TMS320F28004x Microcontroller
Workshop

Workshoi Guide and Lab Manual

Kenneth W. Schachter
Revision 1.0
July 2019

Important Notice

Important Notice

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

T1 warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of Tl covering or relating to any
combination, machine, or process in which such semiconductor products or services might be or
are used. TI's publication of information regarding any third party’s products or services does not
constitute TI's approval, warranty or endorsement thereof.

Copyright © 2019 Texas Instruments Incorporated

Revision History

July 2019 — Revision 1.0

Mailing Address

Texas Instruments

C2000 Training Technical
13905 University Boulevard
Sugar Land, TX 77479

TMS320F28004x Microcontroller Workshop - Introduction

TMS320F28004x Microcontroller Workshop

TMS320F28004x Microcontroller Workshop

TMS320F28004x Microcontroller
Workshop

Texas Instruments
C2000 Technical Training

I3 TEXAS
INSTRUMENTS C2000 is a trademark of Texas Instruments. Copyright © 2019 Texas Instruments. All rights reserved.

Workshop Outline

Workshop Outline

1. Architecture Overview
2. Programming Development Environment
e Lab: Linker command file
3. Peripheral Register Programming
4. Reset and Interrupts
5. System Initialization
e Lab: Watchdog and interrupts
6. Analog Subsystem
» Lab: Build a data acquisition system
7. Control Peripherals
» Lab: Generate and graph a PWM waveform
8. Direct Memory Access (DMA)
» Lab: Use DMA to buffer ADC results
9. Control Law Accelerator (CLA)
» Lab: Use CLA to filter PWM waveform
10. System Design
* Lab: Run the code from flash memory
11. Communications (SCI echoback from C2000Ware)

12. Support Resources

TMS320F28004x Microcontroller Workshop - Introduction

TMS320F28004x Microcontroller Workshop

Required Workshop Materials

Required Workshop Materials

¢ http://training.ti.com/c2000-f28004x-
microcontroller-workshop

¢ F280049C LaunchPad auncHxL-F280049C)
¢ Install Code Composer Studio v9.0.1

¢ Run the workshop installer
F28004x Microcontroller Workshop-1.0-Setup.exe
¢Lab Files / Solution Files

¢Workshop Manual

Development Tools

F280049C LaunchPad

XDS110 LED1: XDS110
Debug Power External _S1' LEDS: GP|034(QFEEH)‘]%|: S2: Boot Jla:

Probe (device) Debug Reset | Epa: GPI023 (red) Modes CAN
or

XDS110 emulation circuitry

USB101: LEDO: JP1-3:USB J101: F280049 J15: JP8 J12/13:
USB Power Power JTAG/UART VREFHI (connects Encoder
Interface (USB) Isolation Isolation %%\éﬁ%

* = BoosterPack plug-in module connector

TMS320F28004x Microcontroller Workshop - Introduction

TMS320F28004x Microcontroller Workshop

JI:A-USB SI1:A-isolated emulation and
emulation/ UART communication enable
UART switch

XDS100v2 emulation

S7: PGA
Filter

S8: ADC ~HHE
VREFHI

F280049C controlCARD

S4: JTAG S2: GPIO10 S3: GPI0O08
/ cJTAG / GP1035

S1:Boot | EDD2:
Modes 5pi031 (red)

LED D3:
GPI1034 (red)

LED D1:
Power
(green)

J1: FSI

S5: GP1024
/ GPI025

S6: GP1026
/ GP1027

/ GP1037

JTAG USB Analog
Connector Connector Signals

controlCARD Docking Station

5V Power Power Switch LED D1: Analog GPIO
Connector (External / USB) Power (green) Signals Signals

0000000000007 000000000

nuE'E‘;ﬂnéﬂ?:!!!?n!ﬁ?iﬁl?gg

For wvalsdtion caly, Mok FCC opproved jar

0 DO00000NH0000000000C :
IO00000000000000)0000000000, .,

GPIO 180-pin HSEC8 Edge
Signals Card Interface

TMDSHSECDOCK is a baseboard that provides header pin access to key signals on compatible
HSEC180-based controlCARDs. A breadboard area is available for rapid prototyping. Board
power can be provided by either a USB cable or a 5V barrel power supply.

TMS320F28004x Microcontroller Workshop - Introduction

TMS320F28004x Microcontroller Workshop

vi TMS320F28004x Microcontroller Workshop - Introduction

Architecture Overview

Introduction

This architectural overview introduces the basic architecture of the C2000™ family of
microcontrollers from Texas Instruments. The F28004x series provides high performance
processing for a variety of system control applications. The C2000 processors are ideal for
applications combining digital signal processing, microcontroller processing, efficient C code
execution, and operating system tasks.

Unless otherwise noted, the terms C28x and F28004x refer to the TMS320F28004x family of
devices throughout the remainder of this workshop manual. For specific details and differences
between device family members, please refer to the device data sheet, user’s guides, and the
technical reference manual.

Module Objectives

When this module is complete, you should have a basic understanding of the F28004x
architecture and how all of its components work together to create a high-end, uniprocessor
control system.

Module Objectives

¢ Review the F28004x block diagram
and device features

¢ Describe the F28004x bus structure
and memory map

¢ ldentify the various memory blocks on
the F28004x

¢ ldentify the peripherals available on
the F28004x

TMS320F28004x Microcontroller Workshop - Architecture Overview 1-1

Introduction to the TMS320F28004x

Chapter Topics

ATCNITECTUIE OVEIVIBW ...t ii ittt ettt e e e oo e b et e e e e e e s bbb bt e e e e e e s e sanbbeaeeaaaeeaaanne 1-1
Introduction to the TMS320F28004X.........cuiuuuriiiiaaaee ittt e e e e e e e e e e e e e e e s ennebeeeaaaeeas 1-3
(09243)@l 10101 g F= VI =10 £ 1 o RSOSSN 1-4
C28x CPU + FPU + VCU + TMU and CLA ...ttt 1-5
S o =Tot = U [1S3 (0 o3 1 o] g SRR 1-6
(O U T oY 1] = RSO PEER 1-7
C28x CPU + FPU + VCU + TMU PIPEIINE ..coeeiiiiiiiiiiei ettt 1-8
=T 0 o] PSPPI 1-9
Y I g aTe] 4 VLY =1 o IO T TP TP TP PP PP PP PP PPPPPPPPPPPPPNt 1-9
Dual Code Security MOAUIE (DCSM)eiiiiiiiiiiiiiiiii et a e 1-10
PEIIPNEIAIS ...ttt e e e e ettt e e e e e e s e aanb b e e e e e e e e e e aanes 1-10
Fast Interrupt RESPONSE MEANAGETuuuiiiieiieeiiiiii ettt e e e e e e e e e e rrra e es 1-11
MEALN ACCEIETALOIS ...ceiiiiiiet ettt ettt e e e e e st e e e e e e s s nbbbe e e e e e e e e snnaeneeas 1-12
Viterbi / Complex Math Unit (VCU-I) ...oeeeieiiiieeeee e 1-12
Trigonometric Math UNit (TMU)........uuiiiieiiiiiiiiiece e s r e e e e e s e e e e e e e e enrnaeees 1-13
Configurable LOgIC BIOCK (CLB)ciiiiiiiiieieiee ettt e e e e e e e e e e 1-14
ON-Chip Safety FEALUIES ...t e e e e e e e e e e e e e e e ane 1-15
SUIMIMIBIY etttk 5 5555555555555 5555555555555 et s s e e e s s ennnn e 1-16

TMS320F28004x Microcontroller Workshop - Architecture Overview

Introduction to the TMS320F28004x

Introduction to the TMS320F28004x

The TMS320F004x are device members of the C2000 microcontroller (MCU) product family.
These devices are most commonly used within embedded control applications. Even though the
topics presented in this workshop are based on the TMS320F28004x device family, most all of
the topics are fully applicable to other C2000 MCU product family members. The F28004x MCU
utilizes the Tl 32-bit C28x CPU architecture. The MCU has access to a set of highly integrated
analog and control peripherals, which provides a complete solution for demanding real-time high-
performance signal processing applications, such as digital power, industrial drives, inverters, and
motor control.

TMS320F28004x Block Diagram

C28x RAM - ECC
MO - TKW (2KB)

FLL

10 MHz INTOSC1, INTOSC2
10-20 MHz Crystal Oscillator |

Missing Clock Detect |

CLA MSG RAM - Parity

ClAto CPU - 128W

Global Shared RAM - Parity
IZKW (B4KB)

GS0-GS3
4x (BKW [16KE]) ‘_ T

C28x M1-1kW(xB) || Ly CPU to CLA. 128w b
SPU e CLA -1 {Type 2)
. e =ne e »
TMU+FPU4VCU- T
NK CLAROM
ePIE Data
4KW (BKE) |
CPU Timerd .
CPU Timer1 —I
CPU Timer2 | TG Local Shared RAM - Parity
Boot - 64KW (128KB))

DMA,
{6 Channels)

u I] [u —
G [PFa | [pra | [P2 | [prm |[Pre | [PFo |
[axePWM 7xCMPss | [Result [Config. Data [Config. 1 PmBus| [2xcan| [1xun] [zcsci
(16 HiRes Channels)]
T t || 3x12-BitADC GPIO > 5P T
X
(2 HRCAP Channess)| | 2% Buffered DAC | XBAR 1% FSI RX MM
2x eQEP Tx PGA 1% FSI TX W_zalchdog

| [CWICCW Suppart) —_— Windowed

4x 5D Filters Watchdog

The above block diagram represents an overview of the device features; however refer to the
data sheet for details about a specific device family member. The F28004x CPU is based on the
T1 32-bit C28x fixed-point accumulator-based architecture and it is capable of operating at a clock
frequency of up to 100 MHz. The CPU is tightly coupled with a Floating-Point Unit (FPU) which
enables support for hardware IEEE-754 single-precision floating-point format operations. Also, a
tightly coupled Trigonometric Math Unit (TMU) extends the capability of the CPU to efficiently
execute trigonometric and arithmetic operations commonly found in control system applications.
Similar to the FPU, the TMU provides hardware support for IEEE-754 single-precision floating-
point operations which accelerate trigpnometric math functions. A Viterbi, Complex Math, and
CRC Unit (VCU) further extends the capabilities of the CPU for supporting various
communication-based algorithms and is very useful for general-purpose signal processing
applications, such as filtering and spectral analysis.

The Control Law Accelerator (CLA) is an independent 32-bit floating-point math hardware
accelerator which executes real-time control algorithms in parallel with the main C28x CPU,
effectively doubling the computational performance. With direct access to the various control and
communication peripherals, the CLA minimizes latency, enables a fast trigger response, and
avoids CPU overhead. Also, with direct access to the ADC results registers, the CLA is able to
read the result on the same cycle that the ADC sample conversion is completed, providing “just-
in-time” reading, which reduces the sample to output delay.

TMS320F28004x Microcontroller Workshop - Architecture Overview

Introduction to the TMS320F28004x

C28x Internal Bussing

As with many high performance microcontrollers, multiple busses are used to move data between
the memory blocks, peripherals, and the CPU. The C28x memory bus architecture consists of six
buses (three address and three data):

e A program read bus (22-bit address line and 32-bit data line)
e A dataread bus (32-bit address line and 32-bit data line)
e A data write bus (32-bit address line and 32-bit data line)

C28x CPU Internal Bus Structure

Program
Memory

Program
L_pPC |
Decoder

Program Address Bus (22)

Program-read Data Bus (32)
I

)
t

| Data-read Address Bus (32)
t I 1
u

| Data-read Data Bus (32)

|

lRegisters Execution VY Debug
ARAU -M- TMU
MPY32x32
SP Atomic _Ti Data
ALU ALL VCU Real-Time "
| DP | emory
= | VRO-VR| | | ¢ ilion
XARO P FPU CLA
to
XAR7 ACC || ROH-R7H||MR0-MR3
| Register Bus / Result Bus | Peripherals
1

[Data/Program-write Data Bus (32)

| Data-write Address Bus (32)

The 32-bit-wide data busses provide single cycle 32-bit operations. This multiple bus architecture
(Harvard Bus Architecture) enables the C28x to fetch an instruction, read a data value and write a
data value in a single cycle. All peripherals and memory blocks are attached to the memory bus
with prioritized memory accesses.

TMS320F28004x Microcontroller Workshop - Architecture Overview

C28x CPU + FPU + VCU + TMU and CLA

C28x CPU + FPU + VCU + TMU and CLA

The C28x is a highly integrated, high performance solution for demanding control applications.
The C28x is a cross between a general purpose microcontroller and a digital signal processor
DSP), balancing the code density of a RISC processor and the execution speed of a DSP with
the architecture, firmware, and development tools of a microcontroller.

The DSP features include a modified Harvard architecture and circular addressing. The RISC
features are single-cycle instruction execution, register-to-register operations, and a modified
Harvard architecture. The microcontroller features include ease of use through an intuitive
instruction set, byte packing and unpacking, and bit manipulation.

C28x CPU + FPU + VCU + TMU and CLA

¢ MCU/DSP balancing code density &
execution time
16-bit instructions for improved code density
32-bit instructions for improved execution time

Program Bus

CLABus ¢ 32-bit fixed-point CPU + FPU
T ¢ 32x32 fixed-point MAC, doubles as dual
16x16 MAC
_l] [H # |IEEE Single-precision floating point
32x32 bit | |[R-M-W hardv_vare and MAC .
Multiplier| |atomic| LA |cLa # Floating-point simplifies software
FPU || ALU ||VCU development and boosts performance
{ i [FEl—| # Viterbi, Complex Math, CRC Unit (VCU)
Register Bus 3 adds support for Viterbi decode, complex
CPU | 32:bit” math and CRC operations
Timers # Parallel processing Control Law Accelerator
! (CLA) adds IEEE Single-precision 32-bit
‘_T Data Bus floating point math operations
¢ CLA algorithm execution is independent of
the main CPU

¢ Trigonometric operations supported by TMU
¢ Fast interrupt service time
Single cycle read-modify-write instructions

The C28x design supports an efficient C engine with hardware that allows the C compiler to
generate compact code. Multiple busses and an internal register bus allow an efficient and
flexible way to operate on the data. The architecture is also supported by powerful addressing
modes, which allow the compiler as well as the assembly programmer to generate compact code
that is almost one to one corresponded to the C code.

The C28x is as efficient in DSP math tasks as it is in system control tasks. This efficiency
removes the need for a second processor in many systems. The 32 x 32-bit multiply-accumulate
(MAC) capabilities can also support 64-bit processing, enable the C28x to efficiently handle
higher numerical resolution calculations that would otherwise demand a more expensive solution.
Along with this is the capability to perform two 16 x 16-bit multiply accumulate instructions
simultaneously or Dual MACs (DMAC). The devices also feature floating-point units.

The addition of the Floating-Point Unit (FPU) to the fixed-point CPU core enables support for
hardware IEEE-754 single-precision floating-point format operations. The FPU adds an extended
set of floating-point registers and instructions to the standard C28x architecture, providing
seamless integration of floating-point hardware into the CPU.

TMS320F28004x Microcontroller Workshop - Architecture Overview 1-5

C28x CPU + FPU + VCU + TMU and CLA

Special Instructions

C28x Atomic Read/Modify/Write

Atomic Instructions Benefits

LOAD ¢ Simpler programming
READ

[Registers ALU /MPY | | Mem

¢ Smaller, faster code

¢ Uninterruptible (Atomic)
WRITE

Standard Load/Store Atomic Read/Modify/Write

STORE ¢ More efficient compiler

DINT
MOV
AND
MOV
EINT

AND *XAR2,#1234h

AL, *XAR2
AL ,#1234h
*XAR2 , AL

2words /1 cycles

6 words / 6 cycles

Note: Example shows non-atomic assembly instructions vs. atomic assembly instruction; Compiler intrinsics can
be used for generating the atomic assembly instructions if the user needs guaranteed atomicity at the C level

Atomic instructions are a group of small common instructions which are non-interuptable. The
atomic ALU capability supports instructions and code that manages tasks and processes. These
instructions usually execute several cycles faster than traditional coding.

TMS320F28004x Microcontroller Workshop - Architecture Overview

C28x CPU + FPU + VCU + TMU and CLA

CPU Pipeline

C28x CPU Pipeline
FiiF, |Dy D, RyiR,[E|W 8-stage pipeline
W

n
m
N
AS)
)
N
2
Py
N
m

A
B
C
D ; W E & G Access
E
F
G

FiiF2|Di|Do| Rii Ryl E| W|-"""" same address

FiiF Dy Dy| Ry Ry| Ef W
Fi|F | Dy Dy Ry ~“[R,| E|W
F1: Instruction Address
F2: Instruction Content Protected Pipeline
D1: Decode Instruction ord f | . .
D2: Resolve Operand Addr ¢ Order of results are as written In
R1: Operand Address source code

R2: Get Operand
E: CPU doing “real” work ¢ Programmer need not worry about

W: store content to memory the pipeline

The C28x uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of order.

This pipelining also enables the C28x CPU to execute at high speeds without resorting to
expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for
conditional discontinuities. Special store conditional operations further improve performance.
With the 8-stage pipeline most operations can be performed in a single cycle.

TMS320F28004x Microcontroller Workshop - Architecture Overview 1-7

C28x CPU + FPU + VCU + TMU and CLA

C28x CPU + FPU + VCU + TMU Pipeline
C28x CPU + FPU + VCU + TMU Pipeline

Fetch Decode Read Exe Write

11 i
FPU Instruction D | R| E;|E,/W
4 |
VCU / TMU Instruction D | R| E;|E)/W
Load |«
Store |«

'y

0 delay slot instruction
1 delay slot instruction

'y

Floating-point math operations, conversions between integer and floating-
point formats, and complex MPY/MAC require 1 delay slot — everything else
does not require a delay slot (oad, store, max, min, absolute, negative, etc.)

¢ Floating Point Unit, VCU and TMU has an unprotected pipeline

¢ i.e. FPU/VCU/TMU can issue an instruction before previous instruction has
written results

¢ Compiler prevents pipeline conflicts
¢ Assembler detects pipeline conflicts

¢ Performance improvement by placing non-conflicting
instructions in floating-point pipeline delay slots

Floating-point unit (FPU), VCU and TMU operations are not pipeline protected. Some
instructions require delay slots for the operation to complete. This can be accomplished by insert
NOPs or other non-conflicting instructions between operations.

In the user’s guide, instructions requiring delay slots have a ‘p’ after their cycle count. The 2p
stands for 2 pipelined cycles. A new instruction can be started on each cycle. The result is valid
only 2 instructions later.

Three general guidelines for the FPU/VCU/TMU pipeline are:

Math MPYF32, ADDF32, 2p cycles
SUBF32, MACF32, One delay slot
VCMPY

Conversion 116 TOF32, F32TOI16, 2p cycles
F32TOI16R, etc... One delay slot

Everything else* Load, Store, Compare, Single cycle
Min, Max, Absolute and No delay slot
Negative value

* Note: MOV32 between FPU and CPU registers is a special case.

TMS320F28004x Microcontroller Workshop - Architecture Overview

Memory

Memory

The F28004x utilizes a memory map where the unified memory blocks can be accessed in either
program space, data space, or both spaces. This type of memory map lends itself well for
supporting high-level programming languages. The memory map structure consists of RAM
blocks dedicated to the CPU, RAM blocks accessible by the CPU and CLA, RAM blocks
accessible by the DMA module, message RAM blocks between the CPU and CLA, CAN
message RAM blocks, flash, and one-time programmable (OTP) memory. The Boot ROM is
factory programmed with boot software routines and standard tables used in math related
algorithms.

Memory Map

The C28x CPU core contains no memory, but can access on-chip and off-chip memory. The
C28x uses 32-bit data addresses and 22-bit program addresses. This allows for a total address
reach of 4G words (1 word = 16-bits) in data memory and 4M words in program memory.

0x000000 .
MO RAM (1Kx16) M
0x000400 0x00C000
M1 RAM (1Kx16) GS0 — GS3 RAM
(8Kx16 each)
0x000D00 LSO — LS7 RAM
FIE Vectors 0x049000 accessible by
(512x16) CAN A MSG RAM CPU & CLA
(2Kx16)
0x001480 0x04B000
CLA to CPU MSG CAN B MSG RAM
0x001500 (:PRSM (éii(ines)e (2Kx16) GS0 — GS3 RAM
to accessible b
RAM (128x16) 0x078000 =756 oTP DMA y
(4Kx16)
0x080000
0x008000
FLASH
LSO — LS7 RAM
(2Kx16 each) (128Kx16)
: 8"22228 Boot ROM (32Kx16)
. x BROM Vectors (64x16)

There are two dedicated RAM blocks (MO and M1) which are tightly coupled with the CPU, and
only the CPU has access to them. The PIE Vectors are a special memory area containing the
vectors for the peripheral interrupts. The eight local shared memory blocks, LSO through LS7,
are accessible by the CPU and CLA. The four global shared memory blocks, GSO through GS3,
are accessible by the CPU and DMA.

There are two types of message RAM blocks: CLA message RAM blocks and CAN message
RAM blocks. The CLA message RAM blocks are used to share data between the CPU and CLA.
The CAN message RAM blocks contain message objects and parity bits for the message objects
(CAN message RAM can only be accessed in debug mode).

The user OTP is a one-time, programmable, memory block which contains device specific
calibration data for the ADC, internal oscillators, and buffered DACs, in addition to settings used

TMS320F28004x Microcontroller Workshop - Architecture Overview 1-9

Memory

by the flash state machine for erase and program operations. Additionally, it contains locations
for programming security settings, such as passwords for selectively securing memory blocks,
configuring the standalone boot process, as well as selecting the boot-mode pins in case the
factory-default pins cannot be used. This information is programmed into the dual code security
module (DCSM). The flash memory is primarily used to store program code, but can also be
used to store static data. The boot ROM and boot ROM vectors are located at the bottom of the
memory map.

Dual Code Security Module (DCSM)

Z1_CSMPSWDO

Z1 CSMPSWD1

Z1_CSMPSWD2

Z1_CSMPSWD3

Dual Code Security Module

¢ Prevents reverse engineering and protects valuable
intellectual property

Z2_CSMPSWDO

Z2_CSMPSWD1

Z2_CSMPSWD2

Z2_CSMPSWD3

¢ Various on-chip memory resources can be assigned to
either zone 1 or zone 2

¢ Each zone has its own password
¢ 128-bit user defined password is stored in OTP
¢ 128-bits = 2128 = 3.4 x 1038 possible passwords

¢ To try 1 password every 8 cycles at 100 MHz, it would take
at least 8.6 x 1028 years to try all possible combinations!

Peripherals

The F28004x is available with a variety of built in peripherals optimized to support control
applications. See the data sheet for specific availability.

[]
ePWM

[]
eCAP

eQEP
CMPSS
ADC
DAC

PGA
Watchdog
DMA

CLA
SDFM
SPI

SCI

12C

LIN
CAN
FSI
PMBUS

TMS320F28004x Microcontroller Workshop - Architecture Overview

Fast Interrupt Response Manager

Fast Interrupt Response Manager

The fast interrupt response manager is capable of automatically performing a context save of
critical registers. This results in the ability of servicing many asynchronous events with minimal
latency. The F28004x context saves and restores 14 registers with a zero cycle penalty. This
feature helps reduces the interrupt service routine overhead.

C28x Fast Interrupt Response Manager

¢ 192 dedicated PIE
vectors

¢ No software decision
making required

¢ Direct access to RAM
vectors

¢ Auto flags update

¢ Concurrent auto
context save

PIE module
For 192
interrupts

192

28x CPU Interrupt logic

2 C28x
192 I interrupts IFR || IER |[INTM | cPU

Register

Map

Peripheral Interrupts 12x16

Auto Context Save
T STO

AH AL

PH PL

AR1 (L) | ARO (L)
DP ST1
DBSTAT | IER
PC(msw)| PC(Isw)

By incorporating the very fast interrupt response manager with the peripheral interrupt expansion
(PIE) block, it is possible to allow up to 192 interrupt vectors to be processed by the CPU. More
details about this will be covered in the reset and interrupts, and system initialization modules.

TMS320F28004x Microcontroller Workshop - Architecture Overview 1-11

Math Accelerators

Math Accelerators

Viterbi / Complex Math Unit (VCU-II)
Viterbi / Complex Math Unit (VCU)

Extends C28x instruction
set to support:

‘<7\/CU executiong’{
. M . registers
< Viterbi operations
. . VSTATUS
¢ Decode for communications -"' _
¢ Complex math VRO)
16-bit fixed-point complex FFT VRL o nevetons
& used in s_pre_ad spectrum . I LR = 3. Arithmetic instructions
B?g?:?susthg‘gl g?gn(?ﬁt%rr]r?smany signa VRS vstio : ga"’isl Fie;i:s":m?ns
¢ Complex filters VRE vswiss == + SOmPIRE SHATons
& used to improve data reliability, Ui
transmission distance, and power VR6
efficiency .
¢ Power Line Communjcations
(PLC) and radar applications VR8 1
. %/ﬁlé(): Redundancy Check " === Control Logic
=
¢ Communications and memory Wil
robustness checks
¢ Other: OFDM interleaving & "’

de-interleaving, Galois Field
arithmetic, AES acceleration

The Viterbi, Complex Math, and CRC Unit (VCU) adds an extended set of registers and
instructions to the standard C28x architecture for supporting various communications-based
algorithms, such as power line communications (PLC) standards PRIME and G3. These
algorithms typically require Viterbi decoding, complex Fast Fourier Transform (FFT), complex
filters, and cyclical redundancy check (CRC). By utilizing the VCU a significant performance
benefit is realized over a software implementation. It performs fixed-point operations using the
existing instruction set format, pipeline, and memory bus architecture. Additionally, the VCU is
very useful for general-purpose signal processing applications such as filtering and spectral
analysis.

TMS320F28004x Microcontroller Workshop - Architecture Overview

Math Accelerators

Trigonometric Math Unit (TMU)

Trigonometric Math Unit (TMU)

Adds instructions to FPU for
_calculating common
trigonometric operations

X =r*cos(rad

Operation Instruction Exe Cycles | Result Latency | FPU Cycles w/o TMU
Z=YIX DIVF32 Rz ,Ry,Rx 1 5 24
Y = sqgrt(X) SQRTF32 Ry, Rx 1 5 ~26
Y = sin(X/2pi) SINPUF32 Ry, Rx 1 4 ~33
Y = cos(X/2pi) COSPUF32 Ry ,Rx 1 4 ~33
Y = atan(X)/2pi | ATANPUF32 Ry, RX 1 4 53
Instruction To QUADF32 Rw,Rz,Ry,Rx 3 11 ~90
Support ATAN2 | ATANPUF32 Ra,Rz

Calculation ADDF32 Rb,Ra,Rw

Y = X * 2pi MPY2PI1F32 Ry, Rx 1 2 4
Y = X*1/2pi DIV2PIF32 Ry, RX 1 2 4

¢ Supported by natural C and C-intrinsics

+ Significant performance impact on algorithms such as:
e Park / Inverse Park *dqO Transform & Inverse dq0
* Space Vector GEN * FFT Magnitude & Phase Calculations

The Trigonometric Math Unit (TMU) is an extension of the FPU and the C28x instruction set, and
it efficiently executes trigopnometric and arithmetic operations commonly found in control system
applications. Similar to the FPU, the TMU provides hardware support for IEEE-754 single-
precision floating-point operations that are specifically focused on trigonometric math functions.
Seamless code integration is accomplished by built-in compiler support that automatically
generates TMU instructions where applicable. This dramatically increases the performance of
trigonometric functions, which would otherwise be very cycle intensive. It uses the same pipeline,
memory bus architecture, and FPU registers as the FPU, thereby removing any special
requirements for interrupt context save or restore.

TMS320F28004x Microcontroller Workshop - Architecture Overview 1-13

Configurable Logic Block (CLB)

Configurable Logic Block (CLB)

Configurable Logic Block (CLB)

¢ Collection of configurable
logic tiles s —

¢ Can be interconnected
using software to
implement custom digital 2
logic functions

¢ Enhances existing
peripherals through a set of
crossbar interconnections

¢ Crossbars allow the CLB to
be connected to external
GPIO pins Ll

¢ Each tile contains the core
reconfiguration logic

¢ CPU interface can be used S
to exchange data with the -
rest of the device

>oo]

N N

L
=
=
|
N—V]

wcw _r>woro]
vcw zm-v<o]

cLB2 In =
—] Tile2

CPUIIF CELL

o1
|

"
| = ===

TR

CPUIIF CELL

T
>oor]

4
€ePWM,eQEP, & eCAP Peripherals

ePWM, eQEP, & eCAP Peripherals

TLrt Lt 1
1l

CPUIIF CELL

Gco r>007]

The Configurable Logic Block (CLB) is configured by software and it allows for the
implementation of custom digital logic functions. Enhancements to the existing peripherals are
enabled through a set of crossbar interconnections. This provides a high level of connectivity to
existing control peripherals such as the enhanced pulse width modulators (ePWM), the enhanced
capture modules (eCAP), and the enhanced quadrature encoder pulse modules (eQEP). The
crossbars also allow the CLB to be connected to external GPIO pins. Therefore, the CLB can be
configured to interact with device peripherals to perform small logical functions such as simple
PWM generators, or to implement custom serial data exchange protocols.

The CLB subsystem contains a number of identical tiles. There are four tiles in the F28004x CLB
subsystems. Each tile contains combinational and sequential logic blocks, as well as other
dedicated hardware. The figure above shows the structure of the CLB subsystem in the F28004x
device.

TMS320F28004x Microcontroller Workshop - Architecture Overview

On-Chip Safety Features

On-Chip Safety Features

On-Chip Safety Features

¢ Memory Protection
¢ ECC and parity enabled RAMs, shared RAMs protection
¢ ECC enabled flash memory
¢ Clock Checks
¢ Missing clock detection logic
¢ PLLSLIP detection
¢ NMIWDs
¢ Windowed watchdog
¢ Write Register Protection
¢ LOCK protection on system configuration registers
¢ EALLOW protection
¢ PIE vector address validity check
¢ Annunciation

¢ Single error pin for external signaling of error

TMS320F28004x Microcontroller Workshop - Architecture Overview

Summary

Summary

Summary

¢ High performance 32-bit CPU

¢ 32x32 bit or dual 16x16 bit MAC

¢ |IEEE single-precision floating point unit (FPU)
¢ Hardware Control Law Accelerator (CLA)
¢ Viterbi, complex math, CRC unit (VCU)

¢ Trigonometric math unit (TMU)

¢ Atomic read-modify-write instructions

¢ Fast interrupt response manager

¢ 128Kw on-chip flash memory

¢ Dual code security module (DCSM)

¢ Control peripherals

¢ Analog peripherals

¢ Direct memory access (DMA)

¢ Shared GPIO pins

¢ Communications peripherals

1-16 TMS320F28004x Microcontroller Workshop - Architecture Overview

Programming Development Environment

Introduction

This module will explain how to use Code Composer Studio (CCS) integrated development
environment (IDE) tools to develop a program. Creating projects and setting building options will
be covered. Use and the purpose of the linker command file will be described.

Module Objectives

Module Objectives

¢ Use Code Composer Studio to:
¢ Create a Project
¢ Set Build Options

¢ Create a user linker command file which:
¢ Describes a system’s available memory

¢Indicates where sections will be placed
in memory

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-1

Code Composer Studio

Chapter Topics

Programming Development ENVIFONMENTooiii it e e 2-1
Code COMPOSE STUIO.....ciiiieiieie ettt ettt e e e e et b e e e e e e s s e abb e e e e e e e e e sanbbbeeeeaaeeeannbeneeas 2-3
Software Development and COFF CONCEPLS......ccuuuiiiiieeiiiiiiiieieee e e e sriiteeer e e e s s ssnreaneeee e e e e anns 2-3
(000 (ST Of0] ya] o T01ST=T g 11 o [T SRS 2-4
Edit and Debug Perspective (CCSV)....uiiiiiiiiiiieiiee e sttt e e e e s s st e e e e e e s s snnrane e e e e e e snnnnneees 2-5
BLIE= 1o [A O] a1 T 8T ir=\ 1o o SRR 2-6
(O1 @)Y I o (o] [T ox SR UPUPUPPRPTR 2-7
Creating & NEeW CCSVO PrOJECT. ..ottt e e e e e e e e anes 2-8
CCSV9 Build Options — ComMPIler / LINKENcooi et 2-9
CCS DebUG ENVIFONMENT.......uiiiiiiieeiiiiteiie ettt e e e e et e e e e e e e e sabbeseeeaaeeeaannes 2-10
Creating a Linker Command Filecuuiiiiiiee e e e e e e e e 2-12
7= Tod 1] LSS PUP PO 2-12
Linker Command Files (- CMA)cooiiiiiiiiee et a e 2-15
MEMOrY-Map DESCHPLIONuviiiiiiee ettt ie e e e e e e e s e s e e e e e e e s st e e e e e e s s snnrraeeeeeeeaannnes 2-15
SECHON PIACEMENT ...t e e e e e e te e e e e e e s e anb e eeaaaeeas 2-16
Summary: Linker Command File ...t 2-17
Lab 2: Linker Command FilEccoiiiiiiieieer e 2-18

TMS320F28004x Microcontroller Workshop - Programming Development Environment

Code Composer Studio

Code Composer Studio

Software Development and COFF Concepts

In an effort to standardize the software development process, Tl uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of all
resources necessary for the proper operation of the module. Modules can be written using Code
Composer Studio (CCS) or any text editor capable of providing a simple ASCII file output. The
expected extension of a source file is . ASM for assembly and .C for C programs.

Code Composer Studio

Build
Compile Ink.cmd
1 Development
Tool
Asm [Link [Debug
i l External
Emulator
Editor Libraries | | Graphs, !
Profiling MCU
Board

¢ Code Composer Studio includes:
¢ Integrated Edit/Debug GUI
¢ Code Generation Tools
¢ TI-RTOS

Code Composer Studio includes a built-in editor, compiler, assembler, linker, and an automatic
build process. Additionally, tools to connect file input and output, as well as built-in graph
displays for output are available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (.CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (-OUT), which runs on the device, and can include a -MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

The concept of COFF tools is to allow modular development of software independent of hardware
concerns. An individual assembly language file is written to perform a single task and may be
linked with several other tasks to achieve a more complex total system.

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-3

Code Composer Studio

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.

Code developed independently of hardware concerns increases the benefits of modularity by
allowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create
a new hardware allocation, avoiding the possibility of memory resource conflicts.

Code Composer Studio

Code Composer Studio: IDE

'+ workspace_v9 - Code Composer Studio - m} X
File Edit View Navigate Project Run Scripts Window Help
D ERER % iR A B iGE D, lquick Access| | & |[B%
&5 Project Explorer 32 B % ¥ = O = B8
+ 1= Example [Active - Debug]

3 s & Integrates: edit, code generation,

& Debug and debug

e Adcc

lgl Clac

[¢ ClaTasks_C.cla 1 _ 1 1

e ¢ Single-click access using buttons

l¢l Dacc

B veva ¢ Powerful graphing/profiling tools

l¢ Dma.c
l¢l ECap.c
g EPwm.c
€] f28004x_globalvariabledefs.c

¢ Automated tasks using Scripts

e enbios # Built-in access to RTOS functions
Lab_RAM.cmd)

e ¢ Based on the Eclipse open source
& Watchdog.c software framework

& Lab_Flash.cmd

Code Composer Studio™ (CCS) is an integrated development environment (IDE) for Texas
Instruments (TI) embedded processor families. CCS comprises a suite of tools used to develop
and debug embedded applications. It includes compilers for each of TI's device families, source
code editor, project build environment, debugger, profiler, simulators, real-time operating system
and many other features. The intuitive IDE provides a single user interface taking you through
each step of the application development flow. Familiar tools and interfaces allow users to get
started faster than ever before and add functionality to their application thanks to sophisticated
productivity tools.

CCS is based on the Eclipse open source software framework. The Eclipse software framework
was originally developed as an open framework for creating development tools. Eclipse offers an
excellent software framework for building software development environments and it is becoming
a standard framework used by many embedded software vendors. CCS combines the
advantages of the Eclipse software framework with advanced embedded debug capabilities from
Tl resulting in a compelling feature-rich development environment for embedded developers.
CCS supports running on both Windows and Linux PCs. Note that not all features or devices are
supported on Linux.

TMS320F28004x Microcontroller Workshop - Programming Development Environment

Code Composer Studio

Edit and Debug Perspective (CCSv9)

A perspective defines the initial layout views of the workbench windows, toolbars, and menus that

are appropriate for a specific type of task, such as code development or debugging. This

minimizes clutter to the user interface.

Edit and Debug Perspective (CCSv9)

¢ Each perspective provides a set of functionality aimed
at accomplishing a specific task

.......

*

¢ Edit Perspective

Displays views used
during code development

+ C/C++ project, editor, etc.

¢ Debug Perspective

+ Displays views used for
debugging
+ Menus and toolbars
associated with debugging,

watch and memory
windows, graphs, etc.

By default, Code Composer Studio has “Edit” and “Debug” perspectives. Each perspective
provides a set of functionality aimed at accomplishing a specific task. In the edit perspective,

views used during code development are displayed. In the debug perspective, views used during
debug are displayed.

TMS320F28004x Microcontroller Workshop - Programming Development Environment

Code Composer Studio

Target Configuration

A Target Configuration defines how CCS connects to the device. It describes the device using
GEL files and device configuration files. The configuration files are XML files and have a
*_ccxml file extension.

Creating a Target Configuration

% Mew Target Configuration =} x

Target Configuration

Create a new Target Configuration file.

¢ File 2 New 2 Target
Configuration File

File name: | F28004x.com|

Location: | CoUisery/ <NAME=> Mi/CCSTargetConfigurations

2 e

1) “F28004x.coml &

Basic
General Setup Advanced Setup
This section describes the general configuration about the target. .
Tevas Instruments XDS110 USE Debug Probe w lorgel Configuration ‘ SeleCt CO n n eCtIo n typ e
Ce | F2RO049C .
Save Configuration
RS ¢ Select device
Save
ot CR ¢ Save configuration
To test a connection. &
configuration file con

2-6 TMS320F28004x Microcontroller Workshop - Programming Development Environment

Code Composer Studio

CCSv9 Project

Code Composer works with a project paradigm. Essentially, within CCS you create a project for
each executable program you wish to create. Projects store all the information required to build
the executable. For example, it lists things like: the source files, the header files, the target
system’s memory-map, and program build options.

&5 Project Explorer &2 | H =
+ 1 Example [Active - Debug]
¥ Binaries
! Includes
(= Debug
[¢ Adcc
[4 Clac
[€ ClaTasks_C.cla
CodeStartBranch.asm
[¢ Dacc
[€ Defaultlsrc
[¢ device.c
[¢ Dma.c
[¢ ECap.c
[€ EPwm.c
E] f28004x_globalvariabledefs.c
& f28004x_headers_nonbios.cmd
[¢ Gpio.c
£ Lab_RAM.cmd
[& Main.c
[SineTable.c
[¢ Watchdog.c
[# Lab_Flash.cmc

File Edit View Navigate Project Rur
Hmihd BRvitrviPigw

& v =7

CCSv9 Project

'+ workspace_v3 - Code Composer Studi

Project files contain:

¢ List of files:

¢ Source (C, assembly)
¢ Libraries

¢ Linker command files

¢ TI-RTOS configuration file
¢ Project settings:

¢ Build options (compiler,

assembler, linker, and

¢ Build configurations

TI-RTOS)

A project contains files, such as C and assembly source files, libraries, BIOS configuration files,
and linker command files. It also contains project settings, such as build options, which include
the compiler, assembler, linker, and TI-RTOS, as well as build configurations.

To create a new project, you need to select the following menu items:

File > New > CCS Project

Along with the main Project menu, you can also manage open projects using the right-click popup
menu. Either of these menus allows you to modify a project, such as add files to a project, or
open the properties of a project to set the build options.

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-7

Code Composer Studio

Creating a New CCSv9 Project

A graphical user interface (GUI) is used to assist in creating a new project. The GUI is shown in
the slide below.

Creating a New CCSv9 Project

1. Project Name, Location, and Device
€CS Project
Create a new CCS Project

Target: 28004 Piccolo « | | TMS320F 280049C

Cannection:
C280! [C2000]
Project name: Examgle
[use defau location
Logation: | CAFZB00ARLabH Examplelproject

Compiler version: TIVIBIZ1LTS

+ Teoi-chain

b Project templates and examples

Open Resource Explocer to browse a wide selection of example projects.

T

¢ File 2 New =2 CCS Project

2. Tool-chain

= Toot-cnain

Cutput type: Executable

Output format: legacy COFF

Dievice endeanndss e

Linker command file: | [Erowse...
Funtime support fibrary: | <automatics Browse..

3. Project templates and examples

= Project templates and examples

Creates an empty profect initialized for the

« B Empty Projects selected device.
= Empty Project

& Empty Project {with maing)

= Empty Assembly-caly Progect

@ Empty RTSC Project

After a project is created, the build options are configured.

TMS320F28004x Microcontroller Workshop - Programming Development Environment

Code Composer Studio

CCSv9 Build Options — Compiler / Linker

Project options direct the code generation tools (i.e. compiler, assembler, linker) to create code
according to your system’s needs. When you create a new project, CCS creates two sets of build
options — called Configurations: one called Debug, the other Release (you might think of as
optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler and linker options. Here’'s a sample of the configuration options.

CCSv9 Build Options — Compiler / Linker

Pracamer Options S P Bankc Optiom

¢ Compiler ¢ Linker
¢ 22 categories for code ¢ 9 categories for linking
generation tools & Specify various link
¢ Controls many aspects of options
the build process, such as: + ${PROJECT ROOT}
¢ Optimization level specifies the current

¢ Target device

¢ Compiler / assembly / link
options

project directory

There is a one-to-one relationship between the items in the text box on the main page and the
GUI check and drop-down box selections. Once you have mastered the various options, you can
probably find yourself just typing in the options.

There are many linker options but these four handle all of the basic needs.

o -0 <Filename> specifies the output (executable) filename.

o -m <Filename> creates a map file. This file reports the linker’s results.

e —c tells the compiler to autoinitialize your global and static variables.

o -—X tells the compiler to exhaustively read the libraries. Without this option libraries are
searched only once, and therefore backwards references may not be resolved.

To help make sense of the many compiler options, Tl provides two default sets of options
(configurations) in each new project you create. The Release (optimized) configuration invokes
the optimizer with —03 and disables source-level, symbolic debugging by omitting —g (which
disables some optimizations to enable debug).

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-9

Code Composer Studio

CCS Debug Environment

The basic buttons that control the debug environment are located in the top of the CCS GUI:

S @B -POE- O %P
B 2D RS BT =0

k!

The common debugging and program execution descriptions are shown below:

Start debugging

Image Name Description Availability
id] New Target Creates a new target configartion file. File New Menu

Configuration Target Menu
ﬁ‘} Debug Opens a dialog to modify existing debug configura-

Debug Toolbar

tions. Its drop down can be used to access other
Target Menu

launching options.

_l‘:'__ Connect Connect to hardware targets. T1 Debug Toolbar
Target Target Menu
Debug View Context Menu

L Terminate All | Terminates all active debug sessions. Target Menu
Debug View Toolbar

2-10 TMS320F28004x Microcontroller Workshop - Programming Development Environment

Code Composer Studio

Program execution

Image

oo

b

-

Name

Halt

Run

Run to Line

Go to Main

Step Into

Step Over

Step Return

Reset

Restart

Assembly
Step Into

Assembly
Step Over

Description

Halts the selected target. The rest of the debug
views will update automatically with most recent
target data.

Resumes the execution of the currently loaded
program from the current PC location. Execution
continues until a breakpoint is encountered.

Resumes the execution of the currently loaded
program from the current PC location. Execution
continues until the specific source/assembly line is
reached.

Runs the programs until the beginning of function
main in reached.

Steps into the highlighted statement.

Steps over the highlighted statement. Execution
will continue at the next line either in the same
method or (if you are at the end of a method) it
will continue in the method from which the current
method was called. The cursor jumps to the decla-
ration of the method and selects this line.

Steps out of the current method.

Resets the selected target. The drop-down menu
has various advanced reset options, depending on
the selected device.

Restores the PC to the entry point for the currently
loaded program. If the debugger option "Run to
main on target load or restart" is set the target will
run to the specified symbol, otherwise the execu-
tion state of the target is not changed.

The debugger executes the next assembly instruc-
tion, whether source is available or not.

The debugger steps over a single assembly instruc-
tion. If the instruction is an assembly subroutine,
the debugger executes the assembly subroutine
and then halts after the assembly function returns.

Availability

Target Menu
Debug View Toolbar

Target Menu
Debug View Toolbar

Target Menu
Disassembly Context Menu
Source Editor Context Menu

Debug View Toolbar

Target Menu
Debug View Toolbar

Target Menu
Debug View Toolbar

Target Menu
Debug View Toolbar

Target Menu
Debug View Toolbar

Target Menu
Debug View Toolbar

TI1 Explicit Stepping Toolbar
Target Advanced Menu

Tl Explicit Stepping Toolbar
Target Advanced Menu

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-11

Creating a Linker Command File

Creating a Linker Command File

Sections

Looking at a C program, you'll notice it contains both code and different kinds of data (global,
local, etc.). All code consists of different parts called sections. All default section names begin
with a dot and are typically lower case. The compiler has default section names for initialized and
uninitialized sections. For example, x and y are global variables, and they are placed in the
section .ebss. Whereas 2 and 7 are initialized values, and they are placed in the section called
.Cinit. The local variables are in a section .stack, and the code is placed in a section called .txt.

In the Tl code-generation tools (as with any toolset based on the COFF — Common Object File
Format), these various parts of a program are called Sections. Breaking the program code and
data into various sections provides flexibility since it allows you to place code sections in ROM

Sections

Global vars (.ebss) Init values (.cinit)

void main(void)
{
long z;

Local vars (.stack) Code (.text)

¢ All code consists of
different parts called
sections

¢ All default section
names begin with “.”

¢ The compiler has
default section names
for initialized and
uninitialized sections

and variables in RAM. The preceding diagram illustrated four sections:

Global Variables

Initial Values for global variables
Local Variables (i.e. the stack)
Code (the actual instructions)

TMS320F28004x Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

The following is a list of the sections that are created by the compiler. Along with their
description, we provide the Section Name defined by the compiler. This is a small list of compiler
default section names. The top group is initialized sections, and they are linked to flash. In our
previous code example, we saw .txt was used for code, and .cinit for initialized values. The
bottom group is uninitialized sections, and they are linked to RAM. Once again, in our previous
example, we saw .ebss used for global variables and .stack for local variables.

Compiler Section Names

Initialized Sections

Name Description Link Location

text code FLASH

.cinit initialization values for FLASH
global and static variables

.econst constants (e.g. const int k = 3;) FLASH

.switch tables for switch statements FLASH

pinit tables for global constructors (C++) | FLASH

Uninitialized Sections

Name Description Link Location

.ebss global and static variables RAM

.stack stack space low 64Kw RAM

.esysmem | memory for far malloc functions RAM

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Sections of a C program must be located in different memories in your target system. This is the
big advantage of creating the separate sections for code, constants, and variables. In this way,
they can all be linked (located) into their proper memory locations in your target embedded
system. Generally, they're located as follows:

Program Code (.text)

Program code consists of the sequence of instructions used to manipulate data, initialize system
settings, etc. Program code must be defined upon system reset (power turn-on). Due to this basic
system constraint it is usually necessary to place program code into non-volatile memory, such as
FLASH or EPROM.

Constants (.cinit — initialized data)

Initialized data are those data memory locations defined at reset.It contains constants or initial
values for variables. Similar to program code, constant data is expected to be valid upon reset of
the system. It is often found in FLASH or EPROM (non-volatile memory).

Variables (.ebss — uninitialized data)

Uninitialized data memory locations can be changed and manipulated by the program code
during runtime execution. Unlike program code or constants, uninitialized data or variables must
reside in volatile memory, such as RAM. These memories can be modified and updated,
supporting the way variables are used in math formulas, high-level languages, etc. Each variable
must be declared with a directive to reserve memory to contain its value. By their nature, no value
is assigned, instead they are loaded at runtime by the program.

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-13

Creating a Linker Command File

Next, we need to place the sections that were created by the compiler into the appropriate
memory spaces. The uninitialized sections, .ebss and .stack, need to be placed into RAM; while
the initialized sections, .cinit, and .txt, need to be placed into flash.

Placing Sections in Memory

Memory Secti
ections
0x00 0000 RAMMO
(0x400) | 77T .ebss
0x00 0400 RAMM1 . _
(0x400) | TTe=~l__
B .stack
0x08 0000 FLASH ammmmmmm cinit
(0x40000) -
T text

Linking code is a three step process:
1. Defining the various regions of memory (on-chip RAM vs. FLASH vs. External Memory).
2. Describing what sections go into which memory regions

3. Running the linker with “build” or “rebuild”

2-14 TMS320F28004x Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

Linker Command Files (.cmd)

The linker concatenates each section from all input files, allocating memory to each section
based on its length and location as specified by the MEMORY and SECTIONS commands in the
linker command file. The linker command file describes the physical hardware memory and
specifies where the sections are placed in the memory. The file created during the link process is
a .out file. This is the file that will be loaded into the microcontroller. As an option, we can
generate a map file. This map file will provide a summary of the link process, such as the
absolute address and size of each section.

Linking

e Memory description
e How to place s/w into h/w

Link.cmd

.0bj ——| Linker —— .out

.map

Memory-Map Description

The MEMORY section describes the memory configuration of the target system to the linker.
The format is: Name: origin = 0x????, length = 0x??7??

For example, if you placed a 256Kw FLASH starting at memory location 0x080000, it would read:
MEMORY

FLASH: origin = 0x080000 , length = 0x040000
}

Each memory segment is defined using the above format. If you added RAMMO and RAMM1, it
would look like:

MEMORY
RAMMO: origin = 0x000000 , length = 0x0400
RAMM1 : origin = 0x000400 , length = 0x0400
}

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-15

Creating a Linker Command File

Remember that the MCU has two memory maps: Program, and Data. Therefore, the MEMORY
description must describe each of these separately. The loader uses the following syntax to
delineate each of these:

Linker Page TI Definition

Page 0 Program

Page 1 Data

Linker Command File

MEMORY
PAGE O: /* Program Memory */
FLASH: origin = 0x080000, length = 0x40000
PAGE 1: /* Data Memory */
RAMMO: origin = 0x000000, length = 0x400
RAMM1 : origin = 0x000400, length = 0x400
}
SECTIONS
{
-text:> FLASH PAGE = O
.ebss:> RAMMO PAGE = 1
.cinit:> FLASH PAGE = O
.stack:> RAMM1 PAGE = 1
by

A linker command file consists of two sections, a memory section and a sections section. In the
memory section, page 0 defines the program memory space, and page 1 defines the data
memory space. Each memory block is given a unique name, along with its origin and length. In
the sections section, the section is directed to the appropriate memory block.

Section Placement

The SECTIONS section will specify how you want the sections to be distributed through memory.
The following code is used to link the sections into the memory specified in the previous example:

SECTIONS

{
.text:> FLASH PAGE O
.ebss:> RAMMO PAGE 1
-cinit:> FLASH PAGE O
.stack:> RAMM1 PAGE 1

}

The linker will gather all the code sections from all the files being linked together. Similarly, it will
combine all ‘like’ sections.

Beginning with the first section listed, the linker will place it into the specified memory segment.

TMS320F28004x Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

Summary: Linker Command File

The linker command file (.cmd) contains the inputs — commands — for the linker. This
information is summarized below:

Linker Command File Summary

¢ Memory Map Description
¢ Name
¢Location
¢ Size

¢ Sections Description

¢ Directs software sections into named
memory regions

¢ Allows per-file discrimination
¢ Allows separate load/run locations

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-17

Lab 2: Linker Command File

Lab 2: Linker Command File
» Objective

Use a linker command file to link the C program file (Lab2.c) into the system described below.

Lab 2: Linker Command File

Memory o
PAGE @: /* Program Memory */
RAMLS4 : origin = 0x004000, length = 0x000800
on-chip RAMLSS : origin = xBAAS80, length = AxBAORER
RAMGSA1 : eripin = Gx0ACE08, lenpth = AxBA4000
memory
PAGE 1: /* Data Memory */
RAMMO : origin = GxBO0OFS, length = Ox000308
RAMML : origin = 0x000408, length = Ox0OA4DO
RAMLSS : origin = GxB0R008, length = AxDOBEHO
F28004X RAMLS : origin = OXOOEER0, length = OxOOEEED
RAMLS2 :oorigin = Ox009000, length = GxBOREOR
RAMLS3 : origin = GxBAYEGB, length = GxBOBBOE
RAMLSG : origin = Ox0B008, length = Ox000800
. . RAMLST : origin = OxPOBR0R, length = Ox0OAEDO
Svstem Description: RAMGS2 : oripin = 0x010000, lenpth = 0x0A2000
RAMGS3 : origin = Gw@12008, length = GxBAI000
* TMS320F28004x)

« All internal RAM
blocks allocated
Placement of Sections:
« .text into RAM Block RAMGSO01 on PAGE 0 (program memory)
e .cinit into RAM Block RAMGSO01 on PAGE 0 (program memory)
 .ebss into RAM Block RAMMO on PAGE 1 (data memory)
« .stack into RAM Block RAMML1 on PAGE 1 (data memory)

> Initial Hardware Set Up

Note: The lab exercises in this workshop have been developed and targeted for the F280049C
LaunchPad. Optionally, the F280049C Experimenter Kit can be used. Refer to Appendix
A for additional information on using the F280049C Experimenter Kit with this workshop.

e F280049C LaunchPad:

Using the supplied USB cable — plug the USB Standard Type A connector into the computer USB
port and the USB Micro Type B connector into the LaunchPad. This will power the LaunchPad
using the power supplied by the computer USB port. Additionally, this USB port will provide the
JTAG communication link between the device and Code Composer Studio.

Initial Software Set Up

Code Composer Studio must be installed in addition to the workshop files. A local copy of the
required C2000Ware files is included with the lab files. This provides portability, making the
workshop files self-contained and independent of other support files or resources. The lab
directions for this workshop are based on all software installed in their default locations.

TMS320F28004x Microcontroller Workshop - Programming Development Environment

Lab 2: Linker Command File

> Procedure

Start Code Composer Studio and Open a Workspace

1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or selecting it
from the Windows Start menu. When CCS loads, a dialog box will prompt you for the
location of a workspace folder. Use the default location for the workspace and click Launch.

This folder contains all CCS custom settings, which includes project settings and views when
CCS is closed so that the same projects and settings will be available when CCS is opened
again. The workspace is saved automatically when CCS is closed.

2. The first time CCS opens an introduction page appears. Close the page by clicking the X on
the “Getting Started” tab. You should now have an empty workbench. The term “workbench”
refers to the desktop development environment. Maximize CCS to fill your screen.

The workbench will open in the CCS Edit perspective view. Notice the “CCS Edit” icon in the
upper right-hand corner. A perspective defines the initial layout views of the workbench
windows, toolbars, and menus which are appropriate for a specific type of task (i.e. code
development or debugging). This minimizes clutter to the user interface. The CCS Edit
perspective is used to create or build C/C++ projects. A CCS Debug perspective view will
automatically be enabled when the debug session is started. This perspective is used for
debugging C/C++ projects.

Setup Target Configuration

3. Open the target configuration dialog box. On the menu bar click:
File > New - Target Configuration File

In the file name field type F28004x.ccxml. This is just a descriptive name since multiple
target configuration files can be created. Leave the “Use shared location” box checked and
select Finish.

4. In the next window that appears, select the emulator using the “Connection” pull-down list
and choose “Texas Instruments XDS110 USB Debug Probe”. In the “Board or Device” box
type TMS320F280049C to filter the options. In the box below, check the box to select
“TMS320F280049C".

The LaunchPad XDS110 USB Debug Probe is only wired to support 2-pin cJTAG mode.
Under Advanced Setup click “Target Configuration” and highlight “Texas Instruments
XDS110 USB Debug Probe_0”". Under Connection Properties set the JTAG/SWD/cJTAG
Mode to “cJTAG (1149.7) 2-pin advanced modes”.

Click Save to save the configuration, then close the “F28004x.ccxml” setup window by
clicking the X on the tab.

5. To view the target configurations, click:

View > Target Configurations

and click the sign (‘+' or *>") to the left of “User Defined”. Notice that the F28004x.ccxml file is
listed and set as the default. If it is not set as the default, right-click on the .ccxml file and
select “Set as Default”. Close the Target Configurations window by clicking the X on the tab.

Create a New Project

6. A project contains all the files you will need to develop an executable output file (.out) which
can be run on the MCU hardware. To create a new project click:

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-19

Lab 2: Linker Command File

10.

11.

12.

File > New - CCS Project orclick: Project - New CCS Project..

A CCS Project window will open. At the top of this window, filter the “Target” options by using
the pull-down list on the left and choose “28004x Piccolo”. In the pull-down list immediately
to the right, choose the “TMS320F280049C".

Leave the “Connection” box blank. We have already set up the target configuration.

The next section selects the project settings. In the Project name field type Lab2. Uncheck
the “Use default location” box. Click the Browse... button and navigate to:

C:\F28004x\Labs\Lab2\project

Click Select Folder.

Next, open the “Tool-chain” section and set the “Linker command file” to “<none>". We will
be using our own linker command file rather than the one supplied by CCS. Leave the
“Runtime Support Library” set to “<automatic>". This will automatically select the
“rts2800_fpu32.lib” runtime support library for floating-point devices.

Then, open the “Project templates and examples” section and select the “Empty Project”
template. Click Finish.

A new project has now been created. Notice the Project Explorer window contains Lab2. If
the workbench is empty, reset the perspective view by clicking:

Window > Perspective > Reset Perspective..

