
TMS320C6000
Network Developer's Kit (NDK) Software

Programmer's

Reference Guide

Literature Number: SPRU524C

January 2007

2 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Contents

Preface.. 11

1 Introduction ... 13
1.1 What This Document Covers .. 14

1.1.1 Supplemental API Information.. 14

2 Operating System Abstraction API ... 15
2.1 Operating System Configuration .. 16

2.1.1 Synopsis ... 16

2.1.2 Configuration Structure .. 16

2.2 Task Support... 18

2.2.1 Synopsis ... 18

2.2.2 Function Overview ... 18

2.2.3 Task API Functions .. 18

2.3 Semaphore Support... 23

2.3.1 Synopsis ... 23

2.3.2 Function Overview ... 23

2.3.3 Semaphore API Functions .. 23

2.4 Memory Allocation Support .. 26

2.4.1 Synopsis ... 26

2.4.2 Function Overview ... 26

2.4.3 Memory Allocation API Functions .. 26

2.5 Print and Debug Support ... 28

2.5.1 Synopsis ... 28

2.5.2 Standard API Functions ... 28

2.5.3 Debug API Functions .. 28

2.6 File I/O Support for Embedded Systems... 29

2.6.1 Synopsis ... 29

2.6.2 Function Overview ... 29

2.6.3 EFS Custom API Functions... 30

2.6.4 EFS Standard API Functions ... 33

3 Sockets and Stream IO API .. 37
3.1 File Descriptor Environment ... 38

3.1.1 Organization .. 38

3.1.2 Initializing the File System Environment .. 38

3.1.2.1 When to Initialize the File Descriptor Environment .. 38

3.2 File Descriptor Programming Interface ... 39

3.2.1 Synopsis ... 39

3.2.2 Function Overview ... 39

3.2.3 File Descriptor API Functions... 40

3.2.4 File Descriptor Set (fd_set) Macros .. 45

3.3 Sockets Programming Interface ... 46

3.3.1 Synopsis ... 46

3.3.2 Enhanced No-Copy Socket Operation .. 46

3.3.3 Function Overview ... 47

SPRU524C–January 2007 Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

3.3.4 Sockets API Functions... 47

3.4 Full Duplex Pipes Programming Interface ... 63

3.4.1 Synopsis ... 63

3.4.2 Pipe API Functions... 64

3.5 Internet Group Management Protocol (IGMP)... 64

3.5.1 Synopsis ... 64

3.5.2 Function Overview ... 64

3.5.3 API Functions ... 65

4 Initialization and Configuration .. 67
4.1 Configuration Overview... 68

4.2 Configuration Manager ... 68

4.2.1 Synopsis ... 68

4.2.2 Function Overview ... 69

4.2.3 Configuration API Functions .. 70

4.2.4 Configuration Entry API Functions ... 78

4.3 Network Control Initialization Procedure (NETCTRL) .. 80

4.3.1 Synopsis ... 80

4.3.2 Basics .. 81

4.3.3 Function Overview ... 81

4.3.4 Network Control API Functions... 81

4.4 Configuration Specification... 83

4.4.1 Synopsis ... 83

4.4.2 Organization .. 84

4.4.3 Network Service Specification (CFGTAG_SERVICE)... 84

4.4.3.1 Service Types .. 84

4.4.3.2 Common Argument Structure .. 85

4.4.3.3 Individual Configuration Entry Instance Structures .. 86

4.4.3.4 Specifying Network Services ... 87

4.4.4 IP Network Specification (CFGTAG_IPNET) ... 87

4.4.5 IP Gateway Route Specification (CFGTAG_ROUTE) ... 88

4.4.6 Client Record Specification (CFGTAG_CLIENT) .. 88

4.4.7 Client User Account (CFGTAG_ACCT) ... 90

4.4.8 System Information Specification (CFGTAG_SYSINFO) ... 90

4.4.9 Extended System Information Tags ... 91

4.4.10 OS / IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP) 91

5 Network Tools Library - Support Functions ... 95
5.1 Generic Support Calls .. 96

5.1.1 Synopsis ... 96

5.1.2 Function Overview ... 96

5.1.3 Network Tools Support API Functions... 96

5.2 DNS Support Calls... 100

5.2.1 Synopsis ... 100

5.2.2 Function Overview .. 100

5.2.3 Standard Types and Definitions .. 100

5.2.3.1 Host Entry Structure.. 100

5.2.3.2 Function Return Codes .. 101

5.2.4 DNS Support API Functions... 101

5.3 TFTP Support .. 103

4 Contents SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

5.3.1 Synopsis ... 103

5.3.2 TFTP Support API Functions.. 103

5.4 TCP/UDP Server Daemon Support ... 104

5.4.1 Synopsis ... 104

5.4.2 Server Daemon Support API Functions ... 104

5.4.3 Server Daemon Example .. 105

6 Network Tools Library - Services .. 107
6.1 Service Calling Conventions ... 108

6.1.1 Specifying Network Services Using the Configuration ... 108

6.1.1.1 Service Report Function ... 108

6.1.2 Invoking Network Services by NETTOOLS API .. 108

6.2 Telnet Server Service ... 110

6.2.1 Synopsis ... 110

6.2.2 Telnet Parameter Structure.. 110

6.2.3 Specifying Service Using the Configuration ... 110

6.2.4 Invoking the Service via NETTOOLS API ... 111

6.3 DHCP Server Service ... 111

6.3.1 Synopsis ... 111

6.3.2 Operation .. 111

6.3.3 DHCP Server Parameter Structure... 112

6.3.4 Specifying Service Using the Configuration ... 112

6.3.5 Invoking the Service via NETTOOLS API ... 113

6.4 DHCP Client Support.. 114

6.4.1 Synopsis ... 114

6.4.2 Operation .. 114

6.4.3 DHCP Client Parameter Structure.. 114

6.4.4 Specifying Service Using the Configuration ... 115

6.4.5 Invoking the Service via NETTOOLS API ... 115

6.5 HTTP Server Support ... 116

6.5.1 Synopsis ... 116

6.5.2 Operation .. 116

6.5.3 HTTP Server Parameter Structure ... 116

6.5.4 Using the HTTP Server and Adding Web Content ... 116

6.5.5 Specifying Service Using the Configuration ... 117

6.5.6 Invoking the Service via NETTOOLS API ... 117

6.6 DNS Server Service ... 118

6.6.1 Synopsis ... 118

6.6.2 Operation .. 118

6.6.3 DNS Server Parameter Structure... 118

6.6.4 Specifying Service Using the Configuration ... 118

6.6.5 Invoking the Service via NETTOOLS API ... 118

6.7 Network Address Translation (NAT) Service... 119

6.7.1 Synopsis ... 119

6.7.2 Operation .. 119

6.7.3 NAT Server Parameter Structure ... 120

6.7.4 Specifying Service Using the Configuration ... 120

6.7.5 Invoking the Service via NETTOOLS API ... 121

A Internal Stack Functions .. 121

SPRU524C–January 2007 Contents 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

A.1 Overview .. 123

A.1.1 Interrupts and Preemption ... 123

A.1.2 Proper Use of the llEnter() and llExit() Functions... 123

A.1.3 Objects ... 123

A.2 Stack Executive (Exec) ... 124

A.2.1 Synopsis ... 124

A.2.2 API Functions ... 124

A.3 Packet Buffer Manager (PBM) Object... 125

A.3.1 Synopsis ... 125

A.3.2 Object Type.. 125

A.3.3 API Function Overview... 125

A.3.4 API Function Description .. 126

A.4 Packet Buffer Manager Queue (PBMQ) Object ... 129

A.4.1 Synopsis ... 129

A.4.2 Object Type.. 129

A.4.3 API Function Overview... 129

A.4.4 API Function Description .. 130

A.5 Stack Event (STKEVENT) Object ... 131

A.5.1 Synopsis ... 131

A.5.2 Object Type.. 131

A.5.3 API Function Overview... 131

A.5.4 API Function Description .. 131

A.6 Link Layer Information (LLI) Object.. 132

A.6.1 Synopsis ... 132

A.6.2 Object Type.. 132

A.6.3 API Function Overview... 133

A.6.4 API Functions ... 133

A.7 Interface (IF) Object ... 134

A.7.1 Synopsis ... 134

A.7.2 Object Type.. 134

A.7.3 API Function Overview... 134

A.7.4 API Function Description .. 134

A.8 Ether Object .. 136

A.8.1 Synopsis ... 136

A.8.2 Object Type.. 136

A.8.3 API Function Overview... 136

A.8.4 API Functions ... 137

A.9 Binding Object.. 139

A.9.1 Synopsis ... 139

A.9.2 Object Type.. 139

A.9.3 BIND API Functions .. 139

A.10 Route Object ... 140

A.10.1 Synopsis .. 140

A.10.2 Object Type .. 140

A.10.3 Route Entry Flags Definition ... 140

A.10.4 Route Entry Flags Guidelines.. 142

A.10.5 API Functions .. 143

A.11 Route Control Object .. 147

A.11.1 8.12.1 Synopsis.. 147

6 Contents SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

A.11.2 Route Control Messages ... 147

A.11.3 Route Control API Functions... 150

A.12 Configuring the Stack ... 150

A.12.1 Synopsis .. 150

A.12.2 Configuration Structure ... 150

A.13 Network Address Translation... 156

A.13.1 Synopsis .. 156

A.13.2 Operation ... 156

A.13.3 NAT Configuration... 157

A.14 Obtaining Stack Statistics... 157

B Network Address Translation ... 159
B.1 NAT Operation ... 160

B.1.1 Typical Configuration ... 160

B.1.2 Basic NAT ... 160

B.1.3 NAT Port Mapping .. 162

B.1.4 NAT Proxy Filters ... 165

B.1.4.1 Problem Synopsis .. 165

B.1.4.2 Problem Example - FTP Clients on the LAN.. 165

B.1.4.3 NDK Support for Proxy Filters ... 167

B.1.4.4 FTP Proxy Filter Example Code.. 168

B.2 NAT Port Mapping ... 170

B.2.1 Synopsis ... 170

B.2.2 Function Overview .. 170

B.2.3 NAT Entry Information Structure.. 170

B.2.4 NAT API Functions ... 171

B.3 NAT Proxy Filters .. 172

B.3.1 Synopsis ... 172

B.3.2 Function Overview .. 172

B.3.3 NAT Proxy Filter Callback Functions... 172

B.3.4 NAT Proxy API Functions.. 174

C Point-to-Point Protocol .. 177
C.1 Low Level PPP Support... 178

C.1.1 PPP Operation .. 178

C.1.2 Function Overview .. 179

C.1.3 Supported Protocols.. 179

C.1.4 SI Module Callback Function.. 179

C.1.4.1 Function Declaration ... 179

C.1.4.2 SI_MSG_CALLSTATUS Message ... 180

C.1.4.3 SI_MSG_ SENDPACKET Message ... 181

C.1.4.4 SI_MSG_ PEERCMAP Message... 181

C.1.4.5 Example Callback Function Implementation .. 181

C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module Instance 182

C.1.5.1 Multiple Instances .. 182

C.1.5.2 Using the Timer Object .. 182

C.1.5.3 Registering Packet Padding Requirements ... 182

C.1.6 PPP API Functions ... 183

C.2 Serial HDLC Client and Server Support .. 185

C.2.1 Synopsis ... 185

SPRU524C–January 2007 Contents 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

C.2.2 Function Overview .. 185

C.2.3 HDLC API Functions ... 187

C.3 PPPoE Client and Server Support... 190

C.3.1 Synopsis ... 190

C.3.2 Function Overview .. 191

C.3.3 PPPoE API Functions .. 191

C.4 Creating PPP Server User Accounts.. 194

C.4.1 Synopsis ... 194

C.4.2 Adding and Reviewing User Accounts ... 194

C.4.2.1 Adding a PPP User Account .. 194

C.4.2.2 Searching for a PPP User Account .. 195

C.4.2.3 Removing a PPP User Account .. 196

D Hardware Adaptation Layer (HAL) ... 197
D.1 Overview .. 198

D.1.1 HAL Function Types.. 198

D.1.2 External Calls from HAL Functions .. 198

D.2 Low-Level LED Driver (llUserLed) ... 198

D.2.1 Synopsis ... 198

D.2.2 Function Overview .. 198

D.2.3 Low-Level LED API Functions .. 199

D.3 Low-Level Timer Driver (llTimer)... 200

D.3.1 Synopsis ... 200

D.3.2 Function Overview .. 200

D.3.3 Low-Level Timer API Functions... 200

D.4 Low-Level Packet Driver (llPacket) .. 201

D.4.1 Synopsis ... 201

D.4.2 Function Overview .. 201

D.4.3 Low-Level Packet API Functions ... 202

D.5 Low-Level Serial Port Driver (llSerial)... 204

D.5.1 Synopsis ... 204

D.5.2 Function Overview .. 204

D.5.3 Low-Level Serial API Functions... 205

E Web Programming with the HTTP Server ... 211
E.1 Adding Web Content .. 212

E.1.1 Operation .. 212

E.1.2 Converting Standard HTML Files... 212

E.1.3 Declaring HTML Files to EFS ... 212

E.1.4 Cleaning up HTML Files ... 213

E.2 Writing CGI Functions... 213

E.2.1 Adding Functions to the EFS.. 213

E.2.2 CGI Function Declaration .. 213

E.2.3 Parsing CGI Form Data .. 214

E.2.4 Parsing CGI Multi-Part Form Data.. 214

E.2.5 Sending HTTP/HTML Replies... 215

E.2.6 HTML Error Response ... 216

E.3 HTTP Authentication .. 217

E.3.1 Authorization Realms... 217

E.3.2 User Accounts... 218

8 Contents SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

E.3.3 Designating Protected Files ... 218

E.4 CGI Function Example .. 219

E.4.1 Create the HTML Page .. 219

E.4.2 Create the Base WEBPAGE Source File.. 219

E.5 HTTP Server Exported Functions ... 222

E.5.1 Commonly Used Strings ... 222

E.5.2 Function Overview .. 222

E.5.3 HTTP Server Exported API Functions ... 223

SPRU524C–January 2007 Contents 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

List of Figures

B-1 Basic Home Network Configuration .. 160
B-2 Public Servers on the Home Network.. 164
C-1 Standard PPP Frame Over Serial Line .. 178
C-2 PPP Frame Processed by PPP API.. 178
C-3 Serial Interface (SI) Abstraction... 178

10 List of Figures SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Preface
SPRU524C–January 2007

Read This First

About This Manual

This programmer's reference guide describes the various API functions provided by the NDK libraries, and
is intended to aid the development of network applications. It is the central reference document used when
programming the stack. See the TMS320C6000 Network Developer's Kit (NDK) Software User's Guide
(SPRU523) to familiarize yourself with the stack libraries and in using the stack with DSP/BIOS™ and
Code Composer Studio™ (CCStudio) Development Tools.

How to Use This Manual

This document contains the following chapters:

• Chapter 1 - Introduction, summarizes the various API sets described in the NDK documentation.
• Chapter 2 - Operating System Abstraction API, describes the API used by the adaptation layer to

access the operating system.
• Chapter 3 - Sockets and Stream IO API, describes the file and sockets API functions.
• Chapter 4 - Initialization and Configuration, describes the NDK initialization and configuration,

including the Configuration Manager API and the Network Control module.
• Chapter 5 - Network Tools Library - Support Functions, describes the network support functions

contained in the NETTOOLS library.
• Chapter 6 - Network Tools Library - Services, describes the network servers and services contained

in the NETTOOLS library.
• Appendix A - Internal Stack Functions, contains a partial list of internal stack functions provided to

aid in the comprehension of kernel oriented calls.
• Appendix B - Network Address Translation, describes the optional Network Address Translation

component, how to set up virtual networks, and protocol proxies.
• Appendix C - Point-to-Point Protocol, describes the operation of the PPP and PPPoE support API

included in the NDK, and how to interface to a serial device.
• Appendix D - Hardware Adaptation Layer (HAL), describes the operation of the HAL, and the HAL

API functions.
• Appendix E - Web Programming with the HTTP Server, describes how to get information from an

embedded network device through the webserver.

Notational Conventions

This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special typeface.
• In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in

plain face within parentheses. Portions of a syntax that are in bold should be entered as shown;
portions of a syntax that are within parentheses describe the type of information that should be
entered.

• Macro names are written in uppercase text; function names are written in lowercase.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x™ devices and related support tools. To obtain a copy of
any of these TI documents, call the Texas Instruments Literature Response Center at (800) 477–8924.
When ordering, please identify the book by its title and literature number. Many of these documents can
be found on the Internet at http://www.ti.com.

SPRU524C–January 2007 Read This First 11
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru523
http://www-s.ti.com/sc/techlit/www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Related Documentation From Texas Instruments

SPRU189 —TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000 ™digital signal
processors (DSPs).

SPRU190 —TMS320C6000 DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000™ family of digital signal
processors (DSPs).

SPRU197 —TMS320C6000 Technical Brief. Provides an introduction to the TMS320C62x™ and
TMS320C67x™ digital signal processors (DSPs) of the TMS320C6000™ DSP family. Describes
the CPU architecture, peripherals, development tools and third-party support for the C62x™ and
C67x™ DSPs.

SPRU198 —TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000™
digital signal processors (DSPs). Before you use this manual, you should install your code
generation and debugging tools. Includes a brief description of the C6000 DSP architecture and
code development flow, includes C code examples and discusses optimization methods for the C
code, describes the structure of assembly code and includes examples and discusses optimizations
for the assembly code, and describes programming considerations for the C64x™ DSP.

SPRU509 —TMS320C6000 Code Composer Studio Development Tools v3.3 Getting Started Guide.
Introduces some of the basic features and functionalities in Code Composer Studio™ to enable you
to create and build simple projects.

SPRU523 —TMS320C6000 Network Developer's Kit (NDK) Software User’s Guide. Describes how to
use the NDK libraries, how to develop networking applications on TMS320C6000™ platforms, and
ways to tune the NDK to fit a particular software environment.

Trademarks

DSP/BIOS, Code Composer Studio, TMS320C6x, TMS320C6000, TMS320C62x, TMS320C67x, C62x,
C67x, C64x are trademarks of Texas Instruments.

12 Read This First SPRU524C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru189
http://www-s.ti.com/sc/techlit/spru190
http://www-s.ti.com/sc/techlit/spru197
http://www-s.ti.com/sc/techlit/spru198
http://www-s.ti.com/sc/techlit/spru509
http://www-s.ti.com/sc/techlit/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Chapter 1
SPRU524C–January 2007

Introduction

This chapter serves as an introduction to the programming API reference for the
TMS320C6000™ NDK Software.

Topic .. Page

1.1 What This Document Covers .. 14

SPRU524C–January 2007 Introduction 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

1.1 What This Document Covers

1.1.1 Supplemental API Information

What This Document Covers

This Programmer's Reference Guide for the NDK is mainly a programming API reference guide. It is
intended to aid in the development of network applications and describes the various API functions
provided by the stack libraries.

Although this Programmer's Reference Guide will be the central reference document used when
programming the stack, you should first see the TMS320C6000 Network Developer's Kit (NDK) Software
User's Guide (SPRU523) to familiarize yourself with the stack libraries, and in using the stack with
DSP/BIOS™ and the Code Composer Studio™ (CCStudio) Development Tools.

The following information appears as appendices to this document. These sections contain optional
information that may be useful in understanding the low-level application interface, but is not required
when developing traditional network applications.

• Appendix A Internal Stack Functions
The stack library internal function specification describes a subset of the low-level programming
interface to the stack. These functions allow the application writer to make use of kernel level function
APIs. As a general rule, it is not necessary to use this API for application development, although some
of the sample applications included in the NDK make use of these function calls.

• Appendix B Network Address Translation (NAT)
The stack library includes Network Address Translation module. This appendix describes the
operational theory of NAT, and how to use the NAT functions included in the library.

• Appendix C Point-to-Point Protocol (PPP)
The stack library has internal device sections for both traditional Ethernet, and PPP. The PPP module
can act as PPP client, server, or both (assuming multiple interfaces). This appendix describes the
operation of the PPP module, the PPP over Ethernet (PPPoE) module, and how to interface an HDLC
based serial device.

• Appendix D Hardware Adaptation Layer (HAL)
Appendix D describes the hardware and operating system interfaces used by the stack. The
information allows application programmers to call device drivers directly when needed. This appendix
does not supply information about porting the HAL to a new platform.

• Appendix E Web Programming with the HTTP Server
Appendix E describes how to make use of the HTTP server included in the NDK. The main topics
covered are adding Web content and writing CGI functions. There is also a description of the HTTP
API used by CGI functions, and some CGI example applications.

14 Introduction SPRU524C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Chapter 2
SPRU524C–January 2007

Operating System Abstraction API

To keep the stack system portable, it was coded to a very compact operating system
abstraction. The stack can execute in any operating environment by porting the
functions described here. Most of these functions will map directly to their native OS
counterpart.

If you program to this API, your applications will execute on any system to which this
abstraction is ported, but more importantly, because all the NDK functions are written to
this layer, the behavior of the NDK can be altered by altering the implementation of this
layer. This allows the stack to be tuned in how it interfaces to the native operating
system.

Topic .. Page

2.1 Operating System Configuration... 16
2.2 Task Support .. 18
2.3 Semaphore Support .. 23
2.4 Memory Allocation Support.. 26
2.5 Print and Debug Support ... 28
2.6 File I/O Support for Embedded Systems 29

SPRU524C–January 2007 Operating System Abstraction API 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

2.1 Operating System Configuration

2.1.1 Synopsis

2.1.2 Configuration Structure

Operating System Configuration

The OS has a couple of configuration options that regulate its behavior. These are stored in a data
structure. The types of properties defined in the structure are those that would typically be macros, but
using a data structure allows the values to be changed without rebuilding the libraries.

The structure is described here for completeness, but applications should use the configuration system to
make alterations to these values. The configuration system is described later in this document.

The stack internal configuration structure is _oscfg. Any element in this structure may be modified before
the system is booted. System initialization is covered later in this document.

The _oscfg structure is of type OSENVCFG, which is defined as follows:
// Configuration Structure
typedef struct _osenvcfg {

uint DbgPrintLevel; // Debug message print threshold
uint DbgAbortLevel; // Debug message sys abort threshold
int TaskPriLow; // Lowest priority for stack task
int TaskPriNorm; // Normal priority for stack task
int TaskPriHigh; // High priority for stack task
int TaskPriKern; // Kernel-level priority (highest)
int TaskStkLow; // Minimum stack size
int TaskStkNorm; // Normal stack size
int TaskStkHigh; // Stack size for high volume tasks

} OSENVCFG;

The structure entries as defined as follows:

_oscfg.DbgPrintLevel Debug message print threshold

Default Value DBG_INFO

Description This is the lowest severity level of a system debug message (call to DbgPrintf() function)
that will be recorded into the debug log. The threshold may be raised. The legal values
for this variable are: DBG_INFO, DBG_WARN, DBG_ERROR, and DBG_None.

_oscfg.DbgAbortLevel Debug message abort threshold

Default Value DBG_ERROR

Description This is the lowest severity level of a system debug message (call to DbgPrintf() function)
that will result in a system shutdown (call to NC_NetSop()). The threshold may be raised.
The legal values for this variable are: DBG_INFO, DBG_WARN, DBG_ERROR, and
DBG_None.

_oscfg.TaskPriLow Priority Level for Low Priority Stack Task

Default Value 3

Description This is the priority at which low priority stack task threads are set. Setting a thread to a
lower priority than this will not disrupt the system, but no system or service supplied in
this package will attempt it.

16 Operating System Abstraction API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

_oscfg.TaskPriNorm — Priority Level for Normal Priority for Stack Task

_oscfg.TaskPriNorm Priority Level for Normal Priority for Stack Task

Default Value 5

Description This is the priority at which most stack task threads are set. Task threads that are
created by the system or services will usually run at this level.

_oscfg.TaskPriHigh Priority Level for High Priority for Stack Task

Default Value 7

Description This is the priority at which high priority stack task threads are set. Setting a thread at a
higher priority than this may disrupt the system and cause unpredictable behavior if the
thread calls any stack related functions. High priority tasks (like interrupts) can execute
at higher priority levels, but should signal lower priority tasks to perform any required
stack functions.

_oscfg.TaskPriKern Priority Level of High Priority Kernel Tasks

Default Value 9

Description This is the priority that task threads execute at when they are inside the kernel. Setting
tasks to this priority level ensures that they will not be disrupted by another task calling
stack functions. Note that this priority should be 2 higher than _oscfg.TaskPriHigh, to
allow the scheduler thread to occupy a priority in between. The proper method of
entering the kernel is to call llEnter() and llExit(). These functions are discussed in the
appendices, as they are not required for applications programming.

_oscfg.TaskStkLow Minimum Task Stack Size

Default Value 3072

Description This is the stack size used for network task that do very little network processing, or do
not use TCP.

_oscfg.TaskStkNorm Normal Task Stack Size

Default Value 4096

Description This is the stack size used for a network task with an average network bandwidth using
TCP. It is used for the majority of network tasks in the network tools library that use
TCP.

_oscfg.TaskStkHigh High Volume Task Stack Size

Default Value 5120

Description This is the stack size used to network tasks that require a high network bandwidth using
TCP. It is also used for tasks calling HTTP CGI functions.

SPRU524C–January 2007 Operating System Abstraction API 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

2.2 Task Support

2.2.1 Synopsis

2.2.2 Function Overview

2.2.3 Task API Functions

Task Support

The task object provides a method of manipulating task threads using a generic task handle. Task threads
are executed on a priority based method, with a least-recently-run algorithm used on those with equal
priority. Each task thread has its own private stack.

DSP/BIOS Users Note: Task handles created and used by this abstraction are compatible and
interchangeable with DSP/BIOS TSK handles.

The Task Object access functions (in functional order) are as follows:

TaskCreate() Create new task thread

TaskDestroy() Destroy a task thread

TaskSelf() Get handle to current task thread

TaskExit() Exit (terminate) current task thread

TaskYield() Yield to another task thread at the same priority

TaskSleep() Block a task thread for a period of time

TaskBlock() Block a task thread

TaskSetPri() Set task thread priority level

TaskGetPri() Get task thread priority level

TaskSetEnv() Assign one of three private environment handles to task thread

TaskGetEnv() Retrieve one of three private environment handles

TaskBlock Block Task From Execution

Syntax void TaskBlock(HANDLE hTask);

Parameters

hTask Handle to target task

Return Value None.

Description Permanently blocks the specified task from execution.

Calling this function may cause a task switch.

18 Operating System Abstraction API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

TaskCreate — Create a Task Thread

TaskCreate Create a Task Thread

Syntax HANDLE TaskCreate(void(*pFun)(), char *Name, int Priority, uint StackSize, UINT32
Arg1, UINT32 Arg2, UINT32 Arg3);

Parameters

pFun Pointer to task entry-point function

Name NULL terminated task name (truncated after 11 characters)

Priority Task priority level (0-15)

StackSize Task stack size

Arg1 Optional task function argument 1

Arg2 Optional task function argument 2

Arg3 Optional task function argument 3

Return Value Returns a Task Handle on success or NULL on memory failure.

Description Creates a new task object. If successful, TaskCreate() returns a handle to the newly
created task.

The task name supplied in Name is used for informational purposes only, and does not
need to be unique.

The task priority specified in Priority determines the task thread's priority relative to other
tasks in the system. The value of Priority is constrained only by the size of an int on the
target environment, but a range of 0 to 15 is recommended. 0 is the lowest priority and
should be reserved for an idle task. If the specified priority is negative, the task is
blocked.

The task stack size specified by StackSize is not examined or adjusted by the create
function. The size should be made compatible with the native environment (a multiple of
4 bytes should be sufficient).

Arg1 through Arg3 are optional arguments that can be passed to the calling function
(they are always pushed onto the stack, but the task function need not reference them).

There is no limit to the number of tasks that can be installed in the system. The only
possible failure on TaskCreate() is a memory allocation error.

If the priority level of the new task is higher than the priority level of the current task, the
entry-point function pFun is executed immediately (before TaskCreate() returns to the
caller).

Calling this function may cause a task switch.

SPRU524C–January 2007 Operating System Abstraction API 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

TaskDestroy — Destroy a Task Thread

TaskDestroy Destroy a Task Thread

Syntax void TaskDestroy(HANDLE hTask);

Parameters

hTask Handle to target task

Return Value None.

Description Terminates execution of the task object specified by the supplied handle hTask, and
frees task object from system memory. Note that memory allocated by the task thread is
not associated with the task thread and must be freed manually.

TaskExit Exit a Task Thread

Syntax void TaskExit();

Parameters None.

Return Value Does not return.

Description This function exits a task thread. It should always be called immediately before the task
entry-point function is about to return, but it may be called from anywhere.

TaskGetEnv Get Task Environment Handle

Syntax HANDLE TaskGetEnv(HANDLE hTask, int Slot);

Parameters

hTask Handle to target task

Slot Environment slot to use (1-3)

Return Value Private environment handle or NULL.

Description Returns a private environment handle for the supplied task handle hTask that was
previously stored with the TaskSetEnv() function. The slot specified in Slot specifies the
address (1-3) of the environment handle. There are actually four slots, but slot 0 is
reserved.

DSP/BIOS Users Note: The OS adaptation layer (OS.LIB) implements this function for
slot 0 only. The reserved slot 0 is the only slot required by the NDK. Slots 1 to 3 are not
implemented. You should use the standard DSP/BIOS function TSK_setEnv() and
TSK_getEnv() for private environment pointer storage and retrieval.

20 Operating System Abstraction API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

TaskGetPri — Get Task Priority

TaskGetPri Get Task Priority

Syntax int TaskGetPri(HANDLE hTask);

Parameters

hTask Handle to target task

Return Value Task priority level.

Description Returns the priority of the target task. See TaskSetPri() for more information on priority.

TaskSelf Get the Handle to the Currently Executing Task Thread

Syntax HANDLE TaskSelf();

Parameters None.

Return Value Handle to currently executing thread, or NULL on error.

Description Returns the task handle of the currently executing task thread. This function is used
mainly in other task object calls where the caller wishes to operate on the current thread,
but does not know the current thread's handle.

If called on an illegal (system) thread, this function returns NULL. Only certain
implementations of the OS even have a system thread, and no user code should ever be
executed on it. A NULL may also result if Task functions are called before the operating
system is initialized.

TaskSetEnv Set Task Environment Handle

Syntax void TaskSetEnv(HANDLE hTask, int Slot, HANDLE hEnv);

Parameters

hTask Handle to target task

Slot Environment slot to use (1-3)

hEnv Private environment handle

Return Value None.

Description Sets and stores a private environment handle for the supplied task handle hTask. This
handle can be later retrieved by TaskGetEnv(). The slot specified in Slot assigns an
address (1-3) to the environment handle. There are actually four slots, but slot 0 is
reserved.

DSP/BIOS Users Note: The OS adaptation layer (OS.LIB) implements this function for
slot 0 only. The reserved slot 0 is the only slot required by the NDK. Slots 1 to 3 are not
implemented. Application programmers should use the standard DSP/BIOS function
TSK_setEnv() and TSK_getEnv() for private environment pointer storage and retrieval.

SPRU524C–January 2007 Operating System Abstraction API 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

TaskSetPri — Set Task Priority

TaskSetPri Set Task Priority

Syntax int TaskSetPri(HANDLE hTask, int Priority);

Parameters

hTask Handle to target task

Priority Task priority level

Return Value Previous task priority level.

Description Sets the priority of the target task to the specified value. The value of Priority is
constrained only by the size of an int on the target environment, but a range of 0 to 15 is
recommended. 0 is the lowest priority and should be reserved for an idle task. If the
specified priority is negative, the task is blocked.

Calling this function may cause a task switch.

TaskSleep Sleep Task for Period of Time

Syntax void TaskSleep(UINT32 Delay);

Parameters

Delay Time (in milliseconds) of sleep

Return Value None.

Description Sleeps the calling task for a period of time as supplied in Delay. The sleep time cannot
be zero.

Calling this function may cause a task switch.

TaskYield Yield Execution to Another Task Thread

Syntax void TaskYield();

Parameters None.

Return Value None.

Description This function yields execution to another thread by causing a round-robin task switch
among ready task threads executing at the same priority level.

This function always causes a task switch; however, the original calling task may be the
next to execute.

Operating System Abstraction API22 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

2.3 Semaphore Support

2.3.1 Synopsis

2.3.2 Function Overview

2.3.3 Semaphore API Functions

Semaphore Support

The semaphore object provides a method of manipulating counting semaphores using a generic handle.
Semaphores can be used for both task synchronization and mutual exclusion.

DSP/BIOS Users Note: Task handles created and used by this abstraction are compatible and
interchangeable with DSP/BIOS SEM handles.

The Semaphore Object access functions (in functional order) are as follows:

SemCreate() Create new semaphore

SemDelete() Delete semaphore

SemPend() Wait on semaphore, optionally for a period of time

SemCount() Get the current semaphore count

SemPost() Release semaphore - increment count

SemReset() Reset semaphore and set new count

SemCreate Create New Semaphore

Syntax HANDLE SemCreate(int Count);

Parameters

Count Initial semaphore count

Return Value Handle to semaphore or NULL on error.

Description Creates a new semaphore object with an initial count.

SPRU524C–January 2007 Operating System Abstraction API 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

SemCount — Get Current Semaphore Count

SemCount Get Current Semaphore Count

Syntax int SemCount(HANDLE hSem);

Parameters

hSem Handle to Semaphore

Return Value Current semaphore count

Description Returns the current count of the semaphore object.

SemDelete Delete Semaphore

Syntax void SemDelete(HANDLE hSem);

Parameters

hSem Handle to Semaphore

Return Value None.

Description Deletes the semaphore object and frees related memory.

Any task currently waiting on this semaphore is blocked forever - even if it originally
specified a timeout to SemPend(). With a little care in programming, this will not occur.

SemPend Wait for a Semaphore

Syntax int SemPend(HANDLE hSem, UINT32 Timeout);

Parameters

hSem Handle to Semaphore

Timeout Maximum time to wait (in milliseconds)

Return Value The function returns 1 if the semaphore was obtained, and 0 if not.

Description This function waits on a semaphore.

If the semaphore count is greater than 0, the semaphore count is decrement and this
function immediately returns.

If the semaphore count is zero, the task is placed on a waiting list for the semaphore and
blocked. If the semaphore becomes available in the time period specified in Timeout, the
function returns. However, the function returns regardless once the timeout has expired.
A timeout value of 0 always returns without blocking or yielding. A timeout value of
SEM_FOREVER causes the caller to wait on the semaphore without time out.

The waiting list is first in, first out, without regard to priority. Thus, semaphores can be
used to round-robin task threads at different priority levels.

Calling this function may cause a task switch (unless called with Timeout set to 0).

24 Operating System Abstraction API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

SemPost — Signal a Semaphore

SemPost Signal a Semaphore

Syntax void SemPost(HANDLE hSem);

Parameters

hSem Handle to Semaphore

Return Value None.

