the 32768
Hz crystal. So the green LED should be blinking at about 30 times per second. When
done halt the code.

38. Click on the Terminate button to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File  Save As and select the parent
folder as Lab3. Name the file Lab3e.c. Click OK. Make sure to exclude Lab3e.c from
the build. Close the Lab3e.c editor tab and double click on main.c in the Project Explorer
pane.

Lab 3: Initialization and GPIO

3 - 20 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Optimized Code Running the CPU on the DCO and VLO
This is a more optimized version of the previous step’s code. Delete the code from your main.c
editor window (click anywhere in the text, Ctrl-A, then delete). Copy and paste the code from
OPT_VLO.txt into main.c. Examine the code and you should recognize how everything works.
A function has been added that consolidates the fault issue, removes the delays and tightens up
the code. Build, load, and run as before. The code should work just as before. There is no real
way to test the fault function, short of erasing the information segment A Flash – and let’s not do
that … okay?.

Click on the Terminate button to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File  Save As and select the parent folder as
Lab3. Name the file Lab3f.c. Click OK and then close the Lab3f.c editor pane. Make sure to
exclude Lab3f.c from the build.

Right-click on Lab3 in the Project Explorer pane and select Close Project.

 You’re done.

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4 - 1

Analog-to-Digital Converter

Introduction
This module will cover the basic details of the MSP430 Value Line analog-to-digital converter.
In the lab exercise you will write the necessary code to configure and run the converter.

Agenda

ADC10 …

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

31

Module Topics

4 - 2 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Module Topics
Analog-to-Digital Converter ..4-1

Module Topics ..4-2

Analog-to-Digital Converter ..4-3
Fast Flexible ADC10 ...4-3
Sample Timing ..4-4
Autoscan + DTC Performance Boost ..4-4

Lab 4: Analog-to-Digital Converter ..4-5
Objective..4-5
Procedure ...4-6

 Analog-to-Digital Converter

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4 - 3

Analog-to-Digital Converter

Fast Flexible ADC10

Fast Flexible ADC10

 10-bit 8 channel SAR ADC
 6 external channels
 Vcc and internal temperature

 200 ksps+
 Selectable conversion clock
 Autoscan

 Single
 Sequence
 Repeat-single
 Repeat-sequence

 Internal or External reference
 Timer-A triggers
 Interrupt capable
 Data Transfer Controller (DTC)
 Auto power-down

RAM, Flash,
Peripherals

S/H 10-bit SAR

ADC10SC
TA1

TA2
TA0

Direct
Transfer

Controller

VR- VR+

AVCCAVSS

1.5V or 2.5V

Auto

Batt Temp

Direct
Transfer

Controller

Data
Transfer

Controller

Sample Timing …
32

Analog-to-Digital Converter

4 - 4 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Sample Timing

Autoscan + DTC Performance Boost

 Lab 4: Analog-to-Digital Converter

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4 - 5

Lab 4: Analog-to-Digital Converter

Objective
The objective of this lab is to learn about the operation of the on-chip analog-to-digital converter.
In this lab exercise you will write and examine the necessary code to run the converter. The
internal temperature sensor will be used as the input source.

Lab 4: Analog-to-Digital Converter

4 - 6 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Procedure

Create a New Project
1. Create a new project by clicking:

File  New  CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c), and then click Finish.

 Lab 4: Analog-to-Digital Converter

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4 - 7

Source File
Most coding efforts make extensive use of the “cut and paste” technique, or commonly known as
“code re-use”. The MSP430 family is probably more prone to the use of this technique than most
other processors. There is an extensive library of code example for all of the devices in both
assembly and C. So, it is extremely likely that a piece of code exists somewhere which does
something similar to what we need to do. Additionally, it helps that many of the peripherals in
the MSP430 devices have been deliberately mapped into the same register locations. In this lab
exercise we are going to re-use the code from the previous lab exercise along with some code
from the code libraries and demo examples.

1. We need to open the files containing the code that we will be using in this lab exercise.
Open the following two files using File  Open File…

• C:\MSP430_LaunchPad\Labs\Lab3\Files\OPT_VLO.txt

• C:\MSP430_LaunchPad\Labs\Lab2\Files\Temperature_Sense_Demo.txt

2. Copy all of the code in OPT_VLO.txt and paste it into main.c, erasing all the
existing code in main.c. This will set up the clocks:

• ACLK = VLO

• MCLK = DCO/8 (1MHz/8)

3. Next, make sure the SMCLK is also set up:

Change: BCSCTL2 |= SELM_0 + DIVM_3;
To: BCSCTL2 |= SELM_0 + DIVM_3 + DIVS_3;

The SMCLK default from reset is sourced by the DCO and DIVS_3 sets the SMCLK
divider to 8. The clock set up is:

• ACLK = VLO

• MCLK = DCO/8 (1MHz/8)

• SMCLK = DCO/8 (1MHz/8)

4. If you are using the MSP430G2231, make sure to make the appropriate change to the
header file include at the top of the code.

5. As a test – build, load, and run the code. If everything is working correctly the green
LED should blink very quickly. When done, halt the code and click the Terminate
button to return to the “CCS Edit” perspective.

Lab 4: Analog-to-Digital Converter

4 - 8 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Set Up ADC Code
Next, we will re-use code from Temperature_Sense_Demo.txt to set up the ADC. This
demo code has the needed function for the setup.

6. From Temperature_Sense_Demo.txt copy the first four lines of code from the
ConfigureAdcTempSensor() function and paste it as the beginning of the while(1)
loop, just above the P1OUT line. Those lines of code are:

 ADC10CTL1 = INCH_10 + ADC10DIV_3;

 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE;
 _delay_cycles(1000);
 ADC10CTL0 |= ENC + ADC10SC;

7. We are going to examine these code lines one at the time to make sure they are doing
what we need them to do. You will need to open the User’s Guide and header file for
reference again. (It might be easier to keep the header file open in the editor for
reference).

First, change ADC10DIV_3 to ADC10DIV_0.

ADC10CTL1 = INCH_10 + ADC10DIV_0;

ADC10CTL1 is one of the ADC10 control registers. INCH_10 selects the internal
temperature sensor input channel and ADC10DIV_0 selects divide-by-1 as the ADC10
clock. Selection of the ADC clock is made in this register, and can be the internal
ADC10OSC (5MHz), ACLK, MCLK or SMCLK. The ADC10OSC is the default
oscillator after PUC. So we will use these settings.

ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE;

ADC10CTL0 is the other main ADC10 control register:
• SREF_1: selects the range from Vss to VREF+ (ideal for the temperature sensor)
• ADC10SHT_3: maximum sample-and-hold time (ideal for the temperature sensor)
• REFON: turns the reference generator on (must wait for it to settle after this line)
• ADC10ON: turns on the ADC10 peripheral
• ADC10IE: turns on the ADC10 interrupt – we do not want interrupts for this lab

exercise, so change the line to:

ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON;

 Lab 4: Analog-to-Digital Converter

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4 - 9

The next line allows time for the reference to settle. A delay loop is not the best way to
do this, but for the purposes of this lab exercise, it’s fine.

_delay_cycles(1000);

Note that the compiler will accept a single or double underscore.

Referring to the User’s Guide, the settling time for the internal reference is < 30µs. As
you may recall, the MCLK is running at DCO/8. That is 1MHz/8 or 125 kHz. A value of
1000 cycles is 8ms, which is much too long. A value of 5 cycles would be 40µs. Change
the delay time to that value:

_delay_cycles(5);

The next line:

ADC10CTL0 |= ENC + ADC10SC;

enables the conversion and starts the process from software. According to the user’s
guide, we should allow thirteen ADC10CLK cycles before we read the conversion result.
Thirteen cycles of the 5MHz ADC10CLK is 2.6µs. Even a single cycle of the DCO/8
would be longer than that. We will leave the LED on and use the same delay so that we
can see it with our eyes. Leave the next two lines alone:

P1OUT = 0x40;
_delay_cycles(100);

8. When the conversion is complete, the encoder and reference need to be turned off. The
ENC bit must be off in order to change the REF bit, so this is a two step process. Add the
following two lines right after the first __delay_cycles(100); :

ADC10CTL0 &= ~ENC;
ADC10CTL0 &= ~(REFON + ADC10ON);

9. Now the result of the conversion can be read from ADC10MEM. Next, add the following
line to read this value to a temporary location:

tempRaw = ADC10MEM;

Remember to declare the tempRaw variable right after the #endif line at the beginning
of the code:

volatile long tempRaw;

The volatile modifier forces the compiler to generate code that actually reads the
ADC10MEM register and place it in tempRaw. Since we’re not doing anything with
tempRaw right now, the compiler optimizer could decide to eliminate that line of code.
The volatile modifier prevents this from happening.

10. The last two lines of the while(1) loop turn off the green LED and delays for the next
reading of the temperature sensor. This time could be almost any value, but we will use
about 1 second in between readings. MCLK is DCO/8 is 125 kHz. Therefore, the delay
needs to be 125,000 cycles:

P1OUT = 0;
 _delay_cycles(125000);

Lab 4: Analog-to-Digital Converter

4 - 10 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

11. At this point, your code should look like the code below. We have added the comments
to make it easier to read and understand. Click the Save button on the menu bar to save
the file.

#include <msp430g2553.h>

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

volatile long tempRaw;

void FaultRoutine(void);

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
 P1DIR = 0x41; // P1.0&6 outputs
 P1OUT = 0; // LEDs off

 if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
 FaultRoutine(); // If cal data is erased
 // run FaultRoutine()
 BCSCTL1 = CALBC1_1MHZ; // Set range
 DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO
 IFG1 &= ~OFIFG; // Clear OSCFault flag
 BCSCTL2 |= SELM_0 + DIVM_3 + DIVS_3; // MCLK = DCO/8

 while(1)
 {
 ADC10CTL1 = INCH_10 + ADC10DIV_0; // Temp Sensor ADC10CLK
 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON;
 _delay_cycles(5); // Wait for ADC Ref to settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling & conversion start

 P1OUT = 0x40; // green LED on
 _delay_cycles(100);

 ADC10CTL0 &= ~ENC;
 ADC10CTL0 &= ~(REFON + ADC10ON);
 tempRaw = ADC10MEM;

 P1OUT = 0; // green LED off
 _delay_cycles(125000);
 }
}

void FaultRoutine(void)
 {
 P1OUT = 0x01; // red LED on
 while(1); // TRAP
 }

Note: for reference, this code can found in Lab4.txt.

12. Close the OPT_VLO.txt and Temperature_Sense_Demo.txt reference files.
They are no longer needed.

 Lab 4: Analog-to-Digital Converter

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4 - 11

Build, Load, and Run the Code

13. Click the “Debug” button . When the ULP Advisor appears, click Proceed. The
“CCS Debug” perspective should open, the program will load automatically, and you
should now be at the start of main().

14. Run the code. If everything is working correctly the green LED should be blinking about
once per second. Click Suspend to stop the code.

Test the ADC Conversion Process
15. Next we will test the ADC conversion process and make sure that it is working. In the

code line containing: tempRaw = ADC10MEM;

double-click on tempRaw to select it. Then right-click on it and select Add Watch
Expression then click OK. If needed, click on the Expressions tab near the upper
right of the CCS screen to see the variable added to the watch window.

16. Right-click on the next line of code: P1OUT = 0;

and select Breakpoint (Code Composer Studio)  Breakpoint. When
we run the code, it will hit the breakpoint and stop, allowing the variable to be read and
updated in the watch window.

17. Make sure the Expressions window is still visible and run the code. It will quickly
stop at the breakpoint and the tempRaw value will be updated. Do this a few times,
observing the value. (It might be easier to press F8 rather than click the Run button).
The reading should be pretty stable, although the lowest bit may toggle. A typical
reading is about 734 (that’s decimal), although your reading may be a little different.
You can right-click on the variable in the watch window and change the format to
hexadecimal, if that would be more interesting to you. Each time the value changes it will
be highlighted in yellow.

18. Just to the left of the P1OUT = 0; instruction you should see a symbol indicating a
breakpoint has been set. It might be a little hard to see with the Program Counter arrow in
the way. Right-click on the symbol and select Breakpoint Properties...
We can change the behavior of the breakpoint so that it will stop the code execution,
update our watch expression and resume execution automatically. Change the Action
parameter to Update View as shown below and click OK.

Lab 4: Analog-to-Digital Converter

4 - 12 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

19. Run the code. Warm your finger up, like you did in the Lab2 exercise, and put it on the
device. You should see the measured temperature climb, confirming that the ADC
conversion process is working. Every time the variable value changes, CCS will highlight
it in yellow.

Terminate Debug Session and Close Project

20. Terminate the active debug session using the Terminate button . This will close
the debugger and return CCS to the “CCS Edit” perspective.

21. Next, close the project by right-clicking on Lab4 in the Project Explorer pane and
select Close Project.

 You’re done.

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5 - 1

Interrupts and the Timer

Introduction
This module will cover the details of the interrupts and the timer. In the lab exercise we will
configure the timer and alter the code to use interrupts.

Agenda

Timer Architecture …

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

36

Module Topics

5 - 2 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Module Topics
Interrupts and the Timer ...5-1

Module Topics ..5-2

Interrupts and the Timer ..5-3
Timer_A2/A3 Features ..5-3
Interrupts and the Stack ...5-3
Vector Table ..5-4
ISR Coding ..5-4

Lab 5: Timer and Interrupts...5-5
Objective..5-5
Procedure ...5-6

 Interrupts and the Timer

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5 - 3

Interrupts and the Timer

Timer_A2/A3 Features

Interrupts and the Stack

Interrupts and the Timer

5 - 4 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Vector Table

MSP430G2553 Vector Table
Interrupt Source Interrupt Flag System

Interrupt
Word

Address
Priority

Power-up
External Reset

Watchdog Timer+
Flash key violation

PC out-of-range

PORIFG
RSTIFG
WDTIFG

KEYV
Reset 0FFFEh 31

(highest)

NMI
Oscillator Fault

Flash memory access
violation

NMIIFG
OFIFG

ACCVIFG

Non-maskable
Non-maskable
Non-maskable

0FFFCh 30

Timer1_A3 TA1CCR0 CCIFG maskable 0FFFAh 29
Timer1_A3 TA1CCR2 TA1CCR1

CCIFG, TAIFG
maskable 0FFF8h 28

Comparator_A+ CAIFG maskable 0FFF6h 27
Watchdog Timer+ WDTIFG maskable 0FFF4h 26

Timer0_A3 TA0CCR0 CCIFG maskable 0FFF2h 25
Timer0_A3 TA0CCR1 TA0CCR1

CCIFG TAIFG
maskable 0FFF0h 24

USCI_A0/USCI_B0 receive
USCI_B0 I2C status

UCA0RXIFG, UCB0RXIFG maskable 0FFEEh 23

USCI_A0/USCI_B0 transmit
USCI_B0 I2C receive/transmit

UCA0TXIFG, UCB0TXIFG maskable 0FFECh 22

ADC10 ADC10IFG maskable 0FFEAh 21
0FFE8h 20

I/O Port P2 (up to 8) P2IFG.0 to P2IFG.7 maskable 0FFE6h 19
I/O Port P1 (up to 8) P1IFG.0 to P1IFG.7 maskable 0FFE4h 18

0FFE2h 17
0FFE0h 16

Boot Strap Loader Security
Key

0FFDEh 15

Unused 0FFDEh to 0FFCDh 14 - 0

ISR Coding …
39

ISR Coding

ISR Coding

#pragma vector=WDT_VECTOR

__interrupt void WDT_ISR(void)

{

IE1 &= ~WDTIE; // disable interrupt

IFG1 &= ~WDTIFG; // clear interrupt flag

WDTCTL = WDTPW + WDTHOLD; // put WDT back in hold state

BUTTON_IE |= BUTTON; // Debouncing complete

}

#pragma vector - the following function is an ISR for the listed vector
_interrupt void - identifies ISR name
No special return required

Lab …
40

 Lab 5: Timer and Interrupts

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5 - 5

Lab 5: Timer and Interrupts

Objective
The objective of this lab is to learn about the operation of the on-chip timer and interrupts. In this
lab exercise you will write code to configure the timer. Also, you will alter the code so that it
operates using interrupts.