The project is set “Active” and the output files will be located in the “Debug” folder. At this
point, the project does not include any source files. The next step is to add the source files to
the project.

To add the source files to the project, right-click on Lab2 in the Project Explorer window and
select:

Add Files..
or click: Project > Add Files..

and make sure you are looking in C:\F28004x\Labs\Lab2\source. With the “files of
type” set to view all files (*.*) select Lab2.c and Lab2.cmd then click OPEN. A “File
Operation” window will open, choose “Copy files” and click OK. This will add the files to the
project.

In the Project Explorer window, click the sign (‘+' or *>’) to the left of Lab2 and notice that the
files are listed.

Project Build Options

13.

14.

There are numerous build options in the project. Most default option settings are sufficient for
getting started. We will inspect a couple of the default options at this time. Right-click on
Lab2 in the Project Explorer window and select Properties or click:

Project > Properties

A “Properties” window will open and in the section on the left under “Build” be sure that the
“C2000 Compiler” and “C2000 Linker” options are visible. Next, under “C2000 Linker” select
the “Basic Options”. Notice that .out and .map files are being specified. The .out file is
the executable code that will be loaded into the MCU. The .map file will contain a linker
report showing memory usage and section addresses in memory. Also notice the stack size
is set to 0x200.

TMS320F28004x Microcontroller Workshop - Programming Development Environment

Lab 2: Linker Command File

15. Under “C2000 Compiler” select the “Processor Options”. Notice the large memory model
and unified memory boxes are checked. Next, notice the “Specify CLA support” is set to
cla2, the “Specify floating point support” is set to fpu32, the “Specify TMU support” is set to
TMUO, and the “Specify VCU support” is set to vcuO. Select Apply and Close to close the
Properties window.

Linker Command File — Lab2.cmd

16. Open and inspect Lab2.cmd by double clicking on the filename in the Project Explorer
window. Notice that the Memory{} declaration describes the system memory shown on the
“Lab2: Linker Command File” slide in the objective section of this lab exercise. Memory
blocks RAMLS4, RAMLS5 and RAMGSO01 have been placed in program memory on page 0,
and the other memory blocks have been placed in data memory on page 1.

17. In the Sections{} area notice that the sections defined on the slide have been “linked” into
the appropriate memories. Also, notice that a section called .reset has been allocated. The
.reset section is part of the rts2800_fpu32.lib and is not needed. By putting the TYPE =
DSECT modifier after its allocation the linker will ignore this section and not allocate it. Close
the inspected file.

Build and Load the Project

18. Two buttons on the horizontal toolbar control code generation. Hover your mouse over each
button as you read the following descriptions:

LS A
Button Name Description
1 Build Full build and link of all source files
2 Debug Automatically build, link, load and launch debug-session

19. Click the “Bui 1d” button and watch the tools run in the Console window. Check for errors in
the Problems window (we have deliberately put an error in Lab2.c). When you get an error,
you will see the error message in the Problems window. Expand the error by clicking on the
sign (‘+' or *>") to the left of the “Errors”. Then simply double-click the error message. The
editor will automatically open to the source file containing the error, with the code line
highlighted with a red circle with a white “x” inside of it.

20. Fix the error by adding a semicolon at the end of the “z = x + y” statement. For future
knowledge, realize that a single code error can sometimes generate multiple error messages
at build time. This was not the case here.

21. Build the project again. There should be no errors this time.

22. CCS can automatically save modified source files, build the program, open the debug
perspective view, connect and download it to the target, and then run the program to the
beginning of the main function.

Click on the “Debug” button (green bug) or click RUN - Debug

Notice the “CCS Debug” icon in the upper right-hand corner indicating that we are now in the
CCS Debug perspective view. The program ran through the C-environment initialization
routine in the rts2800_fpu32.lib and stopped at main() in Lab2.c.

TMS320F28004x Microcontroller Workshop - Programming Development Environment 2-21

Lab 2: Linker Command File

Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There are
various methods for doing this in CCS. We will examine two of them here: memory browser, and
expressions.

23. Open a “Memory Browser” to view the global variable “z”".
Click: View > Memory Browser on the menu bar.

Type &z into the address field, select “Data” memory page, and then <enter>. Note that you
must use the ampersand (meaning “address of”) when using a symbol in a memory browser
address box. Also note that CCS is case sensitive.

Set the properties format to “16-Bit Hex — Tl Style” in the browser. This will give you more
viewable data in the browser. You can change the contents of any address in the memory
browser by double-clicking on its value. This is useful during debug.

24. Notice the “Variables” window automatically opened and the local variables x and y are
present. The variables window will always contain the local variables for the code function
currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in a
memory browser by setting the address to “SP” after the code function has been entered).

25. We can also add global variables to the “Expressions” window if desired. Let's add the global
variable “z".

Click the “Expressions” tab at the top of the window. In the empty box in the “Expression”
column (Add new expression), type z and then <enter>. An ampersand is not used here.
The expressions window knows you are specifying a symbol. (Note that the expressions
window can be manually opened by clicking: View - Expressions on the menu bar).

Check that the expressions window and memory browser both report the same value for “z”.
Try changing the value in one window, and notice that the value also changes in the other
window.

Single-stepping the Code

26. Click the “Variables” tab at the top of the window to watch the local variables. Single-step
through main() by using the <F5> key (or you can use the “Step Into” button =. on the
horizontal toolbar). Check to see if the program is working as expected. What is the value
for “z” when you get to the end of the program?

Terminate Debug Session and Close Project

27. The “Terminate” button will terminate the active debug session, close the debugger and
return Code Composer Studio to the CCS Edit perspective view.

Click: Run > Terminate or use the Terminate icon: ®

28. Next, close the project by right-clicking on Lab2 in the Project Explorer window and select
Close Project.

End of Exercise

2-22 TMS320F28004x Microcontroller Workshop - Programming Development Environment

Peripheral Register Programming

Introduction

This module starts with exploring different types of programming models; which include the
traditional #define macro approach, the bit field structure header files approach, and the driver
library approach. In this workshop, the C2000 Peripheral Driver Library, or Driverlib, will be used.
Driverlib is a set of low-level drivers for configuring memory-mapped peripheral registers. The
Driverlib provides a more readable and portable approach to peripheral register programming
than the other programming model methods.

The Driverlib is written in C and all source code can be found within C2000Ware. It provides
drivers for all peripherals, as well as drivers for configuring various memory mapped device
settings. In this module, you will learn how to use the Driverlib to facilitate programming the
peripherals and the device.

Module Objectives

Module Objectives

¢ Review register programming model

¢ Understand the usage of the F28004x
Driverlib and associated files

¢ Program an application using Driverlib

¢ Discuss Driverlib optimization

TMS320F28004x Microcontroller Workshop - Peripheral Register Programming 3-1

Register Programming Model

Chapter Topics

Peripheral RegiSter ProgramimMiNgc ettt se e e e e e e nanbeeeaaae s 3-1
Register Programming MOueiiiiiiiii e 3-3
Driver LiDrary (DFVEFTID)cooi ittt e e e e e s iabbe e e e e e as 3-5

Construction of a Driverlib FUNCHONcooiiiiii e 3-6
)Y 11 @] o] 110 T 4= L1 o] o ISR 3-7
Driverlib API Functions and EXamPIeS.........coccuuuiiiiieeie et sneee e e 3-8
(O0] 01 (=] 0| QAN] PP PT P UOUPPPRPPPR 3-9
DriverliD DOCUMENTATIONuiiiiiiiiiie et e e e e et e e e e e e e e s nbeeeeas 3-9
DrivVErliD SUMMEAIY....cooo ittt e e e e bbbt e e e e e e s e snbbeeeeeaeeeeannes 3-10
Lab File DIreCLOIY STIUCTUIEcoiiiiiiiiiieieee ettt ettt e e et e e e e e e e s e snbber e e e e e e e e aannes 3-10

TMS320F28004x Microcontroller Workshop - Peripheral Register Programming

Register Programming Model

Register Programming Model

Register Programming Model

Software

¢ Driverlib
] ¢ C functions automatically set

A
Dir

Hardware i\bstraction

y
ect

A

y

A 4

\ 4

Driverlib

Bit Fields

register bit fields
¢ Common tasks and
peripheral modes supported
¢ Reduces learning curve and
simplifies programming
¢ Bit Field Header Files
¢ C structures — Peripheral
Register Header Files
¢ Register access whole or by
bits and bit fields are
v manipulated without masking

\ 4

{ Registers an

d Addresses]

¢ Ease-of-use with CCS IDE

A 4

¢ Direct
¢ User code (C or assembly)

[

Hardware

] defines and access register

addresses

The various levels of the programming model provide different degrees of abstraction. The

highest level is DriverLib which are C functions that automatically set the bit fields. This gives you
a minimum amount of flexibility in exchange for a reduced learning curve and simplified
programming. The bit field header files are C structures that allow registers to be access whole

or by bits and bit fields, and modified without masking. This provides a balance between ease of
use and flexibility when working with Code Composer Studio. Direct access to the registers is the

lowest level where the user code, in C or assembly, defines and access register addresses.

TMS320F28004x Microcontroller Workshop - Peripheral Register Programming

Register Programming Model

Programming Model Comparison

[Direct]—

*CMPR1 = 0x1234;

¢ Register addresses # defined individually
User must compute bit-field masks
¢ Not easy-to-read

*

¢ Header files define all registers as structures
[Bit Field Header Files]— o Bit-fields directly accessible
¢ Easy-to-read

EPwmlRegs.CMPA._bit.CMPA = EPwmlRegs.TBPRD * duty;

¢ Driverlib performs low-level register manipulation

[Driverlib]— ¢ Easy-to-read

¢ Highest abstraction level

EPWM_setCounterCompareValue(EPWM1_BASE, EPWM_COUNTER_COMPARE_A, duty);

¢ The device support package includes documentation and examples showing how to
use the Bit Field Header Files or Driverlib
¢ Device support packages located at: C:\ti\c2000\C2000Ware\device_support\
C:\ti\c2000\C2000Ware\driverlib\
¢ C2000Ware can be downloaded at www. ti.com/tool/c2000ware

The above slide provides a comparison of each programming model, from the lowest level to the
highest level of abstraction. With direct access to the registers, the register addresses are
#defined individually and the user must compute the bit-field mask. The bit field header files
define all registers as structures and the bit fields are directly accessible. DriverLib performs low-
level register manipulation and provides the highest level of abstraction. This workshop makes
use of the Driverlib, which provides flexibility and makes it easy to program the device. Device
support packages can be downloaded from www.ti.com.

3-4 TMS320F28004x Microcontroller Workshop - Peripheral Register Programming

Driver Library (Driverlib)

Driver Library (Driverlib)

Driver Library (Driverlib)

¢ Require less detailed knowledge of the hardware

¢ Produce code that is easy-to-write and easy-to-read
¢ Generally require less development time

¢ Provide portability across other C2000 devices

custom Driverlib functions
¢ Requires detailed knowledge of:
¢ Operation of each register and bit field

4 Can result in smaller and more efficient code

independently or combined

¢ Driverlib “APIs” provide many advantages and benefits:

¢ Optimize well; remove overhead and speed up code execution

¢ If needed, “direct register access” can be used to create

¢ Interactions and sequencing required for proper peripheral operation

¢ Both APIs and direct register access can be used

The Driver Library (Driverlib) is a set of drivers for accessing the peripherals and device
configuration registers. While Driverlib is not drivers in the pure operating system sense (it does
not have a common interface and it does not connect into a global device driver), they do provide

a software layer to facilitate a slightly higher level of programming.

Driverlib File Structure

)) Software driver (Driverlib API)
hd driverlib /0 Contains source code for drivers
¢ .cfiles and .h files

inc
\ Direct register access

access header files
¢ hw_*h
for each peripheral

¢ Can be used to bypass driverlib API
¢ hw_memmap.h

¢ hw_ints.h

¢ hw_types.h
¢ Defines type definitions

¢ Contains peripheral, interrupt, and register

¢ One per peripheral / memmap device function
¢ Defines all registers and bit fields within the registers

¢ Used by driver API to access a peripheral

¢ Defines base address for each peripheral

¢ Defines interrupt numbers (used with interrupt.c)

TMS320F28004x Microcontroller Workshop - Peripheral Register Programming

Driver Library (Driverlib)

Construction of a Driverlib Function

Construction of a Driverlib Function

¢ Driverlib API functions are built on top of the direct
register access model

¢ Useful to understand for debugging or when needing to directly
access a register or bit field

¢ Uses a similar approach to traditional #define

¢ Naming convention used in header files macros:

- Values that end in _BASE are module instance base addresses

- Values that contain an _O__ are register address offsets

- Values that end in _M are mask for multi-bit field register

- Values that end in _S are the number of bits to shift

hw_types.h contains the follow macros:

- HWREG(x) are 32-bit accesses

- HWREGH(x) are 16-bit accesses (or upper/lower 32-bit word)
HWREGB (x) are 8-bit accesses
HWREGBP(x) are used with byte peripherals

where X is the address to be accessed

With the direct register access model, the peripherals are programmed by writing values directly
to the peripheral’'s registers. A set of macros is provided to simplify this process. These macros
are stored in several header files contained in the \inc directory.

Driverlib Function Example

user.c — user source file

// Configure EPWM clock prescaler to TBCLK = EPWMCLK
EPWM_setClockPrescaler (EPWM2_BASE, EPWMiCLOCKiDIVIvDEil, EPWM_HSCLOCK_DIVIDER_1);
'S

Pk

hw_memmap.h

#define EPWM2_BASE 0x00004100U // EPWM2

epwm.h — EPWM Driver

static inline void EPWM_setClockPrescaler(uint32_t base,
EPWM_ClockDivider prescaler,
EPWM_HSClockDivider highSpeedPrescaler)

Contains typedef enum values for:
EPWM_CLOCK_DIVIDER (_1 = 0)
EPWM_HSCLOCK_DIVIDER (_1 = 0)

{
ASSERT(EPWM_isBaseValid(base));

// write to CLKDIV and HSPCLKDIV bit
HWREGH(base + EPWM_O_TBCTL) =
((HWREGH(base + EPWM_O_TBCTL) &
~(EPWM_TBCTL_CLKDIV_M | EPWM_TBCTL_HSPCLKDIV_M))|
((uint16_t)prescaler << EPWM_TBCTL_CLKDIV_S)
((uintl6_t)highSpeedPrescaler << EPWM_TBCTL_HSPCLKDIV_S)));
}_//‘
hw_epwm.h
Contains #define for all:
EPWM_xxx values in epwm.h

Note: CCS ‘F3’ will open declaration

TMS320F28004x Microcontroller Workshop - Peripheral Register Programming

Driver Library (Driverlib)

Driverlib Optimization

Driverlib Optimization

¢ In general, software abstraction can come at the cost of performance

¢ However, Driverlib’s low-level abstraction and optimization-conscious
design makes it efficient

W% Properties for Example =] x
Optimization Tt il
Resowrce
Gentral
+ Build Configuration: |Debug [Active | = Manage Configurations...

~ C2000 Compiler
Processor Opticns

Optimization Optimization level (--opt_level, -0) ol

Inelude Options
Perfarmance Advisor Speed vi size trade-offs (--opt_for_speed, -mf) off
Predefined Symbals 0-
Advanced Options Floating Paint made (—fp_made) -
2000 Linker 2 - Global Ogtimizations
¥ o | Allew reasseciation of FP arithmetic (--fp_reassac) |3 - Interprocedure Optimizations
C2000 Hex Utility [Disabled) B
4 - Whaole Program Optimizations
Debug —
Project Natures

2} Show advan

Apply and Close Cancel

¢ Most functions have been declared as inline functions
¢ Allows the compiler to treat functions like macros when optimizer is turned on
¢ Removes the overhead of function calls and speeds up code execution

¢ Use compiler option --opt_level set to 0 or higher

The optimization options are selected in the CCS project by right-clicking on the project in the
project explorer window and then clicking ‘Properties’. In the properties window, the optimization
settings are located under: Build > C2000 Compiler - Optimization

Optimization Example

¢ Read ADC conversion results
¢ Optimization level of -O2; Enable inlining (--enable_inlining)
¢ Single MOV instruction is generated for each function call
¢ Results: 3words of code / 3 cycles to execute

C-Source Code Generated Assembly
Instruction

tmp[0]=ADC readResult (ADCARESULT BASE, MOV *-SP[3], *(0:0x0b00)
ADC_SOC_NUMBERO) ;

tmp[1]=ADC readResult (ADCARESULT BASE, MOV *-SP[2], *(0:0x0b01)
ADC SOC_NUMBERL) ;

tmp [2]=ADC_readResult (ADCARESULT BASE, MOV *-SP[1l], *(0:0x0b02)

ADC_SOC_NUMBER2) ;

¢ When compiled with:
¢ Optimization level of -O2; Disable inlining (--disable_inlining)
¢ Results:

¢ 22 words of code
¢ 4 words for ADC_readResult() and 18 words for the calling functions

¢ 53 cycles to execute

TMS320F28004x Microcontroller Workshop - Peripheral Register Programming 3-7

Driver Library (Driverlib)

Driverlib API Functions and Examples

Driverlib APl Functions

ADC DMA Interrupt
ASysCitl ECAP LIN
CAN EPWM MemCfg
CLA EQEP PGA
CLAPROMCRC Flash PMBus
CMPSS FSI SCI
CPU Timer GPIO SDFM
DAC HRCAP SPI
DCC HRPWM SysCitrl
DCSM 12C X-BAR

See the F28004x Peripheral Driver Library User’s Guide for details

Driverlib Examples

¢ Example projects are helpful for getting started

sp1 timer walchdog

C:\ti\c2000\C2000Ware_<version>\driverlib\f28004x\examples

TMS320F28004x Microcontroller Workshop - Peripheral Register Programming

Driver Library (Driverlib)

Content Assist

Content Assist

37 ADC_enable
- tnable af ® ADCenableBursiMode(uint32 t base) : void ok hccess) o |[B%
Interr‘upt_r! = ADC_enableContinuousMode{uint32_t base, ADC_IntNumber adcintNunj =
Interrupt 1 ® ADC_enableConverter(uint32_t base) : void
| lADC_; int32_t base, ADC_IntNumb = void
Finish ug o J\D('_ena\{hgpﬁruem(uiﬂﬂ?_l base, ADC_PPENumber ppbNumber, uint

Szfdf:iﬁim * ADC_ensbApPBEventinternupt(unt32_{ base, ADC_PPBNumber ppbNum
| = ADC_enablePRBTwosComplement(uint3Z2_t base, ADC_PPENumber pphl AOC TNT1

d InitAd o 3

| Press ‘Cirl+Space” to show Template Proposals

ADEC en\hkrf\n\&mumuﬂb\;e _w.; .w mr _MABERL);
: |ADC enableInter‘r‘upt(ADCA BASE ADC_INT_NUMBER1); |
EPwm.s Enable
128004x_giobalvanabiedets.c
128004x_headers_nonbeos.omd

A intaer
Jnt-rrunt m-gnlrr{mr ADCAL, RadcAlISR);
A1)

Gpiag -
» Lab_RAM.cmd l.,. ADC_enableInterrupt(ADCA_BASE, ADC_TNT}, Y
& Mainc il - : | o [ADCINT NUMBER1] -
& SineTablec -- Enabl Al inter:
& Watchdog:c Intcrrup‘t rcg:stcr‘(IN NJCM &ichlIJ ADCINT_NUMBER2 p
" nterrupt_enable(INT_A); | o ADC_INT_NUMBER3 .
| @ ADC_INT_NUMBER4
" f- m:' n;]:v? — | = ADC_INT_SOC_TRIGGER_ADCINTY
* enableConverter: 3 |
o -’ o | = ADC_INT_SOC_TRIGGER_ADCINTZ
i DEVICE_DELAY_US(1009); Pt < up bed
B Frobied | @ ADC_INT_SOC_TRIGGER_NONE |
0 items f/ end InitAde() | # ADC_INTFLGCLR_ADCINTY ».
L Brese ‘cirisSpace’ to thew Template

Activate by: Ctrl + Space

Wiritabie Smart Irsert 1:1

The Content Assist feature can be used to offer suggestions for completing function and
parameter names. Also, hover over the function to view its description.

Driverlib Documentation

Driverlib Documentation
Available in .pdf or .html formats

Q TEXAS INSTRUMENTS

Texas Instruments F28004x Peripheral Driver Library

F28004x Peripheral Driver Library 1.04.00.00
The F28004x Perigheral Criver Liorary |s 2 set of drivers for accessing the penperals found on the FZ3004x

microcontrollers. While they are net drivers in the purs operating sysiem sense (fhat i, they do not have a
comiman interface ang do nol connedt nlo 3 gobal device dilver infrasrueture), they do provide @ soware ayer
USER'S GUIDE 1o faciltate a sightly higher kel of programming than direct register acoesses.

The capabiities and orgarization of the drivers are govamed by te following Besign goals:

 They are writlen entiredy in G except where absoiutely not possible.

« ‘Whers pssitie, CompLUIaBons that can be periormed 3t compile time are done there Istead of at run
fime

« They are imended to makes code More portabie SCI0Ss other C2000 devices.

+ Code writlen with these AP13 will be mone reacabile than coce wiitien Lsing mary direct register
axesses

Some canseguences of this are that the drivers are not necessariy as eficient as they could be (fram a code
S0 Sndice EECLBon Speed Paint of view). VYN e most efickent plece of code for cpersting 3 penpheral
weuld be written in assemibly taikered to the specif i of the application, further size
‘optimizations of the drivers woukd make them more dficult 1o understnd

For many appicatons, the divers can be used as B. Bt in some cases, the drfvers will have 10 be enhanced of
rewtiLten n order io meed the funcionalily, memary, o processing requirements of the appication. If o, e
existing diiver can be used as a referense on how o cperate the peripheral,

[P TY e—— sonpight 2013, Texas Instruments Incorporated

C:\ti\c2000\C2000Ware_<version>\device_support\f28004x\docs

TMS320F28004x Microcontroller Workshop - Peripheral Register Programming

Driver Library (Driverlib)

Driverlib Summary

Driverlib Summary

¢ Easier code development

¢ Easy to use

¢ Has been written to be optimized well

¢ CCS — hover over function to view description
¢ Compatible with Bit Field Header Files

¢ Tl has already done all the work!

¢ Use the correct Driverlib package for your device:

F28004x F2807x F2837xS | F2837xD

Go to http://www.ti.com and enter “C2000Ware” in the keyword search box

Lab File Directory Structure

Lab File Directory Structure
v W F28004x Supporting Files
v i labs # Easier to make projects portable
v [128004x _driverlib ¢ ${PROJECT_ROOT} provides
driverlib an anchor point for paths to files
« | 128004x headers that travel with the project
omd ¢ Easier to maintain and update
- clude .supporting files .
Project Source Files
o + All modified files are in the
v Labcommon Project Folder
include Other Source Files that are
source “Added” to the Project Folder
v | Llabx ¢ Source files for multiple part
project lab exercises
source
Note: CCSv9 will automatically add ALL files contained in the folder where the project is created

3-10 TMS320F28004x Microcontroller Workshop - Peripheral Register Programming

Reset and Interrupts

Introduction

This module describes the device reset and interrupt process, and explains how the Peripheral
Interrupt Expansion (PIE) is used to service the peripheral interrupts.

Module Objectives

Module Objectives

¢ Reset Sources

¢ Enhanced Boot Modes

¢ Peripheral Reset

¢ Interrupt Source and Interrupt Structure
¢ Peripheral Interrupt Expansion

¢ Initialize Interrupt Module

¢ Event Sequence of an Interrupt

TMS320F28004x Microcontroller Workshop - Reset and Interrupts 4-1

Reset and Boot Process

Chapter Topics

RESEE AN INTEITUPES .ottt e e e st e e e e e e e s e aab et e e e e e e e s nnbbeeeaaaaeas 4-1
RESEL AN BOOL PIrOCESSeteiiiiiiiiiiiitti ettt ettt e e e e st e e e e e e e st b e e e e e e e e s e snnbbeaeaaaaeas 4-3
Y=y A = ToTo 1 [0 T= o = PP OTPPPRTRPR 4-5
EMUIation BOOt MOGE......ccoiiiiiiie ittt ettt e e s e e e e s et e e e s srbeeeeanes 4-6
Stand-AloNE BOOL MOEouveiiiiiiiie ettt e et e et e e s sneeee s 4-7
7o To @Y, (oo [B = {1 T 1o PP PPPRTRPR 4-8
Reset Code FIOW — SUMMAIYoooiiiiiiiiiii ettt e e e e e e e e e eae s 4-9
Emulation Boot Mode using Code Composer Studio GELoccuuiieiiiiiiiiiiiiiiieee e 4-9
GELHNG 1O MAIN() - -neeteieeeie ettt e e ettt e et e e e s e sab b ettt e e e e e s e abbbe e e e e e e e s snnbsneeeaaeeaaannes 4-10
Peripheral Software ReSet REQISIEIScuui it 4-11
1T U o S 4-12
INEEITUPL PrOCESSING .eiiiiitiiieie e e ettt ettt e e e e e ettt e e e e e e e s abbbbe e e e e e e s e sanbbseeeeaaeesaannes 4-13
Interrupt Enable RegiSter (IER).......cccuuviiiiie ettt e e e e e e s e e e e e e annes 4-14
Interrupt Global Mask Bit (INTIM)uuuiiiiireiiiiiiieie e s e ceteee e e e e s s st e e e e e e s s snnrnaee e e e e e e e ennes 4-14
Peripheral Interrupt EXPanSIion (PIE)coeiiiiiiiiiiieiee e ciiiiiieee e e s s ssitiee e e e e e s s snrnneee e e e e s e annes 4-15
PIE BIOCK INILIAIIZAIONeiiiiiiiieiiec ettt 4-18
Interrupt Signal FIOW — SUMMATY.........vuiiiiieiiiiiiieir e e e e s st r e e e e e s s snnrreeeeeeeeseannes 4-20
Interrupt RESPONSE AN LAtENCYuvviieiiieee et s et e e e s s st e e e e e e s s snnrree e e e e e e s e annes 4-21

TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Reset and Boot Process

Reset Sources

Missing Clock Detect

CPU

Watchdog Reset

Power-on Reset —1)
NMI WD Reset

XRS pin active

XRS

To XRS pin

Logic shown is functional representation, not actual implementation

¢ POR — Power-on Reset generates a device reset during
power-up conditions

¢ RESC - Reset Cause register contains the cause of the
last reset (sticky bits maintain state with multiple resets)

¢ NMI WD Reset — module detects hardware errors and

triggers areset if the CPU does not respond to an error
within a user-specified amount of time

The device has various reset sources, which include an external reset pin, watchdog timer reset,
power-on reset which generates a device reset during power-up conditions, NMI reset, and a
missing clock detect reset. A reset cause register (RESC) is available and can be read to
determine the cause of the reset. The external reset pin is the main chip-level reset for the
device, and it resets the device to the default state. The power-on reset (POR) circuit is used to
create a clean reset throughout the device during power-up, while suppressing glitches on the
input/output pins.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts 4-3

Reset and Boot Process

Enhanced Boot Modes

¢ The enhanced boot modes provide for the ability to
move, reduce, or eliminate boot mode select pins

¢ BOOTPIN-CONFIG register selects boot pins to be used
¢ Emulation Boot Mode: EMU-BOOTPIN-CONFIG register
¢ Stand-Alone Boot Mode: Z1-OTP-BOOTPIN-CONFIG register

¢ BOOTDEF register determines boot mode option and

assignment of peripheral GPIO pins or flash/RAM entry
point

¢ Emulation Boot Mode: EMU-BOOTDEF-LOW/HIGH register
¢ Stand-Alone Boot Mode: Z1-OTP-BOOTDEF-LOW/HIGH register

When the MCU is powered-on, and each time the MCU is reset, the internal bootloader software
located in the boot ROM is executed. The boot ROM contains bootloading routines and
execution entry points into specific on-chip memory blocks. This initial software program is used
to load an application to the device RAM through the various bootable peripherals, or it can be
configured to start an application located in flash. The F28004x is extremely flexible in its ability

to use alternate, reduce, or completely eliminate boot mode selection pins by programming a
BOOTPIN_CONFIG register.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Reset - Bootloader

Reset — Bootloader

Reset vector
Reset fetched from
ENPIE = 0 boot ROM
INTM = 1 0x3F FFCO
YES Emulator NO

Connected ?

Emulation Boot Stand-alone Boot
Boot determined by Boot determined by
EMU-BOOTPIN-CONFIG GPIO pins

EMU-BOOTDEF-LOW Z1-OTP-BOOTPIN-CONFIG

EMU-BOOTDEF-HIGH Z1-OTP-BOOTDEF-LOW

Z1-OTP-BOOTDEF-HIGH

EMU BOOT registers located in PIE RAM starting at 0x000D00
Z1 OTP BOOQT registers located in DCSM OTP starting at 0x05F008

After the MCU is powered-up or reset, the peripheral interrupt expansion block, also known as the
PIE block, and the master interrupt switch INTM are disabled. This prevents any interrupts during
the boot process. The program counter is set to Ox3FFFCO, where the reset vector is fetched.
Execution then continues in the boot ROM at the code section named InitBoot. If the emulator is
connected, then the boot process follows the Emulation Boot mode flow. In Emulation Boot
mode, the boot is determined by the EMU-BOOTPIN-CONFIG and EMU-BOOTDEF-LOW/HIGH
registers located in the PIE RAM. If the emulator is not connected, the boot process follows the
Stand-alone Boot mode flow. In Stand-alone Boot mode, the boot is determined by two GPIO

pins or the Z1-OTP-BOOTPIN-CONFIG and Z1-OTP-BOOTDEF-HIGH/LOW registers located in
the DCSM OTP.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts 4-5

Reset and Boot Process

Emulation Boot Mode

Emulation Boot Mode

Emulator Connected

EMU-BOOTPIN-CONFIG Register

Emulation Boot | 3124 2316 158 70
Boot determined by | .-~ | KEY [BMSP2][BMSP1][BMSPO]
EMU-BOOTPIN-CONFIG
i If the BOOTPIN_CONFIG is invalid, the

“wait” boot mode is used. The value
BOOTPIN_CONFIG | _NO__ | Boot Mode | -2 ienbe modified using the

Key = Ox5A or OxA5? Wait debugger and a reset issued to restart
the boot process.

YES
BOOTPIN_CONFIG | | pmsp2 | BMSP1 | BMSPO
Key = 0xA5? 0BMSP ™
ves Tno |LOFF | OFF | oF | e

OXFF OxFF GPIO

1 BMSP

(0x5A) OxFF CIPI9 OxFF 2 Boot Modes

X

Emulate GPIO OxFF OxFF BoogTDEFO
Stand-alone —| EMU-BOOTDEF-LOW
Boot Mode 2):; (;P;(F) 2:2 2 BMSP EMU-BOOTDEF-HIGH

X
Reads OTP for boot 4 Boot Modes
pins and boot mode. GPIO GPIO OxFF

3 BMSP
—
8 Boot Modes _

GPIO GPIO GPIO

OxFF = BMSP field not used
GPIO = use valid GPIO pin (0-254)

In Emulation Boot mode, first the KEY value located in the EMU-BOOTPIN-CONFIG register (bit
fields 31-24) is checked for a value of Ox5A or 0xA5. If the KEY value is not 0x5A or 0xA5, the
“wait” boot mode is entered. The KEY value and the Boot Mode Selection Pin values (BMSP2-0,
bit fields 23-0) can then be modified using the debugger and a reset is issued to restart the boot
process. This is the typical sequence followed during device power-up with the emulator con-
nected, allowing the user to control the boot process using the debugger.

Once the EMU-BOOTPIN-CONFIG register is configured and a reset is issued, the KEY value is
checked again. If the KEY value is set to 0xA5 the Stand-alone Boot mode is emulated and the
Z1-OTP-BOOTPIN-CONFIG register is read for the boot pins and boot mode. Otherwise, the
KEY value is set to Ox5A and the boot mode is determined by the BMSP bit field values in the
EMU-BOOTPIN-CONFIG register and the EMU-BOOTDEF-LOW/HIGH registers. The EMU-
BOOTPIN-CONFIG register contains three BMSP bit fields. If the BMSP bit field is set to OXFF,
then the bit field is not used. Therefore, the boot modes can be set by zero, one, two, or three
BMSP bit fields. This provides one, two, four, or eight boot mode options, respectively. Details
about the BOOTDEF options will be discussed after the Stand-alone Boot mode is covered.

4-6 TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Stand-Alone Boot Mode

Stand-alone Boot Mode

Emulator Not Connected

Stand-alone Boot

Boot determined by

71-0TP-BOOTPIN-CONFIG Register
| 3124 2316 158 70
[KEY IBMSPZIBMSPl[BMSPO]

OXFF = pin not used
GPIO = use valid GPIO pin (0-254)

71 OTPGBPO|((3)TIEIII\?§ZONFIG BMSP1 - BMSPO
- . - GP1024 GPIO32 | Boot Mode
v 0 0 [Parallel /O
BOOTPIN_CONFIG | NO 0 1 |sci/wait
Key = Ox5A ? 1 0 CAN
YES 1 1 Flash
BMSP2 | BMSP1 | BMSPO
0 Pins I
OxXFF OxFF OxFF TBoot Mode
OxXFF OxFF GPIO
1 Pin
OXFF GPIO OxFF ™ 2 Boot Modes > BOOTDEF
GPIO OxFF OxFF
| 71-OTP-BOOTDEF-LOW
OXFF | GPIO | GPIO > pins 71-0TP-BOOTDEF-HIGH
GPIO OxFF GPIO 4 Boot Modes
GPIO GPIO OxFF
3 Pins
GPIO GPIO GPIO 8 Boot Modes

In Stand-alone Boot mode, if the KEY value located in the Z1-OTP-BOOTPIN-CONFIG register
(bit fields 31-24) is not Ox5A, the boot mode is determined by the default GPIO24 and GPIO32
pins. These two pins provide four boot options — Parallel I/0, SCI/Wait, CAN or Flash. If the KEY

value is Ox5A the boot mode is determined by the BMSP bit field values in the Z1-OTP-
BOOTPIN-CONFIG and the OTP-BOOTDEF-LOW/HIGH registers. The Z1-OTP-BOOTPIN-
CONFIG register contains three BMSP bit fields. If the BMSP bit field is set to OxFF, then the

GPIO pin is not used. Therefore, the boot modes can be set by zero, one, two, or three GPIO
pins. This provides one, two, four, or eight boot mode options, respectively.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Boot Mode Definition

The BOOTDEF options described here applies to both the EMU-BOOTDEF-LOW/HIGH registers
used in Emulation Boot mode and the Z1-OTP-BOOTDEF-LOW/HIGH registers used in Stand-
alone Boot mode. The BOOTDEF-LOW/HIGH registers consist of eight separate bit fields named
BOOT_DEFO through BOOT-DEF7. These bit fields correspond to the one, two, four, or eight
boot mode options that are selected by the zero, one, two, or three BMSP bit fields/GPIO pins,
respectively in the BOOTPIN_CONFIG register. Therefore, if zero BMSP bit fields/GPIO pins are
selected, then only the BOOT_DEFO bit field in the BOOTDEF-LOW/HIGH registers is used.

Likewise, if three BMSP bit fields/GPIO pins are selected, then BOOT_DEFO through
BOOT_DEF7 in the BOOTDEF-LOW/HIGH registers is used.

39- 32

7-0

@—Iﬂonsl Mo\de ‘

Value

Boot Mode

o

Parallel I/0

SCI / Wait

CAN

Flash

Wait

RAM

SPI

12C

N |o|lga|s|[w]|N |-

PLC

Boot Mode Definiti

Procv?dgs) erxibiIityE))movS)r elimigte !)cg !elelcgnl;]
63 - 56 55 - 48 47- 40

BOOTDEF-HIGH | BOOT_DEF7 | BOOT_DEF6 | BOOT_DEF5 | BOOT DEF4 |
31-24 23-16 15-8
BOOTDEF-LOW | BOOT_DEF3 | BOOT_DEF2 | BOOT_DEF1 | BOOT_DEFO |

Parallel /10 Wait

Value | DO - D7 DSP Ctrl | Host Ctrl Value | WD Status

0x00 | GPIOO-7 | GPIO16 GPIO11 0x04 | Enabled RAM

scl D2ty ibisabisd Value | Entry Point

Value | SCIATX | SCIARX Flash 0x05 | OXD000000

0x01 | GPIO29 | GPIO28 Value | Entry Point 12C

0x21 | GPIO16 | GPIO17 0x03 [0x0080000 Value | SDAA SCLAA

0x41 | GPIO8 GPIO9 0x23 | OXO08EFFO 0x07 | GPIO32 | GPIO33

0x61 | GPIO48 | GPIO49 0x43 | 0x0090000 0x47 | GPIO26 | GPIO27

0x81 | GPIO24 | GPIO25 0x63 | OXO09EFFO 0x67 | GPIO42 | GPI0O43

SPI CAN

Value | SPIA_SIMO | SPIA_SOMI | SPIA_CLK | SPIA_STE Value | CANTXA | CANRXA

0x26 | GPIO8 GPIO10 GPIO9 GPIO11 0x02 | GP1032 GPIO33

0x46 | GPIO54 GPIO55 GPIO56 GPIO57 0x22 | GPIO4 GPIO5

0x66 | GPIO16 GPIO17 GPIO56 GPIO57 0x42 | GPIO31 GPIO30

0x86 | GPIO8 GPIO17 GPIO9 GPIO11 0x62 | GPIO37 GPIO35

The value in the BOOT_DEF bit fields determines which peripheral is used for bootloading or the
entry point that is used for code execution. In the BOOT_DEF bit field the lower bits define the
boot mode used and the upper bits define the options for that bit mode. Utilizing this type of
booting technique provides flexibility for selecting multiple boot modes, as well as reducing the

number of boot mode pins.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Reset Code Flow — Summary

In summary, the reset code flow is as follows. After reset, the program counter is set to

0x3FFFCO0, where the flow is vectored to the Init_Boot code in the Boot ROM. The Init_Boot code
defines the execution entry based on emulation boot mode or stand-alone boot mode. The entry
point can be executing boot-loading routines, entry to the flash, or MO RAM.

0x000000

0x080000

0x3F8000

RESET - Ox3FFFCO

Reset Code Flow - Summary

0x000000
MO RAM (1Kw)

0x080000

Ox08EFFO

FLASH (128Kw)
0x090000

Ox09EFFO

Boot ROM (32Kw)

Boot Code

InitBoot

Execution entry
determined by
Emulation Boot Mode or
Stand-Alone Boot Mode

T

BROM vector (64w)

*reset vector

* reset vector = 0x3FC7A5

v

Bootloading

Routines

(SCl, SPI, 12C,
CAN, Parallel 1/0)

Emulation Boot Mode using Code Composer

Studio GEL

The CCS GEL file is used to setup the boot modes for the device during debug. By default the

GEL file provides functions to set the device for “Boot to SARAM” and “Boot to FLASH”. The

GEL file can be modified to include other boot mode options, if desired.

/
/* EMU Boot Mode - Set Boot Mode During Debug

/

menuitem "EMU Boot Mode Select™

hotmenu EMU_BOOT_SARAM()

*(unsigned long *)0xD00
*0xD04 = 0x0005;

}
hotmenu EMU_BOOT_FLASHQ)

*(unsigned long *)0xD00
*0xD04 = 0x0003;

}

OX5AFFFFFF;

OX5AFFFFFF;

To access the GEL file use: Tools > GEL Files

TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Getting to main()

After reset how do we get to main()?

¢ At the code entry point, branch to _c_int00()
¢ Part of compiler run-time support library
¢ Sets up compiler environment
+ Calls main()

CodeStartBranch.asm ~ -S€ct “codestart”

LB _c_int00
MEMORY
PAGE 0: .
Linker .cmd 3 BEGIN_MO : origin = 0x000000, length = 0x000002
SECTIONS
codestart : > BEGIN_MO, PAGE = 0

Note: the above example is for boot mode set to RAMMO; to run out of Flash, the
“codestart” section would be linked to the entry point of the Flash memory block

After reset how do we get to main? When the bootloader process is completed, a branch to the
compiler runtime support library is located at the code entry point. This branch to _c_int00 is
executed, then the compiler environment is set up, and finally main is called.

4-10 TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Peripheral Software Reset Registers

Peripheral Software Reset

Peripheral Software A
Reset Signal v
SOFTPRESX
Register

Peripheral

¢ Driverlib function used to reset a peripheral:
SysCtl_resetPeripheral(peripheral);
¢ peripheral parameter values:

SYSCTL_PERIPH_RES_CLA1

SYSCTL_PERIPH_RES_ADCX (x = Ato C)

SYSCTL_PERIPH_RES_EPWMXx (x = 1 to 8)

SYSCTL_PERIPH_RES_CMPSSX (x = 110 7)

SYSCTL_PERIPH_RES_ECAPX (x = 1t0 7)

SYSCTL_PERIPH_RES_PGAX (x = 1t0 7)

SYSCTL_PERIPH_RES_EQEPX (x = 1 or 2)

SYSCTL_PERIPH_RES_DACX (x = A or B)

SYSCTL_PERIPH_RES_SD1

SYSCTL_PERIPH_RES_FSITXA

SYSCTL_PERIPH_RES_SCIx (x = A or B)

SYSCTL_PERIPH_RES_FSIRXA

SYSCTL_PERIPH_RES_SPIx (x = A or B)

SYSCTL_PERIPH_RES_LINA

SYSCTL_PERIPH_RES_[2CA

SYSCTL_PERIPH_RES_PMBUSA

SYSCTL_PERIPH_RES_CANX (x =Aor B)

The peripheral software reset register (SOFTPRESX) contains the reset bit for each peripheral.
The Driverlib functions are used to reset a peripheral, as shown above.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupts
Interrupt Sources
. TINTO
. LPMINT
LPM Logic WAKEINT U
Watchdog WOINT
P10 P, XINT1 PIE INT1
INPUT5 (Peripheral —’ to
GPIO1 — Input XINT2 Interrupt INT12
. Ul INPUT6E Expansion)
: XINT3
. X-BAR INPUT13
aPox XINT4
INPUT14 XINTS
Peripheral Timer2 FN24{ INT14
—>
Interrupts

The internal interrupt sources include the general purpose timers 0, 1, and 2, and all of the
peripherals on the device. External interrupt sources include the five external interrupt lines,
which are mapped through the Input X-BAR, and the external reset pin. The CPU core has 14
interrupt lines. The Peripheral Interrupt Expansion block, known as the PIE block, is connected to
the core interrupt lines 1 through 12 and is used to expand the CPU core interrupt capability,
allowing up to 192 possible interrupt sources.

4-12 TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupt Processing

Maskable Interrupt Processing

Conceptual Core Overview

Core (IFR) (IER) (INTM)
Interrupt Interrupt Interrupt Global
Li Flag Enable Interrupt
Ine Register Register Mask
INT1 [1] e
INT2 E *« o C28x
L] L] L] ./
. . . * CPU
L] L] L]
INT14 [1] e

< If an interrupt signal is recognized, the corresponding IFRg; is set and latched

¢ If the IERg; is set and the INTM is clear, the CPU receives the interrupt

¢ Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
¢ IFRg; is cleared when interrupt is acknowledged by CPU

¢ The IFR register is cleared on reset

By using a series of flag and enable registers, the CPU can be configured to service one interrupt
while others remain pending, or perhaps disabled when servicing certain critical tasks. When an
interrupt signal occurs on a core line, the interrupt flag register (IFR) for that core line is set. If the
appropriate interrupt enable register (IER) is enabled for that core line, and the interrupt global
mask (INTM) is enabled, the interrupt signal will propagate to the core. Once the interrupt service
routine (ISR) starts processing the interrupt, the INTM bit is disabled to prevent nested interrupts.
The IFR is then cleared and ready for the next interrupt signal. When the interrupt servicing is
completed, the INTM bit is automatically enabled, allowing the next interrupt to be serviced.
Notice that when the INTM bit is ‘0’, the “switch” is closed and enabled. When the bit is ‘1’, the
“switch” is open and disabled. The IER is managed by enabling and disabling Driverlib parameter
values. The INTM bit in the status register is managed by using a Driverlib function or in-line
assembly instructions (macro).

TMS320F28004x Microcontroller Workshop - Reset and Interrupts 4-13

Interrupts

Interrupt Enable Register (IER)

Interrupt Enable Register (IER)

15 14 1 12 1 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT1L | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INTS | INT4 | INT3 | INT2 | INTL |

Enable: Set IERg; =1
Disable: Clear IERg;=0

¢ Driverlib function used to modify IER:
Interrupt_enablelInCPU(cpulnterrupt);
Interrupt_disableInCPU(cpulnterrupt);
¢ cpulnterrupt parameter is a logical OR of the values:
¢ INTERRUPT_CPU_INTX
¢ where x is the interrupt number between 1 and 14
¢ INTERRUPT_CPU_DLOGINT
¢ INTERRUPT_CPU_RTOSINT

¢ IER register is cleared on reset

Interrupt Global Mask Bit (INTM)
Interrupt Global Mask Bit

Bit 0
ST1 INTM

¢ INTM is used to globally enable/disable interrupts:
¢ Enable: INTM =0
¢ Disable: INTM =1 (reset value)
Driverlib function used to modify INTM:
Interrupt_enableMaster();
Interrupt_disableMaster();
¢ Alternatively the following macros can be used:
EINT; //defined as - asm(" clrc INTM");
DINT; //defined as - asm(" setc INTM");

TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Interrupts

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

Interrupt Group 1

— PIE module for 192 Interrupts
- PIEIFR1 PIEIER1
§ INT1.y !nterruptgroup INTLL —[T] .
I INT2.y interrupt group
INTL.2]
© - —{0}—
— INT3.y interrupt group . . INT1
5 INTA4.y interrupt group 0 .
INTS.y interrupt group INTL.16 _’. ya
g 192 INT6.y interrupt group
2 INT7.y interrupt group)
S = Core Interrupt logic
£ INT8.y interrupt group
T INT9.y interrupt group INTL - INT12
Q R
< INT10.y interrupt group 12 Interrupts E % E C28x
E INT11.y interrupt group i EE i
INT12.y interrupt group

INT13 (TINT1)
INT14 (TINT2)
NMI

The C28x CPU core has a total of fourteen interrupt lines, of which two interrupt lines are directly
connected to CPU Timers 1 and 2 (on INT13 and INT14, respectively) and the remaining twelve
interrupt lines (INT1 through INT12) are used to service the peripheral interrupts. A Peripheral
Interrupt Expansion (PIE) module multiplexes up to sixteen peripheral interrupts into each of the
twelve CPU interrupt lines, further expanding support for up to 192 peripheral interrupt signals.
The PIE module also expands the interrupt vector table, allowing each unique interrupt signal to
have its own interrupt service routine (ISR), permitting the CPU to support a large number of
peripherals.

The PIE module has an individual flag and enable bit for each peripheral interrupt signal. Each of
the sixteen peripheral interrupt signals that are multiplexed into a single CPU interrupt line is
referred to as a “group”, so the PIE module consists of 12 groups. Each PIE group has a 16-bit
flag register (PIEIFRX), a 16-bit enable register (PIEIERX), and a bit field in the PIE acknowledge
register (PIEACK) which acts as a common interrupt mask for the entire group. For a peripheral
interrupt to propagate to the CPU, the appropriate PIEIFR must be set, the PIEIER enabled, the
CPU IFR set, the IER enabled, and the INTM enabled. Note that some peripherals can have
multiple events trigger the same interrupt signal, and the cause of the interrupt can be determined
by reading the peripheral’s status register.

We have already discussed the interrupt process in the core. Now we need to look at the
peripheral interrupt expansion block. This block is connected to the core interrupt lines 1 through
12. The PIE block consists of 12 groups. Within each group, there are sixteen interrupt sources.
Each group has a PIE interrupt enable register and a PIE interrupt flag register. Note that
interrupt lines 13, 14, and NMI bypass the PIE block.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts 4-15

Interrupts

F28004x PIE Assignment Table - Lower

INTx.8 INTX.7 INTX.6 | INTX.5 INTx.4 INTx.3 INTX.2 INTx.1

INTL (Wégg) TIMERO XINT2 XINTL | ADCC1 | ADCB1 | ADCA1

INT2 | EPWMS_ [EPWM7_ [EPWM6_ | EPWMS5_ | EPWM4_ | EPWM3_ | EPWM2_ | EPWM1_
TZ TZ TZ Tz TZ TZ TZ TZ

INT3 EPWMS8 EPWM7 EPWM6 EPWM5 EPWM4 EPWM3 EPWM2 EPWM1

INT4 ECAP7 | ECAP6 | ECAPS | ECAP4 | ECAP3 | ECAP2 | ECAP1
INTS EQEP2 | EQEP1
INT6 SPIB_TX | SPIB_RX | SPIA_TX | SPIA_RX
INT7 DMA_CH6| DMA_CH5| DMA_CH4 | DMA_CH3 | DMA_CH2 | DMA_CH1
INT8 l2CA- 12CA

INT9 CANB_1 | CANB_O [CANA_1 | CANA_O | SCIB_TX | SCIB_RX | SCIA_TX | SCIA_RX

ADCB ADCA
INT10 ADCB4 ADCB3 ADCB2 EVT ™ ADCA4 ADCA3 ADCA2 EVT ™

INT11 | CLA1.8 | CLA1.7 | CLA1.6 | CLA15 | CLA1. 4 | CLA1.3 | CLA1 2 | CLA1 1

FPU_UND | FPU_OV
INT12 ERFLOW | ERFCOW XINT5 XINT4 XINT3

Note: above label names proceed with INT__ and #defines are located in driverlib/inc/hw_ints.h

The PIE assignment table maps each peripheral interrupt to the unique vector location for that
interrupt service routine. Notice the interrupt numbers on the left represent the twelve core group
interrupt lines and the interrupt numbers across the top represent the lower eight of the sixteen
peripheral interrupts within the core group interrupt line. The next figure shows the upper eight of
the sixteen peripheral interrupts within the core group interrupt line.

F28004x PIE Assignment Table - Upper

INTX.16 [INTx.15 | INTx.14 | INTx.13 | INTx.12 | INTx.11 [INTx.10 [INTX.9

INT1

INT2

INT3

INT4 ECAP7_2 | ECAP6_2

nts | % | S | e | e
INT6

W | occ | Gkt | P | e | | e

INT8 PMBUSA LINA_1 | LINAO
INT9

INT10 ADCCa | ADCC3 | ADcc2 | ABEC-
INT11

T e e I e e o P

Note: above label names proceed with INT__ and #defines are located in driverlib/inc/hw_ints.h

4-16 TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Interrupts

PIEIER and PIEACK Registers

PIEIERX register ~ (x = 1to 12)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|INT><.16 INTx.15|INTx.14|INTx.13 INTX.12|INTX.11{INTx.20| INTX.9 | INTX.8 | INTX.7 | INTX.6 INTx.5|INTx.4 INTx.3 | INTx.2 | INTx.L
PIE Interrupt Acknowledge register (PIEACK)

15-12 1 10 9 8 7 6 5 4 3 2 1 0
| reserved | PIEACKXx |

¢ NOTE: These Driverlib functions modify BOTH the
PIEIER and core IER registers:
Interrupt_enable(interruptNumber);
Interrupt_disable(interruptNumber);
¢ interruptNumber values are supplied in driverlib/inc/hw_ints.h
¢ Driverlib function used to acknowledge PIE group:
Interrupt_clearACKGroup(group);
¢ group parameter is a logical OR of the values:
¢ INTERRUPT_ACK_GROUPx
¢ where x is the interrupt number between 1 and 12
¢ Acknowledges group and clears any interrupt flag within group
¢ Required to receive further interrupts in PIE group (done in ISR)

Similar to the core interrupt process, the PIE module has an individual flag and enable bit for
each peripheral interrupt signal. Each PIE group has a 16-bit flag register, a 16-bit enable
register, and a bit field in the PIE acknowledge register which acts as a common interrupt mask
for the entire group. An enable PIE bit in the PIECTRL register is used to activate the PIE
module. Note that when using the Driverlib function to enable and disable interrupts, both the
PIEIER and CPU core IER registers are modified.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts 4-17

Interrupts

PIE Block Initialization

Initialize Interrupt Module and PIE Block

Main.c interrupt.c
// CPU Initialization Set INTM (disable)
< Clear CPU IER
Interrupt_initModule(); I Clear CPU IFR
Interrupt_initVectorTable(Q); Clear PIEIER registers
- Clear PIEIFR registers
\/_ Enable vector fetching=-f--===-==s===ssu---, \
from PIE block :

interrupt.c v Memory Map

*** Jnitialize PIE Vectors ***

Set all vector locations to:
Interrupt_defaultHandler()

Set NMI vector location to:

Interrupt_nmiHandlerQ PIE RAM
Set ITRAP vector location to: > Vectors
Interrupt_illegalOperationHandler() N 512w

/‘— ————————————— (ENPIE = 1) |a-f----

Default PIE vectors are then remapped to call user ISR:
Interrupt_register(interruptNumber, &userNamelSR);
interruptNumber values located in driverlib/inc/hw_ints.h

Boot ROM
Reset Vector

Note: interrupt.c is located in \driverlib folder

Two separate functions are called to initialize the interrupt module and PIE block. During
processor initialization the interrupt vectors, as mapped in the PIE interrupt assignment table, are
copied to the PIE RAM and then the PIE module is enabled by setting ENPIE to ‘1'. When the
CPU receives an interrupt, the vector address of the ISR is fetched from the PIE RAM, and the
interrupt with the highest priority that is both flagged and enabled is executed. Priority is
determined by the location within the interrupt vector table. The lowest numbered interrupt has
the highest priority when multiple interrupts are pending.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Interrupts

PIE Initialization Code Flow - Summary

RESET Reset Vector Boot option determines
<Ox3F FFC0> <reset vector> = Boot Code | Code execution entry point

I CodeStartBranch.asm
l l .sect “codestart”
MO RAM Entry Point OR Flash Entry Point
<0x00 0000> = LB _c_int00 <0x08 0000> = LB _c_int00

—C_int00: rs2800_fpu32.lib

CALL mainQ)

A 4
PIE Vector Table

Main.c + Initialization() > 512 Word RAM
N { 0x00 0D00 — OEFF

main() Load PIE Vectors T
{ initialization(); | Enable the PIE v Defaultlsr.c

b Enable PIEIER = = =

: Enable CPU IER interrupt void name(void)
¥ Enable INTM {)

3 S
b

In summary, the PIE initialization code flow is as follows. After the device is reset and execution
of the boot code is completed, the selected boot option determines the code entry point. In this
figure, two different entry points are shown. The one on the left is for memory block MO RAM,
and the one on the right is for flash.

In either case, the CodeStartBranch.asm file has a Long Branch instruction to the entry point of
the runtime support library. After the runtime support library completes execution, main is called.
In main, the two functions are called to initialize the interrupt process and enable the PIE module.
When the CPU receives an interrupt, the vector address of the ISR is fetched from the PIE RAM,
and the interrupt with the highest priority that is both flagged and enabled is executed. Priority is
determined by the location within the interrupt vector table.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts 4-19

Interrupts

Interrupt Signal Flow — Summary

Interrupt Signal Flow — Summary

Peripheral Interrupt Expansion (PIE) — Interrupt Group x
PIEIFRxX PIEIERX

Peripheral INTx.y 1)\
Interrupt =1 v
PP Interrupt_enable(interruptNumber);

Core Interrupt Logic

Core |FR . IER INTM
INTX M A
L= v

12
EINT;
or: Interrupt_enableMaster();

Defaultlsr.c
interrupt void name(void)

{
}

(For peripheral interrupts where x =1 to 12, and y = 1 to 16)

In summary, the following steps occur during an interrupt process. First, a peripheral interrupt is
generated and the PIE interrupt flag register is set. If the PIE interrupt enable register is enabled,
then the core interrupt flag register will be set. Next, if the core interrupt enable register and
global interrupt mask is enabled, the PIE vector table will redirect the code to the interrupt service

routine.

4-20 TMS320F28004x Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupt Response and Latency

Interrupt Response - Hardware Sequence

CPU Action Description

Registers — stack 14 Register words auto saved

0 — IFR (bit) Clear corresponding IFR bit

0 — IER (bit) Clear corresponding IER bit

1 - INTM/DBGM Disable global ints/debug events
Vector - PC Loads PC with int vector address
Clear other status bits | Clear LOOP, EALLOW, IDLESTAT

Note: some actions occur simultaneously, none are interruptible

T STO

AH AL

PH PL

AR1 ARO

DP ST1
DBSTAT | IER
PC(msw)| PC(Isw)

Interrupt Latency

eennmmeennee Latency

ext. Internal
interrupt : interrupt Assumes ISR in
occurs occurs internal RAM

here here

| S
| Ll

I cycles

L /
®©@ ® & 6 O 06

Sync ext. Recognition Getvector F1/F2/D1of Save D2/R1/R2 of SR

signal delay (3), SP and place ISR return ISR g‘fégﬂﬁggn
alignment (1), inPC instruction address instruction on next
_ (ext. interrupt (3 reg. (3 reg. pairs |
interrupt placed in pairs saved) R
only) pipeline saved)

¢ Minimum latency (to when real work occurs in the ISR):
> Internal interrupts: 14 cycles

» External interrupts: 16 cycles

¢ Maximum latency: Depends on wait states, INTM, etc.

TMS320F28004x Microcontroller Workshop - Reset and Interrupts 4-21

Interrupts

TMS320F28004x Microcontroller Workshop - Reset and Interrupts

System Initialization

Introduction

This module covers the operation of the OSC/PLL-based clock module and watchdog timer.
Also, the general-purpose digital 1/0, external interrups, low power modes and the register
protection will be covered.