Description If the semaphore count is greater than 0 (or is equal to 0, but without any pending task
threads), the semaphore count is incremented and this function immediately returns.

If the semaphore count is zero and there are tasks threads pending on it, the count
remains at zero, and the first thread in the pending list is unblocked.

Calling this function may cause a task switch.

SemReset Reset Semaphore

Syntax void SemReset(HANDLE hSem, int Count);

Parameters

hSem Handle to Semaphore

Count Initial semaphore count

Return Value None.

Description This function resets the semaphore, first setting an initial semaphore count, and then
unblocking all tasks that are pending on the semaphore.

This function should be used with care. Tasks that are pending on the semaphore may
exhibit unexpected behavior because all tasks pending on the semaphore will return
from their respective SemPend() calls regardless of requested timeout. The return value
for the respective SemPend() calls will always be correct because one or more tasks
may get the semaphore (depending on the value of Count), but tasks that called
SemPend() without a timeout may assume they have obtained the semaphore without
checking the SemPend() return value.

Calling this function may cause a task switch.

SPRU524C–January 2007 Operating System Abstraction API 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

2.4 Memory Allocation Support

2.4.1 Synopsis

2.4.2 Function Overview

2.4.3 Memory Allocation API Functions

Memory Allocation Support

As part of normal stack operation, memory will be allocated and freed on a regular basis. It is therefore
recommended that a memory support system have the ability to allocate and free small memory blocks in
a variety of sizes, without memory fragmentation. The functions described here work on a memory bucket
system of predefined fixed sizes. Although it allocates more memory than requested, when the memory is
released, it can be reused without fragmentation.

The Memory Allocation access functions (in functional order) are as follows:

mmAlloc() Allocate Small Memory Block

mmFree() Free mmAlloc() Memory Block

mmBulkAlloc() Allocate Unrestricted Memory Block

mmBulkFree() Free mmBulkAlloc() Memory Block

mmCopy() Copy a Memory Block

mmZeroInit() Initialize a Memory Block to Zero

mmAlloc Allocate Memory Block

Syntax void *mmAlloc(uint size);

Return Value Pointer to allocated memory or NULL on error.

Description Allocates a memory block of at least size bytes in length. The function should return a
pointer to the new memory block, or NULL if memory is not available. The size of the
allocation cannot be more than 3068 bytes.

mmFree Free Memory Block

Syntax int mmFree(void *pv);

Return Value If a memory tracking error occurs, this function returns 0; otherwise, it returns 1.

Description Frees a previously allocated memory block by supplying the pointer that mmAlloc()
originally returned.

mmBulkAlloc Allocate Bulk Memory Block

Syntax void *mmBulkAlloc(INT32 Size);

Return Value Pointer to allocated memory or NULL on error.

Description Allocates a memory block of at least size bytes in length. The function returns a pointer
to the new memory block, or NULL if memory is not available. The size of the allocation
is not restricted.

26 Operating System Abstraction API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

mmBulkFree — Free Bulk Memory Block

mmBulkFree Free Bulk Memory Block

Syntax void mmBulkFree(void *pv);

Return Value None.

Description Frees a previously allocated memory block by supplying the pointer that mmBulkAlloc()
originally returned.

mmCopy Copy Memory

Syntax void mmCopy(void *pDst, void *pSrc, uint size);

Return Value None.

Description Called to copy size bytes of data memory from the data buffer pSrc to the data buffer
pDst.

mmZeroInit Zero Memory

Syntax void mmZeroInit(void *pDst, uint size);

Return Value None.

Description Called to initialize size bytes of data memory in the data buffer pDst to NULL.

SPRU524C–January 2007 Operating System Abstraction API 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

2.5 Print and Debug Support

2.5.1 Synopsis

2.5.2 Standard API Functions

2.5.3 Debug API Functions

Print and Debug Support

The OS abstraction includes a family of compact printf() functions that print using a fixed buffer. The size
of the buffer (max printf() length) is defined in the OS abstraction layer. The code to print to the standard
output device is also provided, and this function can be modified to print or log as required.

The stack also provides another form of the printf function called DbgPrintf(). This function prints debug
messages to a global debug log. The severity threshold at which the debug message is recorded can be
adjusted, as well as at what point the error causes a system shutdown.

DSP/BIOS Users Note: Under DSP/BIOS, there is a minor incompatibility between the compact printf()
function provided here and the one supplied in the RTS library. Other than not supporting floating point,
this version of printf() treats long values (e.g., %ld) as 32 bit quantities, not 40 bits. Thus, when using
DSP/BIOS, it is best to avoid the use of %ld.

The standard set of printf functions is supported:
int printf(const char *format, ...);
int sprintf(char *s, const char *format, ...);
int vprintf(const char *format, va_list arg);
int vsprintf(char *s, const char *format, va_list arg);

DbgPrintf Print a Debug Message to the Debug Log

Syntax void DbgPrintf(int ErrLevel, char *Format, ?);

Parameters

ErrLevel Severity level of the error

Format Standard printf format string

Return Value None.

Description This function prints a debug message to the global debug log buffer. The log buffer is
defined as follows:
#define LL_DEBUG_LOG_MAX 1024
extern char DebugLog[LL_DEBUG_LOG_MAX]; // DebugLog Buffer
extern int DebugLogSize; // Bytes of data currently in
DebugLog

The buffer behaves like one large NULL terminated string. The contents are cleared by
setting DebugLogSize to 0.

The value of ErrLevel determines if the message is printed and additionally, if the
message results in a system shutdown. Both of these thresholds (printing and shutdown)
are set through the OS configuration. The definition of the severity levels are as follows:
#define DBG_INFO 1
#define DBG_WARN 2
#define DBG_ERROR 3
#define DBG_None 4

Operating System Abstraction API28 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

2.6 File I/O Support for Embedded Systems

2.6.1 Synopsis

2.6.2 Function Overview

File I/O Support for Embedded Systems

The next section of this document discusses the support for stream IO that is built into the stack library.
The support documented in that section is intended to augment the basic functions provided by the native
operating system (in the case where the stack is ported to a new environment).

This section details functionality required by the Network Tools services interfacing with File IO. The
functionality described here is more likely to have a local counterpart. The API described in this section
must be ported to allow the network services that use it to operate.

The API described here was taken from the Unix standard. The names of the functions have been
prefixed with the designation efs_ ,which stands for embedded file system. This was done so that the
functions would not conflict with any existing file system. The EFS API is a very simple RAM based file
system. A couple of new functions are included that allow the creation of RAM files by supplying pointers
to static data buffers. For systems with existing file structures, most of the functions in this API become
secondary to their standard IO counterparts.

This API is unrelated to the stream API provided for Sockets. If the services that
need this API are not required, then this module can be discarded from the OS
abstraction. Currently, only the HTTP Server service uses this API.

The following functions are custom to this implementation, but can be ported:

efs_createfile() Create (declare) RAM based file

efs_createfilecb() Create (declare) RAM based file (with callback function)

efs_destroyfile() Destroy RAM based file

efs_getfilesize() Get the length of file data

efs_filecheck() Check the file type and authorization

efs_filesend() Send file contents directly to a socket

efs_loadfunction() Load executable file and return entry-point function

As previously mentioned, most of the API closely matches its standard C counterpart:

efs_fclose() Close file

efs_feof() Check for end of file

efs_fopen() Open file

efs_fread() Read from file

efs_fseek() Set file position

efs_ftell() Get file position

efs_fwrite() Write to file

efs_rewind() Reset file position to start of file

SPRU524C–January 2007 Operating System Abstraction API 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

2.6.3 EFS Custom API Functions

efs_createfile — Create (declare) a RAM Based File

efs_createfile Create (declare) a RAM Based File

Syntax void efs_createfile(char *name, INT32 length, UINT8 *pData);

Parameters

name Filename (maximum length of EFS_FILENAME_MAX)

length Length of file data

pData Pointer to file data

Return Value None.

Description This function creates an internal record of the RAM based file with the indicated
filename, file length, and data pointer. The file data is not copied, so the buffer must be
statically allocated. The filename is copied, so it does not need to be static.

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the efs_createfile() function could
easily be altered to use allocated buffers that are later freed when efs_destroyfile() is
called. These create and destroy functions are only called by the sample application
code, and thus the system programmer is free to alter the operation of these functions -
so long as they create files that are compatible with the rest of this API.

efs_createfilecb Create (declare) a RAM Based File with Callback

Syntax void efs_createfilecb(char *name, INT32 length, UINT8 *pData, EFSFUN pcbFreeFun,
UINT32 FreeArg);

Parameters

name Filename (maximum length of EFS_FILENAME_MAX)

length Length of file data

pData Pointer to file data

pcbFreeFun Pointer to file data

FreeArg Pointer to file data

Return Value None.

Description This is identical to efs_createfile(), except that is takes two additional arguments, a
pointer to a file free function, and a 32 bit argument. It is designed to be used in system
where the memory used for the file is allocated, and not static.

The EFS file system tracks the numbers of references to a particular file. When the
efs_destroyfile() function is called to destroy a file, the file is marked so that it can no
longer be opened, but open handles to the file remain valid until closed by their
respective application. The free function callback calls back to the file creator when the
last file handle to the file has been closed, allowing the creator to safely reclaim any
memory associated with the file. The argument FreeArg is used as a calling parameter
to the callback.

30 Operating System Abstraction API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

efs_destroyfile — Destroy (remove declaration from) a RAM Based File

efs_destroyfile Destroy (remove declaration from) a RAM Based File

Syntax void efs_destroyfile(char *name);

Parameters

name Filename (maximum length of EFS_FILENAME_MAX)

Return Value None.

Description This function deletes the internal file record associating the filename with the static data
pointer as originally passed to efs_createfile().

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the efs_createfile() function could
easily be altered to use allocated buffers that are later freed when efs_destroyfile() is
called. These create and destroy functions are only called by the sample application
code, and thus the system programmer is free to alter the operation of these functions -
so long as they create files that are compatible with the rest of this API.

efs_getfilesize Get the Length of a File

Syntax INT32 efs_getfilesize(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value File size in bytes.

Description This function returns the length in bytes of the indicated file. The file must already have
been opened via a call to efs_fopen().

efs_filecheck Check the file type and authorization

Syntax int efs_filecheck(char *name, char *user, char *password, int *prealm);

Parameters

name Filename (NULL terminated string)

user Username (NULL terminated string)

password Password (NULL terminated string)

prealm Pointer to receive realm Index (if authentication fails)

Return Value An integer consisting of one or more of the following flags:

EFS_FC_NOTFOUND File not found

EFS_FC_NOTALLOWED File cannot be accessed

EFS_FC_EXECUTE Filename represents a function call (CGI)

EFS_FC_AUTHFAILED File authentication failed (failing realm Index supplied)

Description This function is called by a file server (e.g., HTTP) on a particular filename (provided in
name), to retrieve the file type, and authenticate user access. The user credentials are
supplied in the user and password calling parameters.

The user and password arguments must always be valid pointers, but can be NULL
strings.

When user authentication fails, the Index of the failing authentication realm (1 to 4) is
written to the address supplied in prealm.

SPRU524C–January 2007 Operating System Abstraction API 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

efs_filesend — Send file contents directly to a socket

efs_filesend Send file contents directly to a socket

Syntax size_t efs_filesend(EFS_FILE *stream, size_t size, SOCKET s);

Parameters

stream Pointer to open stream (file)

size Number of bytes to transfer from the file

s Socket onto which to send the file data

Return Value Returns the number of bytes transferred, NULL on an error.

Description This function is called by a file server (e.g., HTTP) on a particular file stream (provided in
stream), to read data from the file and send it to socket s. Because EFS file systems are
typically RAM based, this custom function can send the file to socket s more efficiently
than an application that has to call efs_read() and then send().

The number of bytes to transfer is given by size. Transfer begins and the current file
pointer location, and the file pointer is advanced by this call.

efs_loadfunction Load Executable File and Return Entry-point

Syntax EFSFUN efs_loadfunction(char *name);

Parameters

name Filename (maximum length of EFS_FILENAME_MAX)

Return Value Pointer to executable function.

Description This function loads an executable file and returns a pointer to the entry-point function.
The type EFSFUN is declared as:
typedef void (*EFSFUN)();

The application is really free to treat this function in whatever manner is required. This
executable file is created with a call to efs_createfile() where the pData parameter points
to a function that is already loaded in memory. This allows the HTTP server to call
services contained in CGI files.

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the HTTP can be made to work with
physical CGI files by porting this function to load CGI.

Operating System Abstraction API32 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

2.6.4 EFS Standard API Functions

efs_fclose — Close File

efs_fclose Close File

Syntax int efs_fclose(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value Returns EOF if any errors occurred, and zero otherwise.

Description This function performs a logical close on an open file. It is functionally equivalent to
fclose().

efs_feof Test for End of File

Syntax int efs_feof(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value Returns non-zero if EOF has been reached, and zero otherwise.

Description This function tests to see is the file position has reached the end of the file. It is
functionally equivalent to feof().

efs_fopen Open File

Syntax EFS_FILE *efs_fopen(char *name, char *mode);

Parameters

name Name of file to open

mode Desired mode of open file

Return Value Returns a stream pointer or NULL on error.

Description This function performs a logical open on the named file and returns a stream or NULL if
the attempt fails. It is functionally equivalent to fopen().

The mode parameter determines the mode for which the file is opened. In the embedded
file system version of this function, the list of supported modes is quite simple:

rb - open binary file for reading

The flags are still passed through to ensure compatibility with a full file system.

SPRU524C–January 2007 Operating System Abstraction API 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

efs_fread — Read from a File

efs_fread Read from a File

Syntax size_t efs_fread(void *ptr, size_t size, size_t nobj, EFS_FILE *stream);

Parameters

ptr Pointer to data buffer to receive data

size Size in bytes of a read object

nobj Number of objects to read

stream Pointer to open stream (file)

Return Value Returns the number of objects read.

Description This function reads from the indicated stream in the array ptr at most nobj objects of a
length specified by size. It returns the number of objects read; this may be less than the
number of objects requested. It is functionally equivalent to fread().

efs_feof() can be used to detect end of file.

efs_fseek Set File Position

Syntax INT32 efs_fseek(EFS_FILE *stream, INT32 offset, int origin);

Parameters

stream Pointer to open stream (file)

offset Offset of desired new position

origin Base reference point for offset

Return Value Returns non-zero on error.

Description This function sets the file position of the indicated stream to that specified by offset from
a base reference point specified by origin. It is functionally equivalent to fseek().

The origin parameter can be set to one of the following:

• EFS_SEEK_SET - Position by offset from the beginning of the file
• EFS_SEEK_CUR - Position by offset from the current position
• EFS_SEEK_END - Position by offset from the end of the file

efs_ftell Get File Position

Syntax INT32 efs_ftell(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value Returns file position or -1 on error.

Description This function returns the current file position of the indicated stream. It is functionally
equivalent to ftell().

34 Operating System Abstraction API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

efs_fwrite — Write to a File

efs_fwrite Write to a File

Syntax size_t efs_fwrite(void *ptr, size_t size, size_t nobj, EFS_FILE *stream);

Parameters

ptr Pointer to data buffer to receive data

size Size in bytes of a read object

nobj Number of objects to read

stream Pointer to open stream (file)

Return Value Returns the number of objects written (0).

Description This function writes to the indicated stream from the array ptr, up to nobj objects of a
length specified by size. It returns the number of objects written; this may be less than
the number of objects requested on an error. It is functionally equivalent to fwrite().

Nothing in the stack package requires write capability, thus this function always returns
zero.

efs_rewind Reset File Position to Start of File

Syntax void efs_rewind(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value None.

Description This sets the position of the indicated stream to zero, and clears any current error.
(Errors are not tracked in this implementation.)

SPRU524C–January 2007 Operating System Abstraction API 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

File I/O Support for Embedded Systems

Operating System Abstraction API36 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Chapter 3
SPRU524C–January 2007

Sockets and Stream IO API

This chapter describes the socket and file API functions.

Topic .. Page

3.1 File Descriptor Environment... 38
3.2 File Descriptor Programming Interface .. 39
3.3 Sockets Programming Interface.. 46
3.4 Full Duplex Pipes Programming Interface 63
3.5 Internet Group Management Protocol (IGMP) 64

SPRU524C–January 2007 Sockets and Stream IO API 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

3.1 File Descriptor Environment

3.1.1 Organization

3.1.2 Initializing the File System Environment

3.1.2.1 When to Initialize the File Descriptor Environment

File Descriptor Environment

In most embedded operating system environments, support for file descriptors varies greatly. In most
cases, only the bare minimum functionality is provided, and trimmed down support functions are provided
using the common reserved names (read(), write(), close(), etc.).

As this stack supports the standard sockets interface functions, and these functions require file descriptor
support, the stack provides its own small file system. This section describes the basic mechanics of the
file system.

The basic building block of the stack code internally is an object handle. Internally to the stack, both
sockets and pipes are addressed by object handles. However, at the application level, sockets and pipes
are treated as file descriptors. The file descriptor contains additional state information allowing tasks to be
blocked and unblocked based on socket activity.

The stack API supports the use of file descriptors by adding a file descriptor layer of abstraction to the
native operating environment. This layer implements the standard sockets and file IO functions. The stack
works by associating a file descriptor session with each caller's thread (or in this terminology, task). In this
system, each task has its own file descriptor session. The file descriptor session is used when the task
needs to block pending network activity.

Note that although file descriptors can be used in classic functions like select(), in this implementation,
they are still handles, not integers. For compatibility, network applications must use the NDK header files,
and use INVALID_SOCKET for an error condition (not -1), and refrain from comparing sockets as <0 when
checking for validity.

To use the file system and socket functions provided by the stack, a task must first allocate a file
descriptor table (called a file descriptor session). This is accomplished at the application layer by calling
the file descriptor function fdOpenSession().

When the task is finished using the file descriptor API, or when it is about to terminate, the function
fdCloseSession() is called.

For correct stack operation, a task thread must open a file descriptor session before calling any file
descriptor related functions, and then close it when it is done.

The simplest way to handle the session is for the task to open a file session when it starts, and close the
session when it completes. For example:

Socket Task:
void socket_task(int IPAddr, int TcpPort)
{

SOCKET s;

// Open the file session
fdOpenSession(TaskSelf());

< socket application code >

// Close the file session
fdCloseSession(TaskSelf());

}

38 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

3.2 File Descriptor Programming Interface

3.2.1 Synopsis

3.2.2 Function Overview

File Descriptor Programming Interface

A second option is for the task that creates the socket task thread to open the file descriptor session for
the child thread. Note that the parent task must guarantee that the child task's file session is open before
the child task executes. This is done via task priority or semaphore, but can complicate task creation.
Therefore, it is not the ideal approach.

A third, more common, option is to allow a child task to open its own file session, but allow the parent task
to monitor its children and eventually destroy them. Here, the parent task must close the file session of the
child task threads it destroys. The child task then blocks when finished instead of terminating its own
thread. The following example illustrates this concept:

Child Socket Task:
void child_socket_task(int IPAddr, int TcpPort)
{

SOCKET s;
// Open the file session

fdOpenSession(TaskSelf());

< socket application code >

// We are done, but our parent thread will close
// our file session and destroy this task, so here
// we just block.
TaskBlock(TaskSelf());

}

The parent task functions would look as follows:

Parent Task Functions:
void create_child_task()
{

// Create System Tasks

// Create a child task
hChildTask = TaskCreate(&child_socket_task, ?);

}

void destroy_child_task()
{

// First close the child's file session
// (This will close all open files)
fdSessionClose(hChildTask);

// Then destroy the task
TaskDestroy(hChildTask);

}

The purpose of supporting a file system is to support the sockets API. Unfortunately, the sockets API is
not a complete IO API, as it was originally designed to integrate into the Unix file system. Thus, several
file descriptor functions that are important for application programming are not really socket calls at all.
The stack library supports a handful of what are normally considered file functions, so that sockets
applications can be programmed in a more traditional sense. So that these functions will not conflict with
any other file functions in the system, their names have been altered slightly from the standard definitions.

The stream IO object can take two forms. In the vast majority of cases, it will be in the form of a local file
descriptor. The following functions can operate on file descriptors:

SPRU524C–January 2007 Sockets and Stream IO API 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

3.2.3 File Descriptor API Functions

fdOpenSession — Open File Descriptor Session

fdOpenSession() Open file descriptor support session

fdCloseSession() Close file descriptor support session

fdClose() Flush stream and close file descriptor (same as standard close())

fdError() Return last error value (same as standard error)

fdPoll() Wait on a list of file descriptor events (same as standard poll())

fdSelect() Wait on one or more file events (same as standard select())

fdSelectAbort() Aborts calls to fdSelect() and fdPoll() with forced timeout condition

fdStatus() Get the current status of a file descriptor (similar to ioctl/FIONREAD)

fdShare() Add a reference count to a file descriptor

The fdSelect() function uses file descriptor sets to specify which file descriptors are being checked for
activity and which have activity detected. There is a small set of MACRO functions for manipulating file
descriptor sets. These include the following:

FD_SET() Add a file descriptor to a file descriptor set

FD_CLR() Remove a file descriptor from a file descriptor set

FD_ISSET() Test to see if a file descriptor is included in a file descriptor set

FD_COPY() Copy a file descriptor set

FD_ZERO() Clear (initialize) a file descriptor set

fdOpenSession Open File Descriptor Session

Syntax int fdOpenSession(HANDLE hTask);

Parameters

hTask Task Thread Handle

Return Value 1 on success or 0 on error. An error return indicates that a session is already open for
the specified task, or that a memory allocation error has occurred.

Description This function opens a file descriptor session on a task thread so that the task can begin
using file descriptor and other stream IO functions.

A task thread normally calls fdOpenSession() when it is first created, and
fdCloseSession() before it exits. Use of these functions was described in more detail in
the previous section.

40 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

fdCloseSession — Close File Descriptor Session

fdCloseSession Close File Descriptor Session

Syntax void fdCloseSession(HANDLE hTask);

Parameters

hTask Task Thread Handle

Return Value None.

Description This function closes a file descriptor session that was previously opened with
fdOpenSession(). When called, any remaining open file descriptors are closed.

A task thread normally calls fdOpenSession() when it is first created, and
fdCloseSession() before it exits. Use of these functions was described in more detail in
the previous section.

fdClose Close File Descriptor

Syntax int fdClose(HANDLE fd);

Parameters

fd File Descriptor to close (compatible with type SOCKET)

Return Value 0 on success or -1 on error. When an error occurs, the error type can be obtained by
calling fdError() (error is also equal to this function).

Description This function closes the indicated file descriptor.

fdError Get the Last File Error

Syntax int fdError();

Description This function returns the last file error that occurred on the current task. In the
SERRNO.H header file, error is equal to this function.

Note: The error code returned via fdError() is stored in the file descriptor
session associated with a task. If a task calls a file or socket function
before it opens a file descriptor session, an error condition results.
However, no error code can be stored for retrieval by fdError()
because the file descriptor session does not exist to hold it.

fdPoll Wait on a List of File Descriptor Events

Syntax int fdPoll(FDPOLLITEM items, uint itemcnt, INT32 timeout);

Parameters

items Pointer to a list of descriptor events of type FDPOLLITEM

itemcnt Number of entries in items list

timeout Function timeout in milliseconds

Return Value Returns the number of file descriptors in the items list for which the eventsDetected field
is non-zero.

Returns SOCKET_ERROR if the caller has not opened a file descriptor session (with
fdOpenSession()).

Returns zero (0) under any of the following conditions:

SPRU524C–January 2007 Sockets and Stream IO API 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

fdSelect — Wait on one or multiple File Events

• No detected flags and time out has occurred
• No detected flags and a fdSelectAbort() was issued
• No detected flags and an internal resource allocation failed

Description The fdPoll() function is a more efficient alternative to the fdSelect() function. It polls the
supplied list of sockets, with a timeout specified in milliseconds (or POLLINFTIM for
infinite timeout). It has the advantage over fdSelect() because the original list of file
descriptors (or sockets) to be examined is not overwritten by the results, and thus can be
used multiple times without reconstruction.

The list of file descriptors to check is provided in the items array. The array is of type
FDPOLLITEM, which is defined as follows:
typedef struct _fdpollitem {

HANDLE fd;
UINT16 eventsRequested;
UINT16 eventsDetected;

} FDPOLLITEM;

The FDPOLLITEM entry contains a file descriptor (or socket) to check, a set of flags for
requested events that is initialized by the application, and a set of resulting flags for a
detected event that is initialized by the fdPoll() function.

The entry fd is the file descriptor to check. If fd is set to INVALID_SOCKET, or the
eventsRequested field is NULL, the item entry is ignored. However, the eventsDetected
field is still reset to zero.

The same file descriptor should not appear twice in the list, instead the event flags
should be combined on a single entry. (Duplicate descriptors will not cause an error, but
will increase system load.)

Valid flags for eventsRequested are one or more of the following:

• POLLIN - Socket readable (or read error pending)
• POLLOUT - Socket writable (or send error pending)
• POLLPRI - Socket OOB readable (or error pending)
• POLLNVAL - Socket or request type invalid

Valid flags for eventsDetected are the same as above, where all detected conditions are
indicated. (Note that POLLNVAL can be set whether or not it was requested in
eventsRequested.)

fdSelect Wait on one or multiple File Events

Syntax int fdSelect(int maxfd, fd_set *readset, fd_set *writeset, fd_set *exceptset, struct timeval
*timeout);

Parameters

maxfd Ignored

readset Set of file descriptors to check for reading

writeset Set of file descriptors to check for writing

exceptset Set of file descriptors to check for exceptional conditions (OOB data)

timeout Pointer to timeval structure of time to wait (or NULL)

Return Value Returns a positive count of ready descriptors (combined from all three possible sets), 0
on timeout, or -1 on error. When an error occurs, the error type can be obtained by
calling fdError().

Description This function allows the task to instruct the stack to wait for any one of multiple events to
occur and to wake up the process only when one of more of these events occurs or
when a specified amount of time has passed.

42 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

fdSelectAbort — Terminate a Previous Call to fdSelect() or fdPoll()

The definition of the timeval structure is:
struct timeval {

INT32 tv_sec;
INT32 tv_usec;

};

Passing in a NULL pointer for timeout specifies an infinite wait period. Passing a valid
pointer to a timeval structure with both tv_sec and tv_usec set to zero specifies that the
function should not block.

Note: This function is less efficient than fpPoll(). In fact, the fdSelect()
function calls fdPoll() after rearranging the descriptor sets into a
fdPoll() descriptor list.

fdSelectAbort Terminate a Previous Call to fdSelect() or fdPoll()

Syntax void fdSelectAbort(HANDLE hTask);

Parameters

hTask Handle to the task thread that is blocked in fdSelect() or fdPoll()

Return Value None.

Description This function aborts a call to fdSelect() or fdPoll() on the specified target thread by
simulating a timeout condition (even when no timeout was originally specified). It can be
used to wake a thread using a different method than socket or pipe activity. It is useful in
callback functions where the handle to the target task thread is known, but where socket
calls cannot be easily used.

The return value from the fdSelect() or fdPoll() function called on the target thread is still
valid. In other words, if there is pending file descriptor activity, it will still be returned to
the caller. However, if the target task thread is blocked in fdSelect() or fdPoll() at the time
of the call, the most likely return value is zero for no activity.

If the target thread is not currently pending on a call to fdSelect() or fdPoll(), any
subsequent call will be affected. Thus, the target thread is guaranteed to see the abort
(although it may be accompanied by actual socket activity). So there is no race condition
on calling fdSelectAbort() immediately prior to the target task thread calling fdSelect() or
fdPoll().

fdStatus Get the Current Status of a File Descriptor

Syntax int fdStatus(HANDLE fd, int request, int *results);

Parameters

fd File descriptor (socket or pipe) to check

request Status request type.

hTask Pointer to where status results are written

Return Value 0 on success or -1 on error. When an error occurs, the error type can be obtained by
calling fdError() (errno is also equal to this function).

Description This function reads current status information about the file descriptor. The descriptor
can be either a socket or a pipe object. The following describes the value written to
results for the various request types and descriptor types:

• request = FDSTATUS_TYPE;
The results pointer is written with the file descriptor type. It will be one of the following
values:

SPRU524C–January 2007 Sockets and Stream IO API 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

fdShare — Add a Reference Count to a File Descriptor

– FDSTATUS_TYPE_SOCKET - The file descriptor is a socket.
– FDSTATUS_TYPE_PIPE - The file descriptor is a pipe.

• request = FDSTATUS_RECV;
On listening sockets, the results pointer is written with:

– -1 - There is an error pending on the socket.
– 0 - There are no connections ready to be accepted.
– 1 - There is at least one connection ready to be accepted.
On data sockets, the results pointer is written with:

– -1 - There is an error pending, or a call to recv() will result in an error.

Note: On a TCP socket, this return value can also indicate that the peer
connection has been closed and all available data has been read.
In this case, a subsequent call to recv() will return NULL, not error.

– <0 to n> - The number of bytes that can be read using recv() without blocking.
• request = FDSTATUS_SEND;

On listening sockets, the results pointer is written with:

– -1 - A listening socket can never be written.
On TCP (non-ATOMIC) data sockets, the results pointer is written with:

– -1 - There is an error pending, or a call to send() will result in an error.
– <0 to n> - The number of bytes that can be written using send() without blocking.
On UDP/RAW (ATOMIC) data sockets, the results pointer is written with:

– -1 - There is an error pending, or a call to send() will result in an error.
– <0 to n> - The maximum number of bytes that can be written using a single

send() call.

fdShare Add a Reference Count to a File Descriptor

Syntax int fdShare(HANDLE fd);

Parameters

fd File descriptor to share (compatible with type SOCKET)

Return Value Returns zero on success or -1 on error.

Description This is an optional function for applications that use descriptor sharing. It increments a
reference count on the target descriptor, which is then decremented when the
application calls fdClose(). It allows the descriptor to be shared among multiple tasks,
each calling fdClose() when they are done, and the file descriptor is only closed by the
final call. (Note that file descriptors are created with a reference call of 1, meaning that
the first call to fdClose() will close the descriptor.)

Sockets and Stream IO API44 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

3.2.4 File Descriptor Set (fd_set) Macros
FD_SET — Add a File Descriptor to a File Descriptor Set

FD_SET Add a File Descriptor to a File Descriptor Set

Syntax void FD_SET(HANDLE fd, fd_set *pFdSet);

Parameters

fd File descriptor to add (compatible with type SOCKET)

pFdSet Pointer to fd_set data type

Return Value Should be treated as a void function. The true return value is dependent on the
implementation of the macro.

Description This function adds a file descriptor to a file descriptor set, typically before using the set in
a call to fdSelect(). Note that after declaring a fd_set data type, it should be initialized
using FD_ZERO() before attempting to set individual file descriptors.

FD_CLR Remove a File Descriptor From a File Descriptor Set

Syntax void FD_CLR(HANDLE fd, fd_set *pFdSet);

Parameters

fd File descriptor to remove

pFdSet Pointer to fd_set data type

Return Value Should be treated as a void function. The true return value is dependent on the
implementation of the macro.

Description This function removes a file descriptor from a file descriptor set, typically after the file
descriptor has been processed in a loop that continuously checks a file descriptor set.

FD_ISSET Test to See if a File Descriptor is Included in a File Descriptor Set

Syntax void FD_ISSET(HANDLE fd, fd_set *pFdSet);

Parameters

fd File descriptor to check (compatible with type SOCKET)

pFdSet Pointer to fd_set data type

Return Value Returns an int value that should be treated as a TRUE/FALSE condition.

Description This function returns TRUE if the supplied file descriptor is contained in the indicated file
descriptor set. This function is typically called after a call to fdSelect() to determine on
what file descriptors select has detected activity.

FD_COPY Copy a File Descriptor Set

Syntax void FD_COPY(fd_set *pFdSetSRC, fd_set *pFdSetDST);

Parameters

pFdSetSRC Pointer to fd_set to copy

pFdSetDST Pointer to fd_set to write copied data

SPRU524C–January 2007 Sockets and Stream IO API 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

3.3 Sockets Programming Interface

3.3.1 Synopsis

3.3.2 Enhanced No-Copy Socket Operation

FD_ZERO — Clear (Initialize) a File Descriptor Set

Return Value None.

Description This function is called to make a copy of a file descriptor set. This is typically done if a
set needs to be modified, but this original information needs to be maintained.

FD_ZERO Clear (Initialize) a File Descriptor Set

Syntax void FD_ZERO(fd_set *pFdSet);

Parameters

pFdSet Pointer to fd_set to initialize

Return Value None.

Description This function is called to clear all bits in a file descriptor set. This should be the first call
made on a newly declared fd_set variable.

The socket function API supported by the stack library is consistent with the standard Berkeley sockets
API. No parameter adjustments are required.

Two new types are defined for the socket function declarations:
typedef struct sockaddr SA;
typedef struct sockaddr *PSA;

Any performance of any data stream operation suffers when data copies are performed. Although the
stack software is designed to use a minimum number of data copies, memory efficiency and API
compatibility sometimes require the use of data copy operations.

By default, neither UDP nor RAW sockets use send or receive buffers. However, the sockets API
functions recv() and recvfrom() require a data buffer copy because of how the calling parameters to the
functions are defined. In the stack library, two alternative functions (recvnc()and recvncfrom()) are
provided to allow an application to get received data buffers directly without a copy operation. When the
application is finished with these buffers, it returns them to the system via a call to recvncfree().

By default, TCP uses both a send and receive buffer. The send buffer is used because the TCP protocol
can require reshaping or retransmission of data due to window sizes, lost packets, etc. On receive, the
standard TCP socket also has a receive buffer. This coalesces TCP data received from packet buffers.
Coalescing data is important for protocols that transmit data in very small bursts (like a telnet session).

For TCP applications that get data in large bursts (and tend not to use flags like MSG_WAITALL on
receive), the receive buffer can be eliminated by specifying an alternate TCP stream type of
SOCK_STREAMNC (see socket()). Without the receive buffer, there is at least one less data copy
because TCP will queue up the actual network packets containing receive data instead of copying it into a
receive buffer.

Care needs to be taken when eliminating the TCP receive buffer. Here large amounts of packet buffers
can be tied up for a small amount of data. Also, because packet buffers come from the HAL, there may be
a limited supply available. If the MSG_WAITALL flag is used on a recv() or recvfrom() call, it is possible for
all packet buffers to be consumed before the specified amount of payload data is received. This would
cause a deadlock situation if no socket timeout is specified.

46 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

3.3.3 Function Overview

3.3.4 Sockets API Functions

accept — Accept a Connection on a Socket

Although TCP sockets that use the SOCK_STREAMNC stream type are 100% compatible with the
standard TCP socket type, they can also be used with the recvnc() and recvncfrom() functions that UDP
and RAW sockets use to eliminate the final data copy from the stack to the sockets application. Using the
no copy functions with SOCK_STREAMNC eliminates two data copies from the standard TCP socket.
Note that when recvnc() and recvncfrom() are used with TCP, out of band data is not supported. If the
SO_OOBINLINE socket option is set, the out of band data is retained, but the out of band data mark is
discarded. If not using the inline socket option, the out of band data is discarded.