Lab 5: Timer and Interrupts

5 - 6 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Procedure

Create a New Project
1. Create a new project by clicking:

File  New  CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c), and then click Finish.

 Lab 5: Timer and Interrupts

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5 - 7

Source File
The solution file from the last lab exercise will be used as the starting point for this lab exercise.
We’ve cleaned up the file slightly to make it a little more readable by putting the initialization
code into individual functions.

1. Open the Lab5_Start.txt file using File  Open File…

• C:\MSP430_LaunchPad\Labs\Lab5\Files\Lab5_Start.txt

2. Copy all of the code in Lab5_Start.txt and paste it into main.c, erasing all the
existing code in main.c. This will be the starting point for this lab exercise.

3. Close the Lab5_Start.txt file. It is no longer needed.

4. As a test – build, load, and run the code. If everything is working correctly the green
LED should be blinking about once per second and it should function exactly the same as
the previous lab exercise. When done, halt the code and click the Terminate button

 to return to the “CCS Edit” perspective.

Using the Timer to Implement the Delay
5. In the next few steps we’re going to implement the one second delay that was previously

implemented using the delay intrinsic with the timer.

Find _delay_cycles(125000); and delete that line of code.

6. We need to add a function to configure the Timer. Add a declaration for this new
function to top of the code, underneath the one for ConfigADC10:
void ConfigTimerA2(void);

Then add a call to the function underneath the call to ConfigADC10;

ConfigTimerA2();

And add a template for the function at the very bottom of the program:
void ConfigTimerA2(void)
 {

 }

Lab 5: Timer and Interrupts

5 - 8 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

7. Next, we need to populate the ConfigTimerA2() function with the code to configure
the timer. We could take this from the example code, but it’s pretty simple, so let’s do it
ourselves. Add the following code as the first line:
CCTL0 = CCIE;

This enables the counter/compare register 0 interrupt in the CCTL0 capture/compare
control register. Unlike the previous lab exercise, this one will be using interrupts. Next,
add the following two lines:
CCR0 = 12000;
TACTL = TASSEL_1 + MC_2;

We’d like to set up the timer to operate in continuous counting mode, sourced by the
ACLK (VLO), and generate an interrupt every second. Reference the User’s Guide and
header files and notice the following:

• TACTL is the Timer_A control register
• TASSEL_1 selects the ACLK
• MC_2 sets the operation for continuous mode

When the timer reaches the value in CCR0, an interrupt will be generated. Since the
ACLK (VLO) is running at 12 kHz, the value needs to be 12000 cycles.

8. We have enabled the CCR0 interrupt, but global interrupts need to be turned on in order
for the CPU to recognize it. Right before the while(1) loop in main(), add the following:
_BIS_SR(GIE);

Create an Interrupt Sevice Routine (ISR)
9. At this point we have set up the interrupts. Now we need to create an Interrupt Service

Routine (ISR) that will run when the Timer interrupt fires. Add the following code
template to the very bottom of main.c:
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{

}

These lines identify this as the TIMER ISR code and allow the compiler to insert the
address of the start of this code in the interrupt vector table at the correct location. Look
it up in the C Compiler User’s Guide. This User’s Guide was downloaded in lab 1.

10. Remove all the code from inside the while(1) loop in main() and paste it into the ISR
template. This will leave the while(1) loop empty for the moment.

11. Almost everything is in place for the first interrupt to occur. In order for the 2nd, 3rd,
4th,… to occur at one second intervals, two things have to happen:

a) The interrupt flag has to be cleared (that’s automatic)
b) CCR0 has to be set 12,000 cycles into the future

So add the following as the last line in the ISR:

CCR0 +=12000;

 Lab 5: Timer and Interrupts

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5 - 9

12. We need to have some code running to be interrupted. This isn’t strictly necessary, but
the blinking LEDs will let us know that some part of the code is actually running. Add
the following code to the while(1) loop:

P1OUT |= BIT0;
for (i = 100; i > 0; i--);
P1OUT &= ~BIT0;
for (i = 5000; i > 0; i--);

This routine does not use any intrinsics. So when we’re debugging the interrupts, they
will look fine in C rather than assembly. Don’t forget to declare i at the top of main.c:

volatile unsigned int i;

Modify Code in Functions and ISR
13. Let’s make some changes to the code for readability and LED function.

In FaultRoutine(),
• Change: P1OUT = 0x01;
• To: P1OUT = BIT0;

In ConfigLEDs(),
• Change: P1DIR = 0x41;
• To: P1DIR = BIT6 + BIT0;

In the Timer ISR,
• Change: P1OUT = 0x40;
• To: P1OUT |= BIT6;

and

• Change: P1OUT = 0;
• To: P1OUT &= ~BIT6;

14. At this point, your code should look like the code on the next two pages. We’ve added

the comments to make it easier to read and understand. Click the Save button on the
menu bar to save the file.

Lab 5: Timer and Interrupts

5 - 10 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

#include <msp430g2553.h>

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

volatile long tempRaw;
volatile unsigned int i;

void FaultRoutine(void);
void ConfigWDT(void);
void ConfigClocks(void);
void ConfigLEDs(void);
void ConfigADC10(void);
void ConfigTimerA2(void);

void main(void)
{
 ConfigWDT();
 ConfigClocks();
 ConfigLEDs();
 ConfigADC10();
 ConfigTimerA2();

 _BIS_SR(GIE);

 while(1)
 {
 P1OUT |= BIT0;
 for (i = 100; i > 0; i--);
 P1OUT &= ~BIT0;
 for (i = 5000; i > 0; i--);
 }
}

void ConfigWDT(void)
 {
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
 }

void ConfigClocks(void)
 {
 if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
 FaultRoutine(); // If calibration data is erased
 // run FaultRoutine()
 BCSCTL1 = CALBC1_1MHZ; // Set range
 DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation
 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO
 IFG1 &= ~OFIFG; // Clear OSCFault flag
 BCSCTL2 |= SELM_0 + DIVM_3 + DIVS_3; // MCLK = DCO/8, SMCLK = DCO/8
 }

 Lab 5: Timer and Interrupts

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5 - 11

void FaultRoutine(void)
 {
 P1OUT = BIT0; // P1.0 on (red LED)
 while(1); // TRAP
 }

void ConfigLEDs(void)
 {
 P1DIR = BIT6 + BIT0; // P1.6 and P1.0 outputs
 P1OUT = 0; // LEDs off
 }

void ConfigADC10(void)
 {
 ADC10CTL1 = INCH_10 + ADC10DIV_0; // Temp Sensor ADC10CLK
 }

void ConfigTimerA2(void)
 {
 CCTL0 = CCIE;
 CCR0 = 12000;
 TACTL = TASSEL_1 + MC_2;
 }

#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{
 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON;
 _delay_cycles(5); // Wait for ADC Ref to settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 P1OUT |= BIT6; // P1.6 on (green LED)
 _delay_cycles(100);
 ADC10CTL0 &= ~ENC; // Disable ADC conversion
 ADC10CTL0 &= ~(REFON + ADC10ON); // Ref and ADC10 off
 tempRaw = ADC10MEM; // Read conversion value
 P1OUT &= ~BIT6; // green LED off
 CCR0 +=12000; // add 12 seconds to the timer
}

Note: for reference, the code can found in Lab5_Finish.txt in the Files folder.

Build, Load, and Run the Code

15. Click the “Debug” button . When the ULP Advisor appears, click Proceed. The
“CCS Debug” view should open, the program will load automatically, and you should
now be at the start of main().

16. Run the code and observe the LEDs. If everything is working correctly, the red LED
should be blinking about twice per second. This is the while(1) loop that the Timer is
interrupting. The green LED should be blinking about once per second. This is the rate
that we are sampling the temperature sensor. Click Suspend to stop the code.

Lab 5: Timer and Interrupts

5 - 12 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Test the Code
17. Make sure that the tempRaw variable is still in the Expressions window. If not, then

double-click tempRaw on the code line tempRaw = ADC10MEM; to select it. Then right-
click on it and select Add Watch Expression. and click OK. If needed, click on the
Expressions tab near the upper right of the CCS screen to see the variable added to
the watch window.

18. In the Timer_A2 ISR, find the line with P1OUT &= ~BIT6; and place a breakpoint
there. Right-click on the breakpoint symbol and select Breakpoint
Properties... Change the Action parameter to Update View as shown below
and click OK.

19. Run the code. The debug window should quickly stop at the breakpoint and the
tempRaw value will be updated. Observe the watch window and test the temperature
sensor as in the previous lab exercise.

Terminate Debug Session and Close Project

20. Terminate the active debug session using the Terminate button. This will close
the debugger and return to the “CCS Edit” perrspective.

21. Close the project by right-clicking on Lab5 in the Project Explorer pane and
select Close Project.

 You’re done.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 1

Low-Power Optimization

Introduction
This module will explore low-power optimization. In the lab exercise we will show and
experiment with various ways of configuring the code for low-power optimization.

Agenda

Low Power Modes …

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

42

Module Topics

6 - 2 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Module Topics
Low-Power Optimization ...6-1

Module Topics ..6-2

Low-Power Optimization ...6-3
Low-Power Modes ..6-3
Low-Power Operation ...6-3
System MCLK & Vcc ...6-5
Pin Muxing ..6-5
Unused Pin Termination ..6-6
Ultra-Low-Power Advisor ...6-6

Lab 6: Low-Power Modes ..6-7
Objective..6-7
Procedure ...6-8

 Low-Power Optimization

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 3

Low-Power Optimization

Low-Power Modes

Low-Power Operation

Low-Power Optimization

6 - 4 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

 Low-Power Optimization

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 5

System MCLK & Vcc

Pin Muxing

Low-Power Optimization

6 - 6 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Unused Pin Termination

Ultra-Low-Power Advisor

Ultra-Low-Power Advisor
 Integrated into CCS build

flow
 Checks your code against

a thorough checklist to
achieve the lowest power
possible

 Provides detailed
notifications and remarks

Lab…
49

 Lab 6: Low-Power Modes

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 7

Lab 6: Low-Power Modes

Objective
The objective of this lab is to learn various techniques for making use of the low-power modes.
We will start with the code from the previous lab exercise and reconfigure it for low-power
operation. As we modify the code, measurements will be taken to show the effect on power
consumption.

Lab 6: Low-Power Modes

6 - 8 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Procedure

Create a New Project
1. Create a new project by clicking:

File  New  CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c), and then click Finish.

 Lab 6: Low-Power Modes

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 9

Source File
We’ll use the solution file from the last lab exercise as the starting point for this lab exercise.

1. Open the Lab5_Finish.txt file using File  Open File…

• C:\MSP430_LaunchPad\Labs\Lab5\Files\Lab5_Finish.txt

2. Copy all of the code in Lab5_Finish.txt and paste it into main.c, erasing the
original contents of main.c. This will be the starting point for this lab exercise.

3. Close the Lab5_Finish.txt file. It’s no longer needed. If you are using the
MSP430G2231, make sure to make the appropriate change to the header file include at
the top of the main.c.

Reconfigure the I/O for Low-Power
If you have a digital multimeter (DMM), you can make the following measurements; otherwise
you will have to take our word for it. The sampling rate of one second is probably too fast for
most DMMs to settle, so we’ll extend that time to three seconds.

4. Find and change the following lines of code:

• In ConfigTimerA2() :
Change: CCR0 = 12000;
To: CCR0 = 36000;

• In the Timer ISR :
Change: CCR0 += 12000;
To: CCR0 += 36000;

5. The current drawn by the red LED is going to throw off our current measurements, so
comment out the two P1OUT lines inside the while(1) loop.

6. As a test – build, load, and run the code. If everything is working correctly the green
LED should blink about once every three or four seconds. When done, halt the code and
click the Terminate button to return to the “CCS Edit” perspective.

Lab 6: Low-Power Modes

6 - 10 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Baseline Low-Power Measurements
7. Turn on your DMM and measure the voltage between Vcc and GND at header J6. You

should have a value around 3.6 Vdc. Record your measurement here: _____________

8. Now we’ll completely isolate the target area from the emulator, except for ground.
Remove all five jumpers on header J3 and put them aside where they won’t get lost. Set
your DMM to measure µA. Connect the DMM red lead to the top (emulation side) Vcc
pin on header J3 and the DMM black lead to the bottom (target side) Vcc pin on header
J3. Press the Reset button on the LaunchPad board.

If your DMM has a low enough effective resistance, the green LED on the board will
flash normally and you will see a reading on the DMM. If not, the resistance of your
meter is too high. Oddly enough, we have found that low-cost DMMs work very well.
You can find one on-line for less than US$5.

Now we can measure the current drawn by the MSP430 without including the LEDs and
emulation hardware. (Remember that if your DMM is connected and turned off, the
MSP430 will be off too). This will be our baseline current reading. Measure the current
between the blinks of the green LED.

 You should have a value around 106 µA.

Record your measurement here: _____________

Remove the meter leads and carefully replace the jumpers on header J3.

If you forget to replace the jumpers, Code Composer will not be able to connect to
the MSP430.

 Lab 6: Low-Power Modes

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 11

Configure Unused Pins
We need to make sure that all of the device pins are configured to draw the lowest current
possible. Referring to the device datasheet and the LaunchPad board schematic, we notice that
Port1 defaults to GPIO. Only P1.3 is configured as an input to support push button switch S2,
and the rest are configured as outputs. P2.6 and P2.7 default to crystal inputs. We will configure
them as GPIO.

9. Rename the ConfigLEDs() function declaration, call, and function name to
ConfigPins().

10. Delete the contents of the ConfigPins() function and insert the following lines:
P1DIR = ~BIT3;
P1OUT = 0;

(Sending a zero to an input pin is meaningless).

