I3 TEXAS
INSTRUMENTS

Getting Started with the
MSP430 LaunchPad

Student Guide and Lab Manual

Revision 2.10 O
February 2013

Technical Training
Organization

Important Notice

Important Notice

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright © 2013 Texas Instruments Incorporated

Revision History

Oct 2010 — Revision 1.0

Dec 2010 —Revision 1.1 errata

Jan 2011 —Revision 1.2 errata

Feb 2011 — Revision 1.21 errata

June 2011 — Revision 1.30 update to include new parts

August 2011 — Revision 1.31 fixed broken hyperlinks, errata

August 2011 — Revision 1.40 added module 8 CapTouch material

September 2011 —Revision 1.50 added Grace module 9 and FRAM lunch session
September 2011 —Revision 1.51 errata

October 2011 —Revision 1.52 added QR codes

October 2011 —Revision 1.53 errata

January 2012 —Revision 2.0 update to CCS 5.1 and version 1.5 hardware
February 2012 —Revision 2.01 minor errata

February 2013 —Revision 2.10 price change, update to CCS5.3, minor errata

Mailing Address

Texas Instruments

Training Technical Organization
6550 Chase Oaks Blvd

Building 2

Plano, TX 75023

ii

Getting Started with the MSP430 LaunchPad

Introduction to Value Line

Introduction

This module will cover the introduction to the MSP430 Value Line series of microcontrollers. In
the exercise we will download and install the required software for this workshop and set up the

hardware development tool — MSP430 LaunchPad.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

I: Capacitive Touc

2

For future reference, the main Wiki for this workshop is located here:

www.ti/com/LaunchPad-workshop

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

http://processors.wiki.ti.com/index.php/Getting_Started_with_the_MSP430_LaunchPad_Workshop

Module Topics

Module Topics

Introduction to Value Line 1-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 1-2
INIPOAUCTION 10 VAIUE LINE ...ttt et et e et e e tae et e e taeetseessaeenseens 1-3

TT ProceSSOT POTTIOLI0. ... ciitiieiie ittt ettt et e e e et e et eeaeeeataeesseeensaeenseeennes 1-3
MSPA30 RelEaSEA DEVICES ...eeevvieriiieeiiieeiieeiie et eeiee st esteesteeebeessbeessseessseessseessseessseesnsaessseessessnseenns 1-4
MSPA30G2XX Value LiNe PartS........cccuieiiiiiiiieiiieciie ettt ettt et esveesbeesbeesebeeenseesseesnsee e 1-4
IMISPA30 CPU ...ttt ettt ettt et et e e et e st esse et e e s e ensessaesseesseenseenseanseessensaensaenseensennsennnas 1-5
IMEIMOTY VAP ..ttt ettt e s ettt e st e sttt e sab e e s at e e sab e e sabeesabeesabeesabeesabeesabeeeatee e 1-5
Value Line PEripheralsc.ccciiiiiiiiiieiiecieit ettt sttt et ente e ssaessaeseenseennesnnes 1-6
LaunchPad Development BOArdccoocvevieriieiieiieieeieseeeee et 1-7
Lab 1: Download Software and Setup Hardwarecccocoviioiiiiioiiicniniiiiiieeeeeeeee e 1-9
L0 10} 1< 15 4R SUTTSPRS 1-9
PrOCEAUIE ... ettt et ettt e st e ettt e st e ettt e ssbeesbeessaeensseessseesseesssaesseenssaessean 1-10

1-2 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

Introduction to Value Line

Tl Processor Portfolio

Microcontroller (MCU)

Portfolio at a Glance

16-bit ultra-low 32-bit ‘ 32-bit
power MCUs | real-time MCUs = ARM® MCUs
C2000™
MSP430™ Delfino™ | stellaris”
Concerto AR Cortex ™-h3
Piccolo™ | ARM Cortex-M4F

32-bit ARM®
safety MCUs

Hercules”

ARM® Cartex ™-M3

& Cortex ™-R4F

32-bit
ARM® MPUs

Sitara™
ARME Cortex ™A%
ARMI™

Tl Embedded Processing Portfolio

ARM®-Based Processor Di
Portfolio at a Glance

Software, Tools, Kits & Boards

DSP+ARMD
MPUs

Cc6000™

Cé-Integra™

DaVIncI“

ital Signal Processor (DSP;
Portfolio at a Glance

Ultra-low
Multicore power
DSPs DSPs
CBODD"‘ csouu“"

| Highperformance

Uplo 40 MHz to Upto
25MHz 300 MHz B0MHz
Flash Flash, RAM Flash
1 KBto 256KB 16KB10512KB 8KB1o 512KB
Analogli0, ADC, PIM,ADC LSB, ENET
o MAC+PHY CAN,
LCD, UsB CAN, 5P, G A0 PSPl
Weasuremert, Motorcantrol, Mation control, Hil,
sensing, generéal digital power, industrial auternalion,
pumose lighting, ren. energy Smart gnd
$02510§200 $1.8510 52000 $1.0010$8.00

MPLs - Microprocessors

Fixedffioating
uploZ20 MHz

Flash
256KBto 3IMB

USB, ENET, FlexRay,
TuTer}P\WL

G, AN, LIN,
SPI, \76 EMF’
Safely,
Iransporfation,
indusinal &medical
$5.00t0$3000

ValueLineto
600 MHz
Perf. Lineto 1.5 GHz

Uplo 32 KBIID cache
256 KBL2 LPDDR,
DDR213 support
GEMAC, PGle+PHY,
SATAYPHY CAN,
USB+PHY, PRU

Industrial automation, deo, audo, voce, vision - Telecom, medical,

3)1] MHzto 1 5GHz
floating DSP +
wideo accelerators

L2 Ca:he mDDR,
tDDRa

GEMAC, sm, SPL
UPP PRU. PCIe20,
MeBSP Moas?

poriable dala lerminals, 'security, conferencing,
single-board computing | test & measuremel

$5.00t0 $50.00

$50010$20000

UpluWDGHz Up103'JU MHz
mutticore, ficed/ “+accelerator
floating + accelerators
Upto 4 MB SL2, Upto 320 KB RAM
JZKBL1L IMBL2 Upto 128KBROM
Rapid 0%, P, USE, ADC,
10100 MAC, @
hyoeion DORBIS MeBSP, SPI, %G
Portable audiohioice,
m\sswuncrmca\ fingerprint hmmelrr.s
base stations portable medical
$4010 20000 §1.9510$1000

Released Devices ...

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

MSP430 Released Devices

MSP430 Released Devices

300+ Ultra-Low Power Devices Starting @ $0.25USD
Featuring: Up to 256kB Flash, 18kB RAM, 25+ Package Options, Up to 113 pins, High integration

— Ultra-Low Power Performance — Analog Integration — Easy-to-Use —

MSP430
16-vitrisccpu | LO92 G2xx ag ﬁ%
oo 120
[we |

0.9V-1.65V Speed 16Mhz
All devices feature: | Speed 4Mhz [55 JFiasho.5-16ke
B-b ROM to 2kB RAM o 256B
RAM to 2kB GPIO 10-16 [usa |
GPIO 11
FSxx [] CC430
Speed 25Mhz Speed 20Mhz
Flash 8-256kB Flash 8-32kB
Flash 4-120kB 512kB coming RAM to 4kB
m RAM to Bk soon. GPIO 40
Flxx Speed 16Mhz GPIO 14-80 RAM to 18kB
FRAM m Speed BMhz Flash 1-120kB GPIO 32-83
100} Fiash 1-60ks RAM to 8kB
Speed 24Mhz RAM to 10kB GPIO 10-64
FRAM 4-16kB GPIO 1448
GPIO 14-28
Non-volatile
memory
| All Devices |
Value Line Parts...