The standard socket access functions are as follows:

accept() Accept a connection on a socket

bind() Bind a name to a socket

connect() Initiate a connection on a socket

getpeername() Return name (address) of connected peer

getsockname() Return the local name (address) of the socket

getsockopt() Get the value of a socket option

listen() Listen for connection requests on a socket

recv() Receive data from a socket

recvfrom() Receive data from a socket with the senders name (address)

send() Send data to a connected socket

sendto() Send data to a specified destination on an unconnected socket

setsockopt() Set the value of a socket option

shutdown() Close one half of a socket connection

socket() Create a socket

socketpair() Create socket pair (redundant; see Section 3.4, Full Duplex Pipes
Programming Interface)

The enhanced socket functions are as follows:

recvnc() Receive no-copy data from a socket

recvncfree() Free buffer obtained from recvnc() or recvncfrom()

recvncfrom() Receive no-copy data from a socket with the senders name (address)

accept Accept a Connection on a Socket

Syntax SOCKET accept(SOCKET s, PSA pName, int *plen);

Parameters

s Socket

pName Name (address) of connected peer

plen Pointer to size of pName

SPRU524C–January 2007 Sockets and Stream IO API 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

bind — Bind a Name (Address) to a Socket

Return Value If it succeeds, the function returns a non-negative integer that is a descriptor for the
accepted socket. Otherwise, a value of INVALID_SOCKET is returned and the function
fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

ECONNABORTED Listening socket has been shut down for read operations.

EMFILE The file descriptor table is full.

ENOMEM Memory allocation error.

ENOTSOCK The descriptor does not reference a socket.

EINVAL listen() has not been called on the socket or name arguments are
invalid.

EWOULDBLOCK Socket is marked non-blocking and no connections are ready

Description The argument s is a socket that has been created with the socket() function, bound to an
address with bind(), and is listening for connections after a listen(). The accept() function
extracts the first connection request on the queue of pending connections, creates a new
socket with the same properties of socket s and allocates a new file descriptor for the
socket. If no pending connections are present on the queue, and the socket is not
marked as non-blocking, accept blocks the caller until a connection is present. If the
socket is marked non-blocking and no pending connections are present on the queue,
accept returns an error as described above.

The accepted socket may not be used to accept more connections. The original socket s
remains open.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

This call is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select (fdSelect()) a socket for the purposes of doing an accept by
selecting it for read.

bind Bind a Name (Address) to a Socket

Syntax int bind(SOCKET s, PSA pName, int len);

Parameters

s Socket

pName Name (address) of desired local address

len Size of pName

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

ENOTSOCK The descriptor does not reference a socket.

EINVAL Name arguments are invalid.

EADDRNOTAVAIL The specified address is not available from the local machine.

EADDRINUSE The specified address is already in use.

48 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

connect — Initiate a Connection on a Socket

Description The bind() function assigns a name to an unnamed socket. When a socket is created
with socket() it exists in a name space (address family) but has no name assigned. The
bind() function requests that name be assigned to the socket.

The argument s is a socket that has been created with the socket() function. The
argument pName is a structure of type sockaddr that contains the desired local address.
The len parameter contains the size of pName, which is sizeof(struct sockaddr).

connect Initiate a Connection on a Socket

Syntax int connect(SOCKET s, PSA pName, int len);

Parameters

s Socket

pName Name (address) of desired peer

len Size of pName

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.

EALREADY A connection request is already pending on this socket.

EBADF The file descriptor (socket) is invalid.

ECONNREFUSED The attempt to connect was forcefully rejected.

EHOSTUNREACH The host is not reachable.

EINPROGRESS The request was accepted and is pending (non-blocking
sockets).

EINVAL Name arguments are invalid.

EISCONN The socket is already connected.

ENOTSOCK The file descriptor does not reference a socket.

ENOTSUPP Socket is in the listening state and cannot be connected.

ETIMEDOUT Connection establishment timed out without establishing a
connection.

Description The connect() function establishes a logical (and potentially physical) connection from
the socket specified by s to the foreign name (address) specified by pName.

If sock is of type SOCK_DGRAM, this call specifies the peer address with which the
socket is to be associated; this address is that to which datagrams are to be sent, and
the only address from which datagrams are to be received. If the socket is of type
SOCK_STREAM, the function attempts to make a connection to another socket.

The argument s is a socket that has been created with the socket() function. The
argument pName is a structure of type sockaddr that contains the desired foreign
address. The len parameter contains the size of pName, which is sizeof(struct
sockaddr).

Stream sockets may connect only once; while datagram sockets may re-connect multiple
times to change their association. The connection may be dissolved by attempting to
connect to an illegal address (for example, NULL IP address and Port). Datagram
sockets that require multiple connections may consider using the recvfrom() and sendto()
functions instead of connect().

It is possible to select (fdSelect()) a socket for the purposes of doing a connect by

SPRU524C–January 2007 Sockets and Stream IO API 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

getpeername — Get Name (Address) of Connected Peer

selecting it for writing.

getpeername Get Name (Address) of Connected Peer

Syntax int getpeername(SOCKET s, PSA pName, int *plen);

Parameters

s Socket

pName Name (address) of connected peer

plen Pointer to size of pName

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

ENOTSOCK The file descriptor does not reference a socket.

EINVAL Name arguments are invalid.

ENOTCONN The socket is not connected.

Description The getpeername() function returns the name (address) of the connected peer.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

getsockname Get the Local Name (Address) of the Socket

Syntax int getsockname(SOCKET s, PSA pName, int *plen);

Parameters

s Socket

pName Name (address) of connected peer

plen Pointer to size of pName

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

ENOTSOCK The file descriptor does not reference a socket.

EINVAL Name arguments are invalid.

Description The getsockname() function returns the local name (address) of the socket.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

50 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

getsockopt — Get the Value of a Socket Option Parameter

getsockopt Get the Value of a Socket Option Parameter

Syntax int getsockopt(SOCKET s, int level, int op, void *pbuf, int *pbufsize);

Parameters

s Socket

level Option level (SOL_SOCKET, IPPROTO_IP, IPPROTO_TCP)

op Socket option to get

pbuf Pointer to memory buffer

pbufsize Pointer to size of memory buffer

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

ENOTSOCK The file descriptor does not reference a socket.

EINVAL Buffer arguments are invalid.

Description The getsockopt() function returns the options associated with a socket. Options may
exist at multiple protocol levels; they are always present at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name of
the option must be specified. To manipulate options at the socket level, level is specified
as SOL_SOCKET. To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied. In this implementation, only
SOL_SOCKET, IPPROTO_IP, and IPROTO_TCP are supported.

The parameters pbuf and pbufsize identify a buffer in which the value for the requested
option(s) are to be returned. pbufsize is a value-result parameter, initially containing the
size of the buffer pointed to by pbuf, and modified on return to indicate the actual size of
the value returned.

Most socket-level options utilize an int parameter for pbuf. SO_LINGER uses a struct
linger parameter, defined in INC\SOCKET.H, which specifies the desired state of the
option and the linger interval (see below). SO_SNDTIMEO and SO_RCVTIMEO use a
struct timeval parameter.

The following options are recognized at the socket level:

SO_REUSEADDR Specifies that the rules used in validating addresses supplied in
a bind call should allow reuse of local addresses.

SO_REUSEPORT Allows completely duplicate bindings by multiple processes if
they all set SO_REUSEPORT before binding the port. This
option permits multiple instances of a program to each receive
UDP/IP multicast or broadcast datagrams destined for the bound
port.

SO_KEEPALIVE Enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these
messages, the connection is considered broken and processes
using the socket are notified when attempting to send data.

SO_DONTROUTE Indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the
appropriate network interface according to the network portion of
the destination address.

SPRU524C–January 2007 Sockets and Stream IO API 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

getsockopt — Get the Value of a Socket Option Parameter

SO_LINGER Controls the action taken when unsent messages are queued on
socket and a close is performed. If the socket promises reliable
delivery of data and SO_LINGER is set, the system will block the
process on the close attempt until it is able to transmit the data
or until it decides it is unable to deliver the information (a timeout
period, termed the linger interval, is specified in seconds in the
setsockopt call when SO_LINGER is requested). If SO_LINGER
is disabled and a close is issued, the system will process the
close in a manner that allows the process to continue as quickly
as possible.

SO_BROADCAST Requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions
of the system.

SO_OOBINLINE With protocols that support out-of-band data, this option requests
that out-of-band data be placed in the normal data input queue
as received; it will then be accessible with recv or read calls
without the MSG_OOB flag. Some protocols always behave as if
this option is set.

SO_SNDBUF Buffer size for output.

SO_RCVBUF Buffer size for input.

SO_SNDLOWAT Is an option to set the minimum count for output operations. Most
output operations process all of the data supplied by the call,
delivering data to the protocol for transmission and blocking as
necessary for flow control. Non-blocking output operations will
process as much data as permitted subject to flow control
without blocking, but will process no data if flow control does not
allow the smaller of the low water mark value or the entire
request to be processed. A select operation testing the ability to
write to a socket will return true only if the low water mark
amount could be processed. The default value for
SO_SNDLOWAT is set to a convenient size for network
efficiency, often 1024.

SO_RCVLOWAT Is an option to set the minimum count for input operations. In
general, receive calls will block until any (non-zero) amount of
data is received, then return with the smaller of the amount
specified by SO_RCVLOWAT or the amount requested. The
default value for SO_RCVLOWAT is 1. Receive calls may still
return less than the amount specified by SO_RCVLOWAT or the
amount requested if an error occurs, or the type of data next in
the receive queue is different from that which was returned.

SO_SNDTIMEO Is an option to set a timeout value for output operations. It
accepts a struct timeval parameter with the number of seconds
and microseconds used to limit waits for output operations to
complete. If a send operation has blocked for this much time, it
returns with a partial count or with the error EWOULDBLOCK if
no data were sent. In the current implementation, this timer is
restarted each time additional data are delivered to the protocol,
implying that the limit applies to output portions ranging in size
from the low water mark to the high water mark for output.

52 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

listen — Listen for Connection Requests on Socket

SO_RCVTIMEO Is an option to set a timeout value for input operations. It accepts
a struct timeval parameter with the number of seconds and
microseconds used to limit waits for input operations to complete.
This timer is restarted each time additional data are received by
the protocol, and thus, the limit is in effect an inactivity timer. If a
receive operation has been blocked for this much time without
receiving additional data, it returns with a short count or with the
error EWOULDBLOCK if no data were received.

SO_TYPE SO_TYPE returns the type of the socket, such as
SOCK_STREAM.

SO_ERROR Returns any pending error on the socket and clears the error
status. It may be used to check for asynchronous errors on
connected datagram sockets or for other asynchronous errors.

Options that are not Berkeley standard:

SO_IFDEVICE Specifies a uint index (1 to n) of the designated interface for
sending and receiving IP broadcast packets. When set, this
interface is selected on a IP broadcast send operation if the
socket's local (bound) IP address is NULL (INADDR_ANY). Also,
when set, the socket will only accept incoming broadcast packets if
they have been received on this interface.

SO_BLOCKING Specifies a int flag (1 or 0) indicating if the socket is in blocking or
non-blocking mode. Sockets default to blocking mode when
created, but can be set to non-blocking by using setsockopt(). This
option provides the same functionality as calling the Unix function
Fcntl() with the O_NONBLOCK flag.

The following options are recognized at the IPPROTO_IP level:

IP_OPTIONS Specifies the IP options to be included in any outgoing IP packet
sent via this socket (maximum length is 20 bytes).

IP_HDRINCL Indicates to IP that the socket application is supplying the IP header
as well as the rest of the packet payload. This is for use with RAW
sockets only.

IP_TOS Specifies the TOS value to place in the IP header.

IP_TTL Specifies the TTLvalue to place in the IP header.

The following options are recognized at the IPPROTO_TCP level:

TCP_MAXSEG Set the maximum TCP segment size.

TCP_NODELAY Disables TCP send delay/coalesce algorithm.

TCP_NOPUSH Do not send data just to finish a data block (attempt to coalesce).

TCP_NOOPT Do not use TCP options.

listen Listen for Connection Requests on Socket

Syntax int listen(SOCKET s, int maxcon);

Parameters

s Socket

maxcon Maximum number of connects to queue

SPRU524C–January 2007 Sockets and Stream IO API 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

recv — Receive Data from a Socket

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

ENOTSOCK The file descriptor does not reference a socket.

EOPNOTSUPP The socket is not of a type that supports the operation listen.

EISCONN The socket is already connected

Description The listen() function listens for connection requests on a socket.

To accept connections, a socket is first created with socket(). The listen() function is
called to specify a willingness to accept incoming connections and a queue limit for
incoming connections. New connections are accepted by calling the accept() function.
The listen() function applies only to sockets of type SOCK_STREAM.

The maxcon parameter defines the maximum length to which the queue of pending
connections may grow. If a connection request arrives with the queue full, the client
receives an error with an indication of ECONNREFUSED.

recv Receive Data from a Socket

Syntax int recv(SOCKET s, void *pbuf, int size, int flags);

Parameters

s Socket

pbuf Data buffer to place received data

size Size of desired data

flags Option flags

Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

EINVAL Attempt to read (or calling arguments) invalid for this socket.

ENOTCONN The socket is connection oriented and not connected

ENOTSOCK The file descriptor does not reference a socket.

ETIMEDOUT The socket connection was dropped due to protocol layer timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The recv() function attempts to receive data from a socket. It is normally used on a
connected socket (see connect()). The data is placed into the buffer specified by pbuf,
up to a maximum length specified by size. The options in flags can be used to change
the default behavior of the operation.

The functions returns the length of the message on successful completion.

For a datagram type socket, the receive operation always copies one packet's worth of
data. If the buffer is too short to hold the entire packet, the data is truncated and lost.

If no messages are available at the socket, it waits for a message to arrive, unless the
socket is non-blocking. The function normally returns any data available, up to the
requested amount, rather than waiting for receipt of the full amount requested; this
behavior is affected by the options specified in flags as well as the socket-level options
SO_RCVLOWAT and SO_RCVTIMEO described in getsockopt() .

54 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

recvfrom — Receive Data from a Socket with the Sender's Name (Address)

The select call (fdSelect()) may be used to determine when more data arrives.

The flags argument to a recv() call is formed by combining one or more of the following
flags:

MSG_DONTWAIT Requests that the operation not block when no data is available.

MSG_OOB Requests receipt of out-of-band data that would not be received
in the normal data stream. Some protocols place expedited data
at the head of the normal data queue, and thus, this flag cannot
be used with such protocols.

MSG_PEEK Causes the receive operation to return data from the beginning
of the receive queue without removing that data from the queue.
Thus, a subsequent receive call will return the same data.

MSG_WAITALL Requests that the operation block until the full request is
satisfied. However, the call may still return less data than
requested if an error or disconnect occurs, or the next data to be
received is of a different type than that returned.

recvfrom Receive Data from a Socket with the Sender's Name (Address)

Syntax int recvfrom(SOCKET s, void *pbuf, int size, int flags, PSA pName, int *plen);

Parameters

s Socket

pbuf Data buffer to place received data

size Size of desired data

flags Option flags

pName Pointer to place name (address) of sender

plen Pointer to size of pName

Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

EINVAL Attempt to read (or calling arguments) invalid for this socket.

ENOTCONN The socket is connection oriented and not connected.

ENOTSOCK The file descriptor does not reference a socket.

ETIMEDOUT The socket connection was dropped due to protocol layer timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The recvfrom() function attempts to receive data from a socket. It is normally called with
unconnected, non-connection oriented sockets. The data is placed into the buffer
specified by pbuf, up to a maximum length specified by size. The options in flags can be
used to change the default behavior of the operation. The name (address) of the sender
is written to pName.

The argument pName is a result parameter that is filled in with the address of the
sending entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),

SPRU524C–January 2007 Sockets and Stream IO API 55
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

recvnc — Receive Data from a Socket without Buffer Copy

the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

The functions returns the length of the message on successful completion.

For a datagram type socket, the receive operation always copies one packet's worth of
data. If the buffer is too short to hold the entire packet, the data is truncated and lost.

If no messages are available at the socket, it waits for a message to arrive, unless the
socket is non-blocking. The function normally returns any data available, up to the
requested amount, rather than waiting for receipt of the full amount requested; this
behavior is affected by the options specified in flags as well as the socket-level options
SO_RCVLOWAT and SO_RCVTIMEO described in getsockopt() .

The select call (fdSelect()) may be used to determine when more data arrives.

The flags argument to a recv() call is formed by combining one or more of the following
flags:

MSG_DONTWAIT Requests that the operation not block when no data is available.

MSG_OOB Requests receipt of out-of-band data that would not be received
in the normal data stream. Some protocols place expedited data
at the head of the normal data queue, and thus, this flag cannot
be used with such protocols.

MSG_PEEK Causes the receive operation to return data from the beginning
of the receive queue without removing that data from the queue.
Thus, a subsequent receive call will return the same data.

MSG_WAITALL Requests that the operation block until the full request is
satisfied. However, the call may still return less data than
requested if an error or disconnect occurs, or the next data to be
received is of a different type than that returned.

recvnc Receive Data from a Socket without Buffer Copy

Syntax int recvnc(SOCKET s, void **ppbuf, int flags, HANDLE *phBuffer);

Parameters

s Socket

ppbuf Pointer to receive data buffer pointer

flags Option flags

phBuffer Pointer to receive buffer handle

Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

EINVAL Attempt to read (or calling arguments) invalid for this socket.

ENOTSOCK The file descriptor does not reference a socket.

ENOTCONN The socket is connection oriented and not connected.

ETIMEDOUT The socket connection was dropped due to protocol layer timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

56 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

recvncfree — Return a Data Buffer Obtained from a No-Copy Receive Operation

Description The recvnc() function attempts to receive a data buffer from a socket. It is normally used
on a connected socket (see connect()). A pointer to the data buffer is returned in ppbuf.
A system handle used to free the buffer is returned in phBuffer. Both of these pointers
must be valid. The options in flags can be used to change the default behavior of the
operation.

The functions returns the length of the message on successful completion.

The receive operation always returns one packet buffer. The caller has no control over
the size of the data returned in this buffer.

If no messages are available at the socket, this call waits for a message to arrive, unless
the socket is non-blocking. The function returns the data buffer available.

When the caller no longer needs the data buffer, it is returned to the system by calling
recvncfree(). Repeated failure to free buffers will eventually cause the stack to stop
receiving data.

This function cannot be used with sockets of type SOCK_STREAM. When used with
sockets of type SOCK_STREAMNC, out of band data marks are cleared.

The select call (fdSelect()) may be used to determine when more data arrives.

The flags argument to a recv() call can be one of the following flags:

MSG_DONTWAIT Requests that the operation not block when no data is available.

MSG_WAITALL Requests that the operation block until data is available.
Because blocking is the default behavior of a standard socket,
this flag only alters the behavior of a non blocking socket for this
call.

recvncfree Return a Data Buffer Obtained from a No-Copy Receive Operation

Syntax void recvncfree(HANDLE hBuffer);

Parameters

hBuffer Handle to receive buffer to free

Return Value None.

Description The recvncfree() function frees a data buffer obtained from calling either recvnc() or
recvncfrom(). The calling parameter hBuffer is the handle of the buffer to free (not the
pointer to the buffer).

recvncfrom Receive Data and the Sender's Name From a Socket Without Buffer Copy

Syntax int recvncfrom(SOCKET s, void **ppbuf, int flags, PSA pName, int *plen, HANDLE
*phBuffer);

Parameters

s Socket

ppbuf Pointer to receive data buffer pointer

flags Option flags

pName Pointer to place name (address) of sender

plen Pointer to size of pName

phBuffer Pointer to receive buffer handle

SPRU524C–January 2007 Sockets and Stream IO API 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

send — Transmit Data to a Socket

Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

EINVAL Attempt to read (or calling arguments) invalid for this socket.

ENOTSOCK The file descriptor does not reference a socket.

ENOTCONN The socket is connection oriented and not connected.

ETIMEDOUT The socket connection was dropped due to protocol layer timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The recvncfrom() function attempts to receive a data buffer from a socket. It is normally
called with unconnected, non-connection oriented sockets. A pointer to the data buffer is
returned in ppbuf. A system handle used to free the buffer is returned in phBuffer. Both
of these pointers must be valid. The options in flags can be used to change the default
behavior of the operation. The name (address) of the sender is written to pName.

The argument pName is a result parameter that is filled in with the address of the
sending entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

The functions returns the length of the message on successful completion.

The receive operation always returns one packet buffer. The caller has no control over
the size of the data returned in this buffer.

If no messages are available at the socket, this call waits for a message to arrive, unless
the socket is non-blocking. The function returns the data buffer available.

When the caller no longer needs the data buffer, it is returned to the system by calling
recvncfree(). Repeated failure to free buffers will eventually cause the stack to stop
receiving data.

This function cannot be used with sockets of type SOCK_STREAM. When used with
sockets of type SOCK_STREAMNC, out of band data marks are cleared.

The select call (fdSelect()) may be used to determine when more data arrives.

The flags argument to a recv() call can be one of the following flags:

MSG_DONTWAIT Requests that the operation not block when no data is available.

MSG_WAITALL Requests that the operation block until data is available.
Because blocking is the default behavior of a standard socket,
this flag only alters the behavior of a non blocking socket for this
call.

send Transmit Data to a Socket

Syntax int send(SOCKET s, void *pbuf, int size, int flags);

Parameters

58 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

send — Transmit Data to a Socket

s Socket

pbuf Data buffer holding data to transmit

size Size of data

flags Option flags

Return Value If it succeeds, the function returns the number of bytes sent. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

EHOSTUNREACH The remote host was unreachable.

EMSGSIZE The specified size exceeds the limit of the underlying protocol.

ENOBUFS Memory allocation failure while attempting to send data.

ENOTSOCK The file descriptor does not reference a socket.

ENOTCONN The socket is connection oriented and not connected.

ESHUTDOWN The socket has been shut down for writes.

ETIMEDOUT The socket connection was dropped due to protocol layer
timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has
expired.

Description The send() function attempts to send data on a socket. It is used on connected sockets
only (see connect()). The data to send is contained in the buffer specified by pbuf, with
a length specified by size. The options in flags can be used to change the default
behavior of the operation.

The functions returns the length of the data transmitted on successful completion.

For a datagram type socket, the send operation always copies one packet's worth of
data. If the buffer size is too large to be transmitted in a single packet, an error code of
EMSGSIZE is returned.

If there is not transmit buffer space available on a stream type socket, the function waits
for space to become available, unless the socket is non-blocking. The function normally
transmits all the specified data.

The select call (fdSelect()) may be used to determine when the socket is able to write.

The flags argument to a send() call is formed by combining one or more of the following
flags:

MSG_OOB sends out-of-band data on sockets that support this notion (e.g.
SOCK_STREAM); the underlying protocol must also support
out-of-band data.

MSG_EOR indicates a record mark for protocols that support the concept.

MSG_EOF Requests that the sender side of a socket be shut down, and that
an appropriate indication be sent at the end of the specified data;
this flag is only implemented for SOCK_STREAM sockets in the
PF_INET protocol family, and implements Transaction TCP.

MSG_DONTROUTE Specifies that the packet should not be routed, but sent only
using the ARP table entries.

SPRU524C–January 2007 Sockets and Stream IO API 59
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

sendto — Transmit Data on a Socket to Designated Destination

sendto Transmit Data on a Socket to Designated Destination

Syntax int sendto(SOCKET s, void *pbuf, int size, int flags, PSA pName, int len);

Parameters

s Socket

pbuf Data buffer holding data to transmit

size Size of data

flags Option flags

pName Pointer to name (address) of destination

len Size of data pointed to by pName

Return Value If it succeeds, the function returns the number of bytes sent. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

EHOSTUNREACH The remote host was unreachable.

EMSGSIZE The specified size exceeds the limit of the underlying protocol.

ENOBUFS Memory allocation failure while attempting to send data.

ENOTSOCK The file descriptor does not reference a socket.

ENOTCONN The socket is connection oriented and not connected.

ESHUTDOWN The socket has been shut down for writes.

ETIMEDOUT The socket connection was dropped due to protocol layer
timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has
expired.

Description The sendto() function attempts to send data on a socket to a specified destination. It is
used on unconnected, non-connection oriented sockets only (see connect()). The data
to send is contained in the buffer specified by pbuf, with a length specified by size. The
options in flags can be used to change the default behavior of the operation.

The argument pName is a pointer to the address of the destination entity as known to
the communications layer. The domain in which the communication is occurring
determines the exact format of the pName parameter. The len parameter should contain
the size of name, which is sizeof(struct sockaddr).

The functions returns the length of the data transmitted on successful completion.

For a datagram type socket, the send operation always copies one packet's worth of
data. If the buffer size is too large to be transmitted in a single packet, an error code of
EMSGSIZE is returned.

The select call (fdSelect()) may be used to determine when the socket is able to write.

The flags argument to a send() call is formed by combining one or more of the following
flags:

MSG_OOB sends out-of-band data on sockets that support this notion (e.g.,
SOCK_STREAM); the underlying protocol must also support
out-of-band data.

MSG_EOR indicates a record mark for protocols that support the concept.

60 Sockets and Stream IO API SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

setsockopt — Set the Value of a Socket Option Parameter

MSG_EOF Requests that the sender side of a socket be shut down, and that
an appropriate indication be sent at the end of the specified data;
this flag is only implemented for SOCK_S TREAM sockets in the
PF_INET protocol family, and implements Transaction TCP.

MSG_DONTROUTE Specifies that the packet should not be routed, but sent only
using the ARP table entries.

setsockopt Set the Value of a Socket Option Parameter

Syntax int setsockopt(SOCKET s, int level, int op, void *pbuf, int bufsize);

Parameters

s Socket

level Option level (SOL_SOCKET, IPPROTO_IP, IPPROTO_TCP)

op Socket option to get

pbuf Pointer to memory buffer

bufsize Size of memory buffer pointed to by pbuf

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

ENOTSOCK The file descriptor does not reference a socket.

EINVAL Buffer arguments are invalid.

Description The setsockopt() function sets option values associated with a socket. Options may exist
at multiple protocol levels; they are always present at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name of
the option must be specified. To manipulate options at the socket level, level is specified
as SOL_SOCKET. To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied. In this implementation, only
SOL_SOCKET, IPPROTO_IP, and IPROTO_TCP are supported.

The parameters pbuf and bufsize identify a buffer that holds the value for the specified
option.

Most socket-level options utilize an int parameter for pbuf. SO_LINGER uses a struct
linger parameter, defined in INC\SOCKET.H, which specifies the desired state of the
option and the linger interval. SO_SNDTIMEO and SO_RCVTIMEO use a struct timeval
parameter.

The socket options supported for setsockopt() are the same as defined for getsockopt(),
with the exception of SO_TYPE and SO_ERROR, which cannot be set.

Please see the description of getsockopt() for a list of socket options.

Note: The SO_SNDBUFand SO_RCVBUFoptions can only be set if there is
no transmit or receive data pending at the socket. In general, the
buffer sizes should only be configured before the socket is bound or
connected. Buffer sizes set on listen sockets will propagate to
spawned accept sockets.

SPRU524C–January 2007 Sockets and Stream IO API 61
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

shutdown — Close One Half of a Connected Socket

shutdown Close One Half of a Connected Socket

Syntax int shutdown(SOCKET s, int how);

Parameters

s Socket

how Manner of shut down

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

ENOTSOCK The file descriptor does not reference a socket.

ENOTCONN The specified socket is not connected.

Description The shutdown() function causes all or part of a full-duplex connection on the socket
associated with a socket to be shut down. If how is SHUT_RD (0), further receives will
be disallowed. If how is SHUT_WR (1), further sends will be disallowed. If how is
SHUT_RDWR (2), further sends and receives will be disallowed.

socket Create a Socket

Syntax SOCKET socket(int domain, int type, int protocol);

Parameters

domain Socket domain (PF_INET)

type Socket type (SOCK_DGRAM, SOCK_STREAM, SOCK_RAW)

protocol Socket protocol (Normally IPPROTO_TCP or IPPROTO_UDP, but
can be anything when type is set to SOCK_RAW)

Return Value If it succeeds, the function returns a file descriptor representing the socket. Otherwise, a
value of INVALID_SOCKET is returned and the function fdError() can be called to
determine the error:

EPFNOSUPPORT The specified domain was not PF_INET.

EPROTOTYPE The type parameter does not support the protocol parameter.

ESOCKTNOSUPPORT The specified socket type is not supported.

ENOMEM Memory allocation error allocating socket buffers.

EMFILE The descriptor table is full.

Description The socket() function creates a socket, an endpoint for communication and returns the
socket in the form of a file descriptor.

The domain parameter specifies a communications domain within which communication
will take place; this selects the protocol/address family that should be used. These
families are defined in the include file INC\SOCKET.H. This will always be PF_INET
(AF_INET) in this implementation.

The socket type parameter specifies the semantics of communication. Currently defined
types are:

Sockets and Stream IO API62 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

3.4 Full Duplex Pipes Programming Interface

3.4.1 Synopsis

Sockets Programming Interface

SOCK_STREAM Provides sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism is
supported.

SOCK_STREAMNC Identical to SOCK_STREAM except that received data is not
coalesced into a receive holding buffer. This eliminates one or
two receive data copies (depending on which recv() socket
function is used), but has the potential of tying up multiple data
packets. It should only be used when the socket is to receive
data in large bursts. Out-of-band data is supported, but only
when the traditional recv() socket calls are used.

SOCK_DGRAM Supports datagrams - connectionless, unreliable messages of a
fixed (typically small) maximum length.

SOCK_RAW Similar to SOCK_DGRAM, only allows the use of any protocol
that must be manually constructed in each datagram by the
programmer.

The protocol parameter specifies a particular protocol to be used with the socket. In this
implementation of the stack, SOCK_STREAM must use IPPROTO_TCP,
SOCK_DGRAM must use IPPROTO_UDP, and SOCK_RAW is unrestricted. To remain
compatible with the industry, this parameter can be set to NULL on SOCK_STREAM or
SOCK_DGRAM.

Although sockets can be used for inter-task communications, it is not the most efficient method. The stack
provides a second data communications model called pipes, which allow for local connection oriented
communications.

A pipe is a full duplex connection oriented file descriptor. When a pipe is created, both ends of the pipe
are returned to the caller as file descriptors. One end of the pipe can then be passed to another task by
first converting it to a file handle with the fdGetFileHandle() function.

Communication is performed using the standard file and sockets API functions. All the file descriptor
functions are supported with pipes: fdSelect(), fdClose(), fdError(), and fdGetFileHandle().

Also, socket functions send() and recv() write and read data through the pipe. Both functions also support
the following standard sockets message flags when using pipes:

MSG_PEEK Examine data but do not consume it.

MSG_DONTWAIT Do not block on send/recv operation (by default, pipe operations always block).

Pipes are connection oriented, thus, when one end closes, the other end is altered by an error return from
send() or recv(). It is therefore possible to make a blocking call on recv() without concern that the function
will be deadlocked if the other end terminates the connection.

SPRU524C–January 2007 Sockets and Stream IO API 63
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

3.4.2 Pipe API Functions

3.5 Internet Group Management Protocol (IGMP)

3.5.1 Synopsis

3.5.2 Function Overview

pipe — Create a Full Duplex Pipe

Because pipes share file descriptor and IO functions with sockets, the only pipe oriented function is the
creation of the connected pair.

pipe Create a Full Duplex Pipe

Syntax int pipe(HANDLE *pfd1, HANDLE *pfd2);

Parameters

pfd1 Pointer to file descriptor to first end of pipe.

pfd2 Pointer to file descriptor to second end of pipe.

Return Value Returns zero on success or -1 on error. A more detailed error code can be found by
calling fdError().

Description Creates a pre-connected full duplex pipe. The returned file descriptors can be used with
all the fd file descriptor functions, as well as the send() and recv() socket functions.

Pipes are connection oriented, so like TCP, a read or write call can return ENOTCONN
when the connection is broken by one side or the other.

Note: Both file descriptors must be closed to correctly close down (and free)
a pipe.

Internet Group Management Protocol (IGMP) is designed to help routers in routing IP multicast traffic.
Each router can have multiple ports, and it is inefficient for the router to replicate every IP multicast packet
out of each active port. Using the IGMP protocol, the multicast router is able to keep track of which IP
multicast addresses need to be routed to each individual port. This allows the router to limit IP multicast
transmission to only those ports that require the multicast traffic.

The IGMP protocol assumes a client/server relationship between endpoints. The IGMP server is run by
the multicast router to get IP multicast information about all the client on each of its individual ports. The
IGMP client is only concerned with communicating its own multicast requirements to the local IGMP
server, so that it will get the IP multicast packets that it requires.

The NDK does not currently support IP multicast routing, so there is no need to use IGMP in server mode.
However, the software does support IGMP client operation.

The IGMP client module indicates to the IGMP server which multicast IP addresses that the client needs
to receive. The IGMP API will also maintain the Ethernet multicast MAC address list at the Ethernet driver
level.

Application Functions:

IGMPJoinHostGroup() Join an IP Multicast Host Group

IGMPLeaveHostGroup() Leave an IP Multicast Host Group

Sockets and Stream IO API64 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

3.5.3 API Functions

IGMPJoinHostGroup — Join an IP Multicast Host Group

Note that these functions are application functions, and do not need to be called from within an
llEnter()/llExit() pair. (Doing so will cause an error.)

IGMPJoinHostGroup Join an IP Multicast Host Group

Syntax uint IGMPJoinHostGroup(IPN IpAddr, uint IfIdx);

Parameters

IpAddr IP address of the host group to join

IfIdx Interface index of the interface on which to join the group

Return Value Returns 1 if it was able to join the group, otherwise 0.

Description This function is called by the application to join a multicast host group. On calling the
function, the IGMP module will convert the supplied IP address to the corresponding
Ethernet MAC multicast address, and add it to the Ethernet layer (if the device is
Ethernet). It will then perform the necessary IGMP operations to join the multicast group
on the specified interface.

The system allows a maximum of 32 groups over four interfaces to be active at any
given time.

IGMPLeaveHostGroup Leave an IP Multicast Host Group

Syntax void IGMPLeaveHostGroup(IPN IpAddr, uint IfIdx);

Parameters

IpAddr IP address of the host group to leave

IfIdx Interface Index of the interface on which to leave the group

Return Value None.

Description This function is called by the application to leave a multicast host group. On calling the
function, the IGMP module will remove the corresponding Ethernet multicast address
from the specified device index (if the device is Ethernet).

SPRU524C–January 2007 Sockets and Stream IO API 65
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Internet Group Management Protocol (IGMP)

Sockets and Stream IO API66 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Chapter 4
SPRU524C–January 2007

Initialization and Configuration

This chapter discusses the initialization and configuration processes for the NDK.