11. There are two pins on Port2 that are shared with the crystal XIN and XOUT. This lab
will not be using the crystal, so we need to set these pins to be GPIO. The device
datasheet indicates that P2SEL bits 6 and 7 should be cleared to select GPIO. Add the
following code to the ConfigPins() function:

P2SEL = ~(BIT6 + BIT7);
P2DIR |= BIT6 + BIT7;
P2OUT = 0;

12. At this point, your code should look like the code below. We’ve added the comments to
make it easier to read and understand. Click the Save button on the menu bar to save the
file. The middle line of code will result in an “integer conversion resulted in truncation”
warning at compile time that you can ignore.
void ConfigPins(void)
 {
 P1DIR = ~BIT3; // P1.3 input, others output
 P1OUT = 0; // clear output pins
 P2SEL = ~(BIT6 + BIT7); // P2.6 and 7 GPIO
 P2DIR |= BIT6 + BIT7; // P2.6 and 7 outputs
 P2OUT = 0; // clear output pins
 }

13. Now build, load and run the code. Make sure the green LED blinks once every three or
four seconds. Click the Terminate button to return to the “CCS Edit” perspective.

14. Next, remove all the jumpers on header J3 and connect your meter leads. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

You should have a value around 106 µA.

Record your measurement here: _____________

No real savings here, but there is not much happening on this board to cause any issues.

Remove the meter leads and carefully replace the jumpers on header J3.

Lab 6: Low-Power Modes

6 - 12 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

MSP430G2553 Current Consumption
The current consumption of the MSP430G2553 looks something like the graph below (ignoring
the LED). The graph is not to scale in either axis and our code departs from this timing
somewhat. With the CPU active, 106 µA is being consumed all the time. The current needed for
the ADC10 reference is 250 µA, and is on for 33 µs out of each sample time. The conversion
current of 600 µA is only needed for 3 µs (our code isn’t quite this timing now). If you could
limit the amount of time the CPU is active, the overall current requirement would be significantly
reduced. (Always refer to the datasheet for design numbers. And remember, the values we are
getting in the lab exercise might be slightly different than what you get.)

 Lab 6: Low-Power Modes

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 13

Replace the while(1) loop with a Low-Power Mode
The majority of the power being used by the application we are running is spent in the while(1)
loop waiting for an interrupt. We can place the device in a low-power mode during that time and
save a considerable amount of power.

15. Delete all of the code from the while(1) loop.
Delete _BIS_SR(GIE); from above the loop.
Delete volatile unsigned int i; from the top of main.c.

Then add the following line of code to the while(1) loop:

_bis_SR_register(LPM3_bits + GIE);

This code will turn on interrupts and put the device in LPM3 mode. Remember that this
mode will place restrictions on the resources available to us during the low power mode.
The CPU, MCLK, SMCLK and DCO are off. Only the ACLK (sourced by the VLO in
our code) is still running.

You may notice that the syntax has changed between this line and the one we deleted.
MSP430 code has evolved over the years and this line is the preferred format today; but
the syntax of the other is still accepted by the compiler.

16. At this point, the entire main() routine should look like the following:
void main(void)
{
 ConfigWDT();
 ConfigClocks();
 ConfigPins();
 ConfigADC10();
 ConfigTimerA2();

 while(1)
 {
 _bis_SR_register(LPM3_bits + GIE); // Enter LPM3 with interrupts
 }
}

Lab 6: Low-Power Modes

6 - 14 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

17. The Status Register (SR) bits that are set by the above code are:

• SCG0: turns off SMCLK
• SCG1: turns off DCO
• CPUOFF: turns off the CPU

When an ISR is taken, the SR is pushed onto the stack automatically. The same SR value
will be popped, sending the device right back into LPM3 without running the code in the
while(1) loop. This would happen even if we were to clear the SR bits during the ISR.
Right now, this behavior is not an issue since this is what the code in the while(1) does
anyway. If your program drops into LPM3 and only wakes up to perform interrupts, you
could just allow that behavior and save the power used jumping back to main(), just so
you could go back to sleep. However, you might want the code in the while(1) loop to
actually run and be interrupted, so we are showing you this method.

Add the following code to the end of your Timer ISR:

_bic_SR_register_on_exit(LPM3_bits);

This line of code clears the bits in the popped SR.

More recent versions of the MSP430 clock system, like the one on this device,
incorporate a fault system and allow for fail-safe operation. Earlier versions of the
MSP430 clock system did not have such a feature. It was possible to drop into a low-
power mode that turned off the very clock that you were depending on to wake you up.
Even in the latest versions, unexpected behavior can occur if you, the designer, are not
aware of the state of the clock system at all points in your code. This is why we spent so
much time on the clock system in the Lab3 exercise.

18. The Timer ISR should look like the following:
// Timer_A0 interrupt service routine
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{
 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON;
 _delay_cycles(5); // Wait for ADC Ref to settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 P1OUT |= BIT6; // P1.6 on (green LED)
 _delay_cycles(100);
 ADC10CTL0 &= ~ENC; // Disable ADC conversion
 ADC10CTL0 &= ~(REFON + ADC10ON); // Ref and ADC10 off
 tempRaw = ADC10MEM; // Read conversion value
 P1OUT &= ~BIT6; // green LED off
 CCR0 += 36000; // Add one second to CCR0
 _bic_SR_register_on_exit(LPM3_bits); // Clr LPM3 bits from SR on exit
}

 Lab 6: Low-Power Modes

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 15

19. Now build, load and run the code. Make sure the green LED blinks once every three
seconds. Halt the code and click the Terminate button to return to the “CCS Edit”
perspective. This code is saved as Lab6a.txt in the Files folder.

20. Next, remove all the jumpers on header J3 and connect your meter leads. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

You should have a value around 0.6 µA.

Record your measurement here: _____________

This is a big difference! The CPU is spending the majority of the sampling period in
LPM3, drawing very little power.

Remove the meter leads and carefully replace the jumpers on header J3.

A graph of the current consumption would look something like the below. Our code still
isn’t generating quite this timing, but the DMM measurement would be the same.

Lab 6: Low-Power Modes

6 - 16 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Fully Optimized Code for Low-Power
The final step to optimize the code for low-power is to remove the software delays in the ISR.
The timer can be used to implement these delays instead and save even more power. It is
unlikely that we will be able to measure this current savings without a sensitive oscilloscope,
since it happens so quickly. But we can verify that the current does not increase.

There are two more software delays still in the Timer ISR; one for the reference settling time and
the other for the conversion time.

21. The _delay_cycles(5); statement should provide about 40uS delay, although there

is likely some overhead in the NOP loop that makes it slightly longer. For two reasons
we’re going to leave this as a software delay;

1) the delay is so short that any timer setup code would take longer than the timer delay
2) the timer can only run on the ACLK (VLO) in LPM3.

At that speed the timer has an 83uS resolution … a single tick is longer than the delay we
need. But we can optimize a little. Change the statement as shown below to reduce the
specified delay to 32uS:

Change: _delay_cycles(5);
To: _delay_cycles(4);

22. The final thing to tackle is the conversion time delay in the Timer_A0 ISR. The ADC
can be programmed to provide an interrupt when the conversion is complete. That will
provide a clear indication that the conversion is complete. The power savings will be
minimal because the conversion time is so short, but this is fairly straightforward to do,
so why not do it?

Add the following ADC10 ISR template to the bottom of main.c:
// ADC10 interrupt service routine
#pragma vector=ADC10_VECTOR
__interrupt void ADC10 (void)
{

}

 Lab 6: Low-Power Modes

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 17

23. Copy all of the lines in the Timer ISR below delay_cycles(100); and paste them into
the ADC10 ISR.

24. In the Timer ISR delete the code from the P1OUT |= BIT6; line through the
P1OUT &= ~BIT6; line.

25. At the top of the ADC10 ISR, add ADC10CTL0 &= ~ADC10IFG; to clear the interrupt
flag.

26. In the ADC10 ISR delete the P1OUT &= ~BIT6; and CCR0 += 36000; lines.

27. Lastly, we need to enable the ADC10 interrupt. In the Timer ISR, add + ADC10IE to the
ADC10CTL0 register line.

The Time and ADC10 ISRs should look like this:
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
 {
 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE ;
 _delay_cycles(4); // Wait for ADC Ref to settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 CCR0 +=36000; // add 12 seconds to the timer
 _bic_SR_register_on_exit(LPM3_bits);
 }

// ADC10 interrupt service routine
#pragma vector=ADC10_VECTOR
__interrupt void ADC10 (void)
 {
 ADC10CTL0 &= ~ADC10IFG; // clear interrupt flag
 ADC10CTL0 &= ~ENC; // Disable ADC conversion
 ADC10CTL0 &= ~(REFON + ADC10ON); // Ref and ADC10 off
 tempRaw = ADC10MEM; // Read conversion value
 _bic_SR_register_on_exit(LPM3_bits);

 }

28. Build and load the project. Eliminate any breakpoints and run the code. We eliminated
the flashing of the green LED since it flashes too quickly to be seen. Set a breakpoint on
the _bic_SR line in the ADC10 ISR and verify that the value in tempRaw is updating as
shown earlier. Click the Terminate button to halt the code and return to the “CCS
Edit” perspective. If you are having a difficult time with the code modifications, this
code can be found in Lab6b.txt in the Files folder.

Lab 6: Low-Power Modes

6 - 18 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

29. Remove the jumpers on header J3 and attach the DMM leads as before. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

You should have a value around 0.6 µA.

Record your measurement here: _____________

A graph of the current consumption would look something like this:

That may not seem like much of a savings, but every little bit counts when it comes to
battery life. To quote a well-known TI engineer: “Every joule wasted from the battery is
a joule you will never get back”.

Replace all the jumpers on header J3.

 Lab 6: Low-Power Modes

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 19

ULP Advisor
We’ve been ignoring the ULP Advisor for long enough. Let’s review the results

30. Resize the Problems pane so that you can see the contents. Click on the left of
Warnings and Infos.

Our Problems pane looked like this:

31. The first warning is due to the following statement in main() :
P2SEL = ~(BIT6 + BIT7); P2SEL is 8 bits while the defines for BIT6 and BIT7
are 16. That results in a truncation as noted. There are several things we could do to re-
cast, etc. to make the warning go away, but since it’s pretty readable as-is, we’ll just live
with this warning. Either way there is no impact to the device current.

32. The next ten warnings result from un-programmed interrupt vectors. If one of these
interrupts accidentally triggered, it could result in our device running in a very
unexpected way. We’ll leave the ISR unpopulated with code, but you might want to
implement a reset or other fault handling system. That will likely cause a very small stack
memory leak, but if you’re experiencing unexpected interrupts from un-programmed
sources, you have larger problems.

Add the code on the following page to the end of your code in main.c . The
asm(" JMP $"); instruction traps code execution at that point by jumping to itself. A
while(1) loop would have done the same thing, but the ULP Advisor will flag that as a
software loop.

NOTE: Depending on your system and Adobe Acrobat you may have an issue with the
quote signs in the following code. Sometimes they paste into CCS as “curved” quotes
signs rather than the straight” ones. In that case you will need to find/replace the
offending characters in your code.

Lab 6: Low-Power Modes

6 - 20 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

// Comparator A interrupt service routine
 #pragma vector=COMPARATORA_VECTOR
__interrupt void COMPA_VECT (void)
{
 asm(" JMP $");
}

// NMI interrupt service routine
#pragma vector=NMI_VECTOR
__interrupt void NMI_VECT (void)
{
 asm(" JMP $");
}

// PORT1 interrupt service routine
#pragma vector=PORT1_VECTOR
__interrupt void PORT1_VECT (void)
{
 asm(" JMP $");
}

// PORT2 interrupt service routine
#pragma vector=PORT2_VECTOR
__interrupt void PORT2_VECT (void)
{
 asm(" JMP $");
}

// TIMER0_A1 interrupt service routine
#pragma vector=TIMER0_A1_VECTOR
__interrupt void TIMER0_A1_VECT (void)
{
 asm(" JMP $");
}

// TIMER1_A0 interrupt service routine
#pragma vector=TIMER1_A0_VECTOR
__interrupt void TIMER1_A0_VECT (void)
{
 asm(" JMP $");
}

// TIMER1_A1 interrupt service routine
#pragma vector=TIMER1_A1_VECTOR
__interrupt void TIMER1_A1_VECT (void)
{
 asm(" JMP $");
}

// USCIAB0RX interrupt service routine
#pragma vector=USCIAB0RX_VECTOR
__interrupt void USCIAB0RX_VECT (void)
{
 asm(" JMP $");
}

// USCIAB0TX interrupt service routine
#pragma vector=USCIAB0TX_VECTOR
__interrupt void USCIAB0TX_VECT (void)
{
 asm(" JMP $");
}

// WDT interrupt service routine
#pragma vector=WDT_VECTOR
__interrupt void WDT_VECT (void)
{
 asm(" JMP $");
}

 Lab 6: Low-Power Modes

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 - 21

33. The last item in the Infos section says that we’re using a software delay loop. This refers
to the while(1) loop in the FaultRoutine() . If you want to replace that with the
assembly instruction used in the last step, go ahead. Otherwise we’ll just live with it.

34. The first item in the Infos section says that Port 3 is uninitialized. Actually, the 20-pin
device only has two ports as I/O, larger devices have a third. We can prevent this ULP
Advisor issue by initializing the third port. Add the last two lines shown below to the
ConfigPins() function.

void ConfigPins(void)
{
 P1DIR = ~BIT3;
 P1OUT = 0;
 P2SEL = ~(BIT6 + BIT7);
 P2DIR |= BIT6 + BIT7;
 P2OUT = 0;
 P3DIR = 0xFF; // Set P3 GPIO to outputs
 P3OUT = 0; // Clear P3 outputs

}

35. Rebuild your code and look at the Problems pane. You should only see the single
truncation warning and info about the software delay. It’s doubtful that any power was
saved during this ULP Advisor exercise, but it is certainly worthwhile to pay attention to
the ULP Advisor output.

Lab 6: Low-Power Modes

6 - 22 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Summary
Our code is now as close to optimized as it gets, but again, there are many, many ways to get to
this point. Often, the need for hardware used by other code will prevent you from achieving the
very lowest power possible. This is the kind of cost/capability trade-off that engineers need to
make all the time. For example, you may need a different peripheral – such as an extra timer –
which costs a few cents more, but provides the capability that allows your design to run at its
lowest possible power, thereby providing a battery run-time of years rather than months.

36. Remove the jumpers on header J3 and attach the DMM leads as before. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

You should have a value around 0.6 µA.

Record your measurement here: _____________

Congratulations on completing this lab! Remove and turn off your meter and replace all
of the jumpers on header J3. We are finished measuring current.

37. Close the project by right-clicking on Lab6 in the Project Explorer pane and
select Close Project.

 You’re done.