I

MSP430G2xx Value Line Parts

Value Line Parts

Part Flash SRAM LEC L

Comp Temp
Family Number (KB) = GPIO Timers WDT 95:’:1[? (1I2CIsSPIN) s (rper
G2xx1 | G2x01 | 051 128 10 1 % Y
G2x21 e 128 10 1 ¥ ¥ i i =
G2x11 iz =8 10 1 ¥ . = Slope =
g ch
@ G2x31 1.2 128 10 1 Y i - Y ADE10 -
G2xx2 G2x02 1-8 256 16 1 Y Y = - - Captouch /O
G2x12 18 256 16 1 ¥ ¥ ¥ - Slepe | Captouch /O
- ach - -
Goxaz 18 56 16 1 ¥ ¥ ¥ Any | captoucn o
= e - Bch - .
52x52 1-8 256 16 1 ¥ ¥ v Abeqg | Captouch o
G2xx3 | G2x03 2438 2586.512 24 2 ol e = Captouch /O
G2x13 | 24,816 | 256512 | 24 2 ¥ Slope | Captouch O
Bch B =
.16 |25 24 -
G2x33 1-16 | 258512 | 24 2 ¥ 57 ¥ Ao | Captouch o
. G2x53 1-16 |256512| 24 2 Y Y Y Y A|:8)(t::hm Captouch /O

Power consumption @ 2.2V:
+ 0.1 JARAM retention

+ 0.4 pA Standby mode (VLO)

+ 0.7 JAreal-time clock mode

+ 220 pA/ MIPS active

+ Ultra-Fast Wake-Up From Standby Mode in <1 ps CPU ...

1-4 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

MSP430 CPU
FaN VAN
| RO /PC (Program Counter) ‘
0 . - | R1/ SP (Stack Pointer) |
¢ 100% code compatible with] —— ‘
earlier versions I S |
¢ 1MB unified memory map R4 R4 |
- No paging . : :: }
¢ Extended addressing modes | |5 & R7 &
- Page-free 20-bit reach s [re Re |5
« Improved code density & LRe R9 I
- Faster execution | :: ::: }
¢ Full tools support through Ri2 R12 \
IAR and CCS R13 R13 |
R14 R14 |
[Ri5 R15 \
N B
Memory Map ...
4]
Memory Map
Memory Map
MSP430G2553 shown
¢ Flash programmable via JTAG or OFFFFh| Interupt Vector Table
In-System (ISP) OFFEOh
¢ ISP down to 2.2V. Single-byte or FFDFh AL
Word 0C000h
¢ Interruptible ISP/Erase | |
¢ Main memory: 512 byte segments Inf &
(0-n). Erasable individually or all O Ooonl emery "
¢ Information memory: 64 byte
segments (A-D) i:[
Section A contains device-specific 03FFh RAM
calibration data and is lockable 0200h
¢ Programmable Flash Memory 01FFh 16-bit
Timing Generator 0100h Peripherals
8-bit
%I:I(:)n Periphtlerals
OFh 8-bit Special
Function
oh Registers
Peripherals ...

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-5

Introduction to Value Line

Value Line Peripherals

Value Line Peripherals

* General Purpose I/O
Independently programmable

= Any combination of input, output, and interrupt (edge
selectable) is possible

Read/write access to port-control registers is supported by
all instructions

Each I/O has an individually programmable pull-up/pull-down
resistor

Some parts/pins are touch-sense enabled (PinOsc)
* 16 bit Timer_A2 or A3
= 2/3 capture/compare registers
= Extensive interrupt capabilities
¢ WDT+ Watchdog Timer
= Also available as an interval timer
¢ Brownout Reset
Provides correct reset signal during power up and down
Power consumption included in baseline current draw

Peripherals ...

Value Line Peripherals

¢ Serial Communication
= USI with I12C and SPI support
= USCI with 12C, SPI and UART support
¢ Comparator_A+
Inverting and non-inverting inputs
= Selectable RC output filter
= Output to Timer_A2 capture input
Interrupt capability

¢ 8 Channel/10-bit 200 ksps SAR ADC
8 external channels (device dependent)
. Voltage and Internal temperature sensors
= Programmable reference

= Direct transfer controller send results to conversion memory
without CPU intervention

Interrupt capable
= Some parts have a slope converter

Board ...

1-6 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

LaunchPad Development Board

LaunchPad Development Board

USB Emulator

Connection ﬂ

Embedded Emulation

6-pin eZ430
- 512B RAM Connector
+ 2 Timer_A%¥s
+ 8 Ch. Comp_A+ — Crystal Pads
- 8 Ch. ADC10 Chip ‘
. uscl Pinouts

Py -

_ Part and Socket

p

P1.3 Button |:> B ot : Power Connector

LEDs and Jumpers £ E Reset Button

P1.0 & P1.6

Lab ...

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

1-8 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Lab 1: Download Software and Setup Hardware

Lab 1: Download Software and Setup Hardware

Objective

The objective of this lab exercise is to download and install Code Composer Studio, as well as
download the various other support documents and software to be used with the MSP430
LaunchPad. Then we will review the contents of the MSP430 LaunchPad kit and verify its
operation with the pre-loaded demo program. Basic features of the MSP430 LaunchPad running
the MSP430G2231 will be explored. Specific details of Code Composer Studio will be covered
in the next lab exercise. These development tools will be used throughout the remaining lab
exercises in this workshop.

Lab1: Hardware Setup

* Download and install tools
and documentation

* Review kit contents
» Connect hardware
+ Test preloaded software

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-9

Lab 1: Download Software and Setup Hardware

Procedure

Note:

If you have already installed CCSv5.3 or higher, please skip the CCS installation

procedure.

Download and Install Code Composer Studio 5.x

L.

Click the following link to be directed to the CCS download Wiki:

http://processors.wiki.ti.com/index.php/Download CCS

You can use either the web installer or offline installer. Using the web installer will limit
your download to only the components that you select. The offline installer contains all
the possible content, so will be much larger than the web installation. The following steps
will cover the web installation method. Click the web installer link as shown below:

CCSv5.3.x

9.3.0 5.3.0.00090 |Nov 26, Web
2012 Installers:
Windows &
Linux e

Off-line

Installers:
Windows &
Linux &

This will direct you to the “my.TI Account” where you will need to log in (note you must
have a TI log in account to proceed). Once you agree to the export conditions you will
either be e-mailed a link or be directed to a web page with the link. Click on the link.

Be sure to disconnect any evaluation board that you have connected to your PCs USB
port(s). When you are prompted to run or save the executable file, select Run.

When the installation program runs, accept the license agreement and click Next.

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

http://processors.wiki.ti.com/index.php/Download_CCS

Lab 1: Download Software and Setup Hardware

6. When the Choose Installation Location dialog appears, we suggest that you install Code
Composer in the default C: /t1 folder. Click Next.

Choose Installation Location

Tty
Where should Code Compaser Studio v5 be installed? , .

To change the main installation folder dick the Browse button.

~CCS Install Folder
C:\t

[1nstall CCs plugins into an existing Edipse installation

Texas Instruments

< Back.] [MNext =] [Cancel

7. In the Setup Type dialog, select Custom and click Next.

Code Composer Studio v5 Setup I EE
Setup Type !
Select the setup type that best suits your needs.
Click the type of Setup vou prefer.
e —Description -
Complete Feature Set Select this option if you wish to
customize the individual features that
are installed.
Texas Instruments
< Back] [Mext =] [Cancel

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-11

Lab 1: Download Software and Setup Hardware

8. In the Select Processor Support dialog, you will select the devices that Code Composer
will support. More devices mean a larger installation and a longer installation time. The
free 16kb code size limited version is available if you only select MSP430. If you are also
attending another workshop, like the Stellaris LaunchPad workshop, you should also se-
lect Stellaris Cortex M MCUSs. At a minimum, select MSP430 Low Power MCUs and

click Next.