Topic .. Page

4.1 Configuration Overview ... 68
4.2 Configuration Manager .. 68
4.3 Network Control Initialization Procedure (NETCTRL) 80
4.4 Configuration Specification .. 83

SPRU524C–January 2007 Initialization and Configuration 67
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.1 Configuration Overview

4.2 Configuration Manager

4.2.1 Synopsis

Configuration Overview

One of the more tedious aspects of using the stack system is the initialization process. Normally,
configuration is not a concern in programming because it is part of the underlying OS. However, the target
platform for this software is the embedded processor space where there is little or no configuration done
for you, and you must usually develop custom boot code as well.

The NDK includes three things to increase the ease of the configuration and boot process. First, there is a
programming API for creating, walking, and editing a system configuration. Secondly, initialization software
is provided (with source code) that boots the system using a configuration created with the configuration
API, and completely initializes the stack environment. Lastly, a user-expandable standard configuration
specification is defined.

The configuration manager is a collection of API functions to help you create and manipulate a
configuration. The manager API is independent of the configuration specification.

The configuration is arranged as a database with a master key (called Tag) that defines the class of
configuration item. A second key (called Item) determines the sub-item type in the tag class. For each tag
and item, there can be multiple instances. Items can be further distinguished by their instance value.

The configuration is based on an active database. That is, any change to the database can cause an
immediate reaction in the system. For example, if a route is added to the configuration, it is added to the
system route table. If the route is then removed from the configuration, it is removed from the system
route table.

To facilitate the active procession of configuration changes in a generic fashion, the configuration API
allows the installation of service provider callback functions that are called to handle specific tag values in
the configuration.

Configurations can be set active or inactive. When a configuration is active, any change to the
configuration results in a change in the system. When a configuration is inactive, it behaves like a
standard database. Part of the main initialization sequence is to make the system configuration active, and
then inactive when shutting down.

Both the configurations and configuration entries are referenced by a generic handle. Configuration
functions (named as CfgXxx()) take a configuration handle parameter, while configuration entry functions
(name as CfgEntryXxx()) take a configuration entry handle parameter. These handles are not
interchangeable.

Configuration entry handles are referenced. This means that each handle contains an internal reference
count so that the handle is not destroyed by one task while another task expects it to stay valid. Functions
that return a configuration entry handle supply a referenced handle in that its reference count has already
been incremented for the caller. The caller can hold this handle indefinitely, but should dereference it
when it is through. There are three calls that dereference a configuration entry handle. These are:
CfgRemoveEntry(), CfgGetNextEntry(), and most simply CfgEntryDeRef(). See individual function
descriptions for more information.

The PPP module in the stack library and several modules in the NETTOOLS library make use of a default
configuration to store and search for data. The default configuration is accessed by passing in a NULL
configuration handle to any function that takes the hCfg parameter (except CfgFree()). The default
configuration is specified by calling CfgSetDefault().

Initialization and Configuration68 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.2.2 Function Overview

Configuration Manager

The configuration access functions (in functional order) are as follows:

Configuration Functions:

CfgNew() Create a new configuration

CfgFree() Destroy a configuration

CfgSetDefault() Set default configuration

CfgGetDefault() Get default configuration

CfgLoad() Load configuration from a linear memory buffer

CfgSave() Save configuration to a linear memory buffer

CfgSetExecuteOrder() Set the tag initialization and shutdown order on execute

CfgExecute() Make the configuration active or inactive

CfgSetService() Sets service callback function for a particular tag

CfgAddEntry() Add a configuration entry to a configuration

CfgRemoveEntry() Remove entry from configuration

CfgGetEntryCnt() Get the number of item instances for a tag/item pair

CfgGetEntry() Get a referenced handle to a configuration entry

CfgGetNextEntry() Return supplied entry handle and get next entry handle

CfgGetImmediate() Get configuration entry data without getting an entry handle

Configuration Entry Functions:

CfgEntryRef() Add a reference to a configuration entry handle

CfgEntryDeRef() Remove a reference to a configuration entry handle

CfgEntryGetData() Get configuration entry data from entry handle

CfgEntrySetData() Replace data block of entry data using entry handle

CfgEntryInfo() Get information on a configuration entry handle

SPRU524C–January 2007 Initialization and Configuration 69
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.2.3 Configuration API Functions
CfgAddEntry — Add Configuration Entry to Configuration

CfgAddEntry Add Configuration Entry to Configuration

Syntax int CfgAddEntry(HANDLE hCfg, uint Tag, uint Item, uint Mode, uint Size, UINT8 *pData,
HANDLE *phCfgEntry);

Parameters

hCfg Handle to configuration

Tag Tag value of new entry

Item Item value of new entry

Mode Mode flags for how to add entry

Size Size of entry data pointed to by pData

pData Pointer to entry data

phCfgEntry Pointer to where to write handle of new configuration entry

Return Value Returns 1 on success with successful processing by a service callback function (see
CfgSetService())

Returns 0 on success with no processing performed by a service callback function

Returns less than 0 but greater than CFGERROR_SERVICE on a configuration error

The possible configuration errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

CFGERROR_RESOURCES Memory allocation error while adding entry

Returns less than or equal to CFGERROR_SERVICE when the service callback function
returns an error. Service errors are specific to the service callback functions installed and
are thus implementation dependent. The original error return from the service callback
can be retrieved by using the CFG_GET_SERVICE_ERROR() macro:
ServiceErrorCode = CFG_GET_SERVICE_ERROR(CfgAddEntryReturnValue);

Note: On a service error, the configuration entry is still added to the
configuration, and an entry handle is written to phCfgEntry when the
pointer is supplied.

Description This function creates a new configuration entry and adds it to the configuration.

The phCfgEntry parameter is an optional pointer that can return a handle to the newly
added configuration entry. When the phCfgEntry parameter is valid, the function writes
the referenced handle of the new configuration entry to the location specified by this
parameter. It is then the caller's responsibility to dereference this handle when it is
finished with it. When the parameter phCfgEntry is NULL, no entry handle is returned,
but the function return value is still valid.

Configuration entry handles are dereferenced by calling one of the following:

CfgEntryDeRef() Stop using the entry

CfgRemoveEntry() Stop using entry and remove it from the configuration

CfgGetNextEntry() Stop using entry and get next entry

70 Initialization and Configuration SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CfgExecute — Set the Execution State (Active/Inactive) of the Configuration

If the execution state of the configuration is active (see CfgExecute()), the addition of
the configuration entry is immediately reflected in the operating state of the system.

Multiple configuration entries can exist with the same Tag and Item key values. The
system creates a third key (Instance) to track these duplicate keyed entries. However, by
default, the configuration system does not allow for fully duplicate entries. Entries are full
duplicates if there exists another entry with the same Tag and Item key values and an
exact duplicate data section (size and content). When a full duplicate entry is detected,
the new (duplicate) entry is not created.

There are some options that determine how the entry is added to the configuration by
using flags that can be set in the Mode parameter. The default behavior when adding an
object is as follows:

• Multiple instances with the same Tag and Item values are allowed.
• However, duplicate instances with the same Tag, Item, Size, and pData contents are

ignored.
• New entries are saved to the linear buffer if or when CfgSave() is used.

To modify the default behavior, one or more of the following flags can be set:

CFG_ADDMODE_UNIQUE Replace all previous entry instances with this single
entry.

CFG_ADDMODE_DUPLICATE Allow full duplicate entry (duplicate Tag, Item, and
entry data). Requests to add duplicates are
normally ignored.

CFG_ADDMODE_NOSAVE Do not include this entry in the linear buffer in
CfgSave().

Note: Setting both the CFG_ADDMODE_UNIQUE and
CFG_ADDMODE_DUPLICATE flags is the same as only setting
CFG_ADDMODE_UNIQUE.

CfgExecute Set the Execution State (Active/Inactive) of the Configuration

Syntax int CfgExecute(HANDLE hCfg, int fExecute);

Parameters

hCfg Handle to configuration

fExecute Desired execute state (1 = active)

Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

CFGERROR_ALREADY Configuration is already in desired state

Description When a configuration is first created, it is in an inactive state, so changes to the
configuration are not reflected by changes to the system.

Executing the configuration (setting fExecute to 1) causes all current entries in the
configuration to be loaded, and any further changes in the configuration to be
immediately reflected in the system.

Disabling execution of the configuration (setting fExecute to 0) causes all configuration
entries to be unloaded from the system (note that they are not removed from the

SPRU524C–January 2007 Initialization and Configuration 71
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CfgFree — Destroy a Configuration Handle

configuration). Any further changes to the configuration are not reflected by changes to
the system.

CfgFree Destroy a Configuration Handle

Syntax void CfgFree(HANDLE hCfg);

Parameters

hCfg Handle to configuration

Return Value None.

Description Destroys a configuration. Unloads and frees all configuration entries and frees the
configuration handle. After this call, the configuration handle hCfg is invalid.

CfgGetDefault Get Default Configuration Handle

Syntax HANDLE CfgGetDefault();

Parameters None.

Return Value Returns a handle to the current default configuration, or NULL if None.

Description This function returns the current default configuration handle. The default handle is used
in any function that takes a hCfg parameter, when the specified parameter is NULL. At
initialization, there is no default configuration. It must be allocated by CfgNew() and then
specified via CfgSetDefault(). Normally, the default configuration is reserved for system
use.

CfgGetEntry Get Configuration Entry from Configuration

Syntax int CfgGetEntry(HANDLE hCfg, uint Tag, uint Item, uint Index, HANDLE *phCfgEntry);

Parameters

hCfg Handle to configuration

Tag Tag value of entry

Item Item value of entry

Index Instance index to get (1 to n)

phCfgEntry Pointer to where to write configuration entry handle

Return Value Returns 1 if a matching entry was found

Returns 0 if a matching entry was not found

Returns less than 0 on error

The possible configuration errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

Description This function searches the configuration for an entry matching the supplied Tag and Item
parameters and an index matching the supplied Index parameter. For example, when
Index is 1, the first instance is returned, when Index is 2, the second instance is
returned. The total number of instances can be found by calling CfgGetEntryCnt().

The phCfgEntry parameter is an optional pointer that can return the handle of the
configuration entry found by this function. When the phCfgEntry parameter is valid, the
function writes the referenced handle of the configuration entry found to this pointer. It is

72 Initialization and Configuration SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CfgGetEntryCnt — Get the Number of Entry Instances for the Supplied Tag/Item Pair

the caller's responsibility to dereference the handle when it is no longer needed. When
the parameter phCfgEntry is NULL, no entry handle is returned, but the function return
value is still valid (found or not found).

Configuration entry handles are dereferenced by the calling one of the following:

CfgEntryDeRef() Stop using the entry

CfgRemoveEntry() Stop using entry and remove it from the configuration

CfgGetNextEntry() Stop using entry and get next entry

Note: Do not attempt to use the Index value to enumerate all entry instances
in the configuration. The index of an entry handle is valid only at the
time of the call as an item can move up and down in the list as
configuration changes are made. To enumerate every entry for a
Tag/Item pair, start with Index 1, and then use CfgGetNextEntry() to
get additional entries.

CfgGetEntryCnt Get the Number of Entry Instances for the Supplied Tag/Item Pair

Syntax int CfgGetEntryCnt(HANDLE hCfg, uint Tag, uint Item);

Parameters

hCfg Handle to configuration

Tag Tag value of query

Item Item value of query

Return Value Returns 0 or greater on success (number if instances found) or less than 0 on error.

The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

Description This function searches the configuration for all instances matching the supplied Tag and
Item parameters and returns the number of instances found.

CfgGetImmediate Get Configuration Entry Data Directly from Configuration

Syntax int CfgGetImmediate(HANDLE hCfg, uint Tag, uint Item, uint Index, int Size, UINT8
*pData);

Parameters

hCfg Handle to configuration

Tag Tag value of entry

Item Item value of entry

Index Instance index to get (1 to n)

Size Size of buffer to receive data

pData Pointer to data buffer to receive data

SPRU524C–January 2007 Initialization and Configuration 73
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CfgGetNextEntry — Get the Next Entry Instance Matching the Supplied Entry Handle

Return Value Number of bytes copied

Description This function is a useful shortcut when searching the configuration for well known
entries. It searches the configuration for entries matching the supplied Tag and Item
parameters and uses the item matching the supplied Index parameter. For example, if
Index is 1, the first instance is used, if Index is 2, the second instance is used. The total
number of instances can be found by calling CfgGetEntryCnt().

Instead of returning a referenced handle to the configuration entry (as with the more
generic CfgGetEntry() function), this function immediately gets the entry data for this
entry and copies it to the data buffer pointed to by pData.

The increased simplicity does decrease the function's flexibility. This function returns the
number of bytes copied, so it will return 0 for any of the following reasons:

• A supplied parameter is incorrect
• The item was not found
• The supplied buffer size (specified by Size) was not large enough to hold the data

CfgGetNextEntry Get the Next Entry Instance Matching the Supplied Entry Handle

Syntax int CfgGetNextEntry(HANDLE hCfg, HANDLE hCfgEntry, HANDLE *phCfgEntryNext);

Parameters

hCfg Handle to configuration

hCfgEntry Handle to last configuration entry

phCfgEntryNext Pointer to receive handle of next configuration entry

Return Value Returns 1 if a next entry was found

Returns 0 if a next entry was not found

Returns less than 0 on error

The possible configuration errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

Note: The handle hCfgEntry is not dereferenced on the event of an error.

Description This function serves two purposes. First, it dereferences the configuration entry handle
supplied in hCfgEntry. After this call, the handle is invalid (unless there was more than
one reference to it). Secondly, this function returns a referenced configuration entry
handle to the next instance (if any) of an entry that matches the Tag and Item values of
the supplied entry.

When the parameter phCfgEntryNext is NULL, no entry handle is returned, but the
function always returns 1 if such an entry was found and 0 when not.

When the phCfgEntryNext parameter is not NULL, the function writes a referenced
handle to the configuration entry to the location specified by this parameter. It is then the
caller's responsibility to dereference this handle when it is finished with it.

Configuration entry handles are dereferenced by the calling one of the following:

Initialization and Configuration74 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CfgLoad — Load a Configuration from a Linear Memory Block

CfgEntryDeRef() Stop using the entry

CfgRemoveEntry() Stop using entry and remove it from the configuration

CfgGetNextEntry() Stop using entry and get next entry

CfgLoad Load a Configuration from a Linear Memory Block

Syntax int CfgLoad(HANDLE hCfg, int Size, UINT8 *pData);

Parameters

hCfg Handle to configuration

Size Size of memory block to load

pData Pointer to memory block to load

Return Value Returns the number of bytes loaded, or less than 0 on an error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

Description The configuration system features the ability for the manager to convert a configuration
database to a linear block of memory for storage in non-volatile memory. The
configuration can then be converted back on reboot.

This function converts a linear block of memory to a configuration by loading each
configuration entry it finds in the coded data block. Note that CfgLoad() can be used to
load entries into a configuration that already has pre-existing entries, but the method of
entry is not preserved (see Mode parameter of CfgAddEntry()). To ensure that the
resulting configuration exactly matches the one converted with CfgSave() , this function
should only be called on an empty configuration handle.

CfgNew Create a New Configuration

Syntax HANDLE CfgNew();

Parameters None.

Return Value Returns handle to a new configuration or NULL on memory allocation error.

Description Creates a configuration handle that can be used with other configuration functions. The
new handle defaults to the inactive state (see CfgExecute()).

CfgRemoveEntry Remove Configuration Entry from Configuration by Handle

Syntax int CfgRemoveEntry(HANDLE hCfg, HANDLE hCfgEntry);

Parameters

hCfg Handle to configuration

hCfgEntry Configuration entry to remove

Return Value Returns 0 on success or less than 0 on error.

The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

SPRU524C–January 2007 Initialization and Configuration 75
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CfgSave — Save a Configuration to a Linear Memory Block

Note: The handle hCfgEntry is not dereferenced on the event of an error.

Description This function removes a configuration entry from a configuration.

If the execution state of the configuration is active (see CfgExecute()), then the removal
of the configuration entry is immediately reflected in the operating state of the system.

This function also performs a single dereference operation on the configuration entry
handle, so the handle is invalid after the call (unless there was more than one reference
made). Although the entry handle is not freed until all handle references have been
removed, it is always removed from the configuration immediately.

CfgSave Save a Configuration to a Linear Memory Block

Syntax int CfgSave(HANDLE hCfg, int *pSize, UINT8 *pData);

Parameters

hCfg Handle to configuration

pSize Pointer to size of memory block

pData Pointer to memory block to load

Return Value Returns the number of bytes written, 0 on a size error (value at pSize set to required
size), or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

Description One of the features of the configuration system is the ability for the manager to convert a
configuration database to a linear block of memory for storage in non-volatile memory.
The configuration can then be converted back on reboot.

This function saves the contents of the configuration specified by hCfg into the linear
block of memory pointed to by pData.

The size of the data buffer is initially pointed to by the pSize parameter. If this size value
pointed to by this pointer is zero (pSize cannot itself be NULL), the function does not
attempt to save the configuration but rather calculates the size required and writes this
value to the location specified by pSize. In fact, any time the value at pSize is less than
the size required to store the configuration, the function returns 0 and the value at pSize
is set to the size required to store the data.

The pData parameter points to the data buffer to receive the configuration information.
This pointer can be null if *pSize is zero. Note that the pointer pSize must always be
valid.

CfgSetDefault Set Default Configuration Handle

Syntax HANDLE CfgSetDefault(HANDLE hCfg);

Parameters

hCfg Handle to configuration to set as default, or NULL to clear default

Return Value None.

Description This function sets the current default configuration handle to that specified in hCfg. The
default handle is used in any function that takes a hCfg parameter, when the specified
parameter is NULL. At initialization, there is no default configuration. It must be allocated
by CfgNew() and then specified via CfgSetDefault(). Normally, the default configuration
is reserved for system use. The default configuration handle should not be freed until it is

76 Initialization and Configuration SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CfgSetService — Set Service Callback Function for Configuration Tag

cleared by calling CfgSetDefault(0).

CfgSetService Set Service Callback Function for Configuration Tag

Syntax int CfgSetService(HANDLE hCfg, uint Tag, int (*pCb) (HANDLE, uint, uint, uint,
HANDLE));

Parameters

hCfg Handle to configuration

Tag Tag value to change

pCb Pointer to service callback function

Return Value Returns 0 on success, or less than 0 on error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

Description To give the configuration the ability to be active - i.e., to make real-time changes to the
system as the configuration changes, the configuration manager must have the ability to
make changes to the system. To enable this in a generic fashion, the configuration
manager allows for the installation of service callback functions for each configuration
tag value.

This function sets the service function for a particular configuration tag. Service function
pointers default to NULL, and when they are NULL, no service is performed for the
configuration entry (it becomes information data only).

When invoked, the service callback function is passed back information about the
affected entry. The callback function is defined as:

int CbSrv(HANDLE hCfg, uint Tag, uint Item, uint Op, HANDLE hCfgEntry),

hCfg HANDLE to Config

Tag Tag value of entry changed

Item Item value of entry changed

Op Operation (CFGOP_ADD or CFGOP_REMOVE)

hCfgEntry Non-Referenced HANDLE to entry added or removed

The callback should return 1 on success, 0 on pass, and <0 on error.

Note: The configuration entry handle passed to the callback function is not
referenced, as its scope expires when the callback function returns.

CfgSetExecuteOrder Set the Tag Initialization and Shutdown Order on Execute

Syntax int CfgSetExecuteOrder(HANDLE hCfg, uint Tags, uint *pOpenOrder, uint
*pCloseOrder);

Parameters

hCfg Handle to configuration

Tags Number of tag values in pOpenOrder and pCloseOrder

pOpenOrder Pointer to array of tag values in initialization order

SPRU524C–January 2007 Initialization and Configuration 77
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.2.4 Configuration Entry API Functions

Configuration Manager

pCloseOrder Pointer to array of tag values in shutdown order

Return Value Returns zero on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter

Description The configuration API has no knowledge of the configuration database specification.
Thus, it has no concept of a priority in loading and unloading configuration entries. The
default order for both loading and unloading is by ascending tag value.

You may require that the application specify the exact order in which entries should be
initialized (specified in pOpenOrder) and shut down (specified in pCloseOder). Both
arrays must be provided - even if they are identical pointers. The number of elements in
each array is specified by the Tags parameter. This must exactly match the maximum
number of tags in the system defined by CFGTAG_MAX. An entry of 0 in either order
array is used as a placeholder for tags that have not yet been defined.

CfgEntryDeRef Remove a Reference to a Configuration Entry Handle

Syntax int CfgEntryDeRef(HANDLE hCfgEntry);

Parameters

hCfgEntry Handle to configuration entry

Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle

Description This function removes a reference to the configuration entry handle supplied in
hCfgEntry. It is called by an application when it wishes to discard a referenced
configuration entry handle. Once this function is called, the handle should no longer be
used.

78 Initialization and Configuration SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CfgEntryGetData — Get Configuration Entry Data

CfgEntryGetData Get Configuration Entry Data

Syntax int CfgEntryGetData(HANDLE hCfgEntry, int *pSize, UINT8 *pData);

Parameters

hCfgEntry Handle to configuration entry

pSize Pointer to size of data buffer

pData Pointer to data buffer

Return Value Returns the number of bytes written, 0 on a size error (value at pSize set to required
size), or less than 0 on an operation error. The possible errors are

CFGERROR_BADHANDLE Invalid hCfgEntry handle

CFGERROR_BADPARAM Invalid function parameter

Description This function acquires the entry data of the configuration entry specified by the entry
handle in hCfgEntry.

The value pointed to by pSize is set to the size of the supplied buffer, or zero to get the
required size (the pointer pSize must be valid, but the value at the pointer can be zero).
If the value at pSize is zero, or less than the number of bytes required to hold the entry
data, this function returns 0, and the number of bytes required to hold the data is stored
at pSize.

The pData parameter points to the data buffer to receive the configuration entry data.
This pointer can be null if *pSize is zero.

CfgEntryInfo Get Information on a Configuration Entry

Syntax int CfgEntryInfo(HANDLE hCfgEntry, int *pSize, UINT8 **ppData);

Parameters

hCfgEntry Handle to configuration entry

pSize Location to receive the size of the configuration entry data buffer

ppData Location to receive the pointer to the configuration entry data buffer

Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle

Description This function acquires the size and pointer to a configuration entry's data buffer.

The entry handle is supplied hCfgEntry. A pointer to receive the size of the entry's data
buffer is supplied in pSize, and a pointer to receive a pointer to the entry's data buffer is
supplied in ppData. Either pointer parameter can be left NULL if the information is not
required.

This function should be used with great care. Direct manipulation of the configuration
entry data should only be attempted on informational tags, and only when the caller
holds a referenced handle to the configuration entry. This function is used in
configuration service callback functions, which are called only when the configuration is
in a protected state.

CfgEntryRef Add a Reference to a Configuration Entry Handle

Syntax int CfgEntryRef(HANDLE hCfgEntry);

Parameters

SPRU524C–January 2007 Initialization and Configuration 79
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.3 Network Control Initialization Procedure (NETCTRL)

4.3.1 Synopsis

CfgEntrySetData — (Re)Set Configuration Entry Data

hCfgEntry Handle to configuration entry

Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle

Description This function adds a reference to the configuration entry handle supplied in hCfgEntry. It
is called by an application when it intends to use a configuration entry handle beyond the
scope of the function that obtained it from the configuration. This normally occurs when
one user function calls another and passes it a handle.

The handle should be dereferenced when no longer needed. Configuration entry handles
are dereferenced by calling one of the following:

CfgEntryDeRef() Stop using the entry

CfgRemoveEntry() Stop using entry and remove it from the configuration

CfgGetNextEntry() Stop using entry and get next entry

CfgEntrySetData (Re)Set Configuration Entry Data

Syntax int CfgEntrySetData(HANDLE hCfgEntry, int Size, UINT8 *pData);

Parameters

hCfgEntry Handle to configuration entry

Size Size of data buffer

pData Pointer to data buffer

Return Value Returns the number of bytes written, 0 on a size error (new size does not match old
size), or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle

CFGERROR_BADPARAM Invalid function parameter

Description This function replaces the entry data of the configuration entry specified by the entry
handle in hCfgEntry.

The new entry data is pointed to by the pData parameter, with a size indicated by Size.
Note that the new data must be an exact replacement for the old. The size of the new
buffer must exactly match the old size.

This function should be used for configuration entries that are for information purposes
only. Note that if a service provider callback is associated with the Tag value of this
entry, the processing function is not called as a result of this data update. This function
only updates the data stored for this configuration entry.

As previously mentioned, the configuration and initialization of the stack is tedious. For this reason, the
stack library includes code to perform system initialization based on a configuration constructed by the
programmer. This configuration can be manually built through the configuration API, or you can build it
with a configuration utility (not included in the stack).

The basic initialization of the scheduling routines is performed by a network control layer called NETCTRL.
The source code to this layer is user-serviceable. See the TMS320C6000 Network Developer's Kit (NDK)
Software User's Guide (SPRU523) for more details.

Initialization and Configuration80 SPRU524C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.3.2 Basics

4.3.3 Function Overview

4.3.4 Network Control API Functions

NC_SystemOpen — Initiate a System Session

The basic process of stack initialization is as follows:

1. Initialize the operating system environment with the initialization function NC_SystemOpen(Priority,
OpMode). This function must always be called first - before any other NDK related function. The
calling parameters determine the priority and operating mode of the network event scheduler.

2. Create a new configuration via CfgNew().
3. Build the new configuration via configuration API calls, or load a previous configuration from

non-volatile memory using CfgLoad().
4. Boot the stack with the configuration by calling NC_NetStart(hCfg, pfnStart, pfnStop, pfnNetIP) with a

handle to the configuration, plus pointers to three user supplied callback functions for start, stop, and
IP address change operations. The NC_NetStart() function does not return until the stack session has
terminated. The configuration handle hCfg becomes the default configuration for the system.

5. After some preliminary initialization, the NC_NetStart() function creates a new thread that calls the user
supplied callback function for the start operation. At this point, the callback function creates task
threads for its networking requirements. This start function does not need to return immediately, but
should return at some point - i.e., the callback function should not take permanent control of the calling
thread. If system shutdown is initiated before the start function returns, some resources may not be
freed.

6. Under normal operation, the network does not shut down until the NC_NetStop() function is called. At
some point after a call to NC_NetStop(), the original NC_NetStart() thread calls the user supplied
callback function for the stop operation. In this callback function, the application shuts down any
operation it initiated in the start callback function and frees any allocated resources. After the stop
callback function returns, NDK functionality is no longer available.

7. The original call to NC_NetStart() returns with the return value as set by the return parameter passed
in the call to NC_NetStop(). The application can immediately reboot the NDK by calling NC_NetStart()
again, with or without reloading a new configuration. This is useful for a reboot command.

When the system is ready for a final shutdown, the following actions are performed:

1. When NC_NetStart() returns and the session is over, call the CfgFree() function to free the
configuration handle created with CfgNew().

2. After all resources have been freed, call the NC_SystemClose() function to complete the system
shutdown.

The system initialization access functions (in functional order) are as follows:

NC_SytemOpen() Initiate a system session

NC_SystemClose() Full system shutdown

NC_NetStart() Start the network with a supplied configuration

NC_NetStop() Halt the network, and pass a return code the caller of the NC_NetStart()
function

NC_SystemOpen Initiate a System Session

Syntax int NC_SystemOpen(int Priority, int OpMode);

Parameters

SPRU524C–January 2007 Initialization and Configuration 81
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

NC_SystemClose — Shutdown the System

Priority Network event scheduler task priority

OpMode Network event scheduler operating mode

Return Value Returns the status of the open call, zero on success, or one of the following on error.

NC_OPEN_ILLEGAL_PRIORITY Priority is not set to NC_PRIORITY_LOW or
NC_PRIORITY_HIGH.

NC_OPEN_ILLEGAL_OPMODE OpMode is not set to NC_OPMODE_POLLING or
NC_OPMODE_INTERRUPT. Or, attempt to
combine NC_OPMODE_POLLING with
NC_PRIORITY_HIGH.

NC_OPEN_MEMINIT_FAILED Memory initialization failed.

NC_OPEN_EVENTINIT_FAILED Event initialization failed.

Description This is the first function that should be called when using the stack. It initializes the
stack's memory manager, and the OS (or OS adaptation layer). It also configures the
network event scheduler's task priority and operating mode.

Priority is set to either NC_PRIORITY_LOW or NC_PRIORITY_HIGH, and determines
the scheduler task's priority relative to other networking tasks in the system.

OpMode is set to either NC_OPMODE_POLLING or NC_OPMODE_INTERRUPT, and
determines when the scheduler attempts to execute. The interrupt mode is used in the
vast majority of applications.

Note that polling operating mode attempts to run continuously, so when polling is used,
Priority must be set to NC_PRIORITY_LOW.

NC_SystemClose Shutdown the System

Syntax void NC_SystemClose();

Parameters None.

Return Value None.

Description This is the last function that should be called when using the stack. It shuts down the
memory manager and performs a final memory analysis.

NC_NetStart Start Network

Syntax int NC_NetStart(HANDLE hCfg, void (*NetStartCb)(), void (*NetStopCb)(), void
(*NetIPCb)(IPN,uint,uint));

Parameters

hCfg Handle to network configuration

NetStartCb Pointer to callback function called when network is started

NetStopCb Pointer to callback function called when network is stopped

NetIPCb Pointer to callback function called when an IP address is added or
removed from the system

Return Value Returns the integer value passed to NC_NetStop().

Description This function is called to boot up the network using the network configuration supplied in
hCfg. Along with the network configuration, three callback function pointers are provided.
These callback functions are called at distinct times. NetStartCb() is called when the
system is first ready for the creation of application supplied network tasks, NetStopCb()
is called when the network is about to shut down, and NetIPCb() is called when an IP
address is added or removed from the system. If any of these callback functions are not

82 Initialization and Configuration SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.4 Configuration Specification

4.4.1 Synopsis

NC_NetStop — Stop Network

required, the function pointers can be set to NULL.

The NC_NetStart() function will not return until the entire network session has
completed. Thus, all user supplied network code (creation of user tasks) should be
included in the NetStartCb() function.

When NetStartCb() is called, the configuration handle supplied in hCfg is the default
configuration handle for the system. The execution thread on which NetStartCb() is
called is not critical to event scheduling, but it should return eventually; i.e., the
application should not take control of the thread. If system shutdown is initiated before
this callback function returns, some resources may not be freed.

Excluding critical errors, NC_NetStart() will return only if an application calls the
NC_NetStop() function. The parameter passed to NC_NetStop() becomes the return
value returned by NC_NetStart().

Sometime after NC_NetStop() is called, but before NC_NetStart() returns, the
NC_NetStart() thread will make a call to the application's NetStopCb() callback function.
In this callback function, the application should shut down any task initiated in its
NetStartCb() callback.

When an IP addressing change is made to the system, the NetIPCb() function is called.
The callback function is declared as:

void NetIPCb(IPN IPAddr, uint IfIndex, uint fAdd);

IPAddr IP Address being added or removed

IfIndex Index of physical interface gaining or losing the IP address

fAdd Set to 1 when adding an address, or 0 when removing an address

The NetIPCb() callback is purely informational, and no processing is necessary on the
information provided.

There is an option for immediately calling NC_NetStart() again upon return, which
provides a good stack reboot function. Optionally, the configuration can also be
reloaded, which allows the stack to be restarted after a major configuration change.

NC_NetStop Stop Network

Syntax void NC_NetStop(int StopCode);

Parameters

StopCode Return code to be returned by NC_NetStart().

Return Value None.

Description This function is called to shut down a network initiated with NC_NetStart(). The return
value supplied in the StopCode parameter becomes the return value for NC_NetStart().
See the description of NC_NetStart() for more detail.

The specification of all the various configuration options for the stack would require a separate document.
This section details that part of the configuration that is relied upon by the Network Control (NC)
initialization functions, or the services contained in the NETTOOLS library. The stack itself does not
reference the configuration system. It has its own simpler method that is detailed in the appendix, but it is
redundant when using the configuration API. In fact, they conflict, as the Network Control functions
assume full control of it.

SPRU524C–January 2007 Initialization and Configuration 83
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.4.2 Organization

4.4.3 Network Service Specification (CFGTAG_SERVICE)

4.4.3.1 Service Types

Configuration Specification

As already mentioned, the configuration is arranged as a database with the value Tag as a major key, and
the value Item as a minor key. Every major stack configuration component has a major key (Tag) value,
including: network services (protocol servers), connected IP networks, gateway routes, connected client
entities, global system information, and low-level stack configuration.

Most of these tags require service callback functions to implement the system functionality. For example,
when an IP network is added using the CFGTAG_IPNET tag, there must be a function that makes the
corresponding system calls that adds the network to the system route table. All these server callback
functions are contained in the NETCTRL directory. Although source code to these functions is provided,
many of the system calls they make can only be understood by reading the attached appendices.

The tag values currently defined are:

CFGTAG_SERVICE Network Service

CFGTAG_IPNET IP Network (Address, subnet mask, etc.)

CFGTAG_ROUTE IP Gateway Route

CFGTAG_CLIENT IP Client (Client IP, Hostname, etc)

CFGTAG_ACCT Client user account (name, password, etc.)

CFGTAG_SYSINFO Global System Information

CFGTAG_OS Operating System Configuration entry

CFGTAG_IP IP Stack Configuration entry

The network services tag is perhaps the most time saving feature of the configuration. It allows you to
instruct the system of what tasks to execute, and how they should be executed. It is also the most
complicated configuration entry.

Network services are identified by a configuration Tag parameter value of CFGTAG_SERVICE.

Note that all these services are obtained directly from the NETTOOLS services API. The configuration
system adds a level of abstraction so that a list of services can be added to a configuration, and then the
service provider callback functions contained in the Network Control initialization routines can
automatically load the services at runtime without having to call the NETTOOLS API directly.

The type of service is indicated by the value of the Item parameter supplied to the CfgAddEntry() function.
The defined service types include (by Item):

CFGITEM_SERVICE_TELNET Telnet Server

CFGITEM_SERVICE_HTTP HTTP Server

CFGITEM_SERVICE_NAT Network Address Translation
System

CFGITEM_SERVICE_DHCPSERVER DHCP Server

CFGITEM_SERVICE_DHCPCLIENT DHCP Client

CFGITEM_SERVICE_DNSSERVER DNS Server

Initialization and Configuration84 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.4.3.2 Common Argument Structure

Configuration Specification

Each individual service has its own specific configuration instance structure, but they all share a generic
argument structure. This is defined as follows:
// Common Service Arguments
typedef struct _ci_srvargs{

uint Item; // Copy of Item value (init to NULL)
HANDLE hService; // Handle to service (init to NULL)
uint Mode; // Flags
uint Status; // Service Status (init to NULL)
uint ReportCode; // Standard NETTOOLS Report Code
uint IfIdx; // If physical Index
IPN IPAddr; // Host IP Address
void(*pCbSrv)(uint, uint, uint, HANDLE); // CbFun for status change
} CISARGS;

The individual fields are defined as follows:

• uint Item;

This is a copy of the Item value used when the entry is added to the configuration. Its initial value
should be NULL, but it is overwritten by the service provider callback. It is used so that the status
callback function can be provided with the original Item value.