Module Objectives

Module Objectives

¢ OSC/PLL Clock Module
¢ Watchdog Timer

¢ General Purpose I/O

¢ External Interrupts

¢ Low Power Modes

¢ Register Protection

TMS320F28004x Microcontroller Workshop - System Initialization 5-1

Oscillator/PLL Clock Module

Chapter Topics

SYSTEM INTIAITZATTION ..ciiiii e e e e e e e e e e nnbbeeeaaaeeas 5-1
OsCillator/PLL CIOCK MOGUIEcoiiieiiieeee ettt e e e e e e 5-3
INItIAliZING CIOCK MOUIESeieeie it e e e e e e s e e e e e e e snnnreees 5-5
VAT (e g To (oo T T2 o= PP UR TP 5-6
General PUrPOSE DIgItal IOueeiiiiiiee ettt e e e e e e 5-10
(@0] 1110 [0 ¢ aTo JK €1 24 1 I8 =T =PSRN 5-11
GPIO INPULE X-BaAI ..ttt sttt bbbt et s bt s st e s e enbnnes 5-14
GPIO OULPUE X-BaT ...ttt e ettt ettt st s st s s s bsbnbesnnnnes 5-15

L (=T Tz L [(=T (]] SRR 5-17
LOW POWET IMOGES......iiiiieiiiie ettt ettt ettt e e et e e e et e e s ebb e e s e nbbe e e e anees 5-18
=T oIS (= g =d 0] =Yt 1o) o RS 5-20
Lab 5: System INIAlIZAtIONccooiiiiiieiece e e 5-22

TMS320F28004x Microcontroller Workshop - System Initialization

Oscillator/PLL Clock Module

Oscillator/PLL Clock Module

Oscillator / PLL Clock Module

* default

(@]
(2]
(@]
-
3
x

WDCLK

Internal | posc1cLK
0OSC1 ’

(10 MHz) ;- CLKSRCCTL1 (---SYSPLLCTLL
Internal 1x | SYSCLKDIVSEL
nternal | 0SC2CLK &5l OS;;CLK S :

PLL '

(10 MHz) y (PLL bypass) <

S5
XCLKIN
(X2n.c)

2 —1n PLLSYSCLK
PLLCLK |

SYSCLK

CPU

— CPUCLK

,,,,,,,,,,,,,,,,,,,,,,

i PCLKCRx]

LOSPCP LSPCLK |

One per CAN module

i CLKSRCCTL2---5

One per SYSCLK peripheral

:

PERXLSPCLK

o]
1 ' CAN bit Clock

The device clock signals are derived from one of four clock sources: Internal Oscillator 1

(INTOSC1), Internal Oscillator 2 (INTOSC?2), External Oscillator (XTAL), and single-ended 3.3V
external clock (XCLKIN). At power-up, the device is clocked from the on-chip 10 MHz oscillator

INTOSC2. INTOSC2 is the primary internal clock source, and is the default system clock at

reset. The device also includes a redundant on-chip 10 MHz oscillator INTOSC1. INTOSCl is a
backup clock source, which normally only clocks the watchdog timers and missing clock detection

circuit. Additionally, the device includes dedicated X1 and X2 pins for supporting an external

clock source such as an external oscillator, crystal, or resonator.

TMS320F28004x Microcontroller Workshop - System Initialization

Oscillator/PLL Clock Module

PLL and LOSPCP

INTOSC1 1x

) OSCCLK
INT?(_SFZE 82* (PLL bypass) 0*
: - 1 /n [PELSYSCLK J cpy SYSCLK
PLL PLLCLK 1/‘/

| is"s”v’s’éﬂ’ﬁﬁt’EN’A’sL’E’"a i (ECSEER— LSPCLK

SYSCTL OSCSRC_OSC1 ¢ ' SYSCTL_PLL_DISABLE '
SYSCTL_OSCSRC_OSCZ 3 :‘ ‘::::::::::ZZZZZZZZZZ:::"
1 1 1 SYSCTL_SYSDIV(x)
| SYSCTL_OSCSRC_XTAL | | - P
emmmeeeees Tt e "1 i wherexis eitherloran 1"
' 1 even value up to 126

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

PSYSCTL_FMULT 0 | rocorzoszr-mromoozrdomocooooosooooos

SYSCTL_IMUI'I:&)HE | SYSCTL_FMULT_l 4‘ : . SYSCTL_| LSPCLK PRESCALE_x : !
| ; hodond - ~ i iwherexis1,24,6,8,10,12, 14 |
i Where xisavalue 7l qygcTL EMULT 1 2 TR R IR I T ‘
+ from 1 to 127 | - - !

\ ”””””””””””” ! SYSCTL_FMULT 3 4! }

| ;
SysCtl_setClock(config); SysCtl_setLowSpeedClock();

The config parameter is the OR of several LSPCLK = SYSCLK / 4 (default)
different values, many of which are grouped
into sets where only one can be chosen

The clock sources can be multiplied using the PLL and divided down to produce the desired clock
frequencies for a specific application. A clock source can be fed directly into the CPU or
multiplied using the PLL. The PLL provides the capability to use the internal 10 MHz oscillator
and run the device at the full clock frequency. If the input clock is removed after the PLL is
locked, the input clock failed detect circuitry will issue a limp mode clock of 1 to 4 MHz.
Additionally, an internal device reset will be issued. The low-speed peripheral clock prescaler is
used to clock some of the communication peripherals.

The PLL has a 7-bit integer and 2-bit fractional ratio control to select different CPU clock rates.
The C28x CPU provides a SYSCLK clock signal. This signal is prescaled to provide a clock
source for some of the on-chip communication peripherals through the low-speed peripheral clock
prescaler. Other peripherals are clocked by SYSCLK and use their own clock prescalers for
operation.

TMS320F28004x Microcontroller Workshop - System Initialization

Oscillator/PLL Clock Module

Initializing Clock Modules

Initializing Clock Modules

device.c

_,_p void Device_init(void)
{

// Set up PLL control and clock dividers
/SysCtl_setCIock(DEVICE_SETCLOCK_CFG); «-—--—-—-- -
SysCtl_setLowSpeedClock(SYSCTL_LSPCLK_PRESCALE_4);
S Vel o /// 1_'urn on all perlp_)herals
can be passed to: Device_enableAllPeripherals(Q; ---------
SysCtl_setClock() T !
SysCtl_setLowSpeedClock(void Device_enableAllPeripherals(void) «---
SysCtl_enablePeripheral O] | {

\/—— [~>SysCtl_enablePeripheral (SYSCTL_PERIPH_CLK_<name>) ;

Main.c

// CPU Initialization
Device_init();

el

|

sysctl.h

device.h !

#define DEVICE_SETCLOCK_CFG (SYSCTL_OSCSRC_XTAL |
SYSCTL_IMULT(10) |
SYSCTL_FMULT_NONE |
SYSCTL_SYSDIV(2) |
SYSCTL_PLL_ENABLE)

Ly

The peripheral clock control register (PCLKCRXx) allows individual peripheral clock signals to be
enabled or disabled using a Driverlib function. If a peripheral is not being used, its clock signal
could be disabled, thus reducing power consumption.

100 MHz SYSCLK frequency
based on
DEVICE_SETCLOCK_CFG

PLLSYSCLK = 20MHz
(XTAL_OSC) * 10 (IMULT) * 1
(FMULT) / 2 (PLLCLK_BY_2)

Peripheral Clock Enable / Disable

SYSCLK /\» Peripheral
PCLKCRXx
Register

¢ Driverlib function used to enable / disable peripheral:
SysCtl_[enable|disable]Peripheral(peripheral);
¢ peripheral parameter values:

SYSCTL_PERIPH_CLK_CLA1

SYSCTL_PERIPH_CLK_ADCx (x =Ato C)

SYSCTL_PERIPH_CLK_EPWMX (x = 1 to 8)

SYSCTL_PERIPH_CLK_CMPSSX (x =110 7)

SYSCTL_PERIPH_CLK_ECAPx (x = 1 t0 7)

SYSCTL_PERIPH_CLK_PGAX (x =110 7)

SYSCTL_PERIPH_CLK_EQEPX (x = 1 or 2)

SYSCTL_PERIPH_CLK_DACX (x =A or B)

SYSCTL_PERIPH_CLK_SD1

SYSCTL_PERIPH_CLK_FSITXA

SYSCTL_PERIPH_CLK_SCIx (x =Aor B)

SYSCTL_PERIPH_CLK_FSIRXA

SYSCTL_PERIPH_CLK_SPIx (x =Aor B)

SYSCTL_PERIPH_CLK_LINA

SYSCTL_PERIPH_CLK_I2CA

SYSCTL_PERIPH_CLK_PMBUSA

SYSCTL_PERIPH_CLK_CANX (x =A or B)

SYSCTL_PERIPH_CLK_DCCO

TMS320F28004x Microcontroller Workshop - System Initialization

Watchdog Timer

Watchdog Timer

The watchdog timer is a safety feature which resets the device if the program runs away or gets
trapped in an unintended infinite loop. The watchdog counter runs independent of the CPU. If
the counter overflows, a user-selectable reset or interrupt is triggered. During runtime the correct
key values in the proper sequence must be written to the watchdog key register in order to reset
the counter before it overflows.

Watchdog Timer

¢ Resets the device if the CPU crashes
¢Watchdog counter runs independently of CPU

¢ |f counter overflows, a reset or interrupt is
triggered (user selectable)

¢ CPU must write correct data key sequence to
reset the counter before overflow
¢ Watchdog must be serviced or disabled
within 131,072 WDCLK cycles after reset

¢ This translates to 13.11 ms with a 10 MHz
WDCLK

The watchdog timer provides a safeguard against CPU crashes by automatically initiating a reset
if it is not serviced by the CPU at regular intervals. In motor control applications, this helps
protect the motor and drive electronics when control is lost due to a CPU lockup. Any CPU reset
will set the PWM outputs to a high-impedance state, which will turn off the power converters in a
properly designed system.

The watchdog timer starts running immediately after system power-up/reset, and must be dealt
with by software soon after. Specifically, the watchdog must be serviced or disabled within 13.11
milliseconds (using a 10 MHz watchdog clock) after any reset before a watchdog initiated reset
will occur. This translates into 131,072 watchdog clock cycles, which is a seemingly tremendous
amount! Indeed, this is plenty of time to get the watchdog configured as desired and serviced. A
failure of your software to properly handle the watchdog after reset could cause an endless cycle
of watchdog initiated resets to occur.

TMS320F28004x Microcontroller Workshop - System Initialization

Watchdog Timer

Watchdog Timer Module

WDPRECLKDIV WDPS WDOVERRIDE
wocLk ——| Watchdog Watchdog 7
Pre-divider Pre-scaler WDDIS
WDCNTR
8-bit Watchdog
Counter
CLR CNT
System WDRST
Output [—*
e WDCNTR Pulse |
WDWCR less than WDINT
55 + AA window | WDWCR
Detector [good key minimum
T
WDCHK
Watchdog
Reset Key
Register
WDKEY Bad WDCHK Key

The watchdog clock is divided by the pre-divider and then pre-scaled, if desired for slower
watchdog time periods. A watchdog disable switch allows the watchdog to be enabled and
disabled. Also a watchdog override switch provides an additional safety mechanism to insure the

watchdog cannot be disabled. Once set, the only means to disable the watchdog is by a system
reset.

During initialization, a value ‘101’ is written into the watchdog check bit fields. Any other values
will cause a reset or interrupt. During run time, the correct keys must be written into the
watchdog key register before the watchdog counter overflows and issues a reset or interrupt.
Issuing a reset or interrupt is user-selectable. The watchdog also contains an optional
“windowing” feature that requires a minimum delay between counter resets.

TMS320F28004x Microcontroller Workshop - System Initialization 5-7

Watchdog Timer

Watchdog Pre-divider and Pre-scaler

WDPRECLKDIV WDPS

Watchdog Watchdog
Pre-divider Pre-scaler

WDCLK —>

SysCtl_setWatchdogPredivider(SYSCTL WD _PREDIV_x);
where x is 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, or 4096
default = 512 (providing backwards compatibility)

SysCtl_setWatchdogPrescaler(SYSCTL_WD_PRESCALE_Xx);
where x is 1, 2, 4, 8, 16, 32, or 64
default = 1

¢ Remember: Watchdog starts counting immediately
after reset is released!

¢ Reset default with WDCLK =10 MHz computed as
(1/10 MHz) * 512 * 1 * 256 = 13.11 ms

Watchdog Driverlib Functions

¢ WDDIS — disable / enable
¢ Functions only if WDOVERRIDE is not cleared

SysCtl_disableWatchdog();
SysCtl_enableWatchdog();

¢ WDOVERRIDE (clear only to protect — reset device to disable)
SysCtl_clearWatchdogOverride();

¢ Watchdog Mode - reset / interrupt
SysCtl_setWatchdogMode(mode);
¢ mode parameter values:

SYSCTL_WD_MODE_RESET
SYSCTL_WD_MODE_INTERRUPT

¢ Watchdog Minimum Window
SysCtl_setWatchdogWindowValue(value);

¢ value parameter sets a minimum delay between counter
resets (0 = disabled)

5-8 TMS320F28004x Microcontroller Workshop - System Initialization

Watchdog Timer

Resetting the Watchdog

¢ Driverlib functions:
¢ SysCtl_serviceWatchdog(); /[writes 0x55 followed by OxAA

¢ SysCtl_resetWatchdog();
¢ WDKEY write values:

/I to WDKEY (watchdog reset)

¢ SysCtl_enableWatchdogReset(); I/ writes 0x55 to WDKEY

/I writes OxAA to WDKEY

0x55 - counter enabled for reset on next OXAA write
OxAA - counter set to zero if reset enabled

¢ Writing any other value has no effect

¢ Watchdog should not be serviced solely in an ISR

¢ If main code crashes, but interrupt continues to execute, the
watchdog will not catch the cras

¢ Could put the 0x55 WDKEY in the main code, and the OxAA
WDKEY in an ISR; this catches main code crashes and also ISR
crashes
WDKEY Write Results
Sequential | Value Written
Step to WDKEY | Result
1 OxAA No action
2 OxAA No action
3 0x55 WD counter enabled for reset on next AAh write
4 0x55 WD counter enabled for reset on next AAh write
5 0x55 WD counter enabled for reset on next AAh write
6 OxAA WD counter is reset
7 OxAA No action
8 0x55 WD counter enabled for reset on next AAh write
9 OxAA WD counter is reset
10 0x55 WD counter enabled for reset on next AAh write
11 0x23 No effect; WD counter not reset on next AAh write
12 OxAA No action due to previous invalid value
13 0x55 WD counter enabled for reset on next AAh write
14 OxAA WD counter is reset

TMS320F28004x Microcontroller Workshop - System Initialization

General Purpose Digital /10

General Purpose Digital 1/0

GPIO Grouping Overview
| [cPiOPortAGroup| [GPIO PortAMuxt]
_ .| MuxlRegister | ,& | Register P T—
© 7| (GPAGMUX1) | | (GPAMUX1) | — MPUL | |
[GPIO 0 to 15] [GPIO 0o 15] _GPIO PortA Qual [| %
Direction Register o
(GPADIR)] D
GPIO Port A Group GPIO Port AMux2 [GPIO 0 to 31] >
___ | Mux2Register |, Register P >
N (GPAGMUX2) [| (GPAMUX2) |
[GPIO 16 to 31] [GPIO 16 to 31] L
el
z GPIO Port B Group| [GPIO Port B Mux1
2| | MuxlRegister [, _ Register L nout
w [(GPBGMUX1) [| (GPBMUX1) [] MPUL |
c
@ [GPIO 32 to 47] [GPIO 32 to 47] Clre P 2 Qual |~ | %
Direction Register o
(GPBDIR) A
GPIO Port B.GTOUP GPIO POIjt B Mux2 [GPIO 32 to 63] =
P Mux2 Register _ Register P >
B (GPBGMUX2) | | (GPBMUX2) |
[GPIO 48 to 63] [GPIO 48 to 63] L
u >
S [GPI0 224 t0 255] [«—{ MPUL | {INPUL | 10 3 lq
Inverter Qual TS

The F28004x device incorporates a multiplexing scheme to enable each 1/O pin to be configured
as a GPIO pin or one of several peripheral I/O signals. Sharing a pin across multiple functions
maximizes application flexibility while minimizing package size and cost. A GPIO Group
multiplexer and four GPIO Index multiplexers provide a double layer of multiplexing to allow up to
twelve independent peripheral signals and a digital I/O function to share a single pin. Each output
pin can be controlled by either a peripheral or either the CPU or CLA. By default, all of the pins
are configured as GPIO, and when configured as a signal input pin, a qualification sampling
period can be specified to remove unwanted noise. Optionally, each pin has an internal pullup
resistor that can be enabled in order to keep the input pin in a known state when no external
signal is driving the pin. The GPIO pins are grouped into two ports (Port A and Port B), and each
port has 32 pins. For a GPIO, each port has a series of registers that are used to control the
value on the pins, and within these registers each bit corresponds to one GPIO pin. Additionally,
Analog Port H is an input only which has input qualification capability.

If the pin is configured as GPIO, a direction (DIR) register is used to specify the pin as either an
input or output. By default, all GPIO pins are inputs. The current state of a GPIO pin
corresponds to a bit value in a data (DAT) register, regardless if the pin is configured as GPIO or
a peripheral function. Writing to the DAT register bit field clears or sets the corresponding output
latch, and if the pin is configured as an output the pin will be driven either low or high. The state
of various GPIO output pins on the same port can be easily modified using the SET, CLEAR, and
TOGGLE registers. The advantage of using these registers is a single instruction can be used to
modify only the pins specified without disturbing the other pins. This also eliminates any timing
issues that may occur when writing directly to the data registers.

TMS320F28004x Microcontroller Workshop - System Initialization

General Purpose Digital I/0

GPIO Pin Block Diagram
CLA cPu [Input 00:00 [——unused
X-BAR 00:01 — Peripheral 1
@ PVDTAT(R)] @ PyDtAT(R)] ¥ 0010 [—— Peripheral 2
. 00:11 — Peripheral 3
Input 01:00 unused
lificati 01:01 —— Peripheral 5
Tl !ca on CPU 01:10 — Peripheral 6
GPyQSEL1R2 GPyCSEL1-4 01:11 — Peripheral 7
GPYCTRL | (Ehoarrmil ;
éPU GPYDATW) 5=L— cpy —{ 00 10:xX —— Peripherals 9-11
{GPUNV GPySET CLA—*| 01
Y GPyCLEAR reserved - 10 11:xX — Peripherals 13-15
CPU GPyTOGGLE reserved - 11 \'\
] |
CPU CPU 00:00 GPIO P
“--{ GPyDIR }---{GPyODR 00501 Peripheral 1
0=lnput 0= Normal 88%2 Eal GPyG:GP
1=0Output 1= Open Drain g ENpIerd | (GPyGMUX12
01:00 GPIO GPyMUX1/2
01:01 «=—— Peripheral 5 CPU
01:10 [«—— Peripheral 6
GPyPUD | Intemnal Pull-Up 01:11 «—— Peripheral 7
CPU 0=enable . ; ,
: 1= disable 10:xx 4—?— GPIO & Peripherals 9-11
Pin (default GPIO 0-xx) 11:xX [=—— GPIO & Peripherals 13-15
— B
y=AorB]

Configuring GPIO Pins

¢ Configure peripheral multiplexing
GPIO_setPinConfig(pinConfig);
¢ pinConfig is defined in pin_map.h (GPIO_# value)
¢ Configure pin properties
GPIO_setPadConfig(pin, pinType);
pin is the GPIO pin number

¢ pinType can be the following values:
* GPIO_PIN_TYPE_STD
* GPIO_PIN_TYPE_PULLUP
¢ GPIO_PIN_TYPE_OD
GPIO_PIN_TYPE_INVERT

¢ INVERT may be OR-ed with STD or PULLUP
¢ Set direction for pins configured as GPIO
GPIO_setDirectionMode(pin, pinlO);

< pin is the GPIO pin number

¢ pinlO can be following values:
* GPIO_DIR_MODE_IN
+ GPIO_DIR_MODE_OUT

Configuring GPIO Pins using Driverlib

The input qualification scheme is very flexible, and the type of input qualification can be
configured for each GPIO pin individually. In the case of a GPIO input pin, the qualification can
be specified as only synchronize to SYSCLKOUT or qualification by a sampling window. For pins

TMS320F28004x Microcontroller Workshop - System Initialization

5-11

General Purpose Digital /10

that are configured as peripheral inputs, the input can also be asynchronous in addition to
synchronized to SYSCLKOUT or qualified by a sampling window.

GPIO Input Qualification
an | — to GPIO and

i eripheral
pin O Qualification IOmogules
1
MU syscwx
¢ Input qualification available on
ports A, B, and H

< Individually selectable per pin samples taken
¢ no qualification (peripherals only) l l l

¢ sync to SYSCLK only

¢ qualify 3 samples < JW

¢ qualify 6 samples

¢ QUALPRD = SYSCLKOUT/n T T T
¢ where n can be 1 or an even value _ .
between 2 and 510 inclusive T = qual period

Input Qualification Driverlib Functions

¢ Qualification Mode

GPIO_setQualificationMode(pin, qualification);
¢ pin is the GPIO pin number
¢ qualification values are:

¢ GPIO_QUAL_SYNC

GPIO_QUAL _3SAMPLE

GPIO_QUAL _6SAMPLE

¢ GPIO_QUAL_ASYNC

¢ Qualification Period

GPIO_setQualificationPeriod(pin, divider);
¢ pin is the GPIO pin number

« divider is the value by which the frequency of SYSCLKOUT is divided
and it can be 1 or an even value between 2 and 510 inclusive

5-12 TMS320F28004x Microcontroller Workshop - System Initialization

General Purpose Digital I/0

GPIO Core Select

¢ Selects which core’s GPIODAT/SET/CLEAR/TOGGLE
registers are used to control a pin

¢ Each pin individually controlled

31 0 31 0 31 0 31 0
I I O I I Y
GPxCSEL4 GPxCSEL3 GPxCSEL2 GPxCSEL1
GPI1031-24 GPI1023-16 GPI1015-8 GPI07-0
GPIO63-56 GPI055-48 GPI1047-40 GPI039-32

¢ Driverlib function used to select core:

GPIO_setMasterCore(pin, core);
¢ pin is the GPIO pin number
& core parameter values:

¢ GPIO_CORE_CPU1

¢ GPIO_CORE_CPU1_CLA1l

Driverlib GPIO Data Control Functions

¢ Pin Functions
GPIO_readPin(pin);
GPIO_writePin(pin, outVal);
GPIO_togglePin(pin);
¢ pin is the GPIO pin number
¢ outVal parameter is the value written to the pin

¢ Port Functions
GPIO_readPortData(port);
GPIO_writePortData(port, outVal);
GPIO_setPortPins(port, pinMask);
GPIO_clearPortPins(port, pinMask);
GPIO_togglePortPins(port, pinMask);
+ port is the GPIO port: GPIO_PORT_x where x is the port letter
¢ outVal parameter is bit-packed value (32 pins) written to the port
¢ pinMask parameter is a bit-packed value (32 pins) masking the port

TMS320F28004x Microcontroller Workshop - System Initialization

General Purpose Digital /10

GPIO Input X-Bar
GPIO Input X-BAR

GPI00 —| Asynehronous]
Synchronous : X
GPIOX —| Sync. + Cual. |p] Input X-BAR

—INPUT[16:1]-®{150

TIT.TRIP1—¥
. TZZTRIPZ—»
. TZITRIPI—#
TRIPG—®

«—{__XINT1

4— XINT2
4 XINT3
{ XINT4
[XINTS

aPWM

CPU PIE
Modules

CLA

'YX

ePWM
X-BAR

A &

TRIP10 »>
TRIP11 *
TRIP12 —»

LALARRARER]
-
2
5
th
L J

k.

¥

Sources
ADC }c—mcexmoc
. 11 EXTSYNCINY >| &PWM and eGAP
EXTSYNCINZ »| Sync Chain

S YYYYYYY

Output X-BAR

The Input X-BAR is used to route external GPIO signals into the device. It has access to every
GPIO pin, where each signal can be routed to any or multiple destinations which include the
ADCs, eCAPs, ePWMs, Output X-BAR, and external interrupts. This provides additional flexibility
above the multiplexing scheme used by the GPIO structure. Since the GPIO does not affect the
Input X-BAR, it is possible to route the output of one peripheral to another, such as measuring the
output of an ePWM with an eCAP for frequency testing.

Other Sources

5-14 TMS320F28004x Microcontroller Workshop - System Initialization

General Purpose Digital /0

GPIO Input X-BAR Architecture

GPIO0 &— This block
* ¢ INPUTX _ diagram is
. . > replicated

GPIOn @—| 16 times

XBAR_setinputPin(input, pin);

input Destinations (pin is the GPIO pin number)

XBAR_INPUTL | eCAPx, ePWM X-BAR, ePWM[TZ1, TRIP1], Output X-BAR

XBAR_INPUT2 | eCAPx, ePWM X-BAR, ePWM[TZ2, TRIP2], Output X-BAR

XBAR_INPUT3 | eCAPx, ePWM X-BAR, ePWM[TZ3, TRIP3], Output X-BAR

XBAR_INPUT4 | eCAPx, ePWM X-BAR, XINTL, Output X-BAR

XBAR_INPUT5 | eCAPx, ePWM X-BAR, XINT2, ADCEXTSOC, EXTSYNCINL, Output X-BAR
XBAR_INPUT6 | eCAPx, ePWM X-BAR, XINT3, ePWM[TRIP6], EXTSYNCIN2, Output X-BAR
XBAR_INPUT7 | eCAPX, ePWM X-BAR

XBAR_INPUT8 | eCAPx, ePWM X-BAR

XBAR_INPUT9 | eCAPX, ePWM X-BAR

XBAR_INPUT10 | eCAPx, ePWM X-BAR

XBAR_INPUT11 | eCAPX, ePWM X-BAR

XBAR_INPUT12 | eCAPx, ePWM X-BAR

XBAR_INPUT13 | eCAPX, ePWM X-BAR, XINT4

XBAR_INPUT14 | eCAPx, ePWM X-BAR, XINT5

XBAR_INPUT15 | eCAPx

XBAR_INPUT16 | eCAPx

GPIO Qutput X-Bar
GPIO Output X-BAR

CTRIPOUTH—@- »
POUTL-4-
CrRouT ._ " (Ot XBAR only)
L
CMP5Sx
CTRIPH . +

(6P XBAR onty)

eP’;}"\r":“o"Eﬁ” EXTSYNCOUT b

¥ OUTPUTY
ADCSOCAD ¥ OUTPUTZ
ADCSOCAD: >] oUTPUTS
Select Ckt GPIO
Output f——»{OUTPUT4 T -
*l xBaR b outPuTs
ADCSOCBO] ouTPUTE
ADCSOCEO- L
Select Ckt —» QUTPUTT
QUTPUTE
Frﬁlﬂu"’
EVT1 »
EVT2 H
ADCx EVT3 » » TRIF4
EVTa L ¥ RS
; ¥ TRIET Al
T f—a{ ePWM L plreies sPWM
e————— 5
Input X-BAR XBAR LM TRIPY Modules
INPUTT-14 - » L TRI®10 X
[=PWM X-BAR only) —» TRIP1Y

¥ TRIPZ
CLAHALT LAHALT

FLT1.COMPH—9- e
FLT1LCOMPL#- e X-BAR Flags
: _D_’ — {shared)
SOFMx 1
FLT4 COMPH —@- L

FLT4 COMPL#

D

The Output X-BAR is used to route various internal signals out of the device. It contains eight
outputs that are routed to the GPIO structure, where each output has one or multiple assigned pin
positions, which are labeled as OUTPUTXBARX. Additionally, the Output X-BAR can select a
single signal or logically OR up to 32 signals.

TMS320F28004x Microcontroller Workshop - System Initialization 5-15

General Purpose Digital /10

GPIO Output X-BAR Architecture

0.0—
0.1—
0.2—
0.3—

XBAR_enableOutputMux(output, muxes);

XBAR_setOutputLatchMode(output, enable);

This block 1.0—
diagramis 111

d 22—
replicated . OUTPUTX
8 times 1'3_.' Q
M _/ Muxed with

31.0—.> : °] i Peripheral
31.1— ! GPIO Pins
31— _ o
31.3— XBAR_invertOutputSignal(output, invert);

XBAR_setOutputMuxConfig(output, muxConfig);

MUX 0 1 2 3 MUX 0 1 2 3
0 CMPSSL.CTRIPOUTH | CMPSS1.CTRIPOUTH_OR_CTRIPOUTL | ADCAEVTL ECAP10UT 16 SDIFLT1.COMPH SD1FLT1.COMPH_OR_COMPL
1 CMPSS1.CTRIPOUTL INPUTXBARL ADCCEVTL 17 SDIFLT1.COMPL CLAHALT
2 CMPSS2.CTRIPOUTH | CMPSS2.CTRIPOUTH_OR_CTRIPOUTL | ADCAEVT2 ECAP20UT 18 SDIFLT2.COMPH SD1FLT2.COMPH_OR_COMPL
3 CMPSS2.CTRIPOUTL INPUTXBAR2 ADCCEVT2 19 SDIFLT2.COMPL
4 CMPSS3.CTRIPOUTH | CMPSS3.CTRIPOUTH_OR_CTRIPOUTL | ADCAEVT3 | ECAP30UT 20 SDIFLT3.COMPH | SDIFLT3.COMPH_OR_COMPL
5 CMPSS3.CTRIPOUTL INPUTXBAR3 ADCCEVT3 21 SD1FLT3.COMPL
6 CMPSS4.CTRIPOUTH | CMPSS4.CTRIPOUTH_OR_CTRIPOUTL | ADCAEVT4 ECAP40OUT 22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL
7 CMPSS4.CTRIPOUTL INPUTXBAR4 ADCCEVT4 23 SD1FLT4.COMPL
8 CMPSS5.CTRIPOUTH | CMPSS5.CTRIPOUTH_OR_CTRIPOUTL | ADCBEVT1 ECAP50UT 24
9 CMPSS5.CTRIPOUTL INPUTXBARS 25
10 CMPSSE.CTRIPOUTH | CMPSS6.CTRIPOUTH_OR_CTRIPOUTL | ADCBEVT2 ECAP6OUT 26
11 CMPSS6.CTRIPOUTL INPUTXBARG 27
12 | CMPSS7.CTRIPOUTH | CMPSS7.CTRIPOUTH_OR_CTRIPOUTL | ADCBEVT3 | ECAP7OUT 28
13 CMPSS7.CTRIPOUTL ADCSOCAO 29
14 ADCBEVT4 [EXTSYNCOUT 30
15 AADCSOCBO 31

TMS320F28004x Microcontroller Workshop - System Initialization

External Interrupts

External Interrupts

External Interrupts

¢ 5 external interrupt signals
& XINTL, XINT2, XINT3, XINT4 and XINT5
¢ Each external interrupt can be mapped to any of
the GPIO pins via the X-BAR Input architecture

¢ XINT1-5 are sources for Input X-BAR signals 4, 5, 6,
13, and 14 respectively

¢ XINT1, XINT2, and XINT3 also have a free-
running 16-bit counter which measures the
elapsed time between interrupts

¢ Counter resets to zero each time the interrupt occurs
¢ Driverlib function used to read counter value:

GPIO_getinterruptCounter(extintNum);
¢ extintNum parameter is: GPIO_INT_XINTx (x =1, 2, or 3)

Configuring External Interrupts

¢ Configuring external interrupts is a multi-step process:
¢ Select GPIO pin, set polarity, and enable interrupt

GPIO_setInterruptPin(pin, extintNum);
GPIO_setInterruptType(extintNum, intType);
GPIO_[enable|disable]interrupt(extintNum);

¢ pin is the GPIO pin number

¢ extintNum parameter specifies the external interrupt
GPIO_INT_XINT1
GPIO_INT_XINT2
GPIO_INT_XINT3
GPIO_INT_XINT4
GPIO_INT_XINT5

¢ intType parameter specifies the type of interrupt trigger
¢ GPIO_INT_TYPE_FALLING_EDGE
¢ GPIO_INT_TYPE_RISING_EDGE
¢ GPIO_INT_TYPE_BOTH_EDGES

L 2R R 2NN 4

TMS320F28004x Microcontroller Workshop - System Initialization 5-17

Low Power Modes

Low Power Modes

Low Power Modes

Low Power

CPU Peripheral | Watchdog PLL |[INTOSC | XTAL
Mode Logic Logic Clock 1/2
Clock Clock
Normal Run on on on on on on
IDLE off on on on on on
HALT off off off off on on
¢ HALT

¢ INTOSC - not automatically powered down; software
configurable

¢ XTAL - can be powered down by software at any time
¢ STANDBY is not supported but can be emulated — see
device Technical Reference Manual

¢ See device data sheet for each low power mode
power consumption

Low Power Mode Exit

Exit
Interrupt GPIO Any
Reset 0-63 V:ﬁf::gof Enabled
Low Power Signal P Interrupt
Mode
IDLE yes no yes yes
HALT yes yes no no

TMS320F28004x Microcontroller Workshop - System Initialization

Low Power Modes

Low Power Mode Driverlib Functions

¢ Configuring low power mode
SysCtl_enterldleMode(); //enter IDLE mode
SysCtl_enterHaltMode(); //enter HALT mode

¢ Set pin to wake up device from HALT mode
SysCtl_enableLPMWakeupPin(pin);
SysCtl_disableLPMWakeupPin(pin);
¢ pin is the GPIO pin number (numerical value 0-63)

¢ Run watchdog while in HALT mode
SysCtl_enableWatchdogInHalt();
SysCtl_disableWatchdogInHalt();

TMS320F28004x Microcontroller Workshop - System Initialization

Register Protection

Register Protection

LOCK Protection Registers

¢ “"LOCK” registers protects several system configuration
registers from spurious CPU writes

¢ Once the LOCK Driverlib functions are set the respective
locked registers can no longer be modified by software:

ASysCtl_lockTemperatureSensor | ASysCtl_lockCMPHNMux | PGA_lockRegisters

ASysCtl_lockANAREF ASysCitl_lockCMPLNMux | SysCtl_lockAccessControlRegs
ASysCitl_lockVMON ASysCtl_lockVREG SysCtl_lockSyncSelect
ASysCtl_lockDCDC DAC_lockRegister XBAR_lockInput
ASysCtl_lockPGAADCINMux EPWM_lockRegisters XBAR_lockOutput
ASysCtl_lockCMPHPMux HRPWM_lockRegisters XBAR_lockEPWM
ASysCtl_lockCMPLPMux MemCfg_commitConfig

¢ The following Driverlib functions can be locked/unlocked:

FSI_lockTxCtrl GPIO_lockPortConfig MemCfg_lockConfig

FSI_lockRxCitrl GPIO_unlockPortConfig MemCfg_unlockConfig

SysCtl_lockEXtADCSOCSelect

A series of “lock” registers can be used to protect several system configuration settings from
spurious CPU writes. After the lock registers bits are set, the respective locked registers can no

longer be modified. However, some registers have lock/unlock capability.

EALLOW Protection @of2)

EALLOW stands for Emulation Allow

¢ Code access to protected registers allowed
only when EALLOW =1 in the ST1 register

¢ The emulator can always access protected
registers
¢ EALLOW bit controlled by assembly level
instructions
¢ 'EALLOW sets the bit (register access enabled)
¢ 'EDIS’ clears the bit (register access disabled)
¢ EALLOW bit cleared upon ISR entry, restored
upon exit

*

TMS320F28004x Microcontroller Workshop - System Initialization

Register Protection

EALLOW Protection @of2)

¢ Driverlib functions automatically take care of
EALLOW and EDIS protection

¢ The following registers are protected:

Device Configuration & Emulation

Flash

Code Security Module

PIE Vector Table

DMA, CLA, SD, EMIF, X-Bar (some registers)

CANA/B (control registers only; mailbox RAM not protected)
ePWM, CMPSS, ADC, DAC (some registers)

GPIO (control registers only)

System Control

See device data sheet and Technical Reference Manual for detailed listings

TMS320F28004x Microcontroller Workshop - System Initialization

Lab 5: System Initialization

Lab 5: System Initialization
» Objective

The objective of this lab exercise is to perform the processor system initialization. Additionally,
the peripheral interrupt expansion (PIE) vectors will be initialized and tested using the information
discussed in the previous module. This initialization process will be used again in all of the lab
exercises throughout this workshop.

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the
interrupt process will be tested by using the watchdog to generate an interrupt. This lab will make
use of the F28004x Driver Library (Driverlib) to simplify the programming of the device. Please
review these files, and make use of them in the future, as needed.

Procedure

Create a New Project

1.

Create a new project (File > New > CCS Project) for this lab exercise. The top
section should default to the options previously selected (setting the “Target” to
“TMS320F280049C", and leaving the “Connection” box blank). Name the project Lab5.
Uncheck the “Use default location” box. Using the “Browse...” button navigate to:
C:\F28004x\Labs\Lab5\project then click Select Folder. Set the “Linker
Command File” to <none>, and be sure to set the “Project templates and examples” to
“Empty Project”. Then click Finish.

Right-click on Lab5 in the Project Explorer window and add (copy) the following files to
the project (Add Files..) from C:\F28004x\Labs\Lab5\source:

CodeStartBranch.asm Lab 5 6 7.cmd
Defaultlsr_5.c Main_5.c
device.c Watchdog 5.c
Gpio.c

Project Build Options

3.

Setup the build options by right-clicking on Lab5 in the Project Explorer window and
select “Properties”. We need to setup the include search path to include the Driverlib
files and common lab header files. Under “C2000 Compiler” select “Include Options”. In
the include search path box that opens (“Add dir to #include search path”)
click the Add icon (first icon with green plus sign). Then in the “Add directory path”
window type (one at a time):

${PROJECT_ROOT}/../../1¥28004x_driverlib/driverlib
${PROJECT_ROOT}/../../¥28004x_driverlib/driverlib/inc
${PROJECT_ROOT}/../../Lab_common/include

Click OK to include each search path.

Next, we need to setup the file search path for Driverlib. Under “C2000 Linker” select
“File Search Path”. The file search path box will open and in the include library file
section (“Include library file or command file as input”) click the Add
icon. Then in the “Add file path” window type:

TMS320F28004x Microcontroller Workshop - System Initialization

Lab 5: System Initialization

driverlib_lib

and click OK. Then in the library search path section (“Add <dir> to library
search path”) click the Add icon. In the “Add directory path” window type:

${PROJECT_ROOT}/../../T28004x_driverlib/driverlib/ccs/Debug
and click OK.

5. Now, we need to setup the predefined symbols. Under “C2000 Compiler” select
“Predefined Symbols”. In the predefined name box that opens (“Pre-define NAME”")
click the Add icon. Then in the “Enter Value” window type LAUNCHXL_F280049C.
This name is used in the project to conditionally include #defines for pin numbers and
other GPIO configuration code specific to the LaunchPad (rather than the control CARD).
This conditional code is located in the device.h file. Click OK to include the name.
Finally, click Apply and Close to save and close the Properties window.

Memory Configuration

6. Open and inspect the linker command file Lab_5_ 6 7.cmd. Notice that the user defined
section “codestart” is being linked to a memory block named BEGIN_MO. The
codestart section contains code that branches to the code entry point of the project. The
bootloader must branch to the codestart section at the end of the boot process. Recall
that the emulation boot mode "RAM" branches to address 0x000000 upon bootloader
completion.

Notice that the linker command file Lab_5_6_7.cmd has a memory block named
BEGIN_MO: origin = 0x000000, length = 0x0002, in program memory. The
existing parts of memory blocks BOOT_RSVD and RAMMO in data memory has been
modified to avoid any overlaps with this memory block.

7. Inthe linker command file, notice that RESET in the MEMORY section has been defined
using the “(R)” qualifier. This qualifier indicates read-only memory, and is optional. It will
cause the linker to flag a warning if any uninitialized sections are linked to this memory.
The (R) qualifier can be used with all non-volatile memories (e.g., flash, ROM, OTP), as
you will see in later lab exercises. Close the Lab_5 6_7.cmd linker command file.

System Initialization
8. Open and inspect main_5.c. Notice the Device _init() function call to device.c for
initializing the device.

9. Open Watchdog_5.c and edit the file to configure the watchdog for generating a reset.
Also, edit the file to disable the watchdog. Make the modifications to the file at the
appropriate locations in the code. Save your work.

10. Open and inspect Gpio.c. Notice the Driverlib functions that are being used to
configure the GPIO pins. Also, notice the input X-BAR configuration. This file will be
used in the remaining lab exercises.

Build and Load

11. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

12. Click the “Debug” button (green bug). The CCS Debug perspective view should open,
the program will load automatically, and you should now be at the start of main().

TMS320F28004x Microcontroller Workshop - System Initialization 5-23

Lab 5: System Initialization

13.

After CCS loaded the program in the previous step, it set the program counter (PC) to
point to _c_int00. It then ran through the C-environment initialization routine in the
rts2800_fpu32.lib and stopped at the start of main(). CCS did not do a device reset, and
as a result the bootloader was bypassed.

In the remaining parts of this lab exercise, the device will be undergoing a reset due to
the watchdog timer. Therefore, we must configure the device by loading values into
EMU_KEY and EMU BMODE so the bootloader will jump to “RAMMO” at address
0x000000. Set the bootloader mode using the menu bar by clicking:

Scripts > EMU Boot Mode Select -> EMU_BOOT_RAM

If the device is power cycled between lab exercises, or within a lab exercise, be sure to
re-configure the boot mode to EMU_BOOT_RAM.

Run the Code — Watchdog Reset Disabled

14.

15.

16.

Place the cursor in the “main loop” section (on the asm(** NOP’”) ; instruction line) and
right click the mouse key and select Run To Line. This is the same as setting a
breakpoint on the selected line, running to that breakpoint, and then removing the
breakpoint.

Place the cursor on the first line of code in main() and set a breakpoint by double clicking
in the line number field to the left of the code line. Notice that line is highlighted with a
blue dot indicating that the breakpoint has been set. (Alternatively, you can set a
breakpoint on the line by right-clicking the mouse and selecting Breakpoint (Code
Composer Studio) —-> Breakpoint). The breakpoint is set to prove that the
watchdog is disabled. If the watchdog causes a reset, code execution will stop at this
breakpoint (or become trapped as explained in the watchdog hardware reset below).

Run your code for a few seconds by using the “Resume” button on the toolbar ¥, or by
using Run - Resume on the menu bar (or F8 key). After a few seconds halt your code
by using the “Suspend” button on the toolbar I, or by using Run - Suspend on the
menu bar (or Alt-F8 key). Where did your code stop? Are the results as expected? If
things went as expected, your code should be in the “main loop”.

Run the Code — Watchdog Reset Enabled

17.

18.

19.

20.

Open the Project Explorer window in the CCS Debug perspective view by selecting View
- Project Explorer. In Watchdog_5.-c add the Driverlib function to enable the
watchdog. This will enable the watchdog to function and cause a reset. Save the file.

Build the project by clicking Project - Build Project. Select Yes to “Reload the
program automatically”.

Alternatively, you can add the “Bui 1d” button to the tool bar in the CCS Debug
perspective (if it is not already there) so that it will available for future use. Click Window
- Perspective > Customize Perspective.. and then select the Tool Bar
Visibility tab. Check the Code Composer Studio Project Build box. This will automatically
select the “Bui 1d” button in the Tool Bar Visibility tab. Click OK.

Again, place the cursor in the “main loop” section (on the asm(** NOP’”) ; instruction line)
and right click the mouse key and select Run To Line.

This time we will have the watchdog issue a reset that will toggle the XRSn pin (i.e.
perform a hardware reset). Now run your code. Where did your code stop? Are the

TMS320F28004x Microcontroller Workshop - System Initialization

Lab 5: System Initialization

results as expected? If things went as expected, your code should have stopped at the
breakpoint. What happened is as follows. While the code was running, the watchdog
timed out and reset the processor. The reset vector was then fetched and the ROM
bootloader began execution. Since the device is in emulation boot mode (i.e. the
emulator is connected) the bootloader read the EMU_KEY and EMU_BMODE values
from the PIE RAM. These values were previously set for boot to RAMMO boot mode by
CCS. Since these values did not change and are not affected by reset, the bootloader
transferred execution to the beginning of our code at address 0x000000 in the RAMMO,
and execution continued until the breakpoint was hit in main().

Configure Watchdog Interrupt

The first part of this lab exercise used the watchdog to generate a CPU reset. This was
tested using a breakpoint set at the beginning of main(). Next, we are going to use the
watchdog to generate an interrupt. This part will demonstrate the interrupt concepts learned
in the previous module.

21.

22.
23.

24,

25.

26.
27.

In Main_5_c notice the two function calls to interrupt.c for initializing the PIE
registers and PIE vectors:

Interrupt_initModule();
Interrupt_initVectorTable();

Modify main()to enable global interrupts at the appropriate location in the code.

In Watchdog_5.c add the Driverlib function to cause the watchdog to generate an
interrupt rather than a reset.

Using the “PIE Interrupt Assignment Table” shown in the previous module find the
location for the watchdog interrupt “INT_WAKE” and fill in the following information:

PIE group #: # within group:
This will be used in the next step.

Next modify Watchdog 5. c at the appropriate locations in the code as follows:

e Add the Driverlib function to re-map the watchdog interrupt signal to call the ISR
function. (Hint: #define name in driverlib/inc/hw_ints_h and label name
in Defaultlsr_5.c)

e Add the Driverlib function to enable the appropriate PIEIER and core IER

Save all changes to the files.

Inspect Defaultlsr_5.c. This file contains interrupt service routines. The ISR for
WAKE interrupt has been trapped by an emulation breakpoint contained in an inline
assembly statement using “ESTOPOQ”. This gives the same results as placing a
breakpoint in the ISR. We will run the lab exercise as before, except this time the
watchdog will generate an interrupt. If the registers have been configured properly, the
code will be trapped in the ISR.

Build and Load

28.

Build the project by clicking Project - Build Project, or by clicking on the
“Bui Id” button (if it has been added to the tool bar). Select Yes to “Reload the program
automatically”.

TMS320F28004x Microcontroller Workshop - System Initialization 5-25

Lab 5: System Initialization

Run the Code — Watchdog Interrupt

29. Place the cursor in the “main loop” section, right click the mouse key and select Run To
Line.

30. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOPO” instruction in the wake ISR().

Terminate Debug Session and Close Project

31. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

32. Next, close the project by right-clicking on Lab5 in the Project Explorer window and
select Close Project.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects. During this lab exercise, the watchdog was actually
re-enabled (or disabled again) in the file Watchdog_5.c.

5-26 TMS320F28004x Microcontroller Workshop - System Initialization

Analog Subsystem

Introduction

The Analog Subsystem consists of the Analog-to-Digital Converter (ADC), Comparator
Subsystem (CMPSS), Programmable Gain Amplifier (PGA), Digital-to-Analog Converter (DAC),
and the Analog Subsystem Interconnect. This module will explain the operation of each
subsystem. The lab exercise will use the ADC to perform data acquisition.

Module Objectives

Module Objectives

¢ Understand the operation of the:
¢ Analog-to-Digital Converter (ADC)
¢ Comparator Subsystem (CMPSS)
¢ Programmable Gain Amplifier (PGA)
¢ Digital-to-Analog Converter (DAC)

¢ Analog Subsystem Interconnect

¢ Use the ADC to perform data acquisition

Analog Subsystem:
e Three 12-Bit Analog-to-Digital Converters (ADCs)
0 3.45 MSPS each (up to 10.35 MSPS per system)
0 Selectable internal reference of 2.5v or 3.3v
0 Ratiometric external reference set by VREFHI/VREFLO
e Seven Comparator Subsystems (CMPSS)
o Each contains:
= Two analog comparators
= Two programmable 12-bit reference DACs
= One ramp generator and Two digital glitch filter
e Seven Programmable Gain Amplifiers (PGAS)
o Each features:
= Four programmable gain modes: 3x, 6x, 12X, 24X
= Programmable output filtering
e Two 12-bit Buffered Digital-to-Analog Converter Outputs (DACSs)
0 Selectable reference voltage

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-1

Analog-to-Digital Converter (ADC)

Chapter Topics

ANAIOG SUDSYSTEM ...t e e ettt e e e e e s bbbt e e e e e e e e e snbbeaeeaaaeeaanne 6-1
Analog-to-Digital CONVEIEr (ADC).....uuiiieiiiieiiiiee ettt e et e e e e e e s sibbe e e e e e e e e s e ssnbbeeeeaaeaas 6-3
FA\D IO\, (oo [V] (3N 2] (o Ted 1q BT Vo |- o SRR 6-3

7 L o o =T 1T S 6-5

F D O @01V £ T0] o TN = T 1 SRR 6-7
POSt ProCeSSING BIOCKcuviiiiiiieiiiiiiiiee ettt e e e e e s st e e e e e e s e snnrrae e e e e e e e e nnnes 6-10
ADC ClOCKING FIOW ...ttt e e e et e e e e e e st b be e e e e e e e e snneeaeeas 6-12

F D O 1 011 TP PRTTR PP 6-13
ADC Conversion RESUIt REQISTEISccuiiiiiiiiiiiiie et 6-13
SIGNEA INPUL VORBGESceiiiiiiieeee ettt e e e e e e e e as 6-14
BUilt-1n ADC CaliDrationeeiiiiiiiiiiieie ettt e e e e e e s s eee e e e e e e e aannes 6-14
Analog Subsystem External REfErenCeoeeiiiiiiiiiii e 6-15
Comparator SUDSYSLEM (CMPSS) ...t e e e e 6-16
Comparator Subsystem BIOCK DIagram...........occuirieiieeeiiiiiiiereee e s sssinieeee e e e s s sssrnaeeeeeesennnnes 6-17
Programmable Gain AMPHfier (PGA) ...t 6-18
[7N = [Tod 0 =T | = o SRR 6-18
Digital-to-Analog CONVEIEr (DAC)uiiiiiieaeiiteiee ettt e e e ebb e e e e e e e snbeeeeas 6-19
Buffered DAC BIOCK DIagram.........cocuuriiiieeeisiiiiiie e e e e s s st e e e e e e s s ssstaaeeeeeeesssnssnneeeeeessnnnnes 6-20
Analog SUDSYSIEM INtEICONNECTuuiiiie et e e e e e e e e s e rnn e e eaee s 6-21
PAYgt=1(eTo] o 10| o M @fo] gl g =Tex 1 o] o S P PRTTRPR 6-22
Analog Group Connection — EXampPle.........c.uuiiiiiiiiiiii e 6-23
Lab 6: Analog-to-Digital CONVEIET........ueiiieeii i s ere e s r e e e e e e e e e e enneaees 6-25

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Analog-to-Digital Converter (ADC)

The F28004x includes three independent high-performance ADC modules. Each ADC module
has a single sample-and-hold (S/H) circuit and using multiple ADC modules enables
simultaneous sampling or independent operation (sequential sampling). The ADC module is
implemented using a successive approximation (SAR) type ADC with a resolution of 12-bits and a
performance of 3.45 MSPS, yielding up to 10.35 MSPS for the device.

ADC Module Block Diagram

ADC Module Block Diagram

EPWMXxSOCA/C x=1t08)
EPWMxSOCB/D x=1t08)
External Pin(prio/abcexTsoc)

ﬁgg:ﬁj’_, ADCRESULTO | 2
(9]
RS i
o MUX AID . o8
. Converter : Om
ADCIN14— SOCx ADCRESULTTS|S
ADCIN15—
ADC full-scale
. . ADC ADC
input range is CHSEL Generation LEOCX | Interrupt ADCINT1—4:
VrerLo 10 Veeen Logic Logic
SOCx Signal ADCINT1
ADCINT2
SOCO |TRIGSEL |CHSEL |ACQPS | ,,
SOC1 |TRIGSEL [CHSEL [ACQPS | ©
SOC2 [TRIGSEL [CHSEL [ACQPS | & Software
SOC3 [TRIGSEL [CHSEL [ACQPS |~ CPUL Timer ©1.2)
8
o
(]

A A

L] (] L]
SOC15 |[TRIGSEL [CHSEL [ACQPS

SOCx Configuration Registers

*** Multiple ADC modules allow for simultaneous sampling or independent operation ***

The ADC triggering and conversion sequencing is managed by a series of start-of-conversion
(SOCXx) configuration registers. Each SOCx register configures a single channel conversion,
where the SOCXx register specifies the trigger source that starts the conversion, the channel to
convert, and the acquisition sample window duration. Multiple SOCx registers can be configured
for the same trigger, channel, and/or acquisition window. Configuring multiple SOCx registers to
use the same trigger will cause that trigger to perform a sequence of conversions, and configuring
multiple SOCx registers for the same trigger and channel can be used to oversample the signal.

The various trigger sources that can be used to start an ADC conversion include the General-
Purpose Timers, the ePWM modules, an external pin, and by software. Also, the flag setting of
either ADCINT1 or ADCINTZ2 can be configured as a trigger source which can be used for
continuous conversion operation. The ADC interrupt logic can generate up to four interrupts.
The results for SOC 0 through 15 appear in result registers 0 through 15, respectively.

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-3

Analog-to-Digital Converter (ADC)

ADC SOCx Functional Diagram

TINTO (CPUL Timer 0) | ADC_setupSOC(base, socNumber, trigger, channel, sampleWindow);

TINT1 (CPU1 Timer 1) —»
TINT2 (CPU1 Timer 2) —»|
ADCEXTSOC (GPIO)—»)
SOCA/C (ePWM1) |
SOCB/D (ePWM1) |

—nQ@Q — =~ o

ADCINT1
& \ Channel Sample Result ADCINT2
v4 | [pumdon]]

S Select Window Register| E ADCINT3
. L) —» fo) o
. . ADCINT4
SOCAIC (ePWM8) —», c c
X
SOCB/D (ePWM8)—» X
ADC_readResult(resultBase, socNumber);
Software Trigger ADC_setInterruptSource(base, adcintNum, socNumber);
ADC_J[enable|disable]interrupt(base, adcintNum);
ADCINT1

ADCINT2

Re-Trigger ADC_setInterruptSOCTrigger(base, socNumber, trigger);
ADC_forceSOC(base, socNumber);

This block diagram is EOC Int Pulse: ADC_setInterruptPulseMode(base, pulseMode);
replicated 16 times (generation at beginning of conversion or one cycle prior to results)

The figure above is a conceptual view highlighting a single ADC start-of-conversion functional
flow from triggering to interrupt generation. This figure is replicated 16 times and the Driverlib
functions highlight the sections that they modify.

ADC SOC Driverlib Function

¢ Configure a start-of-conversion (SOC)
ADC_setupSOC(base, socNumber, trigger, channel, sampleWindow);

¢ Dbaseis the ADC base address: ADCx_BASE (x=Ato C)
¢ socNumber values are:

¢ ADC_SOC NUMBERXx (x =0 to 15)
¢ trigger values are:

¢ ADC _TRIGGER_SW_ONLY
ADC_TRIGGER_CPU1_TINTx (x=0to 2)
ADC_TRIGGER_GPIO
ADC_TRIGGER_EPWMx_SOCA (x =110 8)
ADC_TRIGGER_EPWMx_SOCB (x=1to 8)
& channel values are:

¢ ADC_CH_ADCINx (x =0 to 15)

¢ sampleWindow parameter is the acquisition window duration in SYSCLK
cycles: value between 1 and 512 cycles inclusive (Note: see data sheet
for minimum value — the F28004x has a minimum value of 8 cycles)

® & o o

6-4 TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

¢ Set EOC source for an ADC interrupt

ADC_forceSOC(base, socNumber)

¢ Read ADC result register

¢ base is the ADC base address: ADCx_BASE
¢ socNumberis: ADC_SOC_NUMBERx (x=0
¢ Trigger value is:

¢ ADC_INT_SOC_TRIGGER_NONE

¢ resultBase value is: ADCXRESULT_BASE (x

ADC Driverlib Functions

¢ Configure an interrupt start-of-conversion trigger
ADC_setInterruptSOCTrigger(base, socNumber, trigger);

ADC_setinterruptSource(base, adcIntNum, socNumber);
ADC_[enable|disable]interrupt(base, adcintNum);
¢ Force an SOC conversion (software trigger)

¢ Configure ADC EOC interrupt pulse generation
ADC_setinterruptPulseMode(base, pulseMode);

ADC readResult(resultBase, socNumber);

(x=AtoC)
to 15)

¢ ADC_INT_SOC_TRIGGER_ADCINTx (x =1 or 2)
¢ adclntNum value is: ADC_INT_NUMBERXx (x =1 to 4)
¢ pulseMode value is: ADC_PULSE_END_OF_x (x =ACQ_WIN or CONV)

=Ato C)

ADC Triggering

Example — ADC Triggering

Sample A1 A3 2> A5 when ePWM1 SOCB/D is generated and then generate ADCINTL1:

Result0 no interrupt

Resultl no interrupt

SOCB/D (ETPWM1) — 200 Chzrlnel Zgin;g“ees
SOC1 | Channel Sample

A3 26 cycles

SOC2 | Channel Sample

A5 22 cycles

Result2 ADCINT1

Sample A2 2> A4 = A6 continuously and generate ADCINT2:

Software Trigger

SOC3 | Channel Sample
A2

22 cycles Result3 no interrupt

SOC4 | Channel Sample
Ad

ADCINT2

28 cycles Result4 no interrupt

SOC5 [Channel Sample

A6 24 cycles ADCINT2

Note: setting ADCINT2 flag does not need to generate an interrupt

The top example in the figure above shows channels A1, A3, and A5 being converted with a

trigger from EPWML1. After A5 is converted, ADCINTL1 is generated. The bottom example shows

channels A2, A4, and A6 being converted initially by a software trigger. Then, after A6 is

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

converted, ADCINT2 is generated and also fed back as a trigger to start the process again.