Code Composer Studio w5 Setup

Processor Support
Select Processor Architectures to be installed

+ Description

Processor Architectures
induded: M3P430

[c28x 32-it Real-time MCUs

O stellaris Cortex M MCUs

O cortex-rar McUs

D AMx Cortex-A and ARMS processors
D Céx DSP + ARM processors

O pavind video Processars

[~ Select Al

Download size: 339 ME. Install size: 1525.5MB.

Texas Instruments

’ < Back I [Next =] [Cancel

9. When the Select Components dialog appears, click Next.

10. When the Select Emulators dialog appears, unselect MSP430 Parallel Port FET (un-
less you actually have one) and click Next.

Code Composer Studio v5 Setup

Select Emulators
Select the emulators you want installed and deselect emulators you want to
leave out.
— Description -
=] JTAG Emulator Support 3
: ; : System driver for the MSP430 Parallel
B }15P430 Parall=l Port FET Port interface (MSP-FFET430PIF)
M3P430 USE FET
Download size: 339 ME. Install size: 1525.5 MB.
Texas Instruments
< Back I ’ Mext =] [Cancel

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Lab 1: Download Software and Setup Hardware

11. The CCS Install Options dialog summarizes the installation. In our case, the total down-
load size will be 339MB. Click Next to start the download/installation process. The in-
stallation time will depend greatly on your download speed. When you are done with the
installation, do not start Code Composer ... we’ll cover the startup and licensing issues in
a later module.

Download and Install Workshop Lab and Solution Files

12. Click the following link to be directed to the MSP430 LaunchPad Workshop download
Wiki and save the MSP430 LaunchPad_Workshop.exe file to your desktop:

http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430 LaunchPad Wo
rkshop/MSP430 LaunchPad Workshop.exe

13. Double-click the MSP430 LaunchPad Workshop.exe file to install the labs and solutions
for this workshop. Once installed, you can delete the installation file from the desktop.
The workshop files will be installed in C:\MSP430 LaunchPad and the directory
structure is as follows:

=l | M5P430_LaunchPad
=l) Labs

4 [Lab2
4 () Lab3
[) Lab4g
| Labs
H () Lab&
) Lab7
) Labg

) Lab10a

I Lab10b

[Lab10c
=) Solutions
() Lab2
I Lab3
| Lab4
| Labs
|2 Lab&
| Lab7
| Laba

| Lab10oc

| Workspace

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-13

http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/MSP430_LaunchPad_Workshop.exe
http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/MSP430_LaunchPad_Workshop.exe

Lab 1: Download Software and Setup Hardware

Capacitive Touch Software

14. Download and install the following Capacitive Touch support files:
e BoosterPack User’s Guide - http://www.ti.com/lit/pdf/slau337

e Demo code, GUI, etc - http://www.ti.com/litv/zip/slac490

e Capacitive Touch Library - http://www.ti.com/litv/zip/slac489

e CT Lib Programmer’s Guide - http://www.ti.com/litv/pdf/slaa490a

e Getting Started with Capacitive Touch - http://www.ti.com/lit/slaa491

Download Supporting Documents and Software

15. Next, download and save the following documents and software to your computer:

e LaunchPad User’s Guide: http://www.ti.com/lit/slau3 18
e MSP430x2xx User’s Guide: http://www.ti.com/lit/slau144
e C Compiler User’s Guide http://www.ti.com/lit/slaul32
e MSP430G2xx code examples: http://www.ti.com/lit/zip/slac463

e Temperature demo source and GUI: http://www.ti.conV/lit/zip/slac435

e A copy of the workshop workbook pdf: http://www.ti.com/launchpad-workshop

Additional information: www.ti.com/launchpadwiki
www.ti.com/launchpad
www.tl.com/captouch

Third Party Websites

16. There are many, many third party MSP430 websites out there. A couple of good ones are:

e http://www.joesbytes.com
e http://www.430h.com

1-14 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

http://www.ti.com/lit/pdf/slau337
http://www.ti.com/litv/zip/slac490
http://www.ti.com/litv/zip/slac489
http://www.ti.com/litv/pdf/slaa490a
http://www.ti.com/lit/slaa491
http://www.ti.com/lit/slau318
http://www.ti.com/lit/slau144
http://www.ti.com/lit/slau132
http://www.ti.com/lit/zip/slac463b
http://www.ti.com/lit/zip/slac435
http://www.ti.com/launchpad-workshop
http://www.ti.com/launchpadwiki
http://www.ti.com/launchpad
http://www.ti.com/captouch
http://www.joesbytes.com/
http://www.43oh.com/

Lab 1: Download Software and Setup Hardware

MSP-EXP430G2 LaunchPad Experimenter Board

The MSP-EXP430G2 is a low-cost experimenter board, also known as LaunchPad. It
provides a complete development environment that features integrated USB-based emulation
and all of the hardware and software necessary to develop applications for the MSP430G2xx
Value Line series devices.

17. Look on the side of your LaunchPad kit and find the revision number. At the time this
workshop was written, version 1.5 is the current version. The steps in this workshop will
cover both the 1.4 and 1.5 revisions.

Open the MSP430 LaunchPad kit box and inspect the contents. The kit includes:

LaunchPad emulator socket board (MSP-EXP430G2)
Mini USB-B cable

In the Revision 1.5 kit...
A MSP430G2553 (pre-installed and pre-loaded with demo program) and
a MSP430G2452

In the Revision 1.4 kit...
A MSP430G2231 (pre-installed and pre-loaded with demo program) and
a MSP430G2211

In the Revision 1.5 Kkit...
10-pin PCB connectors are soldered to the board and two female also
included

In the Revision 1.4 kit...
Two male and two female 10-pin PCB connectors

32.768 kHz micro crystal

Quick start guide and two LaunchPad stickers

Hardware Setup

The LaunchPad experimenter board includes a pre-programmed MSP430 device which is
already located in the target socket. When the LaunchPad is connected to your PC via USB,
the demo starts with an LED toggle sequence. The on-board emulator generates the supply
voltage and all of the signals necessary to start the demo.

18. Connect the MSP430 LaunchPad to your PC using the included USB cable. The driver
installation starts automatically. If prompted for software, allow Windows to install the
software automatically.

19. At this point, the on-board red and green LEDs should toggle back and forth. This lets us
know that the hardware is working and has been set up correctly.

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-15

Lab 1: Download Software and Setup Hardware

Running the Application Demo Program

The pre-programmed application demo takes temperature measurements using the internal
temperature sensor. This demo exercises the various on-chip peripherals of the MSP430
device and can transmit the temperature via UART to the PC for display.

20.

21.

22.

23.

24.

25.

Press button P1.3 (lower-left) to switch the application to the temperature measurement
mode. A temperature reference is taken at the beginning of this mode and the LEDs on
the LaunchPad signal a rise or fall in temperature by varying the brightness of the on-
board red LED for warmer or green LED for colder.

Rub your fingertip on your pants to warm it up and place it on the top of the MSP430
device on the LaunchPad board. After a few seconds the red Led should start to light,
indicating a temperature rise. When the red LED is solidly lit, remove your finger and
press button P1.3 again. This will set the temperature reference at the higher temperature.
As the part cools, the green LED will light, indicating decreasing temperature. Bear in
mind that ambient temperatures will affect this exercise.

Determine the COM port used for the board by clicking (in Windows XP) Start > Run
then type devmgmt.msc in the box and select OK. (In Windows 7, just type
devmgmt.msc into the Search programs and files box)

In the Device Manager window that opens, left-click the symbol left of
Ports (COM & LPT) and record the COM port number for
MSP430 Applications UART (COMxx): . Close the Device Manager.