• HANDLE hService;

This is the handle to the service as returned by the NETTOOLS function corresponding to the type of
service requested. Its initial value should be NULL, and it is initialized by the service callback function
when the service is started. The value is needed to shut down the service when the configuration is
unloaded.

• uint Mode;

The mode parameter is a collection of flags representing the desired execution behavior of the service.
One or more of the following flags can be set:

CIS_FLG_IFIDXVALID Specifies the IfIdx field is valid.

CIS_FLG_RESOLVEIP Requests that IfIdx be resolved to an
IP address before service execution is
initiated.

CIS_FLG_CALLBYIP Specifies that the service should be
invoked by IP address. (This is the
default behavior when IFIDXVALID is
not set, but this flag can be set with
IFIDXVALID when RESOLVEIP is also
set. If IFIDXVALID is set and this bit is
not set, the service is invoked by
physical device .)

CIS_FLG_RESTARTIPTERM A service that is dependent on a valid
IP address (as determined by the
RESOLVEIP flag) is shut down if the
IP address becomes invalid. When this
flag is set, the service will be restarted
when a new address becomes
available. Otherwise; the service will
not be restarted.

• uint Status;

The status parameter contains the service status as detected by the Net Control service callback
function that initiates the service with NETTOOLS. The value of status should be initialized to NULL. Its
defined values are:

SPRU524C–January 2007 Initialization and Configuration 85
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.4.3.3 Individual Configuration Entry Instance Structures

Configuration Specification

CIS_SRV_STATUS_DISABLED Service not active (NULL state)

CIS_SRV_STATUS_WAIT Net Control is waiting on IP resolution
to start service

CIS_SRV_STATUS_IPTERM Service was terminated because it
lost its IP address

CIS_SRV_STATUS_FAILED Service failed to initialize via its
NETTOOLS open function

CIS_SRV_STATUS_ENABLED Service enabled and initialized
properly

• uint ReportCode;

All the services available via the configuration can also be launched directly via a NETTOOLS API.
The NETTOOLS service API has a standard service reporting callback function that is mirrored by the
configuration system via the Net Control service provider callback. This variable holds the last report
code reported by the NETTOOLS service invoked by this configuration entry.

• uint IfIdx;

This is the physical device Index (1 to n) on which the service is to be executed. For example, when
launching a DHCP server service, the physical interface is that connected to the home network. For
more generic services (like Telnet), the service can be launched by a pre-defined IP address (or
INADDR_ANY as a wildcard). When launching by IP address only, this field is left NULL. If the field is
valid, the CIS_FLG_IFIDXVALID flag should be set in Mode.

• IPN IPAddr;

This is the IP address (in network format) on which to initiate the service. This IP address can specify
the wildcard INADDR_ANY, in which case the service will accept connections to any valid IP address
on any device. Note that some services (like DHCP server) do not support being launched by an IP
address and require a device Index (supplied in IfIdx) on which to execute.

• void(*pCbSrv)(uint, uint, uint, HANDLE);

The pCbSrv parameter contains a callback function that is called when the status of the service
changes. It can be set to NULL if a callback is not required. The specification of the callback function is
as follows:

• void StatusCallback(uint Item, uint Status, uint Code, HANDLE hCfgEntry)

Item Item value of entry changed

Status New status

Code Report code (if any)

hCfgEntry Non-Referenced HANDLE to entry with status change

Note that the Status parameter is the same as the Status field described in the CISARGS structure.
The Code parameter is that returned by the NETTOOLS service callback, which is a lower-level status
callback function used by Net Control.

The following code defines the instance structures used for each of the defined configuration entries using
the configuration service tag. Note that all structures contain the previously mentioned CISARGS
structure. Some services require more information and their configuration entry structure contains an
additional parameter structure as defined in the service's NETTOOLS API. Others do not require a
parameter structure.
// Telnet Entry Data
typedef struct _ci_service_telnet {

CISARGS cisargs; // Common arguments
NTPARAM_TELNET param; // Telnet parameters
} CI_SERVICE_TELNET;

// HTTP Server Entry Data

86 Initialization and Configuration SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.4.3.4 Specifying Network Services

4.4.4 IP Network Specification (CFGTAG_IPNET)

Configuration Specification

typedef struct _ci_service_http {
CISARGS cisargs; // Common arguments
NTPARAM_HTTP param; // HTTP parameters
} CI_SERVICE_HTTP;

// NAT Service Entry Data
typedef struct _ci_service_nat {

CISARGS cisargs; // Common arguments
NTPARAM_NAT param; // NAT parameters
} CI_SERVICE_NAT;

// DHCP Server Entry Data
typedef struct _ci_service_dhcps {

CISARGS cisargs; // Common arguments
NTPARAM_DHCPS param; // DHCPS parameters
} CI_SERVICE_DHCPS;

// DHCP Client Service
typedef struct _ci_service_dhcpc {

CISARGS cisargs; // Common arguments
NTPARAM_DHCP param; // DHCP parameters
} CI_SERVICE_DHCPC;

// DNS Server Service
typedef struct _ci_service_dnss {

CISARGS cisargs; // Common arguments
} CI_SERVICE_DNSSERVER;

For examples of adding specific network services to the configuration, please reference the service
description in Chapter 6, Network Tools Library Services.

The IPNET entry specifies what IP networks are to appear on which physical interfaces. When specifying
an IPNET entry to the configuration, the Tag parameter is set to CFGTAG_IPNET, and the Item parameter
is set to the Index (1 to n) of the physical interface on which the network is to appear.

The IPNET entry instance structure is defined as follows:
// IPNet Instance
typedef struct _ci_ipnet {

uint NetType; // Network address type flags
IPN IPAddr; // IP Address
IPN IPMask; // Subnet Mask
HANDLE hBind; // Binding handle (initially NULL)
char Domain[CFG_DOMAIN_MAX]; // IPNet Domain Name
} CI_IPNET;

The individual fields are defined as follows:

• uint NetType;

CFG_NETTYPE_DYNAMIC Address created by DHCP CLIENT

CFG_NETTYPE_VIRTUAL Virtual Network used by DNS resolver

CFG_NETTYPE_DHCPS Virtual Net Server reported by DHCP SERVER

SPRU524C–January 2007 Initialization and Configuration 87
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.4.5 IP Gateway Route Specification (CFGTAG_ROUTE)

4.4.6 Client Record Specification (CFGTAG_CLIENT)

Configuration Specification

This is type of network that appears on the interface. The network type determines how the network is
treated by some services like NAT, DHCP, and DNS. The value is a collection of one or more of the
following flags.

Most of the flags deal with the virtual network (or home network). If none of these flags are set, the
network is a normal physical network. Note that virtual and non-virtual networks should not appear on the
same interface. Also, only one network entry on each interface can have any of these flags set, although
more than one of these flags can be set in that one entry.

• IPN IPAddr;

This is the IP address of the stack on the designated interface. When the NetType flag DHCPS is set,
this address is also the gateway address reported to DHCP clients served by the DHCP server service.

• IPN IPMask;

This is the IP network subnet mask.
• HANDLE hBind;

This is the stack's internal binding handle for the network. Each connected network is represented as a
binding internally to the stack. This is discussed further in the appendices at the end of this document.
The value should be initialized to NULL.

• char Domain[CFG_DOMAIN_MAX];

This is the domain name of the network. It should be a full domain like home1.net, not just home1.

The ROUTE entry specifies a route from one network to another via a specified IP gateway. When
specifying a ROUTE entry to the configuration, the Tag parameter is set to CFGTAG_ROUTE, and the
Item parameter is not used (set to zero).

The ROUTE entry instance structure is defined as follows:
// Route Instance
typedef struct _ci_route {

IPN IPDestAddr; // Destination Network Address
IPN IPDestMask; // Subnet Mask of Destination
IPN IPGateAddr; // Gateway IP Address
HANDLE hRoute; // Route handle (initially NULL)
} CI_ROUTE;

The individual fields are defined as follows:

• IPN IPDestAddr;

This is the IP base address of the IP network of the network that is made accessible via the IP
gateway. This value should be pre-masked with the IPDestMask so that:
(IPDestAddr & IPDestMask) = IPDestMask
This is used as a sanity check by the system. For a default route, the value is zero.

• IPN IPDestMask;

This is the mask of the IP network accessible by the IP gateway. For a host route, the value is
0xFFFFFFFF, while for a default route, the value is zero.

• IPN IPGateAddr;

This the IP address of the gateway through which the specified IP network is accessible. It must be an
IP address that is available on a locally connected network, i.e., one gateway cannot point to another.

• HANDLE hRoute;

This is a handle to the route created by this configuration entry. All routes are represented as route
handles internally to the stack. This is discussed further in the appendices at the end of this document.
The value should be initialized to NULL.

The CLIENT entry specifies a record of a client that appears on the indicated physical interface. When
specifying a CLIENT entry to the configuration, the Tag parameter is set to CFGTAG_CLIENT, and the
Item parameter is set to the index (1 to n) of the physical interface on which the client appears.

88 Initialization and Configuration SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Configuration Specification

Client records exist for two purposes:

1. They are used to resolve DNS queries on virtual networks.
2. They are used by the DHCP server service to track DHCP clients on the serviced virtual network.

Client records are created automatically in some DHCP server configurations (when using an address
pool), but they can also be added manually. This allows an application to build a pre-defined fixed list of
clients and their designated IP addresses on a virtual (home) network.

The CLIENT entry instance structure is defined as follows:
typedef struct _ci_client {

uint ClientType; // Entry Status
uint Status; // DHCPS Status (init to ZERO)
IPN IPAddr; // Client IP Address
char MacAddr[6]; // Client Physical Address
char Hostname[CFG_HOSTNAME_MAX]; // Client Hostname
UINT32 TimeStatus; // Time of last status change
UINT32 TimeExpire; // Expiration Time from TimeStatus
} CI_CLIENT;

The individual fields are defined as follows:

• uint ClientType;

This is type of client record. There are only two types - those created by DHCP server from an address
pool, and those created manually by an application.

CFG_CLIENTTYPE_DYNAMIC Entry created via DHCPS

CFG_CLIENTTYPE_STATIC Entry created manually

• uint Status;

This is status of the client record. It is used by the DHCP server to track the state of the client and its
lease to its IP address. The status can also be NULL for STATIC entries.

CFG_CLIENTSTATUS_PENDING Supplied via DHCP OFFER

CFG_CLIENTSTATUS_VALID Validated by DHCP REQUEST

CFG_CLIENTSTATUS_STATIC Reported via DHCP INFORM or non-DHCP
application

CFG_CLIENTSTATUS_INVALID Invalidated by DHCP DECLINE

• IPN IPAddr;

This is IP address of the client.
• char MacAddr[6];

This is physical Ethernet address of the client.
• char Hostname[CFG_HOSTNAME_MAX];

This is the hostname of the client. It is recorded by the DHCP server service, even if the record is
STATIC. Thus, when running DHCP server, even with a fixed client list, DHCP clients can specify their
own host names, and these names will be available to the DNS resolver, i.e., DNS server and DNS
client.

• UINT32 TimeStatus;

This is the last time that the Status parameter was validated. It is thus the start time of a DHCP client
lease.

• UINT32 TimeExpire;

This is the total time in seconds of a DHCP client lease reported by the DHCP server to its clients.
When using an address pool for the DHCP server, the server chooses this value.

SPRU524C–January 2007 Initialization and Configuration 89
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.4.7 Client User Account (CFGTAG_ACCT)

4.4.8 System Information Specification (CFGTAG_SYSINFO)

Configuration Specification

The ACCT entry specifies an account record of a client that has access to the system. When specifying a
ACCT entry to the configuration, the Tag parameter is set to CFGTAG_ACCT, and the Item parameter is
set to the account type. Currently, the NDK has only one generic account type. Both PPP authentication
and EFS authorization realms use this type. Valid types values are:

CFGITEM_ACCT_SYSTEM System user account (PPP and EFS)

CFGITEM_ACCT_PPP PPP user account (SYSTEM)

CFGITEM_ACCT_REALM EFS Authorization Realm user account (SYSTEM)

The ACCT entry instance structure is defined as follows:
typedef struct _ci_acct {

uint Flags; // Account Flags
char Username[CFG_ACCTSTR_MAX]; // Username
char Password[CFG_ACCTSTR_MAX]; // Password
} CI_ACCT;

The individual fields are defined as follows:

• uint Flags;

The flags determine the access granted by channel or group. The channels or groups that any given
PPP server will allow is determined when the PPP server is invoked. The same is true of the HTTP
authentication realms. A single client account can be a member of one or more groups, therefore, one
or more of the following flags can be set:

CFG_ACCTFLG_CH1 Allow access to channel/group/realm 1

CFG_ACCTFLG_CH2 Allow access to channel/group/realm 2

CFG_ACCTFLG_CH3 Allow access to channel/group/realm 3

CFG_ACCTFLG_CH4 Allow access to channel/group/realm 4

• char Username[CFG_ACCTSTR_MAX];

This is the username of the client.
• char Password[CFG_ACCTSTR_MAX];

This is the password corresponding to the supplied client username.

The SYSINFO entry contains various types of global system information. There is no service callback
function associated with these entries, as they are static information only. When specifying a SYSINFO
entry to the configuration, the Tag parameter is set to CFGTAG_SYSINFO, and the Item parameter is set
to the system information item in question.

Note that the first 256 values for Item are reserved for items that exactly match the corresponding DHCP
protocol information tag value. For example:
#define CFGITEM_DHCP_DOMAINNAMESERVER 6 // Stack's DNS servers
#define CFGITEM_DHCP_HOSTNAME 12 // Stack's host name

These values are read by various network services, and are written in one of two ways.

First, when the standard DHCP client is executing, it will take full control over the first 256 Item values. It
fills in the entries when it obtains its address lease, and purges them when the lease expires. There is a
set of default entries that the DHCP client will always request. Additional information requests can be
made by configuring the DHCP client, and the resulting replies will be added to the configuration.

90 Initialization and Configuration SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

4.4.9 Extended System Information Tags

4.4.10 OS / IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP)

Configuration Specification

Second, when there is no DHCP client service, the network application must manually write values to the
configuration for the Item values it views as important. A minimum configuration would include hostname,
domain name, and a list of domain name servers. Note that multiple IP addresses should be stored as
multiple instances of the same Item, not concatenated together with a longer byte length.

The following tag values are reserved for NDK and services configuration (see Appendix and Section E.3
for more information on PPP and HTTP realms):

CFGITEM_SYSINFO_REALM1 Realm Name 1 (maximum 31 chars)

CFGITEM_SYSINFO_REALM2 Realm Name 2 (maximum 31 chars)

CFGITEM_SYSINFO_REALM3 Realm Name 3 (maximum 31 chars)

CFGITEM_SYSINFO_REALM4 Realm Name 4 (maximum 31 chars)

CFGITEM_SYSINFO_REALMPPP Server Name for PPP (maximum 31 chars)

CFGITEM_SYSINFO_EVALCALLBACK Callback function registered by application. It is
used by the Evaluation version of the NDK to
notify the application five minutes before the
expiration of the 24-hour evaluation period.

The OS and IP tags specify entries that alter various configuration options that can be adjusted in the
operating system and low-level stack operation. When specifying an entry to the configuration, the Tag
parameter is set to CFGTAG_OS or CFGTAG_IP, and the Item parameter is set to the configuration item
to set (these are listed below).

Creating a configuration entry results in an alteration of the system's internal configuration structures, but
because these entries are also part of the configuration object (hCfg), they can be stored off and recorded
as part of the CfgSave() functionality. Thus, using the configuration API has a significant advantage over
modifying the internal structures manually.

Removing an entry restores the default value to the internal stack configuration. Entries that are not
present cannot be read, and an error return on read implies the entry is in its default state.

The following is the list of configuration items. All items are of type int or uint. They correspond exactly to
the internal system configuration structures. For more information on these fields, see the internal
configuration discussion in both the Section 2.1.2 section earlier in this document, and the Configuring the
Stack section in the attached appendix Section A.12.

When creating a configuration entry for one of these tags, the entry should be specified as unique. For
example, to enable routing in the IP stack that code would be as follows:
// Enable IP routing
uint tmp = 1;
CfgAddEntry(hCfg, CFGTAG_IP, CFGITEM_IP_IPFORWARDING,

CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&tmp, 0);

The following item values correspond directly to the OS and IP Stack configuration structures _oscfg
and _ipcfg
For more information on these structures, see Section 2.1.2 and Section A.12.2.

When Tag is CFGTAG_OS, the value of Item can be one of the following:

CFGITEM_OS_DBGPRINTLEVEL Debug message print threshold

CFGITEM_OS_DBGABORTLEVEL Debug message abort threshold

CFGITEM_OS_TASKPRILOW Lowest priority for stack task

SPRU524C–January 2007 Initialization and Configuration 91
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Configuration Specification

CFGITEM_OS_TASKPRINORM Normal priority for stack task

CFGITEM_OS_TASKPRIHIGH Highest priority for stack task

CFGITEM_OS_TASKPRIKERN Kernel-level priority (highest)

CFGITEM_OS_TASKSTKLOW Minimum stack size

CFGITEM_OS_TASKSTKNORM Normal stack size

CFGITEM_OS_TASKSTKHIGH Stack size for high volume tasks

When Tag is CFGTAG_IP, the value of Item can be one of the following:

CFGITEM_IP_ICMPDOREDIRECT Add route on ICMP redirect (1 = Yes)

CFGITEM_IP_ICMPTTL TTL for ICMP messages (RFC1700 says 64)

CFGITEM_IP_ICMPTTLECHO TTL for ICMP echo (RFC1700 says 64)

CFGITEM_IP_ICMPDONTREPLYBC Do not Reply to ICMP Echo Request packets sent to
AST broadcast/directed broadcast IP addresses (1 = Yes)

CFGITEM_IP_ICMPDONTREPLYMC Do not Reply to ICMP Echo Request packets sent to
AST multicast IP addresses (1 = Yes)

CFGITEM_IP_IPINDEXSTART IP Protocol Start Index

CFGITEM_IP_IPFORWARDING IP Forwarding Enable (1 = Yes)

CFGITEM_IP_IPNATENABLE IP NAT Translation Enable (1 = Yes)

CFGITEM_IP_IPREASMMAXTIME Maximum IP reassembly time in seconds

CFGITEM_IP_IPREASMMAXSIZE Maximum IP reassembly packet size

CFGITEM_IP_DIRECTEDBCAST Support directed BCast IP addresses (1 = Yes)

CFGITEM_IP_TCPREASMMAXPKT Maximum out of order packets held by TCP socket

CFGITEM_IP_RTCENABLEDEBUG Enable route control dbg messages (1 = Yes)

CFGITEM_IP_RTCADVTIME Time in sec to send Router Adv. (0 = don't)

CFGITEM_IP_RTCADVLIFE Lifetime of route in RtAdv if active

CFGITEM_IP_RTCADVPREF Preference of route in RtAdv if active

CFGITEM_IP_RTARPDOWNTIME Time 5 failed ARPs keeps route down

CFGITEM_IP_RTKEEPALIVETIME Timeout of validated route in seconds

CFGITEM_IP_RTCLONETIMEOUT Timeout of newly cloned route in seconds

CFGITEM_IP_RTDEFAULTMTU MTU for internal routes

CFGITEM_IP_SOCKTTLDEFAULT Default IP TTL for Sockets

CFGITEM_IP_SOCKTOSDEFAULT Default IP TOS for Sockets

CFGITEM_IP_SOCKMAXCONNECT Maximum connections on listening socket

CFGITEM_IP_SOCKTIMECONNECT Maximum time for connect socket

CFGITEM_IP_SOCKTIMEIO Default Maximum time for socket send/rcv

CFGITEM_IP_SOCKTCPTXBUF TCP Transmit allocated buffer size

CFGITEM_IP_SOCKTCPRXBUF TCP Receive allocated buffer size (copy mode)

CFGITEM_IP_SOCKTCPRXLIMIT TCP Receive limit (non-copy mode)

CFGITEM_IP_SOCKUDPRXLIMIT UDP/RAW Receive limit

CFGITEM_IP_SOCKMINTX Default min Tx space for able to write

92 Initialization and Configuration SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Configuration Specification

CFGITEM_IP_SOCKMINRX Default min Rx data for able to read

CFGITEM_IP_PIPETIMEIO Maximum time for pipe send/rcv call

CFGITEM_IP_PIPEBUFMAX Pipe internal buffer size

CFGITEM_IP_PIPEMINTX Pipe min Tx space for able to write

CFGITEM_IP_PIPEMINRX Pipe min Rx data for able to read

CFGITEM_IP_TCPKEEPIDLE Idle time before 1st TCP keep probe

CFGITEM_IP_TCPKEEPINTVL TCP keep probe interval

CFGITEM_IP_TCPKEEPMAXIDLE Maximum TCP keep probing time before drop

CFGITEM_IP_MAX Maximum CFGTAG_STACK item

SPRU524C–January 2007 Initialization and Configuration 93
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Initialization and Configuration94 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Chapter 5
SPRU524C–January 2007

Network Tools Library - Support Functions

Included with the stack package is a library of network tools. It provides auxiliary
functionality to the stack library and contains source written to the socket layer that
would normally be considered application level code. The library file is called
NETTOOLS.LIB, and can be accessed by an application that includes the file
NETTOOLS.H.

The support supplied by NETTOOLS can be categorized into two classes: support
functions and services. The support functions consist of a programming API that can
aid the development of network applications, while services are servers that execute on
the stack platform.

This section describes the NETTOOLS support functions.

Topic .. Page

5.1 Generic Support Calls ... 96
5.2 DNS Support Calls... 100
5.3 TFTP Support.. 103
5.4 TCP/UDP Server Daemon Support ... 104

SPRU524C–January 2007 Network Tools Library - Support Functions 95
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

5.1 Generic Support Calls

5.1.1 Synopsis

5.1.2 Function Overview

5.1.3 Network Tools Support API Functions

Generic Support Calls

This section contains a selection of functions that can be very useful when programming network
applications. Some are standard Berkeley Software Distribution (BSD) Socket APIs while others are
custom to the stack - designed to save you the time and trouble of programming directly to the stack API.

The following is a summary of the support functions described in this section:

inet_addr() Convert a string to a 32 bit IP address in network format

inet_aton() Convert a string to an in_addr structure record

NtAddNetwork() Add a host network to a logical interface handle

NtRemoveNetwork() Remove a network added with NtAddNetwork()

NtAddStaticGateway() Add a static gateway route to the route table

NtRemoveStaticGateway() Remove a static gateway route

NtIfIdx2Ip() Get the IP host address assigned to a physical interface Index

NtGetPublicHost() Get the system public IP address and domain name

NtIPN2Str() Convert 32 bit IP address in network format to string

inet_addr Return 32-bit Binary Network Ordered IPv4 Address

Syntax IPN inet_addr(char *strptr);

Parameters

strptr Pointer to character string

Return Value IP address or NULL.

Description This function converts an IP address printed in a character string to a 32-bit network
ordered IP address value. Note that leading 0s in the address string are interpreted as
octal. The function returns NULL on failure.

This function actually calls inet_aton(), which is the better form of the function.

96 Network Tools Library - Support Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

inet_aton — Convert IP Address from String and Return in in_addr Structure

inet_aton Convert IP Address from String and Return in in_addr Structure

Syntax int inet_aton(char *strptr, struct in_addr *pa);

Parameters

strptr Pointer to character string

pa Pointer to address structure

Return Value 1 on success or 0 on failure.

Description This function converts an IP address printed in a character string to a 32-bit network
ordered IP address value. Note that leading 0s in the address string are interpreted as
octal. The function return writes the IP address into the in_addr structure pointed to by
the pa parameter. The function returns 1 on success and 0 on failure.

NtAddNetwork Add Host Network to Interface by IF Handle

Syntax HANDLE NtAddNetwork(HANDLE hIF, IPN IPHost, IPN IPMask);

Parameters

hIF Handle to target interface

IPHost IP Host Address (in network format)

IPMask IP Host Subnet Mask (in network format)

Return Value Handle to network binding on success or NULL on failure.

Description This function attempts to add the specified IP host address (and mask) to the specified
logical interface handle. The function returns a handle to the binding that binds the IP
address to the interface. On an error, the function returns NULL. The most common
error would be that adding the host address caused a duplicate IP indication from
another host.

Note: In place of this function, consider using the configuration system with
the CFGTAG_IPNET configuration entry (see Section 4.4.4).

NtRemoveNetwork Remove Host Network from Interface

Syntax void NtRemoveNetwork(HANDLE hBind);

Parameters

hBind Handle to network binding returned by NtAddNetwork().

Return Value None.

Description This function removes a network that was previously added with NtAddNetwork().

SPRU524C–January 2007 Network Tools Library - Support Functions 97
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

NtAddStaticGateway — Add Static Gateway Route to the Route Table

NtAddStaticGateway Add Static Gateway Route to the Route Table

Syntax HANDLE NtAddStaticGateway(IPN IPDestAddr, IPN IPDestMask, IPN IPGateAddr);

Parameters

IPDestAddr IP address of destination (in network format)

IPDestMask IP subnet mask of destination (in network format)

IPGateAddr IP address of next hop gateway (in network format)

Return Value Handle to newly created route or NULL on error.

Description This function adds a static gateway route to the system route table.

IPDestAddr is the IP base address of the IP network of the network that is made
accessible via the IP gateway. This value should be pre-masked with the IPDestMask so
that:

(IPDestAddr & IPDestMask) = IPDestMask

This is used as a sanity check by the system. For a default route, the value is zero.

IPDestMask is the mask of the IP network accessible by the IP gateway. For a host
route, the value is 0xFFFFFFFF, while for a default route, the value is zero.

IPGateAddr is the IP address of the gateway through which the specified IP network is
accessible. It must be an IP address that is available on a locally connected network,
i.e., one gateway cannot point to another.

The function returns a handle to the route created by this configuration entry. All routes
are represented as route handles internally to the stack. This is discussed further in the
appendices at the end of this document. Note that the handle returned here is not
referenced (see the appendix for more details). All it means for the purposes of this
function is that the handle can be discarded by the caller. It will remain valid until the
route is removed via NtRemoveStaticGateway().

Note: In place of this function, consider using the configuration system with
the CFGTAG_ROUTE configuration entry (see Section 4.4.5).

NtRemoveStaticGateway Remove Static Gateway Route from the Route Table

Syntax int NtRemoveStaticGateway(IPN IPTarget);

Parameters

IPTarget IP address of destination to remove (in network format)

Return Value Returns 1 if the route was removed, or 0 if it was not found.

Description This function removes a static gateway route from the system route table. It searches for
the route by destination IP address and will remove the first matching static route it finds.
Note that only routes with both the GATEWAY and STATIC flags set are considered for
removal.

98 Network Tools Library - Support Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

NtIfIdx2Ip — Get the 32-bit Representation of the IP Address of an Interface Index

NtIfIdx2Ip Get the 32-bit Representation of the IP Address of an Interface Index

Syntax int NtIfIdx2Ip(uint IfIdx, IPN *pIPAddr);

Parameters

IfIdx Index of physical interface

pIPAddr Pointer to receive IP address

Return Value Returns 1 if an address was found, or 0 if it was not found.

Description This function obtains the first IP host address found that is assigned to the supplied
interface Index. The host address (in network format) is written to the pointer pIPAddr.

NtGetPublicHost Get the System Public IP Address and Domain Name

Syntax int NtGetPublicHost(IPN *pIPAddr, uint MaxSize, UINT8 *pDomain);

Parameters

pIPAddr Pointer to receive IP address

MaxSize Size of string buffer pointed to by pDomain

pDomain Pointer to string buffer to receive domain name

Return Value Returns 1 if information was found, or 0 if it was not found.

Description This function gets the best IP address and domain name to use for access to the
external network. For determining the best address and domain name, public addresses
and domain names are preferred over IP addresses and domain names of virtual
networks. The IP address (in network format) is written to pIPAddr, and the domain
name is copied to pDomain.

NtIPN2Str Convert 32-bit IP Address in Network Format to String

Syntax void NtIPN2Str(IPN IPAddr, char *pStrBuffer);

Parameters

IPAddr IP address in network format

pStrBuffer Pointer to receive IP address string

Return Value None.

Description This function performs a sprintf() of the IP address supplied in IPAddr to the buffer
supplied in pStrBuffer. Note that no buffer size is provided. This is because the size is
deterministic, and will not exceed 16 characters (including the NULL terminator).

SPRU524C–January 2007 Network Tools Library - Support Functions 99
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

5.2 DNS Support Calls

5.2.1 Synopsis

5.2.2 Function Overview

5.2.3 Standard Types and Definitions

5.2.3.1 Host Entry Structure

DNS Support Calls

The concepts and code behind the Unix gethostbyname() and gethostbyaddr() functions is extensive, and
there are public domain versions available, which can be easily run on the IP stack library.

Although the code to support the whole name, address and server database is quite large, the basic name
resolution functions are quite useful. For this reason, the stack provides a basic form of these function
calls, without incurring the overhead associated with a full implementation. The DNS resolver used by
these client functions is the same as accessed by the DNS server. When the configuration contains client
machine records (i.e., controls local domain names), these entries are checked when the matching
domain is encountered. Otherwise (and for all other queries), the query is resolved via external DNS
servers.

In addition to providing a more compact implementation, the calls provided here are reentrant, which is not
true of the standard Unix counterparts.

The following is a summary of the support functions described in this section:

DNSGetHostname() Return the hostname of the current host

DNSGetHostByAddr() Resolve a hostname from an IP address

DNSGetHostByName() Resolve a hostname and IP address from a hostname

The DNS client functions all take a pointer to a buffer. They treat this buffer as a pointer to a host entry
structure. If the function takes a pointer to a scrap buffer, a host entry structure is allocated from the start
of this scrap buffer. Thus, on successful return from one of these calls, the pointer to the scrap buffer may
be treated as a pointer to a host entry structure.

The structure differs slightly from the conventional definition. It is defined as follows:
//
// Host Entry Structure
//
struct _hostent {

char *h_name; // Official name of host
int h_addrtype; // Address Type (AF_INET)
int h_length; // Address Length (4)
int h_addrcnt; // Number of IP addresses found
IPN h_addr[8]; // List of up to 8 IP addresses (network format)
};

typedef struct _hostent HOSTENT;

Network Tools Library - Support Functions100 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

5.2.3.2 Function Return Codes

5.2.4 DNS Support API Functions

DNSGetHostname — Return the Hostname of the Current Host

DNS functions that return an error code use the following definitions. Those that are obtained directly from
a DNS response packet are so noted:

NOERROR 0 (DNS Reply Code) No error

FORMERR 1 (DNS Reply Code) Format error

SERVFAIL 2 (DNS Reply Code) Server failure

NXDOMAIN 3 (DNS Reply Code) Non existent domain

NOTIMP 4 (DNS Reply Code) Not implemented

REFUSED 5 (DNS Reply Code) Query refused

OVERFLOW 16 Scrap Buffer Overflow

MEMERROR 17 Memory Allocation Error (used for packets and temp storage)

SOCKETERROR 18 Socket Error (call fdError() for socket error number)

NODNSREPLY 19 No DNS server response

DNSGetHostname Return the Hostname of the Current Host

Syntax int DNSGetHostname(char *pNameBuf, int size);

Parameters

pNameBuf Pointer to a buffer to accept the hostname

size Size of the supplied buffer in bytes

Return Value Error code as defined above.

Description This function is quite similar to BSD's gethostname(). It requests the hostname of the
system's public IP address (as obtained from NtGetPublicHost()). The hostname is
copied into the buffer pointed to by pNameBuf with a maximum size of size. The name is
NULL terminated when space allows.

SPRU524C–January 2007 Network Tools Library - Support Functions 101
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

DNSGetHostByAddr — Resolve a Hostname from an IP Address

DNSGetHostByAddr Resolve a Hostname from an IP Address

Syntax int DNSGetHostByAddr(IPN IPAddr, void *pScrapBuf, int size);

Parameters

IPAddr IP address to resolve, in network format

pScrapBuf Pointer to a scrap buffer from which a HOSTENT structure will be
allocated

size Size of the supplied scrap buffer in bytes

Return Value Error code as defined above.

Description This function is quite similar to BSD's gethostbyaddr(). It uses DNS to resolve a
hostname from the supplied IP address. On a successful return, pScrapBuf can be
treated as a HOSTENT structure. The size of the scrap buffer (size) must be greater
than the size of the structure as the structure will contain pointers into the scrap buffer,
and the scrap buffer is also used for temporary name storage. 512 bytes should be
sufficient for most requests.

DNSGetHostByName Resolve a Hostname/Address from a Hostname

Syntax int DNSGetHostByName(char *Name, void *pScrapBuf, int size);

Parameters

Name Null terminated Hostname to resolve (with or without trailing '.')

pScrapBuf Pointer to a scrap buffer from which a HOSTENT structure will be
allocated

size Size of the supplied scrap buffer in bytes

Return Value Error code as defined above.

Description This function is quite similar to BSD's gethostbyname(). It uses DNS to resolve an official
hostname and address from the supplied hostname. On a successful return, pScrapBuf
can be treated as a HOSTENT structure. The size of the scrap buffer (size) must be
greater than the size of the structure as the structure will contain pointers into the scrap
buffer, and the scrap buffer is also used for temporary name storage. 512 bytes should
be sufficient for most requests.

If the hostname Name is terminated with a dot (.), the dot is removed prior to lookup. If a
dot appears anywhere in Name, an initial lookup on the unaltered name is attempted. If
Name does not contain a dot, or if the initial lookup fails, the default domain name (from
NtGetPublicHost()) is appended to the end of the supplied name. For example, if the
domain name obtained from NtGetPublicHost() was ti.com, then a request for host.sc
would attempt to resolve host.sc first, and then host.sc.ti.com, while a request for host
would attempt to resolve host.sc.ti.com on the initial attempt.

Network Tools Library - Support Functions102 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

5.3 TFTP Support

5.3.1 Synopsis

5.3.2 TFTP Support API Functions

TFTP Support

TFTP is supported via the received function. More information on TFTP can be found in RFC783, released
by the Internet Engineering Task Force (IETF) organization.

TFTP is accessed through this API. The network tools include the file NETTOOLS.H , which is required.

NtTftpRecv Retrieve Data from a TFTP Server

Syntax int NtTftpRecv(UINT32 TftpIp, char *szFileName, char *pFileBuffer, UINT32 *pFileSize,
UINT16 *pErrorCode);

Parameters

TftpIp IP Address in network format

szFileName Pointer to null terminated filename string

pFileBuffer Pointer to buffer to receive file data

pFileSize Pointer to size of buffer on input, returns as size needed or used

pErrorCode Pointer to where to write TFTP server error code (if any)

Return Value This function returns an error code indicating the results of the operation. Negative
codes are error conditions.