Example — ADC Ping-Pong Triggering

| Sample all channels continuously and provide Ping-Pong interrupts to CPU/system: |

Softwari ;(r:llg'\?:zr ® s0Co Ch%%nel Zgacn; gll eeS no interrupt
SOC1 Chgnlnel 2(S)acrg(;:)llees no interrupt
soc2 Chgrénel zgimygll gs ADCINT1
ADCINT1 SOC3 Ch%r:wanel Z(S)e::r;gllees no interrupt
SOC4 chaérl1r nel 2%ac? gllgs no interrupt
socs [CRgmmer| {5t | —{ Resuis }—aocnre

The ADC ping-pong triggering example in the figure above shows channels BO through B5 being
converted, triggered initially by software. After channel B2 is converted, ADCINT1 is generated,
which also triggers channel B3. After channel B5 is converted, ADCINT2 is generated and is also
fed back to start the process again from the beginning. Additionally, ADCINT1 and ADCINTZ2 are
being used to manage the ping-pong interrupts for the interrupt service routines.

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC Conversion Priority

ADC Conversion Priority

¢ When multiple SOC flags are set at the same time —
priority determines the order in which they are converted

¢ Round Robin Priority (default)
+ No SOC has an inherent higher priority than another
+ Priority depends on the round robin pointer

¢ High Priority

« High priority SOC will interrupt the round robin wheel
after current conversion completes and insert itself as
the next conversion

« After its conversion completes, the round robin wheel
will continue where it was interrupted

¢ Round Robin Burst Mode

+ Allows a single trigger to convert one or more SOCs in
the round robin wheel

+ Uses BURSTTRIG instead of TRIGSEL for all round
robin SOCs (not high priority)

When multiple triggers are received at the same time, the ADC conversion priority determines the
order in which they are converted. Three different priority modes are supported. The default
priority mode is round robin, where no start-of-conversion has an inherently higher priority over
another, and the priority depends upon a round robin pointer. The round robin pointer operates in
a circular fashion, constantly wrapping around to the beginning. In high priority mode, one or
more than one start-of-conversion is assigned as high priority. The high priority start-of-
conversion can then interrupt the round robin wheel, and after it has been converted the wheel
will continue where it was interrupted. High priority mode is assigned first to the lower number
start-of-conversion and then in increasing numerical order. If two high priority start-of-conversion
triggers occur at the same time, the lower number will take precedence. Burst mode allows a
single trigger to convert one or more than one start-of-conversion sequentially at a time. This
mode uses a separate Burst Control register to select the burst size and trigger source.

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-7

Analog-to-Digital Converter (ADC)

Conversion Priority Functional Diagram

2 SOCO0 .
5 SOcC1 SOC Priority
= soc2 Determines .choff point
< SOC3 for high priority and
.%’ SOCA round robin mode
SOCPRIORITY
/| socs
SOC6 ADC_setSOCPriority(base, priMode);
SOC7 [
= SOC8 RRPOINTER
o) SOC9
3§< SOC10 Round Robin Pointer
c SOCI11 Points to the last converted
3 round robin SOCx and
& SOC12 I
SOC13 determines order
SOC14 of conversions
\ .| SOC15

¢ base is the ADC base address: ADCx_BASE (x =Ato C)
¢ priMode values are:

¢ ADC_PRI_ALL_ROUND_ROBIN

¢ ADC_PRI_SOCO_HIPRI

¢ ADC_PRI_THRU_SOCx_HIPRI (x =1 to 14)

¢ ADC_PRI_ALL_HIPRI

In this conversion priority functional diagram, the Start-of-Conversion Priority Control Register
contains two bit fields. The Start-of-Conversion Priority bit fields determine the cutoff point
between high priority and round robin mode, whereas the Round-Robin Pointer bit fields contains
the last converted round robin start-of-conversion which determines the order of conversions.

Round Robin Priority Example

SOCPRIORITY configured as 0;
RRPOINTER configured as 15;
SOCO0 is highest RR priority

SOCY7 trigger received

SOCY7 is converted;
RRPOINTER now points to SOC7;
SOC8 is now highest RR priority

RRPOINTER

SOC2 & SOC12 triggers received
simultaneously

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13is now highest RR priority

SOC2 is converted;
RRPOINTER points to SOC2;
SOC3is now highest RR priority

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

High Priority Example

PONTER .l

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;
SOC4 is highest RR priority

SOCT trigger received High Priority

SOCT7 is converted;

RRPOINTER points to SOC7;

SOCS8is now highest RR priority

SOC2 & SOC12 triggers received

simultaneously

SOC2 is converted; @
RRPOINTER stays pointing to SOC7

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13is now highest RR priority

Round Robin Burst Mode Diagram

—ADC_[enable|disable]BurstMode(base);

BURSTEN

BURSTSIZE

Burst Enable
Disables/enables burst mode

SOC Burst Size

Determines how many
SOCs are converted per
burst trigger

BURSTTRIGSEL

Software, CPU1 Timer0-2

ePWM1 ADCSOCA/C - B/D >
ePWM8 ADCSOCA/C - B/D

SOC Burst Trigger
Source Select
Determines which trigger
starts a burst conversion
sequence

L— ADC_setBurstModeConfig(base, trigger, burstSize);

¢ base is the ADC base address: ADCx_BASE (x =Ato C)
¢ trigger parameter uses the same values as the ADC_setupSOC() API
¢ DburstSize parameter is a value between 1 and 16 inclusive

The Round-Robin Burst mode utilizes an ADC Burst Control register to enable the burst mode,
determine the burst size, and select the burst trigger source. This register is modified using the
two Driverlib functions shown in the figure.

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-9

Analog-to-Digital Converter (ADC)

Round Robin Burst Mode with High
Priority Example

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;
SOC4 is highest RR priority

BURSTTRIG trigger received High Priority

SOC4 & SOC5 is converted;

RRPOINTER points to SOC5;

SOCE6 is now highest RR priority
BURSTTRIG & SOC1 triggers

received simultaneously

SOC1 is converted;
RRPOINTER stays pointing to SOC5

SOC6 & SOC7 is converted;
RRPOINTER points to SOC7;
SOC8 is now highest RR priority

RRPOINTER

Note: enableBurstMode and burstSize = 2

Post Processing Block

Purpose of the Post Processing Block

¢ Offset Correction

¢ Remove an offset associated with an ADCIN channel possibly
caused by external sensors and signal sources

¢ Zero-overhead; saving cycles
¢ Error from Set-point Calculation

Subtract out a reference value which can be used to automatically
calculate an error from a set-point or expected value

¢ Reduces the sample to output latency and software overhead
¢ Limit and Zero-Crossing Detection

¢ Automatically perform a check against a high/low limit or zero-
crossing and can generate atrip to the ePWM and/or an interrupt

+ Decreases the sample to ePWM latency and reduces software overhead;
trip the ePWM based on an out of range ADC conversion without CPU
intervention

¢ Trigger-to-Sample Delay Capture

¢ Capable of recording the delay between when the SOC is
triggered and when it begins to be sampled

+ Allows software techniques to reduce the delay error

6-10 TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Post Processing Block - Diagram

Delay Capture ‘ ADCEVTSEL.PPBXTRIPLO
SOC Control Signals
S0C S0C [ADCEVTSELPPBXTRIPHI
Trigger Start
Delec‘ Detect ‘ ADCEVTSEL.PPBXZERO
latch latct
[REQsTAMPx }—»Q?—{ DLYSTAMPx| [ADCEVISTATPPEXTRIPLO |«
EVENTx
FREECOUNT f [ADCEVTSTAT.PPBXTRIPHI _ J¢—g—
[ADCEVTSTATPPBAZERO NN 25

Offset Correction

w/ Saturation
ADCPPBXOFFCAL Threshold Compare
ADC Output , ¥ saturate i
p— ADCRESULTy
Detect
e
ADCPPBXTRIPHI)j'» :

L4
T INTX
v: [Twos J—L/
ADCPPBXOFFREF (2)» Comp |-+ ADCPPBXRESULT |4
Inv Py
Enable
[ADCPPBXCONFIG TWOSCOMPEN | ADCPPBXTRIPLO [
[ADCEVTINTSELPPBXZERO
[ADCEVTINTSEL.PPBXTRIPHI

ADCEVTINTSEL.PPBXTRIPLO

Error/Bipolar Calculation

To further enhance the capabilities of the ADC, each ADC module incorporates four post-
processing blocks (PPB), and each PPB can be linked to any of the ADC result registers. The
PPBs can be used for offset correction, calculating an error from a set-point, detecting a limit and
zero-crossing, and capturing a trigger-to-sample delay. Offset correction can simultaneously
remove an offset associated with an ADCIN channel that was possibly caused by external
sensors or signal sources with zero-overhead, thereby saving processor cycles. Error calculation
can automatically subtract out a computed error from a set-point or expected result register value,
reducing the sample to output latency and software overhead. Limit and zero-crossing detection
automatically performs a check against a high/low limit or zero-crossing and can generate a trip
to the ePWM and/or generate an interrupt. This lowers the sample to ePWM latency and reduces
software overhead. Also, it can trip the ePWM based on an out-of-range ADC conversion without
any CPU intervention which is useful for safety conscious applications. Sample delay capture
records the delay between when the SOCXx is triggered and when it begins to be sampled. This
can enable software techniques to be used for reducing the delay error.

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-11

Analog-to-Digital Converter (ADC)

Post Processing Block Interrupt Event

¢ Each ADC module contains four Post Processing Blocks

¢ Each Post Processing Block can be associated with any
of the 16 ADCRESULTX registers

Post Processing Block 1

EVENTxX ADCEVT1
INTX

Post Processing Block 2

EVENTx ADCEVT2

INTX |
—\$ ADCEVTINT

Post Processing Block 3

EVENTxX ADCEVT3
INTX

Post Processing Block 4

EVENTxX ADCEVT4
INTX

ADC Clocking Flow

ADC Clocking Flow

SysCtl_setClock(SYSCTL_OSCSRC_XTAL | SYSCTL_IMULT(10) | SYSCTL_FMULT _NONE |
SYSCTL SYSDIV(2) | SYSCTL_PLL_ENABLE);

XTAL PLLCLK SYSCLK

(20 MHz) | IMULT/FMULT| (200 MHz) SYSCLKDIV (100 MHz)

— > >
(x10.00) /2) To CPU

SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ADCA);

f\
.| PRESCALE ADCCLK (50 MHz) ToADC core
(/2) :
ADC_setPrescaler(ADCA_BASE,ADC_CLK_DIV_2_0);

sampling

ACQPS window
—>

(7+1D)
ADC_setupSOC(..., ..y very onv,y 8);

sampling window = (ACQPS + 1)*(1/SYSCLK)

6-12 TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC Timing

ADC Timing

¢ SYSCLK =100 MHz (10 ns period)
¢ ADCCLK =50 MHz (20 ns period)

Latch Sample Convert Write
2 cycles 8 cycles 10.5 ADCCLK cycles = 21 SYSCLK cycles 2 cycles
I
[TTTTT]
[[T T [[T [] |
[_}--+ApcinTeveLe O
Generate Early Generate Late
Interrupt Interrupt
{ \ J
Y [
SYSCLK ADCCLK

¢ Sample + Hold (sampling window) time = 80 ns
¢ Conversion time =210 ns
¢ Sampling rate =80 ns + 210 ns =290 ns - 3.45 MSPS
¢ Above timing using ADCINTCYCLE = 0 (default)
| Maximum Sample Rate: 3.45 MSPS — see data sheet for details |

ADC Conversion Result Registers

ADC Conversion Result Registers

ADC_readResult(resultBase, socNumber);

L vl [[[] [[[[[[
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADCINx | Digital AdcnResultRegs.

Voltage | Results ADCRESULTX
33V OXFFF 0000]1111|1111|1111
1.65V OX7FF 0000|0111]1111|1111
0.00081 Vv 0x1 0000|0000]0000|0001
oV 0x0 0000]0000]0000]|0000

¢ Selectable internal reference of 2.5V or 3.3V
¢ Ratiometric external reference set by VREFHI/VREFLO

¢ resultBase value is: ADCXRESULT_BASE (x=Ato C)
¢ socNumberis: ADC_SOC_NUMBERXx (x =0 to 15)

Note: above table based on internal reference of 3.3 V; for external reference VREFHI
is VDDA maximum, however VREFHI is typically selected as 2.5 V or 3.0 V

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Signed Input Voltages

How Can We Handle Signed Input Voltages?

Example: -1.65V <V, < +1.65V

1) Add 1.65 volts to the V., R $ o $ ADCA
R

analog input 1.65V ADCINO

VREFLO

GND

2) Subtract “1.65” from the digital result

#include “Lab.h”
#define offset OxO07FF
void main(void)

{
intl6_t value; // signed

value = ADC_readResult(resultBase, socNumber) — offset;

}

Built-In ADC Calibration
Built-In ADC Calibration

¢ Tlreserved OTP contains device specific calibration
data for the ADC, internal oscillators and buffered DAC

¢ The Boot ROM contains a Device_cal() routine that
copies the calibration data to their respective registers

¢ Device_cal() must be run to meet the specifications in
the datasheet

¢ The Bootloader automatically calls Device_cal() such that no
action is normally required by the user

¢ If the Bootloader is bypassed (e.g. during development)

Device_cal() should be called by the application:
#deFfine Device_cal (void (*)(void))0x00070280
void main(void)

{

(*Device _cal)(); // call Device_cal()

}

Note: Device_cal address is located in the bootrom code, which can be found at -
C:\ti\c2000\C2000Ware_<version>\libraries\boot_rom\f28004x\revB\rom_sources\F28004x_ROM
\bootROM\include\bootrom.h

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Analog Subsystem External Reference

Analog Subsystem External Reference

:'Fie'fér'e'n'cé'ée_n_e?éti_o_n_"";I'""T """ 1 ADC

| on-Inverting !

| Buffers !

I

! valiEge — E o— VREFHIA

I | Reference C

: F}—o— VREFLOA
I

! |

| I —_ Lo VREFHIB

| REF3225 Co |

i | REF3030 %‘_O_. VREFLOB

I

|| REF3025 | VREEHIC

| (or similar) - i

| Ce 1

| %o— VREFLOC

' i

e 1

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-15

Comparator Subsystem (CMPSS)

Comparator Subsystem (CMPSS)

Comparator Subsystem

¢ Each CMPSS consists of:
¢ Two analog comparators
¢ Two programmable reference 12-bit DACs
¢ Two digital filters and one ramp generator
¢ Each comparator generates a digital output

¢ Indicates if voltage on positive input is greater than the
voltage on the negative input

¢ Positive input can be driven from an external pin or PGA
¢ Negative input can be driven by an external pin or 12-bit DAC
¢ Each comparator output can be digitally filtered to
remove spurious trip signals (majority vote)
¢ Ramp generator used for peak current mode control
Ability to synchronize with EPWMSYNCO event,
SYSCLK, and a clear signal with EPWMBLANK

¢ DAC reference voltage can be either VDDA or VDAC

The F28004x includes independent Comparator Subsystem (CMPSS) modules that are useful for
supporting applications such as peak current mode control, switched-mode power, power factor
correction, and voltage trip monitoring. The Comparator Subsystem modules have the ability to
synchronize with a PWMSYNC event.

6-16 TMS320F28004x Microcontroller Workshop - Analog Subsystem

Comparator Subsystem (CMPSS)

Comparator Subsystem Block Diagram

Comparator Subsystem Block Diagram

COMPSTS[COMPHSTS]

COMPCTL[CTRIPHSEL]

SYSCLK -

DACHVALS

12-bit
DACH

CMPx_HN

Ramp Generator |—

COMPCTL[COMPHSOURCE]
COMPDACCTL[DACSOURCE]

CCOMPSTSCLR[HSYNCCLREN]

EPWM1SYNCPER
ERWMAOYNCPERS oo

COMPCTL[ASYNCHEN]

COMPSTSCLR[HLATCHCLR]

EPWM2SYNCPER 1 I

COMPDACCTL[RAMPSOURCE]

EPWM1IBLANK
EPWM2BLANK
EPWM3BLANK

CMPx_LP

EPWMnBLANK n1

CCOMPDACCTL[BLANKSOURCE] COMPDACCTL[SWLOADSEL]

EPWM3SYNCPER | 5 EPWMSYNCPER 1
I gl
EPWMnSYNCPER] |, ¢ EPWMBLANK COMPSTSCLRILSYNCCLREN] COMPCTLIASYNCLEN]
e
COMPDACCTL[BLANKEN] o
'h'ﬁ vl
- Digital
2

COMPSTSCLRILLATCHCLR]

COMPSTS[COMPLLATCH]

COMPCTL[CTRIPLSEL]

COMPCTL{COMPLSOURCE]

DAC Reference

Comparator Truth Table

DACxVALA * DACREF Voltages

Vbacx =

4096 Voltage A < Voltage B

Voltage A > Voltage B

Output A
0 tput
X B >—Outpu

Each CMPSS module is designed around a pair of analog comparators which generates a digital
output indicating if the voltage on the positive input is greater than the voltage on the negative
input. The comparator positive and negative input signals are independently selectable by using
the analog subsystem interconnect scheme. The positive input to the comparator is always
driven from an external pin. The negative input can be driven by either an external pin or an
internal programmable 12-bit digital-to-analog (DAC) as a reference voltage. Values written to
the DAC can take effect immediately or be synchronized with ePWM events. A falling-ramp
generator is optionally available to the control the internal DAC reference value for one
comparator in the module. Each comparator output is fed through a programmable digital filter
that can remove spurious trip signals. Also included is PWM blanking capability to clear-and-
reset existing or imminent trip conditions near the EPWM cycle boundaries.The output of the
CMPSS generates trip signals to the ePWM event trigger submodule and GPIO structure.

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Programmable Gain Amplifier (PGA)

Programmable Gain Amplifier (PGA)

Programmable Gain Amplifier (PGA)

¢ Amplifies small input signals to increase the dynamic
range of the downstream ADC and CMPSS modules
¢ Reduces cost and design effort over external
standalone amplifiers
¢ On-chip integration ensures compatible with ADC and CMPSS
¢ Internally powered by VDDA and VSSA
¢ Adaptable to various performance needs
¢ Software selectable gain and filter settings
¢ Four programmable gain modes: 3x, 6x, 12x, 24x
¢ Embedded series resistors for RC filtering
¢ Hardware based analog offset and gain trimming
reduces offset and gain error
¢ Instead of software post-processing

PGA Block Diagram
PGA Block Diagram

PGA Input can be
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, To ADC and CMPSS ———— used as a regular
ADC/CMPSS pin
VDDA Four Programmable Gain Modes:
3X, 6x, 12X, 24x
PGA_OUT Filtered and
I

|
|
! [
» ToADC and cuess | -
°_- TeARCnCHESS |1 non-filtered
o R | |~ paths to ADC
~ oM Ta ADC and CMPSS) and CMPSS
PGACTL[FILTRESSEL] |
|
PGACTLIGAIN] \ :

_____________________________ PGA Output

. Filter pin can be

PGAOF T T m——— used as a regular
ADC/CMPSS pin

BEACTLIPGAEN]

PGA_GND [}

¢ Support for low-pass filtering by connecting an external capacitor to
PGA_OF pin:

< cut-off frequency based on standard RC equation f; = ﬁ
¢ PGA_OUT is an internal signal available for sampling and monitoring

by the internal ADC and CMPSS modules

6-18 TMS320F28004x Microcontroller Workshop - Analog Subsystem

Digital-to-Analog Converter (DAC)

Digital-to-Analog Converter (DAC)

Digital-to-Analog Converter

¢ 12-bit DAC provides a programmable reference output
voltage

¢ Analog output buffer is capable of driving an external
load

¢ Selectable reference voltage

¢ Can be used as a general-purpose DAC for generating a
DC voltage and AC waveforms (e.g. sine, square,
triangle, etc.)

Ability to be synchronized with EPWMSYNCPER events

The buffered 12-bit DAC module can be used to provide a programmable reference output
voltage and it includes an analog output buffer that is capable of driving an external load. Values
written to the DAC can take effect immediately or be synchronized with ePWM events.

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-19

Digital-to-Analog Converter (DAC)

Buffered DAC Block Diagram
Buffered DAC Block Diagram

DAC_setReferenceVoltage(base, source);

Internal | 1.65Vv 1 VDAC DACREF
0
Reference 25V 1 :
Circuit
VREFHI DAC_[enable|disable]Output(base);
DAC_setShadowValue(base, value);
SYSCLK
— VDDA
DAC l:D Q DAC |12-bit N_DACOUT
VALS DO VALA | DAC
VSSA
EPWM1SYNCPER
EPWM§SYNC?ER VSSA—' DAC_setGainMode(base, mode);
L] L]
EPWM7SYNCPER DAC_setLoadMode(base, mode);
EPWM8SYNCPER

DAC_setPWMSyncSignal(base, signal);

¢ DAC internal reference: 2.5 V and 3.3 V option Ideal Output
¢ 3.3V option outputs 1.65 V and then use 2x mode on DAC DACOUT = DACVALA * DACREF
¢ 2.5V option outputs 2.5 V and then use 1x mode on DAC 4096

Two sets of DACVAL registers are present in the buffered DAC module: DACVALA and
DACVALS. DACVALA is a read-only register that actively controls the DAC value. DACVALS is a
writable shadow register that loads into DACVALA either immediately or synchronized with the
next PWMSYNC event. The ideal output of the internal DAC can be calculated as shown in the
equation above.

DAC Driverlib Functions

¢ Set the DAC reference voltage
DAC_setReferenceVoltage(base, source);

¢ Set the DAC gain mode
DAC_setGainMode(base, mode);

¢ Set the DAC load mode
DAC_setLoadMode(base, mode);

¢ Set DAC shadow value
DAC_setShadowValue(base, value);

¢ Enable/disable DAC output
DAC _[enable|disable]Output(base);

¢ Set DAC PWMSYNC signal
DAC_setPWMSyncSignal(base, signal);

base is the ADC base address: DACx_BASE (x =Aor B)

source value is: DAC_REF_VDAC or DAC_REF_ADC_VREFHI

mode (gain) value is: DAC_GAIN_ONE or DAC_GAIN_TWO

mode (load) value is: DAC_LOAD_SYSCLK or DAC_LOAD_PWMSYNC
value is the 12-bit code to be loaded into the active value register

signal is the selected PWM signal (e.g. 2 selects PWM sync signal 2)

® 6 6 0 0 o

6-20 TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog Subsystem Interconnect

Analog Subsystem Interconnect

Analog Subsystem Interconnect

=1
Pins shared for: i —
¢ PGAfunctions = E]
¢ ADC inputs E e
+ DAC outputs =8 =]
¢ CMPSS inputs E ’;‘._'
* AlO’s ' m§
Analog functions for: _ E
¢ PGA inputs and = . F
outputs : = % -
. Baeapn oF - m |
¢ ADC Inpl.,ItS »»»»» =
¢ CMPSS inputs SRR D - |
are grouped into Y
functional units by o ——
PGAs Wk = |
Note: AIO input functionality only s £l e

(name used to match legacy devices)

The Analog Subsystem Interconnect enables a very flexible pin usage, allowing for smaller device
packages. The DAC outputs, comparator subsystem inputs, PGA functions, and digital inputs are
multiplexed with the ADC inputs. This type of interconnect permits a single pin to route a signal
to multiple analog modules. The figure below is the generic analog group structure

Generic Analog Group Structure
¢ Determines routing of the analog pins interconnect

=T

CMPEHPN
e

e] CMPx_HP

Chrs_Hea

]
HEEE

Analog Group x

e

s CMPx_HN

XESJND 0L

“Analog Group 1 e CMPE_LN

A3
AZBEPGA1 OFE =
0 q
PGA1_IN
; CMPSST
PGAT_GND Wp MU

T

CMPx_LP

Gx_ADCAE

Gx_ADCAB

PGAx_OF

Gx_ADGC

Gx_ADCC

UG “mg %% %

SAV oL

sulg esneq of
H]

[—
PGx_OUT

PGAx_GND

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-21

Analog Subsystem Interconnect

Analog Group Connections

Analog Group Connections
Gx_ADCAB & GxADCC

¢ General-purpose ADC input

that connects to:
¢ Gx_ADCA or Gx_ADCB
+ Gx_ADCC

¢ Connects to positive

comparator input
multiplexers
¢ Gx_ADCAB at position ‘3’
¢ Gx_ADCC at position ‘1’

¢ Connects to negative

comparator input
multiplexers
¢ Gx_ADCAB at position ‘0’
¢ Gx_ADCC at position ‘1’

¢ Connects to AIO

« Used for lower pin-count packages B
* Gx_ADCC is combined with the PGA -
input to allow ADC, CMPSS, or AIO to

be use if PGA is not used

CMPx_HP

CMPx_HN

CMPx_LN

CMPx_LP

Gx_ADCAB

PGA_OF

Gx_ADCC

PGAx_OUT

*EEdND oL

s2aveL

The general-purpose ADC input pins, shown by the red and green lines, connects to the ADCs
and the input multiplexers which feed the positive and negative comparator subsystem inputs.
Also, the ADC input pins connect as inputs to the AlOs.

Analog Group Connections
PGAx_IN & PGAx_OUT & PGA_OF

¢ PGAX_IN
¢ Input to PGAX
¢ Connects to positive

comparator input
multiplexer at position ‘2’

¢ PGAx_OUT
¢ Output to PGAX (to ADCs)

¢ Connects to positive
comparator input
multiplexer at position ‘4’

¢ PGAX Filtered Output

¢ Connects to ADCs and
positive comparator input
multiplexer at position ‘0’
by passing PGA output
through switch + resistor
with an external capacitor
on the PGAx_OF pin

¢ Connects to AIO

« If switch is open, PGAx_OF pin can be
used as general-purpose ADC input or AIO

A sl 82ka 0] ———————"

Gx_ADCAE

PGAx_OF

Gx_ADGC

PGAx_IN

PGAx_GND

CMPx_HP

s CMPx_HN

—e CMPx_LN

CMPx_LP

Gx_ADCAB

PGA_OF

Gx_ADCC

PGAx_OUT

*EEdND oL

s2aveL

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog Subsystem Interconnect

The PGA input pin, shown by the red line, connects to the PGA and the input multiplexers which
feed the positive comparator subsystem inputs. The PGA output, shown by the green line,
connects to the ADCs and the input multiplexers which feed the positive comparator subsystem
inputs. The PGA filtered output, shown by the blue line, connects to the ADCs and the input
multiplexers which feed the positive comparator subsystem inputs, in addition to being an input to
the AIO.

Analog Group Connection — Example

In this example, we will determine the connections in Analog Group 1 for the 100 PZ package.

Analog Group Connections - Example

¢ Determine the connections in Analog Group 1 for the 100 PZ package

VREFHIA
VREFHIB

VREFLOA
VREFLCB

Misc. Analog

ADNB1S/C1S/DACA_OUT
ANDACB_OUT

B

T

A3
AZ/BEPGA1_OF
co

PGAI_IN
PGA1_GND

Analog Group 1

PGA1

CMPS5S1
Input MUX

BIWDAC
B2/C&PGA3_OF
c2

PGAZ_IN
PGA3 GND

AGPGAS_OF
C4

PGAS_IN
PGAS_GND

Analog Group 3

(=

PGA3

CMPS53
Input MLX

=
=
=

Analog Group 5

PGAS

CMPSS5
Input MLX

rconnect

DACA_OUT

ADC Inputs
AD to A15

DACB_OUT

Using the Analog Pins and Internal Connection table, notice that group name G1_ADCAB is
connected to pin 10 and has a pin name as A3. This signal is always connected to ADCA and it
is multiplexed with the comparator subsystem inputs. It is also connected to AI0O233. The
remaining pin numbers, pin names, and connections are determined the same way.

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Analog Subsystem Interconnect

Analog Pins and Internal Connections

PACKAGE "ALWATS CONNECTED (MO WX ‘COMPARATOR SUBSTSTEM (MUX)
P NAME 1orz | sarm |seRsH | aoca | Apce | apcc oA oAC Nete |Lowrosmve| | LOW AT
[VREFHA =
[VREFHE N 16 1“4
[VREFHIC “
[VREFLOA ri Al3
[VREFLOE 7 "% B13
[VREFLOC * 13
Analog Group 1
A3 | Gii_ADCAR 0 Al -1 CWP1_HP3 CMP1_HND CMF1_LF3 CMP1_LND A0
| AZBEFGAL_OF [PGAT_OF k] 9 1] AT -] POAL_OF CWP_HPD CMP1_LPD A0
o0 | 1_ADCC 15 - " (=] SR CMPY_N CMP_LPY PN AnaT
e _n Paar_m 0 oA
[PGA1_GND [PGA1_GND 14 10 9 PGA1_GND
[PGA1_CUT™ A1 B PGA1_OUT CWP1_HP4 CMF1_LP4
Analag Group 7

5 [G3_ADCAD = | CWPI_WPY | CMPIWNO | CMPILPY | CMPILMD woma N

s o oo I I T N T = Eroa | =
: P ALWAYS CONNECTED (NG MUX) [SUBSYSTEM (MUX]
§ LS| Gl |mnz| | anca | e | apce | [| |mmrme| i |mm| L |”°w 1
I Anaiog Group 1 |
n GI_ADCAB. 0 x5 CMPEE | cWeLang | oMeiLPs | oweiin | Aoz fiH
o ASDEFGAT_OF PGA1_OF] A2 (] POAT_OF CMP1_HPD CMP1_LPO ACZM
Mo o1_ance 1 o cMPi®1 | cueinni | cweiiet | cweiin | aozr)
[~ QFGAT_IN PGAI_N AL PGAI_N

PaA1_GhD |Paai_ono] PGA1_GHD 1

- PaAT_oUT Al [PGAT_OUT Ea) CMP1_LPa 1
85 | G4_ADCAB B CMPY_HPY CMP_sND CMPg_LF3 CMPS_LNO AN
[BLCEPGAL_OF [PGAL_OF £ 28 E-d B4 ce PGAL_OF CNPY_HPD CMPa_LPD Aot
[C3 | GI_ADCC 3 ” W =] CWP4_HPH CMP4_HNT CMPE_LFY CMPY_LN AOAS
[PGAL IN [PGAL N FOAL N
[PGAL_GND [PGAL_GND i n 18 Pakd_GND
L - 7 3 min B - ca PGAL_OUT 'W-i_}" s Mg i* I

For this example, the complete Analog Group 1 connections are shown. Again, notice that pin
name ‘A3’ is connected to pin 10 as an input to ADCAIN3, and it is multiplexed with the
comparator subsystem inputs. Also, it is connected as an input to Al0233. The other remaining
connections can be mapped back to the Analog Pins and Internal Connection table.

Analog Group Connections - Example

CMPx_HP
%4 g §
=
Pin Name Group Name 3
[T t—s CMPx_LN =
Pin # ‘
: CMPx_LP
‘A3’ (10 e oo} A3
(10 L@@®ai0233
‘A2/B6/PGAL_OF’ (9) Pk oF PonF—- A2, B6
0 (19) —8 sueco t@maio224 | o
H e @D A0237 g
‘PGAL_IN' (18) — rosen
PO All, B7
‘PGA1_GND' (14) ke N

6-24 TMS320F28004x Microcontroller Workshop - Analog Subsystem

Lab 6: Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter
» Objective

The objective of this lab exercise is to become familiar with the programming and operation of the
on-chip analog-to-digital converter (ADC). The microcontroller (MCU) will be setup to sample a
single ADC input channel at a prescribed sampling rate and store the conversion result in a
circular memory buffer. In the second part of this lab exercise, the digital-to-analog converter
(DAC) will be explored.

Lab 6: ADC Sampling

+3.3V Toggle
GND (GPIO59) (GPI0O25)

[] [] data
ADC-A _ memory
jumper CPU copies result
jump to buffer during
wire RESULTO ADC ISR 'g
3
e
ADCINAO -
. o
7 . £
1 ePWM2 triggering " [}
DAC-B ! ADC on period match E e
| i using SOCA trigger every
' View ADC
Sine ; 20 s (50 kHz) buffer PWM
Table samples

Studio

Code Composer l

ePWM2

Recall that there are three basic ways to initiate an ADC start of conversion (SOC):

1. Using software
a. SOCx (where x =0 to 15) causes a software initiated conversion
[ADC_TRIGGER_SW_ONLY]
2. Automatically triggered on user selectable conditions
a. CPU Timer 0/1/2 interrupt [ADC_TRIGGER_CPU1_TINTX]
b. ePWMxSOCA /ePWMxSOCB (x = 1 to 8) [ADC_TRIGGER_EPWMx_SOCA/B]
- ePWM underflow (CTR = 0)
- ePWM period match (CTR = PRD)
- ePWM underflow or period match (CTR = 0 or PRD)
- ePWM compare match (CTRU/D = CMPA/B/C/D)
c. ADC interrupt ADCINT1 or ADCINT2
- triggers SOCXx selected by the ADC Interrupt Trigger SOC
[ADC_INT_SOC_TRIGGER_NONE or ADC_INT_SOC_TRIGGER_ADCINTX]
3. Externally triggered using a pin
a. SOCx trigger by ADCEXTSOC via INPUT5 X-BAR GPIO pin
[ADC_TRIGGER_GPIO]

One or more of these methods may be applicable to a particular application. In this lab exercise,
we will be using the ADC for data acquisition. Therefore, one of the ePWMs (ePWM2) will be
configured to automatically trigger the SOCA signal at the desired sampling rate (ePWM period

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6 -25

Lab 6: Analog-to-Digital Converter

match CTR = PRD SOC method 2b above). The ADC end-of-conversion interrupt will be used to
prompt the CPU to copy the results of the ADC conversion into a results buffer in memory. This
buffer pointer will be managed in a circular fashion, such that new conversion results will
continuously overwrite older conversion results in the buffer. In order to generate an interesting
input signal, the code also alternately toggles a GPIO pin (GPIO25) high and low in the ADC
interrupt service routine. This pin will be connected to the ADC input pin, and sampled. The ADC
ISR will also toggle LEDS5 on the LaunchPad as a visual indication that the ISR is running. After
taking some data, Code Composer Studio will be used to plot the results. A flow chart of the
code is shown in the following slide.

Lab 6: Code Flow Diagram

General Initialization ADC interrupt
* PLL and clocks B
» Watchdog configure

* GPIO setup
* PIE initialization

I Main Loop ADC ISR
; e read the ADC result
ADC Initialization | PR « write to result buffer
. cgc\\//ﬁrzt changel A0 ﬁn { 0 adjulst tne buffer pointer
e period matc « toggle the GPIO pin
*send interrupct OS? EOC } e return from interrupt
to trigger ADC ISR

« setup a results buffer
in memory

! return
ePWM2 Initialization
« clear counter
« set period register
 set to trigger ADC on

period match
« set the clock prescaler
e enable the timer

Notes

e Program performs conversion on ADCA channel 0 (ADCINAO pin)

e ADC conversion is set at a 50 kHz sampling rate

e ePWM2 is triggering the ADC on period match using SOCA trigger

e Data is continuously stored in a circular buffer

e GPIO25 pin is also toggled in the ADC ISR

e ADC ISR will also toggle the LaunchPad LEDS5 as a visual indication that it is running

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Lab 6: Analog-to-Digital Converter

> Procedure

Open the Project

1.

A project named Lab6 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open. Click Browse... next to the “Select search-directory” box. Navigate to:
C:\F28004x\Labs\Lab6\project and click Select Folder. Then click Finish to
import the project. All build options have been configured the same as the previous lab
exercise. The files used in this lab exercise are:

Adc_6.c Gpio.c
CodeStartBranch.asm Lab 5 6 7.cmd
Dac.c Main_6.c
Defaultlsr _6.c SineTable.c
device.c Watchdog-c
EPwm_6.c

Note: The Dac.c and SineTable.c files are used to generate a sine waveform in the
second part of this lab exercise.

Setup ADC Initialization and Enable Core/PIE Interrupts

2.

In Main_6.c add code to call the InitAdca(), InitDacb(), and InitEPwm()
functions. The InitEPwm() function is used to configure ePWMZ2 to trigger the ADC at
a 50 kHz rate. Details about the ePWM and control peripherals will be discussed in the
next module. The InitDacb() function will be used in the second part of this lab
exercise.
Edit Adc_6. c to configure SOCO in the ADC as follows:

e SOCO converts input ADCINAO

e SOCO has a 8 SYSCLK cycle acquisition window

e SOCO is triggered by the ePWM2 SOCA

e SOCO triggers ADCINT1 on end-of-conversion

e All SOCs run round-robin

Using the “PIE Interrupt Assignment Table” find the location for the ADC interrupt
“INT_ADCA1” and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

Modify the end of Adc_6. c to do the following:

e Add the Driverlib function to re-map the ADC interrupt signal to call the ISR func-
tion. (Hint: #define name in driverlib/inc/hw_ints_h and label name in
Defaultlsr_6.c)

e Add the Driverlib function to enable the appropriate PIEIER and core IER
Save all changes to the files.

Inspect Defaultlsr_6.c. This file contains the ADC interrupt service routine.

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6 - 27

Lab 6: Analog-to-Digital Converter

Build and Load

8.

Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

Click the “Debug” button (green bug). The CCS Debug perspective view should open,
the program will load automatically, and you should now be at the start of main(). If the
device has been power cycled since the last lab exercise, be sure to configure the boot
mode to EMU_BOOT_RAM using the Scripts menu.

Run the Code

10.

In Main_6.c place the cursor in the “main loop” section, right click on the mouse key
and select Run To Line.

Open a memory browser to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data” memory
page. Then <enter> to view the contents of the ADC result buffer.

Note:

Exercise care when connecting any jumper wires to the LaunchPad header pins
since the power to the USB connector is on!

Refer to the following diagram for the location of the pins that will need to be connected:

11.

12.

13.

14.

. . H mr‘é;l:{a— S EERR TR
w MG 4 = H
8 g . L = B3 Ef RR
® o TR g
JDI o e 8 -
a4 4 He B, 3E H \ k. i
C2RE _wwe LI lgi‘ﬂr l‘i;l E'E;: ”’5 ﬁ;‘_‘- EI %:! ’:w
R cl“ll‘iii"]‘ . BAR3 v (HEE Jlll Eéé ' 5} :Illlr,:.u r“l i='g ® Zl@eo
it LL & @52 S gt Ve
1] g : !g"gu HEF S
e =] Ié 3}.%—»; g Zama oY e g2 ﬂsﬁu
=, 5 ¥o5 Amacs R17 52 B
]_:11_E gE"ﬁ'“ Einaa:mzhasn 8 g e %Ehb‘q' %R g e
18 TSR LT TR N g
<o ettt el ittt o
@e..rm P GER fR TR 68 @

Using a jumper wire, connect the ADCINAO (pin #70) to “GND” (pin #20) on the
LaunchPad. Then run the code again, and halt it after a few seconds. Verify that the
ADC results buffer contains the expected value of ~0x0000.

Adjust the jumper wire to connect the ADCINAO (pin #70) to “+3.3V” (pin #11; GPIO-
59) on the LaunchPad. (Note: pin # GP10-59 has been set to “1” in Gpio.c). Then run
the code again, and halt it after a few seconds. Verify that the ADC results buffer
contains the expected value of ~OxOFFF.

Adjust the jumper wire to connect the ADCINAO (pin #70) to GPIO25 (pin #31) on the
LaunchPad. Then run the code again, and halt it after a few seconds. Examine the
contents of the ADC results buffer (the contents should be alternating ~0x0000 and
~0xOFFF values). Are the contents what you expected?

Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools > Graph - Single Time and set the following values:

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Lab 6: Analog-to-Digital Converter

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit us

Select OK to save the graph options.

15. Recall that the code toggled the GPIO25 pin alternately high and low. (Also, the ADC
ISR is toggling the LED5S on the LaunchPad as a visual indication that the ISR is running).
If you had an oscilloscope available to display GP1025, you would expect to see a
square-wave. Why does Code Composer Studio plot resemble a triangle wave? What is
the signal processing term for what is happening here?

16. Recall that the program toggled the GPIO25 pin at a 50 kHz rate. Therefore, a complete
cycle (toggle high, then toggle low) occurs at half this rate, or 25 kHz. We therefore
expect the period of the waveform to be 40 pus. Confirm this by measuring the period of
the triangle wave using the “measurement marker mode” graph feature. In the graph
window toolbar, left-click on the ruler icon with the red arrow .. Note when you hover
your mouse over the icon, it will show “Toggle Measurement Marker Mode”.
Move the mouse to the first measurement position and left-click. Again, left-click on the
Toggle Measurement Marker Mode icon. Move the mouse to the second
measurement position and left-click. The graph will automatically calculate the difference
between the two values taken over a complete waveform period. When done, clear the
measurement points by right-clicking on the graph and select Remove All
Measurement Marks (or Ctrl+Alt+M).

Using Real-time Emulation

Real-time emulation is a special emulation feature that offers two valuable capabilities:

A. Windows within Code Composer Studio can be updated at up to a 10 Hz rate while the
MCU is running. This not only allows graphs and watch windows to update, but also
allows the user to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law
parameters on-the-fly, for example.

B. It allows the user to halt the MCU and step through foreground tasks, while specified
interrupts continue to get serviced in the background. This is useful when debugging
portions of a real-time system (e.g., serial port receive code) while keeping critical
parts of your system operating (e.g., commutation and current loops in motor control).

We will only be utilizing capability “A” above during the workshop. Capability “B” is a
particularly advanced feature, and will not be covered in the workshop.

17. The memory and graph windows displaying AdcBuf should still be open. The jumper wire
between ADCINAO (pin #70) and GPI025 (pin #31) should still be connected. In real-
time mode, we will have our window continuously refresh at the default rate. To view the
refresh rate click:

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-29

Lab 6: Analog-to-Digital Converter

18.

19.

20.

21.
22.

23.
24,

Window = Preferences..

and in the section on the left select the “Code Composer Studio” category. Click the sign
(‘+' or *>’) to the left of “Code Composer Studio” and select “Debug”. In the section on the
right notice the default setting:

e “Continuous refresh interval (milliseconds)” = 500
Click Cancel to close the window.

Note: Decreasing the “Continuous refresh interval” causes all enabled continuous refresh
windows to refresh at a faster rate. This can be problematic when a large number of
windows are enabled, as bandwidth over the emulation link is limited. Updating too many
windows can cause the refresh frequency to bog down. In this case you can just
selectively enable continuous refresh for the individual windows of interest.

Next we need to enable the graph window for continuous refresh. Select the “Single
Time” graph. In the graph window toolbar, left-click on the yellow icon with the arrows
rotating in a circle over a pause sign & Note when you hover your mouse over the icon,
it will show “Enable Continuous Refresh”. This will allow the graph to continuously
refresh in real-time while the program is running.

Enable the Memory Browser for continuous refresh using the same procedure as the
previous step.

To enable and run real-time emulation mode, click the “Enable Silicon Real-time Mode”
toolbar button ¥. A window may open and if prompted select Yes to the “Do you want to
enable realtime mode?” question. This will force the debug enable mask bit (DBGM) in
status register ST1 to ‘0", which will allow the memory and register values to be passed to
the host processor for updating (i.e. debug events are enabled). Hereafter, Resume and
Suspend are used to run and halt real-time debugging. In the remaining lab exercises
we will run and halt the code in real-time emulation mode.

Run the code (real-time mode).

Carefully remove and replace the jumper wire from GPI1025 (pin #31). Are the values
updating in the Memory Browser and Single Time graph as expected?

Halt the code.

So far, we have seen data flowing from the MCU to the debugger in real-time. In this
step, we will flow data from the debugger to the MCU.

e Open and inspect Main_6.c. Notice that the global variable DEBUG_TOGGLE is
used to control the toggling of the GPIO25 pin. This is the pin being read with the
ADC.

e Highlight DEBUG_TOGGLE with the mouse, right click and select “Add Watch
Expression..” and then select OK. The global variable DEBUG_TOGGLE should
now be in the Expressions window with a value of “1".

e Enable the Expressions window for continuous refresh

¢ Run the code in real-time mode and change the value to “0”. Are the results shown
in the memory and graph window as expected? Change the value back to “1”. As
you can see, we are modifying data memory contents while the processor is running
in real-time (i.e., we are not halting the MCU nor interfering with its operation in any
way)! When done, halt the CPU.

TMS320F28004x Microcontroller Workshop - Analog Subsystem

Lab 6: Analog-to-Digital Converter

Setup DAC to Generate a Sine Waveform

Next, we will configure DACB to generate a fixed frequency sine wave. This signal will
appear on an analog output pin of the device (ADCINA1). Then using the jumper wire we will
connect the DACB output to the ADCA input (ADCINAO) and display the sine wave in a graph
window.

25. Notice the following code lines in the ADCAL ISR in Defaultlsr_6.c:

//--- Write to DAC-B to_create input to ADC-AO
if(SINE_ENABLE == 1)

{ DacOutput = DacOffset + ((QuadratureTable[iQuadratureTable++] ~ 0x8000) >>5);
glse

t DacOutput = DacOffset;

%f(iQuadratureTable:>(SINE_PTS-—l)) // Wrap the index

iQuadratureTable =0;
AC_setShadowValue(DACB_BASE, DacOutput);

O M

The variable DacOffset allows the user to adjust the DC output of DACB from the
Expressions window in CCS. The variable Sine_Enable is a switch which adds a fixed
frequency sine wave to the DAC offset. The sine wave is generated using a 25-point
look-up table contained in the SineTable.c file. We will plot the sine wave in a graph
window while manually adjusting the offset.

26. Open and inspect SineTable._c. (If needed, open the Project Explorer window in the
CCS Debug perspective view by clicking View > Project Explorer). The file
consists of an array of 25 signed integer points which represent four quadrants of
sinusoidal data. The 25 points are a complete cycle. In the source code we need to
sequentially access each of the 25 points in the array, converting each one from signed
16-hit to un-signed 12-bit format before writing it to the DACVALS register of DACB.

27. Add the following variables to the Expressions window:
e SINE_ENABLE
e DacOffset

28. Adjust the jumper wire to connect the ADCINAO (pin #70) to DACB (pin #30) on the
LaunchPad. Refer to the following diagram for the pins that need to be connected.

. . H %qﬁiiﬂﬂ-ljl-g 2=nszezons . opii WERd
B R g e Ay
sg—g."’ TeRENBEIRN R B3 BB
aé :&-nn o :
i) ¥ o
- g Gpgren 83 =
o SN W L
=l w b
[— _ ::f:‘ul”lll| Eg.—,g ¥ o8
Re3 ni'l HH g v lpmpl Junn ﬂéﬁ ia
1] o £ %8 ;% E] @ g iy
S gz s § &
. o ¥
: ks T}
igﬂaﬂﬂnﬁhﬁﬂ s
on: o
o lassesceset: gem: e
g ; nnnnnnnn 5

29. Run the code (real-time mode).

30. At this point, the graph should be displaying a DC signal near zero. Click on the
DacOffset variable in the Expressions window and change the value to 800. This
changes the DC output of the DAC which is applied to the ADC input. The level of the
graph display should be about 800 and this should be reflected in the value shown in the
memory buffer (note: 800 decimal = 0x320 hex).

TMS320F28004x Microcontroller Workshop - Analog Subsystem 6-31

Lab 6: Analog-to-Digital Converter

31. Enable the sine generator by changing the variable SINE_ENABLE in the Expressions
window to 1.

32. You should now see sinusoidal data in the graph window.
fue Single Tme 0 37| Bl F OF 3 v o - '--\'l\ﬁh’gq&‘;@:i’_wﬁ}:v'u; = ¥ = 0
2800

1800

aoo

Q +100 +200 +300 +400 +500 +600 +700 +800 +500
us

33. Try removing and re-connecting the jumper wire to show this is real data is running in
real-time emulation mode. Also, you can try changing the DC offset variable to move the
input waveform to a different average value (the maximum distortion free offset is about
2000).

34. Halt the code.

Terminate Debug Session and Close Project

35. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

36. Next, close the project by right-clicking on Lab6 in the Project Explorer window and
select Close Project.

End of Exercise

6-32 TMS320F28004x Microcontroller Workshop - Analog Subsystem

Control Peripherals

Introduction

The C2000 high-performance control peripherals are an integral component for all digital control
systems. This module starts with a review of pulse width modulation (PWM) and then explains
how the ePWM is configured for generating PWM waveforms. Also, the use of the eCAP and the
eQEP will be discussed. Additionally, an overview of the Sigma Delta Filter Module will be
discussed.

Module Objectives

Module Objectives

¢ Pulse Width Modulation (PWM) review

¢ Generate a PWM waveform with the Pulse
Width Modulator Module (ePWM)

¢ Use the Capture Module (eCAP) to measure
the width of a waveform

¢ Explain the function of Quadrature Encoder
Pulse Module (eQEP)

¢ Describe the purpose of the Sigma Delta
Filter Module (SDFM)

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-1

PWM Review

Chapter Topics

CONEIOl PeIIPNEIAIS ..ot e e e e et e e e e e e e e annbeeeaaaeeas 7-1
PWIM REVIBW ...ttt ettt ettt ettt s et e e st e e s st e e s st e e e s bt e e e nb et e e e nbne e e e annnas 7-3
BPWWIML ettt h e h bt b et eh e e bt e bt e e eh bt e e bt e e aae e e eabe e e abeeenabeeaa 7-5

ePWM Time-Base SUD-MOUUIEc.ooiiiiiiieieecee e 7-7
ePWM Compare SUD-MOAUIEccceiiiiiiiiiiiee e e e rer e e e 7-10
ePWM Action Qualifier SUbB-Module ..., 7-13
Asymmetric and Symmetric Waveform Generation using the ePWMcccccccciiiinnne 7-19
PWM Computation EXAMPIEcooiiiiiiiiiie ettt e ee e e e e e e annes 7-20
ePWM Dead-Band SUD-MOTUIE...........cooiiiiiiiie et 7-21
€PWM Chopper SUD-MOAUIEooiii e 7-23
ePWM Trip-Zone and Digital Compare Sub-Modules ..., 7-25
ePWM Event-Trigger SUD-MOAUIEc.uiiiiiiiee e 7-31
High Resolution PWM (HRPWM)........uuuiiiieiiiiiiiieie ettt e e e e s s ssbatee e e e e e s s snnsnneeeaeeennannns 7-33
(<107 T TR P PP OPRPT 7-35
(210] TR TSP PPRP 7-39
Sigma Delta Filter Module (SDFM) ...ttt ee e e e e 7-42
Lab 7: CoNtrol PEHPNEIAIScoii it e e e 7-44

TMS320F28004x Microcontroller Workshop - Control Peripherals

PWM Review

PWM Review

What is Pulse Width Modulation?

¢ PWM is a scheme to represent a
signal as a sequence of pulses
ofixed carrier frequency
o fixed pulse amplitude

¢ pulse width proportional to
instantaneous signal amplitude

¢PWM energy =~ original signal energy

IIIIIIII/Ht

Original Signal PWM representation

Pulse width modulation (PWM) is a method for representing an analog signal with a digital
approximation. The PWM signal consists of a sequence of variable width, constant amplitude
pulses which contain the same total energy as the original analog signal. This property is
valuable in digital motor control as sinusoidal current (energy) can be delivered to the motor using
PWM signals applied to the power converter. Although energy is input to the motor in discrete
packets, the mechanical inertia of the rotor acts as a smoothing filter. Dynamic motor motion is
therefore similar to having applied the sinusoidal currents directly.

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-3

PWM Review

Why use PWM with Power
Switching Devices?
¢ Desired output currents or voltages are known

¢ Power switching devices are transistors
+ Difficult to control in proportional region
¢ Easy to control in saturated region

¢ PWMis adigital signal = easy for MCU to output

DC Supply DC Supply
) LUt
' : PWM
D_esmle? PWM approx.
signal to of desired
/\/\/ system H_HM signal
Unknown Gate Signal Gate Signal Known with PWM

Power switching devices can be difficult to control when operating in the proportional region, but
are easy to control in the saturation and cutoff regions. Since PWM is a digital signal by nature
and easy for an MCU to generate, it is ideal for use with power switching devices. Essentially,
PWM performs a DAC function, where the duty cycle is equivalent to the DAC analog amplitude
value.

7-4 TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

ePWM

ePWM Module Signals and Connections

-
ePWMx-1
A
EPWMxSYNCI | EPWMXTZINT
INPUT - PIE
X-Bar v EPWMXINT CLA
ooep EQEPERR — 124 EPWMXA
GPIO
cyserm, Crockrai -1z5 | €PWMX EPuE | tox
cpyy EMUSTOP - 126
EPWMxSOCA
ePWML______ EPWMxSOCB | ADC
X-Bar EPWMXSYNCO
v
ePWMx+1
_\—/

Note: the order in which the ePWM modules are connected is determined by the device synchronization scheme

The ePWM modules are highly programmable, extremely flexible, and easy to use, while being

capable of generating complex pulse width waveforms with minimal CPU overhead or

intervention. Each ePWM module is identical with two PWM outputs, EPWMxA and EPWMXxB,
and multiple modules can synchronized to operate together as required by the system application
design. The generated PWM waveforms are available as outputs on the GPIO pins. Additionally,
the EPWM module can generate ADC start of conversion signals and generate interrupts to the
PIE block. External trip zone signals can trip the output, as well as generate interrupts. The
outputs of the comparators are used as inputs to the ePWM X-Bar. Next, the internal details of
the ePWM module will be covered.

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

ePWM Synchronization Scheme

EXTSYNCINL EXTSYNCIN2
E"’@ EPWM1

! SYNCOUT
fffff -

A EPWM4 EXT
lpwms\ ’ ! ‘) SYNCOUT| [SYNCOUT
e ePwMa| | . o

!) SYNCOUT

[ePwis| [ePwmr] |

= e *

SYNCOUT
[ePwiv] [ePwis] lecapt] | :
- 1
Y
EPWNMASYNCIN -
ECAPLSYNCIN

:
ECAPBSYNCIN

Various ePWM modules (and eCAP units) can be grouped together for synchronization.

ePWM Block Diagram

Time-Base Signals—» Event | EPWMxXSOCA |

>

Counter Compare Signals —»{ Trigger EPWMxSOCB ADC

EPWMXSYNCI Digital Compare Signals—»| (ET) d
v EPWMAXINT
CTR=PRD _ PIE
Digital *| Action [EPWMXTZINT|
Compare | Time-Base | CTR=0 » Qualifier CTR = PRD —»
Signals (TB) CTR_Dir (AQ) CTR=0—p
Ti*—»| EPWMxA —p] Dea: L c:'I:WM Lyl Trip [EPWMxA
Ban opper | | Zone |epwmxe | GPIO
EPWMxSYNCO X
v * q
T2 EPWMBI—> (pg) [* (PC) [(12)
CTR = CMPA ¥
Counter |CTR = CMPB_ EQEPx |-QEPxERR (T129) TZ1t077Z3 | INPUT
> EMUSTOP (TZ6) < Y
Compare CTR = CMPC* CcP X-BAR
(cc) FH——» Sl CLOCKFAIL (TZ5)
CTR = CMPD*
ICTR 3¢ ¥
PIEERR ..
* Notes: Digital [
o T1/ T2 sources: TZ, DC, EPWMXxSYNCI 28x RAM/ | ECCDBLERR _| Compare P EPWM
o CMPC / CMPD: sources for ET Flash ECC > (DC) - X-BAR

The ePWM module consists of eight submodules: time-base, counter-compare, action-qualifier,
dead-band generator, PWM chopper, trip-zone, digital-compare, and event-trigger.

7-6 TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

ePWM Time-Base Sub-Module
ePWM Time-Base Sub-Module

Time-Base Signals—» Event [EPWMXSOCA
Counter Compare Signals —»{ Trigger EPWMxSOCB ADC
EPWMXSYNCI Digital Compare Signals—»| (ET) i
Y EPWMXINT
CTR=PRD PIE
Digital 7| Action ,—’EPWMxTZWT
ime- CTR=0 o
C;)imnpaalge Time-Base »| Qualifier CTR = PRD —»!
€ (T8) crR_pir | (AQ) CTR=0 —»
T1*—» EPWMXA|—> Deag > C:WM L5 Trip [EPWMXA
Ban opper Zone |gpwmxe | GPIO
EPWMXSYNCO y T2 EPWMXB (DB) | (PC) [(12) <,
CTR = CMPA | v
" EQEPXERR (124 -
Counter |CTR=CMPB_ EQEPx QEPXERR (124) ‘TZ1toT7z3 | INPUT
i EMUSTOP (TZ6) < X-BAR
compare [1o~ yypc.
(cc) F—» SVSCTRL CLOCKFAIL (TZ5)
CTR = CMPD*
ICTR ¢ ¥
PIEERR L
»| Digital |
* Notes: g
o T1 /T2 sources: TZ, DG, EPWMxSYNCI 28x RAM/ | ECCDBLERR _ Compare | EPWM
o CMPC / CMPD: sources for ET Flash ECC » (bg ¢ X-BAR

The time-base submodule consists of a dedicated 16-bit counter, along with built-in
synchronization logic to allow multiple ePWM modules to work together as a single system. A
clock pre-scaler divides the EPWM clock to the counter and a period register is used to control
the frequency and period of the generated waveform. The period register has a shadow register,
which acts like a buffer to allow the register updates to be synchronized with the counter, thus
avoiding corruption or spurious operation from the register being modified asynchronously by the
software.

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-7

ePWM

Time-Base Count Modes
TBCTR

TBPRD

Asymmetrical
Waveform

TBCTR

TBPRD

Asymmetrical
Waveform

TBCTR

TBPRD

Symmetrical
Waveform

Count Up and Down Mode

The time-base counter operates in three modes: up-count, down-count, and up-down-count. In
up-count mode the time-base counter starts counting from zero and increments until it reaches
the period register value, then the time-base counter resets to zero and the count sequence starts
again. Likewise, in down-count mode the time-base counter starts counting from the period
register value and decrements until it reaches zero, then the time-base counter is loaded with the
period value and the count sequence starts again. In up-down-count mode the time-base counter
starts counting from zero and increments until it reaches the period register value, then the time-
base counter decrements until it reaches zero and the count sequence repeats. The up-count
and down-count modes are used to generate asymmetrical waveforms, and the up-down-count
mode is used to generate symmetrical waveforms.