Next we will be using the GUI to display the temperature readings on the PC. Be sure
that you have installed the downloaded GUI source files (LaunchPad Temp GUI.zip).

Start the GUI by clicking on LaunchPad_Temp GUlLexe. This file is found under
<Install Directory>\LaunchPad Temp GUI\application.window. You may have to select
Run in the “Open File — Security Warning” window.

It will take a few seconds for the GUI to start. Be sure that the MSP430 application is
running (i.e. button P1.3 has been pressed). In the GUI, select the COM port found in
step 16 and press Enter (this is a DOS window; your mouse will not work in it). The
current temperate should be displayed. Try increasing and decreasing the temperature on
the device and notice the display reading changes. Note that the internal temperature
sensor is not calibrated, so the reading displayed will not be accurate. We are just
looking for the temperature values to change.

Close the temperature GUI .

ST

You’re done.

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Code Composer Studio

Introduction

This module will cover a basic introduction to Code Composer Studio. In the lab exercise we
show how a project is created and loaded into the flash memory on the MSP430 device.

Additionally, as an optional exercise we will provide details for soldering the crystal on the

LaunchPad.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

I: Capacitive Touc

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Module Topics

Module Topics

Code Composer Studio 2-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 2-2
COde COMPOSET STUTNOooccuveeeieeiie ettt e et et e e b e st e sbeessbeeesbeessbeeesseessbeeesseensseensseenens 2-3
Lab 2: Code COMPOSET STUATOc..cocveeeieiciii ettt et et eetaeetaeetseessaeenneeens 2-7

[0)0] 1015 A RSP PUURRPR 2-7
PTOCEAULIE ...ttt ettt s a e b et e et et eateea e e sbe e b e et e enteenaesaees 2-8
Optional Lab Exercise — CryStal OSCIIIALOFcccccceriiiiiiiiiiiiiieieeee et 2-14
L0 10} 115 AR 2-14
PIOCEAULIE ...ttt ettt ettt bbbt bttt ettt b e s bt bttt e e e b e 2-14

2-2 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Code Composer Studio

Code Composer Studio

What is Code Composer Studio?

*

*

*

Integrated development environment for Tl embedded processors
= Includes debugger, compiler, editor, simulator, OS...
The IDE is built on the Eclipse open source software framework
Extended by Tl to support device capabilities
CCSv5.x is based on “off the shelf” Eclipse (version 3.7 in CCS 5.3)

Future CCS versions will use unmodified versions of Eclipse
Tl contributes changes directly to the open source community

= Drop in Eclipse plug-ins from other vendors or take Tl tools and drop them
into an existing Eclipse environment

Users can take advantage of all the latest improvements in Eclipse
Integrate additional tools
= 08S application development tools (Linux, Android...)
Code analysis, source control...

Linux Support soon . Code Composer™ Studio

Low cost! $445 or $495 -

Py —
N -l ==
- v tw

h, |

User Interface Modes. ..

User Interface Modes

¢ Simple Mode
= By default CCS will open in simple/basic mode
= Simplified user interface with far fewer menu items, toolbar buttons
= Tl supplied Edit and Debug Perspectives
4 Advanced Mode
= Uses default Eclipse perspectives
= Very similar to what exists in CCSv4

= Recommended for users who will be integrating other Eclipse based
tools into CCS

Possible to switch Modes

= Users can decide that they are ready to move from simple to advanced
mode or vice versa

Common Tasks.'..

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Code Composer Studio

Common tasks

¢ Creating New Projects
Very simple to create a new project for a device using a template
¢ Build options

Many users have difficulty using the build options dialog and find it
overwhelming

Updates to options are delivered via compiler releases and not
dependent on CCS updates

¢ Sharing projects

Easy for users to share projects, including working with version
control (portable projects)

Setting up linked resources has been simplified

Workspaces and Projects. ..
13

Workspaces and Projects

Workspace Project Source files
Project 1 Link | source files Code and Data
Project 2 Header files Header fi|es
Project3 Library files Declarations/Defines
Settings and preferences Build and tool settings | = -
i Library files
|
Code and Data
A workspace contains A prog)eq}dconaainsl
your seftings and ottings, as well as
preferences, as well as links t% vour input
links to your projects. files y P
R‘eéﬁlgﬁ(gsg{:eechserg?g Deleting files from the
the links, not the files workspace deletes the
’ links, not the files
Project Wizard...

16

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Code Composer Studio

Project Wizard

&% New CCS Project

Project
Output type | Evecutabie

7] Use defult location

Add Files...

17

| Project Explorer = Sk
. e
0 New
= Copy
Paste
® Delete
Source
Move..

Rename...

iag Import...

4 Bport..
Build Project
Clean Project
Refresh
Close Project
Debug As
Team

Compare With

Source

Refactor

Show Build Settings.
Properties

‘Add Files to Project... 1]

Adding Files to Projects

T = 0 |[@ hello.c &2

Restore from Local History...

Run C/Cs.+ Code Analysis

Alt+Enter

Cri=C

@ File Operation -
Select hw s houid b imparted o the resect:
Copy fhes
® Link to s
| Creste link locations relstive te: | PROJECT_LOC
- Drop Sezings
2 [Cancel

4 Add Files to Project allows
users to control how the file
is added to the project

Linking Files using built-in
macros allows easy creation
of portable projects

IAR Kickstart...

18

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Code Composer Studio

IAR Kickstart

1AR Embedded Workbench IDE

Fle Edit Vew Project Emuator Tools Window Hep

D@ S B 2 ¥uzEe @ T & D

[Debug =]
B

| e @maine
| L@ BvLo_Libranys43
L& Caouput

o 4kB Compiler =
¢ Supports all MSP430 variants
¢ Assembler/Linker -
+ Editor S

¢ Debugger

Lab2...

2-6 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Lab 2: Code Composer Studio

Lab 2: Code Composer Studio

Objective

The objective of this lab is to learn the basic features of Code Composer Studio. In this exercise
you will create a new project, build the code, and program the on-chip flash on the MSP430
device. An optional exercise will provide details for soldering the crystal on the LaunchPad.

Since none of the Value Line MSP430 devices have more than 16K of flash memory, the free,
16K license of Code Composer Studio can be considered fully functional. If you want to work
with larger MSP430 (or other) devices, you’ll need to purchase a license.

Lab2: Code Composer Studio

*Lab
*Re-create temperature sense demo
‘Program part and test
*Close Grace pane
*Optional
* Add microcrystal to board
* Program part to test crystal

. o
%2 LaunchPad *

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-7

Lab 2: Code Composer Studio

Procedure

Note: CCS5.x should have already been installed during the Lab1 exercise.

Start Code Composer Studio and Open a Workspace

1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or
selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt
you for the location of a workspace folder. Browse to:

C:\MSP430 LaunchPad\WorkSpace and do not check the “Use this as the default ...”
checkbox. Click OK.

Select a workspace

Code Composer Studio stores your projects in a felder called a workspace. |
Choose a workspace folder to use for this session.

Workspace: CA\MSP430_LaunchPad\WorkSpace -

[] Use this as the default and do not ask again

[ok][concet |

This folder contains all CCS custom settings, which includes project settings and views
when CCS is closed, so that the same projects and settings will be available when CCS is

opened again. It also contains a list of your current projects. The workspace is saved
automatically when CCS is closed.

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Lab 2: Code Composer Studio

2. The first time CCS opens, the “License Setup Wizard” should appear. In case you started
CCS before and made the wrong choices, you can open the wizard by clicking Help >
Code Composer Studio Licensing Information then click the Upgrade
tab and the Launch License Setup...