In the following cases, pFileSize is set to the actual file size:

0 Successful transfer and copy

1 Successful transfer, with partial copy (file size too large)

In the following cases, pFileSize is set to the actual number of bytes copied:

TFTPERROR_ERRORREPLY Error returned by TFTP server (see below)

TFTPERROR_BADPARAM Invalid calling parameters

TFTPERROR_RESOURCES Memory allocation error during transfer

TFTPERROR_SOCKET Internal socket error during transfer

TFTPERROR_FAILED TFTP failed (e.g., server did not reply)

In the case of TFTPERROR_ERRORREPLY, the server error code written to
*pErrorCode should be one of the following standard TFTP codes, and the error
message is copied to *pFileBuffer:

0 Not defined, see error message (if any).

1 File not found.

2 Access violation.

3 Disk full or allocation exceeded.

4 Illegal TFTP operation.

5 Unknown transfer ID.

6 File already exists.

7 No such user.

SPRU524C–January 2007 Network Tools Library - Support Functions 103
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

5.4 TCP/UDP Server Daemon Support

5.4.1 Synopsis

5.4.2 Server Daemon Support API Functions

TFTP Support

Description TFTP (Trivial File Transfer Protocol), allows files to be transferred from a remote
machine.

This function attempts to receive the file with the filename designated by szFileName
from the TFTP server with the IP address in TftpIp, and copy the data into the memory
buffer pointed to by pFileBuffer. Note that when specifying the name of the file in
szFileName, certain operating systems have case sensitive naming conventions.

On entry, the parameter pFileSize must point to the size of the buffer pointed to by
pFileBuffer. If the value at *pFileSize is null, the pFileBuffer parameter can be NULL.

This function attempts to receive the entire file, even if the buffer space is insufficient.
The return value indicates if the file was received.

A return value of 1 indicates that the file was received and copied into the buffer. A
return value of 0 indicates that the file was received, but was too large for the specified
buffer. In both these cases, the actual size of the file in bytes is written back to
*pFileSize.

A negative return value indicates that an error has occurred during transfer. In this case,
the number of bytes actually consumed in the buffer is written back to *pFileSize. An
error return of TFTPERROR_ERRORREPLY is a special return value that indicates that
an error code was returned from the TFTP server. In this case, the server's TFTP error
code is written to *pErrorCode, and the server's TFTP error message string is copied to
the data buffer pointer to by pFileBuffer.

A server daemon is a single network task that monitors the socket status of multiple network servers.
When activity is detected, the daemon creates a task thread specifically to handle the new activity. This is
more efficient than having multiple servers, each with their own listening thread.

Entries in the server daemon are created and destroyed through the following APIs. The network tools
include the file NETTOOLS.H , which is required.

DaemonNew Create a New TCP/UDP Server Entry

Syntax HANDLE DaemonNew(uint Type, IPN LocalAddress, uint LocalPort, int
(*pCb)(SOCKET,UINT32), uint Priority, uint StackSize, UINT32 Argument, uint
MaxSpawn);

Parameters

Type Socket type (SOCK_STREAM, SOCK_STREAMNC, or
SOCK_DGRAM)

LocalAddress Local IP address (set to NULL for wildcard)

LocalPort Local Port to serve (cannot be NULL)

pCb Pointer to callback to handle server event (connection or activity)

Priority Priority of new task to create for callback function

StackSize Stack size of new task to create for callback function

Argument Argument (besides socket) to pass to callback function

MaxSpawn Maximum number of callback function instances (must be 1 for UDP)

104 Network Tools Library - Support Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

5.4.3 Server Daemon Example

DaemonFree — Destroy a TCP/UDP Server Entry

Return Value This function returns a handle to a daemon , or NULL on error.

Description Once a new entry is created, the daemon will create the desired TCP or UDP socket,
and start listening for activity.

In the case of TCP, when a new connection is established, a new task thread is created,
and a socket session is opened. Then the user's callback function is called on the new
task thread, being supplied with both the socket to the new connection and the caller
specified argument (as supplied to DaemonNew()). The callback function can keep the
socket and task thread for as long as necessary. It returns from the callback once it is
done with the connection. The function can choose to close the socket if desired. The
return code informs the daemon whether the socket has been closed (0) or is still open
(1).

In the case of UDP, when any data is available on the UDP socket, a new task thread is
created, and a socket session is opened. Then the user's callback function is called on
the new task thread, being supplied with both the UDP socket and the caller specified
argument (as supplied to DaemonNew()). The callback function can keep the socket and
task thread for as long as necessary. It returns from the callback only when it is done
with the data. (While the callback function holds the UDP socket, the daemon will ignore
further activity on it.) The callback should return 1, as it should not close the UDP socket.

DaemonFree Destroy a TCP/UDP Server Entry

Syntax voidDaemonFree(HANDLEhEntry);

Parameters

hEntry Handle to server entry returned from DaemonNew()

Return Value None.

Description Destroys a daemon entry, and closes the socket session of all child tasks spawned from
the entry. Closing the socket sessions will result in all socket functions returning
SOCKET_ERROR in all spawned child tasks. Thus, all spawned tasks should error out
and return to the daemon, allowing them to be freed.

The following is an example TCP echo server using the server daemon. The TCP server will use
SOCK_STREAMNC for non-copy TCP. Its only job is to read from the socket, and write back what it
reads.

To install the server on port 7, use the following code:
hEcho = DaemonNew(SOCK_STREAMNC, 0, 7, dtask_tcp_echo,

OS_TASKPRINORM, OS_TASKSTKNORM, 0, 3);

This code allows up to three echo sessions to be running simultaneously on different threads. Note the IP
specified is NULL, allowing echo connection on any local IP address assigned to the system.

To destroy the server and all its instances, the hEcho handle returned from DaemonNew() is used:
DaemonFree(hEcho);

The code for the callback function dtask_tcp_echo() is as follows:
int dtask_tcp_echo(SOCKET s, UINT32 unused)
{

struct timeval to;
int I;
char *pBuf;
HANDLE hBuffer;

(void)unused;

SPRU524C–January 2007 Network Tools Library - Support Functions 105
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

TCP/UDP Server Daemon Support

// Configure our socket timeout to be 5 seconds
to.tv_sec = 5;
to.tv_usec = 0;
setsockopt(s, SOL_SOCKET, SO_SNDTIMEO, &to, sizeof(to));
setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, &to, sizeof(to));

I = 1;
setsockopt(s, IPPROTO_TCP, TCP_NOPUSH, &I, 4);

for(;;)
{

I = (int)recvnc(s, (void **)&pBuf, 0, &hBuffer);

// If we read data, echo it back
if(I > 0)
{

if(send(s, pBuf, I, 0) < 0)
break;

recvncfree(hBuffer);
}

// If the connection got an error or disconnect, close
else

break;
}

fdClose(s);

// Return "0" since we closed the socket
return(0);

}

106 Network Tools Library - Support Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Chapter 6
SPRU524C–January 2007

Network Tools Library - Services

Included with the stack package is a library of network tools. It provides auxiliary
functionality to the stack library and contains source written to the socket layer that
would normally be considered application level code. The library file is called
NETTOOLS.LIB, and can be accessed by an application that includes the file
NETTOOLS.H.

The support supplied by NETTOOLS can be categorized into two classes: support
functions and services. The support functions consist of a programming API that can
help develop network applications, while services are servers that execute on the stack
platform.

This section describes the NETTOOLS services.

Topic .. Page

6.1 Service Calling Conventions... 108
6.2 Telnet Server Service... 110
6.3 DHCP Server Service ... 111
6.4 DHCP Client Support ... 114
6.5 HTTP Server Support ... 116
6.6 DNS Server Service ... 118
6.7 Network Address Translation (NAT) Service 119

SPRU524C–January 2007 Network Tools Library - Services 107
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.1 Service Calling Conventions

6.1.1 Specifying Network Services Using the Configuration

6.1.1.1 Service Report Function

6.1.2 Invoking Network Services by NETTOOLS API

Service Calling Conventions

Although each service has it own specific API, it is usually more convenient to add services by specifying
the service in the system configuration as opposed to calling their individual Open and Close API
functions. Included in the description of each network service is a description of its direct API, as well as
an example of specifying the service in the system configuration.

All the configuration examples in this section use a common service report callback function. The following
is a very simple implementation of a service report function that calls printf() to print service status.

Note that this function relies on the physical value of items in the configuration specification found in the
file: inc\nettools\netcfg.h.
static char *TaskName[] = { "Telnet","HTTP","NAT","DHCPS","DHCPC","DNS" };
static char *ReportStr[] = { "","Running","Updated","Complete","Fault" };
static char *StatusStr[] = { "Disabled","Waiting","IPTerm","Failed","Enabled" };

static void ServiceReport(uint Item, uint Status, uint Report, HANDLE h)
{

printf("Service Status: %-9s: %-9s: %-9s: %03d\n",
TaskName[Item-1], StatusStr[Status],
ReportStr[Report/256], Report&0xFF);

}

Each service API uses a common calling format. This allows the services to be invoked by the
configuration system using callback functions provided in the Network Control software (which also
performs system initialization). It is preferable to launch services via the configuration system, instead of
manually calling each Open and Close function described in the following sections. However, because the
source to the Network Control software uses these calls, they are documented here.

The common calling interface consists of a simple Open and Close concept. The Open function initiates
the service and returns a service handle, while the Close function shuts down the service using the
service handle returned from the Open call.

Each service Open call takes at least one parameter. This parameter is a pointer to a common argument
structure called NTARGS. The specification of this structure is as follows:
typedef struct _ntargs {

int CallMode; // Determines desired calling mode
#define NT_MODE_IFIDX1 // Call by specifying IfIdx
#define NT_MODE_IPADDR2 // Call by specifying IPAddr

int IfIdx; // Physical interface Index (0-n)
IPN IPAddr; // IP Address
HANDLE hCallback; // Handle to pass to callback function
void(*pCb)(HANDLE, uint); // Callback for status change
} NTARGS;

Note that this entry structure is a simplified version of that provided by the configuration system. This
structure also contains a callback function. The callback function is a subset of that in the configuration
system, and codes returned by this callback are passed through the configuration callback to the
application.

The individual fields are defined as follows:

• int CallMode;

108 Network Tools Library - Services SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Service Calling Conventions

This parameter determines how the service is launched, either by IP address or by interface index (1 to
n).
Some services can be launched either on a specific interface (1 to n) or on a specific IP address
(which can also be the wildcard INADDR_ANY). Generally, any service that accepts an IP address can
also accept an interface. The service will look up the IP address for the specified interface.
Other services can only be executed by interface and are independent of IP address. These are said to
be compatible with NT_MODE_IFIDX only.
The value of CallMode can be one of the following:

NT_MODE_IFIDX Call by specifying the interface Index (1 to n)

NT_MODE_IPADDR Call by specifying IP address in network format

• int IfIdx;

This is the physical interface index (1 to n) on which the service is to be executed. For example, when
launching a DHCP server service, the physical interface is that connected to the home network. For
more generic services (like Telnet), the service can be launched by a pre-defined IP address (or
INADDR_ANY as a wildcard). When launching by IP address only, this field is left NULL. When this
field is used, CallMode should be set to NT_MODE_IFIDX.

• IPN IPAddr;

This is the IP address (in network format) on which to initiate the service. This IP address can specify
the wildcard INADDR_ANY, in which case the service will accept connections to any valid IP address
on any device. Note that some services (like DHCP server) do not support being launched by IP
address. When this field is used, CallMode should be set to NT_MODE_IPADDR.

• HANDLE hCallback;

This is the caller supplied handle that is passed back to the caller when the status callback function is
invoked (see below).

• void (*pCb)(HANDLE, uint);

This is a pointer to a caller supplied callback function by which the service reports status.
The specification of this callback is:
void cbFun(HANDLE hCallback, uint NtStatus);

hCallback Handle supplied to the service by the caller

NtStatus NetTools Service Status code

The NtStatus parameter consists of an upper byte that is predefined, and a lower byte that is specific
to the service. When masked with ~0xFF (NOT 0xFF), the value will be one of the following:

NETTOOLS_STAT_NONE. Nothing reported

NETTOOLS_STAT_RUNNING Service is initialized (running)

NETTOOLS_STAT_PARAMUPDATE The service parameter structure has changed (the
configuration containing this structure should be
saved)

NETTOOLS_STAT_COMPLETED The service has run to completion

NETTOOLS_STAT_FAULT The service has halted due to a fault

Note that this callback function does not go directly to the application when using the configuration
system. These codes are supplied to the configuration service callback in the Code parameter.
An optional second parameter to each service Open function is a pointer to a private service parameter
structure. In the configuration section of this document, the individual service parameter structures
were included in the specification of the configuration entry instance structure for each service.

SPRU524C–January 2007 Network Tools Library - Services 109
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.2 Telnet Server Service

6.2.1 Synopsis

6.2.2 Telnet Parameter Structure

6.2.3 Specifying Service Using the Configuration

Telnet Server Service

The Telnet Server service provides a mechanism for exposing a stream IO connection to any remote
telnet client console.

A telnet connection is basically just a TCP connection to the well-known port designated for telnet.
However, there is some data translation that occurs on the stream. Telnet has a set of commands that can
change the behavior of the terminal, and can perform some character translation. The telnet server
supplied here is designed to convert a normal TTY stream to a telnet stream and back. This allows any
application to treat a telnet session as any other TTY session (like a serial port).

Connection to an application is achieved by use of an application supplied callback function that telnet
calls when a new connection is established. This callback function returns the file descriptor of one end of
a full duplex communications pipe. By allowing multiple calls to the callback function, console applications
can be written to work with multiple IO streams.

The following structure defines the unique parameters of the Telnet service. It is located in the file:
inc\nettools\inc\telnetif.h.
//
// Telnet Parameter Structure
//
typedef struct _ntparam_telnet {

int MaxCon; // Max number of telnet connections
int Port; // Port (set to NULL for telnet default)
int (*Callback)(PSA); // Connect function returns local pipe
} NTPARAM_TELNET;

MaxCon Maximum number of simultaneous telnet sessions (1 to 24)

Port TCP port to use for Telnet (set to zero for Telnet default)

Callback Pointer to a callback function that takes a pointer to a sockaddr
structure, and returns a local file descriptor to one end of a full
duplex communications pipe

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

The service can be specified as public because it can connect using any IP address, or an IP address of a
specific interface. When accepting connections to any system IP address, the service is specified with the
CALLBYIP flag and an IP address of INADDR_ANY. When a private connection is desired, the service is
specified by the physical interface on which connections are allowed to occur. Because an IP address is
required to initialize the service, the RESOLVEIP flag should also be set in the latter case.

For example, the following code specifies that the telnet server should run using the IP address
INADDR_ANY.
telnet_example()
{

CI_SERVICE_TELNET telnet;

bzero(&telnet, sizeof(telnet));
telnet.cisargs.IPAddr = INADDR_ANY;
telnet.cisargs.pCbSrv = &ServiceReport;
telnet.param.MaxCon = 2;
telnet.param.Callback = &ConsoleOpen;

110 Network Tools Library - Services SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.2.4 Invoking the Service via NETTOOLS API

6.3 DHCP Server Service

6.3.1 Synopsis

6.3.2 Operation

TelnetOpen — Create an Instance of the Telnet Server

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_TELNET, 0,
sizeof(telnet), (UINT8 *)&telnet, 0);

}

The above code is all that is required when using the configuration system to invoke this service.

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

TelnetOpen Create an Instance of the Telnet Server

Syntax HANDLE TelnetOpen(NTARGS *pNTA, NTPARM_TELNET *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services

pNTP Pointer to Telnet parameter structure

Return Value Returns a handle to the new telnet server instance, or NULL if the service could not be
created. This handle is used with TelnetClose() to shut down the server when it is no
longer needed.

Description When a telnet session is established, a telnet child task is spawned that will call the
supplied callback function. This callback function should return a local file descriptor of
one end of a full duplex pipe. If the callback function returns -1, the connection is
aborted. When either the terminal or telnet connection end of the pipe is broken, the
other connection is closed and the session is ended.

TelnetClose Destroy an Instance of the Telnet Server

Syntax void TelnetClose(HANDLE hTelnet);

Parameters

hTelnet Handle to telnet server instance obtained from TelnetOpen()

Return Value None.

Description Destroys the instance of the telnet server indicated by the supplied handle. Once called,
the server is shut down and no further telnet sessions can be established. Also, all
spawned connections are immediately terminated.

When acting as a router, the NDK may also need to maintain the network configuration on one of its
network devices. A DHCP server allows the stack to maintain the IP address of multiple Ethernet client
devices. When combined with Network Address Translation (NAT), the DHCP server can be used to
establish client membership in a private virtual network.

The DHCP server can be optionally configured to allocate IP addresses out of a pool that is specified by
an IP base address and the number of addresses in the pool. If no pool is specified, the server will use
static client entries in the configuration system to resolve client address requests.

SPRU524C–January 2007 Network Tools Library - Services 111
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.3.3 DHCP Server Parameter Structure

6.3.4 Specifying Service Using the Configuration

DHCP Server Service

The server will respond to DHCP requests from a single Ethernet device. This allows for isolation of clients
for a given interface, and allows multiple instances of the DHCP server to manage different IP address
pools for different interfaces.

The following structure defines the unique parameters of the DHCP server service. It is located in the file:
inc\nettools\inc\dhcpsif.h.
//
// DHCPS Parameter Structure
//
typedef struct _ntparam_dhcps {

uint Flags; // DHCPS Execution Control Flags
IPN PoolBase; // First IP address in optional pool
uint PoolCount; // Number of addresses in optional pool
} NTPARAM_DHCPS;

• Flags - Execution control flags. Can be any combination of the following:

DHCPS_FLG_LOCALDNS Causes DHCPS to report its own IP address as the local
DNS server to clients. If this flag is not set, DHCPS
reports the DNS servers as contained in the SYSINFO
portion of the configuration.

DHCPS_FLG_LOCALDOMAIN Causes DHCPS to report the local domain name
assigned to the virtual network to clients. If this flag is not
set, DHCPS reports the public domain name to clients.

• PoolBase - The first IP address (in network format) of the address pool.
• PoolCount - The number of addresses in the address pool.

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

Because the DHCP server service executes on a specific interface, it is never executed based on an IP
address. Thus, it cannot be used with the CALLBYIP flag in the standard configuration service structure.
However, because an IP host address is required to initialize the service on a specific interface, the
RESOLVEIP flag should be set in cases where the IP address is not pre-assigned.

For example, the following code specifies that the DHCP server should run on the interface specified by
the physical index dhcpsIdx. Here, the home networks have already been written to the configuration, so
the RESOLVEIP flag is not necessary. The address pool being used is already stored in IPPoolBase and
PoolSize. The DHCPS is requested to report the local server address as a DNS server to DHCP clients.
dhcp_server_example()
{

CI_SERVICE_DHCPS dhcps;

bzero(&dhcps, sizeof(dhcps));
dhcps.cisargs.Mode = CIS_FLG_IFIDXVALID;
dhcps.cisargs.IfIdx = dhcpsIdx;
dhcps.cisargs.pCbSrv = &ServiceReport;

// Report our address as a DNS server to clients, and use the
// network's local domain name.
dhcps.param.Flags = DHCPS_FLG_LOCALDNS | DHCPS_FLG_LOCALDOMAIN;

// Assign the IP address pool
dhcps.param.PoolBase = IPPoolBase;
dhcps.param.PoolCount = PoolSize;

112 Network Tools Library - Services SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.3.5 Invoking the Service via NETTOOLS API

DHCPSOpen — Open a DHCP Server

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPSERVER, 0,
sizeof(dhcps), (UINT8 *)&dhcps, 0);

}

The above code is all that is required when using the configuration system to invoke this service.

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

DHCPSOpen Open a DHCP Server

Syntax HANDLE DHCPSOpen(NTARGS *pNTA, NTPARAM_DHCPS *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services.

pNTP Pointer to DHCP parameter structure

Return Value Returns a HANDLE to a DHCPS instance structure that is used in calls to other DHCPS
functions like DHCPSClose().

Description This function is called to initiate DHCPS control of an IP address pool on a given
interface. The base address of the address pool does not have to be the first IP address
in the subnet.

The DHCP Server executes on a specific interface. Thus, it is compatible with
NT_MODE_IFIDX only.

DHCPSClose Close an Instance of the DHCP Server

Syntax void DHCPSClose(HANDLE hDHCPS);

Parameters

hDHCPS Handle to a DHCP server instance obtained from DHCPSOpen()

Return Value None.

Description This function is called to terminate DHCPS control of the previously supplied interface.
This call also destroys the supplied DHCP server instance handle hDHCPS.

SPRU524C–January 2007 Network Tools Library - Services 113
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.4 DHCP Client Support

6.4.1 Synopsis

6.4.2 Operation

6.4.3 DHCP Client Parameter Structure

DHCP Client Support

At system start up, the DHCP client will try and acquire an IP address from the DHCP servers available on
the network.

Note that the client will accept the first IP address offered and that the INIT-REBOOT State (which
requests a previously assigned IP address) is not currently implemented.

More information on DHCP can be found in RFC2131 and RFC2132, released by the Internet Engineering
Task Force (IETF) organization.

The DHCP client is a special service that always executes immediately in a system. It is usually after the
DHCP client obtains a public IP address that most of the other services in the system can initialize.

The DHCP client code makes more use of the service status report callback function than most of the
other services. Recall from the beginning of this section that the least significant byte of the report code is
reserved for service specific information.

The following report codes are returned in the LSB of the report code sent by the DHCP service:

DHCPCODE_IPADD An IP client address had been added to the system

DHCPCODE_IPREMOVE An IP client address has been removed from the system

DHCPCODE_IPRENEW An IP client address has been renewed

Note that in each of the above cases, the DHCP portion of the system information configuration (the first
256 entries of CFGTAG_SYSINFO) has been erased and potentially reprogrammed. If an application
needs to share the DHCP portion of the system information configuration, these DHCP report codes can
be used to signal when to add additional application specific tags. For more information on DHCP and the
CFGTAG_SYSINFO tag, see Section 4.4.8.

The following structure defines the unique parameters of the DHCP client service. It is located in the file:
inc\nettools\inc\dhcpif.h.
//
// DCHP Parameter Structure
//
#define DHCP_MAX_OPTIONS 64 // Max number of allowed options

typedef struct _ntparam_dhcp {
UINT8 *pOptions; // Options to request
int len; // Length of options list
} NTPARAM_DHCP;

pOptions Pointer to additional DHCP option tags to request. The list is used
when additional information must be obtained from the DHCP
server. Up to DHCP_MAX_OPTIONS tags can be specified. This
pointer can be NULL when len is set to 0.

len Specifies the length in bytes of the list pointed to by pOptions.

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

Network Tools Library - Services114 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.4.4 Specifying Service Using the Configuration

6.4.5 Invoking the Service via NETTOOLS API

DHCPOpen — Open a DHCP Server

Because the DHCP client service executes on a specific interface, it is never executed based on an IP
address. Thus, it cannot be used with the CALLBYIP flag in the standard configuration service structure.
Also, because the service runs without an IP host address, the RESOLVEIP flag should never be set.

For example, the following code specifies that the DHCP client should run on the interface specified by the
physical Index dhcpIdx.
dhcp_client_example()
{

CI_SERVICE_DHCPC dhcpc;

bzero(&dhcpc, sizeof(dhcpc));
dhcpc.cisargs.Mode = CIS_FLG_IFIDXVALID;
dhcpc.cisargs.IfIdx = dhcpIdx;
dhcpc.cisargs.pCbSrv = &ServiceReport;

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPCLIENT, 0,
sizeof(dhcpc), (UINT8 *)&dhcpc, 0);

}

The above code is all that is required when using the configuration system to invoke this service.

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

DHCPOpen Open a DHCP Server

Syntax HANDLE DHCPOpen(NTARGS *pNTA , NTPARAM_DHCP *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services

pNTP Pointer to DHCP parameter structure

Return Value Returns a HANDLE to a DHCP instance structure, which is used in calls to other DHCP
functions like DHCPClose().

Description This function is called to initiate DHCP control of a given device.

DHCPOpen() starts the DHCP process. This process will discover if there are any DHCP
servers on the network and request an IP address. The result of the search for an IP
address will be passed to the application via the standard network tools status callback.

The Client will remain running so it can renew the IP address when necessary.

For any additional option tags entered into the DHCP client parameter structure, the
resulting information from the DHCP server is written to the system configuration under
the CFGTAG_SYSINFO entry. See Section 4.4.8 for more information.

The DHCP Client executes on a specific interface. Thus, it is compatible with
NT_MODE_IFIDX only.

DHCPClose Close an Instance of the DHCP Client

Syntax void DHCPClose(HANDLE hDHCP);

Parameters

SPRU524C–January 2007 Network Tools Library - Services 115
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.5 HTTP Server Support

6.5.1 Synopsis

6.5.2 Operation

6.5.3 HTTP Server Parameter Structure

6.5.4 Using the HTTP Server and Adding Web Content

DHCP Client Support

hDHCP Handle to a DHCP server instance obtained from DHCPSOpen()

Return Value None.

Description This function is called to terminate DHCP control of the previously supplied interface and
frees the supplied DHCP server instance handle hDHCP.

Note this function will also remove any IP address it has added to the system. In the
case of a service shutdown, there will be no status callback indicating the address
removal.

An HTTP (Hypertext Transfer Protocol) Server allows a remote browser to view content on the server file
system. Files can be stored for viewing and forms can also be stored to allow remote interaction with the
system. Form POST functions become calls to application defined C functions that allow the embedded
system to be remotely controlled via a HTTP browser.

The HTTP Server service provides a mechanism for serving HTTP content to remote HTTP client
applications. It uses the Embedded File System contained in the OS adaptation layer. These functions in
the EFS programming API include a prefix of efs_. Modifying the EFS functions in the OS adaptation layer
allows the system programmer to support a variety of file storage options, including memory, flash cards
and hard drives.

The following structure defines the unique parameters of the HTTP server service. It is located in the file:
inc\nettools\inc\httpif.h.
//
// HTTP Parameter Structure
//
typedef struct _ntparam_http {

int MaxCon; // Max number of HTTP connections
int Port; // Port (set to NULL for HTTP default)
} NTPARAM_HTTP;

MaxCon Maximum number of simultaneous telnet sessions (1 to 24)

Port TCP port to use for HTTP (set to zero for HTTP default)

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

This section discusses how to invoke and monitor the status of the HTTP server. Web application
developers will be more interested in how to add Web content, including HTML pages and CGI functions.
These topics are discussed in Chapter E.

Network Tools Library - Services116 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.5.5 Specifying Service Using the Configuration

6.5.6 Invoking the Service via NETTOOLS API

httpOpen — Start the HTTP Server

The service can be specified as public as it can connect using any IP address, or an IP address of a
specific interface. When accepting connections to any system IP address, the service is specified with the
CALLBYIP flag and an IP address of INADDR_ANY. When a private connection is desired, the service is
specified by the physical interface on which connections are allowed to occur. Because an IP address is
required to initialize the service, the RESOLVEIP flag should also be set in the latter case.

For example, the following code specifies that the HTTP server should run using the IP address
INADDR_ANY.
http_example()
{

CI_SERVICE_HTTP http;

bzero(&http, sizeof(http));
http.cisargs.IPAddr = INADDR_ANY;
http.cisargs.pCbSrv = &ServiceReport;

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_HTTP, 0,
sizeof(http), (UINT8 *)&http, 0);

}

The above code is all that is required when using the configuration system to invoke this service.

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

httpOpen Start the HTTP Server

Syntax HANDLE httpOpen(NTARGS *pNTA, NTPARAM_HTTP *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services.

pNTP Pointer to HTTP client parameter structure.

Return Value Returns a handle to the HTTP Server instance, or NULL if the HTTP Server task could
not be created. This handle is used with httpClose() to shut down the client when it is no
longer needed.

Description httpOpen() starts the HTTP server process. This process will create a connection to the
HTTP Port and listen. When a connection is made, another task will be created to
service the request.

httpClose Destroy an instance of the HTTP Server

Syntax void httpClose(HANDLE hHTTP);

Parameters

hHTTP Handle to a HTTP server instance obtained from httpOpen()

Return Value None.

Description Destroys the instance of the HTTP Server indicated by the supplied handle. Once called,
the Server is shut down.

SPRU524C–January 2007 Network Tools Library - Services 117
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.6 DNS Server Service

6.6.1 Synopsis

6.6.2 Operation

6.6.3 DNS Server Parameter Structure

6.6.4 Specifying Service Using the Configuration

6.6.5 Invoking the Service via NETTOOLS API

DNS Server Service

The DNS server service allows clients on a home network to resolve host names and addresses for clients
on both the home and public networks.

The NDK contains a small DNS resolver that can resolve hostnames and addresses that are local to the
system via the configuration, or those outside the system by using an external DNS server.

The DNS server service described here allows the same internal DNS resolver to be accessed by clients
on a virtual (home) network. This allows clients on a home network to look up peers on the home network
using the same DNS server that is used for external lookups. Thus, DNS service for the home network is
transparent to these clients.

Because the DNS server service uses the same internal DNS resolver as the client services discussed
earlier, the server adds very little overhead to the system.

The DNS server service does not require a parameter structure.

The service can be specified as public because it can connect using any IP address, or an IP address of a
specific interface. When accepting connections to any system IP address, the service is specified with the
CALLBYIP flag and an IP address of INADDR_ANY. When a private connection is desired, the service is
specified by the physical interface on which connections are allowed to occur. Because an IP address is
required to initialize the service, the RESOLVEIP flag should also be set in the latter case.

For example, the following code specifies that the server should run using the IP address INADDR_ANY.
dns_server_example()
{

CI_SERVICE_DNSSERVER dnss;

bzero(&dnss, sizeof(dnss));
dnss.cisargs.IPAddr = INADDR_ANY;
dnss.cisargs.pCbSrv = &ServiceReport;

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DNSSERVER, 0,
sizeof(dnss), (UINT8 *)&dnss, 0);

}

The above code is all that is required when using the configuration system to invoke this service.

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

118 Network Tools Library - Services SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.7 Network Address Translation (NAT) Service

6.7.1 Synopsis

6.7.2 Operation

DNSServerOpen — Create an Instance of the DNS Server

DNSServerOpen Create an Instance of the DNS Server

Syntax HANDLE DNSServerOpen(NTARGS *pNTA);

Parameters

pNTA Pointer to common argument structure used by all services.

Return Value Returns a handle to the new server instance, or NULL if the service could not be
created. This handle is used with DNSServerClose() to shut down the server when it is
no longer needed.

Description Creates a DNS server task that can service external DNS requests using UDP.

DNSServerClose Destroy an Instance of the DNS Server

Syntax void DNSServerClose(HANDLE hDNSS);

Parameters

hDNSS Handle to DNS server instance obtained from DNSServerOpen()

Return Value None.

Description Destroys the instance of the DNS server indicated by the supplied handle. Once called,
the server is shut down. It waits for all spawned sessions to complete.

The NAT service allows for the establishment of a home virtual network that is isolated and protected from
the external public network. It provides a port based address translation function that allows all the clients
on the home network to share a single public IP address. Thus, multiple clients can share the same ISP
account.

The NDK contains both a network address translation module and an IP filtering model. When the
translation service is enabled, any packet received from a client on a virtual network that is destined for
the external public network is adjusted to use the stack's public IP client address.

The translation is performed by allocating a translation record and holding it for a period of time. The
translation records are timed out based on their protocol. In TCP, records are timed out based on the state
of their TCP connection. UDP and ICMP translations time out based on when they were last used.

In addition to translation, the stack contains an IP filter option (always enabled by this service) that filters
packets from the public network from being seen by the private network. For example, if someone on a
public network knew the IP address and the subnet mask of the router's (stack in route mode) private
network, it could set a gateway route to the router's public IP host address and the router would route
packets from the public to the private network and back (internally it does not distinguish between public
and private while routing). The IP filter prevents this. It also prevents an entity on a public network from
accessing protocol servers (like HTTP or Telnet) that are running on the private network. This allows the
router to present different HTTP or Telnet interfaces to the public than it does to clients in the home.

The NAT service is executed on the public interface - i.e., the interface that is assigned a valid public IP
host address (used to carry traffic for the virtual client addresses). There can only be one instance and
thus only one public IP address, but the service can serve multiple virtual (home) networks in the system
so long as they can be combined and still exclude the public IP. If the combination of these networks
results in an overlap with the public network, the service fails.

SPRU524C–January 2007 Network Tools Library - Services 119
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

6.7.3 NAT Server Parameter Structure

6.7.4 Specifying Service Using the Configuration

Network Address Translation (NAT) Service

For example, assume interface If-1 is connected to the physical network 128.32.12.x/255.255.255.0, and
there are two home networks (192.168.0.x/255.255.255.0) on If-2 and (192.168.1 .x/255.255.255.0) on
If-3. To run NAT on both home networks, the NAT interface would be If-1 (the public interface), and the
NAT group (virtual) network would be 192.168.0.0/255.255.254.0, which covers both home networks.

For more information on NAT operation, including how to program proxy filters, see Chapter B, Network
Address Translation.

The following structure defines the unique parameters of the NAT server service. It is located in the file:
inc\nettools\inc\natif.h.
//
// NAT Parameter Structure
//
typedef struct _ntparam_nat {

IPN IPVirt; // Virtual IP address
IPN IPMask; // Mask of virtual subnet
uint MTU; // NAT packet MTU (normally 1500 or 1492)
} NTPARAM_NAT;

IPVirt NAT Group virtual network address

IPMask Subnet mask of NAT Group virtual network

MTU IP MTU Limit (1500 for Ethernet, 1492 for PPPoE, etc.)

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

Because the NAT service executes on a specified public interface, it is never executed based on an IP
address. Thus, it cannot be used with the CALLBYIP flag in the standard configuration service structure.
In addition, because the public IP host address is required to initialize the service, the RESOLVEIP flag
should be set when the IP address is not pre-assigned.

For example, the following code specifies that the NAT service should run on the interface specified by the
physical index natIdx. Here, the DHCP client service is used to obtain the public IP address (the address
assigned to natIdx), so at this point the IP address is unknown. Thus, the RESOLVEIP flag is set in the
execution mode parameter. This informs the configuration service manager not to invoke NAT until it has
resolved an IP address for the target interface. The RESTART flag is also set to tell the service to restart
NAT if a public IP address is lost and regained. In this example, it is assumed that all networks in the
192.168.x.x/255.255.0.0 subnet are part of the NAT group to be translated.