Getting Started with the MSP430 LaunchPad - Serial Communications 7 - 1

Serial Communications

Introduction
This module will cover the details of serial communications. In the lab exercise we will
implement a software UART and communicate with the PC through the USB port.

Agenda

USI …

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

51

Module Topics

7 - 2 Getting Started with the MSP430 LaunchPad - Serial Communications

Module Topics
Serial Communications ..7-1

Module Topics ..7-2

Serial Communications ..7-3
USCI ..7-3
Protocols ..7-3
Software UART Implementation ...7-4
USB COM Port Communication ...7-4
Lab 7: Serial Communications ..7-5
Objective..7-5
Procedure ...7-6

 Serial Communications

Getting Started with the MSP430 LaunchPad - Serial Communications 7 - 3

Serial Communications

USCI

Universal Serial Communication Interface

 USCI_A0 supports:
 SPI (3 or 4 wire)
 UART
 IrDA

 USCI_B0 supports:
 SPI (3 or 4 wire)
 I2C

Protocols …

USCI

A

B

52

Protocols

USCI Serial Protocols

 SPI
• Serial Peripheral Interface
• Single Master/Single Slave

SPI
Master

SPI
Slave

SCLK
MOSI
MISO
SSN

µC
Master

DAC
Slave

ADC
Slave

µC
Slave

RR

SCL
SDA

Vdd

S/W UART Implementation …

 UART
• Universal Asynchronous

Receiver/Transmitter
• Full duplex

R/T R/T
Tx
Rx

Rx
Tx

 I2C
• Inter-Integrated Circuit Interface
• Single Master/Multiple Slaves

53

Serial Communications

7 - 4 Getting Started with the MSP430 LaunchPad - Serial Communications

Software UART Implementation

Software UART Implementation
 A simple UART implementation, using the Capture &

Compare features of the Timer to emulate the UART
communication

 Half-duplex and relatively low baud rate (9600 baud
recommended limit), but 2400 baud in our code (1 MHz DCO
and no crystal)

 Bit-time (how many clock ticks one baud is) is calculated
based on the timer clock & the baud rate

 One CCR register is set up to TX in Timer Compare mode,
toggling based on whether the corresponding bit is 0 or 1

 The other CCR register is set up to RX in Timer Capture
mode, similar principle

 The functions are set up to TX or RX a single byte (8-bit)
appended by the start bit & stop bit

Application note: http://focus.ti.com/lit/an/slaa078a/slaa078a.pdf

USB COM Port …
54

Application note: http://focus.ti.com/lit/an/slaa078a/slaa078a.pdf

USB COM Port Communication

http://focus.ti.com/lit/an/slaa078a/slaa078a.pdf

 Serial Communications

Getting Started with the MSP430 LaunchPad - Serial Communications 7 - 5

Lab 7: Serial Communications

Objective
The objective of this lab is to learn serial communications with the MSP430 device. In this lab
exercise we will implement a software UART and communicate with the PC using the USB port.
It would be possible to do this on the MSP430G2553 since it has a USCI peripheral with a UART
ports. But often developers want to minimize cost to the greatest degree possible. Implementing a
UART in software could save several crucial pennies from the bill of materials.

Serial Communications

7 - 6 Getting Started with the MSP430 LaunchPad - Serial Communications

Procedure

Create a New Project
1. Create a new project by clicking:

File  New  CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c), and then click Finish.

 Serial Communications

Getting Started with the MSP430 LaunchPad - Serial Communications 7 - 7

Source File
In this lab exercise we will be building a program that transmits “HI”, “LO” or “IN” using the
software UART code. This data will be communicated through the USB COM port and then to
the PC for display on a terminal program. The UART code utilizes TIMER_A2, so we will need
to remove the dependence on that resource from our starting code. Then we will add some “trip
point” code that will light the red or green LED indicating whether the temperature is above or
below some set temperature. Then we will add the UART code and send messages to the PC.
The code file from the last lab exercise will be used as the starting point for this lab exercise.

1. Open the Lab6a.txt file using File  Open File…

• C:\MSP430_LaunchPad\Labs\Lab6\Files\Lab6a.txt

2. Copy all of the code from Lab6a.txt and paste it into main.c, erasing the previous
contents of main.c. This will be the starting point for this lab exercise. You should
notice that this is not the low-power optimized code that we created in the latter part of
the Lab6 exercise and we will be ignoring the warnings from the ULP Advisor. The
software UART implementation requires Timer_A2, so using the fully optimized code
from Lab6 will not be possible. But we can make a few adjustments and still maintain
fairly low-power.

Close the Lab6a.txt file. If you are using the MSP430G2231, make sure to make the
appropriate change to the header file include at the top of the main.c.

3. As a test – build, load, and run the code. Ignore the ULP Advisor warnings. Remove
tempRaw from the Expression pane. If everything is working correctly, the green LED
will blink once every three or four seconds, but the blink duration will be very, very
short. The code should work exactly the same as it did in the previous lab exercise.
When you’re done, halt the code and click the Terminate button to return to the
“CCS Edit” perspective.

Remove Timer_A2 and Add WDT+ as the Interval Timer
4. We need to remove the previous code’s dependence on Timer_A2. The WDT+ can be

configured to act as an interval timer rather than a watchdog timer. Change the
ConfigWDT() function so that it looks like this:
void ConfigWDT(void)
 {
 WDTCTL = WDT_ADLY_250; // <1 sec WDT interval
 IE1 |= WDTIE; // Enable WDT interrupt
 }

The selection of intervals for the WDT+ is somewhat limited, but WDT_ADLY_250 will
give us a little less than a 1 second delay running on the VLO.

WDT_ADLY_250 sets the following bits:

• WDTPW: WDT password
• WDTTMSEL: Selects interval timer mode
• WDTCNTCL: Clears count value
• WDTSSEL: WDT clock source select

Serial Communications

7 - 8 Getting Started with the MSP430 LaunchPad - Serial Communications

5. The code in the Timer_A0 ISR now needs to run when the WDT+ interrupts trigger:

• Change this:
// Timer_A2 interrupt service routine
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{

• To this:
// WDT interrupt service routine
#pragma vector=WDT_VECTOR
__interrupt void WDT(void)
{

6. There is no need to handle CCRO in the WDT ISR. Delete the CCR0 += 36000; line.

7. There is no need to set up Timer_A2 now. Delete all the code inside the
ConfigTimerA2() function.

8. Build, load, and run the code. Make sure that the code is operating like before, except
that now the green LED will blink about once per second. When you’re done, click the
Terminate button to return to the “CCS Edit” perspective. If needed, this code
can be found in Lab7a.txt in the Files folder.

Add the UART Code
9. Delete both P1OUT lines from the WDT ISR. We are going to need both LEDs for a

different function in the following steps.

10. We need to change the Transmit and Receive pins (P1.1 and P1.2) on the MSP430 from
GPIO to TA0 function. Add the first line shown below to your ConfigPins()
function and change the second line as follows:
void ConfigPins(void)
 {
 P1SEL |= TXD + RXD; // P1.1 & 2 TA0, rest GPIO
 P1DIR = ~(BIT3 + RXD); // P1.3 input, other outputs
 P1OUT = 0; // clear outputs
 P2SEL = ~(BIT6 + BIT7); // make P2.6 & 7 GPIO
 P2DIR |= BIT6 + BIT7; // P2.6 & 7 outputs
 P2OUT = 0; // clear outputs
 }

 Serial Communications

Getting Started with the MSP430 LaunchPad - Serial Communications 7 - 9

11. We need to create a function that handles the UART transmit side. Adding a lot of code
tends to be fairly error-prone. So add the following function by copying and pasting it
from here or from Transmit.txt in the Files folder to the end of main.c:

// Function Transmits Character from TXByte
void Transmit()
{
 BitCnt = 0xA; // Load Bit counter, 8data + ST/SP
 while (CCR0 != TAR) // Prevent async capture
 CCR0 = TAR; // Current state of TA counter
 CCR0 += Bitime; // Some time till first bit
 TXByte |= 0x100; // Add mark stop bit to TXByte
 TXByte = TXByte << 1; // Add space start bit
 CCTL0 = CCIS0 + OUTMOD0 + CCIE; // TXD = mark = idle
 while (CCTL0 & CCIE); // Wait for TX completion
}

Be sure to add the function declaration at the beginning of main.c:

void Transmit(void);

12. Transmission of the serial data occurs with the help of Timer_A2 (Timer A2 creates the
timing that will give us a 2400 baud data rate). Cut/paste the code below or copy the
contents of Timer_A2 ISR.txt and paste it to the end of main.c:

// Timer A0 interrupt service routine
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{
 CCR0 += Bitime; // Add Offset to CCR0
 if (CCTL0 & CCIS0) // TX on CCI0B?
 {
 if (BitCnt == 0)
 {
 CCTL0 &= ~ CCIE ; // All bits TXed, disable interrupt
 }

 else
 {
 CCTL0 |= OUTMOD2; // TX Space
 if (TXByte & 0x01)
 CCTL0 &= ~ OUTMOD2; // TX Mark
 TXByte = TXByte >> 1;
 BitCnt --;
 }
 }
}

Serial Communications

7 - 10 Getting Started with the MSP430 LaunchPad - Serial Communications

13. Now we need to configure Timer_A2. Enter the following lines to the
ConfigTimerA2() function in main.c so that it looks like this:

void ConfigTimerA2(void)
 {
 CCTL0 = OUT; // TXD Idle as Mark
 TACTL = TASSEL_2 + MC_2 + ID_3; // SMCLK/8, continuos mode
 }

14. To make this code work, add the following definitions at the top of main.c:
#define TXD BIT1 // TXD on P1.1
#define RXD BIT2 // RXD on P1.2
#define Bitime 13*4 // 0x0D

unsigned int TXByte;
unsigned char BitCnt;

15. Since we have added a lot of code, let’s do a test build. In the Project Explorer
pane, right-click on main.c and select Build Selected File(s). Check for
syntax errors in the Console and Problems panes (other than the ULP Advisor issues).

 Serial Communications

Getting Started with the MSP430 LaunchPad - Serial Communications 7 - 11

16. Now, add the following declarations to the top of main.c:
volatile long tempSet = 0;
volatile int i;

The tempSet variable will hold the first temperature reading made by ADC10. The
code will then compare future readings against it to determine if the new measured
temperature is hotter or cooler than that set value. Note that we are starting the variable
out at zero. That way, we can use its non-zero value after it’s been set to make sure we
only set it once. We’ll need the “i” in the code below.

17. Add the following control code to the while(1) loop right after line containing

_bis_SR_register(LPM3_bits + GIE);

This code is available in while.txt:
 if (tempSet == 0)
 {
 tempSet = tempRaw; // Set reference temp
 }
 if (tempSet > tempRaw + 5) // test for lo
 {
 P1OUT = BIT6; // green LED on
 P1OUT &= ~BIT0; // red LED off
 for (i=0;i<5;i++)
 {
 TXByte = TxLO[i];
 Transmit();
 }
 }
 if (tempSet < tempRaw - 5) // test for hi
 {
 P1OUT = BIT0; // red LED on
 P1OUT &= ~BIT6; // green LED off
 for (i=0;i<5;i++)
 {
 TXByte = TxHI[i];
 Transmit();
 }
 }
 if (tempSet <= tempRaw + 2 & tempSet >= tempRaw - 2)
 { // test for in range
 P1OUT &= ~(BIT0 + BIT6); // both LEDs off
 for (i=0;i<5;i++)
 {
 TXByte = TxIN[i];
 Transmit();
 }
 }

This code sets three states for the measured temperature; LO, HI and IN that are indicated by the
state of the green and red LEDs. It also sends the correct ASCII sequence to the Transmit()
function.

Serial Communications

7 - 12 Getting Started with the MSP430 LaunchPad - Serial Communications

18. The ASCII sequences that will be transmitted to the PC are:

• LO<LF><BS><BS>: 0x4C, 0x4F, 0x0A, 0x08, 0x08

• HI<LF><BS><BS>: 0x48, 0x49, 0x0A, 0x08, 0x08

• IN<LF><BS><BS>: 0x49, 0x4E, 0x0A, 0x08, 0x08

The terminal program on the PC will interpret the ASCII code and display the desired
characters. The extra Line Feeds and Back Spaces are used to format the display on the
Terminal screen.

Add the following arrays to the top of main.c:

unsigned int TxHI[]={0x48,0x49,0x0A,0x08,0x08};

unsigned int TxLO[]={0x4C,0x4F,0x0A,0x08,0x08};

unsigned int TxIN[]={0x49,0x4E,0x0A,0x08,0x08};

19. Finally, we need to asure that the MCLK and SMCLK are both running on the DCO. In
the ConfigClocks() function, make sure that the BCSCTL2 clock control register is
configured as shown below:

BCSCTL2 = 0;

 Serial Communications

Getting Started with the MSP430 LaunchPad - Serial Communications 7 - 13

Test the Code
20. Build and load the code. If you’re having problems, compare your code with

Lab7Finish.txt found in the Files folder. Don’t take the easy route and copy/paste
the code. Figure out the problem … the process will pay off for you later.

21. Next, we need to find out what COM port your LaunchPad board is connected to. In
Windows, click Start  Run (if you don’t see Run, type it in the Search box and
the Run link will appear at the top of the list) and enter devmgmt.msc into the dialog
box, then click OK. This should open the Windows Device Manager.

Click the symbol next to Ports and find the port named MSP430 Application UART.
Write down the COM port number here_________. (The one on our PC was COM14).
Close the Device Manager.

View the UART Output in a Terminal Program
22. On the CCS menu bar, click View  Other … Find Terminal in the window that

appears and click the symbol to the left. When you see , click on it to
select it and then click OK.

23. A Terminal tab will appear at the bottom of your screen next to the Console tab. On

the far right you’ll see a series of Terminal control buttons. Click the Settings
button. Make the settings shown below, except for your COM port number, and click
OK.

Serial Communications

7 - 14 Getting Started with the MSP430 LaunchPad - Serial Communications

24. In the terminal display, you will likely see IN displayed over and over again. This means
that the measured temperature is within a couple of degrees of the temperature that was
measured when the code started.

Warm the MSP430 with your finger. After a moment the red LED should light and the
Terminal should display HI. Now the MSP430 is a couple of degrees warmer than the

initial temperature. While your finger is still on the MSP430, click the Reset CPU

button and then the Resume button. The code will then record the initial
temperature while the chip is warm. Remove your finger from the MSP430.

You should see IN displayed in the Terminal window. But when the MSP430 cools
down, the green LED will light and the Terminal will display LO. .

25. This would also be a good time to note the size of the code we have generated. Click the
Console tab to view the pane at the bottom of your screen.

MSP430: Loading complete. Code Size - Text: 976 bytes Data: 6 bytes.

Based on what we have done so far, you could create a program more than sixteen times
the size of this code and still fit comfortably inside the MSP430G2553 memory.

Terminate Debug Session and Close Project

26. Terminate the active debug session using the Terminate button . This will close
the debugger and return CCS to the “CCS Edit” perspective.