«+ License Setup Wizard l=1=] =

Select a license option

Select one of the following license options:

) ACTIVATE
- Select this if you have an activation code, license file or license server

) EXTENSION - Your current license has expired. Choose this option to extend the
Code Composer Studio Evaluation period for 30 more days.
(Note: This can only be perfermed once. Internet Access is required.)

") FREE LICENSE - for use with
- XD5100 JTAG ernulators
- Onboard emulators on EVMs/D5Ks/5tellaris/eZdsp/MAVRK development kits. Does not support 7430,
- Linux/Android Application Development using GDB
- Simulators

@ CODE SIZE LIMITED (MSP430)
- Free 16KB code size limited tools for M5P430

@) < Bacl Net > [Finisn 1[cCancer |

Okl

If you’re planning on working with the LaunchPad and value-line parts only, the
CODE SIZE LIMITED version of Code Composer with its 16kB code size limit will
fully support every chip in the family.

If you are attending another workshop in conjunction with this one, like the Stellaris
LaunchPad workshop, you can return here and change this to the FREE LICENSE
version. This license is free when connected to the Stellaris LaunchPad (and many other
boards), but not the MSP430 LaunchPad board. When not connected to those boards, you
will have 30 days to evaluate the tool, but you can extend that period by 90 days.

Select the CODE SIZE LIMITED radio button and click Finish.

You can change your CCS license at any time by following the steps above.

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-9

Lab 2: Code Composer Studio

3. You should now see the open TT Resource Explorer tab openin Code Composer.

The Resource Explorer provides easy access to code examples, support and Grace2™,
Grace2™ will be covered in a later module. Click the X in the tab to close the
Resource Explorer.

At this point you should see an empty CCS workbench. The term workbench refers to
the desktop development environment. Maximize CCS to fill your screen.

m— = = | D
€C5 Edit - Code Composer Studio .
File Edit View MNavigate Project Run Scripts Window Help
s T S & [CCs |
[Project Bxplorer 32| = & ¥ = O =
[£: Problems &3 S|
0 tems
Description = Resource Path Location Type
1* Licensed

The workbench will open in the “CCS Edit” view. Notice the tab in the upper right-hand
corner. A perspective defines the initial layout views of the workbench windows,
toolbars, and menus which are appropriate for a specific type of task (i.e. code
development or debugging). This minimizes clutter to the user interface. The “CCS
Edit” perspective is used to create or build C/C++ projects. A “CCS Debug” perspective
will automatically be enabled when the debug session is started. This perspective is used
for debugging your projects. You can customize the perspectives and save as many as
you like.

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Lab 2: Code Composer Studio

Create a New Project
5. A project contains all the files you will need to develop an executable output file (.out)
which can be run on the MSP430 hardware. To create a new project click:
File = New > CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c) andthen click Finish.

¥+ New CCS Project CRES

CCS Project —
Create a new CC5 Project. ; S

Project name: Temperature_Sense_Demo

Output type: | Executable v]

[7] Use default location
Location: C:\MSP£30_LaunchPadhLabs\Lab2\Project-TS
Device
Family [MsP430 -
Variant: 2553 v [Mspa30G2553 -
Connection: [TIMSP430 USBI. [Defaul] -

» Advanced settings

* Project templates and examples

type filter text Creates an empty project fully initialized ~ »
= for the selected device. The project will
4 [[=] Empty Projects * | contain an empty 'main.c’ source-file.

& Empty Project
|z Empty Project (with main.c)
et Empty Assembly-only Project
|5 Empty Grace (MSP430) Project
|z Empty RTSC Project

4 |.=| Basic Bxamples
|5 Blink The LED = .-

m

@ < Back Next > [Fnish][Cancel |

\

6. Code Composer will add the named project to your workspace and display it in the
Project Explorer pane. Based on your template selection, it will also add a file
called main.c and open it for editing. Click on Temperature Sense Demo in the
Project Explorer pane to make the project active. Click on the * left of the project name
to expand the project.

@ CCS Edit - Temperature_Sense_demo/main.c - Code Composer Studio

File Edit View Mavigate Project Run Scripts Window Help

il iR it i P E G-
[Project Explarer 52 = G==g'> ~ = 0| [main.c 5

¥ main.c

[Includes
g Ink_msp430g2553.cmd
@ main.c

[#] MSP430G2553.ccxml [Active /Default]

void main (wvoid)

[O BT T

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-11

Lab 2: Code Composer Studio

Source Files

7. Next, we will add code to main.c. Rather than create a new program, we will use the
original source code that was preprogrammed into the MSP430 device (i.e. the program
used in Labl).

Click File - Open File..and navigate to
C:\MSP430 LaunchPad\Labs\Lab2\Files.

Open the Temperature Sense Demo.txt file. Copy and paste its contents into
main.c, erasing the original contents of main. c, then close the
Temperature_Sense Demo.txt file.

Near the top of the file, note the statement
#include “msp430g2553.h”

If you are using an earlier revision of the board, change this statement to:
#include “msp430g2231.h"

Be sure to save main.c by clicking the Save button &l in the upper left.

Build and Load the Project

8. CCS can automatically save modified source files, build the program, open the debug
perspective view, connect and download it to the target (flash device), and then run the
program to the beginning of the main function.

Click on the “Debug” button ¥ . When the Ultra-Low-Power Advisor (ULP Advisor)
appears, click the Proceed button. We’ll take a look at the MSP430°s ultra-low-power
abilities in a later lab.

When the download completes, CCS is in the Debug perspective. Notice the Debug tab
in the upper right-hand corner indicating that we are now in the “CCS Debug” view.
Click and drag the perspective tabs to the left until you can see all of both tabs. The
program ran through the C-environment initialization routine in the runtime support
library and stopped at main() in main.c.

2-12 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Lab 2: Code Composer Studio

Debug Environment

9. The basic buttons that control the debug environment are located in the top of the Debug
pane. If you ever accidentally close the pane, your Debug controls will vanish. They can
be brought back by clicking View = Debug on the menu bar.

35 Debug 52 O] @ | 2 33 2 d-& e~ =0

= k¢ Temperature_sense_Demo [Code Composer Studio - Device Debugging]
=g TI MSP430 USB1,MSP430 (Suspended)
= main(at main, 24 0xFE00
= c_intd0_noexit() 0xFC0 {the entry point was reached)

Hover over each button to see its function.

10. At this point your code should be at the beginning of main(). Look for a small blue arrow
left of the opening brace of main() in the middle window. The blue arrow indicates where

the Program Counter (PC) is pointing to. Click the Resume button U¥ to run the code.
Notice the red and green LEDs are toggling, as they did before.

11. Click Suspend . The code should stop somewhere in the PreApplicationMode()
function.

12. Next single-step . (Step Into) the code once and it will enter the timer ISR for
toggling the LEDs. Single-step a few more times (you can also press the F5 key) and
notice that the red and green LEDs alternate on and off.

13. Click Reset CPU - and you should be back at the beginning of main().

Terminate Debug Session and Close Project

14. The Terminate button will terminate the active debug session, close the debugger and
return CCS to the “CCS Edit” perspective. It also sends a reset to the LaunchPad board,
and you will see the LEDs flashing again. Click the Terminate button: C

15. Next, close the project by right-clicking on Temperature Sense Demo in the
Project Explorer window and select Close Project.

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-13

Optional Lab Exercise — Crystal Oscillator

Optional Lab Exercise — Crystal Oscillator

Objective

The MSP430 LaunchPad kit includes an optional 32.768 kHz clock crystal that can be soldered
on the board. The board as-is allows signal lines XIN and XOUT to be used as multipurpose
I/Os. Once the crystal is soldered in place, these lines will be a digital frequency input. Please
note that this is a delicate procedure since you will be soldering a very small surface mount
device with leads 0.5mm apart on to the LaunchPad.