The MTU parameter to the NAT configuration allows the programmer to set a limit on the MTU negotiated
during a TCP connection. This prevents TCP packet traffic from being unnecessarily fragmented. For
example, when routing between Ethernet and PPPoE over NAT, the MTU should be set to the smaller
MTU of the two, which is PPPoE's limit of 1492. In the example below, it is assumed that the system is
Ethernet to Ethernet, and thus, it uses the full 1500.
nat_service_example()
{

CI_SERVICE_NAT nat;

bzero(&nat, sizeof(nat));

// Do not start NAT until we resolve an IP address on its IF
nat.cisargs.Mode = CIS_FLG_IFIDXVALID |

CIS_FLG_RESOLVEIP | CIS_FLG_RESTARTIPTERM;
nat.cisargs.IfIdx = natIdx;
nat.cisargs.pCbSrv = &ServiceReport;

120 Network Tools Library - Services SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

6.7.5 Invoking the Service via NETTOOLS API

// Include all 192.168.x.x addresses in NAT group
nat.param.IPVirt = htonl(0xc0a80000);
nat.param.IPMask = htonl(0xffff0000);
nat.param.MTU = 1500;

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_NAT, 0,
sizeof(nat), (UINT8 *)&nat, 0);

}

The above code is all that is required when using the configuration system to invoke this service.

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

NATOpen Enable the NAT Service

Syntax HANDLE NATOpen(NTARGS *pNTA, NTPARAM_NAT *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services.

pNTP Pointer to NAT parameter structure.

Return Value Returns a handle to the NAT instance (1), or NULL if the service could not be created.
This handle is used with NATClose() to disable the service when it is no longer needed.

Description Enables the Network Address Translation Service. Although the function returns a
handle for compatibility with the standard NETTOOLS API, only one instance of the NAT
service is allowed.

This service utilizes the virtual and external network information using the configuration
system. If the configuration system was not used to create the network records, this
function will fail.

The NAT service executes on a specific public interface. Thus, it is compatible with
NT_MODE_IFIDX only.

NATClose Disable the NAT Service

Syntax void NATClose(HANDLE hNAT);

Parameters

hNAT Handle to NAT service obtained from NATOpen()

Return Value None.

Description Disables the NAT service.

Appendix A
SPRU524C–January 2007

Internal Stack Functions

SPRU524C–January 2007 Network Tools Library - Services 121
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

In the source code to the network control functions, there are several calls to internal
stack functions. This is similar to calling the kernel in other operating environments.
This section contains a partial list of internal stack functions provided to aid in the
comprehension of kernel oriented calls.

Note the following points for this section:

1. This section is required only for system programming that needs low level access to
the stack for configuration and monitoring. This API does not apply to general
sockets application programming.

2. In addition to the internal functions described here, there are scheduling and
configurations tools available that make any direct coding to these functions
unnecessary.

Topic .. Page

A.1 Overview .. 123
A.2 Stack Executive (Exec)... 124
A.3 Packet Buffer Manager (PBM) Object ... 125
A.4 Packet Buffer Manager Queue (PBMQ) Object 129
A.5 Stack Event (STKEVENT) Object ... 131
A.6 Link Layer Information (LLI) Object ... 132
A.7 Interface (IF) Object ... 134
A.8 Ether Object.. 136
A.9 Binding Object .. 139
A.10 Route Object... 140
A.11 Route Control Object ... 147
A.12 Configuring the Stack .. 150
A.13 Network Address Translation.. 156
A.14 Obtaining Stack Statistics .. 157

Internal Stack Functions122 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.1 Overview

A.1.1 Interrupts and Preemption

A.1.2 Proper Use of the llEnter() and llExit() Functions

A.1.3 Objects

Overview

The control API is the collection of functions supplied in the stack library. The entire API is exposed,
although the vast majority of functions and objects will only be used internally to the stack.

It should be noted that no part of the stack is interrupt driven. Neither can any stack function be called at
interrupt time. All interrupt processing is performed in the HAL or OS libraries, and is thus
externally-defined code, which allows the development of a HAL/OS architecture that is best suited for a
given operating environment, without affecting the operation of the stack.

The stack may or may not be preempted, depending on the operating environment in use. A
non-preemptive architecture is possible because the stack code does not use polling loops nor make any
internal blocking type calls, but preemption is also supported.

The internal stack functions are not designed to be reentrant. This allows the stack to operate freely
without the concept of a critical section, which is implementation dependent and potentially detrimental to
real-time operation. Thus, access to stack functions must be strictly controlled. The form of this control is
dependant on the system environment, and is embodied as two low level OS library functions, llEnter()
and llExit(). These functions are called before and after a section of code where any stack functions are
called. For example:
llEnter();
StackFunction1();
StackFunction2();
llExit();

These functions can be thought of as entering and exiting kernel mode.

To make normal user functions appear to be re-entrant, some user functions (like the sockets API) make
internal calls to llEnter() and llExit() when calling into the stack. If an application needs to call both user
functions and internal stack functions, care must be taken so that standard user functions are not called
between an llEnter() / llExit() pair (this would cause an error if they in turn called llEnter()).

The following are good general guidelines:

• Always call llEnter() before calling a stack function, and llExit() when done calling stack functions.
• Try and keep all code that requires llEnter() and llExit() in a single module. They are only required for

system maintenance.
• Do not call a normal user function (like a socket function) between an llEnter()/llExit() pair.
• Never call llEnter() or llExit() from an ISR.

Many of the control API functions deal with object handles. These handles are created by a variety of
class functions contained in the stack. When using an object handle, it is important to realize how the
object handle will be treated by the function being called.

Associated with every object is the concept of who owns it, who is using it, and who will eventually free it.
In general, when an application creates an object, the application owns it, the application is the only one
using it, and the application must eventually free it. Unfortunately, the matter becomes somewhat
confused when object handles are shared between applications — especially when the scope of the
handle creator may be shorter than the handle itself.

SPRU524C–January 2007 Internal Stack Functions 123
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.2 Stack Executive (Exec)

A.2.1 Synopsis

A.2.2 API Functions

Stack Executive (Exec)

In this system, there are two basic object types:

• Static Objects - The static object is one that is created by a designated task, and destroyed by that
task or a task where the object has been passed. In most cases, the task that created the object also
destroys it.

• Referenced Objects - A referenced object is one that may be used by other tasks after the original
creator is through with it. This type of handle is useful when an object is needed for a task of
indeterminate length, where the creator of the handle does not need or may not be able to track it.
Under the referenced handle scheme, all tasks that access the object handle make a specific RefXxx()
call so that references may be tracked. Whenever a task is finished with the handle, it calls the object's
de-reference function. The object is not freed until the reference count reaches zero.

At the heart of the stack is the Executive API (Exec). The Executive acts as a message dispatcher for the
internal stack components. This action is mostly hidden from the application, but there are some public
functions.

ExecOpen Prepare the System for Execution

Syntax void ExecOpen();

Description Prepares the stack for execution by initializing the individual components. Until
ExecOpen() is called, the system cannot do any work, but after calling this function,
objects like routes and bindings can be created.

ExecClose Shutdown Stack and Cleanup

Syntax void ExecClose();

Description Completes stack execution. This function is called to perform final clean up on the
system after all user objects (like devices and bindings) have been destroyed.

ExecLowResource Signal Low Resource Condition

Syntax void ExecLowResource();

Description Informs the stack that memory resources are getting dangerously low. As a result of this
call, the stack will abandon certain operations that hold excessive resources. (Pending
ARP packets are thrown away, IP packet fragments pending reassembly are abandoned,
etc.)

ExecTimer Signal 1/10th Second Timer Tick

Syntax void ExecTimer();

Description This function is called ten times a second to inform the stack that one tenth of a second
has elapsed. This function is called from a normal task thread, never an ISR. In theory,
the function can be called from anywhere, but in practice, it is always called from a
scheduler thread that also handles network packets. For more information, see the
description of the NETCTRL functions in the TMS320C6000 Network Developer's Kit
(NDK) Software User's Guide (SPRU523).

Internal Stack Functions124 SPRU524C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.3 Packet Buffer Manager (PBM) Object

A.3.1 Synopsis

A.3.2 Object Type

A.3.3 API Function Overview

Packet Buffer Manager (PBM) Object

The NDK uses a common packet buffer object that is managed by a module called the packet buffer
manager (PBM). The implementation of this manager determines the buffer strategy for the entire system.

Internally, the packet buffer objects are pointers to a structure of type PBM_Pkt; however, the buffers are
abstracted into a handle of type PBM_Handle for use by code outside of the NDK. This helps protect the
reserved members of the packet buffer structure from being misused.

Static - PBM objects are owned by a single entity and destroyed by their owner. Ownership of a packet
buffer changes as it is passed via function calls.

The PBM API functions are as follows:

Initialization/Shutdown Functions:

PBM_open() Open the Packet Buffer Manager

PBM_close() Close the Packet Buffer Manager

Create/Destroy Functions:

PBM_alloc() Create New Packet Buffer

PBM_free() Destroy (Free) Packet Buffer

PBM_copy() Create an exact copy of the Packet Buffer

Property Functions:

PBM_getBufferLen() Get the length of the physical data buffer

PBM_getDataBuffer() Get a pointer to the physical data buffer

PBM_getValidLen() Get the length of the valid data in the buffer

PBM_getDataOffset() Get the buffer offset to the start of the valid data

PBM_getIFRx() Get the device handle of the ingress Ethernet device

PBM_setValidLen() Set the length of the valid data in the buffer

PBM_setDataOffset() Set the buffer offset to the start of the valid data

PBM_setIFRx() Set the device handle of the ingress Ethernet device

SPRU524C–January 2007 Internal Stack Functions 125
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.3.4 API Function Description

PBM_open — Open the Packet Buffer Manager

PBM_open Open the Packet Buffer Manager

Syntax uint PBM_open();

Parameters None.

Return Value Function returns 1 on success, and 0 on failure.

Description This function is called once to open the PBM module and allow it to initialize its internal
queues.

PBM_close Close the Packet Buffer Manager

Syntax void PBM_close();

Parameters None.

Return Value None.

Description This function is called at system shutdown to allow the PBM module to shut down and
free any memory it has allocated.

PBM_alloc Create New Packet Buffer

Syntax PBM_Handle PBM_alloc(uint MaxSize);

Parameters

MaxSize Maximum size of the physical data buffer required

Return Value Handle to the packet buffer or NULL on memory allocation error.

Description This function is called to create a new packet buffer handle. When first created, the
packet is entirely uninitialized, except for the physical characteristics of the data buffer
(the buffer pointer and its physical length). The length of the buffer will be the same or
greater than that specified by the caller in MaxSize.

PBM_free Destroy (Free) Packet Buffer

Syntax void PBM_free(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer to free

Return Value None.

Description This function is called to destroy a packet buffer. When called, all objects associated
with the packet buffer are dereferenced or destroyed.

126 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

PBM_copy — Create an exact copy of the Packet Buffer

PBM_copy Create an exact copy of the Packet Buffer

Syntax PBM_Handle PBM_copy(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer to copy

Return Value Handle to the new copy of the packet buffer or NULL on memory allocation error.

Description This function makes a duplicate copy of a packet buffer. It is usually called to copy a
packet to be distributed to multiple destinations, or to be sent to multiple egress devices.

PBM_getBufferLen Get the Length of the Physical Data Buffer

Syntax uint PBM_getBufferLen(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value Length of the physical data buffer in bytes.

Description This function is called to get the length of the physical data buffer associated with the
packet buffer handle. Note that the buffer length is fixed for the life of the buffer and
cannot be changed.

PBM_getDataBuffer Get a Pointer to the Physical Data Buffer

Syntax UINT8 * PBM_getDataBuffer(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value Pointer to the physical data buffer.

Description This function is called to get a pointer to the physical data buffer associated with the
packet buffer handle. Note that the physical buffer is fixed and cannot be changed.

PBM_getValidLen Get the Length of the Valid Data in the Buffer

Syntax uint PBM_getValidLen(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value Byte length of the valid data stored in the packet buffer.

Description This function is called to get the length of the valid data currently held in the packet
buffer. When a packet buffer is created, it has no valid data, so this value is initially zero.

SPRU524C–January 2007 Internal Stack Functions 127
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

PBM_getDataOffset — Get the Buffer Offset to the start of the Valid Data

PBM_getDataOffset Get the Buffer Offset to the start of the Valid Data

Syntax uint PBM_getDataOffset(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value Byte offset from the start of the physical data buffer to the first byte of valid data.

Description This function is called to get the offset in bytes from the start of the physical data buffer
to the first byte of valid data. When a packet buffer is created, it has no valid data, so
this value is initially zero.

PBM_getIFRx Get the Device Handle of the Ingress Ethernet Device

Syntax HANDLE PBM_getIFRx(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value NULL for locally created packets, or a handle to the device on which the packet was
received.

Description This function is called to get the handle to the ingress device where the packet contained
in the packet buffer originated. Packet drivers in the HAL (both serial and Ethernet
based) record the logical handle associated with all incoming packets. This identifies the
packet type as well as the interface on which the packet was received.

PBM_setValidLen Set the Length of the Valid Data in the Buffer

Syntax void PBM_setValidLen(PBM_Handle hPkt, uint length);

Parameters

hPkt Handle to packet buffer

length Length of the valid data held in the packet buffer

Return Value None.

Description This function is called to set the length of the valid data in the packet buffer. It informs
the system of the number of bytes of valid data that are stored in the physical data
buffer. When a packet buffer is created, it has no valid data, so this value is initially zero.

128 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.4 Packet Buffer Manager Queue (PBMQ) Object

A.4.1 Synopsis

A.4.2 Object Type

A.4.3 API Function Overview

PBM_setDataOffset — Set the Buffer Offset to the Start of the Valid Data

PBM_setDataOffset Set the Buffer Offset to the Start of the Valid Data

Syntax void PBM_setDataOffset(PBM_Handle hPkt, uint offset);

Parameters

hPkt Handle to packet buffer

offset Offset from start of data buffer to valid data

Return Value None.

Description This function is called to set the offset in bytes from the start of the physical data buffer
to the first byte of valid data. It informs the system of where valid data is stored in the
physical data buffer. When a packet buffer is created, it has no valid data, so this value
is initially zero.

PBM_setIFRx Set the Device Handle of the Ingress Ethernet Device

Syntax void PBM_getIFRx(PBM_Handle hPkt, HANDLE hDevice);

Parameters

hPkt Handle to packet buffer

hDevice Handle to packet ingress device

Return Value None.

Description This function is called to set the handle to the ingress device where the packet contained
in the packet buffer originated. Packet drivers in the HAL (both serial and Ethernet
based) record the logical handle associated with all incoming packets. This identifies the
packet type, as well as the interface on which the packet was received.

The PBM module also includes a queue object that can be used to queue packet buffers for later use. The
queue is a first in first out system, so it can be used to queue in-order packets as well as free buffers.

The PBMQ object is just a structure of type PBMQ. Once this structure is declared and initialized, it is
ready for use.

Static - PBMQ objects are owned by a single entity and destroyed by their creator.

The PBM API functions are as follows:

PBMQ_init() Initialize a PBMQ object for use

PBMQ_count() Return the number of PBM packet buffers on the queue

PBMQ_enq() Enqueue a PBM packet buffer onto the queue

PBMQ_deq() Dequeue a PBM packet buffer off the queue

SPRU524C–January 2007 Internal Stack Functions 129
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.4.4 API Function Description

PBMQ_init — Initialize a PBMQ Object for Use

PBMQ_init Initialize a PBMQ Object for Use

Syntax void PBM_init(PBMQ *pQ);

Parameters

pQ Pointer to a structure of type PBMQ

Return Value None.

Description This function is called once to initialize a PBMQ structure for use.

PBMQ_count Return the Number of PBM Packet Buffers on the Queue

Syntax uint PBM_count(PBMQ *pQ);

Parameters

pQ Pointer to a structure of type PBMQ

Return Value Number of queued buffers.

Description This function is called once to return the number of PBM packet buffers currently on the
indicated queue.

PBMQ_enq Enqueue a PBM Packet Buffer onto the Queue

Syntax void PBM_enq(PBMQ *pQ, PBM_Handle hPkt);

Parameters

pQ Pointer to a structure of type PBMQ

hPkt Handle to PBM packet buffer to add to queue

Return Value None.

Description This function is called to add the supplied PBM packet buffer to the indicated queue.

PBMQ_deq Dequeue a PBM Packet Buffer Off the Queue

Syntax PBM_Handle PBM_deq(PBMQ *pQ);

Parameters

pQ Pointer to a structure of type PBMQ

Return Value Handle to PBM packet buffer, or NULL on empty queue.

Description This function is called to remove a PBM packet buffer from the indicated queue. The
function returns a handle to the PBM packet buffer removed from the queue, or NULL if
the queue was empty.

Internal Stack Functions130 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.5 Stack Event (STKEVENT) Object

A.5.1 Synopsis

A.5.2 Object Type

A.5.3 API Function Overview

A.5.4 API Function Description

Stack Event (STKEVENT) Object

Although technically not part of the NDK, the STKEVENT event object is a central component to the low
level architecture. It ties the HAL layer to the network scheduler thread. The network scheduler thread
waits on events from various device drivers in the system including the Ethernet, serial, and timer drivers.
The device drivers use the STKEVENT object to inform the scheduler that an event has occurred.

Static - The STKEVENT object is created and owned by the network scheduler.

The STKEVENT object is implemented entirely via #define MACROs and therefore, does not have a true
API. This allows the network scheduler to present an abstracted API to the HAL layer for network events.
The STKEVENT object is a simple structure and manipulated directly by the network control module
(NETCTRL). This is discussed further in the TMS320C6000 Network Developer's Kit (NDK) Software
User's Guide (SPRU523).

The two MACRO functions are as follows:

Property Functions:

STKEVENT_init() Initialize a new STKEVENT object to NULL

STKEVENT_signal() Signal a new STKEVENT event code

STKEVENT_init Initialize a new STKEVENT object to NULL

Syntax void STKEVENT_init(STKEVENT_Handle hEvent, SEM_Handle hSem)

Parameters

hEvent Handle to STKEVENT object

hSem Handle to SEM object to use in STKEVENT (if any)

Return Value None.

Description This function is called once to initialize the STKEVENT object so it is ready for use.

Note: This function is implemented as a multi-line macro, so care should be
taken when using it in the body of an if/else statement.

SPRU524C–January 2007 Internal Stack Functions 131
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.6 Link Layer Information (LLI) Object

A.6.1 Synopsis

A.6.2 Object Type

STKEVENT_signal — Signal a New STKEVENT Event Code

STKEVENT_signal Signal a New STKEVENT Event Code

Syntax void STKEVENT_signal(STKEVENT_Handle hEvent, uint EventCode, uint fHwAsynch)

Parameters

hEvent Handle to STKEVENT object

EventCode Type of event being signaled

fHwAsynch Flag indicating event triggered by an asynchronous hardware event
(e.g., ISR, PRD).

Return Value None.

Description This function is called from a device driver to signal an event to the network scheduler
for further processing. The STKEVENT handle hEvent is an event handle supplied to the
device driver when the driver is first initialized. The EventCode parameter specifies the
type of event. The currently defined events include the following:

STKEVENT_TIMER 100 ms Timer Tick Event

STKEVENT_ETHERNET One or more Ethernet packets received

STKEVENT_SERIAL One or more serial packets received

The fHwAsynch flag specifies whether the event was triggered by an external
asynchronous hardware source. Examples of asynchronous events include hardware
interrupts or timer PRDs. An example of a non-asynchronous event would be detecting
an event from within a driver service check function. Service check functions are called
periodically (or polled) by the scheduler.

Note: This function is implemented as a multi-line macro, so care should be
taken when using it in the body of an if/else statement.

To make full use of the stack objects described in this section, it is necessary to understand some of the
stack's basic building block components. One such component is the Link Layer Information Object, or LLI
for short.

An LLI object is an ARP table entry. This implementation of the IP stack combines the traditional route
table and ARP table into a single table with a single API. Routes that need to use the ARP function
include an ARP status object, called LLI. Normally, you only use an LLI object to inspect the ARP status of
the route table.

Static - LLI objects are owned and destroyed by their creator.

Internal Stack Functions132 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.6.3 API Function Overview

A.6.4 API Functions

LLIGetMacAddr — Get the Mac Address Associated with this LLI

The LLI API functions are as follows:

LLIGetMacAddr() Get the Mac Address Associated with this LLI

LLIValidateRoute() Free an LLI

LLIGetMacAddr Get the Mac Address Associated with this LLI

Syntax uint LLIGetMacAddr(HANDLE hLLI, UINT8 *pMacAddr, uint MaxLen);

Parameters

hLLI Handle to LLI object

pMacAddr Pointer to buffer to write Mac address data

MaxLen Maximum byte length of buffer (must be at least 6)

Return Value Returns 1 if the Mac address for the LLI is valid and it was successfully written to the
supplied buffer.

Returns 0 if the LLI does not contain a valid Mac address, or one of the calling
parameters is invalid.

Description This function is called to return the six byte Mac address associated with the LLI. It is
used in system programming to obtain the hardware address from an LLI contained in a
route entry.

LLIValidateRoute Validate an IP Address/MAC Address Pairing in the Route Table

Syntax HANDLE LLIValidateRoute(HANDLE hIF, IPN IPAddr, UINT8 *MacAddr);

Parameters

hIF Handle to the interface on which the target IP address/MAC address
appears

IPAddr IP address to validate

MacAddr Six byte MAC address corresponding to the supplied IP address

Return Value Referenced handle to route or NULL if there was no room to create the entry.

Description This function is called to create or update an entry in the stack route table for the
supplied IP address. The entry for the given IP address is marked as valid, and assigned
the supplied MAC address. Packets sent to the IP address will be assigned the given
MAC address, and no ARP request will be sent.

This function also updates the route in the LLI (ARP) expiration list. It allows an
application to change the state of the ARP entry even if the stack has already created
the route. It should be used when it is unclear if the route (really ARP table entry)
already exists or not.

Note that this function returns a referenced route handle. This handle must be
dereferenced using the RtDeRef() function when it is no longer required. Because the
route is treated as a standard ARP entry (with a standard expiration time as supplied in
the configuration structure), the route can be dereferenced immediately.

SPRU524C–January 2007 Internal Stack Functions 133
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.7 Interface (IF) Object

A.7.1 Synopsis

A.7.2 Object Type

A.7.3 API Function Overview

A.7.4 API Function Description

Interface (IF) Object

The Interface (or IF) object is an abstraction of any physical interface in the system capable of transmitting
and receiving packet (PKT) objects. In the current software, an interface object can represent either a PPP
based device or an Ethernet (Ether) based device. However, there is no interface object, but rather PPP
device objects and Ether device objects can both be treated as IF type objects for a small collection of
functions. This section documents these API functions.

The IF object API covers three general areas. First, it provides a couple of generic functions to obtain
information about a device, such as its type, MTU, etc.. In addition, the API also tracks physical device
indices for device handles, and mapping from one to the other. This is useful for the application
programming environment and configuration system, which deals in device indices instead of device
handles. The last function of the IF API is to provide a generic way of creating packets for the system,
keeping track of all device's header and padding requirements.

Static - IF objects represent PPP or Ether objects, which are created and destroyed by the same entity.

The following is a complete list of the IF object API. Some of these functions are only called from physical
device objects like Ether or PPP.

IFInit() Initialize handle to index mapping tables

IFIndexNew() Allocate a new physical index for a device handle

IFIndexFree() Free a previously allocated physical index

IFMaxIndex() Get the highest device index currently in use

IFIndexGetHandle() Get the device handle corresponding to a physical index

IFGetIndex() Get a physical index corresponding to a device handle

IFGetType() Get the interface handle type

IFGetMTU() Get the MTU of a device

IFSetPad() Set device header and padding requirements

IFCreatePacket() Create a packet object for transmission

IFInit Initialize Handle to Index Mapping Tables

Syntax void IFInit();

Return Value None.

Description This function is called from ExecOpen(), before any physical devices are initialized. It will
prepare the IF system to correctly process IFIndexNew() commands that are called
when Ether and PPP devices are created.

134 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

IFIndexNew — Allocate a New Physical Index for a Device Handle

IFIndexNew Allocate a New Physical Index for a Device Handle

Syntax uint IFIndexNew(HANDLE hIF, uint Index);

Return Value Allocated device index, or NULL on error.

Description This function is called from PPP and Ether when new physical device handles are
created. IF allocates and returns a physical Index for the supplied device handle. If a
specific index is required, it is passed in the Index parameter, otherwise Index is set to
NULL.

IFIndexFree Free a Previously Allocated Physical Index

Syntax void IFIndexFree(uint Index);

Return Value None.

Description This function is called from PPP and Ether when physical device handles are destroyed.
IF frees the supplied physical Index, and can reallocate it in future calls to IFIndexNew().
The Index should not be used once freed.

IFMaxIndex Get the Highest Device Index Currently in Use

Syntax uint IFMaxIndex();

Return Value Maximum logic device index currently in use.

Description This function returns the highest device index that is currently in use in the system.
When there are no holes in the index map, this value is also the number of devices
currently active.

IFIndexGetHandle Get the Device Handle Corresponding to a Physical Index

Syntax HANDLE IFIndexGetHandle(uint Index);

Return Value Handle to device corresponding to supplied index, or NULL on error.

Description This function is called to convert a physical device index to a device handle.

IFGetIndex Get the Physical Index Corresponding to a Device Handle

Syntax uint IFGetIndex(HANDLE hIF);

Return Value Physical device index corresponding to supplied device handle, or NULL on error.

Description This function is called to convert a device handle to a physical device index.

IFGetType Get the Interface Handle Type

Syntax uint IFGetType(HANDLE hIF);

Return Value Handle type of supplied handle.

Description This function is called to get the handle type of the supplied device handle. When called
correctly, the return value should be one of the following:

HTYPE_ETH Ether Device

HTYPE_PPP PPP Device

SPRU524C–January 2007 Internal Stack Functions 135
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.8 Ether Object

A.8.1 Synopsis

A.8.2 Object Type

A.8.3 API Function Overview

IFGetMTU — Get the MTU of a Device

IFGetMTU Get the MTU of a Device

Syntax uint IFGetMTU(HANDLE hIF);

Return Value MTU of the device indicated by the supplied handle.

Description This function is called to get the MTU (maximum transmit unit) size of the indicated
device. The MTU value does not include the device's layer 2 header. Thus, for Ethernet
and serial PPP, the MTU will normally be 1500; however, for protocols like PPPoE, the
MTU will be smaller.

IFSetPad Set Device Header and Padding Requirements

Syntax void IFSetPad(uint Header, uint Padding);

Return Value None.

Description This function is called by a physical device object to set the layer 2 header and padding
requirements for a packet. For example, with Ethernet, the header is normally 14. Plus, if
the Ethernet checksum appears in the packet body, the value of padding is 4.

IFCreatePacket Create a Packet Object for Transmission

Syntax HANDLE IFCreatePacket(uint size);

Return Value Handle to new packet buffer (PBM), or NULL on allocation error.

Description This function is probably the most useful of the IF functions. It is called to create a
packet object to send packets out of the stack. It uses information collected from the
physical devices to create a packet that can be transmitted on any of the physical
devices in the system. It does this by applying worst case header and padding sizes.
The handle returned by this function references a packet buffer created by the packet
buffer manager (PBM). The packet buffer object is described in Section A.3. This
function is preferred over calling PBM_alloc() because it sets up the packet for use by
the stack. The data offset property is set to where the IP header should be placed. This
offset guarantees that the packet can be transmitted on any packet device in the system.

The Ether object is really just the generic portion of the packet driver. It knows how to process an Ethernet
MAC header, and handles incoming and outgoing packets. It interfaces directly to the HAL packet driver.
For each Ethernet based packet device in the system, an Ether object is created to represent this device
to the stack.

Static - Ether objects are generally created and destroyed by the same entity.

The following is a complete list of the Ether object API.

Create/Destroy Functions:

EtherNew() Create New Ether Object

EtherFree() Destroy Ether Object

EtherConfig() Configure Ether Object Header Parameters

136 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.8.4 API Functions

EtherNew — Create New Ether Object

Addressing Functions:

EtherGetMacAddr() Get the Device's Unicast MAC Address

EtherAddMCast() Add Multicast Ethernet Address

EtherDelMCast() Delete Multicast Ethernet Address

EtherClearMCast() Clear All Multicast Ethernet Addresses

Filtering Functions:

EtherSetPktFilter() Set Receive Packet Filter Value

EtherGetPktFilter() Get Current Receive Packet Filter Value

Hardware Event Functions:

EtherRxPacket() Indicate a New Rx Packet to the Ether Object

Although the Ether object API is larger than that discussed here, this section covers the portion of the API
that is useful to a system application.

EtherNew Create New Ether Object

Syntax HANDLE EtherNew(uint PhysIndex);

Return Value Returns a handle to the Ether object, or NULL on a memory allocation error.

Description Installs a new Ether object in the system. This call should be made for every ethernet
device installed. Once called, the stack will make calls to the HAL packet driver interface
to get more information about the device. The argument is the physical device id used by
the HAL to identify the device.

EtherFree Destroy Ether Object

Syntax void EtherFree(HANDLE hEther);

Description Destroys the indicated Ether object, and frees its associated memory. This function
should be called to remove devices after the stack has shut down. Calling this function
will not result in any calls to the HAL.

EtherConfig Configure Ether Object

Syntax void EtherConfig(HANDLE hEther, uint PhysMTU, uint EthHdrSize, uint OffDstMac, uint
OffSrcMac, uint OffEthType, uint PacketPad);

Description Describes to the Ether object how the Ethernet header is constructed on this device.
Although the MAC address is assumed to be 6 bytes long, various devices have a small
variety of packet variances. The Ether device object must know this information to both
process and construct packets in buffers that are native to the physical device.

The arguments are defined as follows:

PhysMTU Physical MTU of the packet (usually 1514)

EthHdrSize Minimum (non-802.2 SNAP) header size (usually 14)

OffDstMac Byte offset from header start to DST Mac Addr (usually 0)

OffSrcMax Byte offset from header start to Src Mac Addr (usually 6)

OffEthType Byte offset from header start to ether type (usually 12)

SPRU524C–January 2007 Internal Stack Functions 137
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

EtherGetMacAddr — Get the Device's Unicast MAC Address

PacketPad Required byte pad at end of frame (usually 0 or 4)

EtherGetMacAddr Get the Device's Unicast MAC Address

Syntax uint EtherGetMacAddr(HANDLE hEther, UINT8 *pMacAddr, uint MaxLen);

Description Called to retrieve the unicast MAC address of the physical Ethernet device. The MAC
address is written to the pointer pMacAddr. The maximum length of the buffer must be at
least 6 bytes and is specified in MaxLen. The function returns 1 on success and 0 on
failure.

EtherAddMCast Add Multicast Ethernet Address

Syntax uint EtherAddMCast(HANDLE hEther, UINT8 *pMCastAddr);

Description Called to add an Ethernet multicast address to the list of addresses to be received by the
Ethernet hardware when the Rx filter is set to ETH_PKTFLT_MULTICAST. The multicast
address is specified by the pointer pMCastAddr, pointing to a six byte MAC address. The
multicast address list can also be manipulated in its raw form at the llPacket layer (see
Section D.4).

EtherDelMCast Delete Multicast Ethernet Address

Syntax uint EtherDelMCast(HANDLE hEther, UINT8 *pMCastAddr);

Description Called to remove an Ethernet multicast address from the list of multicast addresses
previously added via a call to EtherAddMCast(). The multicast address to remove is
specified by the pointer pMCastAddr, pointing to a size byte MAC address. The multicast
address list can also be manipulated in its raw form at the llPacket layer (see
Section D.4).

EtherClearMCast Clear All Multicast Ethernet Addresses

Syntax void EtherClearMCast(HANDLE hEther);

Description Called to remove all Ethernet multicast addresses from the list of multicast addresses
previously added via a call to EtherAddMCast(). After calling this function, the Ethernet
adapter will not receive any multicast addresses when the Rx filter is set to
ETH_PKTFLT_MULTICAST or below. The multicast address list can also be
manipulated in its raw form at the llPacket layer (see Section D.4).

EtherSetPktFilter Set Receive Packet Filter Value

Syntax void EtherSetPktFilter(HANDLE hEther, uint PktFilter);

Description Called to indicate the level of filtering for Ethernet packets. By default, the driver is
opened with filter value: ETH_PKTFLT_MULTICAST. Valid filter values are as follows:

ETH_PKTFLT_NOTHING No Packets

ETH_PKTFLT_DIRECT Only directed Ethernet

ETH_PKTFLT_BROADCAST Directed plus Ethernet Broadcast

ETH_PKTFLT_MULTICAST Directed, Broadcast, and selected Ethernet
Multicast

ETH_PKTFLT_ALLMULTICAST Directed, Broadcast, and all Multicast

ETH_PKTFLT_ALL All packets

138 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.9 Binding Object

A.9.1 Synopsis

A.9.2 Object Type

A.9.3 BIND API Functions

EtherGetPktFilter — Get Current Receive Packet Filter Value

For selecting multicast addresses as the ETH_PKTFLT_MULTICAST level, see
EtherAddMCast().

EtherGetPktFilter Get Current Receive Packet Filter Value

Syntax uint EtherGetPktFilter(HANDLE hEther);

Description Called to retrieve the current level of filtering for Ethernet packets. See the description of
EtherSetPktFilter() for more information.

EtherRxPacket Indicate a New Rx Packet to the Ether Object

Syntax void EtherRxPacket(PBM_Handle hPkt);

Description Called to indicate the reception of a new packet to the corresponding Ether object. The
Ether object takes ownership of the indicated packet buffer, until it is returned via a call
to the packet buffer manager (PBM).

The argument hPkt is the handle of a standard packet buffer object. The valid data,
offset, and receiving interface fields must be valid. The packet buffer object is described
in Section A.3.

For a device object to live on the network, it must have an IP address and knowledge of its IP subnet. The
process of assigning an IP address and subnet to a device binds the device with the desired IP
addressing.

Static - Binding objects are generally created and destroyed by the same entity.

Although the Bind object API is larger than that discussed here, this section covers the portion of the API
that is encountered by a system application.

BindNew Create New IP Binding

Syntax HANDLE BindNew(HANDLE hIF, IPN IPAddr, IPN IPMask);

Return Value Returns a handle to the Bind object, or NULL on error.

Description Binds the indicated IP address and mask to the supplied Ether device. The handle to the
Ether device object is specified as hIF - or an handle to an interface, because the
interface may or may not be an Ethernet device (but always is in this version).

The IP address and mask arguments are given the type IPN, which is an unsigned 32 bit
value. IPN stands for IP Network format, meaning that the IP data must be supplied in
network format. If unsure of the network format for your hardware, use the htonl() macro
function on the native format (where 1.2.3.4 = = 0x01020304).

BindFree Destroy IP Binding Object

Syntax void BindFree(HANDLE hBind);

Description Destroys the indicated Bind object, and frees its associated memory. This function
removes the IP address and subnet association in the system route table. It has no
effect on the Ether object involved in the binding.

SPRU524C–January 2007 Internal Stack Functions 139
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.10 Route Object

A.10.1 Synopsis

A.10.2 Object Type

A.10.3 Route Entry Flags Definition

BindGetFirst — Start Enumeration of Binding Objects

BindGetFirst Start Enumeration of Binding Objects

Syntax HANDLE BindGetFirst();

Description Returns a handle to the first binding installed in the system (or NULL if no bindings
exist).