27. Close the Lab7 project in the Project Explorer pane.

 You’re done.

Getting Started with the MSP430 LaunchPad - Grace 8 - 1

Grace

Introduction
This module will cover the Grace™ graphical user interface. Grace™ generates source code that
can be used in your application and it eliminates manual configuration of peripherals. The lab will
create a simple project using Grace™ and we will write an application program that utilizes the
generated code.

Agenda

What is Grace?

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

57

Module Topics

8 - 2 Getting Started with the MSP430 LaunchPad - Grace

Module Topics
Grace ...8-1

Module Topics ..8-2

Grace ...8-3

Lab 8: Grace ..8-8

 Grace

Getting Started with the MSP430 LaunchPad - Grace 8 - 3

Grace

Grace

8 - 4 Getting Started with the MSP430 LaunchPad - Grace

 Grace

Getting Started with the MSP430 LaunchPad - Grace 8 - 5

Grace

8 - 6 Getting Started with the MSP430 LaunchPad - Grace

 Grace

Getting Started with the MSP430 LaunchPad - Grace 8 - 7

Lab 8: Grace

8 - 8 Getting Started with the MSP430 LaunchPad - Grace

Lab 8: Grace

Objective
The objective of this lab is to create a simple project using Grace. This project will be similar to
an earlier project in that it will use the Timer to blink the LED. Using Grace to create the
peripheral initialization code will simplify the process.

 Lab 8: Grace

Getting Started with the MSP430 LaunchPad - Grace 8 - 9

Procedure

Create a Grace Project
1. Grace is part of your Code Composer Studio installation, although it is possible to run it

in a stand-alone fashion. Starting with CCS version 5.3 it is called Grace2.

Create a new project by clicking:
File  New  CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Grace (MSP430) Project, and then click Finish.

Lab 8: Grace

8 - 10 Getting Started with the MSP430 LaunchPad - Grace

Welcome to Grace™
2. The Grace Welcome screen will appear within the editor pane of CCS. If you ever

manage to make this screen disappear, simply re-open *.cfg (main.cfg is the
filename here). When a Grace project is opened, the tool creates this configuration file to
store the changes you make. Click the Device Overview link at the top of the pane.

Grace presents you with a graphic representing the peripherals on the MSP430 device.
This isn’t just a pretty picture … from here we’ll be able to configure the peripherals.
Blue boxes denote peripherals that can be configured. Note that three of the blue boxes
have a check mark in the lower left hand corner. These check marks denote a peripheral
that already has a configuration. The ones already marked must be configured in any
project in order for the MSP430 to run properly.

If you are using the MSP430G2231, your Grace window will look slightly different.

 Lab 8: Grace

Getting Started with the MSP430 LaunchPad - Grace 8 - 11

DVCC
3. Let’s start at the top. Earlier in this workshop we measured the DVCC on the board at

about 3.6VDC. Change the pull down at the top to reflect that.

BCS+
4. Next, click on the blue Oscillators Basic Clock System + box.

Note the navigation hyperlinks at the top for the different views. These links may
disappear if the window is large enough and you slide to the bottom of it. If they do, slide
back to the top. Also note the navigation buttons on the top right of the Overview screen
and the tabs at the bottom left. Take a look at the different views, but finish by clicking
the Basic User link.

The default selections have the calibrated frequency at 1 MHz for the High Speed Clock
Source and 12 kHz for the low. Note the simplified view of the MCLK, SMCLK and
ACLK. If you need more detailed access, you can switch over to the Power User view. In
any case, leave the selections at their defaults and click the Grace tab in the lower left.

Lab 8: Grace

8 - 12 Getting Started with the MSP430 LaunchPad - Grace

WDT+
5. Let’s configure the Watchdog Timer next. Click on the blue WatchDog WDT+ box in

the Overview graphic. Note the selection at the top of the next window that enables the
WDT+. Click the Basic User link. Stop Watchdog timer is the default selection … let’s
leave it that way. Click the Grace tab in the lower left. Notice that the peripherals we’ve
touched are adding tabs.

GPIO
6. GPIO is next. For this lab, we want to enable the GPIO port/pin that is connected to the

red LED (port 1, pin 0). Click on the upper right blue box marked GPIO. In the next
screen, click the links marked Pinout 32-QFN, Pinout 20-TSSOP/20-PDIP and Pinout
28-TSSOP to view the packages with the pinouts clearly marked. If you are using the
MSP430G2231, your package selections will be different. No databook is required. We
could make our changes here, but let’s use another view.

Resize the Grace window if you need to do so. Click the P1/P2 link. The Direction
Registers all default to inputs, so check the port 1, pin 0 Direction register to set it to an
output. No other changes are required. Click the Grace tab in the lower left.

 Lab 8: Grace

Getting Started with the MSP430 LaunchPad - Grace 8 - 13

Timer0_A3
7. We’re going to use the timer to give us a one second delay between blinks of the red

LED. To configure the timer, click on the blue box marked Timer0_A3 (This will be
Timer0_A2 if you are using the MSP430G2231). In the next screen, click the check box
marked Enable Timer_A3 in my configuration at the top of the screen. When you do
that, the view links will appear. Click on the Basic User link.

In our application code, we’re going to put the CPU into low-power mode LPM3. The
timer will wake up the CPU after a one second delay and then the CPU will run the ISR
that turns on the LED. Our main() code will then wait long enough for us to see the
LED, turn it off and go back to sleep.

We need the following settings for the timer:

• Timer Selection: Interval Mode / TAO Output OFF

• Desired Timer period: 1000ms

• Enable the Capture/Compare Interrupt

Grace creates an interrupt handler template for you at this step.

Then click the View All Interrupt Handlers link and you’ll see:

Lab 8: Grace

8 - 14 Getting Started with the MSP430 LaunchPad - Grace

Select Timer0_A3 CCR0 and then click on the Open Interrupt Vector File link.

Note the /* USER CODE START and /* USER CODE END comments in the
TIMER0_A0_VECTOR template. These comments indicate to Grace that the code
between them should not be overwritten during the code generation process.

The first line of code in the ISR will turn on the LED. When the ISR returns to the main
code, we want the CPU to be awake. The second line of code will do that (like we used in
Lab 6). Replace the middle comment in the template as shown below.

/*
 * ======== Timer0_A3 Interrupt Service Routine ========

 */
#pragma vector=TIMER0_A0_VECTOR
__interrupt void TIMER0_A0_ISR_HOOK(void)
{

 /* USER CODE START (section: TIMER0_A0_ISR_HOOK) */
 P1OUT = BIT0; // Turn on LED on P1.0
 _bic_SR_register_on_exit(LPM3_bits); // Return awake
 /* USER CODE END (section: TIMER0_A0_ISR_HOOK) */

}

Click the Save button on the menu bar, and then click the main.cfg tab in the upper
left corner. Click the Grace tab in the lower left corner. Note that the configured
peripherals all have a check mark in them. The Outline pane on the right of your screen
also lists all the configured peripherals.

System Registers - GIE
8. You certainly remember that without the GIE (Global Interrupt Enable) bit enabled, no

interrupts will occur. In the Outline pane on the right of your screen, click on System.
Find the GIE bit in the Status Register and make sure that it is checked. If your
MSP430G2231 configuration has an enable checkbox, make sure it’s checked. We’re
done with the Grace configuration. Click the Save button on the menu bar to save your
changes.

 Lab 8: Grace

Getting Started with the MSP430 LaunchPad - Grace 8 - 15

Application Code
9. Grace automatically creates a main.c template for us with the appropriate Grace calls.

Expand the Lab8 project and double click on main.c in the Project Explorer pane to
open the file for editing. It should look like the screen capture below:

The standard msp430.h definition file is included first, followed by the Grace.h Grace
definitions. This includes all the Chip Support Library functions.

Inside main() is Grace_init() that runs all of the Grace initialization that we just
configured. The main() function, of course, does not return anything … the return (0) is a
C coding formality to assist with third-party compiler compatibility.

Lab 8: Grace

8 - 16 Getting Started with the MSP430 LaunchPad - Grace

11. The first thing we want the main code to do is to place the device into LPM3. When the
timer expires, the time ISR code will turn on the red LED. Our main() code will wait a
short time, then turn the red LED off. Replace the // … Fill-in user code here comment
with the while() loop code shown below:

/*
* ======== Standard MSP430 includes ========
*/
#include <msp430.h>

/*
 * ======== Grace related includes ========
 */
#include <ti/mcu/msp430/Grace.h>

/*
* ======== main ========
*/
int main(void)
{
 Grace_init(); // Activate Grace-generated config

 while (1)
 {
 _bis_SR_register(LPM3_bits); // Enter LPM3
 _delay_cycles(10000); // 10ms delay
 P1OUT &= ~BIT0; // Turn off LED on P1.0
 }
 return (0);
}

12. Make sure that your LaunchPad board is plugged into your computer’s USB port. Build

and Load the program by clicking the Debug button. If you are prompted to save
any resources, do so now.

13. After the program has downloaded, click the Run button. If everything is correct, the red
LED should flash once every second. Feel free to go back and vary the timing if you like.
You could also go back and re-run the rest of the labs in the workshop using Grace.

If you’re so inclined, open the Lab8/src/grace folder in the Project Explorer pane
and look at the fully commented C code generated for each of the initialization files.
These could be cut/pasted into a non-Grace project if you choose.

This was a very simple example. In a more complex one, the power of Grace would be
even greater and your project development will be much further along than it would have
been if written entirely by hand. Terminate the debugger, close the Lab8 project and exit
Code Composer.

 You’re done.

Getting Started with the MSP430 LaunchPad - FRAM Overview 9 - 1

FRAM Overview

Introduction
This module will give you a quick overview of an exciting new memory technology from Texas
Instruments. Although FRAM is not currently available in the Value-Line parts, it is shipping in
other MSP430 devices

Agenda

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

68

Module Topics

9 - 2 Getting Started with the MSP430 LaunchPad - FRAM Overview

Module Topics
FRAM Overview ..9-1

Module Topics ..9-2

FRAM – Next Generation Memory ..9-3
FRAM Controller ..9-5
FRAM and the Cache ..9-6
MPU ..9-7
Write Speed ...9-8
Low Power...9-9
Increased Flexibility and Endurance..9-10
Reflow and Reliability ...9-11

 FRAM – Next Generation Memory

Getting Started with the MSP430 LaunchPad - FRAM Overview 9 - 3

FRAM – Next Generation Memory

FRAM - The Next Generation Memory

 Why is there a need for a new memory technology?
• Address 21st century macro trends – Wireless, Low Power,

Security
• Drive new applications in our highly networked world (Energy

Harvesting)
• Improve time to market & lower total cost of ownership

(Universal memory)

 What are the requirements for a new memory
technology?
• Lower power consumption
• Faster Access speeds
• Higher Write Endurance
• Higher inherent security
• Lower total solution cost

Not currently available in Value-Line parts

69

FRAM – Next Generation Memory

9 - 4 Getting Started with the MSP430 LaunchPad - FRAM Overview

 FRAM – Next Generation Memory

Getting Started with the MSP430 LaunchPad - FRAM Overview 9 - 5

FRAM Controller

FRAM – Next Generation Memory

9 - 6 Getting Started with the MSP430 LaunchPad - FRAM Overview

FRAM and the Cache

FRAM and the Cache
 Built-in 2 way 4-word cache; transparent to the user, always enabled
 Cache helps:

 Lower power by executing from SRAM
 Increase throughput overcoming the 8MHz limit set for FRAM accesses
 Increase endurance specifically for frequently accessed FRAM locations e.g.

short loops (JMP$)

Active Power Vs MCLK

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 8 16 20 24
MCLK (MHz)

A
ct

iv
e

Po
w

er
 (u

A
) RAM / 100% Cache Hit

75% Cache Hit

Typical/ 66% Cache Hit

50% Cache Hit

0% Cache Hit

75

 FRAM – Next Generation Memory

Getting Started with the MSP430 LaunchPad - FRAM Overview 9 - 7

Setting Up Code and Data Memory
 Case 1: all global variables are assigned to FRAM

 Advantage: All variables are non-volatile, no special handling
required for backing up specific data

 Disadvantage: Uses up code space, increased power,
decreased throughput if MCLK > 8MHz

 Case 2: all global variables are assigned to SRAM
 Advantage: Some variables may need to be volatile e.g.

state machine, frequently used variables do not cause a
throughput, power impact

 Disadvantage: User has to explicitly define segments to
place variables in FRAM

 Achieving an optimized user experience is a work
in progress…

77

MPU

FRAM – Next Generation Memory

9 - 8 Getting Started with the MSP430 LaunchPad - FRAM Overview

Write Speed

 FRAM – Next Generation Memory

Getting Started with the MSP430 LaunchPad - FRAM Overview 9 - 9

Low Power

FRAM – Next Generation Memory

9 - 10 Getting Started with the MSP430 LaunchPad - FRAM Overview

Increased Flexibility and Endurance

 FRAM – Next Generation Memory

Getting Started with the MSP430 LaunchPad - FRAM Overview 9 - 11

Reflow and Reliability

What about Reflow?
 TI factory programming is not available for the MSP430FR57xx devices

 Customer and CMs should program after reflow or other soldering

activity

 TI will provide reference documentation that should be followed during

reflow soldering activity

 Hand soldering is not recommended. However it can be achieved by

following the guidelines

 Be mindful of temperature: FRAM can be effected above 260 deg

C for long periods of time

 Using a socket to connect to evaluation board during prototyping

is also a best practice

85

FRAM – Next Generation Memory

9 - 12 Getting Started with the MSP430 LaunchPad - FRAM Overview

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 1

Capacitive Touch

Introduction
This module will cover the details of the new capacitive touch technique on the MSP430. In the
lab exercise we will observe the Capacitive Touch element response, characterize the Capacitive
Touch elements and implement a simple touch key application.

Agenda

What is Capacitive Touch?