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

ePWM Phase Synchronization Example

Ext. Syncin

) i EPWM_[enable|disable]PhaseShiftLoad (base);
. EPWM_setPhaseShift(base, phaseCount);

En - Synchn

T

" Phase :

CTR=zero
CTR=CMPB *:8\0—
X—0
SyncOut

EPWM1A
—

EPWM1B
—

To eCAP1

Syncin

Phase En Syncin

[1207]—0—0

Q
CTR=zero —0

EPWM2A

EPWM2B
—

CTR=CMPB *—0 O
X—0
SyncOut

Phase En Syncin

X=—=0

SyncOut

$=240°
/"‘ ~\\\
CTR:zero-[.'—o ; |
CTR=CMPB *==0

-

[JRVANpR S /S PR I S ——— £

— $=240° —»

* Extended selection for
CMPC and CMPD available

\‘“'EPWM_setSyn cOutPulseMode(base, mode);

Synchronization allows multiple ePWM modules to work together as a single system. The
synchronization is based on a synch-in signal, time-base counter equals zero, or time-base

counter equals compare B register, which can also be extended to compare C and compare D.
Additionally, the waveform can be phase-shifted.

Time-Base Functional Diagram

EPWM_setClockPrescaler(base, prescaler, highSpeedPrescaler);

EPWM_setTimeBasePeriod(base, periodCount);

EPWM_setPeriodLoadMode(base, loadMode);
Shadow
Period
Register
EPWMCLK Clock TBCLK 16-Bit TB Signals
e —
Prescaler Counter

EPWMSYNCI —T I—> EPWMSYNCO

EPWM_setTimeBaseCountMode(base, counterMode);

TBCLK = EPWMCLK / (HSPCLKDIV * CLKDIV)
Clock Prescaler = HSPCLKDIV * CLKDIV

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

Time-Base Driverlib Functions
¢ Set Time-Base clock (HSPCLKDIV and CLKDIV)
EPWM_setClockPrescaler(base, prescaler, highSpeedPrescaler);
¢ Set Time-Base count mode
EPWM_setTimeBaseCounterMode(base, counterMode);
¢ Set Time-Base period value and period load mode
EPWM_setTimeBasePeriod(base, periodCount);
EPWM_setPeriodLoadMode(base, loadMode);
¢ Set EPWMSYNC out pulse event
EPWM_setSyncOutPulseMode(base, mode);
¢ base is the ePWM base address: EPWMx_BASE (x =1 to 8)
prescaler value is: EPWM_CLOCK_DIVIDER_x (x = 2”n where nis 0 to 7)
¢ highSpeedPrescaler value is: EPWM_HSCLOCK_DIVIDER_x (x =1 or an
even value between 2 and 14 inclusive)
¢ counterMode value is: EPWM_COUNTER_MODE_x (x = UP, DOWN,
UP_DOWN, or STOP_FREEZE)
¢ periodCount can have a maximum value of OXFFFF
e loadMode value is: EPWM_PERIOD_x (x = SHADOW_LOAD or DIRECT_LOAD)
¢ mode value is: EPWM_SYNC_OUT_PULSE_ON_x (x = SOFTWARE,
COUNTER_ZERO, COUNTER_COMPARE_y (y = B, C, or D), or
EPWM_SYNC_OUT_PULSE_DISABLED)

L 2

ePWM Compare Sub-Module
ePWM Counter Compare Sub-Module

Time-Base Signals—»| Evyent [EPWMxSOCA
Counter Compare Signals —»| Trigger EPWMxSOCB | ADC
EPWMXSYNCI Digital Compare Signals—»| (ET) d
v EPWMXxINT
CTR=PRD _ [EPWMXINT | PIE
Digital 7| Action ,—’EPWMxTZWT
ime- CTR=0 e
C;)imnp:lge Time-Base »| Qualifier CTR = PRD —»!
8 (TB) cR.Dir | (AQ) CTR=0—»
T1*—»| EPWMXA —» Deag N c:WM || Trip [EPWMxA |
Ban opper Zone | gpwmxe | GPIO
EPWMXSYNCO T2 EPWMXB (DB) | (PC) [(12) <,
CTR = CMPA_| v
" EQEPXERR (124 -
Counter [CTR =cmPB_ EQEPx - OEPXERR (T24) TZ1to 723 | INPUT
Compare : CP EMUSTOP (TZ6) <« X-BAR
CTR = CMPC
(cc) FH—— G CLOCKFAIL (TZ5)
CTR = CMPD*
CTR 3¢ ¥
PIEERR ..
Digital
* Notes: gital ¢
o T1 /T2 sources: TZ, DG, EPWMxSYNCI 28x RAM/ | ECCDBLERR _| Compare | EPWM
e CMPC / CMPD: sources for ET Flash ECC g (DC) - X-BAR

The counter-compare submodule continuously compares the time-base count value to four
counter compare registers (CMPA, CMPB, CMPC, and CMPD) and generates four independent
compare events (i.e. time-base counter equals a compare register value) which are fed to the

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

action-qualifier and event-trigger submodules. The counter compare registers are shadowed to
prevent corruption or glitches during the active PWM cycle. Typically CMPA and CMPB are used
to control the duty cycle of the generated PWM waveform, and all four compare registers can be
used to start an ADC conversion or generate an ePWM interrupt. For the up-count and down-
count modes, a counter match occurs only once per cycle, however for the up-down-count mode
a counter match occurs twice per cycle since there is a match on the up count and down count.

TBCTR

TBPRD

CMPA
CMPB

TBCTR

TBPRD

CMPA
CMPB

TBCTR

TBPRD

CMPA
CMPB

Counter Compare Event Waveforms

| e = compare events are fed to the Action Qualifier Sub-Module |

""" Asymmetrical
............................ Waveform

Asymmetrical
Waveform

Count Down Mode

Symmetrical
Waveform

Count Up and Down Mode

CMPC and CMPD available for use as event triggers

The above ePWM Compare Event Waveform diagram shows the compare matches which are fed
into the action qualifier. Notice that with the count up and count down mode, there are matches
on the up-count and down-count.

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

Counter Compare Functional Diagram

EPWM_setCounterCompareValue(base, compModule, compCount);

Function applies to Compare A, B, C, and D

‘ Shadow M [Shadow M
shadownode deabies|Compare AH - [Compare B

TB Signals Signals to
4~| Counter Compare |W

|Compare C |Compare D
[Shadow [Shadow

Functions apply to Shadow A, B, C, and D

EPWM_setCounterCompareShadowLoadMode(base, compModule, loadMode);
Shadow mode — the compare register is double buffered

EPWM_disableCounterCompareShadowLoadMode(base, compModule);
Immediate mode - the shadow register is not used

Counter Compare Driverlib Functions

¢ Set Counter Compare value
EPWM_setCounterCompareValue(base, compModule,
compCount);
¢ Enable and set Counter Compare shadow load mode
EPWM_setCounterCompareShadowlLoadMode(base,
compModule, loadMode);
¢ Disable Counter Compare shadow load mode
EPWM_disableCounterCompareShadowLoadMode(base,
compModule);

base is the ePWM base address: EPWMx_BASE (x =1 to 8)

compModule value is: EPWM_COUNTER_COMPARE_x (x=A, B, C, or D)
compCount can have a maximum value of OXFFFF)

loadMode value is:

+ EPWM_COMP_LOAD_ON_CNTR_x (x = ZERO, PERIOD, or
ZERO_PERIOD)

¢ EPWM_COMP_LOAD_FREEZE

¢ EPWM_COMP_LOAD_ON_SYNC_CNTR_x (x = ZERO, PERIOD, or
ZERO_PERIOD)

¢ EPWM_COMP_LOAD_ON_SYNC_ONLY

* 6 o o

7-12 TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

ePWM Action Qualifier Sub-Module
ePWM Action Qualifier Sub-Module

Time-Base Signals—» Event | EPWMxSOCA |

>

Counter Compare Signals —»| Trigger | epywixsocs ADC
EPWMXxSYNCI Digital Compare Signals—» (ET) "

v EPWMXINT
CTR = PRD PIE
Digital ”| Action EPWMXTZINT

Compare | Time-Base | _CTR=0 | qlifier

e CTR = PRD —|
gnals (T8) CTR_Dir (AQ) CTR=0—b
T1*—» EPWMXAL—> geag N c:WM || Trip [EPWMxA |
an opper Zone GPIO
EPWMXSYNCO 4 T2l WML (0g) 3 (pC) [(1) EPWMXB
CTR = CMPA v
Counter |CTR=cuPs EQEPx JEOEPXERR (T24) 710773 | INPUT
Compare TR = CMPC* CPU EMUSTOP (TZ6) < X-BAR
(cc) > Yo AL CLOCKFAIL (125)
CTR = CMPD*
CTR 3¢ 5
 Notos PIEERR | Digital |
o T1 /T2 sources: TZ, DG, EPWMxSYNCI 28x RAM/ | ECCDBLERR _ Compare | EPWM
e CMPC / CMPD: sources for ET Flash ECC i (DC) - X-BAR

The action-qualifier submodule is the key element in the ePWM module which is responsible for
constructing and generating the switched PWM waveforms. It utilizes match events from the
time-base and counter-compare submodules for performing actions on the EPWMxA and
EPWMXxB output pins. These first three submodules are the main blocks which are used for
generating a basic PWM waveform.

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-13

ePWM

ePWM Action Qualifier Actions
for EPWMA and EPWMB
s/w | Time-Base Counter equals: Trigger Events: gPWM
utput
Force [700 [cmpa | cmpB [TBPRD| T2 T2 Actions
S)\(N)Z< CXA CXB ;P('I;él. 1;(2 Do Nothing
SlN f C¢A CJ'B E -l:Ll -I:LZ Clear Low
SW Z CA CB P T1 T2 ;
A R R R R R ik
SW Z CA CB P T1 T2 Toqal
T T T T T T T oggle
Tx Event Sources = DCAEVT1, DCAEVT?2, DCBEVT1, DCBEVT2, TZ1, TZ2, TZ3, EPWMxSYNCIN

The Action Qualifier actions are setting the pin high, clearing the pin low, toggling the pin, or
doing nothing to the pin, based independently on count-up and count-down time-base match
event. The match events are when the time-base counter equals the period register value, the
time-base counter is zero, the time-base counter equals CMPA, the time-base counter equals
CMPB, or a Trigger event (T1 and T2) based on a comparator, trip, or sync signal. Note that zero
and period actions are fixed in time, whereas CMPA and CMPB actions are movable in time by
programming their respective registers. Actions are configured independently for each output
using shadowed registers, and any or all events can be configured to generate actions on either
output. Also, the output pins can be forced to any action using software.

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

Count Up Asymmetric Waveform

with Independent Modulation on EPWMA / B
TBCTR

2] 0
(o V]) A

CMPB |- e mmmbemmmeea

« | K | é

zl[P]| [cB CA zl[P] [c CA P

M X | X d M X| | X J X

zl[P] [cB CA zl[P]| [cB CA zl[p

I X |4 X T x| [X Tl x
EPWMB I l

[P

EPWMA

The next few figures show how the setting of the action qualifier with the compare matches are

used to modulate the output pins. Notice that the output pins for EPWMA and EPWMB are

completely independent. In the example above, the EPWMA output is being set high on the zero
match and cleared low on the compare A match. The EPWMB output is being set high on the

zero match and cleared low on the compare B match.

TBCTR

TBPRD
CMPB

CMPA

Count Up Asymmetric Waveform

with Independent Modulation on EPWMA

B

EPWMBl

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

In the example above, the EPWMA output is being set high on the compare A match and being
cleared low on the compare B match, while the EPWMB output is being toggled on the zero
match.

Count Up-Down Symmetric Waveform

with Independent Modulation on EPWMA / B

TBCTR

TBPRD
CMPB

CMPA

EPWMB |

In the example above, there are different output actions on the up-count and down-count using a
single compare register. The EPWMA and EPWMB outputs are being set high on the compare A
and B up-count matches and cleared low on the compare A and B down-count matches.

Count Up-Down Symmetric Waveform

with Independent Modulation on EPWMA

TBCTR

TBPRD
CMPB

CMPA

7-16 TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

And finally in the example above, again using different output actions on the up-count and down-
count, the EPWMA output is being set high on the compare A up-count match and being cleared
low on the compare B down-count match. The EPWMB output is being cleared low on the zero
match and being set high on the period match.

Action Qualifier Driverlib Functions

¢ Configure Action Qualifier output on ePWMA or ePWMB
EPWM_setActionQualifierAction(base, epiwmOutput, output,
event);
¢ Set Action Qualifier trigger source for event T1 or T2
EPWM_setActionQualifierT1TriggerSource(base, trigger);
EPWM_setActionQualifierT2TriggerSource(base, trigger);

¢ base is the ePWM base address: EPWMx_BASE (x =1to 8)
epwmOutput value is: EPWM_AQ_OUTPUT_x (x =Aor B)

¢ output value is: EPWM_AQ_OUTPUT_x (x = NO_CHANGE, LOW, HIGH, or
TOGGLE)

*

¢ eventvalue is:
¢ EPWM_AQ_OUTPUT_ON_TIMEBASE_ x (x = ZERO, PERIOD,
UP_CMPA, DOWN_CMPA, UP_CMPB, or DOWN_CMPB)
¢ EPWM_AQ OUTPUT _ON_T1 x (x=COUNT_UP or
COUNT_DOWN)
¢ EPWM_AQ_OUTPUT_ON_T2 x (x = COUNT_UP or
COUNT_DOWN)
¢ ftrigger value is: EPWM_AQ_TRIGGER_EVENT _TRIG _x (x=DCA_1, DCA_2,
DCB_1,DCB_2,TZ 1,TZ 2,TZ_3, or EPWM_SYNCIN)

Action Qualifier Driverlib Functions

¢ Enable and set Action Qualifier shadow load mode
EPWM_setActionQualifierShadowLoadMode(base, agModule,
loadMode);

¢ Disable Action Qualifier shadow load mode
EPWM_disableActionQualifierShadowLoadMode(base,
agModule);

¢ base is the ePWM base address: EPWMx_BASE (x =1 to 8)
¢ agModule value is: EPWM_ACTION_QUALIFIER_x (x =Aor B)
¢ loadMode value is:

¢ EPWM_AQ LOAD_ON_CNTR_x (x = ZERO, PERIOD, or
ZERO_PERIOD)

¢ EPWM_AQ LOAD_FREEZE

¢ EPWM_AQ LOAD_ON_SYNC_CNTR x (x = ZERO, PERIOD, or
ZERO_PERIOD)

¢ EPWM_AQ LOAD_ON_SYNC ONLY

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-17

ePWM

Action Qualifier Driverlib Functions
¢ Trigger continuous software forced output on ePWM (A or B)
EPWM_setActionQualifierContSWForceAction(base,
epwmOutput, output);
¢ Set continuous software force shadow reload mode
EPWM_setActionQualifierContSWForceShadowMode(base,
mode);
¢ Set one time software forced action output and force action
EPWM_setActionQualifierSWAction(base, epwmOutput,
output*);
EPWM_forceActionQualifierSWAction(base, epwmOutput);
¢ base is the ePWM base address: EPWMx_BASE (x =1 to 8)
¢ epwmOutput value is: EPWM_AQ_OUTPUT_x (x =Aor B)

¢ outputvalue is: EPWM_AQ_x (x = SW_DISABLED, OUTPUT_LOW, or
OUTPUT_HIGH)

¢ mode value is:

¢ EPWM_AQ _SW_SH_LOAD_ON_x (x = CNTR_ZERO, CNTR_PERIOD,
or CNTR_ZERO_PERIOD)

¢ EPWM_AQ_SW_IMMEDIATE_LOAD

& output* value is: EPWM_AQ_OUTPUT _x (x = NO_CHANGE, LOW, HIGH, or
TOGGLE)

7-18 TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

Asymmetric and Symmetric Waveform Generation
using the ePWM

PWM switching frequency:

The PWM carrier frequency is determined by the value contained in the time-base period register,
and the frequency of the clocking signal. The value needed in the period register is:

. . . switching period
Asymmetric PWM: period register = - - -1
timer period

switching period

Symmetric PWM: period register = —— .
2(timer period)

Notice that in the symmetric case, the period value is half that of the asymmetric case. This is
because for up/down counting, the actual timer period is twice that specified in the period register
(i.e. the timer counts up to the period register value, and then counts back down).

PWM resolution:

The PWM compare function resolution can be computed once the period register value is
determined. The largest power of 2 is determined that is less than (or close to) the period value.
As an example, if asymmetric was 1000, and symmetric was 500, then:

Asymmetric PWM: approx. 10 bit resolution since 2'° = 1024 ~ 1000

Symmetric PWM: approx. 9 bit resolution since 2° =512 ~ 500

Note that in the symmetric case, you could actually update the compare value for both the rising
and falling PWM edges. This would effectively give you 2*500=1000 ‘Period’ values, and hence
the same resolution as the asymmetric case.

PWM duty cycle:

Duty cycle calculations are simple provided one remembers that the PWM signal is initially
inactive during any particular timer period, and becomes active after the (first) compare match
occurs. The timer compare register should be loaded with the value as follows:

Asymmetric PWM: TXCMPR = (100% - duty cycle) * TXxPR

Symmetric PWM: TXCMPR = (100% - duty cycle) * TXPR

Note that for symmetric PWM, the desired duty cycle is only achieved if the compare registers
contain the computed value for both the up-count compare and down-count compare portions of
the time-base period.

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-19

ePWM

PWM Computation Example

Symmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 100 kHz, 25% duty
symmetric PWM from a 100 MHz time base clock

foy = 100 kHz
(Tpwm = 10 ps)

Compare

Counter

; " frpek = 100 MHz
PWM Pin I | (TracLk = 10 ns)

TBPRD = 1 fracik _ 1 100 MHz
fowm 2 100 kHz

CMPA = (100% - duty cycle)*TBPRD = 0.75*500 = 375

=500

Asymmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 100 kHz, 25% duty
asymmetric PWM from a 100 MHz time base clock

foun = 100 kHz
(Tpwm =10 ps)

Period
Compare

Counter

L faeiq = 100 MHzZ |
PWM Pin (Trgek = 10 ns)

fTBCLK 100 MHz
=tk g - 2UMRZ) ggg
TBPRD == 100 kHz

CMPA = (100% - duty cycle)*(TBPRD+1) - 1 = 0.75%(999+1) - 1 = 749

7-20 TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

ePWM Dead-Band Sub-Module

Counter Compare Signals —»{ Trigger EPWMxSOCB ADC

Time-Base Signals—» Event | EPWMxSOCA |

ePWM Dead-Band Sub-Module

>

EPWMXxSYNCI Digital Compare Signals—» (ET) "
v EPWMXINT
CTR=PRD PIE
Digital ”| Action EPWMxszT'
C;)_mpalre Time-Base | CTR=0 | qyalifier CTR = PRD —»!
ignals (T8) cR.Dir | (AQ) CTR=0—b
T1*—»| EPWMxA —» Dea: L, c:WM || Trip [EPWMxA |
Ban opper Zone |epwimxB | GPIO
EPWMxXSYNCO xB |
A T2*—p EPWMXxB |—» (DB) — (PC) > (12) »
CTR = CMPA_ v
Counter |CTR=CMPB_| EEQEPX EQEPXERR (T24) TZ1toTZ3 | INPUT
> EMUSTOP (TZ6) < L
Compare CTR = CMPC* CPU X-BAR
(cc) > SVSCTRL CLOCKFAIL (TZ5)
CTR = CMPD*
ICTR3 4
PIEERR .
* Notes: » Digital |
o T1 /T2 sources: TZ, DG, EPWMxSYNCI 28x RAM/ | ECCDBLERR _ Compare | EPWM
e CMPC / CMPD: sources for ET Flash ECC i (DC) - X-BAR

The dead-band sub-module provides a means to delay the switching of a gate signal, thereby

allowing time for gates to turn off and preventing a short circuit. This sub-module supports
independently programmable rising-edge and falling-edge delays with various options for

generating the appropriate signal outputs on EPWMxA and EPWMxB.

Shadow

EPWMxA —| Dead |+

gate signals are
complementary PWM

EPWMxA

EPWMxB —| Band |

——— EPWMxB

Motivation for Dead-Band

supply rail

U{

Original EPWM

to power
switching
device

¢ Transistor gates turn on faster than they shut off
¢ Short circuit if both gates are on at the same time!

RED—» i«
|:> Rising Edge Delay
— «FED

Falling Edge Delay

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

To explain further, power-switching devices turn on faster than they shut off. This issue would

momentarily provide a path from supply rail to ground, giving us a short circuit. The dead-band
sub-module alleviates this issue.

Dead-band control provides a convenient means of combating current shoot-through problems in
a power converter. Shoot-through occurs when both the upper and lower gates in the same
phase of a power converter are open simultaneously. This condition shorts the power supply and
results in a large current draw. Shoot-through problems occur because transistors open faster
than they close, and because high-side and low-side power converter gates are typically switched
in a complementary fashion. Although the duration of the shoot-through current path is finite
during PWM cycling, (i.e. the closing gate will eventually shut), even brief periods of a short circuit
condition can produce excessive heating and over stress in the power converter and power
supply.

Dead-Band Block Diagram
PWMxA
T Rising
‘o ! Edge
! Lo S41 Dl o | P
_rko-i—» In Out o ! Lo S1t :
P s L 0 52! REp | ot— S6 | PWMxA
' | counter’ [: 1 1 H
r H 11 H [e—i—O
Pl : 1
) o : ;
DEDB_! :
MODE | o—n . . - :
PS8 9 : ’ : ! ot
R S ; o ; ; i | ¢ S7:PWMxB
< S3ireD i1 g1 —o |
oo 1o !
Pl : : |
: ; 10 i
I R e POLSEL | OuT_MODE OUTSWA
-0I
IN_MODE counter)
HALFCYCLE
PWMxB . . _ _ _
See the F28004x Driver Library User’s Guide for available functions

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the opening time of the transistor
gate must be increased so that it (slightly) exceeds the closing time. One way to accomplish this
is by adding a cluster of passive components such as resistors and diodes in series with the
transistor gate, as shown in the next figure.

by-pass diode

PWM

signal
g R

Shoot-through control via power circuit modification

The resistor acts to limit the current rise rate towards the gate during transistor opening, thus

increasing the opening time. When closing the transistor however, current flows unimpeded from

the gate via the by-pass diode and closing time is therefore not affected. While this passive

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

approach offers an inexpensive solution that is independent of the control microprocessor, it is
imprecise, the component parameters must be individually tailored to the power converter, and it
cannot adapt to changing system conditions.

The second approach to shoot-through control separates transitions on complementary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers
more precise control of gate timing requirements. In addition, the dead time is typically specified
with a single program variable that is easily changed for different power converters or adapted
on-line.

ePWM Chopper Sub-Module

Time-Base Signals—» Event | EPWMxSOCA |
Counter Compare Signals —»| Trigger EPWMxSOCB ADC
EPWMXSYNCI Digital Compare Signals—»| (ET) d
v EPWMXxINT
CTR = PRD
- ol o PIE
Digital) Action EPWMXTZINT >
Compare | Time-Base | CTR=0 | qualifier CTR = PRD —»
Signals (T8) cR.Dir | (AQ) CTR=0—b
Ti*—»| EPWMxA —» Dea: N C::WM || Trip [EPWMxA |
Ban opper Zone GPIO
EPWMXSYNCO 4 | ePwme > (og) [(PQ) [(12 EPWMXB
CTR = CMPA +
Counter |CTR=cuPB_ EQEPx |FOEPHERR (T29) 710723 | INPUT
Compare TR~ CMPC: CPU EMUSTOP (TZ6) - X-BAR
(ce) — SYSCTRL CLOCKFAIL (TZ5)
CTR = CMPD*
LI 4
* Notes: PIEERR » Digital |g
e T1 /T2 sources: TZ, DC, EPWMXxSYNCI 28x RAM/ | ECCDBLERR _| Compare P EPWM
o CMPC / CMPD: sources for ET Flash ECC g (DC) - X-BAR

The PWM chopper submodule is used with pulse transformer-based gate drives to control the
power switching devices. This submodule modulates a high-frequency carrier signal with the
PWM waveform that is generated by the action-qualifier and dead-band submodules.
Programmable options are available to support the magnetic properties and characteristics of the
transformer and associated circuitry.

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-23

ePWM

Purpose of the PWM Chopper

¢ Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules

¢ Used with pulse transformer-based
gate drivers to control power
switching elements

Shown in the figure below, a high-frequency carrier signal is ANDed with the ePWM outputs.
Also, this circuit provides an option to include a larger, one-shot pulse width before the sustaining
pulses.

Chopper Waveform

EPWMXxA |
EPWMxB j §

CHPFREQ |

EPWMXA |

i ! Programmable | i : o
OSHT | Pulse Width | i With One-
! (OSHTWTH) . ! Shot Pulse

| P ' P I on EPWMxA
i Sustaining and/or;
EPWMXA | Puises EPWMxB

See the F28004x Driver Library User’s Guide for available functions |

7-24 TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

ePWM Trip-Zone and Digital Compare Sub-Modules

Time-Base Signals—» Event | EPWMxSOCA |
Counter Compare Signals —»{ Trigger EPWMxSOCB ADC
EPWMXSYNCI Digital Compare Signals—»| (ET) i
EPWMXxINT
CTR =PRD
- > . PIE
Digital Action ,—’EPWMXTZINT
Compare | Time-Base | CTR=0 »| Qualifier CTR = PRD —
Signals (T8) cR.Dir | (AQ) CTR =0 —»]
T1*—»| EPWMXA —» geag N c:WM || Trip |EPWMxA |
an opper Zone |epwmxs | GPIO
EPWMXxSYNCO -
A T2*—» EPWMXxB (DB) > (PC) —» (TZ)
CTR = CMPA | v
Counter |CTR=CcuPB_ EQEPx JEOEPXERR (T24) 77110773 | INPUT
Compare TRe CMPC: CPU EMUSTOP (TZ6) « X-BAR
(co > SYSCTRL CLOCKFAIL (TZ5)
CTR = CMPD*
ICTR ¢ ¥
— PIEERR Digital |¢
o T1 /T2 sources: TZ, DG, EPWMxSYNCI 28x RAM/| EccosLerr | Compare | EPWM
e CMPC / CMPD: sources for ET Flash ECC (DC) h X-BAR

The trip zone and digital compare sub-modules provide a protection mechanism to protect the
output pins from abnormalities, such as over-voltage, over-current, and excessive temperature
rise.

Trip-Zone Features
¢ Trip-Zone has a fast, clock independent logic path to high-impedance
the EPWMxA/B output pins

¢ Interrupt latency may not protect hardware when responding to over
current conditions or short-circuits through ISR software

¢ Supports: #1) one-shot trip for major short circuits or over

current conditions
#2) cycle-by-cycle trip for current limiting operation

CPU]

P
core

e EPWMxA W
Comrlirf EPWMXTZINT —— M
ePWM X-Bar Cycle-by-Cycle N 8
TZ1 —TZ3 |NPUT X-Bar Mode <
eOEP1— 124 EQEP1ERR PG B
SYSCTRL—T1Z5 CLOCKFAIL One-Shot Y
cpy—1£6 EMUSTOP Mode 3

See ‘Trip-Zone Submodule Mode Control Logic’ figure in the F28004x TRM for details

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

The trip-zone submodule utilizes a fast clock independent logic mechanism to quickly handle fault
conditions by forcing the EPWMXxA and EPWMXxB outputs to a safe state, such as high, low, or
high-impedance, thus avoiding any interrupt latency that may not protect the hardware when
responding to over current conditions or short circuits through ISR software. It supports one-shot
trips for major short circuits or over current conditions, and cycle-by-cycle trips for current limiting
operation. The trip-zone signals can be generated externally from any GPIO pin which is mapped
through the Input X-Bar (TZ1 — TZ3), internally from an eQEP error signal (TZ4), system clock
failure (TZ5), or from an emulation stop output from the CPU (TZ6). Additionally, numerous trip-
zone source signals can be generated from the digital-compare subsystem.

Trip-Zone Sub-Module Control Logic

TZCLR[CBCPULSE]

CTR=PRD ——
L Clear
FD _ TZCTLDCAIDCAEVT1U, DCAEVTID, DCAEVT2U, DCAEVT20——
CTR = Zero - - TZCTL[TZA, DCAEVT1, DCAEVT.
. TZCTLATZAL, TZAD, EWE]—' .

Clear
CBC Lalch
TZFRC[CBC) Sot EPWMxA (from PC submadula) — o
=1 [DCAEVT1.farce —*) EP;‘,."“ = EPWMA
TZ7 o o = OCAEVTZforce —¥ | e
= [Syne Sal O
™ < | rzFLGicec)
T I TZGLRIGBCH . TZCTLOCB[DCBEVT 1L, DCBEVTID,
™ oo DCBEVT2U, DCBEVT2D)
= |~ TZCTL[TZB, DCBEVTY. DCBEVT2)
TZCTL(TZBY, TZ80, ETZEL—
OCAEVT2 frce — 1 Cycle-by-Cycle (CBG) Lz{ l'
DCBEVT2 force — 160 &, EPWMB (rom PC submodule) — coiunia
Leped fip Events DCBEVT1 farce —»
i - - Trip = EPWMB
DCBEVTZforce —%] | ooic
TZSEL[CBC1 to CBCE, DCAEVT2, DCBEVTZ) *
TZCLRIOST) Clear
OSHT Latch DCAEVT 1 force
TZFRCIOSHT) _D 2ot TRIPx, Digital | pCAEVT 2 force -
—_ 775 | Compare
rat _|'.- M| 1) T] DCBEVT 1.forca .
T o Sync Cloar Sol T | DCREVTZ torce
= I e TZFLG[DST]
THE —1°¢
hri] te
DCAEVT1. force I
DCBEVT1.force: o One-Shot (OSHT)
L _ Trip Events

)
1
TZSEL[OSHT1 to OSHTE, DCAEVT1, DCBEVT1]

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

*
*
*
*

Trip-Zone Driverlib Functions

¢ Enable/disable Trip-Zone signals
EPWM_[enable|disable]TripZoneSignals(base, tzSignal);

¢ Set Trip-Zone Action
EPWM_setTripZoneAction(base, tzEvent, tzAction);

¢ Enable / disable Trip-Zone interrupts
EPWM_[enable|disable]TripZonelnterrupt(base, tzinterrupt);

EPWM_TZ_SIGNAL_CBCx (x =1 to 6)
EPWM_TZ_SIGNAL_x (x = DCAEVT2 or DCBEVT2) <CBC>
EPWM_TZ_SIGNAL_OSHTX (x = 1 to 6)
EPWM_TZ_SIGNAL_x (x = DCAEVT1 or DCBEVT1) <OSHT>

¢ base is the ePWM base address: EPWMx_BASE (x =1 to 8)
¢ (zSignal is logical OR values of:

¢ (zEvent value is: EPWM_TZ_ACTION_EVENT_x (x = TZA, TZB, DCAEVTL1,
DCAEVT2, DCBEVTL1, or DCBEVT2)

& (zAction value is: EPWM_TZ_ACTION_x (x = HIGH_Z, HIGH, LOW, or DISABLE)

¢ izInterrupt is logical OR values of: EPWM_TZ_INTERRUPT_x (x = CBC, OST,
DCAEVT1, DCAEVT2, DCBEVT1, or DCBEVT2)

Digital Compare Trip Inputs

TRIPIN10

TRIPIN11

TRIPIN12 !

TRIPIN1 & TZ1
GPIO INPUT TRIPIN2 & TZ2
> > TRIPIN3 & TZ3
MUX X-BAR TRIPING Digital
TRIPINA
TRIPINS - Compare
TRIPIN7
ePWM o TRIPINS Sub-
> TRIPING
X-BAR TRIPINLO Module
TRIPINIL
TRIPIN12
TRIPIN14 (ECCDBLERR)
TRIPIN15 (PIEERR)
TRIPINLS | i
TRIPIN14
TRIPINL&TZ1 !
TRIPIN2 & TZ2
TRIPIN3 & TZ3 |
TRIPING |
TRIPINA 1
TRIPINS !
TRIPIN7 !
TRIPINS
TRIPING TRIP COMBO

The digital compare submodules receive their trip signals from the Input X-BAR and ePWM X-

BAR.

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

The ePWM X-BAR is used to route various internal and external signals to the ePWM modules.
Eight trip signals from the ePWM X-BAR are routed to all of the ePWM modules.

ePWM X-BAR

CTRIPOUTH—@- »
POUTL-4-
CrRouT ._ ¥ (Ot XBAR only)
L
CMP5Sx
CTRIPH . +
- ¥
oL [oPWM X-BAR only)
L

ePg:‘\r‘;“Oﬂ‘aﬁ” EXTSYNCOUT b

] OUTPUTY
» ouTPUTZ
A&;&:Eo ApEsOCAD " HOUTPUTS Gpig
Output | ——9 OUTPUT4 M
* xear | outPuts .
ADCSOCBO H—»{ ouTPUTE
ADCSOCED H
Select Cki] outPuT?
QUTPUTE
eCAPx ECAPYOUT —————
EVT1 »
EVT2 H
ADCx EVT3 » » TRIF4
EvTa - | TRIPS
TRIET Al
R =] ePWM R MtRes gpam
S .
Input X-BAR ’ XBAR 0 M TRPY podules
INPLTT-14 » o Py :
{sPWN X-BAR only)
—» TRIF1
| TRIP12
CLAHALT AAHALT ————— ¥
FLT1.COMPH—9- e
FLT1.COMPL 9 e X-BAR Flags
1 L — {shared)
H _D_>
SOFMx 1

FLT4 COMPH —9-
FLT4 COMPL#

D

The ePWM X-BAR architecture block diagram shown below is replicated 8 times. The ePWM X-
BAR can select a single signal or logically OR up to 32 signals. The table in the figure defines the
various trip sources that can be multiplexed to the trip-zone and digital compare submodules.

ePWM X-Bar Architecture

88: - XBAR_enableEPWMMux(trip, muxes);
0.2—» { L XBAR_disableEPWMMux(trip, muxes);
0.3—
1.0—] <
This block ~ 1.1—
diagramis 1.2— % . TRIPINX
replicated 1.3—| :
8 times o ‘
XBAR_invertEPWMSignal(trip, invert);

XBAR_setEPWMMuxCo nfig(trip, muxConfig);

MUX 0 1 2 3 MUX 0 1 2 3
0 CMPSS1.CTRIPH CMPSS1.CTRIPH_OR_CTRIPL | ADCAEVT1 ECAP10UT 16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COMPL
1 CMPSS1.CTRIPL INPUTXBARL ADCCEVTL 17 SD1FLT1.COMPL INPUT7 CLAHALT
2 CMPSS2.CTRIPH CMPSS2.CTRIPH_OR_CTRIPL | ADCAEVT2 ECAP20UT 18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL
3 CMPSS2.CTRIPL INPUTXBAR2 ADCCEVT2 19 SD1FLT2.COMPL INPUT8
4 CMPSS3.CTRIPH | CMPSS3.CTRIPH_OR_CTRIPL | ADCAEVT3 | ECAP30UT 20 SDIFLT3.COMPH | SDIFLT3.COMPH_OR_COMPL
5 CMPSS3.CTRIPL INPUTXBAR3 ADCCEVT3 21 SDIFLT3.COMPL INPUT9.
6 CMPSS4.CTRIPH | CMPSS4.CTRIPH_OR_CTRIPL | ADCAEVT4 | ECAP40UT 2 SDIFLT4.COMPH | SDIFLT4.COMPH_OR_COMPL
7 CMPSS4.CTRIPL INPUTXBAR4 ADCCEVT4 23 SD1FLT4.COMPL INPUT10
8 CMPSS5.CTRIPH CMPSS5.CTRIPH_OR_CTRIPL | ADCBEVT1 ECAP50UT 24
9 CMPSS5.CTRIPL INPUTXBARS 25 INPUT11
10 CMPSS6.CTRIPH CMPSS6.CTRIPH_OR_CTRIPL | ADCBEVT2 ECAP6OUT 26
11 CMPSS6.CTRIPL INPUTXBARG 27 INPUT12
12 CMPSS7.CTRIPH CMPSS7.CTRIPH_OR_CTRIPL | ADCBEVT3 ECAP70UT 28
13 CMPSST.CTRIPL ADCSOCA 29 INPUT13
14 ADCBEVT4 | EXTSYNCOUT 30
15 ADCSOCB 31 INPUT14

7-28 TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

Purpose of the Digital Compare
Sub-Module

¢ Generates ‘compare’ events that can:
¢ Trip the ePWM
¢ Generate a Trip interrupt
¢ Sync the ePWM
¢ Generate an ADC start of conversion
¢ Digital compare module inputs are:
¢ Input X-Bar
¢ ePWM X-Bar
¢ Trip-zone input pins
¢ A compare event is generated when one or more
of its selected inputs are either high or low
¢ Optional ‘Blanking’ can be used to temporarily

disable the compare action in alignment with
PWM switching to eliminate noise effects

Digital Compare Sub-Module Signals

EPWM_setTripZoneDigitalCompareEventCondition(base, dcType*, dcEvent);
1 Time-Base Sub-Module

| pcaH BIgal D DCAEVTI—»| Generate PWM Sync |
TRIPIN1& TZ1, /J N Egﬁ%,ﬁé P Event-Trigger Sub-Module
TRIPIN2 & TZ2 E bianking t—| GeneratesocA |
TRIPIN3 & TZ3 i Digitél < Trip-Zone Sub-Module
TRIPINA \j DCAL Eg(renng:% _I l Trip PWMA Output
: Generate Trip Interrupt
o —» i i DCAEVT2
*« i
« 1 . Time-Base Sub-Module
— \ﬁ DCBH iqi i DCBEVTL Generate PWM Sync
TRIPINL2 — Digital Trip
— = Sl Event-Trigger Sub-Modul
TRIPINLA ‘ —| Compare |<---- : | vent-Trigger Sub-Module
Tlms' . blan'king I .Generate SOCB |
—_— : Digital Trip l—'—‘_____, Trip-Zone Sub-Module
TRIP COMBO Event B2 Trip PWMB Output
—— DCBL
L Compare
Generate Trip Interrupt

,,,,,,,,,,,,,,,,,, DCBEVT2

EPWM_selectDigitalCompareTripInput(base, tripSource, dcType);
EPWM_[enable|disable]Digital CompareTripCombinationinput(base, tripinput, dcType);

The digital-compare subsystem compares signals external to the ePWM module, such as a signal
from the CMPSS analog comparators, to directly generate PWM events or actions which are then
used by the trip-zone, time-base, and event-trigger submodules. These ‘compare’ events can trip
the ePWM module, generate a trip interrupt, sync the ePWM module, or generate an ADC start of

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-29

ePWM

conversion. A compare event is generated when one or more of its selected inputs are either
high or low. The signals can originate from any external GPIO pin which is mapped through the
Input X-Bar and from various internal peripherals which are mapped through the ePWM X-Bar.
Additionally, an optional ‘blanking’ function can be used to temporarily disable the compare action
in alignment with PWM switching to eliminate noise effects.

Digital Compare Events

¢ The user selects the input for each of DCAH, DCAL,
DCBH, DCBL

¢ Each A and B compare uses its corresponding
DCyH/L inputs (y = A or B)

¢ The user selects the signal state that triggers each
compare from the following choices:

i. DCyH > low DCyL - don’t care
ii. DCyH - high DCyL - don't care
iii. DCyL = low DCyH > don’t care

iv. DCyL - high DCyH - don’t care
v. DCyL - high DCyH - low

’ EPWM_setTripZoneDigital CompareEventCondition(base, dcType, dcEvent); ‘

Digital Compare Driverlib Functions

Select Digital Compare trip inputs
EPWM_selectDigitalCompareTriplnput(base, tripSource, dcType);
Enable / disable Digital Compare trip combination inputs
EPWM_[enable|disable]DigitalCompareTripCombinationinput(
base, triplnput, dcType);
Set Digital Compare conditions which cause Trip-Zone events
EPWM_setTripZoneDigitalCompareEventCondition(base,
dcType*, dcEvent);
base is the ePWM base address: EPWMx_BASE (x = 1 to 8)
tripSource value is:
¢ EPWM_DC_TRIP_TRIPINX (x =1to 12, 14, 15)
¢ EPWM_DC_TRIP_COMBINATION - selects trip signals enabled by the
EPWM_enableDigitalCompareTripCombinationlnput() function
dcType value is: EPWM_DC_TYPE_x (x = DCAH, DCAL, DCBH , or DCBL)
tripinput value is: EPWM_DC_COMBINATIONAL_TRIPINX (x = 1 to 12, 14, 15)
dcType* value is: EPWM_TZ_DC_OUTPUT_x (x =Al, A2, B1, or B2)
dcEvent value is: EPWM_TZ _EVENT_x (x = DC_DISABLED, DCyH_LOW,
DCyH_HIGH, DCyL_LOW, DCyL_HIGH, or DCyL_HIGH_DCyH_LOW)
- where y in DCyH/DCyL represents DCAH/DCAL or DCBH/DCBL

L 4

L 4

4

L 2R 2

* 6 o o0

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

Digital Compare Driverlib Functions

Time-Base Sub-Module
DCXEVTL ——-| Generate PWM Sync |
Event-Trigger Sub-Module
Generate SOCx |

Trip-Zone Sub-Module
Trip PWMx Output

DCXEVT2 _l_. Generate Trip Interrupt

¢ Enable / disable Digital Compare Sync Event
EPWM_[enable|disable]DigitalCompareSyncEvent(base,
dcModule);

(x=AorB)

¢ Enable / disable Digital Compare ADC trigger

EPWM_[enable|disable]DigitalCompareADCTrigger(base,
dcModule);
Enable / disable Trip-Zone signals and Trip-Zone interrupts
& See Trip-Zone Driverlib Functions:

EPWM_[enable|disable] TripZoneSignals(base, tzSignal);
EPWM_[enable|disable]TripZonelnterrupt(base, tzinterrupt);

base is the ePWM base address: EPWMx_BASE (x = 1 to 8)

dcModule value is: EPWM_DC_MODULE_x (x =A or B)

*

2

2

ePWM Event-Trigger Sub-Module

Time-Base Signals—»] Event | EPWMxSOCA
Counter Compare Signals —»] Trigger EPWMxSOCB ADC
EPWMXSYNCI Digital Compare Signals—»{ (ET) d
v EPWMXxINT
CTR =PRD
L > . PIE
Digital Action ,—’EPWMxTZ|NT
Compare | Time-Base | CTR=0 »| Qualifier CTR = PRD —»
Signals (TB) cR.Dir | (AQ) CTR=0—»
T1*—»| EPWMXA —» Deag N c:WM || Trip [EPWMxA |
Ban opper Zone GPIO
EPWMXSYNCO 4 ro—f w5 (pg) [(PC) [(12) EPWMXB
CTR = CMPA | v
Counter |CTR=CMPB_| EQEPx EQEPXERR (TZ4) TZ1toTZ3 | INPUT
Compare TR= CMPC: CPU EMUSTOP (TZ6) < X-BAR
(cy +H—» SYSCTRL CLOCKFAIL (TZ5)
CTR = CMPD*
=75 f
 Nores PIEERR Digital |4
o T1 /T2 sources: TZ, DG, EPWMxSYNCI 28x RAM/ | ECCDBLERR _| Compare | EPWM
e CMPC / CMPD: sources for ET Flash ECC g (DC) - X-BAR

The event-trigger submodule manages the events generated by the time-base, counter-compare,

and digital-compare submodules for generating an interrupt to the CPU and/or a start of
conversion pulse to the ADC when a selected event occurs.

TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

Event-Trigger Interrupts and SOC

TBCTR
TBPRD

CMPD
CMPC
CMPB
CMPA

creotp ot L
CTR=PRD it i T i1 L 1 N
cTR=oorPROL L T ¢ L | +
CTRu=cmPA (T 1 L P b L L L
CTRD = CMPA |
CTRU=CMPB i T i \ { | |
CTRD=CMPB i i | _ i | | 4
cTRU=cmpc i | T | ’
CTRD=CMPC | | | | §

CTRU=CMPD | | L4 § . 4 L
CTRD=CMPD \ i i | i BEE S
DCAEVTl.soc / DCBEVT1.soc generates EPWMxSOCA/B pulse (x =1to 8)

g

These event triggers can occur when the time-base counter equals zero, period, zero or period,
and the up or down count match of a compare register. Recall that the digital-compare
subsystem can also generate an ADC start of conversion based on one or more compare events.
Notice counter up and down are independent and separate.

Event-Trigger Driverlib Functions

¢ Enable/ disable Event-Trigger ADC SOC
EPWM_[enable|disable]ADCTrigger(base, adcSOCType);

¢ Set Event-Trigger ADC SOC source
EPWM_setADCTriggerSource(base, adcSOCType, socSource);

¢ Set Event-Trigger ADC SOC prescale
EPWM_setADCTriggerEventPrescale(base, adcSOCType,
preScaleCount);

¢ base is the ePWM base address: EPWMx_BASE (x =1 to 8)
¢ adcSOCType value is: EPWM_SOC_x (x =Aor B)
& socSource value is:
¢ EPWM_SOC_DCXEVT1 (x =Aor B)
e EPWM_SOC_TBCTR_x (x = ZERO, PERIOD, ZERO_OR_PERIOD)
¢ EPWM_SOC_TBCTR_U_CMPx (x=A, B, C, or D)
¢ EPWM_SOC_TBCTR_D_CMPx (x=A, B, C, or D)
¢ preScaleCountvalue is: 1 to 15 (0 disables the prescale)

7-32 TMS320F28004x Microcontroller Workshop - Control Peripherals

ePWM

The event-trigger submodule also incorporates pre-scaling logic to issue an interrupt request or

ADC start of conversion at every event or up to every fifteenth event.

¢ Enable /disable Event-Trigger interrupt
EPWM_[enable|disable]interrupt(base);

¢ Set Event-Trigger interrupt source

¢ Set Event-Trigger interrupt event counts

& interruptSource value is:

¢ EPWM_INT TBCTR_U_CMPx (x=A, B, C, or D)
¢ EPWM_INT TBCTR_D_CMPx (x=A, B, C, or D)

interrupt is issued; (value is: 1 to 15)

Event-Trigger Driverlib Functions

EPWM_setInterruptSource(base, interruptSource);

EPWM_setinterruptEventCount(base, eventCount);

¢ base is the ePWM base address: EPWMx_BASE (x =1 to 8)

+ EPWM_INT TBCTR_x (x = ZERO, PERIOD, ZERO_OR_PERIOD)

¢ eventCount determines the number of events that have to occur before an

High Resolution PWM (HRPWM)

PWM Period

< >

Device Clock

(e 200MB) || L L e

HRPWM divides a clock

le int ller st !
" called Micro Steps | T [meHmsHmef—

(Step Size ~= 150 ps) | Calibration Logic :

High-Resolution PWM (HRPWM)

Regular
PWM Step
| | | | (|e 10 ns)

Calibration Logic tracks the
number of Micro Steps per

clock to account for
variations caused by
Temp/Volt/Process

HRPWM

LCELEEEEREELEELELTEL TR Micro Step (<150 ps)

Significantly increases the resolution of conventionally derived digital PWM

Uses 8-bit extensions to Compare registers (CMPxHR), Period register
(TBPRDHR) and Phase register (TBPHSHR) for edge positioning control

Typically used when PWM resolution falls below ~9-10 bits which occurs at
frequencies greater than ~200 kHz (with system clock of 100 MHz)

Not all ePWM outputs support HRPWM feature (see device datasheet)

The ePWM module is capable of significantly increase its time resolution capabilities over the
standard conventionally derived digital PWM. This is accomplished by adding 8-bit extensions to

TMS320F28004x Microcontroller Workshop - Control Peripherals

7-33

ePWM

the counter compare register (CMPxHR), period register (TBPRDHR), and phase register
(TBPHSHR), providing a finer time granularity for edge positioning control. This is known as
high-resolution PWM (HRPWM) and it is based on micro edge positioner (MEP) technology. The
MEP logic is capable of positioning an edge very finely by sub-dividing one coarse system clock
of the conventional PWM generator with time step accuracy on the order of 150 picoseconds. A
self-checking software diagnostics mode is used to determine if the MEP logic is running
optimally, under all operating conditions such as for variations caused by temperature, voltage,
and process. HRPWM is typically used when the PWM resolution falls below approximately 9 or
10 bits which occurs at frequencies greater than approximately 200 kHz with an EPWMCLK of
100 MHz.

TMS320F28004x Microcontroller Workshop - Control Peripherals

eCAP

eCAP

Capture Module (eCAP)

D | L

Timer
| Trigger -¥g
\(pin
Timestamp
Values

¢ The eCAP module timestamps transitions on a
capture input pin
¢ Can be used to measure the time width of a pulse

| tﬁj |

¢ Auxiliary PWM generation

The capture units allow time-based logging of external signal transitions. It is used to accurately
time external events by timestamping transitions on the capture input pin. It can be used to
measure the speed of a rotating machine, determine the elapsed time between pulses, calculate
the period and duty cycle of a pulse train signal, and decode current/voltage measurements
derived from duty cycle encoded current/voltage sensors.

Capture units can be configured to trigger an A/D conversion that is synchronized with an
external event. There are several potential advantages to using the capture for this function over
the ADCEXTSOC pin associated with the ADC module. First, the ADCEXTSOC pin is level
triggered, and therefore only low to high external signal transitions can start a conversion. The
capture unit does not suffer from this limitation since it is edge triggered and can be configured to
start a conversion on either rising edges or falling edges. Second, if the ADCEXTSOC pin is held
high longer than one conversion period, a second conversion will be immediately initiated upon
completion of the first. This unwanted second conversion could still be in progress when a
desired conversion is needed. In addition, if the end-of-conversion ADC interrupt is enabled, this
second conversion will trigger an unwanted interrupt upon its completion. These two problems
are not a concern with the capture unit. Finally, the capture unit can send an interrupt request to
the CPU while it simultaneously initiates the A/D conversion. This can yield a time savings when
computations are driven by an external event since the interrupt allows preliminary calculations to
begin at the start-of-conversion, rather than at the end-of-conversion using the ADC end-of-
conversion interrupt. The ADCEXTSOC pin does not offer a start-of-conversion interrupt.

Rather, polling of the ADCSOC bit in the control register would need to be performed to trap the
externally initiated start of conversion.

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-35

eCAP

eCAP Module Block Diagram - capture Mode
ECAP_enableCaptureMode(base);

Delta Mode
1
— Capture 1 | Polarity|
— Register Select 1 Other
Sources
) : .
Reset +—] Capture 2 = Polarity | | [127:16]
. - Register < Select 2
el =] Event
IGSENTD) gy o Prescale
SELnEET [Capture 3 % Polarity | |
*~— Register = Select 3 [15:0]
L
Input
Hi-Res —t— Capture 4 Polarity | | X-BAR
Register Select 4
Capture _|_T_
DMA PIE Continuous / One-shot
Trigger (ECAPX) Capture Control

The eCAP module captures signal transitions on a dedicated input pin and sequentially loads a
32-bit time-base counter value in up to four 32-bit time-stamp capture registers (CAP1 — CAP4).
By using a 32-bit counter, rollover is minimized. Independent edge polarity can be configured as
rising or falling edge, and the module can be run in either one-shot mode for up to four time-
stamp events or continuous mode to capture up to four time-stamp events operating as a circular
buffer. The capture input pin is routed through the Input X-Bar, allowing any GPIO pin on the
device to be used as the input. Also, the input capture signal can be pre-scaled and interrupts
can be generated on any of the four capture events. The time-base counter can be run in either
absolute or difference (delta) time-stamp mode. In absolute mode the counter runs continuously,
whereas in difference mode the counter resets on each capture

7-36 TMS320F28004x Microcontroller Workshop - Control Peripherals

eCAP

eCAP Module Block Diagram - apwm Mode
ECAP_enableAPWMMode(base);

| Shadowed

: Period shadow
Period | Register mode

immediate | pagister | (CAP3)

mode
(CAP1)
_ 32-Bit PWM Output
Time-Stamp Compare —
. X-BAR
Counter Logic
) diat Compare
M eie €| Register |compare shadow
(CAP2) | Register | “mode

| Shadowed (CAP4)

If the module is not used in capture mode, the eCAP module can be configured to operate as a
single channel asymmetrical PWM module (i.e. time-base counter operates in count-up mode).

eCAP Driverlib Function

¢ Enable capture or APWM mode
ECAP_enableCaptureMode(base);
ECAP_enableAPWMMode(base);

¢ Select eCAP input signal
ECAP_selectECAPInput(base, input);

¢ Stop / start time stamp counter
ECAP_[stop|start]Counter(base);

¢ base is the eCAP base address: ECAPx_BASE (x=1to7)
¢ inputvalueis:

¢ ECAP_INPUT_INPUTXBARX (x =1 to 16)
ECAP_INPUT_CANXx_INTO (x =Aor B)
ECAP_INPUT_ECAP_DELAY_CLOCK
ECAP_INPUT_OUTPUTXBARX (x =1 to 8)
ECAP_INPUT_ADC y EVENTx (x=1to4) (y=A, B, orC)
ECAP_INPUT_SDFM1_FLTx COMPARE_y (x=1to4) (y=LOW,
HIGH, or HIGH_OR_LOW)
ECAP_INPUT_CMPSSx_CTRIP_y (x=1t0o7) (y =LOW, HIGH, or
HIGH_OR_LOW)

® & 06 0 o

L 2

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-37

eCAP

eCAP Driverlib Function

¢ Enable/disable load of time stamp on capture event (CAP1 —CAP4)
ECAP_[enable|disable]TimeStampCapture(base);

¢ Set capture mode (continuous/wrap or one-shot/stop mode)
ECAP_setCaptureMode(base, mode, event);

¢ Sets the capture event polarity (rising or falling edge)
ECAP_setEventPolarity(base, event, polarity);

¢ Enable/ disable counter reset on event (delta / absolute time stamp)
ECAP_[enable|disable]CounterResetOnEvent(base, event);

¢ Set and enable / disable capture event interrupt source
ECAP_[enable|disable]Interrupt(base, intFlags);

¢ Set eCAP input event filter prescale counter
ECAP_setEventPrescaler(base, preScalerValue);

¢ base is the eCAP base address: ECAPx_BASE (x=11t07)

+ mode value is: ECAP_CONTINUOUS_CAPTURE_MODE or
ECAP_ONE_SHOT_CAPTURE_MODE

¢ eventvalue is: ECAP_EVENT_x (x=1to4)
& polarity value is: ECAP_EVNT_RISING_EDGE or ECAP_EVNT_FALLING_EDGE

& intFlags value is: ECAP_ISR_SOURCE_CAPTURE_x (x = EVENT_1, EVENT 2,
EVENT_3, EVENT_4, OVERFLOW, PERIOD, COMPARE)

¢ preScalerValue valueis: 1, 2, ...31 (divide is 2x - i.e. 5is /10; 1 = no prescale)

The capture unit interrupts offer immediate CPU notification of externally captured events. In
situations where this is not required, the interrupts can be masked and flag testing/polling can be
used instead. This offers increased flexibility for resource management. For example, consider a
servo application where a capture unit is being used for low-speed velocity estimation via a
pulsing sensor. The velocity estimate is not used until the next control law calculation is made,
which is driven in real-time using a timer interrupt. Upon entering the timer interrupt service
routine, software can test the capture interrupt flag bit. If sufficient servo motion has occurred
since the last control law calculation, the capture interrupt flag will be set and software can
proceed to compute a new velocity estimate. If the flag is not set, then sufficient motion has not
occurred and some alternate action would be taken for updating the velocity estimate. As a
second example, consider the case where two successive captures are needed before a
computation proceeds (e.g. measuring the width of a pulse). If the width of the pulse is needed
as soon as the pulse ends, then the capture interrupt is the best option. However, the capture
interrupt will occur after each of the two captures, the first of which will waste a small number of
cycles while the CPU is interrupted and then determines that it is indeed only the first capture. If
the width of the pulse is not needed as soon as the pulse ends, the CPU can check, as needed,
the capture registers to see if two captures have occurred, and proceed from there.

TMS320F28004x Microcontroller Workshop - Control Peripherals

eQEP

eQEP

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

photo sensors spaced 0/4 deg. apart

V slots spaced 0 deg. apart _.9’4__
%@\\ rlight source (LED) i
o= 0~

N.' Ch. A j |
cne 1L LILL

shaft rotation

Incremental Optical Encoder Quadrature Output from Photo Sensors

The eQEP module interfaces with a linear or rotary incremental encoder for determining position,
direction, and speed information from a rotating machine that is typically found in high-
performance motion and position-control systems.

How is Position Determined from
Quadrature Signals?

Position resolution is 0/4 degrees

increment decrement

(00) (11)
(AB) = (10) 5(01) counter counter

[4

llegal
PR Transitions; ______ .
generate
phase error

|
|

|

|

|

|

|

:

| interrupt
T !

|

|

|

|

|

|

|

|
|
|
|
|
|
|
Ch.A i
|
|
|
|
|
|

i

Quadrature Decoder
State Machine

Ch.B

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-39

eQEP

A quadrature decoder state machine is used to determine position from two quadrature signals.

eQEP Module Block Diagram
Quadrature

Measure the elapsed time

between the unit position events;

used for low speed measurement
Generate periodic Captu S

interrupts for velocity Quadrature - | | Direction -
calculations clock mode count mode
Monitors the quadrature

hEe]

clock to indicate proper

operatlion of the motion w
q A control system

32-Bit Unit |_| 4 EQEPXB/XDIR
Time-Base QEP Quadrature|*

Decoder EQEPXI

T Watchdog —FeE

CPUX.SYSCLK EQEPXS

— < 72

Position/Counter
Compare

Generate the direction and

clock for the position counter
Generate a sync output in quadrature count mode
and/or interrupt on a
position compare match

| See the F28004x Driver Library User’'s Guide for available functions

The inputs include two pins (QEPA and QEPB) for quadrature-clock mode or direction-count
mode, an index pin (QEPI), and a strobe pin (QEPS). These pins are configured using the GPIO
multiplexer and need to be enabled for synchronous input. In quadrature-clock mode, two square
wave signals from a position encoder are inputs to QEPA and QEPB which are 90 electrical
degrees out of phase. This phase relationship is used to determine the direction of rotation. If
the position encoder provides direction and clock outputs, instead of quadrature outputs, then
direction-count mode can be used. QEPA input will provide the clock signal and QEPB input will
have the direction information. The QEPI index signal occurs once per revolution and can be
used to indicate an absolute start position from which position information is incrementally
encoded using quadrature pulses. The QEPS strobe signal can be connected to a sensor or limit
switch to indicate that a defined position has been reached.