The crystal was not pre-soldered on the board because these devices have a very low number of
general purpose I/O pins available. This gives the user more flexibility when it comes to the
functionality of the board directly out of the box. It should be noted that there are two 0 ohms
resistors (R28 and R29) that extend the crystal pin leads to the single-in-line break out connector
(J2). In case of oscillator signal distortion which leads to a fault indication at the basic clock
module, these resistors can be used to disconnect connector J2 from the oscillating lines.

Procedure

Solder Crystal Oscillator to LaunchPad

1. Very carefully solder the included clock crystal to the LaunchPad board. The crystal
leads provides the orientation. They are bent in such a way that only one position will
have the leads on the pads for soldering. Be careful not to bridge the pads. The small size
makes it extremely difficult to manage and move the crystal around efficiently so you
may want to use tweezers and tape to arranging it on the board. Be sure the leads make
contact with the pads. You might need a magnifying device to insure that it is lined up
correctly. You will need to solder the leads to the two small pads, and the end opposite
of the leads to the larger pad.

Click this link to see how one user soldered the crystal to their board:

http://justinstech.org/2010/07/msp430-launchpad-dev-kit-how-too/

Getting Started with the MSP430 LaunchPad - Code Composer Studio

http://justinstech.org/2010/07/msp430-launchpad-dev-kit-how-too/

Optional Lab Exercise — Crystal Oscillator

Verify Crystal is Operational

2. Create a new project by clicking File - New > CCS Project and then make the

selections shown below. Again, if you are using the MSP430G2231, make the proper

choices. Make sure to select the Empty Project
Finish.

(with main.c) template. Click

wr Mew CCS Project

CCS Project

Create a new CC5 Project.

Project name: Verify_Crystal

Output type: ’ Executable

)

[T Use default location

Device

Location: C:\MSP430_LaunchPad\Labs\Lab2\Project-VC

Browse...

Family: [MsP430

Variant: 2553 -

MSP430G2553 -

Connection: ’TI MSP430 USBL [Default]

» Advanced settings

* Project templates and examples

type filter text

4 | =| Empty Projects -
&y Empty Project
| &y Empty Project (with main.c)

&y Empty Assembly-only Project |5
&y Empty Grace (M5P430) Project
|y Empty RTSC Project
4 | =| Basic Examples
|5 Blink The LED -

MNext =

Creates an empty project fully initialized =«
for the selected device. The project will
contain an empty 'main.c’ source-file,

Finish] ’ Cancel

erasing all the previous contents of main.c. Then close the Verify Crystal.txt

statement near the top of the code and replace it with #include <msp430g2231.h>

3. Click File = Open File.. and navigate to
C:\MSP430 LaunchPad\Labs\Lab2\Files.
Open the Verify Crystal.txt file. Copy and paste its contents into main.c,
file — it is no longer needed.

4. Ifyou are using the MSP430G2231, find the #include <msp430g2553.h>
Save your changes to main.c.

5.

Click the “Debug” button g When the Ultra-Low-Power Advisor (ULP Advisor)
appears, click the Proceed button. The “CCS Debug” view should open, the program will
load automatically, and you should now be at the start of main ().

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Optional Lab Exercise — Crystal Oscillator

6. Run the code. If the crystal is installed correctly the red LED will blink slowly. (It
should not blink quickly). If the red LED blinks quickly, you’ve probably either failed to
get a good connection between the crystal lead and the pad, or you’ve created a solder
bridge and shorted the leads. A good magnifying glass will help you find the problem.

Terminate Debug Session and Close Project

7. Terminate the active debug session using the Terminate button B This will close
the debugger and return CCS to the “CCS Edit” view.

8. Next, close the project by right-clicking on Verify Crystal inthe Project
Explorer pane and select Close Project.

ST

You’re done.

2-16 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Initialization and GPIO

Introduction

This module will cover the steps required for initialization and working with the GPIO. Topics
will include describing the reset process, examining the various clock options, and handling the
watchdog timer. In the lab exercise you will write initialization code and experiment with the
clock system.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

I: Capacitive Touc

Reset State ...
21

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-1

Module Topics

Module Topics

Initialization and GPIO 3-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 3-2
Tnitialization ARA GPIOccoouueiiiiiieeee ettt 3-3

Reset and Software INTtIAlIZAtIONeiiiiiiiiiiiiiiece et e et e e e e e e e e e e e s eenaaaeeeeeeeean 33
(0] 10 T0) [] 1<) 4 PO USRS RR 3-4
G2xxX - No Crystal Required - DCOccouiiiiiiiiiiiiieeie ettt ete et iee e eaee st eeaeeetaeesaeenees 3-4
Run Time Calibration 0f the VLOooooiiiiiee e e 3-5
SYSTEM MOCLK & VCC 1.ttt ettt ettt et e ht e st e bt e st e e bt e sabeesateesabeebeeas 3-5
1] T Lo e 111 0TS, oSSR URRTI 3-6
Lab 3: Initialization and GPILOcccooeooiiieeeeeeeeeeeee e e et 3-7
L0 10} 1< 15 LSRR TTSURRS 3-7
PIOCEAUIE ... e ettt e e e e et e e e eetaeeeeetaeeeeeaneeeeenneeeeeareeeenns 3-8

3-2 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Initialization and GPIO

Initialization and GPIO

Reset and Software Initialization

System State at Reset

¢ At power-up (PUC), the brownout circuitry holds device in reset until
Vcc is above hysteresis point

RST/NMI pin is configured as reset

I/O pins are configured as inputs

Clocks are configured

Peripheral modules and registers are initialized (see user guide for
specifics)

Status register (SR) is reset

Watchdog timer powers up active in watchdog mode

¢ Program counter (PC) is loaded with address contained at reset vector
location (OFFFEhR). If the reset vector content is OFFFFh, the device will
be disabled for minimum power consumption

* ¢ 0

* o

SW Init ...
22

Software Initialization

After a system reset the software must:

¢ Initialize the stack pointer (SP), usually to the top of
RAM

¢ Reconfigure clocks (if desired)

¢ Initialize the watchdog timer to the requirements of
the application, usually OFF for debugging

¢ Configure peripheral modules

Clock System ...
23

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-3

Initialization and GPIO

Clock System

Clock System

¢ Very Low Power/Low Frequency VLO
Oscillator (VLO)*
¢ 4 — 20kHz (typical 12kHz) Mi:_-ltPuls ' H/;Cl_-Kh |
& 500nA standby = eripherals
¢ 0.5%/ C and 4%/Volt drift
¢ Not in ’21x1 devices OSC_Fault MCLK
¢ Crystal oscillator (LFXT1) = g CPU
¢ Programmable capacitors
¢ Failsafe OSC_Fault
+ Minimum pulse filter 18“(:"5'2 > f,rrfp"htrals
¢ Digitally Controlled Oscillator
(DCO) 0
n PUC, MCLK and SMCLK are
¢ 0-to-16MHz sourced from DCOCLK at ~1.1 MHz.

ACLK is sourced from LFXT1CLK in
LF mode with an internal load
capacitance of 6pF. If LFXT1 fails,
ACLK defaults to VLO.

¢ + 3% tolerance
¢ Factory calibration in Flash

* Not on all devices. Check the datasheet DCO ...