Introduction to Value Line
Code Composer Studio
Initialization and GPIO

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM

Optional: Capacitive Touch

87

Module Topics

10 - 2 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Module Topics
Capacitive Touch ..10-1

Module Topics ..10-2

Capacitive Touch ...10-3
Capacitive Touch Methods ..10-3
Capacitive Measurement ...10-4
RO Implementations ..10-5
Details ..10-5
Change in Capacitance ..10-6
Change in Counts...10-6
Robustness ...10-7
Noise Immunity ...10-7
PinOsc CPU Overhead ..10-8
RC Implementation..10-9
Change in Counts...10-9
Duty Cycle vs. Current .. 10-10
Library Overview .. 10-11
Element Definition .. 10-11
Sensor Definition ... 10-12
Summary.. 10-12
Booster Pack Layout .. 10-13

Lab 10: Capacitive Touch .. 10-15
Lab10a – Observe Element Reponse ... 10-18
Lab10b – Characterize the Elements ... 10-23
Lab10c – Capacitive Touch Project from a Blank Page .. 10-28

 Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 3

Capacitive Touch

What is Capacitive Touch?

text

C1 C2

C3 C4

A change in Capacitance …

 When a conductive element is present - Finger or stylus
• Add C3 and C4, resulting in an increase in capacitance C1 + C2 + C3||C4
• This becomes part of the free space coupling path to earth ground

 When the dielectric (typically air) is displaced
• Thick gloves or liquid results in air displacement and change in dielectric
• Capacitance is directly proportional to dielectric, capacitance (C2) increases
(air ~1, everything else > 1)

Options …
88

Capacitive Touch Methods

Capacitive Touch

10 - 4 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Capacitive Measurement

 Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 5

RO Implementations

Details

Capacitive Touch

10 - 6 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Change in Capacitance

9.6

9.8

10

10.2

10.4

10.6

10.8

9.6

9.8

10

10.2

10.4

10.6

10.8

Measured
Capacitance

Base
Capacitance

Environmental
Changes

Absolute Threshold: Touch Detection,
Missed Detection, False Trigger

Relative Threshold with Baseline Tracking: No false
triggers and accounts for environmental drift.

Interpreting Change in Capacitance RO

Change in Counts …
93

Change in Counts

Interpreting Changes in Counts RO

9.6

9.8

10

10.2

10.4

10.6

10.8

Capacitance

3750

3800

3850

3900

3950

4000

4050

4100

4150

4200

Timer Counts

Inverse Relationship

RO Robustness …
94

 Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 7

Robustness

RO Robustness

SMCLK
(Hz)

R
(ohms)

Capacitance Change
(11pF-11.22pF)

Gate Time
(ms)

Change in
Counts

Margin (threshold
is 150)

1.00E6 35000 2% 8.192 301 50.2%
1.06E6 35000 2% 7.728 284 47.2%
0.94E6 35000 2% 8.7415 320 53.1%
1.06E6 50000 2% 7.728 199 24.6%
0.94E6 20000 2% 8.7415 560 73.2%

 Limit the variables to capacitance
– DCO calibrated constants +/-6% over Vcc and temperature
– Integrated Resistance varies from 20Kohms to 50Kohms

RO Noise Immunity …
95

Noise Immunity

RO Noise Immunity

 Hysteresis
 Noise must occur at the relaxation oscillator frequency in order to

influence measurement
 Noise must be fairly large in magnitude to overcome hysteresis

(typically 1V)
 Natural Integration and Filtering

 Gate window of milliseconds represents many charge/discharge
cycles of the relaxation oscillator

 Example: 2mS*1.8Mhz = 3600 cycles (samples)
 Baseline Tracking automatically calibrates system

 Slowly tracks changes, filtering noise

PinOsc CPU Overhead …
96

Capacitive Touch

10 - 8 Getting Started with the MSP430 LaunchPad - Capacitive Touch

PinOsc CPU Overhead

 Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 9

RC Implementation

Change in Counts

Interpreting Changes in Counts: RC

9.6

9.8

10

10.2

10.4

10.6

10.8

Capacitance

3 8 0 0

3 8 5 0

3 9 0 0

3 9 5 0

4 0 0 0

4 0 5 0

4 1 0 0

4 1 5 0

4 2 0 0

4 2 5 0

4 3 0 0

Timer Counts

Direct Relationship

Duty Cycle vs. Current …
99

Capacitive Touch

10 - 10 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Duty Cycle vs. Current

Importance of Duty Cycle vs. Current

Sleep Time (LPM3)Gate Time

Processing Time
(Active)

1/Scan Rate

C
ur

re
nt

PinOsc RO Current Gate

PinOsc 70uA 4ms

Sleep(LPM3) 0.7uA 96ms

1 Sensor @ 2Hz Interval
Sensor = 70uA*0.008 ~ 0.60uA
Sleep = 0.7uA*0.992 ~ 0.70uA
Average = ~ 1.30uA

Processing insignificant

Library Overview …
100

 Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 11

Library Overview

Element Definition

Capacitive Touch

10 - 12 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Sensor Definition

Summary

Summary

 Capacitive Touch solutions can be implemented in a number of
ways on the MSP430
 Tradeoff between available peripherals, IO requirements, sensitivity, and

power consumption
 Capacitive Touch IO (PinOsc function of the digital IO peripheral) in the

Value Line family is the most recent peripheral addition.
 No external components or connections
 Low power implementation of the relaxation oscillator

 The Capacitive Touch library offers several levels of abstraction
for different capacitance measurement applications
 Raw capacitance measurements
 Measurements with integrated baseline tracking
 Button, wheel, and slider abstractions

 Download library and examples from www.ti.com/captouch

Layout…
104

 Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 13

Booster Pack Layout

Capacitive Touch

10 - 14 Getting Started with the MSP430 LaunchPad - Capacitive Touch

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 15

Lab 10: Capacitive Touch

Objective
The objective of this lab is to learn the hardware and software utilized by the capacitive touch
technique on the MSP430 LaunchPad and Capacitive Touch BoosterPack.

Lab 10: Capacitive Touch

10 - 16 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Procedure

Install Hardware and Software
1. You will need the Capacitive Touch BoosterPack (430BOOST-CAPTOUCH1) available

here for US$10.

2. The 1.5 version of the LaunchPad kit already has Molex male-male connectors soldered
to the pin-outs on the sides of the board. If you have an earlier version of the LaunchPad
kit, you will have to solder the included Molex connectors onto the board.

3. Back in chapter one, you should have downloaded and installed the following files:

• BoosterPack User’s Guide - http://www.ti.com/lit/pdf/slau337

• Demo code, GUI, etc - http://www.ti.com/litv/zip/slac490

• Capacitive Touch Library - http://www.ti.com/litv/zip/slac489

• CT Lib Programmer’s Guide - http://www.ti.com/litv/pdf/slaa490a

• Getting Started with Capacitive Touch - http://www.ti.com/lit/slaa491

4. The Capacitive Touch BoosterPack includes an MSP430G2452 that is pre-programmed
with a capacitive touch demo. If you have version 1.4 of the LaunchPad board (or
earlier), very carefully replace the ‘G2231 device with the ‘G2452. (The ‘G2231 GPIO
does not have the PinOsc feature.) If you have version 1.5 of the LaunchPad board, we
will simply reprogram the ‘G2553 already on your board, and eliminate the potential to
break the pins of your devices.

5. Plug the BoosterPack PCB onto the top of the Molex male-male pins you soldered
earlier. Make sure the Texas Instruments logo is nearest the buttons on the LaunchPad
board. Plug the board into your computer’s USB port using the cable included with the
LaunchPad. If you are using version 1.4 of the LaunchPad, skip to step 7.

6. Open Code Composer in your usual workspace. Click on Project  Import Existing
CCS/CCE Eclipse Project. In the Import dialog that opens, change the search directory to
C:\MSP430_LaunchPad\Labs\Lab10-2553. Make sure that the single
discovered project is selected and click Finish. Click on the project in the Project
Explorer pane to make it active, and then click the Debug button on the menu bar to build
and program the code into your ‘G2553 device. Click the Terminate button on the CCS
menu bar to return to the debug perspective. Close Lab10-2553. Cycle the power on the
LaunchPad board by removing and re-inserting the USB connection.

7. Pass your hand close over the Capacitive Touch surface. You should see the LEDs
illuminate in sequence. Touch your fingertip to the rocket button in the center circle and
note the LED under it and the red LED on the LaunchPad PCB light. Touch again to turn
them off.

Touch between the inner and outer circle to momentarily illuminate LEDs on the outside
ring.

https://estore.ti.com/430BOOST-CAPTOUCH1-Capacitive-Touch-BoosterPack-P2361.aspx
http://www.ti.com/lit/pdf/slau337
http://www.ti.com/litv/zip/slac490
http://www.ti.com/litv/zip/slac489
http://www.ti.com/litv/pdf/slaa490a
http://www.ti.com/lit/slaa491

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 17

8. In the SLAC490 folder that you downloaded (and unzipped), find the Software folder
and the CapTouch_BoosterPack_UserExperience_GUI folder beneath that.
Double-click on the CapTouch_BoosterPack_UserExperience_GUI.exe file
that you find there. Give the tool a few moments to link with your LaunchPad, and then
touch any of the Capacitive Touch buttons. Note that gestures are also recognized.

Exit the GUI tool when you are done and close the Lab10-2553 project in Code
Composer.

Lab 10: Capacitive Touch

10 - 18 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Lab10a – Observe Element Reponse

Import Project
9. In this lab and the next, we will be observing the response of the Capacitive Touch

elements. We will also dig into the code to see how it operates. Finally in the last lab,
we’ll get a chance to get back to writing some code.

Open Code Composer Studio with your usual workspace and maximize CCS.

10. Import the Lab10a project by clicking Project  Import Existing CCS/CCE Eclipse
Project on the menu bar.
Change the directory to C:\MSP430_LaunchPad\Labs\Lab10a-2452 if you are
using the ‘G2452 device and C:\MSP430_LaunchPad\Labs\Lab10a-2553 if
you are using the ‘G2553 device. Make sure that the checkbox for Lab10a is checked in
the Discovered Projects area and click Finish.

11. Expand the Lab10a project in the Project Explorer pane by clicking on the next to the
project name.

Inspect Structure Files
12. Double-click on structure.c in the Project Explorer pane to open the file for editing.

The file is split into two main sections: the top portion is the Element section and the
bottom is the Sensor section.

In the Element section you’ll see individual structures for each of the six buttons on the
Capacitive Touch BoosterPack circuit board: down, right, up, left, middle and proximity.
Inside these structures, the port/pin definition is made that assigns MSP430 GPIO
hardware to the defined button and a threshold is set that defines what change in
operation is an event. Note that the threshold is set to zero for the middle and proximity
elements. For the wheel or slider implementation, the maxResponse variable normalizes
the capacitive measurement to a percentage, so that the dominant element in the sensor
can be identified. This variable has no function for single elements.

In the Sensor section, groups of Elements are defined as sensors like the wheel,
one_button and proximity sensor. These structures define which and how many Elements
will be used, what sensing method is used, which clock is used and how many cycles
over which the measurement should be made.

This file has been created especially for the BoosterPack button layout. When you create
your own board, this file must be modified.

Close structure.c .

13.

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 19

Double-click on structure.h in the Project Explorer pane to open the file for editing.

This file contains a number of sections. Many of the definitions used by the Capacitive
Touch library are done here and made external. There are also several user-defined flags
that allow you to tailor the code for your application. There are several definitions that
allow you to trade RAM size for Flash size conserve memory and select MSP430 variant.
Value-line parts typically have small Flash sizes and much smaller RAM sizes to achieve
low cost, so using this space effectively is a design imperative.

Check out the three warnings at the bottom of the file.

This file has been created especially for the BoosterPack button layout. When you create
your own board, this file must be modified.

Close structure.h .

For more detailed information on these files, look in user guides SLAA490a and
SLAA491.

Open LAB10a.c
14. Open Lab10a.c in the Project Explorer pane to open the file for editing. The purpose of

this code is to let us view the proximity sensor, middle button and wheel sensor response
when they are touched.

Note the following:

• CTS_Layer.h is included to provide access to the Capacitive Touch APIs

• Three defined variables to hold the button/sensor raw count values

• Watchdog timer, DCO calibration, SMCLK and LFXT1 setup

• Both GPIO ports are set to outputs and zero is written to all pins

• An infinite loop where calls are made to measure the timer count (and the
capacitance) of the proximity sensor, middle button and wheel sensor. The API
call to TI_CAPT_Raw() represents the lowest level of abstraction available from
the Capacitive Touch library and it is particularly useful for characterizing the
behavior of the buttons and sensors. Zeroing the threshold variable in structure.c
also disables any further abstraction by Capacitive Touch functions.

Lab 10: Capacitive Touch

10 - 20 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Build, Load
15. Make sure your LaunchPad board is connected to your PC and that the Capacitive Touch

BoosterPack board is securely connected. Build and load the program by clicking the
Debug button on the menu bar.

Setup Watch Window and Breakpoint Action
16. In the Expressions pane, right-click and select Add Global Variables. One at the time,

select the variables in which the raw counts will be stored; proximityCnt,
buttonCnt and wheelCnt and click OK. Expand the wheelCnt array so that you
can see all four elements.

17. Find the __no_operation(); line of code in Lab10a.c and place a breakpoint there.
We want the code to stop here, update the watch window and resume. To do that we’ll
change the behavior of the breakpoint. Right-click on the breakpoint symbol (left of the
line of code) and select Breakpoint Properties … Click on the value “Remain Halted” for
the property “Action”. Change the action to “Refresh All Windows” and click OK.

Run
18. Click on the Run button to run the program. You should see the values in the watch

window highlighted in yellow as they update. Black denotes unchanged values.

Slowly bring your finger close to the board as you watch the proximityCnt variable.
Ours started out around 37000 and dropped to around 36000 as we neared and touched
the board.

Watch the buttonCnt variable as you touch the middle button. The value should drop
as you touch it.

The wheel is comprised of the up, left, right and down elements. Watch the response as
you move your finger around the wheel. 0=up, 1=right, 2=down and 3= left.

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 21

Graphs
19. A graph would make these changes easier to see and CCS provides that functionality.

Suspend the code (not Terminate) by clicking the Suspend button. Add a graph by
clicking Tools  Graph  Single Time on the menu bar. When the Graph Properties
box appears, make the changes shown below.

and click OK. The graph should appear at the bottom of your screen. If you don’t like the
colors, you can change them by right-clicking on the graph and selecting Display
Properties. But be careful, you can render the data invisible.

Click the Resume button and watch the graph of the buttonCnt variable. Allow a few
moments for the graph to build. You should see minor fluctuations in the variable that
look large in the graph since it is auto-sizing the y-axis. This will change when you touch
the middle Capacitive Touch button. The graph below shows three touches of the button.

The graph is plotting the number of relaxation oscillator cycles within a fixed duration of
time (the measurement window). As the capacitance increases (when you come near to
the electrode), the frequency of the relaxation oscillator decreases and the number of
cycles also decreases.

Lab 10: Capacitive Touch

10 - 22 Getting Started with the MSP430 LaunchPad - Capacitive Touch

20. Suspend the code (not Terminate) by clicking the Suspend button and then click the
X on the Single-Time graph tab to delete the graph. Now let’s add a graph of the
proximityCnt variable. It’s possible to export and import graph properties to speed
the process up, and we’ll use that here. Add a graph by clicking Tools  Graph  Single
Time on the menu bar. When the Graph Properties box appears, click the Import button
and select the cts_lab_proximity.graphProp file from
C:\MSP430_LaunchPad\Labs\Lab10a and click Open. Sweet, huh? Click OK in
the Graph Properties box and the graph should appear at the bottom of your screen.

21. Click the Run button and watch the graph of the proximityCnt variable. Allow a few
moments for the graph to build. The behavior should look much the same as the middle
button did. Bring your finger near to the board and watch the response on the graph. The
graph below shows three close approaches to the board.