TMS320F28004x Microcontroller Workshop - Control Peripherals

eQEP

eQEP Module Connections

Ch. A

Quadrature
[Capture -

EQEPXA/XCLK

32-Bit Unit EQEPXB/XDIR
Quadrature

Time-Base
QEP [~ Decod
i Waichdog ecoder EQEPX! Index
EQEPXS Strobe

CPUx.SYSCLK

from homing sensor

Position/Counter
Compare

The above figure shows a summary of the connections to the eQEP module.

TMS320F28004x Microcontroller Workshop - Control Peripherals

Sigma Delta Filter Module (SDFM)

Sigma Delta Filter Module (SDFM)
Sigma Delta Filter Module (SDFM)

0100111010...

Digital
= Isolator

¢ SDFMis afour-channel digital filter designed specifically for current
measurement and resolver position decoding in motor control applications

¢ Each channel can receive an independent modulator bit stream

¢ Bit streams are processed by four individually programmable digital
decimation filters

¢ Filters include a fast comparator for immediate digital threshold comparisons
for over-current monitoring

¢ Filter-bypass mode available to enable data logging, analysis, and
customized filtering

The SDFM is a four-channel digital filter designed specifically for current measurement and
resolver position decoding in motor control applications. Each channel can receive an
independent delta-sigma modulator bit stream which is processed by four individually
programmable digital decimation filters. The filters include a fast comparator for immediate digital
threshold comparisons for over-current and under-current monitoring. Also, a filter-bypass mode
is available to enable data logging, analysis, and customized filtering. The SDFM pins are
configured using the GPIO multiplexer. A key benefit of the SDFM is it enables a simple, cost-
effective, and safe high-voltage isolation boundary.

7-42 TMS320F28004x Microcontroller Workshop - Control Peripherals

Sigma Delta Filter Module (SDFM)

SDFM Block Diagram

SOFNL Sigma Dalta Fiter Module
LTaORNT —
¥
' Secondary
(Comparetor)
C : Input Fi
- sonca o Primary (Data) = T
[romsocareoa | — 7 g v
PWMSOCA JS008 [
= b« b2
- soac: “""E $0y_ERR ———n
6916 - o = — soyriteon T —b ePIE
MUK | WAL SOUA § SOCE] —— =
B Fiftar Macula 3
_ soeca E
SOCA e | — LTa COMPL — Output [PWM
| - -~ ! LTxcompHs e TBAR
L s pa Fitter Module 4
L stn_ca)
— [[pwxsoca isoe | FurccOMPL —8

OMPHA # ECAP
FLTALCOMPHE —8

5000 |
Decading
I
£2

Isolated Phase Current-Sense Example

0C link Mator

== 1= (!
1 SO i D

AMC1I06ME
33V—AVDD | DVDO|—33V
AP | CLEN

1 AN | DOUT
. Mamina haing 1 TMS320F28004x
AMC1306Mx =
/ —{avoo | ovool—3av 001
e |cuam o
aa |oour D02
p—{30-C2
AMIC1306ME (AGND IDGMJ 1
33v—{avoo | ovool—sav = | =
me leua e
‘‘‘‘‘ | | S0.D4
1] by LI p—{s0cs
AGND | DGND
L 1 COCLVG1104 FvMx
23v—avon | ovool—aav =
o loum
T :oour
AGND DGND
1
= Pawer Board Control Board

SDFM enables galvanic isolation when utilized in conjunction with isolated sigma delta modulators

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-43

Lab 7: Control Peripherals

Lab 7: Control Peripherals
» Objective

The objective of this lab exercise is to become familiar with the programming and operation of the
control peripherals and their interrupts. ePWM1A will be setup to generate a 2 kHz, 25% duty
cycle symmetrical PWM waveform. The waveform will then be sampled with the on-chip analog-
to-digital converter and displayed using the graphing feature of Code Composer Studio. Next,
eCAP1 will be setup to detect the rising and falling edges of the waveform. This information will
be used to determine the width of the pulse and duty cycle of the waveform. The results of this
step will be viewed numerically in a memory window.

Lab 7: Control Peripherals

ePWM1
TB Counter
_Compare__ 4 jumper
Action Qualifier wire

data

CPU copies
memor
ADC result to emory

RESULTO buffer during

0 ADC ISR
Input X-BAR ®
ADC-

INAD .
; 5
;

| —

eCAP1 View ADC
buffer PWM
ePWM2 triggering samples

ADC on period match

using SOCA trigger every
20 ps (50 kHz) ePWM2 Code Composer

pointer rewind

Studio

> Procedure

Open the Project

1. Aproject named Lab7 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open. Click Browse... next to the “Select search-directory” box. Navigate to:
C:\F28004x\Labs\Lab7\project and click Select Folder. Then click Finish to
import the project. All build options have been configured the same as the previous lab
exercise. The files used in this lab exercise are:

7-44 TMS320F28004x Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

Adc.c
CodeStartBranch.asm
Dac.c

Defaultlsr _7.c
device.c

ECap_7.c

EPwm_7.c
Gpio.c

Lab 5 6 7.cmd
Main_7.c
SineTable.c
Watchdog.c

Note: The ECap_7 . c file will be added and used with eCAP1 to detect the rising and
falling edges of the waveform in the second part of this lab exercise.

Generate PWM Waveform

2. Open and inspect Gpio.c. Notice the Driverlib functions used to configure ePWM1A as
an output on the GPIOO pin.
3. Edit EPwm_7.c to configure ePWM1A as described in the objective for this lab exercise

(i.e. generate a 2 kHz, 25% duty cycle symmetrical PWM waveform):

e Set the timebase period and counter compare values by using the #define global
variable names in the beginning of Lab . h, which is located in the Project

Explorer window in the includes folder under /Lab_common/include

e Set the action qualifier to generate the specified waveform

e Enable the timebase count mode to generate a symmetrical PWM waveform

Note that the deadband, PWM chopper, and all trip zone and DC compare actions have
been disabled. Save your work.

Build and Load

4. Click the “Bui 1d” button and watch the tools run in the Consolle window. Check for
errors in the Problems window.
5. Click the “Debug” button (green bug). The CCS Debug perspective view should open,

the program will load automatically, and you should now be at the start of main(). If the
device has been power cycled since the last lab exercise, be sure to configure the boot
mode to EMU_BOOT_RAM using the Scripts menu.

Run the Code — PWM Waveform

6. Using a jumper wire, connect the PWM1A (pin #80) to ADCINAO (pin #70) on the
LaunchPad. Refer to the following diagram for the pins that need to be connected.
‘ * .,-: %%& wE? EI§-?«.@SBBES§:HE"' .
'iE ey g B s TR i
g Ao 5, 2 g / \. e] B e
W Er- S g B @Efu
TN e L
a __ﬁ’ﬁ [B i ‘ %'@":2‘; f!
t"‘a@kzﬁahiwﬂi %g Eg ::
gow; ' .
», 2 .
7. Open a memory browser to view some of the contents of the ADC results buffer. The

address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data” memory

TMS320F28004x Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

page. We will be running our code in real-time mode, and we will need to have the
memory window continuously refresh.

Run the code (real-time mode). Watch the window update. Verify that the ADC result
buffer contains the updated values.

Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools > Graph > Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type

16-bit unsigned integer

10.

Sampling Rate (Hz) 50000
Start Address AdcBuf
Display Data Size 50
Time Display Unit us

Select OK to save the graph options.

The graphical display should show the generated 2 kHz, 25% duty cycle symmetric PWM
waveform. The period of a 2 kHz signal is 500 ps. You can confirm this by measuring the
period of the waveform using the “measurement marker mode” graph feature. Disable
continuous refresh for the graph before taking the measurements. In the graph window
toolbar, left-click on the ruler icon with the red arrow. Note when you hover your mouse
over the icon, it will show “Toggle Measurement Marker Mode”. Move the mouse to
the first measurement position and left-click. Again, left-click on the Toggle
Measurement Marker Mode icon. Move the mouse to the second measurement
position and left-click. The graph will automatically calculate the difference between the
two values taken over a complete waveform period. When done, clear the measurement
points by right-clicking on the graph and select Remove All Measurement Marks.
Then enable continuous refresh for the graph.

Frequency Domain Graphing Feature of Code Composer Studio

11.

Code Composer Studio also has the ability to make frequency domain plots. It does this
by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make
a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: Tools > Graph > FFT Magnitude and set the following values:

TMS320F28004x Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Start Address AdcBuf

Data Plot Style Bar

FFT Order 10

Select OK to save the graph options.

12. On the plot window, hold the mouse left-click key and move the marker line to observe
the frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

13. Halt the code.

Setup eCAP1 to Measure Width of Pulse

The first part of this lab exercise generated a 2 kHz, 25% duty cycle symmetric PWM
waveform which was sampled with the on-chip analog-to-digital converter and displayed
using the graphing feature of Code Composer Studio. Next, eCAP1 will be setup to detect
the rising and falling edges of the waveform. This information will be used to determine the
period and duty cycle of the waveform. The results of this step will be viewed numerically in
a memory window and can be compared to the results obtained using the graphing features
of Code Composer Studio.

14. Add (copy) ECap_7 . c to the project from C:\F28004x\Labs\Lab7\source.

15. In Main_7.c, add code to call the InitECap()function. There are no passed
parameters or return values, so the call code is simply:

IniteECap();

16. In Gpio.c and notice the Driverlib functions for configuring GPIO24 as the input. Next,
notice the Driverlib function setting GP1024 as the signal source for Input X-BAR
INPUT7. The GP1024 pin via INPUT7 will be routed as the input to eCAP1.

17. Open Defaultlsr_7.c and locate the eCAPL1 interrupt service routine (ecaplISR).
Notice that PwmDuty is calculated by CAP2 — CAP1 (rising to falling edge) and that
PwmPeriod is calculated by CAP3 — CAP1 (rising to rising edge).

18. Open and edit ECap_7-c to:

e Set the event polarity to capturing the rising and falling edges of the PWM
waveform in order to calculate the PWM duty and PWM period

e Enable eCAP interrupt after three (3) capture events

Also, notice the Driverlib function that is used to select Input X-BAR INPUT7 as the
source for eCAP1. In Gpio.c the GPIO24 pin has been configured as the source for
INPUT?Y.

19. Using the “PIE Interrupt Assignment Table” find the location for the eCAP1 interrupt
“INT_ECAP1” and fill in the following information:

PIE group #: # within group:

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-47

Lab 7: Control Peripherals

This information will be used in the next step.

20. Modify the end of ECap_7 - c to do the following:

e Add the Driverlib function to re-map the ECAP1 interrupt signal to call the ISR
function. (Hint: #define name in driverlib/inc/hw_ints.h and label name

in Defaultlsr_7.c)
e Add the Driverlib function to enable the appropriate PIEIER and core IER

Build and Load
21. Save all changes to the files and build the project by clicking Project -> Build

Project, or by clicking on the “Bui Id” button if you have added it to the tool bar. Select
Yes to “Reload the program automatically”.

Run the Code — Pulse Width Measurement

22. Using a jumper wire, connect the ePWM1A (pin #80) to eCAP1 (pin #55, feed from the

Input X-BAR using GP1024) on the LaunchPad. Refer to the following diagram for the
pins that need to be connected.

o 3 o
o i =
%i Fum SARE &

|_m!
il

INSTRUMENTS

LAUNCHXL-F 280048C x

oBEd
DE'S

—IRe3

-4+

5.

ED \ ﬁ"m‘: .,
\/ or%d thagiie,,,) ¢
@i EE“"E Y -
rs [C o
o5 90,30

3
CREE T
%es_,ee'::$:z=sa

s

23. Open a memory browser to view the address label PwmPeriod. (Type &PwmPeriod in

the address box). The address label PwmDuty (address & PwmDuty) should appear in
the same memory browser window. Scroll the window up, if needed.

24. Set the memory browser properties format to “32-Bit UnSigned Int”. We will be running

our code in real-time mode, and we will need to have the memory browser continuously
refresh.

25. Run the code (real-time mode). Notice the values for PwmDuty and PwmPeriod.

26. Halt the code.
Questions:

How do the captured values for PwmDuty and PwmPeriod relate to the compare register
and time-base period settings for ePWM1A?

What is the value of PwmDuty in memory?
What is the value of PwmPeriod in memory?

How does it compare with the expected value?

TMS320F28004x Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

Internal Pulse Width Measurement Using Input X-BAR

27. Modify Gpio.c to use GPIOO as the signal source to Input X-BAR INPUT7 rather than
GPIO24. (Hint: you only need to modify the Input X-BAR Driverlib function). Recall that
in Gpio.c ePWM1A has been configured as an output on the GPIOO pin. This
modification will internally route the PWM output as the input to the eCAP1. Therefore,
remove the jumper wire since it is not needed.

28. Save all changes and build the project. Select Yes to “Reload the program
automatically”.

29. Run the code (real-time mode) and verify that the results are the same.

30. Halt the code.

Modulate the PWM Waveform

Next, we will experiment with the code by observing the effects of changing the ePWM1 CMPA
register using real-time emulation. Be sure that the jumper wire is connecting PWM1A (pin #80)
to ADCINAO (pin #70), and the Single Time graph is displayed. The graph must be enabled for
continuous refresh.

31. Run the code (real-time mode).
32. Open the Registers window by clicking: View > Registers

33. In the Registers window scroll down and expand “EPwm1Regs”. Then scroll down and
expand “CMPA”. In the Value field for “CMPA” right-click and set the Number Format to
Decimal. The Registers window must be enabled for continuous refresh.

34. Change the “CMPA” 18750 value (within a range of 2500 and 22500). Notice the effect
on the PWM waveform in the graph. Also, notice the value for PwmDuty changes in the
Memory Browser window.

You have just modulated the PWM waveform by manually changing the CMPA value. Next, we
will modulate the PWM automatically by having the ADC ISR change the CMPA value.

35. In Defaultlsr_7.c notice the code in the ADCAL interrupt service routine used to
modulate the PWM1A output between 10% and 90% duty cycle

36. In Main_7.c add “PWM_MODULATE" to the Expressions window. Simply highlight
PWM_MODULATE with the mouse, right click and select “Add Watch Expression..”
and then select OK. The global variable PWM_MODULATE should now be in the
Expressions window with a value of “0".

37. With the code still running in real-time mode, change the “PWM_MODULATE” from “0” to
“1” and observe the PWM waveform in the graph. The value for PwmDuty will update
continuously in the Memory Browser window. Also, in the Registers window notice the
CMPA value being continuously updated.

38. Halt the code.

Terminate Debug Session and Close Project

39. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

TMS320F28004x Microcontroller Workshop - Control Peripherals 7-49

Lab 7: Control Peripherals

40. Next, close the project by right-clicking on Lab7 in the Project Explorer window and
select Close Project.

End of Exercise

7-50 TMS320F28004x Microcontroller Workshop - Control Peripherals

Direct Memory Access

Introduction

This module explains the operation of the direct memory access (DMA) controller. The DMA has
six channels with independent PIE interrupts.

Module Objectives

Module Objectives

¢ Understand the operation of the
Direct Memory Access (DMA)
controller

¢ Show how to use the DMA to transfer
data between peripherals and/or
memory without intervention from
the CPU

TMS320F28004x Microcontroller Workshop - Direct Memory Access 8-1

Direct Memory Access (DMA)

Chapter Topics

DITECT MBMIOTY ACCESS . uitttiiitie e e ettt et e e e e et be e et e e e s e e e be et e e ea e e s e s ab bbbt e e ee e e s e annbbeeeeeaeeeaannbbeeaaaaaeas 8-1
Direct Memory ACCESS (DIMA) ... ittt e e e e et e e e e e e e e sab e aeaaaeeas 8-3

2 F TS (o @] o 1T = L4) o 1SR 8-4
1Y N T T] o] TR 8-6
Channel Priority MOOESc..uviiiiiee i e ccieiee e st e e e e e s s e e e e e e st e e e e e e e s snnrenneeeeeesennnes 8-9
1Y N I o o 10T | g o | PP 8-10
DMA DriVErliD FUNCHIONSeeiiiiiiiie ittt ettt e et e e e e e e s et e e e e e e e e e e aannes 8-11

Lab 8: Servicing the ADC With DIMAeeeiii i a e e e e e e e e s nanaeees 8-13

TMS320F28004x Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Direct Memory Access (DMA)

DMA Triggers, Sources, and Destinations

PIE
ADC DINTCH1-6
A
—| Result i
Registers |
DMA
GSO0 RAM <_|_> 6-channels

Triggers
GS3 RAM g?

ADCA/B/C(INT1-4, EVT)
XINT(1-5) TINT(0-2)
EPWM1-8(SOCA-B)

ECAP1-7 SD1FLT(1-4)
SPITX/RX(A/B)
CANAIF/CANBIF(1-3)
LINATX/RX
FSITXA/FSIRXA
software

CMPSS j¢&——

PGA

The DMA module provides a hardware method of transferring data between peripherals and/or
memory without intervention from the CPU, effectively freeing up the CPU for other functions.
Using the DMA is ideal when an application requires moving large amounts of data from an off-
chip peripheral to on-chip memory, or from a peripheral such as the ADC result register to a
memory RAM block, or between two peripherals. Additionally, the DMA is capable of rearranging
the data for optimal CPU processing such as binning and “ping-pong” buffering.

Specifically, the DMA can read data from the ADC result registers, transfer to or from memory
blocks GO through G3, transfer to or from the various peripherals, and also modify registers in the
ePWM. A DMA transfer is started by a peripheral or software trigger. There are six independent
DMA channels, where each channel can be configured individually and each DMA channel has
its own unique PIE interrupt for CPU servicing. All six DMA channels operate the same way,
except channel 1 can be configured at a higher priority over the other five channels. At its most
basic level the DMA is a state machine consisting of two nested loops and tightly coupled
address control logic which gives the DMA the capability to rearrange the blocks of data during
the transfer for post processing. When a DMA transfers is completed, the DMA can generate an
interrupt.

TMS320F28004x Microcontroller Workshop - Direct Memory Access 8-3

Direct Memory Access (DMA)

Basic Operation

DMA Definitions

¢ Word

¢ 16 or 32 bits

¢ Word size is configurable per DMA channel
¢ Burst

¢ Consists of multiple words

¢ Smallest amount of data transferred at one time
¢ Burst Size

¢ Number of words per burst

¢ Specified by BURST_SIZE register

¢ 5-bit ‘N-1" value (maximum of 32 words/burst)

¢ Transfer

¢ Consists of multiple bursts
¢ Transfer Size

¢ Number of bursts per transfer

¢ Specified by TRANSFER_SIZE register
16-bit ‘N-1' value - exceeds any practical requirements

Simplified State Machine Operation

The DMA state machine at its most basic
level is two nested loops

’ Start Transfer ‘““""""'""""““““““““.

Transfer Size times

DMA can be configured to

End Transfer } re-initialize at the end of the ----

transfer (continuous mode)

8-4 TMS320F28004x Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Basic Address

Active pointers

Pointer shadow registers
copied to active pointers at
start of transfer

Signed value added to active
pointer after each word

Signed value added to active
pointer after each burst

Control Registers

32
| SRC_ADDR |
| DST_ADDR |

SRC_ADDR_SHADOW |
DST_ADDR_SHADOW |

| SRC_BURST STEP |
| DST_BURST_STEP |

|SRC_TRANSFER_STEP|
| DST_TRANSFER_STEP|

3 words/burst
2 bursts/transfer

Simplified State Machine Example

Start Transfer

v
Wait for event

r

to start/continue
transfer

Read/Write Data

Moved Add Burst Step
“Burst Size” to Address
Words? Pointer

Moved N Add Transfer
“Transfer Size” Step to Address
Bursts? Pointer

Y

v

End Transfer

TMS320F28004x Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

DMA Interrupts

Mode #1
Interrupt € ===------

at start of
transfer

v
Wait for event
to start/continue

A

transfer

¢ Each DMA channel has its
own PIE interrupt

¢ The mode for each
interrupt can be configured

Read/Write Data

individually Moved Add Burst Step
The CHINTMODE bit in the “Burst Size” to Address
MODE register selects the Words? ac!0tey

interrupt mode

Moved Add Transfer

“Transfer Size” Step to Address
Bursts? Pointer
Mode #2: v
Interrupt €=-=-=-=-=------

at end of v

DMA Examples

Simple Example

Objective: Move 4 words from memory location 0xF00O to
memory location 0x4000 and interrupt CPU at end of transfer

BURST_SIZE* 0x0001 2 words/burst

[StartTransfer]
TRANSFER_SIZE* 0x0001 2 bursts/transfer m
v
* Size registers are N-1 Wait for event
to start/continue
. transfer
Source Registers Addr Value
SRC_ADDR [10X000000007 0xF000 [OX1111
SRC_ADDR_SHADOW [0x0000F000 o o222z Moved Pk Burst Siep
SRC_BURST_STEP 0x0001 oxFoos [0 “Burst Size” to Address
SRC_TRANSFER_STEP [__0x0001 X X ol Rointzs
. . . Moved Add Transfer
Destination Registers Addr Value “Transfer Size" Step to Address
B 2 i
DST_ADDR _ 0)(4000 ursts? Pointer
0x4001
DST_ADDR_SHADOW | 0x00004000 0x4002 > Interrupt to PIE
DST_BURST_STEP 0x0001 0x4003 End Transfer
DST_TRANSFER_STEP 0x0001 X

Note: This example could also have been done using 1 word/burst and 4 bursts/transfer, or 4 words/burst
and 1 burst/transfer. This would affect Round-Robin progression, but not interrupts.

8-6 TMS320F28004x Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Data Binning Example
Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU
GS1 RAM
0xF000
ADCA Results CHO 0xF001
0xF002
3rd Conversion Sequence 0xF003
CH1 0xF004
0x0B00 | CHO 0xF005
0x0B01 | CH1 0xF006
0x0B02 | CH2 CH2 0xF007
0x0B03 | CH3 0xF008
0x0B04 | CH4 0xF009
CH3 OXFOOA
0xF00B
OxF00C
CH4 0xFOOD
OXFOOE

Data Binning Example Register Setup
Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

ADC Registers:

SOCO0 — SOC4 configured to CHO — CH4, respectively,
ADCA configured to re-trigger (continuous conversion)

1 RAM
DMA Registers: GS1RAM

BURST_SIZE* 5 words/burst 0xF000

TRANSFER_SIZE* 3 bursts/transfer 8§E88;
SRC_ADDR_SHADOW [0x00000B00

SRC_BURST_STEP 0x0001 ADCA Results 8§E882

SRC_TRANSFER_STEP [__OXxFFFC__| (-4) 0x0B0O [CHO 0XF005

DST_ADDR_SHADOW [0x0000F000 | starting address** 0x0B0O1 |CH1 OxF006

DST_BURST_STEP 0x0003 0x0B02 |CH2 0xF007

DST_TRANSFER_STEP OXFFF5 (-11) 0x0B03 [CH3 0xF008

0x0B04 [CH4 0OxF009

OxFOO0A

OxF00B

0xFO0C

0OxFOOD

* Size registers are N-1 0xFOOE
** Typically use a relocatable symbol in your code, not a hard value

TMS320F28004x Microcontroller Workshop - Direct Memory Access 8-7

Direct Memory Access (DMA)

Ping-Pong Buffer Example

Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer

ADCA Result Reqister GS0 RAM
0x0B00O ADCRESULTO 0xC140 ~
SOCO configured to ADCINAO
with 1 conversion per trigger 50 word
>~ ‘Ping’ buffer
DMA
= < ’ Interrupt
50 word
>~ ‘Pong’ buffer
DMA
Interrupt

Ping-Pong Example Register Setup
Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer
ADC Registers:

|Convert ADCA Channel ADCINAO — 1 conversion per trigger (i.e. ePWM2SOCA) |
DMA Reqisters:

BURST_SIzE* [__0x0000 | 1 word/burst ;
TRANSFER_SIZE* 0x0031 50 bursts/transfer

SRC_ADDR_SHADOW | 0x00000BQ0 | starting address
SRC_BURST_STEP |_don'tcare | since BURST_SIZE =0

SRC_TRANSFER_STEP [__0x0000 6 Address”
Words? Pointer
DST_ADDR_SHADOW [0x0000C140 | starting address**
oved
Y

DST_BURST_STEP [_don'tcare | since BURST_SIZE =0

DST_TRANSFER_STEP 0x0001

Other: [DMA configured to re-init after transfer (CONTINUOUS = 1) |

* Size registers are N-1
** DST_ADDR_SHADOW must be changed between ping and pong buffer address in
the DMA ISR. Typically use a relocatable symbol in your code, not a hard value.

8-8 TMS320F28004x Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Channel Priority Modes

¢ Round Robin Mode:
« All channels have equal priority

« After each enabled channel has
transferred a burst of words, the
next enabled channel is serviced
in round robin fashion

¢ Channel 1 High Priority Mode:

« Same as Round Robin except CH1
can interrupt DMA state machine

« If CH1 trigger occurs, the current
word (not the complete burst) on
any other channel is completed
and execution is halted

« CH1is serviced for complete burst
+ When completed, execution
returns to previous active channel

« This modeis intended primarily
for the ADC, but can be used by
any DMA event configured to
trigger CH1

Channel Priority Modes

Start Transfer

Priority Modes and the State Machine

Point where other
pending channels

Wait for event

are serviced]

A

A

to start/continue
transfer

Read/Write Data

Point where
CH1 can =
interrupt other Moved
channels in “Burst Size”
CH1 Priority Mode Words?

Moved
“Transfer Size”
Bursts?

Y

Add Burst Step
to Address
Pointer

Add Transfer
Step to Address
Pointer

v

End Transfer

TMS320F28004x Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

DMA Throughput
DMA Throughput

¢ 4 cycles/word

¢ 1 cycle delay to start each burst

¢ 1 cycle delay returning from CH1
high priority interrupt
¢ 32-bit transfer doubles throughput

Example: 128 16-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 16 words/burst) + 1] = 520 cycles

Example: 64 32-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 8 words/burst) + 1] = 264 cycles

DMA vs. CPU Access Arbitration

¢ DMA has priority over CPU
< If a multi-cycle CPU access is already in
progress, DMA stalls until current CPU
access finishes
¢ The DMA will interrupt back-to-back CPU
accesses

¢ Can the CPU be locked out?

¢ Generally No!

¢DMA is multi-cycle transfer; CPU will sneak
in an access when the DMA is accessing the
other end of the transfer (e.g. while DMA
accesses destination location, the CPU can
access the source location)

8-10 TMS320F28004x Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

DMA Driverlib

Functions

DMA Driverlib Functions

¢ Initialize the DMA controller (hard reset)
DMA_initController();

¢ Set DMA channel priority mode (round-robin or CH1 high priority)
DMA_setPriorityMode(chlIsHighPri);

¢ Configures the DMA channel trigger and mode
DMA_configMode(base, trigger, config);

¢ Enable /disable peripheral trigger for DMA transfer
DMA_[enable|disable]Trigger(base);

¢ Start / stop DMA channel (‘start’ — wait for first trigger event)
DMA_[start|stop]Channel(base);

* 6 o o

chllsHighPri value is ‘false’ for round-robin or ‘true’ for CH1 high priority
base is the DMA channel base address: DMA_CHx_BASE (x =1 to 6)
trigger value is located in dma.h — see table on next slide for values
config value is the logical OR of:

¢ DMA_CFG_ONESHOT x (x = DISABLE or ENABLE)
+ DMA_CFG_CONTINUOUS_ x (x = DISABLE or ENABLE)
+ DMA_CFG_SIZE_xBIT (x = 16 or 32)

Peripheral Interrupt Trigger Sources
DMA_configMode(base, trigger, config);
—

DMA_TRIGGER_SOFTWARE

DMA_TRIGGER_XINT2

DMA_TRIGGER_EPWM7SOCB

DMA_TRIGGER_SPIATX

DMA_TRIGGER_ADCA1

DMA_TRIGGER_XINT3

DMA_TRIGGER_EPWM8SOCA

DMA_TRIGGER_SPIARX

DMA_TRIGGER_ADCA2

DMA_TRIGGER_XINT4

DMA_TRIGGER_EPWM8SOCB

DMA_TRIGGER_SPIBTX

DMA_TRIGGER_ADCA3

DMA_TRIGGER_XINT5

DMA_TRIGGER_TINTO

DMA_TRIGGER_SPIBRX

DMA_TRIGGER_ADCA4

DMA_TRIGGER_EPWM1SOCA

DMA_TRIGGER_TINT1

DMA_TRIGGER_LINATX

DMA_TRIGGER_ADCAEVT

DMA_TRIGGER_EPWM1SOCB

DMA_TRIGGER_TINT2

DMA_TRIGGER_LINARX

DMA_TRIGGER_ADCB1

DMA_TRIGGER_EPWM2SOCA

DMA_TRIGGER_ECAP1

DMA_TRIGGER_FSITXA

DMA_TRIGGER_ADCB2

DMA_TRIGGER_EPWM2SOCB

DMA_TRIGGER_ECAP2

DMA_TRIGGER_FSIRXA

DMA_TRIGGER_ADCB3

DMA_TRIGGER_EPWM3SOCA

DMA_TRIGGER_ECAP3

DMA_TRIGGER_CANAIF1

DMA_TRIGGER_ADCB4

DMA_TRIGGER_EPWM3SOCB

DMA_TRIGGER_ECAP4

DMA_TRIGGER_CANAIF2

DMA_TRIGGER_ADCBEVT

DMA_TRIGGER_EPWM4SOCA

DMA_TRIGGER_ECAPS

DMA_TRIGGER_CANAIF3

DMA_TRIGGER_ADCC1

DMA_TRIGGER_EPWM4SOCB

DMA_TRIGGER_ECAP6

DMA_TRIGGER_CANBIF1

DMA_TRIGGER_ADCC2

DMA_TRIGGER_EPWMS5SOCA

DMA_TRIGGER_ECAP7

DMA_TRIGGER_CANBIF2

DMA_TRIGGER_ADCC3

DMA_TRIGGER_EPWM5SOCB

DMA_TRIGGER_SDFM1FLT1

DMA_TRIGGER_CANBIF3

DMA_TRIGGER_ADCC4

DMA_TRIGGER_EPWM6SOCA

DMA_TRIGGER_SDFM1FLT2

DMA_TRIGGER_ADCCEVT

DMA_TRIGGER_EPWM6SOCB

DMA_TRIGGER_SDFMI1FLT3

DMA_TRIGGER_XINT1

DMA_TRIGGER_EPWM7SOCA

DMA_TRIGGER_SDFM1FLT4

TMS320F28004x Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

DMA Driverlib Functions

¢ Configure the source and destination addresses of the DMA channel

DMA_configAddresses(base, const void * destAddr, const void *
srcAddr);

¢ Configures the burst size and the address step size
DMA_configBurst (base, size, srcStep, destStep);

¢ Configures the transfer size and the address step size
DMA_configTransfer (base, transferSize, srcStep, destStep);

¢ Set the channel interrupt mode
DMA_setIinterruptMode(base, mode);

¢ Enable / disable DMA channel CPU interrupt
DMA_[enable|disable]interrupt (base);

base is the DMA channel base address: DMA_CHx_BASE (x =1 to 6)
destAddr is a pointer to the destination address

srcAddr is a pointer to the source address

size values is the number of words per burst (range from 1 to 32 words)
srcStep and destStep value is the step size (signed values from -4096 to 4095)
transferSize value is the number of bursts per transfer (max value of 65536)
mode value is: DMA_INT_AT_BEGINNING or DMA_INT_AT_END

® 6 6 06 0 0 o

8-12 TMS320F28004x Microcontroller Workshop - Direct Memory Access

Lab 8: Servicing the ADC with DMA

Lab 8: Servicing the ADC with DMA

» Objective

The objective of this lab exercise is to become familiar with operation of the DMA. In the previous
lab exercise, the CPU was used to store the ADC conversion result in the memory buffer during
the ADC ISR. In this lab exercise the DMA will be configured to transfer the results directly from
the ADC result registers to the memory buffer. ADC channel A0 will be buffered ping-pong style
with 50 samples per buffer. As an operational test, the 2 kHz, 25% duty cycle symmetric PWM
waveform (ePWM1A) will be displayed using the graphing feature of Code Composer Studio.

Lab 8: Servicing the ADC with DMA

ePWM1 ADC DMA
TB Counter ADCINAO | RESULTO
Compare
Action Qualifier
]uvr\lljl%er ?
; data
memory

ePWM2 triggering ADC on period
match using SOCA trigger every

20 ps (50 kHz)

CPU writes dat
AN to Ad(“fgljsfjur?ng
DMA ISR
. . data
Objective: memory
Configure the DMA to buffer Displa
ADCA Channel A0 ping-pong usinng%/:S

style with 50 samples per buffer

> Procedure

Open the Project

1. A project named Lab8 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open. Click Browse... next to the “Select search-directory” box. Navigate to:
C:\F28004x\Labs\Lab8\project and click Select Folder. Then click Finish to
import the project. All build options have been configured the same as the previous lab
exercise. The files used in this lab exercise are:

TMS320F28004x Microcontroller Workshop - Direct Memory Access 8-13

Lab 8: Servicing the ADC with DMA

Adc.c EPwm.c
CodeStartBranch.asm Gpio.c
Dac.c Lab 8.cmd
Defaultlsr_8.c Main_8.c
device.c SineTable.c
Dma_8.c Watchdog.c
ECap.c

Inspect Lab_8.cmd

2. Openand inspect Lab_8.cmd. Notice that a section called “dmaMemBufs” is being
linked to RAMGS2. This section links the destination buffer for the DMA transfer to a DMA
accessible memory space. Close the inspected file.

Setup DMA Initialization

The DMA controller needs to be configured to buffer ADC channel AO ping-pong style with 50
samples per buffer. One conversion will be performed per trigger with the ADC operating in
single sample mode.

3. Edit Dma_8.c to implement the DMA operation as described in the objective for this lab
exercise:

e Enable the peripheral interrupt trigger for channel 1 DMA transfer
e Generate an interrupt at the beginning of a new transfer
e Enable the DMA channel CPU interrupt

Note: the DMA has been configured for an ADC interrupt “ADCAL" to trigger the start of a
DMA CHL1 transfer. Additionally, the DMA is set for 16-bit data transfers with one burst
per trigger and auto re-initialization at the end of the transfer. At the end of the code the
channel is enabled to run.

4. Open Main_8.c and add a line of code in main() to call the InitDma() function.
There are no passed parameters or return values. You just type

Initbma(Q);

at the desired spotin main().

Setup PIE Interrupt for DMA

Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the previous lab exercise, the ADC
generated an interrupt to the CPU, and the CPU read the ADC result register in the ADC ISR.
For this lab exercise, the ADC is instead triggering the DMA, and the DMA will generate an
interrupt to the CPU. The CPU will read the ADC result register in the DMA ISR.

5. Edit Adc.c to comment out the code used to enable the ADCAL interrupt in PIE group 1.
This is no longer being used. The DMA interrupt will be used instead.

6. Using the “PIE Interrupt Assignment Table” find the location for the DMA Channel 1
interrupt “INT_DMA_CH1” and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

7. Modify the end of Dma_8. c to do the following:

TMS320F28004x Microcontroller Workshop - Direct Memory Access

Lab 8: Servicing the ADC with DMA

e Add the Driverlib function to re-map the DMA_CH1 interrupt signal to call the ISR
function. (Hint: #define name in driverlib/inc/hw_ints.h and label name
in Defaultlsr_8.c)

e Add the Driverlib function to enable the appropriate PIEIER and core IER

8. Inspect Defaultlsr_8.c and notice that this file contains the DMA interrupt service
routine which implements the ping-pong style buffer. Save all modified files.

Build and Load

9. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

10. Click the “Debug” button (green bug). The CCS Debug perspective view should open,
the program will load automatically, and you should now be at the start of main(). If the
device has been power cycled since the last lab exercise, be sure to configure the boot
mode to EMU_BOOT_RAM using the Scripts menu.

Run the Code — Test the DMA Operation

Note: For the next step, check to be sure that the jumper wire connecting PWMZ1A (pin #80) to
ADCINAO (pin #70) is in place on the LaunchPad.

11. Run the code (real-time mode). Open and watch the memory browser update. Verify
that the ADC result buffer contains updated values.

12. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools > Graph > Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type

16-bit unsigned integer

Sampling Rate (Hz) 50000
Start Address AdcBuf
Display Data Size 50
Time Display Unit us

Select OK to save the graph options.

13. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric PWM
waveform. Notice that the results match the previous lab exercise.

14. Halt the code.

Terminate Debug Session and Close Project

15. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

TMS320F28004x Microcontroller Workshop - Direct Memory Access 8-15

Lab 8: Servicing the ADC with DMA

16. Next, close the project by right-clicking on Lab8 in the Project Explorer window and
select Close Project.

End of Exercise

8-16 TMS320F28004x Microcontroller Workshop - Direct Memory Access

Control Law Accelerator

Introduction

This module explains the operation of the control law accelerator (CLA). The CLA is an
independent, fully programmable, 32-bit floating-point math processor. It executes algorithms
independent of the CPU. This extends the capabilities of the C28x CPU by adding parallel
processing. The CLA has direct access to the ADC result registers. Additionally, the CLA has
access to all ePWM, high-resolution PWM, eCAP, eQEP, CMPSS, DAC, SDFM, PGA, SPI, LIN,
FSI, PMBUS, CLB and GPIO data registers. This allows the CLA to read ADC samples “just-in-
time” and significantly reduces the ADC sample to output delay enabling faster system response
and higher frequency operation. The CLA responds to peripheral interrupts independently of the
CPU. Utilizing the CLA for time-critical tasks frees up the CPU to perform other system,

diagnostics, and communication functions concurrently. Additionally, the CLA has the capability
of running a background task.

Module Objectives

Module Objectives

¢ Explain the purpose and operation of the
Control Law Accelerator (CLA)

¢ Describe the CLA initialization procedure

¢ Discuss the CLA regqisters, Driverlib
functions, and programming flow

TMS320F28004x Microcontroller Workshop - Control Law Accelerator 9-1

Control Law Accelerator (CLA)

Chapter Topics

CONEIOl LAW ACCEIEIALONttt e e e e sb e e e e e e e e e snabbeeeaaaeeas 9-1
Control Law ACCEIErator (CLA) ...ooii ettt e e e e e e e e anbeee s 9-3
(O I 2] o Tod g D= Vo - o o RSP 9-4

(O N = T T PP PPP 9-4
CLA Memory and REQISIEr ACCESSuuuriiiieeeiiiiiieiee e e e e ss sttt e e e e e e e ssstnaeeeeeaesssnnranneeeeeesnanes 9-5
CLA Control and EXECULION REQISTEISuvviieeiiiiiiiiieie e sesiiie e e e e e s sstereeee e e e s s snnreareeeeeeeeannes 9-6
L=] S T [[PP PPRTPR PP 9-6
101 1T T I o o = PP TP TR 9-7

2 FTod (o | o]0 oo [=T PP PTTT PR 9-8
V[T o To] g YA @0] a1 T[] =i o] o F PP RPRT PR 9-9
B2 1 QYT (o TP PRTTT PP 9-10
CLA INIHIANZATION ..ttt ettt e e e e e ab bt e e e e e e e e snbbrreeeaaeeeannes 9-10
Enabling CLA SUPPOItiN CCS ...cociiiiieieee ettt e e e s st e e e e e e s s snsbraeeeaeeeeeannes 9-11
CLA TaSK C ProgramiMiNgueeeeeeeeiiieereeeeeeessissteseeeeeeesssnssssnssssesssassssesesesesssnnsssseeeeeessannn 9-11
C2000Ware — CLA SOftWare SUPPOITuuiieeeiiiiiiiieeieeesssitieeeeeeeesssssteeereeessssssnneeeeeesseannes 9-13
CLA Compiler Scratchpad MEMOIY AFC@.........cccuurieeieeeiiiiiiiieeeee e e s ssnteee e e e s e snnrraeeeeeeeenanes 9-13
CLA Initialization Code EXamPIE........cc.uuiiiiieiei it e e s s e e e e e annes 9-14
CLA Task C Code EXAMPIEeeeiieeeiiiiiieie e e ettt e e s e s e e e e e e s st e e e e e e e s sntnaeeeeeeeenannes 9-14
CLA COUE DEDUGGING ettt ettt e e e e ettt e e e e e e e snnbebeeeaaeeeaannes 9-15
Lab 9: CLA Floating-Point FIR Filtercooiiiiiiiiiee e 9-16

TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)

C28x CPU
ADC PWM
CLA

JVAVAVAY

J T

UL
HIHH

¢ The CLA is a 32-bit floating-point processor that responds
to peripheral triggers and executes code independent of
the main CPU

¢ Designed for fast trigger response and oriented toward
math computations

¢ Direct access to ePWM, HRPWM, eCAP, eQEP, ADC, DAC,
CMPSS, PGA, SDFM, SPI, LIN, FSI, PMBus, CLB, and GPIO

¢ Frees up the CPU for other tasks (communications,
systems, and diagnostics)

The CLA is an independent 32-bit floating-point math hardware accelerator which executes real-
time control algorithms in parallel with the main C28x CPU, effectively doubling the computational
performance. The CLA responds directly to peripheral triggers, which can free up the C28x CPU
for other tasks, such as communications and diagnostics. With direct access to the various
control and communication peripherals, the CLA minimizes latency, enables a fast trigger
response, and avoids CPU overhead. Also, with direct access to the ADC results registers, the
CLA is able to read the result on the same cycle that the ADC sample conversion is completed,
providing “just-in-time” reading, which reduces the sample to output delay.

TMS320F28004x Microcontroller Workshop - Control Law Accelerator 9-3

Control Law Accelerator (CLA)

CLA Block Diagram
CLA Block Diagram

Task Triggers
(Peripheral Interrupts)

Task1 Trigger
Task2 Trigger
Task3 Trigger

Task4 Trigger CLA
MPERINT1-8

Taskb Trigger Control & Execution
Registers

INT11 | C28X
INT12| CPU

CLA_INT1-8
LVF, LUF

PIE

Task6 Trigger
Task7 Trigger
Task8 Trigger

i

CLA Program Bus

CLA Data Bus

Program Data MSG RAMs Registers
CPU to CLA ePWM | eCAP ADC GPIO

RAM RAM CLAto CPU | | HRPWM | eQEP SPI PMBus
CMPSS | DAC LIN CLB
SDEM PGA FSI

CLA Tasks

CLA Tasks

Task Triggers
(Peripheral Interrupts)

Taskl Trigger
Task?2 Trigger
Task3 Trigger

Task4 Trigger C LA
MPERINT1-8

Task5 Trigger Control & Execution
Registers

INT11 [C28X
INT12 | CPU

CLA_INT1-8
LVF, LUF

PIE

Task6 Trigger
Task7 Trigger
Task8 Trigger

e

¢ A Task is similar to an interrupt service routine
¢ CLA supports 8 tasks (Task1-8)

¢ Atask is started by a peripheral interrupt trigger
¢ Triggers are enabled in the CLAITASKSRCSELX register

¢ When atrigger occurs the CLA begins execution at
the associated task vector entry (MVECT1-8)

¢ Once atask begins it runs to completion (no nesting)
¢ Capable of running a continuous background task

Programming the CLA consists of initialization code, which is performed by the CPU, and tasks.
A task is similar to an interrupt service routine, and once started it runs to completion. Each task

TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

is capable of being triggered by a variety of peripherals without CPU intervention, which makes
the CLA very efficient since it does not use interrupts for hardware synchronization, nor must the
CLA do any context switching. Unlike the traditional interrupt-based scheme, the CLA approach
becomes deterministic. The CLA supports eight independent tasks and each is mapped back to
an event trigger. Also, the CLA is capable of running a continuous background task. Since the
CLA is a software programmable accelerator, it is very flexible and can be modified for different
applications.

CLA Memory and Register Access

CLA Memory and Register Access
CLA Program Memory Message RAMs
+ Contains CLA program code + Used to pass data between
+ Mapped to the CPU at reset the CPU and CLA
+ Initialized by the CPU + Always mapped to both
_\/ y the CPU and CLA
LSO -LS7RAM LSO -LS7 RAM PF1, PF2, PF3, and PF8
Program Data MSG RAMs Registers
CPU to CLA ePWM [eCAP ADC | GPIO
RAM RAM CLAto CPU HRPWM | eQEP SPI__ | PMBus
(2Kw each) (2Kw each) (128w/128w) CMPSS | DAC LIN CLB
SDFM | PGA FSI
\ J
CLA Data Memory /
+ Contains variables and coefficients
used by the CLA program code Peripheral Register Access
+ Mapped to the CPU at reset + Provides direct access to
+ Initialized by CPU peripherals

The CLA has access to the LSx RAM blocks and each memory block can be configured to be
either dedicated to the CPU or shared between the CPU and CLA. After reset the memory block
is mapped to the CPU, where it can be initialized by the CPU before being shared with the CLA.
Once it is shared between the CPU and CLA it then can be configured to be either program
memory or data memory. When configured as program memory it contains the CLA program
code, and when configured as data memory it contains the variable and coefficients that are used
by the CLA program code. Additionally, dedicated message RAMs are used to pass data
between the CPU and CLA, and CLA and CPU.

TMS320F28004x Microcontroller Workshop - Control Law Accelerator 9-5

Control Law Accelerator (CLA)

CLA Control and Execution Registers

CLA Control and Execution Registers

CLA1TASKSRCSELx MIFR MIER

Pl Sy E AN
Task 115 CLA_INT1-8
o ° . CLA LVF, LUF piE IINT1L C28x
Source . 4 O
: : . Core INT12 | CPU
Triggers Nl iy N
= MRO
- MR1
MIFRC MARO

MVECTBGRND MR3

[MPC }+— MVECT1-8|—

Program l Data
Memory CLA Program Bus CLA Data Bus Memory

CLA1TASKSRCSELX — Task Interrupt Source Select (Task 1-8) & MPC — 16-bit Program Counter (initialized by
MVECT1-8 — Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) apprapriate MVECTX register ar MVECTBGRND)
MVECTBGRND — Background Task Vector ¢ MVECTBGRNDACTIVE — saves return address

LSXCLAPGM — Memory Map Configuration (LSO — LS7 RAM) # MRO-3 — CLA Floating-Point Result Registers (32 bit)
¢ MARO-1 — CLA Auxiliary Registers (16 bit)

* & o o

Task Trigger

Task Trigger Driverlib Functions

CLA1TASKSRCSELX MIFR MIER

5 \ 11 _
Task |—r L
[] (]
Source . ° : > CLA Core
Triggers N 0] N

wiFrc LW rgger]

¢ Configure the CLA task trigger source (CLAITASKSRCSELX)
CLA setTriggerSource(taskNumber, trigger);

¢ Enable / disable CLA task(s) interrupt(s) (configures MIER)
CLA_[enable|disable]Tasks(base, taskFlags);

¢ taskNumber parameter indicates which task is being configured:
¢ CLA TASK x (x=1to8)
¢ (trigger parameter is the interrupt trigger source — see next slide
¢ base is the CLA base address: CLA1_BASE
¢ taskFlags parameter value is the bitwise OR of:
¢ CLA TASKFLAG_x (x=1to 8) or CLA_TASKFLAG_ALL

9-6 TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Task Interrupt Trigger Sources
CLA _setTriggerSource(taskNumber, tri%ger);

CLA_TRIGGER_SOFTWARE

CLA_TRIGGER_ADCCEVT

CLA_TRIGGER_TINT1

CLA_TRIGGER_SDFMI1DRINT2

CLA_TRIGGER_ADCA1

CLA_TRIGGER_XINT1

CLA_TRIGGER_TINT2

CLA_TRIGGER_SDFMI1DRINT3

CLA_TRIGGER_ADCA2

CLA_TRIGGER_XINT2

CLA_TRIGGER_ECAPLINT

CLA_TRIGGER_SDFMI1DRINT4

CLA_TRIGGER_ADCA3

CLA_TRIGGER_XINT3

CLA_TRIGGER_ECAP2INT

CLA_TRIGGER_PMBUSAINT

CLA_TRIGGER_ADCA4

CLA_TRIGGER_XINT4

CLA_TRIGGER_ECAP3INT

CLA_TRIGGER_SPITXAINT

CLA_TRIGGER_ADCAEVT

CLA_TRIGGER_XINT5

CLA_TRIGGER_ECAP4INT

CLA_TRIGGER_SPIRXAINT

CLA_TRIGGER_ADCB1

CLA_TRIGGER_EPWMLIINT

CLA_TRIGGER_ECAPSINT

CLA_TRIGGER_SPITXBINT

CLA_TRIGGER_ADCB2

CLA_TRIGGER_EPWM2INT

CLA_TRIGGER_ECAPGINT

CLA_TRIGGER_SPIRXBINT

CLA_TRIGGER_ADCB3

CLA_TRIGGER_EPWMSINT

CLA_TRIGGER_ECAP7INT

CLA_TRIGGER_LINAINT1

CLA_TRIGGER_ADCB4

CLA_TRIGGER_EPWM4INT

CLA_TRIGGER_EQEP1INT

CLA_TRIGGER_LINAINTO

CLA_TRIGGER_ADCBEVT

CLA_TRIGGER_EPWMSINT

CLA_TRIGGER_EQEP2INT

CLA_TRIGGER_CLA1PROMCRC

CLA_TRIGGER_ADCC1

CLA_TRIGGER_EPWMBGINT

CLA_TRIGGER_ECAPGINT2

CLA_TRIGGER_FSITXAINT1

CLA_TRIGGER_ADCC2

CLA_TRIGGER_EPWM7INT

CLA_TRIGGER_ECAP7INT2

CLA_TRIGGER_FSITXAINT2

CLA_TRIGGER_ADCC3

CLA_TRIGGER_EPWMSINT

CLA_TRIGGER_SDFMI1INT

CLA_TRIGGER_FSIRXAINT1

CLA_TRIGGER_ADCC4

CLA_TRIGGER_TINTO

CLA_TRIGGER_SDFM1DRINT1

CLA_TRIGGER_FSIRXAINT2

¢ Select ‘'CLA_TRIGGER_SOFTWARE' if task is unused or software triggered (default value)

Software Trigger

Software Triggering a Task

¢ Tasks can also be started by a software
trigger using the CPU

15-8

7 6

¢ Method #1: Write to Interrupt Force Register (MIFRC)

D 4 3 2

1 0

reserved

INT8 | INT7

INT6 | INT5 | INT4 | INT3

INT2 | INT1

CLA forceTask(base, taskFlags);

base is the CLA base address: CLA1_BASE

+ taskFlags value is the bitwise OR of the tasks:
CLA_TASKFLAG_x (x=1to 8) or CLA_TASKFLAG_ALL

¢ Method #2: Use IACK instruction

CLA_[enable|disable]IACK(base);
Then trigger the task with the assembly instruction:

asm("" 1ACK #<Task>");

¢ For example, to trigger TASK4:

asm(* 1ACK #0x0008™);

¢ More efficient — function does not require EALLOW

TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Background Task

Background Task

¢ Option to run 8 tasks or 7 tasks and 1
background task
¢ Task 8 can be set to be the background task
® While Tasks 1-7 service peripheral triggers in the foreground
¢ Runs continuously until disabled or device/soft reset
¢ Can be triggered by a peripheral or software

¢ Tasks 1 - 7 can interrupt background task in priority
order (Taskl is highest, Task7 is lowest)

¢ Can make portions of background task
uninterruptible, if needed
¢ Background task useful for continuous
functions such as communications and clean-up
routines

Background Task Registers

¢ MVECTBGRND register contains the background task vector
¢ Branch return address is saved to MVECTBGRNDACTIVE register
¢ Address gets popped to the MPC when execution returns

MVECTBGRNDACTIVE
MVECTBGRND

[MPC — MVECT1-8-H CLA

Program l Core
Memory CLA Program Bus

*

Enable / disable background task
CLA_[enable|disable]BackgroundTask(base);

¢ Start the background task (provided there are no other pending tasks)
CLA_startBackgroundTask(base);

Enable / disable background task hardware trigger
CLA_[enable|disable]HardwareTrigger(base);
+ Trigger source for the background task selected by CLAITASKSRCSELx

base is the CLA base address: CLA1_BASE

4

*

9-8 TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Background Task Interrupts

¢ By default background tasks are interruptible
¢ Highest priority pending task executes first

¢ When task completes, and there are no other pending interrupt,
execution returns to the background task

¢ Sections of background task can be made uninterruptible
¢ Using compiler intrinsics:
e _disable_interrupts(); // MSETC BGINTM
¢ __enable_interrupts(); //MCLRC BGINTM

{

// Code below is interruptible

1/
CODE GOES HERE. .. Specifies that this is a
7/ “background” task instead
// Make this portion un-interruptible of a regular interrupt
7/

__disable_interrupts(Q);
CODE GOES HERE. ..

__enable_interrupts();

//
// Code below is interruptible

//
CODE GOES HERE. ..

Memory Configuration

Memory Config Driverlib Functions

Program CLA Data
Memory CLA Program Bus Core CLA Data Bus Memory

¢ Set the LSx memory RAM configuration (CPU only or CPU & CLA)
MemCfg_setLSRAMMasterSel(ramSection, masterSel);

¢ Set the CLA memory RAM configuration type (LSx = Data or Program)
MemCfg_setCLAMemType(ramSections, claMemType);

¢ ramSection parameter value is:
¢ MEMCFG_SECT LSx (x=0to7)

¢ masterSel value is RAM section dedicated to the CPU or shared between the
CPU and the CLA:

¢ MEMCFG_LSRAMMASTER_CPU_ONLY

¢ MEMCFG_LSRAMMASTER_CPU_CLA1
¢ ramSections parameter value is an OR of:

¢ MEMCFG_SECT_LSx (x=0to 7)

¢ claMemType value is RAM section is configured as CLA data memory or CLA
program memory:
¢ MEMCFG_CLA MEM_DATA or MEMCFG_CLA_MEM_PROGRAM

TMS320F28004x Microcontroller Workshop - Control Law Accelerator 9-9

Control Law Accelerator (CLA)

Task Vector

¢ Task interrupt vector registers (MVECT1 to MVECTS8)

¢ Map CLA task interrupt vector (MVECTX)

¢ Map CLA background task interrupt vector (MVECTBGRND)

¢ base is the CLA base address: CLA1_BASE
¢ clalntVect parameter is the CLA interrupt vector value:

¢ claTaskAddr is the start address of the task code

Task Vector Driverlib Functions

contain the start address for each task

MVECTBGRNDACTIVE
MVECTBGRND

[MPC }— MVECT1-8H CLA

Program l Core
Memory CLA Program Bus

CLA_mapTaskVector(base, claintVect, claTaskAddr);

CLA_mapBackgroundTaskVector(base, claTaskAddr);

¢ CLA_MVECT x (x=1to8)

CLA Initialization

CLA Initialization

Performed by the CPU during software initialization

=

6.

Copy CLA task code from flash to CLA program RAM
Initialize CLA data RAMs, as needed

. Populate with data coefficients, constants, etc.

Configure the CLA registers

Enable the CLA clock — SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLA1);
Populate the CLA task interrupt vectors (MVECT1-8 registers)

Select the desired task interrupt sources (CLAITASKSRCSELX registers)

If desired, enable IACK instruction to start tasks using software

Map CLA program RAM and data RAMs to CLA space

* ¢ o o

Configure desired CLA task completion interrupts in the PIE

Enable CLA task triggers in the MIER register

Initialize the desired peripherals to trigger the CLA tasks

Data can passed between the CLA and CPU via message RAMs or allocated CLA Data RAM

TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Enabling CLA Supportin CCS

Enabling CLA Support in CCS

When creating a new CCS project, choosing a device
variant that has the CLA will automatically select this
option, so normally no user action is required

Set the “Specify CLA support” project option to ‘cla2’ ——\

we Properties for Example

Processor Options

Resource
General
v Build Configuration: Debug [Active |
~ L2000 Compiler
Processor Options
Optimization Processor version (--silicon_versian, -v)
Include Options

Performance Advisor
Predefined Symbols
Advanced Options

] unified memaory (--unified_memaory, -mt)

Specify CLA support (--cla_support)

C2000 Linker Specify floating point support {--float_support)
C2000 Hex Utility [Disabl
Debug Spealy support for enhanced integer divison (--idiv_support)

Project Matures Specify TMU suppaort (--tmu_support)

Specify VCU support (~-veu_support)

28

] Option deprecated, set by default (--large_memary_madel, -mi)

cla2

fpu32

trmud

veud

~| | Manage Configurations...