24

G2xxx - No Crystal Required - DCO
G2xxx - No Crystal Required DCO

DCO Calibration Data (provided from factory in flash info memory segment A)
DCO Frequency Calibration Register Size Address
1 MHz CALBC1_1MHz byte 010FFh
CALDCO_1MHz byte 010FEh
8 MHz CALBC1_8MHz byte 010FDh
CALDCO_8MHz byte 010FCh
12 MHz CALBC1_12MHz byte 010FBh
CALDCO_12MHz byte 010FAh
16 MHz CALBC1_16MHz byte 010F9h
CALDCO_16MHz byte 010F8h
// Setting the DCO to IMHz
if (CALBCl_lMHZ ==0xFF || CALDCO_lMHZ == 0XFF)

while(1l) ;
BCSCTL1 = CALBCl_1MHZ ;
DCOCTL = CALDCO_1MHE ;

// Erased calibration data? Trap!
// Set range
// Set DCO step + modulation

& G2xx1 devices have 1MHz DCO constants only. Higher frequencies must be

manually calibrated

& G2xx2 & G2xx3 (like the G2553) have all 4 constants + calibration values for the
ADC & temperature sensor

VLOCAL ...

23

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Initialization and GPIO

Run Time Calibration of the VLO

Run Time Calibration of the VLO

Calibrated 1 MHz DCO

TAR
i f, o = 8MHz/Counts ! v
| [— CCRx

ACLK/8 from VLO

Calibrate the VLO during runtime

Clock Timer_A runs on calibrated 1MHz DCO
Capture with rising edge of ACLK/8 from VLO
fyLo = 8MHz/Counts

Code library on the web (SLAA340)

L R IR R R 4

MCLK & Vcc ...

26

System MCLK & Vcc

System MCLK & Vcc

A
Legend:
16 MHz
y Supply voltage range,
w 7 during flash memory
= y programming
] 12 MHz ;
oy
€
: / Supply voltage range
] during program execution
w
§ emnz
2
5]
18V 22V 27V 33V 36V

Supply Voltage -V

4 Match needed clock speed with required Vecc to achieve the lowest power

External LDO regulator required

4 Unreliable execution results if Vec < the minimum required for the selected frequency
@ All G2xxx device operate up to 16 MHz

WDT failsafe ...
27

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Initialization and GPIO

Watchdog Timer

Watchdog Timer Failsafe Operation

¢ If ACLK / SMCLK fail, clock
source = MCLK

(WDT+ fail safe feature) o
¢ If MCLK is sourced from a LK
crystal, and the crystal A
fails, MCLK = DCO T Fail.Safe
(XTAL fail safe feature) MC'—""’{ Logic
..... I
SMCLK—»{1
ACLK—»{ 1

WDTSSEL A EN WDTHOLD

WDT clock source ...
28

Watchdog Timer Clock Source

WDTCTL (16-Bit)

WDTHOLD
WDTNMIES

WDTNMI

Clock — MCLK Active

WDTTMSEL » Request —> SMCLK Active
WDTCNTCL — Logic |, acikActive
WDTSSEL

WDTIS1

WDTISO

¢ Active clock source cannot be disabled (WDT mode)
¢ May affect LPMx behavior & current consumption
¢ WDT(+) always powers up active

Lab ...
29

3-6 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

Lab 3: Initialization and GPIO

Objective

The objective of this lab is to learn about steps used to perform the initialization process on the
MSP430 Value Line devices. In this exercise you will write initialization code and run the device
using various clock resources.

Lab3: Initialization

» Write initialization code

* Run CPU on MCLK sourced by:
+VLO
» 32768Hz crystal
- DCO

» Program part

» Observe LED flash speed

! 2
¥ INSTRUMENTS

7 s
W

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-7

Lab 3: Initialization and GPIO

Procedure

Create a New Project

1. Create a new project by clicking:
File = New = CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to select the Empty Project (with main.c)template, and then click

Finish.
“
% New CCS Project CIR
CCS Project — g
Create a new CCS Project.
Project name: Lab3
Output type: | Executable vl

[7] Use default location

Location: C:\MSP430_LaunchPad\Labs\Lab3\Project

Device

Family: | MSP430 -
Variant: 2553 * | M5P430G2553 v]
Connection: [T[MM5P430 LUSEL [Default] v]

b Advanced settings

* Project templates and examples

type filter text Creates an empty project fully initialized =«
for the selected device. The project will
contain an empty ‘main.c’ source-file.

4 E Empty Projects

[\ [Empty Project

[Empty Project (with main.c)

[Empty Assembly-only Project

|/ [Empty Grace (MSP430) Project
[E Empty RTSC Project

4 ||=| Basic BExamples

[& Blink The LED - -

| »

m

@ < Back Next > | Finsh || Cancel

3-8 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

Source File

2. In the main.c editing window, replace the existing code with the following code. Again, if
you are using the MSP430G2231, use that include header file. The short #ifdef structure
corrects an inconsistency between the 2231 and 2553 header files. This inconsistency
should be corrected in future releases. Rather than typing all the following code, you can
feel free to cut and paste it from the workbook pdf file.

#include <msp430g2553.h>

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERAL VECTOR
#define TIMERO A0 VECTOR TIMERAO VECTOR
#endif

void main (void)
{

// code goes here

Running the CPU on the VLO

We will initially start this lab exercise by running the CPU on the VLO. This is the slowest clock
which runs at about 12 kHz. So, we will visualize it by blinking the red LED slowly at a rate of
about once every 3 seconds. We could have let the clock system default to this state, but instead
we’ll set it specifically to operate on the VLO. This will allow us to change it later in the
exercise. We won’t be using any ALCK clocked peripherals in this lab exercise, but you should
recognize that the ACLK is being sourced by the VLO.

3. In order to understand the following steps, you need to have the following two resources
at hand:
e MSP430G2553.h header file — search your drive for the msp430g2553.h
header file and open it (or msp430g2231.h). This file contains all the register
and bit definitions for the MSP430 device that we are using.

e MSP430G2xx User’s Guide — this document (slaul44h) was downloaded in
Labl. This is the User’s Guide for the MPS430 Value Line family. Open the
.pdf file for viewing.

4. For debugging purposes, it would be handy to stop the watchdog timer. This way we
need not worry about it. In main.c right at type:

WDTCTL = WDTPW + WDTHOLD;
(Be sure not to forget the semicolon at the end).

The WDTCTL is the watchdog timer control register. This instruction sets the password
(WDTPW) and the bit to stop the timer (WDTHOLD). Look at the header file and User’s
Guide to understand how this works. (Please be sure to do this — this is why we asked
you to open the header file and document).

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-9

Lab 3: Initialization and GPIO

Next, we need to configure the LED that’s connected to the GPIO line. The green LED
is located on Port 1 Bit 6 and we need to make this an output. The LED turns on when
the output is set to a “1”. We’ll clear it to turn the LED off. Leave a line for spacing and
type the next two lines of code.

x40;

’

P1DIR = 0
P1OUT = O
(Again, check the header file and User’s Guide to make sure you understand the
concepts).

Now we’ll set up the clock system. Enter a new line, then type:

BCSCTL3 |= LFXT1S_2;

The BCSCTL3 is one of the Basic Clock System Control registers. In the User’s Guide,
section 5.3 tells us that the reset state of the register is 005h. Check the bit fields of this
register and notice that those settings are for a 32768 Hz crystal on LEXT1 with 6pF
capacitors and the oscillator fault condition set. This condition would be set anyway
since the crystal would not have time to start up before the clock system faulted it.
Crystal start-up times can be in the hundreds of milliseconds.

The operator in the statement logically OR’s LEXT1S 2 (which is 020h) into the
existing bits, resulting in 025h. This sets bits 4 & 5 to 10b, enabling the VLO clock.
Check this with the documents.