22. Experiment as much as you like, but only display one graph at the time. Remove the

watched expressions by clicking the Remove All Expressions button above
the Expressions pane. Click the Terminate button to stop debugging and return to the
“CCS Edit” perspective. Close the Lab10a project.

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 23

Lab10b – Characterize the Elements
In Lab10a we observed changes in capacitance. In Lab10b we will focus on a ‘touch’, setting an
appropriate threshold for detecting a touch. We will use the TI_CAPT_Custom function to
measure the deviation in capacitance from the baseline. The library will track the baseline
capacitance with each measurement. This configuration is only interested in fast (relative) and
large magnitude increases in capacitance. Decreases and slow increases in capacitance are treated
as environmental changes and are used to update the baseline.

Import Project
1. Import the Lab10b project by clicking Project  Import Existing CCS/CCE Eclipse

Project on the menu bar.
Change the directory to C:\MSP430_LaunchPad\Labs\Lab10b-2452 if you are
using the ‘G2452 device and C:\MSP430_LaunchPad\Labs\Lab10b-2553 if
you are using the ‘G2553 device. Make sure that the checkbox for Lab10b is checked in
the Discovered Projects area and click Finish.

2. Expand the Lab10b project in the Project pane by clicking on the next to the project
name and open structure.h for editing.

If you’re going to do baseline tracking (as we are in this lab), RAM space needs to be
allocated for it to function, for each element (there are 6 on the BoosterPack). At line 50,
uncomment the line:

// #define TOTAL_NUMBER_OF_ELEMENTS 6

Of course, this uses precious RAM space. If you are not using baseline tracking,
commenting this line out will save RAM.

Close and save structure.h.

3. Open structure.c for editing. Remember from Lab10a (step 12) that in order to
characterize an element, its threshold should be set to zero. Find the threshold values for
the proximity sensor and middle button and verify that they are zero.

Close and save (if needed) structure.c.

4. Open Lab10b.c for editing and make sure that only the TI_CAPT_Custom() call for
the proximity sensor in the while() loop is uncommented. The calls for the middle
button and wheel should remain commented out for now. Save your changes if necessary.

while (1)

 {

 TI_CAPT_Custom(&proximity_sensor,&proximityCnt);

 //TI_CAPT_Custom(&one_button,&buttonCnt);

 //TI_CAPT_Custom(&wheel,wheelCnt);

 __no_operation();

 }

Lab 10: Capacitive Touch

10 - 24 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Build, Load
5. Make sure that Lab10b is the active project, then build and load the program by clicking

the Debug button on the menu bar.

Setup Watch Window and Breakpoint Action
6. If you’ve closed the Expressions pane, click View  Expressions from the menu bar. In

the Expressions pane, right-click and select Add Global Variables. One at the time, select
the variables in which the raw counts will be stored; proximityCnt, buttonCnt and
wheelCnt and click OK. Expand the wheelCnt array so that you can see all four elements.

7. Find the __no_operation(); line of code and place a breakpoint there. We want the
code to stop here, update the watch window and resume. Right-click on the breakpoint
symbol (left of the line of code) and select Breakpoint Properties … Click on the value
“Remain Halted” for the property “Action”. Change the action to “Refresh all Windows”
and click OK.

Graphs
8. Let’s start with the proximity sensor. Add a graph by clicking Tools  Graph  Single

Time on the menu bar. When the Graph Properties box appears, click the Import button,
and then locate cts_lab_proximity.graphProp in
C:\MSP430_LaunchPad\Labs\Lab10b. Select it, click Open and then click OK in
the Graph Properties window.

9. Run the program and allow a few moments for the graph to build. Take a look at the table
below. Let’s characterize the different responses of the proximity sensor: the noise when
no one is near the sensor, when your finger is 2cm and 1cm away and finally when you
touch the sensor. Remember that the element is not only the pad, but also the connection
(trace) to the pad. The proximity sensor wraps the entire board. Write what you see on the
graph in the table below. Our results are shown for comparison.

 Observed Noise 2cm 1 cm Touch

Your Results

Our Results 0-50 30-80 75-140 1250-1325

Gate Time: ACLK/512 (default)

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 25

10. Click the Terminate button to stop debugging and return to the “CCS Edit” perspective.

11. Open Lab10b.c for editing and look in the while() loop. Comment out the
TI_CAPT_Custom() call for the proximity sensor and uncomment the one for the
middle button.

 while (1)

 {

 //TI_CAPT_Custom(&proximity_sensor,&proximityCnt);

 TI_CAPT_Custom(&one_button,&buttonCnt);

 //TI_CAPT_Custom(&wheel,wheelCnt);

 __no_operation();

 }

Save your changes. Build and load the program.

12. Click on the single-time graph tab. Click on the Show the Graph Properties button
on the right side of the graph. It’s funny, but this is not the same thing as right-clicking on
the graph and selecting Display Properties. When the Graph Properties box appears, click
the Import button, and then locate cts_lab_button.graphProp in
C:\MSP430_LaunchPad\Labs\Lab10b. Select it, click Open and then click OK in
the Graph Properties window.

13. Run the program and allow a few moments for the graph to build. Now we’ll characterize
the middle button touch sensor similar to what we did with the proximity sensor. Our
results are shown for comparison.

 Observed Noise Light Touch Heavy Touch Molex
Connector
(right side)

Your Results

Our Results 67-73 326-330 371-381 115-124

Gate Time: SMCLK/512 (default)

14. Click the Terminate button to stop debugging and return to the editing perspective.

Lab 10: Capacitive Touch

10 - 26 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Changing the Measurement Window Time
15. Open structure.c for editing and close any other open editor windows.

The MSP430G2452 and Capacitive Touch BoosterPack hardware design implements an
RO with the PinOsc peripheral. The hardware abstraction in the Capacitive Touch
libraries utilizes Timer_A2 and WDT+ for clock sources. The Capacitive Touch
measurement window or “gate time” is a function of the WDT+ peripheral.

The WDT+ can be sourced by the ACLK and SMCLK.

The gate time can be varied among the following settings: 64, 512, 8192 and 32768
cycles.

Below is the sensor structure for the proximity sensor:

const struct Sensor proximity_sensor =

 {

 .halDefinition = RO_PINOSC_TA0_WDTp,

 .numElements = 1,

 .baseOffset = 5,

 // Pointer to elements

 .arrayPtr[0] = &proximity, // point to first element

 // Timer Information

 //.measGateSource= GATE_WDT_SMCLK, // SMCLK

 .measGateSource= GATE_WDT_ACLK, // ACLK

 //.accumulationCycles= WDTp_GATE_32768 //32768

 //.accumulationCycles= WDTp_GATE_8192 // 8192

 .accumulationCycles= WDTp_GATE_512 //512 default

 //.accumulationCycles= WDTp_GATE_64 //64

 };

The data taken in the previous steps used the default gate timings. Make the following
changes to structure.c and we’ll repeat those measurements.

In the one_button structure in the sensor section, uncomment:

.accumulationCycles= WDTp_GATE_8192 // 8192
and comment out:
.accumulationCycles= WDTp_GATE_512 //512, default

Do the same thing in the proximity_sensor structure in the sensor section. We’ll
leave the source unchanged for both sensors.

Save your changes.

These settings will select SMCLK/8192 for the one_button and ACLK/8192 for the
proximity sensor.

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 27

Build, Load, Run and Graph
16. Build and load the program. Make sure your graph is displaying data for the middle

button. Run the program and fill in the table below. Our results are shown for comparison

 Observed Noise Light Touch Heavy Touch Molex
Connector
(right side)

Your Results

Our Results 70-120 3800-4000 4270-4500 1200-1280

Gate Time: SMCLK/8192

17. Click the Terminate button to stop debugging and return to the editing perspective. Open
Lab10b.c for editing and look in the while() loop. Comment out the
TI_CAPT_Custom() call for the middle button and uncomment the one for the
proximity sensor. Save your changes.

18. Build and load the program. Make sure your graph is displaying data for the proximity
sensor. Run the program and fill in the table below. Our results are shown for comparison

 Observed Noise 2cm 1 cm Touch

Your Results

Our Results 54900-5510 55390-55490 60300-60400 4000-4400

Gate Time: ACLK/8192

Note: Most of these values are very close to the 16-bit (65535) limit. If fact the Touch
measurement we made rolled the counter past the limit. Watch for this kind of
behavior during your experiments.

19. Compare these results with your earlier tests. The longer the gate time, the easier it is to
differentiate between noise and touch or proximity. There are many more measurements
that you could make here. You could check the effect of varying the gate time on the
responsiveness of the buttons. Or you could test the effect on power consumption. These
are tests that you will likely want to pursue with your design before finalizing it.

Click the Terminate button to return to the “CCS Edit” perspective. Close the Lab10b
project.

Lab 10: Capacitive Touch

10 - 28 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Lab10c – Capacitive Touch Project from a Blank Page
In this section, we’ll learn how to build a simple Capacitive Touch project from the beginning,
with a blank folder. We’ll use the middle button on the BoosterPack board to light the middle
LED and the red LED on the LaunchPad board.

Copy/Create Files
1. Using Windows Explorer, open the Lab10c folder in

C:\MSP430_LaunchPad\Labs and observe that it is empty.

2. Open the folder containing the unzipped SLAC489 files. Copy the Source folder and
paste it into the Lab10c folder. This is the Capacitive Touch Source folder.

3. Again in the SLAC489 folder, open the Examples/RO_PINOSC_TA0_WDTp folder.
Copy both the structure.c and .h files and paste them into the Lab10c folder. We
could have used any of the examples, but for the purposes of the lab, let’s choose these.
These structure files contain all the definitions and structures for the entire Capacitive
Touch BoosterPack board. Rather than create these files from scratch, we’re going to
modify them to meet our needs, which is what you’ll likely do when you implement your
own design.

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 29

Create Project
4. In Code Composer Studio, create a new project by clicking:

File  New  CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2452, make the appropriate choices. Make sure to click
Empty Project (with main.c), and then click Finish.

5. Expand the Lab10c project in the Project Explorer pane to see that all of the files we
placed in the Lab10c folder have been automatically added to the project, along with
main.c created by Code Composer.

Lab 10: Capacitive Touch

10 - 30 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Build Properties
6. Right-click on Lab10c in the Project Explorer pane and select Properties.

Under Build / MSP430 Compiler, click on the next to Advanced Options and then
click on Language Options. Check the “Enable support for GCC extensions (-gcc)”
checkbox. This enables the program to access uninitialized structures in structure.c,
allowing element three (for example) to be accessed without having to access elements
one and two. For more information, see:
http://processors.wiki.ti.com/index.php/GCC_Extensions_in_TI_Compilers

7. Under Build / MSP430 Compiler, click on Include Options. You must add two paths in
the search path, one for where the structure files are located and one for where the CTS
library file are located.

Click on the Add button in the bottom window and click on the Workspace… button.
Select the Lab10c folder and click OK. This is where the structure files are located.
Click OK again.

Click on the Add button again in the bottom window and click on the Workspace…
button. Select the Source folder under Lab10c and click OK. This is where the CTS
library files are located. Click OK again.

Your search path window should look like this:

Click OK to save your changes to the project properties.

http://processors.wiki.ti.com/index.php/GCC_Extensions_in_TI_Compilers

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 31

Lab10c main.c
We’re going to write a fairly minimal program that will light the LED when the middle
button on the Capacitive Touch board is touched. In order to conserve power, we’ll have
the MSP430 wake from sleep using a timer every 500ms to check the button. We’ll also
want to characterize the element, so there will be a small amount of code for that too.

This implementation is a relaxation oscillator using the PinOsc feature. It uses Timer_A0
and the WDT+ for gate times.

8. Open the empty main.c for editing. Remember that you can cut/paste from the pdf file.
Let’s start out by adding some includes and defines. Delete the current code in main.c
and add the next three lines:

#include "CTS_Layer.h" // include Capacitive Touch libraries
#define CHAR_MODE // used in ifdefs to run characterization code
#define DELAY 5000 // timer delay – 500ms

9. Add a line for spacing, and then add the following ifdef/declaration. This declaration will
only be compiled if the CHAR_MODE definition is present, which it is now.

#ifdef CHAR_MODE
unsigned int dCnt; // characterization count held here
#endif

10. Add a line for spacing, and then we’ll get started on the main() routine. We need to set
up the watchdog timer, DCO, etc. Add this code after the spacing line:

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
 BCSCTL1 = CALBC1_1MHZ; // 1MHz DCO calibration
 DCOCTL = CALDCO_1MHZ;
 BCSCTL2 |= DIVS_2; // divide SMCLK by 4 for 250khz
 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO

Lab 10: Capacitive Touch

10 - 32 Getting Started with the MSP430 LaunchPad - Capacitive Touch

11. Next, we need to set up the GPIO. A quick look at the schematic of the BoosterPack (in
SLAU337) would be helpful:

Add a line for spacing, and then add the following GPIO setup code:

 P1OUT = 0x00; // Clear Port 1 bits
 P1DIR |= BIT0; // Set P1.0 as output pin
 P2SEL &= ~(BIT6 + BIT7); // Configure XIN & XOUT to GPIO
 P2OUT = 0x00; // Drive all Port 2 pins low
 P2DIR = 0xFF; // Configure all Port 2 pins outputs

12. Before we jump into the button detection while() loop, we need to make a baseline
measurement for the Capacitive Touch button. The first API call makes the initial
measurement and the second makes five more measurements to ensure accuracy. Add a
line for spacing, and then add the next two lines of code below the last ones:

 TI_CAPT_Init_Baseline(&middle_button);
 TI_CAPT_Update_Baseline(&middle_button,5);

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 33

13. Let’s start out the button detection while() loop with the ifdef code to characterize
the middle button. You’ve see this API in the last two labs. Remember that this code will
only compile if the CHAR_MODE definition is in place. Add a line for spacing and add
this code to main.c:

while (1)
{
 #ifdef CHAR_MODE
 TI_CAPT_Custom(&middle_button,&dCnt);
 __no_operation(); // Set breakpoint here
 #endif

14. If the CHAR_MODE definition is not in place, we want to run the button detection code.
This code will look at the value from the middle button and compare it against the
threshold set in structure.c to determine if the button has been touched. If a touch is
detected, the red LED will be lit (checked the schematic above). Also note that the red
LED on the LaunchPad is connected to the same port pin, so it will light also. Add a line
for spacing, and then add this code after the others:

#ifndef CHAR_MODE
if(TI_CAPT_Button(&middle_button))
{
 P1OUT |= BIT0; // Turn on center LED
}
else
{
 P1OUT &= ~BIT0; // Turn off center LED
}

15. Finally in the while() loop, once the button action is complete, we need to go to sleep
to conserve power. Add a line for spacing, then add the following code:

 sleep(DELAY); // LPM3 for 500ms delay time
 #endif
 } // close while loop
 } // close main

16. We need a function for the sleep() call above. This function will configure Timer_A
to run off the ACLK, count in UP mode, place the CPU in LPM3 mode and enables the
interrupt vector to jump to when the timeout occurs. Don’t take our word for it, crack
open that Users Guide. Add this code right above your main() code:

void sleep(unsigned int time)
{
 TA0CCR0 = time;
 TA0CTL = TASSEL_1+MC_1+TACLR;
 TA0CCTL0 &= ~CCIFG;
 TA0CCTL0 |= CCIE;
 __bis_SR_register(LPM3_bits+GIE);
}

Lab 10: Capacitive Touch

10 - 34 Getting Started with the MSP430 LaunchPad - Capacitive Touch

17. Lastly we need the ISR for the timer interrupt. The purpose of the timer interrupt is
simply to wake the CPU from LPM3 so the Capacitive Touch code in the while() loop
can run. Open that Users Guide again and verify the functionality. Add a line for spacing,
and then add this function to the bottom of your code:

//***
// Timer0_A0 ISR: Disables the timer and exits LPM3
//***
#pragma vector=TIMER0_A0_VECTOR
__interrupt void ISR_Timer0_A0(void)
{
 TA0CTL &= ~(MC_1);
 TA0CCTL0 &= ~(CCIE);
 __bic_SR_register_on_exit(LPM3_bits+GIE);
}

18. Save your changes.

Right-click on main.c in the Project Explorer pane and click Build Selected File(s). If
you have any problems, check the code on the next page to correct your issues.