CLA Task C Programming

TYPE CPU and FPU
char 16 bit
short 16 bit
int 16 bit
long 32 bit
long long 64 bit
float 32 bit
double 32 bit
long double 64 bit
pointers 32 bit

CLA
16 bit
16 bit
32 bit
32 bit
32 bit
32 bit
32 bit
32 bit
16 bit

CLA Task C Programming

Language Implementation

¢ Supports C only (no C++ or GCC extension support)
¢ Different data type sizes than C28x CPU and FPU

¢ CLA architecture is designed for 32-bit data types
¢ 16-bit computations incur overhead for sign-extension
¢ 16-bit values mostly used to read/write 16-bit peripheral registers
¢ Thereis no SW or HW support for 64-bit integer or floating point

TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Task C Language Restrictions @of2

¢ No initialization support for global and static
local variables

intlé_t x; // valid
intlé t x=5; // not valid

¢ Initialized global variables should be declared in a
.c file instead of the .clafile

.C file: .Clafile:
intlé_t x=5; extern intlé_t x;

¢ For initialized static variables, easiest solution is to
use an initialized global variable instead

¢ No recursive function calls
¢ No function pointers

CLA Task C Language Restrictions ot

¢ No support for certain fundamental math
operations

¢ integer division: z = x/y;
¢ modulus (remainder): z = x%y;
¢ unsigned 32-bit integer compares

uint32_t 1; if@G < 10) {.} // not valid
int32_t i; if(<10) {.} // valid
uintle_t i; if@ < 10) {.} // valid
intle t i; if(i <10) {.} // valid
float32_t x; if(x < 10) {.} // valid

¢ No standard C math library functions, but Tl
provides some function examples (next slide)

9-12 TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

C2000Ware — CLA Software Support
C2000Ware™ - CLA Software Support

¢ Tl provides some examples of floating-point math CLA functions

| &% warkspace v - T Resource Expiarer - Code Compaser Studia = =] x
(((((

Project Run Sripts Window Help

|File Eda View M 3
- =] %

| il viD
|

Resource Explorer :‘Uﬁ“‘”

“ | Ea 1 & atan2
mples

o —_— 1 (& atan2pPU
- Vo o
CLAmath B | Beos

Examples Eii. s

CLA Compiler Scratchpad Memory Area

CLA Compiler Scratchpad Memory Area

¢ For local and compiler generated temporary variables
¢ Static allocation, used instead of a stack
¢ Defined in the linker command file

Lab.cmd

MEMORY
{

3
SECTIONS
{

/*** CLA Compiler Required Sections ***/
.scratchpad : > RAMLSO, PAGE = 1

TMS320F28004x Microcontroller Workshop - Control Law Accelerator 9-13

Control Law Accelerator (CLA)

CLA Initialization Code Example

CLA Initialization Code Example

¢ Defines data types and
Lab.h / special registers specific
#include “driverlib.h" // cla.h «— to the CLA
#include “f28004x_device.h" e——

¢ Defines register bit field
. structures
extern interrupt void ClalTaskl1();

extern interrupt void ClalTask2();

¢ CLAtask prototypes are
4// prefixed with the

‘interrupt’ keyword

extern interrupt void ClalTask8();

¢ CLAtask symbols are
visible to all C28x CPU
\and CLA code

Cla.c
#include "Lab.h"

// Initialize CLA task interrupt vectors
CLA_mapTaskVector(CLA1_BASE, CLA_MVECT_1, (uintl6_t)&ClalTaskl);
CLA_mapTaskVector (CLA1_BASE, CLA _MVECT_2, (uintl6_t)&ClalTask2);

CLA _mapTaskVector(CLA1 _BASE, CLA MVECT 7, (uintl6_t)&ClalTask7);
CLA_mapTaskVector(CLA1_BASE, CLA MVECT_8, (uintl6_t)&ClalTask8);

CLA Task C Code Example
CLA Task C Code Example

ClaTasks_Ccla —o___

#include ""F28004x_device.h" — & .cla extension
#include "Lab.h" causes the c2000

c compiler to invoke
the CLA compiler

interrupt void ClalTaskl (void)

{

: ~& Bit Field peripheral
__mdebugstop1(Q); address definitions
xDeIz;y[O] = (float32_t)AdcaResultRegs.ADCRESULTO; > @ All code within this
Y = coeffs[4] * xDelay[4]; file i$ placed in the
xDelay[4] = xDelay[3]; section “ClalProg”
xDelay[1] = xDelay[0]; Ne CPeripheral
Y = Y + coeffs[0] * xDelay[0]; Register Header File
ClaFilteredoutput = (Uintl6_t)Y; references can be

used in CLA C and

interrupt void ClalTask2 (void)

assembly code

{ ~ & Closing braces are
replaced with
MSTOP instructions

when compiled

TMS320F28004x Microcontroller

Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Code Debugging
CLA Code Debugging

¢ The CLA and CPU are debugged from the same JTAG port
¢ You can halt, single-step, and run the CLA independent of the CPU

1. Insert a breakpoint in the CLA code
¢ Insert a MDEBUGSTOP1 instruction(s) in the code where desired then rebuild/reload
¢ In C code, can use asm(* MDEBUGSTOP1")
¢ When the debugger is not connected, the MDEBUGSTOP1 acts like an MNOP
2. Connect to the CLA target in CCS
¢ This enables CLA breakpoints
3. Runthe CPU target
¢ CLA task will trigger (via peripheral interrupt or software)
¢ CLA executes instructions until MDEBUGSTOPL1 is hit
4. Load the code symbols into the CLA context in CCS

¢ This allows source-level debug
¢ Needs to be done only once per debug session unless the .out file changes

5. Debug the CLA code
¢ Can single-step the code, or run to the next MDEBUGSTOP1 or to the end of the task
¢ If another task is pending, it will start at the end of the previous task

6. Disconnect the CLA target to disable CLA breakpoints, if desired

Note: when using the legacy MDEBUGSTOP instruction, a CLA single step executes one pipeline cycle,
whereas a CPU single step executes one instruction (and flushes the pipeline); see TRM for details

TMS320F28004x Microcontroller Workshop - Control Law Accelerator 9-15

Lab 9: CLA Floating-Point FIR Filter

Lab 9: CLA Floating-Point FIR Filter

» Objective

The objective of this lab exercise is to become familiar with operation and programming of the
CLA. In this lab exercise, the ePWM1A generated 2 kHz, 25% duty cycle symmetric PWM
waveform will be filtered using the CLA. The CLA will directly read the ADC result register and a
task will run a low-pass FIR filter on the sampled waveform. The filtered result will be stored in a
circular memory buffer. Note that the CLA is operating concurrently with the CPU. As an
operational test, the filtered and unfiltered waveforms will be displayed using the graphing feature
of Code Composer Studio.

Lab 9: CLA Floating-Point FIR Filter

ePWML1 ADC CLA
TB Counter ADCINAO | RESULTO ClalTaskl
Compare ClalTask2
Action Qualifier :
Jumper i ClalTasks
ePWM2 triggering ADC on period
match using SOCA trigger every data
20 ps (50 kHz) memory
ePWM2
T
£
£ CPU copies
o resultto
o buffer during
o - CLAISR
= .
£ -
N =——
Display
using CCS

Recall that a task is similar to an interrupt service routine. Once a task is triggered it runs to
completion. In this lab exercise two tasks will be used. Task 1 contains the low-pass filter. Task
8 contains a one-time initialization routine that is used to clear (set to zero) the filter delay chain.

Procedure

Open the Project

1. A project named Lab9 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open. Click Browse... next to the “Select search-directory” box. Navigate to:
C:\F28004x\Labs\Lab9\project and click Select Folder. Then click Finish to
import the project. All build options have been configured the same as the previous lab
exercise. The files used in this lab exercise are:

TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

Adc.c EPwm.c

Cla 9.c 28004x_globalvariabledefs.c
ClaTasks C.cla 28004x_headers_nonbios.cmd
CodeStartBranch.asm Gpio.-c

Dac.c Lab 9.cmd

Defaultlsr_9 10.c Main_9.c

device.c SineTable.c

Dma.c Watchdog-c

ECap.c

Project Build Options and Enabling CLA Support in CCS

2. Inthis lab exercise the Bit Field Header Files are used for reading the ADC result register
in the CLA task file (ClaTasks_C.cla). We need to setup the include search path to
include the bit field header files. Open the build options by right-clicking on Lab9 in the
Project Explorer window and select “Properties”. Under “C2000 Compiler” select “Include
Options”. In the include search path box that opens (“Add dir to #include search
path”) click the Add icon. Then in the “Add directory path” window type:

${PROJECT_ROOT}/../../¥28004x_headers/include
Click OK to include the search path.

Note: from the bit field header files, ¥28004x_globalvariabledefs.c and
28004x_headers_nonbios.cmd have already been added to the project.

3. Next, we will confirm that CLA support has been enabled. Under “C2000 Compiler”
select “Processor Options” and notice the “Specify CLA support” is set to cla2. This
is needed to compile and assemble CLA code. Click Apply and Close to save and
close the Properties window.

Inspect Lab_9.cmd

4. Open and inspect Lab_9.cmd. Notice that a section called “ClalProg” is being linked
to RAMLS4. This section links the CLA program tasks to the CPU memory space. Two
other sections called “ClalDatal” and “ClalData?2” are being linked to RAMLS1 and
RAMLS2, respectively, for the CLA data. These memory spaces will be mapped to the
CLA memory space during initialization. Also, notice the two message RAM sections
used to pass data between the CPU and CLA.

We are linking CLA code directly to the CLA program RAM because we are not yet using
the flash memory. CCS will load the code for us into RAM, and therefore the CPU wiill
not need to copy the CLA code into the CLA program RAM. In the flash programming lab
exercise later in this workshop, we will modify the linking so that the CLA code is loaded
into flash, and the CPU will do the copy.

5. The CLA C compiler uses a section called .scratchpad for storing local and compiler
generated temporary variables. This scratchpad memory area is allocated using the
linker command file. Notice .scratchpad is being linked to RAMLSO. Close the
Lab_9.cmd linker command file.

Setup CLA Initialization

During the CLA initialization, the CPU memory block RAMLS4 needs to be configured as CLA
program memory. This memory space contains the CLA Task routines. A one-time force of the
CLA Task 8 will be executed to clear the delay buffer. The CLA Task 1 has been configured to

TMS320F28004x Microcontroller Workshop - Control Law Accelerator 9-17

Lab 9: CLA Floating-Point FIR Filter

run an FIR filter. The CLA needs to be configured to start Task 1 on the ADCAINTL1 interrupt
trigger. The next section will setup the PIE interrupt for the CLA.

6.

Open ClaTasks_C.cla and notice Task 1 has been configured to run an FIR filter.
Within this code the ADC result integer (i.e. the filter input) is being first converted to
floating-point, and then at the end the floating-point filter output is being converted back
to integer. Also, notice Task 8 is being used to initialize the filter delay line. The .cla
extension is recognized by the compiler as a CLA C file, and the compiler will generate
CLA specific code.

Edit Cla_9.c to implement the CLA operation as described in the objective for this lab
exercise:

e Set Task 1 peripheral interrupt trigger source to ADCA1

e Set Task 8 peripheral interrupt trigger source to SOFTWARE

e Disable the Background Task

e Enable the use of the IACK instruction to trigger a task

e Enable CLA Task 8 interrupt for one-time initialization routine (clear delay buffer)
e Enable CLA Task 1 interrupt

Note: the CLA has been configured for RAMLSO, RAMLS1, RAMLS2, and RAMLS4 memory
blocks to be shared between the CPU and CLA. The RAMLS4 memory block is mapped
to CLA program memory space, and the RAMLSO, RAMLS1 and RAMLS2 memory blocks
are mapped to CLA data memory space. Also, the RAMLSO memory block is used for the
CLA C compiler scratchpad. Notice that CLA Task 8 interrupt is disabled after the one-
time initialization routine (clear delay buffer) is completed.

Open Main_9.c and add a line of code in main() to call the InitCla() function.
There are no passed parameters or return values. You just type

InitClaQ;
at the desired spot inmain().

In Main_9.c comment out the line of code in main() that calls the InitbDma() function.
The DMA is no longer being used. The CLA will directly access the ADC RESULTO
register.

Setup PIE Interrupt for CLA

Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the Control Peripherals lab exercise
(i.e. ePWM lab), the ADC generated an interrupt to the CPU, and the CPU read the ADC result
register in the ADC ISR. Then in the DMA lab exercise, the ADC instead triggered the DMA, and
the DMA generated an interrupt to the CPU, where the CPU read the ADC result register in the
DMA ISR. For this lab exercise, the ADC is instead triggering the CLA, and the CLA will directly
read the ADC result register and run a task implementing an FIR filter. The CLA will generate an
interrupt to the CPU, which will store the filtered results to a circular buffer implemented in the
CLAISR.

10. Remember that in Adc.c we commented out the code used to enable the ADCA1

interrupt in PIE group 1. This is no longer being used. The CLA interrupt will be used
instead.

11. Using the “PIE Interrupt Assignment Table” find the location for the CLA Task 1 interrupt

“INT_CLA1_1” and fill in the following information:

TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

PIE group #: # within group:
This information will be used in the next step.
12. Modify the end of Cla_9.c to do the following:

e Add the Driverlib function to re-map the CLA1_1 interrupt signal to call the ISR
function. (Hint: #define name in driverlib/inc/hw_ints_h and label name
in Defaultlsr_9 10.c)

e Add the Driverlib function to enable the appropriate PIEIER and core IER

13. Open and inspect Defaultlsr_9 10.c. Notice that this file contains the CLA interrupt
service routine. Save all modified files.

Build and Load

14. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

15. Click the “Debug” button (green bug). The CCS Debug perspective view should open,
the program will load automatically, and you should now be at the start of main(). If the
device has been power cycled since the last lab exercise, be sure to configure the boot
mode to EMU_BOOT_RAM using the Scripts menu.

Run the Code — Test the CLA Operation

Note: For the next step, check to be sure that the jumper wire connecting PWMZ1A (pin #80) to
ADCINAO (pin #70) is in place on the LaunchPad.

16. Run the code (real-time mode). Open and watch the memory browser window update.
Verify that the ADC result buffer contains updated values.

17. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools > Graph - Dual Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Start Address A AdcBufFiltered

Start Address B AdcBuf

Display Data Size 50

Time Display Unit us

18. The graphical display should show the filtered PWM waveform in the Dual Time A display
and the unfiltered waveform in the Dual Time B display. You should see that the results
match the previous lab exercise.

19. Halt the code.

TMS320F28004x Microcontroller Workshop - Control Law Accelerator 9-19

Lab 9: CLA Floating-Point FIR Filter

Terminate Debug Session and Close Project

20. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

21. Next, close the project by right-clicking on Lab9 in the Project Explorer window and
select Close Project.

End of Exercise

TMS320F28004x Microcontroller Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

Lab 9 Reference: Low-Pass FIR Filter

Bode Plot of Digital Low Pass Filter
Coefficients: [1/16, 4/16, 6/16, 4/16, 1/16]

Sample Rate: 50 kHz

LowePass Filter Magnitude

o o o
= [a7] (]

o
(]

Magnitude (dimensionless)

a 0.5 1 1.5 2 245
Freguency (Hz) « 10

Lowi-Pass Filter Phase

-100

"o 200

Fhase (deg)

=300

|
0.4 1 14 2 245

-400 : : :
a .
Frequency (Hz) <10

TMS320F28004x Microcontroller Workshop - Control Law Accelerator 9-21

Lab 9: CLA Floating-Point FIR Filter

9-22 TMS320F28004x Microcontroller Workshop - Control Law Accelerator

System Design

Introduction

This module discusses various aspects of system design. Details of the emulation and analysis
block along with JTAG will be explored. Flash memory programming and the Code Security
Module will be described.

Module Objectives

Module Objectives

¢ JTAG Emulation
¢ Analysis and Diagnostic Capabilities

¢ Flash Configuration and

Memory Performance
¢ Flash Programming

¢ Dual Code Security Module (DCSM)

TMS320F28004x Microcontroller Workshop - System Design 10-1

Emulation and Analysis Block

Chapter Topics

SYSTEIM DESIGN ..ttt et e e e s e bt et e e e e e e e e abab e e e e e e e e e e anbbbeeeeaaeeeannbneeeas 10-1
Emulation and ANAlYSiS BIOCKuuiiiiiiiiiiiieei et 10-3
Analysis and Diagnostic Capabilitiesc..ueiiiiiiiie e 10-5
Flash Configuration and Memory PerformancCeoooouuiiiiiiieiiiiiiiiiieeeeee e 10-7
Flash Programiming ...ttt e e e e e et b bre e e e e e e e s nnbeeeeas 10-11
Dual Code Security MOAUIE (DCSM)ciiiiiiiiiiiiiiiee ettt a e e 10-13
Lab 10: Programming the FIash............oooriiiii e 10-17

10-2 TMS320F28004x Microcontroller Workshop - System Design

Emulation and Analysis Block

Emulation and Analysis Block

JTAG Emulation System

<+

Debug
Probe

Some Available Debug Probes

XDS100 CLASS -
BlackHawk:
Spectrum Digital:

XDS110 CLASS -
XDS200 CLASS -

BlackHawk:
Spectrum Digital:

USB100
XDS100

Texas Instruments: XDS110 33—

USB200
XDS200

System Under Test

SCAN IN

SCAN OUT

TMS320C2000

*

Texas Instruments

These debug probes are ultra-low cost and
open-design which can used to create your own

debug probe

This debug probe replaces the XDS100 class
while supporting a wider variety of standards

These debug probes offer a balance of low cost
with good performance compared to the
XDS100/XDS110 class debug probes

Note: XDS510 CLASS debug probes are not recommended (obsolete); and for C2000, XDS560 CLASS debug
probes are expensive and typically do not offer much advantage over the XDS200 CLASS debug probes

Distance between the header and the Laget.l
should be less than & inches (15.24 cm).

Emulation Connections to the Device

azv
47k0
TMS |«
33V
10kQ
101" — —
MCU 33v
Too" — —
TCK|«

4.7k

3.3 Ve e

A, TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead

TDO

RTCK

TCK

EMUD

TRST

TDIS

4 GND

| KEY]

GND

6

8

GND

10

12

GND

4.7 kQ

EMU1

L AM—33V

TMS320F28004x Microcontroller Workshop - System Design

10-3

Emulation and Analysis Block

Emulation Mode Driverlib Functions
Selects the behavior of the peripheral during emulation control

Driverlib Function

Options

CLAPROMCRC_setEmulationMode()

CLAPROMCRC_MODE_SOFT
CLAPROMCRC_MODE_FREE

CPUTimer_setEmulationMode()

CPUTIMER_EMULATIONMODE_STOPAFTERNEXTDECREMENT
CPUTIMER_EMULATIONMODE_STOPATZERO
CPUTIMER_EMULATIONMODE_RUNFREE

DMA_setEmulationMode()

DMA_EMULATION_STOP
DMA_EMULATION_FREE_RUN

ECAP_setEmulationMode()

ECAP_EMULATION_STOP
ECAP_EMULATION_RUN_TO_ZERO
ECAP_EMULATION_FREE_RUN

EPWM_setEmulationMode()

EPWM_EMULATION_STOP_AFTER_NEXT_TB
EPWM_EMULATION_STOP_AFTER_FULL_CYCLE
EPWM_EMULATION_FREE_RUN

EQEP_setEmulationMode()

EQEP_EMULATIONMODE_STOPIMMEDIATELY
EQEP_EMULATIONMODE_STOPATROLLOVER
EQEP_EMULATIONMODE_RUNFREE

12C_setEmulationMode()

I2C_EMULATION_STOP_SCL_LOW
I2C_EMULATION_FREE_RUN

SPI_setEmulationMode()

SPI_EMULATION_STOP_MIDWAY
SPI_EMULATION_STOP_AFTER_TRANSMIT
SPI_EMULATION_FREE_RUN

Note: see the F28004x Driverlib User’'s Guide for detailed usage

10-4

TMS320F28004x Microcontroller Workshop - System Design

Analysis and Diagnostic Capabilities

Analysis

and Diagnostic Capabilities

Analysis and Diagnostic Capabilities

¢ C28x CPU has two hardware analysis units:

¢ Address and Data Comparison Units (ACU/DCU)
¢ ACU - counts events or monitors address buses
¢ DCU — monitors address and data buses

¢ ACU and DCU can be configured as analysis breakpoints or
watchpoints; in addition, ACU can be configured as a benchmark
counter or event counter

¢ Embedded real-time analysis and diagnostic
(ERAD) module:

¢ Enhances the debug and system analysis capabilities
¢ ERAD module is implemented external to the C28x CPU core

¢ ERAD module consists of Enhanced Bus Comparator Units (EBC) and
Benchmark System Event Counter Units (BSEC)

¢ EBC - used to generate hardware breakpoints, hardware watchpoints
and other output events

¢ BSEC — used to analyze and profile the system

C28x CPU Hardware Analysis Units

¢ The C28x CPU two hardware analysis units can
be configured to provide any one of the following
advanced debug features:

Analysis Configuration Debug Activity

2 Hardware Breakpoints ——> Halt on a specified instruction
(for debugging in flash)

2 Address Watchpoints —> Amemory location is getting
corrupted; halt the processor when

any value is written to this location

1 Address Watchpoint with Data —=> Halt program execution after a
specific value is written to a variable

1 Pair Chained Breakpoints —> Halton a specified instruction only
after some other specific routine has
executed

TMS320F28004x Microcontroller Workshop - System Design

10-5

Analysis and Diagnostic Capabilities

ERAD expands device debug and system analysis capabilities
to 10 hardware breakpoints and 10 hardware watchpoints

¢ 8 Enhanced Bus
Comparator Units

¢ Similar to ACU/DCU

¢ Inputs: address bu
program counter, d

¢ Comparison mode
® (>, >=,<,<9)

¢ Output: debug triggers,

event output

¢ 4 Benchmark System

Event Counter Units

+ Similar to count feature in |Sy3tem Eventsl System Event

ACU

¢ Inputs: events from EBC,

system events

¢ Outputs: debug events —
¢ ERAD can be used by the Events

application or debug

ERAD Module

C28x CPU ERAD
S, Address Bus
ata bus Data Bus Event

Enhanced Bus | oy
Program Counter Comparator
Debug Units (EBC)

put

Benchmark

Counter Unit
(BSEC) <A

ger

10-6

TMS320F28004x Microcontroller Workshop - System Design

Flash Configuration and Memory Performance

Flash Configuration and Memory Performance

Basic Flash Operation

¢ RWAIT bit-field in the FRDCNTL register specifies the number of
random accesses wait states

OTP reads are hardwired for 10 wait states (RWAIT has no effect)

Must specify the number of SYSCLK cycle wait-states;
Reset defaults are maximum value (15)

Flash/OTP reads returned after (RWAIT + 1 SYSCLK cycles)

Flash configuration code should not be run from the flash memory

¢ Set the number of wait states for a flash read access
Flash_setWaitstates(ctriBase, waitstates);

¢ ciriBase is base address of the flash control registers: FLASHOCTRL_BASE
¢ waitstates value is a number between 0 and 15

*** Refer to the F28004x data sheet for value details ***
For 100 MHz, RWAIT =4

Speeding Up Execution in Flash / OTP

k— 16—
Aligned
128-bit
fetch k—— 128 —I |nstruction
128 fetch .16 or 32 C28x
dispatched
core
2-level deep decoder
fetch buffer unit
128-bit data
cache Data read either from
Flash or OTP program or data memory

¢ Enable prefetch mechanism:
Flash_enablePrefetch(ctriBase);

¢ Enable data cache:
Flash_enableCache(ctriBase);

¢ cirlBase is base address of the flash control registers: FLASHOCTRL_BASE

TMS320F28004x Microcontroller Workshop - System Design 10-7

Flash Configuration and Memory Performance

Code Execution Performance

¢ Assume 100 MHz SYSCLKOUT and single-cycle
execution for each instruction

Internal RAM: 100 MIPS

Fetch up to 32 bits every cycle = 1 instruction/cycle

Flash: 100 MIPS
Assume RWAIT=4, prefetch buffer enabled
Fetch 128 bits every 4 cycles:

(128 bits) / (32-bits per instruction worst-case) = 4 instructions/4 cycles

PC discontinuities will degrade this

Benchmarking in control applications has shown actual performance of about
90% efficiency, yielding approximately 90 MIPS

Data Access Performance
¢ Assume 100 MHz SYSCLKOUT

Memory 16-bit access 32-bit access Notes
(words/cycle) (words/cycle)
Internal RAM 1 1
Flash 0.73 0.57 Assumes RWAIT = 4,

‘sequential’ access

(8 words/11 cycles)

(4 words/7 cycles)

flash data cache enabled,
all 128 bits in cache are used

Flash
random access

0.25
(1 word/4 cycles)

0.25
(1 word/4 cycles)

Assumes RWAIT =4

¢ Internal RAM has best data performance — put time critical data here
¢ Flash performance often sufficient for constants and tables

¢ Note that the flash instruction fetch pipeline will also stall during a
flash data access

¢ For best flash performance, arrange data so that all 128 bits in a

cache line are utilized (e.g. sequential access)

10-8

TMS320F28004x Microcontroller Workshop - System Design

Flash Configuration and Memory Performance

Flash / OTP Power Modes

¢ Power configuration settings save power by putting Flash/OTP to ‘Sleep’ or
‘Standby’ mode; flash will automatically enter ‘Active’ mode if a Flash/OTP
access is made
¢ Atreset Flash/OTP is in sleep mode
¢ Operates in three power modes:
¢ Sleep (lowest power)
¢ Standby (shorter transition time to active)
¢ Active (highest power)
¢ After an access is made, Flash/OTP can automatically power down to
‘Standby’ or ‘Sleep’ (active grace period set in user programmable counters)

¢ Set fallback power mode for flash bank:
Flash_setBankPowerMode(ctrIBase, bank, powerMode);
¢ Set fallback power mode for charge pump:
Flash_setPumpPowerMode(ctriBase, powerMode);
ctrlBase is base address of the flash control registers: FLASHOCTRL_BASE
bank parameter is: FLASH_BANKO or FLASH_BANK1
powerMode value for:
¢ Bank — FLASH_BANK_PWR_x (x = SLEEP, STANDBY, or ACTIVE)
¢ Pump- FLASH_PUMP_PWR_x (x = SLEEP or ACTIVE)

* o o

Error Correction Code (ECC) Protection

Provides capability to screen out Flash/OTP memory faults (enabled at reset)
Single error correction and double error detection (SECDED)

For every 64-bits of Flash/OTP, 8 ECC check bits are calculated and
programmed into ECC memory

ECC check bits are programmed along with Flash/OTP data

During an instruction fetch or data read operation the 64-bit data/8-bit ECC are
processed by the SECDED to determine one of three conditions:

¢ No error occurred

¢ Acorrectable error (single bit data error) occurred

¢ Anon-correctable error (double bit data error or address error) occurred
ECC (15:8) — Single-bit data error
SECDED [Address/double-bit data error

 Data(127:64) — Single-bit error position
Flash |«
— Corrected data out

and I 128-bit aligned

OTP |, ECC(7:0) > — Single-bit data error
SECDED [~ Address/double-bit data error
Data (63:0) — Single-bit error position

" — Corrected data out

<

A

A

<

¢ Enable ECC protection: Flash_enableECC(eccBase);
¢ ctriBase is base address of the ECC registers: FLASHOECC_BASE

TMS320F28004x Microcontroller Workshop - System Design

10-9

Flash Configuration and Memory Performance

Initializing Flash Module

Main.c device.c

// CPU Initialization _,—» void Device_init(void)
Device_init(Q); {
S #ifdef _FLASH
L. < — // Copy time critical and flash setup code to RAM
device.h memcpy(.- - -&Ramfuncs...);
#define fendif P B
DEVICE_FLASH_WAITSTATES 4 77| // Call flash initialization setup
: Flash_initModule (FLASHOCTRL_BASE, FLASHOECC_BASE,
e - - - DEVICE_FLASH_WAITSTATES); =
:]
flash.c Mv
void Flash_initModule(uint32_t ctrlBase, uint32_t eccBase, uintl6_t waitstates)
{

Flash_setBankPowerMode(ctriBase, FLASH_BANKO, FLASH_BANK_PWR_ACTIVE);
Flash_setBankPowerMode(ctriBase, FLASH_BANK1, FLASH_BANK_PWR_ACTIVE);
Flash_setPumpPowerMode(ctriBase, FLASH_PUMP_PWR_ACTIVE);
Flash_disableCache(ctriBase); //disable before changing wait states
Flash_disablePrefetch(ctriBase); //disable before changing wait states
Flash_setWaitstates(ctriBase, waitstates);

Flash_enableCache(ctrlBase); //enable to improve performance
Flash_enablePrefetch(ctriBase); //enable to improve performance

Flash_enableECC(eccBase);
3

10-10 TMS320F28004x Microcontroller Workshop - System Design

Flash Programming

Flash Programming

Flash Programming Basics

¢ The device CPU performs the flash programming

¢ The CPU executes flash utility code from RAM that reads the flash
data and writes it into the flash memory

¢ We need to get the flash utility code and the flash data into RAM

Flash
Utility
Code

Flash
Data

FLASH «—— CPU
————— Emulator |—-> JTAG |——————————>
RAM
—————— >|RSZ32|—-> SCI |———->
A
———————————— > SPI - = :
3 /
------------ > 12c I———-> 33L---7
X o
o
———————————— >| CAN | - - o
———————————— >| GPIO i———-> F28004x

Flash Programming Basics

0x0008 0000

Flash Bank 0
0x0008 FFFF 64K x 16

0x0009 0000

Flash Bank 1
0x0009 FFFF 64K x 16

e

¢ Sequence of steps for flash programming:

Algorithm Function
1. Erase - Set all bits to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

¢ Minimum Erase size is a sector
¢ Minimum Program size is a bit (be careful of ECC matching)

TMS320F28004x Microcontroller Workshop - System Design

10-11

Flash Programming

Flash Programming Utilities

JTAG Emulator Based
+ CCS on-chip Flash programmer (Tools - On-Chip Flash)
+ CCS UniFlash (TI universal Flash utility)
« BlackHawk Flash utilities (requires Blackhawk emulator)
« Elprotronic FlashPro2000
SCI Serial Port Bootloader Based
+ CodeSkin C2Prog
« Elprotronic FlashPro2000
Production Test/Programming Equipment Based
+ BP Microsystems programmer
« Data I/O programmer
Build your own custom utility
« Can use any of the ROM bootloader methods
+ Can embed flash programming into your application
+ Flash API algorithms provided by TI

* Tl web has links to all utilities (http://www.ti.com/c2000)

10-12

TMS320F28004x Microcontroller Workshop - System Design

Dual Code Security Module (DCSM)

Dual Code Security Module (DCSM)
Dual Code Security Module (DCSM)

¢ DCSM offers protection for two zones —zone 1 & zone 2
¢ Each zone has its own dedicated secure OTP

¢ Contains security configurations for each zone

¢ The following on-chip memory can be secured:

¢ Flash — each sector individually

¢ LSO-7 RAM — each block individually

¢ Datareads and writes from secured memory are only
allowed for code running from secured memory

& All other data read/write accesses are blocked:

JTAG emulator/debugger, ROM bootloader, code running in
external memory or unsecured internal memory

Zone Selection

¢ Each securable on-chip memory resource can
be allocated to either zone 1 (Z1), zone 2 (Z2),
or as non-secure
& DcsmZ1Regs.Z1 _GRABSECTR register:
¢ Allocates individual flash sectors to zone 1 or non-secure
& DcsmZ2Regs.Z2_GRABSECTR register:
¢ Allocates individual flash sectors to zone 2 or non-secure
¢ DcsmZ1Regs.Z1_GRABRAMR register:
¢ Allocates LS0-7 to zone 1 or non-secure
& DcsmZ2Regs.Z2_GRABRAMR register:

¢ Allocates LS0-7 to zone 2 or non-secure

Technical Reference Manual contains a table to resolve mapping conflicts

TMS320F28004x Microcontroller Workshop - System Design 10- 13

Dual Code Security Module (DCSM)

CSM Passwords

Zx_CSMPSWDO
Zx_CSMPSWD1
Zx_CSMPSWD2
Zx_CSMPSWD3

¢ Each zone is secured by its own 128-bit (four 32-bit
words) user defined CSM password

¢ Passwords for each zone is stored in its dedicated
OTP location
¢ Location based on a zone-specific link pointer

¢ 128-bit CSMKEY registers are used to secure and
unsecure the device

¢ Password locations for each zone can be locked and
secured by programming PSWDLOCK fields in the
OTP with any value other than “1111b” (OxF)

Zone Select Bits in OTP

Zx-LINKPOINTER Address offset of
| Zone-Select block

[|
xxx11111111111111111111111111111 0x020
xxx11111111111111111111111111110 | Ox030 Zone Select Block
xxx1111111111111111111111111110x | Ox040 B
xxx111111111111111111111111110xx | 0x050 Addr. Offset | 32-bit Content
xxx11111111111111111111111110xxx | Ox060
xxx1111111111111111111111110xxxx | 0x070 0x0 ZXEXEONLYRAM
Xxx111111111111111111111110xxxxx | 0x080 o
xxx11111111111111111111110xxxxxx | O0x090 0x2 2XEXEONLYSECT
xxx11111111112111111111110xxXxxxXxX | OxO0AOQ 0x4 Zx-GRABRAM
xxx1111111111211111111110XXXXXXXX | OX0BO —<
Xxx11111111111111111110XXXXXXXXX | 0x0CO 0x6 ZX-GRABSECT
Xxx1111111111111111110XXXXXXXXXX | 0x0DO
xxx111111111111111110XXXXXXXXXXX | OXOEO 0x8 Zx-CSMPSWDO
XXx111111111111111T0XXXXXXXXXXXX | OXOFO
XXXL1111111111111LOXXXXOKNNKK | Ox100 B EGCE NGV
XXX1111111111111T0XXXXXXXXXXXXXX | 0x110 0xC Zx-CSMPSWD2
XXX11111111111TTOXXXXXXXXXXXXXXX | 0x120
XXX111111111TTTOXXXXXXXXXXXXXXXX | 0x130 OxE Zx-CSMPSWD3

XXX111111111TIOXXXXXXXXXXXXXXXXX | 0x140
XXX11111111TTOXXXXXXXXXXXXXXXXXX | 0x150

XXX11111111TOXXXXXXXXXXXXXXXXXXX | 0x160 i i i i
XXX1111111TOXXXXXXXXXXXXXXXXXXXX | 0x170 ¢ Fmall |Indké)0|nter Val.ue IS“ h
XxX111111LOXXXXXXXXXXXXXXXXXXXXX | 0x180 resolved by comparing all three
XXX1111TLOXXXXXXXXXXXXXXXXXXXXXX | 0x190 individual link pointer values

XXX1LLTTTOXXXXXXXXXXXXXXXXXXXXXXX | OX1AO0

XXXLLTTIOXXXXXXXXXXXXXXXXXXXXXXXX | 0x1BO (b|t'W'Se voting IOg'C)

XXXLLLOXXXXXXXXXXXXXXXXXXXXXXXXX | 0x1CO ¢ OTPvalue“1” programmed as
XXX L LOXXXXXX XXX XXX XXX XXXXXXXXXXX | 0x1DO « An X
XXX LOXXXXXXXXXXXXXXXXXXXXXXXXXXX | OX1EQ 0" (no erase operation)

XXXOXXXXXKXXXXXKKKXXXXXXXXXXXXXX | OX1FO

10-14

TMS320F28004x Microcontroller Workshop - System Design

Dual Code Security Module (DCSM)

Zone 1 OTP FLASH Zone 2 OTP FLASH
0x78000 | Z1-LINKPOINTERL Three link pointers 0x78200 | Z2-LINKPOINTER1
0x78002 Reserved need to be 0x78202 Reserved
0x78004 | Z1-LINKPOINTER2 programmed with 0x78204 | Z2-LINKPOINTER2

the same value

0x78006 Reserved (not ECC 0x78206 Reserved
0x78008 | Z1-LINKPOINTER3 protected) 0x78208 | Z2-LINKPOINTER3
0x7800A Reserved 0x7820A Reserved
0x78010 | Z1-PSWDLOCK 0x78210 | Z2-PSWDLOCK
0x78012 Reserved 0x78212 Reserved
0x78014 Z1-CRCLOCK 0x78214 Z2-CRCLOCK
0x78016 Reserved Zone Select Block 0x78216 Reserved
0x78018 Reserved Addr. Offset | 32-bit Content 0x78218 Reserved
0x7801A Reserved 0x0 Zx-EXEONLYRAM 0x7821A Reserved
0x7801E | Z1-BOOTCTRL 0x2 Zx-EXEONLYSECT 0x7821E | Z2-BOOTCTRL
0x78020 | ZoneSelectBlockl | J 0x4 Zx-GRABRAM 0x78220 | ZoneSelectBlockl

(16 x 16-bits) 0x6 Zx-GRABSECT (16 x 16-bits)
0x78030 ZoneSelectBlock2 0x8 Zx-CSMPSWDO 0x78230 ZoneSelectBlock2

(16 x 16-bits) (16 x 16-bits)

OXA Zx-CSMPSWD1

L] L] L] L]

. . oxC Zx-CSMPSWD2 . .
0x781F0 | ZoneSelectBlockn OxE Zx-CSMPSWD3 0x783F0 | ZoneSelectBlockn

(16 x 16-bits) (16 x 16-bits)

Secure and Unsecure the CSM

¢ The CSM is always secured after reset

¢ To unsecure the CSM:

¢ Perform a dummy read of each CSMPSWD(0,1,2,3)
register (passwords in the OTP)

¢ Write the correct password to each CSMKEY(0,1,2,3)
register

¢ The boot ROM code will automatically unlock the
device as part of the initialization sequence for
devices that do not have passwords programmed

& See Technical Reference Manual for details

TMS320F28004x Microcontroller Workshop - System Design 10-15

Dual Code Security Module (DCSM)

CSM Password Match Flow

Start

Write the CSM Password
of that Zone into_
CSMKEY (0/1/2/3) registers
Zone secure
after reset
or runtime
Correct No
Read Linkpointer and password? —
calculate the address
of ZoneSelectBlock
Yes
Zone

Dummy Read of CSM PWL
of the Secure Zone which Unsecure
needed to be unsecure

10- 16 TMS320F28004x Microcontroller Workshop - System Design

Lab 10: Programming the Flash

Lab 10: Programming the Flash

» Objective

The objective of this lab exercise is to program and execute code from the on-chip flash memory.
The TMS320F280049C device has been designed for standalone operation in an embedded
system. Using the on-chip flash eliminates the need for external non-volatile memory or a host
processor from which to bootload. In this lab exercise, the steps required to properly configure
the software for execution from internal flash memory will be covered.

Lab 10: Programming the Flash

ePWM1 ADC CLA
TB Counter ADCINAO | RESULTO _EEegl
Compare I:I _ClalTask2
Action Qualifier :
j 4
R : _ClalTasks
ePWM2 triggering
ADC on period match @ data
using SOCA trigger every memory
20 ps (50 kHz) ePWM2

CPU copies
result to
buffer during
CLA ISR

Objective:
¢ Program system into flash memory

—

¢ Learn use of CCS flash programmer Display
using CCS
¢ DO NOT PROGRAM PASSWORDS

pointer rewind

> Procedure

Open the Project

1. A project named Lab10 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open. Click Browse... next to the “Select search-directory” box. Navigate to:
C:\F28004x\Labs\Labl0\project and click Select Folder. Then click Finish
to import the project. All build options have been configured the same as the previous
lab exercise. The files used in this lab exercise are:

TMS320F28004x Microcontroller Workshop - System Design 10 - 17

Lab 10: Programming the Flash

Adc.c EPwm.c

Cla.c 28004x_globalvariabledefs.c
ClaTasks C.cla 28004x_headers_nonbios.cmd
CodeStartBranch.asm Gpio.-c

Dac.c Lab_10.cmd

Defaultlsr_9 10.c Main_10.c

device.c SineTable.c

Dma.c Watchdog-c

ECap.-c

Project Build Options

2. We need to setup the predefined symbols for programming the flash. Open the build
options by right-clicking on Lab10 in the Project Explorer window and select “Properties”.
Under “C2000 Compiler” select “Predefined Symbols”. In the predefined name box that
opens (“Pre-define NAME") click the Add icon. Then in the “Enter Value” window type
_FLASH. This name is used in the project to conditionally include code specific to
initializing the flash module. This conditional code is located in the device.c file. Click
OK to include the name. Then click Apply and Close to save and close the Properties
window.

Link Initialized Sections to Flash

Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an embedded system means that no debug probe (emulator) is
available to initialize the device RAM. Therefore, all initialized sections must be linked to the on-
chip flash memory.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at
runtime. The linker assigns both addresses to the section. Most initialized sections can have the
same LOAD and RUN address in the flash. However, some initialized sections need to be loaded
to flash, but then run from RAM. This is required, for example, if the contents of the section
needs to be modified at runtime by the code.

3. Open and inspect the linker command file Lab_10.cmd. Notice that the first flash sector
has been divided into two blocks named BEGIN_FLASH and FLASH_BANKO_SECO.
The FLASH_BANKO_SECO flash sector origin and length has been modified to avoid
conflicts with the other flash sector spaces. The remaining flash sectors have been
combined into a single block named FLASH_BANKO_SEC1_15. Additionally, a second
bank is available named FLASH_BANK1 SECO_15. See the reference slide at the end
of this lab exercise for further details showing the address origins and lengths of the
various flash sectors used.

4. Edit Lab_10.cmd to link the following compiler sections to on-chip flash memory block
FLASH_BANKO_SEC1_15:

Compiler Sections:

text .cinit .const .econst .pinit .switch

Initializing the Interrupt Vectors from Flash to RAM

The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
loaded to the PIE RAM as part of the device initialization procedure. The code that performs this

10 - 18 TMS320F28004x Microcontroller Workshop - System Design

Lab 10: Programming the Flash

process is part of Driverlib. In main(), the call to Interrupt_initModule() enables vector fetching
from PIE block, and the call to Interrupt_initVectorTable() loads the vector table. In Driverlib, both
functions are part of interrupt.c.

Initializing the Flash Control Registers

The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The code
that performs this process is part of Driverlib. In main(), the call to Device_init() copies time
critical and flash setup code to RAM and then calls Flash_initModule() to initialize the flash. In
Driverlib, these functions are part of device.c and flash.c.

5. Inthe Driverlib, flash.c uses the C compiler CODE_SECTION pragma to place the
Flash_initModule() function into a linkable section named “.Tl.ramfunc”.

6. The “.Tl.ramfunc” section will be linked using the user linker command file Lab_10.cmd.
In Lab_10.cmd the “.Tl.ramfunc” will load to flash (load address) but will run from
RAMLSS5 (run address). Also notice that the linker has been asked to generate symbols
for the load start, load size, and run start addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code to
program memory space and data to data memory space. Therefore, notice that for the
RAMLS5 memory we are linking “.Tl.ramfunc” to, we are specifiying “PAGE = 0” (which is
program memory).

Dual Code Security Module and Passwords

The DCSM module provides protection against unwanted copying (i.e. pirating!) of your code
from flash, OTP, and LSO-7 RAM blocks. The DCSM uses a 128-bit password made up of 4
individual 32-bit words. They are located in the OTP. During this lab exercise, device default
passwords will be used — therefore only dummy reads of the password locations are needed to
unsecure the DCSM. DO NOT PROGRAM ANY REAL PASSWORDS INTO THE DEVICE.
After development, real passwords are typically placed in the password locations to protect your
code. We will not be using real passwords in the workshop. Again, DO NOT CHANGE THE
DEVICE PASSWORD VALUES.

Executing from Flash after Reset

The F280049C device contains a ROM bootloader that will transfer code execution to the flash
after reset. When the boot mode selection is set for “Jump to Flash” mode, the bootloader will
branch to the instruction located at address 0x080000 in the flash. An instruction that branches
to the beginning of your program needs to be placed at this address. Note that BEGIN_FLASH
begins at address 0x080000. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-environment
initialization routine located in the C-compiler runtime support library. The entry symbol for this
routine is _c_int00. Recall that C code cannot be executed until this setup routine is run.
Therefore, assembly code must be used for the branch. We are using the assembly code file
named CodeStartBranch.asm.

7. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine. This
section needs to be linked to a block of memory named BEGIN_FLASH.

TMS320F28004x Microcontroller Workshop - System Design 10- 19

Lab 10:

Programming the Flash

8. Inthe earlier lab exercises, the section “codestart” was directed to the memory named
BEGIN_MO. Edit Lab_10.cmd so that the section “codestart” will be directed to
BEGIN_FLASH. Save your work.

On power up the reset vector will be fetched and the ROM bootloader will begin execution. If the
debug probe (emulator) is connected, the device will be in emulation boot mode and will use the
EMU-BOOT registers values in the PIE RAM to determine the boot mode. This mode was
utilized in the previous lab exercises. In this lab exercise, we will be disconnecting the debug
probe and running in stand-alone boot mode (but do not disconnect the emulator yet!). The
bootloader will read the Z1-OTP-BOOT registers values from their locations in the OTP. The
behavior when these values have not been programmed (i.e., KEY not Ox5A) or have been set to
invalid values is boot to flash boot mode.

Initializing the CLA

Previously, the named section “ClalProg” containing the CLA program tasks was linked directly
to the CPU memory block RAMLSA4 for both load and run purposes. At runtime, all the code did
was map the RAMLS4 block to the CLA program memory space during CLA initialization. For an
embedded application, the CLA program tasks are linked to load to flash and run from RAM. At
runtime, the CLA program tasks must be copied from flash to RAMLS4. The C-compiler runtime
support library contains a memory copy function called memcpy() which will be used to perform
the copy. After the copy is performed, the RAMLS4 block will then be mapped to CLA program
memory space as was done in the earlier lab.

9. InLab_10.cmd notice that the named section “ClalProg” will now load to flash (load
address) but will run from RAMLS4 (run address). The linker will also be used to
generate symbols for the load start, load size, and run start addresses.

10. Open Cla.c and notice that the memory copy function memcpy() is being used to copy
the CLA program code from flash to RAMLS4 using the symbols generated by the linker.
Just after the copy the Driverlib MemCfg_setCLAMemType() function is used to configure
the RAMLS4 block as CLA program memory space. Close the opened files.

Build — Lab.out

11. Click the “Build” button to generate the Lab.out file to be used with the CCS Flash
Programmer. Check for errors in the Problems window.

Programming the On-Chip Flash Memory

In CCS the on-chip flash programmer is integrated into the debugger. When the program is
loaded CCS will automatically determine which sections reside in flash memory based on the
linker command file. CCS will then program these sections into the on-chip flash memory.
Additionally, in order to effectively debug with CCS, the symbolic debug information (e.g., symbol
and label addresses, source file links, etc.) will automatically load so that CCS knows where
everything is in your code. Clicking the “Debug” button in the CCS Edit perspective will
automatically launch the debugger, connect to the target, and program the flash memory in a
single step.

12. Program the flash memory by clicking the “Debug” button (green bug). The CCS Debug
perspective view will open and the flash memory will be programmed. (If needed, when
the “Progress Information” box opens select “Details >>" in order to watch the
programming operation and status). After successfully programming the flash memory
the “Progress Information” box will close. Then the program will load automatically, and
you should now be at the start of main().

10-20

TMS320F28004x Microcontroller Workshop - System Design

Lab 10: Programming the Flash

Running the Code — Using CCS
13. Reset the CPU using the “CPU Reset” button “# or click:

Run - Reset > CPU Reset

The program counter should now be at address 0Ox3FC7AS5 in the “Disassembly” window,
which is the start of the bootloader in the Boot ROM. If needed, click on the “View
Disassembly...” button in the window that opens, or click View > Disassembly.

14. Under Scripts on the menu bar click:
EMU Boot Mode Select - EMU_BOOT_FLASH

This has the debugger load values into EMU-BOOT registers so that the bootloader will
jump to "Flash" at address 0x080000.

15. Next click:
Run = Go Main

The code should stop at the beginning of your main() routine. If you got to that point
succesfully, it confirms that the flash has been programmed properly, that the bootloader
is properly configured for jump to flash mode, and that the codestart section has been
linked to the proper address.

16. You can now run the CPU, and you should observe the LED5 on the LaunchPad blinking.
17. Halt the CPU.

18. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then hitting run
(without doing the Go Main procedure). The LED should be blinking again.

19. Halt the CPU.

Terminate Debug Session and Close Project

20. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

21. Next, close the project by right-clicking on Lab10 in the Project Explorer window and
select Close Project.

Running the Code — Stand-alone Operation (No Emulator)

Recall that if the device is in stand-alone boot mode, the state of GP1024 and GPIO32 pins are
used to determine the boot mode. On the LaunchPad switch SW2 controls the boot options for
the F280049C device. Check that switch SW2 positions 1 and 2 are set to the default “1” (printed
on the board; both switches are towards the MCU). This will configure the device (in stand-alone
boot mode) to boot mode flash. Since the Z1-OTP-BOOT registers have not been programmed,
the default will be boot from flash. Details of the switch positions can be found in the LaunchPad
User’s Guide.

22. Close Code Composer Studio.

23. Disconnect the USB cable from the LaunchPad (i.e. remove power from the LaunchPad).

TMS320F28004x Microcontroller Workshop - System Design 10-21

Lab 10: Programming the Flash

24. Re-connect the USB cable to the LaunchPad (i.e. power the LaunchPad). The LED
should be blinking, showing that the code is now running from flash memory.

End of Exercise

10 - 22 TMS320F28004x Microcontroller Workshop - System Design

Lab 10: Programming the Flash

Lab 10 Reference: Programming the Flash

Flash Memory Section Blocks

origin =
0x080000 BEGIN_FLASH
length = 0x2
page =0

0x080002| FL ASH_BANKO_SECO
length = 0X000FFE

page =0
0x081000| FLASH_BANKO_SEC1_15
length = 0xO0OF000

page =0
0x090000 F| ASH BANK1_SECO_15
length = 0x010000

page =0

Lab_10.cmd

SECTIONS

{
codestart :> BEGIN_FLASH, PAGE =0

Startup Sequence from Flash Memory

— 0x080000 | LB — _C_int00| uicr800 fpusa b’

FLASH (128Kw)

G) “user” code sections

main ()
3
D \ {
\
A
\
U
« [
0x3F8000 | Boot ROM (32Kw) AN }
\
Boot Code AN
InitBoot N
\
{SCAN GPIO} @ N
\

BROM vector (64w)
Ox3FFFCO *reset vector —

RESET * reset vector = Ox3FC7A5

TMS320F28004x Microcontroller Workshop - System Design 10 - 23

Lab 10: Programming the Flash

10-24 TMS320F28004x Microcontroller Workshop - System Design

Communications

Introduction

The TMS320F28004x contains features that allow for several methods of communication and
data exchange between the MCU and other devices. Many of the most commonly used
communications techniques are presented in this module.

The intent of this module is not to give exhaustive design details of the communication
peripherals, but rather to provide an overview of the features and capabilities. Once these
features and capabilities are understood, additional information can be obtained from various
resources such as the Technical Reference Manual, as needed. This module will cover the basic
operation of the communication peripherals, as well as some basic terms and how they work.

Module Objectives

Module Objectives

¢ Serial Peripheral Interface (SPI)
¢ Serial Communication Interface (SCI)

¢ Local Interconnect Network (LIN)
¢ Inter-Integrated Circuit (12C)

¢ Controller Area Network (CAN)

¢ Power Management Bus (PMBus)
¢ Fast Serial Interface (FSI)

The F28004x MCU includes numerous communications peripherals that extend the connectivity
of the device. These communications peripherals include Serial Peripheral Interface (SPI), Serial
Communication Interface (SCI), Local Interconnect Network (LIN), Inter-Integrated Circuit (12C)
Controller Area Network (CAN), Power Management Bus (PMBus), and Fast Serial Interface
(FSI).

TMS320F28004x Microcontroller Workshop - Communications 11-1

Communications Techniques

Chapter Topics

COMMUNICALTONS ...ttt e et e e e e e e bttt et e e e e e s e abbbe e e e e e e e e aanbabeeeeaaeeeannbnneeas 11-1
CommUuNICAtIONS TECHNIQUESciiii ittt e e e e e e e e e e e e e e aanes 11-3
Serial Peripheral INterface (SPI) ... 11-4

T o ST 01 2=Vt 11-6
Serial Communications INtErface (SCI).....u i 11-7
Multiprocessor Wake-Up MOAESuuiiiiieiiiiiiieie s crtttee e e e e s s ssiree e e e e s s snnrnee e e e e e e s e annes 11-9
SCl SUMMIATY <. 11-11
Local Interconnect NetWOrk (LIN)uveeiereeiiiiiiieie e e e ceiitee e e e e s s sseireer e e e e e s e e e e e e e snnnnneees 11-12
LIN Message Frame and Data TiMiNgooooiuriiiiieaeaiiiieee e e siberee e e e e e enees 11-13
LIN SUMIMIBIY ettt ettt s s sttt 55 st s 55 st s st s e st s bnbsbnnnnnnnn 11-14
Inter-Integrated CirCUIt (I2C)iiuiiieiiee e e e s e e e e s s et r e e e e e s e annnaeaeeeaees 11-15
I12C Operating Modes and Data FOrMAaLSc..uuiiiiiiiiiiiiieie e 11-16
[2C SUIMIMAIY .1titiiieiieeieeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseesse s ssss e sesese e ss s e e sssneesnsesesnsnsnsnsnnnsnnnnnnns 11-17
Controller Area NetWOrK (CAN) ...cooi ittt ettt e e e et e e e e e e e e snabeaeeeaaaeaaaanes 11-18
CAN BUS @N0 NOUEcoiiiiiieiiiesiie ettt s e nn e e s 11-19
PrinCiples Of OPEIratiONuciiiiiiiiiiiiieee e e e e s e e e e e e s e e e e e e s e snrnrereeeeeeannnes 11-20
Message Format and BIOCK Diagram.........ccooicuvriieieeeiiiiiiiieie e e st e e e e e e e s snreeee e e e e e e e ennns 11-21
(7 AN U1] = 1 Y SRS 11-22
Power Management BUS (PMBUS).......uuuiiieiiiiiiieiiee ettt e e e e s s ssiieaee e e e e e s s snnreeee e e e e e snnnnneees 11-23
Conceptual Block Diagram and CONNECLIONSceiiiiiiiiiiiiiieia e 11-23
PMBUS SUIMHTIAIY .. .eiiiiitiiiiiiiiiiettiteetaeseseeeeestesststs s ssesss s s st s st st s st s st s st s st s s st e e bsbsbnbnsnnnnnnns 11-24
= T Y= = U 1 (=T = ot O (s SR 11-25
CPU Interface and CONNECLIONcooiiiiiiiiiiee ettt e e e aaa e 11-26
ST SUMIMAIY .oeitiiiiiiieieieieieeeeeeeeeeeeeeee et e e ee e eeeeeeeeseeeeseeee e e se e ssse e e sssesesesesssnsnsnsnsnnnsnnnnnnns 11-27
Lab 11: C2000Ware SCI Echoback EXamPple ... 11-28

11-2

TMS320F28004x Microcontroller Workshop - Communications

Communications Techniques

Communications Techniques

Several methods of implementing a TMS320C28x communications system are possible. The
method selected for a particular design should reflect the method that meets the required data
rate at the lowest cost. Various categories of interface are available and are summarized in the
module objective slide. Each will be described in this module.

Serial ports provide a simple, hardware-efficient means of high-level communication between
devices. Like the GPIO pins, they may be used in stand-alone or multiprocessing systems.

In a multiprocessing system, they are an excellent choice when both devices have an available
serial port and the data rate requirement is relatively low. Serial interface is even more desirable
when the devices are physically distant from each other because the inherently low number of
wires provides a simpler interconnection.

Serial ports require separate lines to implement, and they do not interfere in any way with the
data and address lines of the processor. The only overhead they require is to read/write new
words from/to the ports as each word is received/transmitted. This process can be performed as
a short interrupt service routine under hardware control, requiring only a few cycles to maintain.

The C2000 device family has both synchronous and asynchronous serial ports. The features and
operation will be described in this module.

TMS320F28004x Microcontroller Workshop - Communications 11-3

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI)

The SPI is a high-speed synchronous serial port that shifts a programmable length serial bit
stream into and out of the device at a programmable bit-transfer rate. It is typically used for
communications between processors and external peripherals, and it has a 16-level deep receive
and transmit FIFO for reducing servicing overhead. During data transfers, one SPI device must
be configured as the transfer MASTER, and all other devices configured as SLAVES. The
master drives the transfer clock signal for all SLAVES on the bus. SPI communications can be
implemented in any of three different modes:

¢ MASTER sends data, SLAVE sends dummy data
e MASTER sends data, one SLAVE sends data
e MASTER sends dummy data, one SLAVE sends data

In its simplest form, the SPI can be thought of as a programmable shift register. Data is shifted in
and out of the SPI through the SPIDAT register. Data to be transmitted is written directly to the
SPIDAT register, and received data is latched into the SPIBUF register for reading by the CPU.
This allows for double-buffered receive operation, in that the CPU need not read the current
received data from SPIBUF before a new receive operation can be started. However, the CPU
must read SPIBUF before the new operation is complete of a receiver overrun error will occur. In
addition, double-buffered transmit is not supported: the current transmission must be complete
before the next data character is written to SPIDAT or the current transmission will be corrupted.

The Master can initiate a data transfer at any time because it controls the SPICLK signal. The
software, however, determines how the Master detects when the Slave is ready to broadcast.