The clock system will force the MCLK to use the DCO as its source in the presence of a
clock fault (see the User’s Guide section 5.2.7). So we need to clear that fault flag. On
the next line type:

IFGl &= ~OFIFG;

The IFG1 is Interrupt Flag register 1. A bit field in the register is the Oscillator Fault
Interrupt Flag - OFIFG (the first letter is an “O”, and not a zero). Logically ANDing
IFG1 with the NOT of OFIFG (which is 2) will clear bit 1. Check this in section 5 of
the User’s Guide and in the header file.

We need to wait about 50 ps for the clock fault system to react. Running on the 12kHz
VLO, stopping the DCO will buy us that time. On the next line type:

_bis SR register(SCGl + SCGO) ;

SR is the Status Register. Find the bit definitions for the status register in the User’s
Guide (section 4). Find the definitions for SCG0 and SCG1 in the header file and notice
how they match the bit fields to turn off the system clock generator in the register. By the
way, the underscore before bis defines this is an assembly level call from C. _bis is a bit
set operation known as an intrinsic.

There is a divider in the MCLK clock tree. We will use divide-by-eight. Type this
statement on the next line and look up its meaning:

BCSCTL2 |= SELM 3 + DIVM 3;

The operator logically ORs the two values with the existing value in the register.
Examine these bits in the User’s Guide and header file.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

10. At this point, your code should look like the code below. We have added the comments
to make it easier to read and understand. Click the Save button on the menu bar to save
the file.

#include "msp430g2553.h"

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERA1 VECTOR
#define TIMERO AO VECTOR TIMERAQ VECTOR
#endif

void main (void)

{

WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup
PI1IDIR = 0x40; // I/0 setup

P1OUT = 0;

BCSCTL3 |= LFXT1S 2; // clock system setup

IFGl &= ~OFIFG;
_bis SR register (SCGl + SCGO);

BCSCTL2 |= SELM 3 + DIVM 3;

11. Just one more thing — the last piece of the puzzle is to toggle the green LED. Leave
another line for spacing and enter the following code:

while (1)

{
P1OUT = 0x40; // LED on
_delay cycles(100);
P1OUT = O; // LED off

_delay cycles(5000) ;
}

The P10OUT instruction was already explained. The delay statements are built-in intrinsic
function for generating delays. The only parameter needed is the number of clock cycles
for the delay. Later in the workshop we will find out that this isn’t a very good way to
generate delays — so don’t get used to using it. The while(1) loop repeats the next four
lines forever.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-11

Lab 3: Initialization and GPIO

12.

Now, the complete code should look like the following. Be sure to save your work.

#include "msp430g2553.h"

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERA1 VECTOR
#define TIMERO A0 VECTOR TIMERAQ VECTOR
#endif

void main (void)

{

WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup
P1DIR = 0x40; // I/0 setup

P1OUT = 0;

BCSCTL3 |= LFXT1S 2; // clock system setup

IFGl &= ~OFIFG;
_bis SR register (SCGl + SCGO);

BCSCTL2 |= SELM 3 + DIVM 3;

while (1)

{
P10OUT = 0x40; // LED on
_delay cycles (100);
P1OUT = 0; // LED off

_delay cycles(5000);
}

13.

14.

15.

Great job! You could have just cut and pasted the code from VLO.txt in the Files folder,
but what fun would that have been? ©

Click the “Debug” button > . Click the Proceed button when the ULP Advisor
appears. The “CCS Debug” view should open, the program will load automatically, and
you should now be at the start of main ().

Run the code. If everything is working correctly the green LED should be blinking about
once every three or four seconds. Running the CPU on the other clock sources will speed
this up considerably. This will be covered in the remainder of the lab exercise.

Click on the Terminate button ™ to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File - Save As and select the parent
folder as Lab3. Name the file Lab3a.c. Click OK.

Expand the Lab3 project by clicking on " to the left of the Lab3 project name.
Close the Lab3a.c editor tab and double click on main.c in the Project Explorer pane.
Unfortunately, Eclipse has added Lab3a. ¢ to our project, which will cause us grief later

on (you can’t have two main () functions in the same program).

Right-click on Lab3a.c in the Project Explorer pane and select Resource
Configurations, then Exclude from build... Check both boxes and click OK.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

Note: If you have decided NOT to solder the crystal on to LaunchPad, then skip to the
“Running the CPU on the DCO without a Crystal” section. But, you should
reconsider; as this is important information to learn.

Running the CPU on the Crystal

The crystal frequency is 32768 Hz, about three times faster than the VLO. If we run the previous
code using the crystal, the green LED should blink at about once per second. Do you know why
32768 Hz is a standard? It is because that number is 2'°, making it easy to use a simple digital
counting circuit to get a once per second rate — perfect for watches and other time keeping.
Recognize that we will also be sourcing the ACLK with the crystal.

16. This part of the lab exercise uses the previous code as the starting point. We will start at
the top of the code and will be using both LEDs. Make both LED pins (P1.0 and P1.6)

outputs by
Changing: P1DIR = 0x40;
To: P1DIR = 0x41;

And we also want the red LED (P1.0) to start out ON, so

Change: P1OUT = 0;
To: P1OUT = 0x01;

17. We need to select the external crystal as the low-frequency clock input.
Change: BCSCTL3 |= LFXT1S_2;
To: BCSCTL3 |= LFXT1S 0 + XCAP_3;

Check the User’s Guide to make sure this is correct. The XCAP_3 parameter selects the
12pF load capacitors. A higher load capacitance is needed for lower frequency crystals.

18. In the previous code we cleared the OSCFault flag and went on with our business, since
the clock system would default to the VLO anyway. Now we want to make sure that the
flag stays cleared, meaning that the crystal is up and running. This will require a loop
with a test. Modify the code to

Change: IFGl &= ~OFIFG;
To: while (IFG1 & OFIFG)
{

IFGl &= ~OFIFG;
_delay cycles(100000);
}

The statement while (IFG1 & OFIFG) tests the OFIFG in the IFGI register. If that
fault flag is clear we will exit the loop. We need to wait 50 ps after clearing the flag until
we test it again. The _delay cycles(100000) ; is much longer than that. We need it
to be that long so we can see the red LED light at the beginning of the code. Otherwise it
would flash so quickly that we wouldn’t be able to see it.

19. Finally, we need to add a line of code to turn off the red LED, indicating that the fault test
has been passed. Add the new line after the while loop:

P1OUT = O;

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-13

Lab 3: Initialization and GPIO

20. Since we made a lot of changes to the code (and had a chance to make a few errors),
check to see that your code looks like:

#include "msp430g2553.h"

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERAl VECTOR
#define TIMERO A0 VECTOR TIMERAO VECTOR
#endif

void main (void)

{
WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup

P1DIR 0x41; // I/0 setup
P10OUT = 0x01;

BCSCTL3 |= LFXT1S 0 + XCAP_3; // clock system setup

while (IFGl1 & OFIFG) // wait for OSCFault to clear
{

IFGl &= ~OFIFG;

_delay cycles (100000);
}

P1OUT = 0; // both LEDs off
_bis SR register (SCGl + SCGO); // clock system setup
BCSCTL2 |= SELM 3 + DIVM 3;
while (1)
{

P10OUT = 0x40; // LED on

_delay cycles (100);

P1OUT = 0; // LED off

_delay cycles(5000);
}

Again, you could have cut and pasted from XT.txt, but you’re here to learn. ©

21. Click the “Debug” button i . Click the Proceed button in the ULP Advisor. The “CCS
Debug” perspective should open, the program will load automatically, and you should
now be at the start of main ().

22. Look closely at the LEDs on the LaunchPad and Run the code. If everything is working
correctly, the red LED should flash very quickly (the time spent in the delay and waiting
for the crystal to start) and then the green LED should blink every second or so. That’s
about three times the rate it was blinking before due to the higher crystal freque