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 35

#include "CTS_Layer.h" // include Capacitive Touch libraries
#define CHAR_MODE // used in ifdefs to run characterization code
#define DELAY 5000 // timer delay – 500ms

#ifdef CHAR_MODE
unsigned int dCnt; // characterization count held here
#endif

void sleep(unsigned int time)
{
 TA0CCR0 = time;
 TA0CTL = TASSEL_1+MC_1+TACLR;
 TA0CCTL0 &= ~CCIFG;
 TA0CCTL0 |= CCIE;
 __bis_SR_register(LPM3_bits+GIE);
}

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
 BCSCTL1 = CALBC1_1MHZ; // 1MHz DCO calibration
 DCOCTL = CALDCO_1MHZ;
 BCSCTL2 |= DIVS_2; // divide SMCLK by 4 for 250khz
 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO

 P1OUT = 0x00; // Clear Port 1 bits
 P1DIR |= BIT0; // Set P1.0 as output pin
 P2SEL &= ~(BIT6 + BIT7); // Configure XIN & XOUT to GPIO
 P2OUT = 0x00; // Drive all Port 2 pins low
 P2DIR = 0xFF; // Configure all Port 2 pins outputs

 TI_CAPT_Init_Baseline(&middle_button);
 TI_CAPT_Update_Baseline(&middle_button,5);

while (1)
{
 #ifdef CHAR_MODE
 TI_CAPT_Custom(&middle_button,&dCnt);
 __no_operation(); // Set breakpoint here
 #endif

 #ifndef CHAR_MODE
 if(TI_CAPT_Button(&middle_button))
 {
 P1OUT |= BIT0; // Turn on center LED
 }
 else
 {
 P1OUT &= ~BIT0; // Turn off center LED
 }

 sleep(DELAY); // LPM3 for 500ms delay time
 #endif
 } // close while loop
} // close main

//***
// Timer0_A0 ISR: Disables the timer and exits LPM3
//***
#pragma vector=TIMER0_A0_VECTOR
__interrupt void ISR_Timer0_A0(void)
{
 TA0CTL &= ~(MC_1);
 TA0CCTL0 &= ~(CCIE);
 __bic_SR_register_on_exit(LPM3_bits+GIE);
}

Lab 10: Capacitive Touch

10 - 36 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Structure.c
19. Open structure.c for editing and find the structure for the middle element. On the

line above the threshold element, change:

.maxResponse = 350+655,

to
.maxResponse = 0+655,

This defines the maximum expected response from the element. When using an
abstracted function to measure the element, 100* (maxResponse – threshold) <0xFFFF.
So maxResponse – threshold < 655. Also note that the threshold is currently 0 since we
will be characterizing the response in a few steps.

Also, change the threshold from 350 to 0.

20. Since we’re only going to be using the middle button, delete all of the element structures
except for the middle_element structure. Then delete the wheel and proximity sensor
structures. Your structure.c file should look like the below; some comments were
removed to fit the page. Save your work.

#include "structure.h"

//PinOsc Wheel: middle button P2.5
const struct Element middle_element = {

 .inputPxselRegister = (unsigned char *)&P2SEL,
 .inputPxsel2Register = (unsigned char *)&P2SEL2,
 .inputBits = BIT5,
 // When using an abstracted function to measure the element
 // the 100*(maxResponse - threshold) < 0xFFFF
 // ie maxResponse - threshold < 655
 .maxResponse = 0+655,
 .threshold = 0
};

//*** Sensor

const struct Sensor middle_button =
 {
 .halDefinition = RO_PINOSC_TA0_WDTp,
 .numElements = 1,
 .baseOffset = 4,
 // Pointer to elements
 .arrayPtr[0] = &middle_element, // point to first element
 // Timer Information
 .measGateSource= GATE_WDT_SMCLK, //0->SMCLK, 1-> ACLK
 //.accumulationCycles= WDTp_GATE_32768 //32768
 .accumulationCycles= WDTp_GATE_8192 //8192
 //.accumulationCycles= WDTp_GATE_512 //512
 //.accumulationCycles= WDTp_GATE_64 //64
 };

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 37

Structure.h
21. Open structure.h for editing. In the Public Globals area, remove all the declarations

except for the middle element and the middle_button sensor.

22. In the Ram Allocation area, make sure that the definition for
TOTAL_NUMBER_OF_ELEMENTS is uncommented and is “1”.

23. Also in the Ram Allocation area, make sure that the definition for RAM_FOR_FLASH is
uncommented.

24. In the Structure Array Definition area, make sure that the definition for
MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR is “1”. Save your changes. The
top portion of your code should look like our code below:

#ifndef CTS_STRUCTURE
#define CTS_STRUCTURE

#include "msp430.h"
//#include "msp430g2452.h"
#include <stdint.h>

/* Public Globals */
extern const struct Element middle_element;

extern const struct Sensor middle_button;

//****** RAM ALLOCATION **
// TOTAL_NUMBER_OF_ELEMENTS represents the total number of elements used, even if
// they are going to be segmented into seperate groups. This defines the
// RAM allocation for the baseline tracking. If only the TI_CAPT_Raw function
// is used, then this definition should be removed to conserve RAM space.
#define TOTAL_NUMBER_OF_ELEMENTS 1
// If the RAM_FOR_FLASH definition is removed, then the appropriate HEAP size
// must be allocated. 2 bytes * MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR + 2 bytes
// of overhead.
#define RAM_FOR_FLASH
//****** Structure Array Definition **
// This defines the array size in the sensor strucure. In the event that
// RAM_FOR_FLASH is defined, then this also defines the amount of RAM space
// allocated (global variable) for computations.
#define MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR 1
//****** Choosing a Measurement Method **
// These variables are references to the definitions found in structure.c and
// must be generated per the application.

Lab 10: Capacitive Touch

10 - 38 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Build, Load, Run and Test
25. Click the debug button to build and load the program to the MSP430. Correct any errors

that you find.

26. In the Expression pane, delete all the expressions by clicking the Remove All

Expressions button . Then add the dCnt global variable as an expression.

27. Close any graphs that you may have from earlier labs.

28. Find the __no_operation(); line of code around line 39 and place a breakpoint
there. Right-click on the breakpoint symbol (left of the line of code) and select
Breakpoint Properties … Click on the value “Remain Halted” for the property “Action”.
Change the action to “Refresh all Windows” and click OK.

29. Run the code and watch the dCnt variable in the watch window as you touch the middle
button on the Capacitive Touch board. If adding a graph will help you visualize things,
use the following properties:

30. Fill in the table for dCnt below. Our results are shown for comparison.

 Observed Noise Middle Button Touch

Your Results

Our Results 50-95 5000-5700

 Lab 10: Capacitive Touch

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 39

Threshold
31. Now we can finalize the code and set the threshold. We want to pick a threshold that is

high enough above the noise so that it doesn’t trigger erroneously, but low enough not to
miss any actual touches. Based on our results above, we’re going to pick 1000. Your
number may be different.

32. Suspend the program. Remove the graph if you added one, remove the dCnt watch
expression and remove the breakpoint you set. Click the Terminate button to return to the
“CCS Edit” perspective.

33. In main.c , comment out the #define CHAR_MODE definition. This will allow our
normal button code to compile and run. Save your changes.

34. In structure.c ,make the following changes. Remember to use your own threshold
choice instead of 1000 if it is different.

.maxResponse = 2500+655,

.threshold = 2500

Save your changes.

35. Build, load and run the code. Touch the middle button. If everything is working properly,
the middle LED on the BoosterPack board and the red LED on the LaunchPad should
light. Sweet!

36. Feel free to experiment with the sleep time, gate time, threshold, etc. Checking the power
is a little problematic unless you have an oscilloscope since the code spends the majority
of its time in LPM3.

37. Terminate the active debug session using the Terminate button. Close the
Lab10c project and close Code Composer Studio.

 You’re done.

Lab 10: Capacitive Touch

10 - 40 Getting Started with the MSP430 LaunchPad - Capacitive Touch

	MSP430mod00
	Important Notice
	Revision History
	Mailing Address

	MSP430mod01
	Introduction to Value Line
	Module Topics
	Introduction to Value Line
	TI Processor Portfolio
	MSP430 Released Devices
	MSP430G2xx Value Line Parts
	MSP430 CPU
	Memory Map
	Value Line Peripherals
	LaunchPad Development Board

	Lab 1: Download Software and Setup Hardware
	Objective
	Procedure
	Download and Install Code Composer Studio 5.x
	Download and Install Workshop Lab and Solution Files
	Capacitive Touch Software
	Download Supporting Documents and Software
	Third Party Websites
	MSP-EXP430G2 LaunchPad Experimenter Board
	Hardware Setup
	Running the Application Demo Program

	MSP430mod02
	Code Composer Studio
	Module Topics
	Code Composer Studio
	Lab 2: Code Composer Studio
	Objective
	Procedure
	Start Code Composer Studio and Open a Workspace
	Create a New Project
	Source Files
	Build and Load the Project
	Debug Environment
	Terminate Debug Session and Close Project

	Optional Lab Exercise – Crystal Oscillator
	Objective
	Procedure
	Solder Crystal Oscillator to LaunchPad
	Verify Crystal is Operational
	Terminate Debug Session and Close Project

	MSP430mod03
	Initialization and GPIO
	Module Topics
	Initialization and GPIO
	Reset and Software Initialization
	Clock System
	G2xxx - No Crystal Required - DCO
	Run Time Calibration of the VLO
	System MCLK & Vcc
	Watchdog Timer

	Lab 3: Initialization and GPIO
	Objective
	Procedure
	Create a New Project
	Source File
	Running the CPU on the VLO
	Running the CPU on the Crystal
	Running the CPU on the DCO and the Crystal
	Optimized Code Running the CPU on the DCO and the Crystal
	Running the CPU on the DCO without a Crystal
	Optimized Code Running the CPU on the DCO and VLO

	MSP430mod04
	Analog-to-Digital Converter
	Module Topics
	Analog-to-Digital Converter
	Fast Flexible ADC10
	Sample Timing
	Autoscan + DTC Performance Boost

	Lab 4: Analog-to-Digital Converter
	Objective
	Procedure
	Create a New Project
	Source File
	Set Up ADC Code
	Build, Load, and Run the Code
	Test the ADC Conversion Process
	Terminate Debug Session and Close Project

	MSP430mod05
	Interrupts and the Timer
	Module Topics
	Interrupts and the Timer
	Timer_A2/A3 Features
	Interrupts and the Stack
	Vector Table
	ISR Coding

	Lab 5: Timer and Interrupts
	Objective
	Procedure
	Create a New Project
	Source File
	Using the Timer to Implement the Delay
	Create an Interrupt Sevice Routine (ISR)
	Modify Code in Functions and ISR
	Build, Load, and Run the Code
	Test the Code
	Terminate Debug Session and Close Project

	MSP430mod06
	Low-Power Optimization
	Module Topics
	Low-Power Optimization
	Low-Power Modes
	Low-Power Operation
	System MCLK & Vcc
	Pin Muxing
	Unused Pin Termination
	Ultra-Low-Power Advisor

	Lab 6: Low-Power Modes
	Objective
	Procedure
	Create a New Project
	Source File
	Reconfigure the I/O for Low-Power
	Baseline Low-Power Measurements
	Configure Unused Pins
	MSP430G2553 Current Consumption
	Replace the while(1) loop with a Low-Power Mode
	Fully Optimized Code for Low-Power
	ULP Advisor
	Summary

	MSP430mod07
	Serial Communications
	Module Topics
	Serial Communications
	USCI
	Protocols
	Software UART Implementation
	USB COM Port Communication
	Objective
	Procedure
	Create a New Project
	Source File
	Remove Timer_A2 and Add WDT+ as the Interval Timer
	Add the UART Code
	Test the Code
	View the UART Output in a Terminal Program
	Terminate Debug Session and Close Project

	MSP430mod08
	Grace
	Module Topics
	Grace
	Lab 8: Grace
	Objective
	Procedure
	Create a Grace Project
	Welcome to Grace™
	DVCC
	BCS+
	WDT+
	GPIO
	Timer0_A3
	System Registers - GIE
	Application Code

	MSP430mod09
	FRAM Overview
	Module Topics
	FRAM – Next Generation Memory
	FRAM Controller
	FRAM and the Cache
	MPU
	Write Speed
	Low Power
	Increased Flexibility and Endurance
	Reflow and Reliability

	MSP430mod10
	Capacitive Touch
	Module Topics
	Capacitive Touch
	Capacitive Measurement
	RO Implementations
	Details
	Change in Capacitance
	Change in Counts
	Robustness
	Noise Immunity
	PinOsc CPU Overhead
	RC Implementation
	Change in Counts
	Duty Cycle vs. Current
	Library Overview
	Element Definition
	Sensor Definition
	Summary
	Booster Pack Layout

	Lab 10: Capacitive Touch
	Objective
	Procedure
	Install Hardware and Software

	Lab10a – Observe Element Reponse
	Import Project
	Inspect Structure Files
	Open LAB10a.c
	Build, Load
	Setup Watch Window and Breakpoint Action
	Run
	Graphs

	Lab10b – Characterize the Elements
	Import Project
	Build, Load
	Setup Watch Window and Breakpoint Action
	Graphs
	Changing the Measurement Window Time
	Build, Load, Run and Graph

	Lab10c – Capacitive Touch Project from a Blank Page
	Copy/Create Files
	Create Project
	Build Properties
	Lab10c main.c
	Structure.c
	Structure.h
	Build, Load, Run and Test
	Threshold