SPI Data Flow

¢ Simultaneous transmits and receive
¢ SPI Master provides the clock signal

SPI Device #1 - Master SPI Device #2 - Slave
shift shift
—| SPI Shift Register | | SPI Shift Register |
clock

11-4

TMS320F28004x Microcontroller Workshop - Communications

Serial Peripheral Interface (SPI)

SPI Block Diagram

C28x - SPI Master Mode Shown

SPISIMO

RX FIFO_15

RX FIFO_0O
SPIRXBUF.15-0

VB[SPIDAT150 |2 SPISOMI

T

SPITXBUF.15-0
TX FIFO_0
TX FIFO_15
baud clock clock
LSPCLK ra%le polarity phase SPICLK

SPI Transmit / Receive Sequence
Slave writes data to be sent to its shift register (SPIDAT)
Master writes data to be sent to its shift register (SPIDAT or SPITXBUF)

Completing Step 2 automatically starts SPICLK signal of the Master

A w0 DR

MSB of the Master’s shift register (SPIDAT) is shifted out, and LSB of the Slave’s shift
register (SPIDAT) is loaded

Step 4 is repeated until specified number of bits are transmitted
SPIDAT register is copied to SPIRXBUF register
SPI INT Flag bit is setto 1

An interrupt is asserted if SPI INT ENA bit is setto 1

© © N o O

If data is in SPITXBUF (either Slave or Master), it is loaded into SPIDAT and transmission
starts again as soon as the Master's SPIDAT is loaded

Since data is shifted out of the SPIDAT register MSB first, transmission characters of less than 16
bits must be left-justified by the CPU software prior to being written to SPIDAT.

Received data is shifted into SPIDAT from the left, MSB first. However, the entire sixteen bits of
SPIDAT is copied into SPIBUF after the character transmission is complete such that received
characters of less than 16 bits will be right-justified in SPIBUF. The non-utilized higher
significance bits must be masked-off by the CPU software when it interprets the character. For
example, a 9 bit character transmission would require masking-off the 7 MSB's.

TMS320F28004x Microcontroller Workshop - Communications 11-5

Serial Peripheral Interface (SPI)

SPI| Data Character Justification

¢ Programmable data
length of 1 1o 16 bits SPIDAT - Processor #1

¢ Transmitted data of less 11001001 XXXXXXXX
than 16 bits must be left

justified
€ MSB transmitted first
¢ Received data of less

SPIDAT - Processor #2

than 16 bits are right
justified XXXXXXXX11001001
¢ User software must
mask-off unused MSB’s
SPI Summary
SPI Summary

¢ Synchronous serial communications
¢ Two wire transmit or receive (half duplex)

¢ Three wire transmit and receive (full duplex)

¢ Software configurable as master or slave

¢ C28x provides clock signal in master mode
¢ Data length programmable from 1-16 bits

¢ 125 different programmable baud rates

11-6 TMS320F28004x Microcontroller Workshop - Communications

Serial Communications Interface (SCI)

Serial Communications Interface (SCI)

The SCIl is a two-wire asynchronous serial port (also known as a UART) that supports
communications between the processor and other asynchronous peripherals that use the
standard non-return-to-zero (NRZ) format. A receiver and transmitter 16-level deep FIFO is used
to reduce servicing overhead. The SCI transmit and receive registers are both double-buffered to
prevent data collisions and allow for efficient CPU usage. In addition, the C28x SCl is a full
duplex interface which provides for simultaneous data transmit and receive. Parity checking and

data formatting is also designed to be done by the port hardware, further reducing software
overhead.

SCI Pin Connections

(Full Duplex Shown)

TX FIFO_15 TX FIFO_15
TX FIFO_O TX FIFO_O
Transmitter-data Transmitter-data
buffer register buffer register
Transmitter SCITXD SCITXD Transmitter
shift register shift register
Receiver SCIRXD SCIRXD Receiver
shift register shift register
Receiver-data Receiver-data
buffer register buffer register
RX FIFO_0 RX FIFO_0
RX FIFO_15 RX FIFO_15
SCI Device #1 SCI Device #2

TMS320F28004x Microcontroller Workshop - Communications 11-7

Serial Communications Interface (SCI)

SCI Data Format

NRZ (non-return to zero) format

Addr/| . ' '
Start | LSB 2 3 4 5 6 7 MSB Data Parity [Stop 1 Stop 2

This bit present only in Address-bit mode A

Communications Control Register (SCICCR)

7 6 5 4 3 2 1 0
Stop Even/Odd| Parity |Loopback| Addr/idle SCI SCI SCI
Bits Parity Enable Enable Mode Char2 Charl Char0
| ~
0 =1 Stop bit 0 = Disabled 0 =Idle-line mode # of data bits = (binary + 1)
1 =2 Stop bits 1=Enabled 1 =Addr-bit mode e.g. 110b gives 7 data bits
0 =0dd 0 = Disabled
1=Even 1=Enabled

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame which specifies the destination port of the data as
determined by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and SCITX
lines to a high level when they are not receiving or transmitting on their respective lines.

When configuring the SCICCR, the SCI port should first be held in an inactive state. This is
done using the SW RESET bit of the SCI Control Register 1 (SCICTL1.5). Writing a O to this bit
initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

11-8 TMS320F28004x Microcontroller Workshop - Communications

Serial Communications Interface (SCI)

SCI Data Timing

< Start bit valid if 4 consecutive SCICLK periods of
zero bits after falling edge

¢ Majority vote taken on 4%, 5t ‘and 6" SCICLK cycles

Majority

\ Vote /
SCICLK

Internal
() 1 2 345 67 8 12 3 45 6 78 1 2

somo ||} 4 4 bid |

Start Bit LSB of Data

" Falling Edge Detected

Note: 8 SCICLK periods per data bit

Multiprocessor Wake-Up Modes

Multiprocessor Wake-Up Modes

¢ Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them

¢ Idle-line or Address-bit modes

¢ Sequence of Operation

1. Potential receivers set SLEEP = 1, which disables RXINT except
when an address frame is received

2. All transmissions begin with an address frame

3. Incoming address frame temporarily wakes up all SCls on bus
4. CPUs compare incoming SCI address to their SCI address

5. Process following data frames only if address matches

TMS320F28004x Microcontroller Workshop - Communications 11-9

Serial Communications Interface (SCI)

Idle-Line Wake-Up Mode

¢ ldle time separates blocks of frames

¢ Receiver wakes up when SCIRXD high for 10 or
more bit periods

¢ Two transmit address methods
¢ Deliberate software delay of 10 or more bits
¢ Set TXWAKE bit to automatically leave exactly 11

idle bits
Idle periods
of less than Block of Frames
10 bits N
gg:_’?;(g/ "V lastpata; sP |sT| Addr |sp|sT| Data |sP|ST[LastData] sp iSTi Addr isPi
\// V. _v_/
Idled Address frame 1st data frame IdIed
Perio foll 10 bit Perio
0bits 7O e 10 bits
or greater O 9" ! or greater

Address-Bit Wake-Up Mode

¢ All frames contain an extra address bit
¢ Receiver wakes up when address bit detected

¢ Automatic setting of Addr/Data bit in frame by
setting TXWAKE = 1 prior to writing address
to SCITXBUF

Block of Frames

SCIRXD/ "™ oo Dataio ! SP |ST[Addr | 1]sP|sT[Data |0|SP|ST [Last Data 0]SPLST! Addr | 1}SPi

SCITXD ~~="=====~* T
>/_/ First frame within 1st data frame no additional
Idle Period block is Address. idle bits needed
length of no ADDR/DATA beyond stop bits
significance bit set to 1

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient
way of timing and controlling the operation of the SCI transmitter and receiver. The interrupt flag
for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6). TXRDY is

11-10

TMS320F28004x Microcontroller Workshop - Communications

Serial Communications Interface (SCI)

set when a character is transferred to TXSHF and SCITXBUF is ready to receive the next
character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX EMPTY
flag (SCICTL2.6) is set. When a new character has been received and shifted into SCIRXBUF,
the RXRDY flag is set. In addition, the BRKDT flag is set if a break condition occurs. A break
condition is where the SCIRXD line remains continuously low for at least ten bits, beginning after
a missing stop bit. Each of the above flags can be polled by the CPU to control SCI operations,
or interrupts associated with the flags can be enabled by setting the RX/BK INT ENA
(SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is the
logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and parity
error (PE) bits. RX ERROR high indicates that at least one of these four errors has occurred
during transmission. This will also send an interrupt request to the CPU if the RX ERR INT ENA
(SCICTL1.6) bit is set.

SCl Summary

SCI Summary

¢ Asynchronous communications format
¢ 65,000+ different programmable baud rates
¢ Two wake-up multiprocessor modes
¢ Idle-line wake-up & Address-bit wake-up
¢ Programmable data word format
¢ 1 to 8 bit data word length
¢ 1 or 2 stop bits
¢ even/odd/no parity
¢ Error Detection Flags

¢ Parity error; Framing error; Overrun error;
Break detection

¢ Transmit FIFO and receive FIFO
¢ Individual interrupts for transmit and receive

TMS320F28004x Microcontroller Workshop - Communications 11-11

Local Interconnect Network (LIN)

Local Interconnect Network (LIN)

Local Interconnect Network (LIN)

¢ A broadcast serial network
¢ One master, up to sixteen addressable slaves
+ Serial link layer similar to UART (e.g., start, data,
stop bits)
Single wire (plus ground)
¢ 12V bus (originally designed for automotive apps)

¢ No bus arbitration or collision detection
¢ Master initiates all communication
¢ A single slave responds

¢ Configurable Baud Rate up to 20 Kbits/s
¢ C2000 LIN module

¢ Compliant with the LIN spec 2.1
¢ Can be used as an SCI (UART), if desired

The LIN standard is based on the SCI (UART) serial data link format. The communication
concept is single-master/multiple-slave with a message identification for multi-cast transmission
between any network nodes.

LINRX

LIN Module Block Diagram

«——8 ——
RD7
RD6
RD5
RD4
RD3
RD2
RD1

RDO Checksum
} Calculator

\ 4

LINTX <

Mask
> . SCIRXSHF .
* Filter |_SCIRXSHF_| Parity

| Synchronizer |

« SCITXSHE Calculator
Bit

D0 Monitor

TD1
TD2
TD3
TD4
TDS
TD6
TD7

11-12

TMS320F28004x Microcontroller Workshop - Communications

Local Interconnect Network (LIN)

LIN Message Frame and Data Timing

LIN Message Frame

Message Frame

l— Master Sends —| Slave Responds —— |

e 1to 8 DataFields ———— |

Sync [Sync| ID Data| |Data| [Data Data| [Data | [ShecK
Break | Field | Field | |Field| |Field| |Field| ®®® |Field| |Field| | ST

L Ul]

In-Frame Space Interbyte Spaces

¢ Sync Break — beginning of a message
¢ Sync Field — bit rate synchronizing occurs

¢ ID Field
¢ Identifier: 6-bit ID, 2-bit parity
¢ Message (optional): 2, 4, or 8 bytes
¢ Data Field — 1-bit start, 8-bit data, 1-bit stop bit
¢ Checksum Field — 1-bit start, 8-bit checksum,
1-bit stop
¢ In-Frame & Inter-byte Spaces — can be O

LIN Data Timing

To make a determination of the bit value, 16
samples of each bit are taken with majority
vote on samples 8, 9, and 10

LM_CLK

\vee/ \vee/ \vee/
JU TS
(Internal)
rou BT T T

TMS320F28004x Microcontroller Workshop - Communications 11 -13

Local Interconnect Network (LIN)

LIN Bus Connections

12V

1 KQ
LIN bus (master node only)

12V
vdd (e.g., 3.3V)
1 *

LIN Transceiver 5 KO
Vdd

TX RX

LIN Controller

(F28004x)

* Tl LIN Transceivers, such as: TLIN2029-Q1, TLIN2022-Q1, and TLIN2024-Q1

LIN Summary

LIN Summary

¢ Functionally compatible with standalone
SCI of C28x devices

¢ ldentification masks for filtering
¢ Automatic master header generation

¢ 231 programmable transmission rates with
7 fractional bits

¢ Automatic wakeup support

¢ Error detection (bit, bus, no response,
checksum, synchronization, parity)

¢ Multi-buffered receive/transmit units

11-14 TMS320F28004x Microcontroller Workshop - Communications

Inter-Integrated Circuit (12C)

Inter-Integrated Circuit (12C)

Inter-Integrated Circuit (12C)

NXP Semiconductors I12C-bus specification compliant, version 2.1
Data transfer rate from 10 kbps up to 400 kbps

Each device can be considered as a Master or Slave

Master initiates data transfer and generates clock signal

Device addressed by Master is considered a Slave

Multi-Master mode supported

Standard Mode — send exactly n data values (specified in register)

Repeat Mode — keep sending data values (use software to initiate a
stop or new start condition)

L 2R 2R ZER JER JEE 2R BN 4

VDD

Pull-up 28x 12C
Resistors 12C Controller

Serial Data (SDA) l l
Serial Clock (SCL)

12C 28X
EPROM 12C

The 12C provides an interface between devices that are compliant 12C-bus specification version
2.1 and connect using an 12C-bus. External components attached to the 2-wire serial bus can

transmit or receive 1 to 8-bit data to or from the device through the 12C module.

12C Block Diagram

I2CXSR [« 1I2CDXR
TX FIFO
SDA « >
RX FIFO
» |2CRSR » [2CDRR
SCL < s Clock
Circuits

TMS320F28004x Microcontroller Workshop - Communications

11-15

Inter-Integrated Circuit (12C)

12C Operating Modes and Data Formats

12C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits data to a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is a master and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode | Module is a master and transmits to a slave

(all masters begin in this mode)

|I2C Serial Data Formats

7-Bit Addressing Format
1 7 1 1 n 1 n 1 1
|s| Slave Address |R/W|ACK| Data |ACK| Data |ACK| P |

10-Bit Addressing Format

1 7 1 1 8 1 n 1 1
| S | 11110AA |R/W|ACK| AAAAAAAA |ACK| Data |ACK| P |
Free Data Format
1 n 1 n 1 n 1 1
[s] Data [ACK] Data | AcK] Data [AcK]| P |

R/W = 0 — master writes data to addressed slave

R/W = 1 — master reads data from the slave

n =1 to 8 hits

S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

11-16

TMS320F28004x Microcontroller Workshop - Communications

Inter-Integrated Circuit (12C)

I2C Arbitration

¢ Arbitration procedure invoked if two or more master-
transmitters simultaneously start transmission

+ Procedure uses data presented on serial data bus (SDA) by
competing transmitters

+ First master-transmitter which drives SDA high is overruled
by another master-transmitter that drives SDA low

+ Procedure gives priority to the data stream with the lowest
binary value

Device #1 lost arbitration

SCL I
L and switches to slave-
Data from M/ receiver mode
device #1 !

: Device #2
Igéa\t/?cgatrg 110 0 ‘1\0_1/ drives SDA
SDA 110 O0f1(0|1

12C Summary

12C Summary

¢ Compliance with Philips 12C-bus specification
(version 2.1)

¢ 7-bit and 10-bit addressing modes

¢ Configurable 1 to 8 bit data words

¢ Data transfer rate from 10 kbps up to 400 kbps
¢ Transmit FIFO and receive FIFO

TMS320F28004x Microcontroller Workshop - Communications 11 - 17

Controller Area Network (CAN)

Controller Area Network (CAN)
Controller Area Network (CAN)

A Multi-Master Serial Bus System
¢ CAN 2.0B Standard
High speed (up to 1 Mbps)

Add a node without disturbing the bus (humber of nodes not
limited by protocol)

Less wires (lower cost, less maintenance, and more reliable)
Redundant error checking (high reliability)

No node addressing (message identifiers)

Broadcast based signaling

L 2R 4

* 6 o o0

The CAN module is a serial communications protocol that efficiently supports distributed real-time
control with a high level of security. It supports bit-rates up to 1 Mbit/s and is compliant with the
CAN 2.0B protocol specification.

CAN does not use physical addresses to address stations. Each message is sent with an
identifier that is recognized by the different nodes. The identifier has two functions — it is used for
message filtering and for message priority. The identifier determines if a transmitted message
will be received by CAN modules and determines the priority of the message when two or more
nodes want to transmit at the same time.

11-18 TMS320F28004x Microcontroller Workshop - Communications

Controller Area Network (CAN)

CAN Bus and Node

CAN Bus

¢ Two wire differential bus (usually twisted pair)

¢ Max. bus length depends on transmission rate
¢ 40 meters @ 1 Mbps

CAN CAN
NODE A NODE B

CAN_H

1200 120Q
CAN_L

The MCU communicates to the CAN Bus using a transceiver. The CAN bus is a twisted pair wire
and the transmission rate depends on the bus length. If the bus is less than 40 meters the
transmission rate can be up to 1 Mbit/second.

CAN Node

Wired-AND Bus Connection

CAN_H

1200
CAN_L

1200 [:]

M\

CAN Transceiver
(e.g. TI SN65HVD23Xx)

X RX

CAN Controller
(TMS320F28004x)

TMS320F28004x Microcontroller Workshop - Communications 11-19

Controller Area Network (CAN)

Principles of Operation

Principles of Operation

¢ Data messages transmitted are identifier based, not
address based

¢ Content of message is labeled by an identifier that is
unique throughout the network

¢ (e.g.rpm, temperature, position, pressure, etc.)

¢ All nodes on network receive the message and each
performs an acceptance test on the identifier

¢ If message is relevant, it is processed (received);
otherwiseitis ignored

¢ Unique identifier also determines the priority of the
message

¢ (lower the numerical value of the identifier, the higher the
priority)
¢ When two or more nodes attempt to transmit at the
same time, a non-destructive arbitration technique
guarantees messages are sent in order of priority
and no messages are lost

Non-Destructive Bitwise Arbitration

¢ Bus arbitration resolved via arbitration with
wired-AND bus connections
¢ Dominate state (logic 0, bus is high)
¢ Recessive state (logic 1, bus is low)

"
Node A ™ P Node A wins

............ e
Node B L1

CANBus = L _l S

Node B loses k Node C loses
arbitration arbitration

11-20 TMS320F28004x Microcontroller Workshop - Communications

Controller Area Network (CAN)

Message Format and Block Diagram

CAN Message Format

¢ Data is transmitted and received using Message Frames
¢ 8 byte data payload per message
¢ Standard and Extended identifier formats

¢ Standard Frame: 11-bit Identifier (CAN v2.0A)

Arbitration Control
Field Field Data Field

S| 11-bit |R|!
O | Identifier| T [P[r0] DLC | 0...8 Bytes Data |CRC | ACK

mom

¢ Extended Frame: 29-bit Identifier (CAN v2.0B)

Control

Arbitration Field Field Data Field
S ; S| ; R E
11-bit 18-bit
g |dentifier E Ié Identifier 'IR"rl r0| DLC | 0...8 Bytes Data |CRC [ACK ('2

The MCU CAN module is a full CAN Controller. It contains a message handler for transmission
and reception management, and frame storage. The specification is CAN 2.0B Active — that is,

the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

CAN Block Diagram

To ePIET DMAT CPU Bus {} (8, 16 or 32-bit)

CAN
’ Module Interface ‘
MTedst
Message oonf;S
RAM Register and Message
Message Object Access (IFx)
32 <:> RAM @
Message Interface
Objects <::> Message Handler |
(mailboxes) @
‘ CAN Core ‘
CAN_TX CAN_RX
SN65HVD23x

3.3V CAN Transceiver

—l—— CAN Bus

TMS320F28004x Microcontroller Workshop - Communications 11-21

Controller Area Network (CAN)

The CAN controller module contains 32 mailboxes for objects of 0 to 8-byte data lengths:
e configurable transmit/receive mailboxes

e configurable with standard or extended indentifier

The CAN module mailboxes are divided into several parts:
e MID - contains the identifier of the mailbox

e MCF (Message Control Field) — contains the length of the message (to transmit or
receive) and the RTR bit (Remote Transmission Request — used to send remote
frames)

e MDL and MDH - contains the data
The CAN module contains registers which are divided into five groups:
e Control & Status Registers
e Local Acceptance Masks
e Message Object Time Stamps
e Message Object Timeout

e Mailboxes

CAN Summary

CAN Summary

¢ Fully compliant with CAN standard v2.0B
¢ Supports data rates up to 1 Mbps
¢ Thirty-two message objects
¢ Configurable as receive or transmit
¢ Configurable with standard or extended identifier
¢ Programmable receive mask
¢ Uses 32-bit time stamp on messages
¢ Programmable interrupt scheme (two levels)
¢ Programmable alarm time-out
¢ Programmable wake-up on bus activity
¢ Two interrupt lines

¢ Self-test mode

11-22 TMS320F28004x Microcontroller Workshop - Communications

Power Management Bus (PMBus)

Power Management Bus (PMBus)

Power Management Bus (PMBus)

¢ Provides an interface between the MCU and devices
compliant with the SMI Forum PMBus Specification:

¢ Part | version 1.0 and Part Il version 1.1

¢ Enables a standard 2-wire communications protocol between
power supply components

¢ Based on SMBus and supports I12C mode
¢ uses a similar physical layer to 12C

¢ Support for master and slave modes

¢ Support for two speeds:
¢ Standard Mode: Up to 100 kHz
¢ Fast Mode: 400 kHz

¢ Four-byte transmit and receive buffers
¢ Packet error checking (PEC)

Conceptual Block Diagram and Connections

Conceptual Block Diagram

SYSICLK
ALERT DMA
PMBCTRL) ([egeen)
CTL .
GPIO Bit Clock

CPU

MUX | spa o L{PMBTXBUF
Register | EMBRXBUF I
SCL PMBUSA_INT

PMBus Module P

¢ SCL is the bus clock

¢ Normally controlled by the master; can be held low by a slave to
delay a transaction (to allow more time for processing)

¢ SDA is the bidirectional data line

¢ CONTROL is a slave input that can trigger an interrupt
¢ Can be used to tell a slave device to shut down

¢ ALERT is a slave output/master input
¢ Allows a slave to request attention from the master

TMS320F28004x Microcontroller Workshop - Communications 11 -23

Power Management Bus (PMBuSs)

The PMBus module provides an interface for communicating between the microcontroller and
other devices that are compliant with the System Management Interface (SMI) specification.
PMBus is an open-standard digital power management protocol that enables communication
between components of a power system.

PMBus Connections

F28004x |« Alert DEVICE

. #1

PMBus [:g‘;{‘;m'

b 4 Write Physical
Module » Clock protect Address
R
Alert DEVICE

#2

Control

el Write Physical
Clock protect Address

friteet

Alert DEVICE
Control #N

Data Write Physical
Clock protect Address

freeeet

YVvYy

PMBus Summary

PMBus Summary
¢ Provides a standard and flexible means for
digital power management

¢ SDA and SCL timings derived from SYSCLK

¢ To comply with the PMBus timing specifications
the bit clock must be set to 10 MHz or less

¢ Four-byte Transmit Data Buffer
¢ Four-byte Receive Data Buffer
¢ Clock high and low time-outs
¢ CONTROL and ALERT signals

11-24 TMS320F28004x Microcontroller Workshop - Communications

Fast Serial Interface (FSI)

Fast Serial Interface (FSI)

Fast Serial Interface (FSI)

¢ Ensure reliable high-speed serial communication
across an isolation barrier

¢ Provides galvanic isolation where different circuits do not
have common power and ground connections

¢ Consists of independent transmitter (FSITX) and
receiver (FSIRX) cores
¢ Each cores is configured and operated independently

Point-to-point (single master/single slave)
Fast transfer: 50 MHz

.

.

¢ Dual data rate (100 Mbps @ 50 MHz clock)
¢ Single or dual data lines

¢ Programmable data length

¢ Hardware- or software-calculated CRC

¢ Frame error detection

¢ Two interrupts per FSl core

The FSI module is a highly reliable high-speed serial communication peripheral capable of
operating at dual data rate providing 100 Mbps transfer using a 50 MHz clock. The FSI consists
of independent transmitter and receiver cores that are configured and operated independently.
FSl is a point-to-point communication protocol operating in a single-master/single-slave
configuration. With this high-speed data rate and low channel count, the FSI can be used to
increase the amount of information transmitted and reduce the costs to communicate over an
isolation barrier.

TMS320F28004x Microcontroller Workshop - Communications 11-25

Fast Serial Interface (FSI)

CPU Interface and Connection

Transmitter / Receiver CPU Interface

FSI Transmitter FSI Receiver

PLURAWELK, PCLKCA1S

(PCLKCR18) |
B SYSCLE:

SYSREN

FEIRXNTY
EEITRNTI FEIRKyINT2—]
FSITXyINT2: y v
[T k
P
a 2 £]
£ 3 | 7 g o
)] o ~ 4 | 2
1 a z oMA | FEIRX ©
H FSITY 2 oM — |z
= &
|| s +_Fs|px;,,m-a_
FEITXyDMA I
- f——FSIR0=
. J® cus [#—FSIRNGER
- v 3 = t—F IRy PF—]
3z i la—FsiRxyTaG—
3
Core Signals Core Signals

Transmitter / Receiver Core Signals

Transmitter Core Signal Receiver Core Signal
¢ TXCLK — Transmit clock ¢ RXCLK - Receive clock
¢ TXDO — Primary data output ¢ Connected to the TXCLK of the
line for transmission transmitting FSI module
+ For multi-lane transmission: ¢ RXDO - Primary data input line
Contains all the even for reception
numbered bits of the data ¢ Connected to the TXDO of the
and CRC bytes transmitting FSI module
Other frame fields will be ¢ RXD1 - Additional data input
transmitted in full line for reception
¢ TXD1 - Additional data output # Connected to the TXD1 of the
line for transmission transmitting FSI module if multi-
Configured for multi-lane lane transmission is used

transmission:
¢ Contain all the odd numbered
bits of the data and CRC
bytes
+ Applies only to the data
words and the CRC bytes

11-26 TMS320F28004x Microcontroller Workshop - Communications

Fast Serial Interface (FSI)

Point to Point Connection

FSI TX | FSIRX

Device 2
(Slave)

[y

Device
(Master

Isolator

FSIRX | FSI TX

Note: while there is no true concept of a master or a slave node in the FSI protocol,
this example uses this nomenclature as a simple way to describe the data flow

FSI Summary

FSI Summary

¢ Highly reliable high-speed serial peripheral
for communicating over an isolation barrier

¢ High-speed data rate and low channel count

¢ Increases the amount of information transmitted
and reduce the costs

¢ Separate transmit and receive modules
¢ Point-to-point communication protocol

¢ FSl transmitter core communicates directly to a
single FSl receiver core

¢ Skew compensation for signal delay due to
isolation

¢ Line break detection

TMS320F28004x Microcontroller Workshop - Communications 11 - 27

Lab 11: C2000Ware SCI Echoback Example

Lab 11: C2000Ware SCI Echoback Example

>

Objective

The objective of this lab exercise is to learn how to import and run a project from C2000Ware. In
the previous lab exercises, a local copy of the required C2000Ware files was included with the lab
files. This provided portability and made the workshop files self-contained and independent of
other support files or resources. It is assumed that Code Composer Studio (CCS) is already
installed; however, the installation of C2000Ware will be required and included in the procedure
directions.

For this lab exercise, the F28004x Driver Library (Driverlib) SCI echoback example will be used.
The SCI echoback example receives and returns data through the SCI-A port. The CCS terminal
feature will be used to view the data from the SCI and to send characters to the SCI. Each
character that is received by the SCI port is sent back to the host. The program will print out a
greeting and then ask you to enter a character which it will echo back to the terminal. Also, a
watch variable ‘loop count’ is included to count the number of characters sent.

The SCI-A port on the F280049C LaunchPad will communicate to the host PC using the USB
connection. The XDS110 debug probe enumerates as both a debugger and a virtual COM port.
By default, SCI-A is mapped to the virtual COM port of the XDS110 debug probe using GP1028
and GPI1029. (Alternatively, SCI-A can be connected to a host PC using an external connection
via a transceiver and cable).

Procedure

Download and Install C2000Ware

1. Download C2000Ware from http://www.ti.com/tool/c2000ware. (Also, C2000Ware can be
downloaded using the CCS Resource Explorer).

2. Install C2000Ware using the default location (i.e. C:\ti\c2000\).

Import the Project

3. Import the project by clicking on Project > Import CCS Projects. The “Import
CCS Eclipse Projects” window will open then click Browse... next to the “Select search-
directory” box. Navigate to:

C:\ti\c2000\C2000Ware_<version>\driverlib\f28004x\examples\sci
and click Select Folder.

4. Inthe “Discovered projects” window that opens select sci_ex1_echoback and then
click Finish to import the project.

Modify the Target Configuration File

The F28004x Driverlib example projects include a target configuration file within each project.
This target configuration has been setup to use the XDS100v2 standard JTAG mode. Recall that
the F280049C LaunchPad XDS110 USB Debug Probe is only wired to support 2-pin cJTAG
mode. Therefore, before using the LaunchPad with these examples, the target configuration file
needs to be reconfigured.

11-28

TMS320F28004x Microcontroller Workshop - Communications

Lab 11: C2000Ware SCI Echoback Example

5. The sci_ex1_echoback project should now appear in the Project Explorer window.
Expand the project and open the ‘targetConfigs’ folder. Rename the file name from
TMS320F280049M.ccxml to TMS320F280049C.ccxml (i.e. change from “M” to “C”).
Next, double-left click on the TMS320F280049C . ccxml file.

6. Inthe window that opens, select the emulator using the “Connection” pull-down list and
choose “Texas Instruments XDS110 USB Debug Probe”. In the “Board or Device” box
type TMS320F280049C to filter the options. In the box below, check the box to select
“TMS320F280049C".

7. Under Advanced Setup click “Target Configuration” and highlight “Texas Instruments
XDS110 USB Debug Probe_0". Under Connection Properties set the JTAG/SWD/cJTAG
Mode to “cJTAG (1149.7) 2-pin advanced modes”.

Click Save to save the configuration, then close the “TMS320F280049C.ccxml” setup
window by clicking the X on the tab.

Inspect sci_ex1l echoback.c

8. Open and inspect sci_ex1 _echoback.c. Notice that code lines 139 through 148 use
the Driverlib functions to configure SCI-A.

139 SCI_setConfig(SCIA_BASE, DEVICE_LSPCLK_FREQ, 9600, (SCI_CONFIG_WLEN 8 |
140 SCI_CONFIG_STOP_ONE |
141 SCI_CONFIG_PAR_NONEY);
142 SCT_resetChannels(SCTA_BASE);

143 SCI_resetRxFIFO(SCIA BASE);

144 SCI_resetTxFIFO(SCIA_BASE);

145 SCI_clearInterruptStatus(SCIA BASE, SCI INT TXFF | SCI_INT RXFF);

146 SCI_enableFIFO(SCIA BASE);

147 SCI_enableModule(SCIA BASE);

148 SCI_performSoftwareReset(SCIA BASE);

Next, code lines 161 through 169 displays the greeting on the terminal and waits for a
character to be entered. Code lines 174 and 179 through 181 reads a character and
writes it back to the terminal. Finally, code line 186 increments the loop counter.

[=)]

msg = "\ri\n\n\nHello World!\@";

162 SCI_writeCharArray(SCIA_BASE, (uintlée t*)msg, 17);

163 msg = "\r\nYou will enter a character, and the DSP will echo it back!\n\@";
164 SCI_writeCharArray(SCIA BASE, (uintle_t*)msg, 62);

165

166 for(;;)

167

168 msg = "\r\nEnter a character: \@8";

169 SCI_writeCharArray(SCIA_BASE, (uintle_t*)msg, 22);
170

171 /f

172 // Read a character from the FIFO.

173 //

174 receivedChar = SCI_readCharBlockingFIFO(SCIA_BASE);
175

176 /7

177 // Echo back the character.

178 I

179 msg = " You sent: \@";

180 SCI_writeCharArray(SCIA_BASE, (uintle_t*)msg, 13);
181 SCI_writeCharBlockingFIFO(SCIA_BASE, receivedChar);
182

183 /1

184 // Increment the loop count variable.

185 //

186 loopCounter++;

187 }

TMS320F28004x Microcontroller Workshop - Communications 11-29

Lab 11: C2000Ware SCI Echoback Example

Build and Load

9.

10.

Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

Click the “Debug” button (green bug). The CCS Debug perspective view should open,
the program will load automatically, and you should now be at the start of main(). If the
device has been power cycled since the last lab exercise, be sure to configure the boot
mode to EMU_BOOT_RAM using the Scripts menu.

Configure a CCS Terminal

11.

12.

13.

To view the terminal information on your PC, we first need to determine the COM port
associated with the F280049C LaunchPad. To do this in Windows 10, right click on ‘This
PC’ (or ‘My Computer’ in earlier versions of Windows) and select Properties. In the
dialog box that appears, click on Device Manager (or the Hardware tab and open Device
Manager). Alternatively, you can open the Windows Search and type “Device Manager”.
Then look for an entry under Ports (COM & LPT) titled “User UART (COMX)” or “USB
Serial Port (COMX)”, where X is a number. Remember this number for the next step
where we will open and configure a serial terminal.

Open a CCS terminal by clicking the Terminal button & or clicking:
View > Terminal

A Launch Terminal window will open. Configure the terminal with the following settings:

e Choose terminal: Serial Terminal

e Serial Port: (from above COM port number X)
e Baud rate: 9600

e Datasize: 8

e Parity: None

e Stop hits: 1

e Encoding: Default (ISO-8859-1)

Click OK to launch the terminal window.

Run the Code

14.

15.

16.

In sci_ex1l echoback.c towards the top of the code highlight the global variable
‘loopCounter’ with the mouse, right click and select “Add Watch Expression..” and
then select OK. The global variable loopCounter should now be in the Expressions
window with a value of “0”. This global variable will be used to count the number of
characters sent.

Enable the Expressions window for continuous refresh.

Run the code (using the Resume button on the toolbar). The program will print out a
greeting and then ask you to enter a character which it will echo back to the terminal.

Hello World!
You will enter a character, and the DSP will echo it back!
Enter a character:

11-30

TMS320F28004x Microcontroller Workshop - Communications

Lab 11: C2000Ware SCI Echoback Example

17. Enter a character and the character will echo back to the terminal. Also, the loopCounter
will increment with each character sent.

18. Halt the code (using the Suspend button on the toolbar).

Terminate Debug Session and Close Project

19. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

20. Next, close the project by right-clicking on sci_ex1_echoback in the Project Explorer
window and select Close Project.

End of Exercise

TMS320F28004x Microcontroller Workshop - Communications 11-31

Lab 11: C2000Ware SCI Echoback Example

11-32 TMS320F28004x Microcontroller Workshop - Communications

Support Resources

Introduction

This module contains various references to support the development process.

Module Objectives

Module Objectives

¢ C2000 MCU Device Workshops Website
¢ Documentation Resources

¢ C2000Ware™

¢ Tl Development Tools

¢ Additional Resources
¢ Product Information Center
¢ On-line support

TMS320F28004x Microcontroller Workshop - Support Resources 12-1

Tl Support Resources

Chapter Topics

SUPPOIT RESOUICES ...ttt bbbttt et e et s sttt sttt st s s s s s e st s st s e e s s e snnnnen 12-1
T1 SUPPOIT RESOUITES ... s 12-3
C2000 MCU Device WOrkshops WEDSILEccvuiiieireeiiiiiiieec et e e e e e 12-3
DOCUMENLALION RESOUICES......ciiiiiiiieiiiiie ettt ettt sttt e ettt e et e e sab et e e sbbe e e e snbeneeesneeeeas 12-4
C2000WV B ™ Lttt e ettt e e e et e et e e e s e s e e e et e e e s e e R e et et e e e e h e e et e e e e e e a b rrre et eee e e nne 12-4
(092010101 T o 1= 10 0 1=T 01 (=T T | SRS 12-5
F28335 Peripheral EXPIOrer Kit........c.uueeiiiiiiiiiiieiee ettt e e e e 12-6
C2000 LaunchPad Evaluation Kitccoiiiiiiiiiiiaee et e e e e 12-7
C2000 controlCARD APPIICAtION KISeiiiiiiiiiiiieiie ettt e e 12-8
XDS100/110/200 Class JTAG Debug Probesc..uueiiiiiiiiiiiiiieeee e 12-9
Product INformation RESOUITESuuiiiiiiiiiiitiiie ettt e e e e e e e e enees 12-10

12-2

TMS320F28004x Microcontroller Workshop - Support Resources

Tl Support Resources

Tl Support Resources

C2000 MCU Device Workshops Website

C2000™ MCU Device Workshops
ve been

Table of contents Additional information

1. C2000 MCU Device Wi
Below are the available C2000 MCU workshops:

] Tle Duration

C2000 MCU Device Workshops Website

Ti Tralnlng B Videos > Applicstion: & deigr. Lbe isining. Prochects. Tk & soltware ™ Feedback & Global

https://training.ti.com/c2000-mcu-device-workshops

At the TI Training Portal you will find all of the materials for the C2000 Microcontroller Workshops,

which include support for the following device families:

TMS320F28004x
TMS320F2837xD
TMS320F2806x
TMS320F2803x
TMS320F2802x
TMS320F2833x
TMS320F280x
TMS320F281x
TMS320LF240x
F28M35x

TMS320F28004x Microcontroller Workshop - Support Resources

12 -3

Tl Support Resources

Documentation Resources

Documentation Resources

¢ Data Sheet
¢ Contains device electrical characteristics and
timing specifications
¢ Key document for hardware engineers
¢ Silicon Errata
¢ Contains deviations from original specifications
¢ Includes silicon revision history
¢ Technical Reference Manual (TRM)

+ Contains architectural descriptions and
register/bit definitions

¢ Key document for firmware engineers
¢ Workshop Materials
¢ Hands-on device training materials

¢ For hardware and software engineers
Documentation resources can be found at
www.ti.com/c2000
C2000Ware™
C2000Ware™
| wonspace v - Tl Resource Explorer - Code Compaser Studia (=] b
_.—@v e 'Fiesource 'Exp.lorer »
: - o ne="°

w 2000
w C2000Ware_1_00_06_00
metadata

boards

1
1

1

1

1

1

1

1

! device_support
: does

: driverli

1 ibraries

: unénstallers
1

utilities

C2000Ware for C2000 microcontrollers is a cohesive set of software infrastructure, tools, and
documentation that is designed to minimize system development time. It includes device-specific

12-4

TMS320F28004x Microcontroller Workshop - Support Resources

Tl Support Resources

drivers and support software, as well as system application examples. C2000Ware provides the
needed resources for development and evaluation. It can be downloaded from the Tl website.

C2000 Experimenter’s Kit
C2000 Experimenter Kit

¢ Experimenter Kits include
¢ controlCARD
¢ USB docking station

¢ C2000 applications software with
example code and full hardware
details available in C2000Ware

¢ Code Composer Studio (download)

¢ Part Number:
¢ TMDSDOCK?280049C

o TMDSDOCK28379D ¢ Docking station features

¢ TMDSDOCK?28069 ¢ Access to controlCARD signals

¢ TMDSDOCK?28035 ¢ Breadboard areas

¢ TMDSDOCK28027 ¢ On-board USB JTAG debug probe
¢ TMDSDOCK28335 ¢ JTAG debug probe not required

¢ TMDSDOCK2808 ¢ controlCARDs are also

¢ TMDSDOCKH52C1

available separately

¢ Available through Tl authorized
distributors and the Tl store

JTAG debug probe required for:
¢ TMDSDOCK?28343
¢ TMDSDOCK28346-168

The C2000 Experimenter Kits is a tool for device exploration and initial prototyping. These kits
are complete, open source, evaluation and development tools where the user can modify both the
hardware and software to best fit their needs.

The various Experimenter’s Kits shown on this slide include a specific control CARD and Docking
Station. The docking station provides access to all of the controlCARD signals with two
prototyping breadboard areas and header pins, allowing for development of custom solutions.
Most have on-board USB JTAG emulation capabilities and no external debug probe or power
supply is required. However, where noted, the kits based on a DIMM-168 controlCARD include a
5-volt power supply and require an external JTAG debug probe.

TMS320F28004x Microcontroller Workshop - Support Resources 12-5

Tl Support Resources

F28335 Peripheral Explorer Kit
F28335 Peripheral Explorer Kit

¢ Experimenter Kit includes
¢ F28335 controlCARD
¢ Peripheral Explorer baseboard

¢ C2000 applications software with
example code and full hardware details
available in C2000Ware

¢ Code Composer Studio (download)
¢ Peripheral Explorer features
¢ ADC input variable resistors
¢ GPIO hex encoder & push buttons
¢ eCAP infrared sensor
¢ GPIO LEDs, 12C & CAN connection
¢ Analog I/O (AIC+McBSP)
¢ On-board USB JTAG debug probe
¢ JTAG debug probe not required
¢ Available through Tl authorized
distributors and the Tl store

TMDSPREX28335

The C2000 Peripheral Explorer Kit is a learning tool for new C2000 developers and university
students. The kit includes a peripheral explorer board and a control CARD with the
TMS320F28335 microcontroller. The board includes many hardware-based peripheral
components for interacting with the various peripherals common to C2000 microcontrollers, such
as the ADC, PWMs, eCAP, I12C, CAN, SPI and McBSP. A teaching ROM is provided containing
presentation slides, a learning textbook, and laboratory exercises with solutions.

12-6

TMS320F28004x Microcontroller Workshop - Support Resources

Tl Support Resources

C2000 LaunchPad Evaluation Kit
C2000 LaunchPad Evaluation Kit

& Low-cost evaluation kit

¢ F28027 and F28379D standard
versions
& F28027F version with InstaSPIN-FOC

¢ F28069M version with InstaSPIN-
MOTION

& Various BoosterPacks available

¢ On-board JTAG debug probe
¢ JTAG debug probe not required

¢ Access to LaunchPad signals
¢ C2000 applications software

¢ Part Number: with example code and full
o LAUNCHXL-E28027 hardware details in available in
& LAUNCHXL-F28027F C2000Ware

¢ LAUNCHXL-F28069M ¢ Code Composer Studio (download)

¢ LAUNCHXL-F28379D o Ayajlable through Tl authorized
¢ LAUNCHXL-F280049C distributors and the Tl store

The C2000 LaunchPads are low-cost, powerful evaluation platforms which are used to develop
real-time control systems based on C2000 microcontrollers. Various LaunchPads are available
and developers can find a LaunchPad with the required performance and feature mix for any
application. The C2000 BoosterPacks expand the power of the LaunchPads with application-
specific plug-in boards, allowing developers to design full solutions using a LaunchPad and
BoosterPack combination.

TMS320F28004x Microcontroller Workshop - Support Resources 12-7

Tl Support Resources

C2000 controlCARD Application Kits
C2000 controlCARD Application Kits

Y ¢ Developer’s Kit for — Motor Control,
Digital Power, etc. applications
¢ Kitsincludes

+ controlCARD and application specific
baseboard

+ Code Composer Studio (download)
¢ Software download includes

+ Complete schematics, BOM, gerber
files, and source code for board and
all software

+ Quickstart demonstration GUI for
quick and easy access to all board
features

+ Fully documented software specific to
each kit and application

¢ See www.ti.com/c2000 for other kits
and more details

¢ Available through Tl authorized
distributors and the Tl store

The C2000 Application Kits demonstrate the full capabilities of the C2000 microcontroller in a
specific application. The kits are complete evaluation and development tools where the user can
modify both the hardware and software to best fit their needs. Each kit uses a device specific
controlCARD and a specific application board. All kits are completely open source with full
documentation and are supplied with complete schematics, bill of materials, board design details,
and software. Visit the Tl website for a complete list of available Application Kits.

12 -8

TMS320F28004x Microcontroller Workshop - Support Resources

Tl Support Resources

XDS100/110/200 Class JTAG Debug Probes

Debug Probes

¢ Blackhawk
¢ USB100v2

XDS100 / XDS110 / XDS200 Class JTAG

¢ Spectrum Digital
¢ XDS100v2

¢ Texas
Instruments
¢ XDS110
¢ Blackhawk ¢ Spectrum Digital
¢ USB200 ¢ XDS200
www.blackhawk-dsp.com www.ti.com www.spectrumdigital.com

The JTAG debug probes are used during development to program and communicate with the
C20000 microcontroller. While almost all C2000 development tools include emulation
capabilities, after you have developed your own target board an external debug probe will be
needed. Debug probes are available with different features and at different price points. Shown

here are popular debug probes from various manufacturers.

TMS320F28004x Microcontroller Workshop - Support Resources

12-9

Tl Support Resources

Product Information Resources

For More Information . ..

¢ USA — Product Information Center (PIC)
¢ Phone: +1-703-344-7012
¢ TI E2ZE Community
¢ http://le2e.ti.com
¢ Embedded Processor Wiki
http://processors.wiki.ti.com
¢ Tl Training
< http://training.ti.com
¢ Tl store
http://store.ti.com
¢ Tl website
< hitp://www.ti.com

For more information and support, contact the product information center, visit the Tl E2E
community, embedded processor Wiki, Tl training web page, Tl eStore, and the TI website.

12-10

TMS320F28004x Microcontroller Workshop - Support Resources

Appendix A — F280049C Experimenter Kit

Overview

This appendix provides a quick reference and mapping of the header pins used on the F280049C
LaunchPad and F280049C Experimenter Kit. This allows either development board to be used
with the workshop.

TMS320F28004x Microcontroller Workshop - Appendix Appendix A A-1

F280049C Experimenter Kit

Chapter Topics

Appendix A — F280049C EXperimenter Kit ... A-1
F280049C EXPErMENTET Kit.....oiii ittt e e e st e e e e e e s e sanbbeaeaaae s A-3
INItIA] HArAWare SEUDcuvieiiiee e e e s s e e s st e e e e e e s s e e e e e e sennnnbe e e e e e e e e snnnenneees A-3
Docking Station and LaunchPad Pin Mapping..........cccoccuriirreeeiiiiiiiieeee e ssssineeeeee e e ssnsneeees A-3
controlCARD and LaunchPad LED Mappingccociccurimiiieeeieiiiiieeeee e e sesssieeereee e s sssnnnneneeeees A-3
Docking Station and LaunchPad Pin LOCAtIONSovcciiviiereeeisiiiiiieeee e sesiiieeee e e e e A-4
Stand-Alone Operation (NO EMUIALOI)uuiiiiiiiiiiee e A-4

TMS320F28004x Microcontroller Workshop — Appendix A

F280049C Experimenter Kit

F280049C Experimenter Kit

Initial Hardware Setup
e F280049C Experimenter Kit:

Insert the F280049C controlCARD into the Docking Station connector slot. Using the two (2)
supplied USB cables — plug the USB Standard Type A connectors into the computer USB ports
and plug the USB Mini-B connectors as follows:

e J1:A on the controlCARD (left side) — isolated XDS100v2 JTAG emulation
e J17 on the Docking Station — board power

On the Docking Station move switch S1 to the “USB-ON” position. This will power the Docking
Station and controlCARD using the power supplied by the computer USB port. Additionally, the
other computer USB port will power the on-board isolated JTAG emulator and provide the JTAG
communication link between the device and Code Composer Studio.

Docking Station and LaunchPad Pin Mapping

Function Docking Station LaunchPad

ADCINAO ANA header, Pin # 09 Pin# 70

GND GND Pin # 20 (GND)
GPIO59 (‘1) Pin # 101 Pin#11

GPIO25 (‘T") Pin # 77 Pin # 31
DACOUTB ANA header, Pin # 11 Pin # 30

PWM1A Pin # 49 Pin # 80

ECAP1 (via Input X-bar) Pin # 75 (GPI1024) Pin # 55 (GPI1024)

controlCARD and LaunchPad LED Mapping

Function controlCARD LaunchPad
LED - Power LED D1 (green) LED1 (red)
LED — GPIO31 / GPI023 LED D2 (red) LED4 (red)
LED — GPIO34 LED D3 (red) LED5 (green)

TMS320F28004x Microcontroller Workshop — Appendix A A-3

F280049C Experimenter Kit

Docking Station and LaunchPad Pin Locations

B SirmEeRRARIATT: W, .
TEXAS INSTRUMENTS

= = TSN TR T KK 2] = 2] L T =
= T ELEE SSs2 =S] RS
E EI S [T For evo)uutuon only, Not FCC gwed for resale. IEHI
g
controlCARD Docking Station [R5.01 &

J2: REMOVE PIN 6

—
=1
>
@

[5]
£k 2
z s -
i @g LLIY s e
o Red e - - =2 5 b 1
7 .) Lo = . o @ Itam 1.
= e B3 52 9E - 1 st
b
ShE CfREY aRR 3 “"“llllulll| 7 s, A", B8 gl
|||||||| ZEaR3 5| m (HEE BN I——-; fiF) vIlllgg | | T a'n. Sl@|ee
| | L T ¥ orws -Illmg...,. oo J5 B gy
- p2g 8 m-ms 3 g!!g v 1 =
| ses @ 3 w o - ¢ W as, 0
nuu-I ~lmn l | ER-SA T Zm, WY ® =
L £ C105 s - -ﬁa s B N by I
l|=' E I B a ‘a
-t e all nﬂma':xnamn =8 =
k - BB i . l : caslq o
L RTEED & g 7 Tce R : @
USBIOL Lio) o o o __' F@em:
® .m.. [4 5 Sa~nnrwoonooe 4
coobe” Bk,

Stand-Alone Operation (No Emulator)

When the device is in stand-alone boot mode, the state of GPIO24 and GPIO32 pins are used to
determine the boot mode. On the controlCARD boot mode selection switch S1 controls the boot
options for the F280049C device. This switch is installed with 180 degree rotation. Check that
switch S1 positions 2 and 1 are set to the default “1 — up” position (both switches up). This will
configure the device (in stand-alone boot mode) to boot from flash. Details of the switch positions
can be found in the control CARD User’s Guide.

A-4 TMS320F28004x Microcontroller Workshop — Appendix A

	TMS320F28004x Microcontroller Workshop
	Important Notice
	Revision History

	TMS320F28004x Microcontroller Workshop
	Workshop Outline
	Required Workshop Materials
	Development Tools

	C28xm01.pdf
	Architecture Overview
	Introduction to the TMS320F28004x
	C28x Internal Bussing

	C28x CPU + FPU + VCU + TMU and CLA
	Special Instructions
	CPU Pipeline
	C28x CPU + FPU + VCU + TMU Pipeline

	Memory
	Memory Map
	Dual Code Security Module (DCSM)
	Peripherals

	Fast Interrupt Response Manager
	Math Accelerators
	Viterbi / Complex Math Unit (VCU-II)
	Trigonometric Math Unit (TMU)

	Configurable Logic Block (CLB)
	On-Chip Safety Features
	Summary

	C28xm02.pdf
	Programming Development Environment
	Code Composer Studio
	Software Development and COFF Concepts
	Code Composer Studio
	Edit and Debug Perspective (CCSv9)
	Target Configuration
	CCSv9 Project
	Creating a New CCSv9 Project
	CCSv9 Build Options – Compiler / Linker
	CCS Debug Environment

	Creating a Linker Command File
	Sections
	Program Code (.text)
	Constants (.cinit – initialized data)
	Variables (.ebss – uninitialized data)

	Linker Command Files (.cmd)
	Memory-Map Description
	Section Placement
	Summary: Linker Command File

	Lab 2: Linker Command File
	Start Code Composer Studio and Open a Workspace
	Setup Target Configuration
	Create a New Project
	Project Build Options
	Linker Command File – Lab2.cmd
	Build and Load the Project
	Debug Environment Windows
	Single-stepping the Code
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm03.pdf
	Peripheral Register Programming
	Register Programming Model
	Driver Library (Driverlib)
	Construction of a Driverlib Function
	Driverlib Optimization
	Driverlib API Functions and Examples
	Content Assist
	Driverlib Documentation
	Driverlib Summary
	Lab File Directory Structure

	C28xm04.pdf
	Reset and Interrupts
	Reset and Boot Process
	Reset - Bootloader
	Emulation Boot Mode
	Stand-Alone Boot Mode
	Boot Mode Definition
	Reset Code Flow – Summary
	Emulation Boot Mode using Code Composer Studio GEL
	Getting to main()
	Peripheral Software Reset Registers

	Interrupts
	Interrupt Processing
	Interrupt Enable Register (IER)
	Interrupt Global Mask Bit (INTM)
	Peripheral Interrupt Expansion (PIE)
	PIE Block Initialization
	Interrupt Signal Flow – Summary
	Interrupt Response and Latency

	C28xm05.pdf
	System Initialization
	Oscillator/PLL Clock Module
	Initializing Clock Modules

	Watchdog Timer
	General Purpose Digital I/O
	Configuring GPIO Pins
	GPIO Input X-Bar
	GPIO Output X-Bar

	External Interrupts
	Low Power Modes
	Register Protection
	Lab 5: System Initialization
	Create a New Project
	Project Build Options
	Memory Configuration
	System Initialization
	Build and Load
	Run the Code – Watchdog Reset Disabled
	Run the Code – Watchdog Reset Enabled
	Configure Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm06.pdf
	Analog Subsystem
	Analog-to-Digital Converter (ADC)
	ADC Module Block Diagram
	ADC Triggering
	ADC Conversion Priority
	Post Processing Block
	ADC Clocking Flow
	ADC Timing
	ADC Conversion Result Registers
	Signed Input Voltages
	Built-In ADC Calibration
	Analog Subsystem External Reference

	Comparator Subsystem (CMPSS)
	Comparator Subsystem Block Diagram

	Programmable Gain Amplifier (PGA)
	PGA Block Diagram

	Digital-to-Analog Converter (DAC)
	Buffered DAC Block Diagram

	Analog Subsystem Interconnect
	Analog Group Connections
	Analog Group Connection – Example

	Lab 6: Analog-to-Digital Converter
	Notes
	Open the Project
	Setup ADC Initialization and Enable Core/PIE Interrupts
	Build and Load
	Run the Code
	Using Real-time Emulation
	Setup DAC to Generate a Sine Waveform
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm07.pdf
	Control Peripherals
	PWM Review
	ePWM
	ePWM Time-Base Sub-Module
	ePWM Compare Sub-Module
	ePWM Action Qualifier Sub-Module
	Asymmetric and Symmetric Waveform Generation using the ePWM
	PWM Computation Example
	ePWM Dead-Band Sub-Module
	ePWM Chopper Sub-Module
	ePWM Trip-Zone and Digital Compare Sub-Modules
	ePWM Event-Trigger Sub-Module
	High Resolution PWM (HRPWM)

	eCAP
	eQEP
	Sigma Delta Filter Module (SDFM)
	Lab 7: Control Peripherals
	Open the Project
	Generate PWM Waveform
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Setup eCAP1 to Measure Width of Pulse
	Build and Load
	Run the Code – Pulse Width Measurement
	Internal Pulse Width Measurement Using Input X-BAR
	Modulate the PWM Waveform
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm08.pdf
	Direct Memory Access
	Direct Memory Access (DMA)
	Basic Operation
	DMA Examples
	Channel Priority Modes
	DMA Throughput
	DMA Driverlib Functions

	Lab 8: Servicing the ADC with DMA
	Open the Project
	Inspect Lab_8.cmd
	Setup DMA Initialization
	Setup PIE Interrupt for DMA
	Build and Load
	Run the Code – Test the DMA Operation
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm09.pdf
	Control Law Accelerator
	Control Law Accelerator (CLA)
	CLA Block Diagram
	CLA Tasks
	CLA Memory and Register Access
	CLA Control and Execution Registers
	Task Trigger
	Software Trigger
	Background Task
	Memory Configuration
	Task Vector
	CLA Initialization
	Enabling CLA Support in CCS
	CLA Task C Programming
	C2000Ware – CLA Software Support
	CLA Compiler Scratchpad Memory Area
	CLA Initialization Code Example
	CLA Task C Code Example
	CLA Code Debugging

	Lab 9: CLA Floating-Point FIR Filter
	Open the Project
	Project Build Options and Enabling CLA Support in CCS
	Inspect Lab_9.cmd
	Setup CLA Initialization
	Setup PIE Interrupt for CLA
	Build and Load
	Run the Code – Test the CLA Operation
	Terminate Debug Session and Close Project
	End of Exercise

	Lab 9 Reference: Low-Pass FIR Filter

	C28xm10.pdf
	System Design
	Emulation and Analysis Block
	Analysis and Diagnostic Capabilities
	Flash Configuration and Memory Performance
	Flash Programming
	Dual Code Security Module (DCSM)
	Lab 10: Programming the Flash
	Open the Project
	Project Build Options
	Link Initialized Sections to Flash
	Initializing the Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Dual Code Security Module and Passwords
	Executing from Flash after Reset
	Initializing the CLA
	Build – Lab.out
	Programming the On-Chip Flash Memory
	Running the Code – Using CCS
	Terminate Debug Session and Close Project
	Running the Code – Stand-alone Operation (No Emulator)
	End of Exercise

	Lab 10 Reference: Programming the Flash

	C28xm11.pdf
	Communications
	Communications Techniques
	Serial Peripheral Interface (SPI)
	SPI Transmit / Receive Sequence
	SPI Summary

	Serial Communications Interface (SCI)
	Multiprocessor Wake-Up Modes
	SCI Summary

	Local Interconnect Network (LIN)
	LIN Message Frame and Data Timing
	LIN Summary

	Inter-Integrated Circuit (I2C)
	I2C Operating Modes and Data Formats
	I2C Summary

	Controller Area Network (CAN)
	CAN Bus and Node
	Principles of Operation
	Message Format and Block Diagram
	CAN Summary

	Power Management Bus (PMBus)
	Conceptual Block Diagram and Connections
	PMBus Summary

	Fast Serial Interface (FSI)
	CPU Interface and Connection
	FSI Summary

	Lab 11: C2000Ware SCI Echoback Example
	Download and Install C2000Ware
	Import the Project
	Modify the Target Configuration File
	Inspect sci_ex1_echoback.c
	Build and Load
	Configure a CCS Terminal
	Run the Code
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm12.pdf
	Support Resources
	TI Support Resources
	C2000 MCU Device Workshops Website
	Documentation Resources
	C2000Ware™
	C2000 Experimenter’s Kit
	F28335 Peripheral Explorer Kit
	C2000 LaunchPad Evaluation Kit
	C2000 controlCARD Application Kits
	XDS100/110/200 Class JTAG Debug Probes
	Product Information Resources

	C28xmA.pdf
	Appendix A – F280049C Experimenter Kit
	F280049C Experimenter Kit
	Initial Hardware Setup
	Docking Station and LaunchPad Pin Mapping
	controlCARD and LaunchPad LED Mapping
	Docking Station and LaunchPad Pin Locations
	Stand-Alone Operation (No Emulator)