BindGetNext Continue Enumeration of Binding Objects

Syntax HANDLE BindGetNext(HANDLE hBind);

Description Returns a handle to the binding in the installed binding list that follows the indicated
binding (or NULL if no more bindings exist). Note that bindings are not internally kept in
chronological order in which they were installed.

BindGetIF Get the Ether Object that is Bound by this Binding Object

Syntax HANDLE BindGetIF(HANDLE hBind);

Description Returns a handle to the Ether object that is bound by this binding object. Note that a
binding is nothing more than an assignment of an Ether object to an IP address/network.

BindGetIP Get the IP Address/Network that is Bound by this Binding Object

Syntax void BindGetIP(HANDLE hBind, IPN *pIPHost, IPN *pIPNet, IPN *pIPMask);

Description Returns the IP address and mask as requested by the calling arguments. Any of the
pointer arguments can be NULL if the information is not required.

The arguments are defined as follows:

pIPHost Pointer to the local IP address assigned by this binding

pIPNet Pointer to the network assigned by this binding (IP address AND IP
Mask)

pIPMask Pointer to the subnet mask of the network assigned by this binding

The route manager maintains IP routing information. It is called by various routines to get and set route
information. A route object is a destination on the network. Locally, it consists of an egress interface and a
next hop IP address.

This section describes a subset of the route object. Flags, features, and API calls have been omitted for
simplicity. Also, documenting the entire API would require the documentation of other stack objects that
are not covered in this document.

Referenced - Route objects are referenced and dereferenced as needed. The object is removed when the
reference count reaches ZERO.

Associated with each route is a collection of entry/status flags. These flags indicate the type of route and
its status. Most system programming is not concerned with the route entry flags. They are listed here for
completeness. The definition of the various flags is as follows:

140 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Route Object

• FLG_RTE_UP - Entry is up
When set, indicates that the route is valid. The only time this flag is cleared is when the route is being
initialized, or when an error condition is signaled via RtSetFailure(). The flag is reset to TRUE by
calling RtSetFailure() with NULL failure code, or if the route is modified.

• FLG_RTE_EXPIRED - Entry is expired
When set, indicates that the route is expired. The flag cannot be cleared. A new route must be created.
Expired routes are never found, but a route cached by another entity may expire while it is being held.

• FLG_RTE_STATIC - Entry is static
This flag is set when a route should remain in the routing table even if it has no references. Various
routes can be static. Static routes are manually referenced by the system during create, and manually
de-referenced by the system during system shutdown.

• FLG_RTE_BLACKHOLE - Entry is a blackhole
When set, indicates that the route is a black hole. All packets destined for this address are silently
discarded.

• FLG_RTE_REJECT - Entry is rejected
When set, indicates that the route is to an invalid address. All packets destined for this address are
discarded with an error indication.

• FLG_RTE_MODIFIED - Route has been auto modified
When set, indicates that the route has been modified as a result of an ICMP redirect message. This
can occur only to GATEWAY routes, and only if ICMP modifications are enabled in the stack
configuration.

• FLG_RTE_DYNAMIC - Route has been auto created
When set, indicates that the route has been created as a result of an ICMP redirect message. ICMP
can only create GATEWAY routes, and may do so only if ICMP modifications are enabled in the stack
configuration.

• FLG_RTE_PROXYPUB - Reply to ARP with client's MAC address
This flag indicates that the router is a proxy publisher of another entity's MAC address. When set, the
ARP protocol will respond to ARP requests for the route's IP address with the supplied static MAC
address when the host is on the same IF device as the incoming ARP request. This allows support of
hosts that do not implement ARP but are on the same physical Ethernet network. PROXYPUB entries
are always created with a MAC address and contain a static LLI (link-layer info, i.e., ARP entry).

?. FLG_RTE_PROXY - Reply to ARP with router's MAC address
This flag indicates that the router is acting as a proxy for this host or network route. When set, the ARP
protocol will respond to ARP requests with its own MAC address for the associated IP host or network
when the network appears on a different IF device from the incoming ARP request. The MAC address
supplied in the reply is the local MAC of the ingress IF device. This technique tricks clients into sending
packets to the router when subnets are split across physical devices on a router.
One potential use applies when the stack is acting as a PPP server and Ethernet router. If a PPP client
is made part of the same IP subnet as an Ethernet based interface, the stack acts as the PPP client's
proxy so that Ethernet peers can communicate via ARP.

• FLG_RTE_CLONING - Cloning route to a local IP subnet
When set, indicates that the network route is a cloning route. Cloning routes clone (spawn to) host
routes when a route search is performed on a host address that is a member of the cloning route's
network (via the address and subnet mask). Cloned host routes take on most of the properties of their
parent network route, with the following alterations:

– Any MODIFIED or DYNAMIC flags are cleared.
– The STATIC flag is never set.
– The HOST flag is set and the netmask is set to 1s.
– The CLONING flag is cleared.

Note: Cloning routes are routes to a network (IP and subnet). These routes are added
automatically when an IP network is added to a device via a Bind object. Take care when
adding this type of route manually.

SPRU524C–January 2007 Internal Stack Functions 141
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.10.4 Route Entry Flags Guidelines

Route Object

• FLG_RTE_HOST - Host route (no subnet mask)
When set, indicates that the route entry is a host route. A host route has no subnet mask (or rather a
subnet mask of all 1's). When searching for a route, host routes always match before network routes
(but this behavior can be overridden).

• FLG_RTE_GATEWAY - Destination is available via a Gateway
When set, indicates that the host or network route is indirectly accessible via an IP gateway. For a
route with this flag set, the GateIP address is always valid. Most GATEWAY routes will also be network
routes; however, a host redirect from ICMP can create a host route with a different gateway than its
parent route. When searching for a route, gateway routes always match before host routes (but this
behavior can be overridden).

• FLG_RTE_IFLOCAL - IP address is Local to the stack
When set, indicates that the host route does not have a valid LLI (ARP) entry because the host is local
to the stack. The MAC address of this local IP host address can be obtained from the interface handle
associated with the route.

Note: Local routes are in the routing table to route packets that originate in the stack's upper
layers. When handling ARP requests and routing of incoming packets from outside the
stack, the IP address list published via the Bind object is used. The ARP will not respond
to, nor will the IP accept, packets addressed to an IP address that is not in the Bind list,
even if an IFLOCAL address entry exists in the route table. As with a cloning route, the
Bind object is the best way to create a local route.

See the following for some general guidelines to use when creating new routes. Use the definitions listed
above with the following legal flag combinations:

• Setting FLG_RTE_BLACKHOLE
FLG_RTE_REJECT - must be OFF

• Setting FLG_RTE_REJECT
FLG_RTE_BLACKHOLE - must be OFF

• Setting FLG_RTE_CLONING
FLG_RTE_HOST - must be OFF
FLG_RTE_GATEWAY - must be OFF
FLG_RTE_IFLOCAL - must be OFF

• Setting FLG_RTE_HOST
FLG_RTE_CLONING - must be OFF

• Setting FLG_RTE_GATEWAY
FLG_RTE_CLONING - must be OFF
FLG_RTE_IFLOCAL - must be OFF

• Setting FLG_RTE_IFLOCAL
FLG_RTE_HOST - must be ON
FLG_RTE_CLONING - must be OFF
FLG_RTE_GATEWAY - must be OFF

• Setting FLG_RTE_PROXYPUB
FLG_RTE_HOST - must be ON
FLG_RTE_CLONING - must be OFF
FLG_RTE_GATEWAY - must be OFF

• Setting FLG_RTE_PROXY
FLG_RTE_CLONING - must be OFF
FLG_RTE_GATEWAY - must be OFF

Internal Stack Functions142 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.10.5 API Functions

RtRef — Reference a Route

The Route API is the most extensive API that a system task uses outside of the stack routines
themselves. As with the other stack APIs, this guide does not document the entire API.

Calls that accept a CallFlags argument can be supplied with the FLG_RTF_REPORT flag to indicate that
the call should result in a route report to the route control object. The route control object is described later
in this section.

RtRef Reference a Route

Syntax void RtRef(HANDLE hRt);

Description Called to add one to the reference count of a route. An application that keeps a route it
did not create itself should reference the route before it uses it, and dereference it when
it is through.

RtDeRef Dereference a Route

Syntax void RtDeRef(HANDLE hRt);

Description Called to remove one from the reference count of a route. An application dereferences a
route when it is through with it. This is the same (to the application) as destroying the
route. The route is actually destroyed when its reference count reaches zero.

RtCreate Create New Route

Syntax HANDLE RtCreate(uint CallFlags, uint RtFlags, IPN IPAddr, IPN IPMask, HANDLE hIF,
IPN IPGateway, UINT8 *pMacAddr);

Parameters

CallFlags Call Type Flags

RtFlags Route Type Flags

IPAddr Destination IP address of route

IPMask Destination IP Mask of route (or NULL)

hIF Interface (or NULL)

IPGateway Gate IP address (or NULL)

pMacAddr Pointer to six byte MAC address (or NULL)

Call Flags

FLG_RTF_REPORT Reports new route (NEW)

Return Value Referenced handle to newly created route.

Description Called to create a new host or network route and add it to the route table. Existing routes
cannot be modified via this call.

Some flag combinations are incorrect, and the following rules are strictly enforced.

• FLG_RTE_UP flag is always SET.
• FLG_RTE_EXPIRED and FLG_RTE_MODIFIED flags are always CLEARED.
• If FLG_RTE_HOST is set, then the route is a host route and IPMask is ignored, and

FLG_RTE_CLONING cannot be set.
• If FLG_RTE_GATEWAY is set, then IPGateway must specify a valid (reachable) IP

address.
• If FLG_RTE_GATEWAY is not set, then hIF must be valid.
• If FLG_RTE_IFLOCAL is set, then the specified host address is local to this machine,

SPRU524C–January 2007 Internal Stack Functions 143
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

RtFind — Find a Route

and FLG_RTE_HOST must also be set, FLG_RTE_GATEWAY cannot be set, and
hIF must be valid.

• If FLG_RTE_CLONING is specified in Flags, the route is a cloning network route.
The IPMask argument must be valid, and neither FLG_RTE_HOST nor
FLG_RTE_GATEWAY may be set.

• If FLG_RTE_STATIC is specified in Flags, the route is referenced once by the route
code, and later dereferenced during shut down.

RtFind Find a Route

Syntax void RtFind(uint CallFlags, IPN IPAddr);

Call Flags

FLG_RTF_REPORT Reports any new (cloned) or unfound route (NEW or MISS)

Return Value Referenced handle to best match route (or NULL)

Description This call searches the route table for a route that matches the supplied IP address. The
search always returns the best match for a route. The best match is a match with the
most bits in the subnet mask. Thus, a host match takes priority over a network match.

When there is more than one route with the same subnet mask, the following matching
guidelines are used (listed from best to worst):

• Route has a local destination (occurs with host addresses only).
• Route has a gateway destination.
• Route has a subnet destination on a connected interface.

Sometimes a search is desired where particular matches are desired. The following flags
can be combined with the value of CallFlags to change the behavior of the search:

FLG_RTF_CLONE Clone a network route to a host route if host not found

FLG_RTF_HOST Find only non-gateway host routes

RtSetTimeout Set the Timeout for a Non-static Route

Syntax void RtSetTimeout(HANLE hRt, UINT32 dwTimeOut);

Description This call allows an application to specify that the stack should time out a referenced
route. When the route is added to the timeout list, the system will add a reference. Thus,
once the application sets the timeout value, it should call RtDeRef() to dereference the
route. The route will stay valid until the timeout value is exceeded, after which it is
dereferenced by the system. Note that if this function is called and the route is not
dereferenced by the caller, it will still be removed from the system route table when the
expiration time elapses, but the object will not be freed.

144 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

RtSetFailure — Set the Timeout for a Non-Static Route

RtSetFailure Set the Timeout for a Non-Static Route

Syntax void RtSetFailure(HANLE hRt, uint CallFlags, uint FailCode);

Call Flags

FLG_RTF_REPORT Reports the status change of the route (UP or DOWN)

Description This call allows an application to specify a particular error with a route, or clear a
previously indicated error. Setting an error clears the FLG_RTE_UP bit in the flags.
When use of the route is attempted, the specified error is returned. Defined error codes
for the FailCode argument are:

NULL Route is operating normally (sets FLG_RTE_UP flag)

RTC_HOSTDOWN Host is down

RTC_HOSTUNREACH Host unreachable

RTC_NETUNREACH Network unreachable

RtRemove Remove Route from System Route Table

Syntax void RtRemove(HANLE hRt, uint CallFlags, uint FailCode);

Call Flags

FLG_RTF_REPORT Reports the removal of the route (REMOVED)

Description This call allows an application to remove a route from the system route table
independently of any held references to the route. It is similar to the RtSetFailure() call,
but differs in two ways:

1. It removes the route from the system route table so that it can no longer be returned
by RtFind().

2. It calls the IP and Sockets layers to flush the route from any local cache.

Calling this function clears the FLG_RTE_UP bit in the flags. When use of the route is
attempted, the error specified in FailCode is returned. Defined error codes for the
FailCode argument are:

RTC_HOSTDOWN Host is down

RTC_HOSTUNREACH Host unreachable

RTC_NETUNREACH Network unreachable

RtGetFailure Set the Timeout for a Non-Static Route

Syntax uint RtGetFailure(HANLE hRt);

Return Value Failure code or NULL for normal operation.

Description This call allows an application to retrieve the error code of a route where the
FLG_RTE_UP bit is not set in the route flags. Defined error codes are:

RTC_HOSTDOWN Host is down

RTC_HOSTUNREACH Host unreachable

RTC_NETUNREACH Network unreachable

SPRU524C–January 2007 Internal Stack Functions 145
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

RtGetFlags — Get the Route Flags

RtGetFlags Get the Route Flags

Syntax uint RtGetFlags(HANLE hRt);

Description This function returns the state of the route flags for the indicated route. The flag values
and definitions were discussed earlier in this section.

RtGetIPAddr Get the Route IP Address

Syntax IPN RtGetIPAddr(HANLE hRt);

Return Value IP host/network address.

Description This function returns the specified route's IP address in network format.

RtGetIPMask Get the Route IP Subnet Mask

Syntax IPN RtGetIPMask(HANLE hRt);

Return Value IP subnet mask.

Description This function returns the specified route's IP subnet mask in network format.

RtGetGateIP Get the Route Gateway IP Address

Syntax IPN RtGetGateIP(HANLE hRt);

Return Value IP address of the Gateway or NULL.

Description This function returns the Gateway IP address for the specified route (assuming the
FLG_RTF_GATEWAY bit is set in the route flags).

RtGetIF Get the Route's Destination Hardware Interface

Syntax HANDLE RtGetIF(HANLE hRt);

Return Value HANDLE to Ether Object representing target interface.

Description This function returns an Ether device handle to the egress (target) device of the route.
Even local IP addresses have target devices (the device they are bound to).

RtGetMTU Get the MTU of a Packet Sent via this Route

Syntax uint RtGetMTU(HANLE hRt);

Return Value Packet payload MTU in bytes.

Description This function returns the MTU (not including layer 2 header) of a packet sent via the
supplied route.

RtWalkBegin Start Walking the Route Table

Syntax HANDLE RtWalkBegin();

Return Value HANDLE to first route in system route table or NULL if no routes.

Description This function initiates a walk of the route table. It returns the first route in the table. The
walk must be terminated with RtWalkEnd() for the system to behave properly.

RtWalkNext Get Next Route While Walking the Route Table

Syntax HANDLE RtWalkNext(HANDLE hRt);

Return Value HANDLE to next route in system route table or NULL if no routes.

146 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.11 Route Control Object

A.11.1 8.12.1 Synopsis

A.11.2 Route Control Messages

RtWalkEnd — Stop Walking the Route Table

Description This function gets the next route (based off the previous route supplied) in a walk of the
route table. The walk must be terminated with RtWalkEnd() for the system to behave
properly.

RtWalkEnd Stop Walking the Route Table

Syntax void RtWalkEnd(HANDLE hRt);

Description This function completes the walk of the route table. The last route (if any) obtained from
RtWalkBegin() or RtWalkNext() is specified in the calling argument. Otherwise, NULL is
used.

The route control object is more of a function than an object. It serves as a collection point for route
related information in the system. A routing daemon may use this information, or it could simply be logged
as debugging information.

When so configured, route control messages are transformed into debug messages by the stack and
logged via DbgPrintf(). By default, the route control debug messages are disabled. Also, the message
function can be hooked by an application.

Note, control messages can also be suppressed individually by not supplying the FLG_RTF_REPORT flag
to the Route object API function when the call is made (as mentioned in the previous section).

The basic form of the route control message is an unsigned int message value, with two unsigned 32 bit
values for additional data. In most cases these are immediate data. In one instance, the value is actually a
32 bit memory pointer.

Messages are passed internally to the stack via the function:
void RTCReport(uint Msg, UINT32 Param1, UINT32 Param2);

Applications should not call this function directly.

The possible values for Msg are as follows:

MSG_RTC_UP Route is Valid/Pending

Parameters

Param1 Route IP

Param2 Route IP Mask (all ones for host route)

Description Called after a down message indicating that a route that had previously been in the
down state is now up again. This does not mean that the route has been validated, but
only that it will attempt to validate itself if used.

MSG_RTC_DOWN Route is Down

Parameters

Param1 Route IP

Param2 Route IP Mask (all ones for host route)

SPRU524C–January 2007 Internal Stack Functions 147
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

MSG_RTC_MISS — Route Find "Missed" on Route

Description Called when a route goes down due to an error. Packets sent via a route in this state will
generate an error. The most common reason for a route to go down is for a
non-response to 5 successive ARP requests. In this case, the route will come back up
after the down time has expired.

MSG_RTC_MISS Route Find "Missed" on Route

Parameters

Param1 Route IP

Param2 Route IP Mask (all ones for host route)

Description Called when the route table was searched for a route and no matching route was found.
This message will never be sent when there is a default route in the table because all
searches will have a match (unless a special restricted search is performed).

MSG_RTC_NEW New Route has been Entered into the Route Table

Parameters

Param1 Route IP

Param2 Route IP Mask (all ones for host route)

Description Called when a new route is created and entered into the route table. Routes can be
created by applications, when new bindings are created, by ICMP redirects, or when
local host routes are cloned from local subnet routes.

MSG_RTC_EXPIRED Route has Expired

Parameters

Param1 Route IP

Param2 Route IP Mask (all ones for host route)

Description Called when a route with an expiration timeout has expired and been removed from the
table.

MSG_RTC_REMOVED Route has been Manually Removed

Parameters

Param1 Route IP

Param2 Route IP Mask (all ones for host route)

Description Called when a route has been manually removed from the table. This message is not
generated when static routes are removed at system shutdown. Generally, a route can
only be removed when its reference count reaches zero. This cannot happen to a static
route or a route with an expiration timeout. For the former, no message is ever
generated. For the latter, the MSG_RTC_EXPIRED message is used.

148 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

MSG_RTC_MODIFIED — Route has been Manually Modified

MSG_RTC_MODIFIED Route has been Manually Modified

Parameters

Param1 Route IP

Param2 Route IP Mask (all ones for host route)

Description Called when a route has been manually modified via the RtModify() call. The stack does
not use this function, so if it is not called by an application, this message will never
occur.

MSG_RTC_REDIRECT Route has been Redirected

Parameters

Param1 Route IP

Param2 New Destination Gateway IP

Description Called when an ICMP redirect message is received for a given IP host address.
Because the invention of classless subnets, all redirects are treated as HOST redirects.
If the stack is configured to generate redirect routes automatically (will do so by default),
this message will occur after the new static host redirect route has been created (which
will also generate a MSG_RTC_NEW message). If the stack does not create the redirect
route, this message occurs before the socket layer is notified so that if a new route is
created as a result of this message, the sockets layer will find it.

MSG_RTC_DUPIP A Duplicate IP Address has been Detected in the System

Parameters

Param1 Duplicated IP

Param2 Pointer to 6 byte MAC address of offending device

Description Called when an ARP packet is received from a device that has an IP address that is the
same as the IP address of the stack on that physical interface. Depending on the age of
the address, the application may wish to destroy the binding.

SPRU524C–January 2007 Internal Stack Functions 149
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.11.3 Route Control API Functions

A.12 Configuring the Stack

A.12.1 Synopsis

A.12.2 Configuration Structure

RTCAddHook — Hook RTC Messages

RTCAddHook Hook RTC Messages

Syntax uint RTCAddHook (void (*pfn)(uint, UINT32, UINT32));

Return Value 1 if the hook was installed, or NULL on an error (too many hooks).

Description Called to hook a message function to receive route control messages. The argument is a
pointer to a message function of the type:
void MyMsgFun(uint Msg, UINT32 Param1, UINT32 Param2);

Note that the supplied callback function is called from within an llExit()/llEnter() pair, and
thus may call the stack API directly, but may not call any applications API functions, like
sockets functions. If such action is required, the callback function may call llExit() when
called and then llEnter() before returning.

When the hook is no longer required, the function may be unhooked by calling
RTCRemoveHook().

RTCRemoveHook Unhook RTC Messages

Syntax void RTCRemoveHook (void (*pfn)(uint, UINT32, UINT32));

Return Value None.

Description Called to remove a previously hooked callback function.

The stack has multiple configuration options that can be changed by the system programmer. This is
possible by altering the default values in a stack configuration structure before the stack is initialized.

The stack internal configuration structure is _ipcfg. Any element in this structure may be modified before
the initial system call to ExecOpen(). This structure should not be modified after this initial call.

The _ipcfg structure is of type IPCONFIG, which is defined as follows:
typedef struct _ipconfig {

uint IcmpDoRedirect; // Update route table on ICMP redirect
uint IcmpTtl; // TTL for ICMP messages (RFC1700 says 64)
uint IcmpTtlEcho; // TTL for ICMP echo (RFC1700 says 64)
uint IpIndex; // IP Start Index
uint IpForwarding; // IP Forwarding (1 = Enabled)
uint IpNatEnable; // IP NAT Enable (1 = Yes)
uint IpFilterEnable; // IP Filtering Enable (1 = Yes)
uint IpReasmMaxTime; // Max reassembly time in seconds
uint IpReasmMaxSize; // Max reassembly packet size
uint IpDirectedBCast; // Look for directed Broadcast IP addresses
uint TcpReasmMaxPkt; // Max reassembly pkts held by TCP socket
uint RtcEnableDebug; // Enable Route Control Messages (1 = On)
uint RtcAdvTime; // Time in seconds to send Router Advertisments (0 = don't)
uint RtcAdvLife; // Litetime of route in Router Advertisments
int RtcAdvPref; // Preference Level (signed) in Router Advertisments
uint RtArpDownTime; // Time 5 failed ARPs keep Route down (sec)
uint RtKeepaliveTime; // VALIDATED route timeout (sec)
uint RtCloneTimeout; // INITIAL route timeout (sec)
uint RtDefaultMTU; // Default MTU for internal routes
uint SockTtlDefault; // Default Packet TTL

150 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

_ipcfg.IcmpDoRedirect — Update Route Table on ICMP Redirect

uint SockTosDefault; // Default Packet TOS
int SockMaxConnect; // Max Socket Connections
uint SockTimeConnect; // Max time to connect (sec)
uint SockTimeIo; // Default Socket IO timeout (sec)
int SockTcpTxBufSize; // TCP Transmit buffer size
int SockTcpRxBufSize; // TCP Receive buffer size (copy mode)
int SockTcpRxLimit; // TCP Receive limit (non-copy mode)
int SockUdpRxLimit; // UDP Receive limit
int SockBufMinTx; // Min Tx space for "able to write"
int SockBufMinRx; // Min Rx data for "able to read"
uint PipeTimeIo; // Default Pipe IO timeout (sec)
int PipeBufSize; // Pipe internal buffer size
int PipeBufMinTx; // Min Tx space for "able to write"
int PipeBufMinRx; // Min Rx data for "able to read"
uint TcpKeepIdle; // Keep idle time (0.1 sec units)
uint TcpKeepIntvl; // Keep probe interval (0.1 sec units)
uint TcpKeepMaxIdle; // Keep probe timeout (0.1 sec units)
uint IcmpDontReplyBCast; // Do NOT reply to ICMP Echo Request packets sent to broadcast

// or directed broadcast addresses.
uint IcmpDontReplyMCast; // Do NOT reply to ICMP Echo Request packets sent to

// multicast broadcast addresses.

} IPCONFIG;;

The structure entries are defined as follows:

_ipcfg.IcmpDoRedirect Update Route Table on ICMP Redirect

Default Value 1 (Yes)

Description When set, causes ICMP to automatically create a route to perform redirects on an IP
host to the gateway supplied in the redirect message. If set to false (0), you can take
whatever action you feel necessary as the ICMP redirect will also generate a route
control message.

_ipcfg.IcmpTtl TTL for ICMP Messages

Default Value 64

Description This is the TTL value ICMP will use in messages it generates as a result of routing IP
packets. Legal values are in the range of (1-255).

_ipcfg.IcmpTtlEcho TTL for ICMP ECHO Reply Messages

Default Value 255

Description This is the TTL value ICMP will use in echo reply messages it generates in response to
receiving echo requests. Legal values are in the range of (1-255).

_ipcfg.IpIndexStart IP Start Index

Default Value 1

Description This is the initial value that is placed in the IP Id field for IP packets generated by the
system. Legal values are in the range of (1-65535).

_ipcfg.IpForwarding IP Forwarding Enable

Default Value 0 (No)

Description When set to true (1), this allows the stack to forward packets it receives for other IP
address to their next hop destination (i.e., it allows the stack to act as a router).

SPRU524C–January 2007 Internal Stack Functions 151
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

_ipcfg.IpNatEnable — IP Network Address Translation Enable

_ipcfg.IpNatEnable IP Network Address Translation Enable

Default Value 0 (No)

Description When set to true (1), this allows the stack to make use of the network address
translation (NAT) module. Note that in addition to setting this structure element, NAT
must also be configured. This is described in the following section.

_ipcfg.IpReasmMaxTime Maximum IP Packet Reassembly Time in Seconds

Default Value 10

Description This is the maximum time that the stack will hold IP packet fragments while attempting to
assemble a complete packet. If the time expires before all the fragments arrive, the
packet is discarded.

_ipcfg.IpReasmMaxSize Maximum IP Packet Reassembly Packet Size in Bytes

Default Value 3020

Description This is the maximum packet size that the stack will attempt to reassemble. As soon as
the stack determines that the total packet size exceeds this value, the packet is
discarded. The default size of 3020 is the maximum size given the default
implementation of the packet buffer manager (PBM). If a larger size is desired, then
large buffer support must be added to the PBM module. This value is not otherwise
restricted. Note the MAC and IP headers are not included in this size limit.

_ipcfg.IpDirectedBCast Look for Directed Broadcast IP Packets

Default Value 1 (Yes)

Description A directed broadcast address is one where all the bits in the subnet portion of the
address are set to 1. For example, on the network 192.168.1.0:255.2555.255.0, the IP
address 192.168.1.255 would be a directed broadcast IP. This address is treated as a
broadcast for both IP send and receive. The IP layer can be told to disable directed
broadcast by setting this value to zero. When disabled, the directed broadcast address is
treated like any other host address.

_ipcfg.TcpReasmMaxPkt Maximum Reassembly Packets Held by TCP Socket

Default Value 2

Description The TCP layer has its own packet reassembly module, allowing TCP packets to arrive
out of order, and yet be properly reassembled without the need to retransmit data. One
potential issue with embedded environments where the socket receive buffers are large
is that a significant number of packets can be tied up in TCP if the first packet of a large
burst is lost. This value allows you to specify the maximum number of packets the TCP
layer will hold per socket pending reassembly, or in other words, the maximum number
of out of order packets allowed.

_ipcfg.RtcEnableDebug Enable Route Control Messages

Default Value 0 (No)

Description Route control messages keep the system informed of route updates. When set to Yes
(1), this variable causes RTC to process the route control message and convert the
message into a debug call to llDebugMessage(). Note that an application may also hook
into the RTC message loop using the RTCAddHook () function.

_ipcfg.RtcAdvTime Time in Seconds to Send Router Advertisments

152 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

_ipcfg.RtcAdvLife — Lifetime of Route in Router Advertisments

Default Value 0 (Do not Send Router Advertisements)

Description The stack has the ability to automatically send ICMP router advertisements at a
predetermined interval. Setting this variable to a non-zero value determines the interval.

_ipcfg.RtcAdvLife Lifetime of Route in Router Advertisments

Default Value 120

Description If sending router advertisements (see above), this is the route lifetime that will be sent in
the ICMP message.

_ipcfg.RtcAdvPref Preference Level of Route in Router Advertisments

Default Value 0

Description If sending router advertisements (see above), this is the route preference level that will
be sent in the ICMP message. This value is signed.

_ipcfg.RtDownTime Time in Seconds a Route is "Down" Due to Failed ARP

Default Value 20

Description To stop an application from sending endless packets to a route that is not responding to
ARP, the route is brought down for a period of time so that the application will receive an
error when IP attempts to send. After the designated time, the route is brought back up
and will attempt more ARP requests if used again.

_ipcfg.RtKeepAliveTime Time in Seconds a Validated Route is Held

Default Value 1200

Description Routes should not be held indefinitely. Use of a route is also not sufficient to keep the
route alive. This value represents the time an ARP validated route is held before it
expires. If the route is revalidated via ARP during this period, the period is extended for
this interval from that point in time.

_ipcfg.RtCloneTimeout Default Timeout in Seconds of a Cloned Route

Default Value 120

Description When a host route is first cloned from a network route, it is assigned this default timeout.
Once the route is validated via ARP, the timeout is extended (see above).

_ipcfg.RtDefaultMTU Default MTU for Local Routes

Default Value 1500

Description When a route is created, it gets its MTU from the egress device. However, if the route is
local to the system, there is no egress device. In this case, a default MTU is used.

_ipcfg.SockTtlDefault Default TTL for Packets Sent via a Socket

Default Value 64

Description This is the default IP packet TTL value of packets sent via a socket. Note that the
application can override this value with the sockets API.

_ipcfg.SockTosDefault Default TOS for Packets Sent via a Socket

Default Value 0

SPRU524C–January 2007 Internal Stack Functions 153
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

_ipcfg.SockMaxConnect — Maximum Connections on a Listening Socket

Description This is the default IP packet TOS value of packets sent via a socket. Note that the
application can override this value with the sockets API.

_ipcfg.SockMaxConnect Maximum Connections on a Listening Socket

Default Value 8

Description This is the maximum number of connections a socket will pend waiting for a sockets
accept() call from the application. Note: This value is also the upper bounds of the
maximum connection argument supplied by an application via the sockets listen()
function (calls with higher values are silently rounded down).

_ipcfg.SockTimeConnect Maximum Time in Seconds to Wait on a Connect

Default Value 80

Description This is the maximum amount to time the sockets layer will wait on an actively connecting
socket. The default value of 80 is a few seconds longer than the TCP keep time, so TCP
will generate the official (more accurate) timeout error.

_ipcfg.SockTimeIo Maximum Time in Seconds to Wait on Socket Read/Write

Default Value 0

Description This is the maximum amount of time the sockets layer will wait on a read or write
operation without any progress. For example, if the user calls send() with a very large
buffer, the function will not time out so long as some fraction of the data is sent during
the timeout period. After every successful transfer of data, the timeout period is reset. A
timeout value of ZERO means never time out.

_ipcfg.SockTcpTxBufSize TCP Transmit Buffer Size

Default Value 8192

Description This is the size of the TCP send buffer. A TCP send buffer is allocated for every TCP
socket. This value cannot be overridden by the sockets option function.

_ipcfg.SockTcpRxBufSize TCP Receive Buffer Size (Copy Mode)

Default Value 8192

Description This is the size of the TCP receive buffer allocated for a standard TCP socket. Note that
only SOCK_STREAM sockets use receive buffers. This value cannot be overridden by
the sockets option function.

_ipcfg.SockTcpRxLimit TCP Receive Limit (Non-Copy Mode)

Default Value 8192

Description This is the maximum number of cumulative bytes contained in packet buffers than can
be queued up at any given TCP based socket. Note that only TCP sockets using
SOCK_STREAMNC queue packet buffers directly to a socket. This value cannot be
overridden by the sockets option function.

_ipcfg.SockUdpRxLimit UDP Receive Limit

Default Value 8192

Description This is the maximum number of cumulative bytes contained in packet buffers than can
be queued up at any given UDP or RAW based socket. This value cannot be overridden
by the sockets option function.

154 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

_ipcfg.SockBufMinTx — Min Size in Bytes for Socket "Able to Write"

_ipcfg.SockBufMinTx Min Size in Bytes for Socket "Able to Write"

Default Value 2048

Description This is the size in bytes required to be free in the TCP buffer before it is regarded as
able to write by the system. (Affects how the write fd set behaves in a select() call.) This
value is usually about 25% to 50% of the send buffer size. UDP and RAW IP sockets are
always able to write.

_ipcfg.SockBufMinRx Min Size in Bytes for Socket "Able to Read"

Default Value 1

Description This is the size in bytes required to be present in a socket buffer for it to be regarded as
able to be read by the system. (Affects how the read fd set behaves in a select() call.)
Alter at your own risk.

_ipcfg.PipeTimeIo Maximum Time in Seconds to Wait on Pipe Read/Write

Default Value 0

Description This is maximum amount to time the file layer will wait on a read or write operation on a
pipe without any progress. For example, if the user calls send() with a very large buffer,
the function will not time out as long as some fraction of the data is sent during the
timeout period. After every successful transfer of data, the timeout period is reset. A
timeout value of ZERO means never time out.

_ipcfg.PipeBufSize Size in Bytes of Each End of a Pipe Buffer

Default Value 1024

Description This is the size of a Pipe send and receive buffer. This value is only examined when
pipes are created, so changing this value will not affect the buffering of existing pipes.

_ipcfg.PipeBufMinTx Min Size in Bytes for Pipe Able to Write

Default Value 256

Description This is the size in bytes required to be free in the Pipe buffer before it is regarded as
able to write by the system. (Affects how the write fd set behaves in a select() call.) It is
usually about 25% to 50% of the send buffer size. This value is only examined when
pipes are created, so changing this value will not affect the buffering of existing pipes.

_ipcfg.PipeBufMinRx Min Size in Bytes for Pipe "Able to Read"

Default Value 1

Description This is the size in bytes required to be present in the Pipe receive buffer for it to be
regarded as able to be read by the system. (Affects how the read fd set behaves in a
select() call.) Alter at your own risk. This value is only examined when pipes are created,
so changing this value will not affect the buffering of existing pipes.

_ipcfg.TcpKeepIdle Keep Idle Time (0.1 Sec Units)

Default Value 72000 (2 hours)

Description This parameter only affects sockets that have specified the SO_KEEPALIVE socket
option. It is the time a TCP connection can be idle before KEEP probes are sent.

_ipcfg.TcpKeepIntvl Keep Probe Interval (0.1 Sec Units)

SPRU524C–January 2007 Internal Stack Functions 155
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.13 Network Address Translation

A.13.1 Synopsis

A.13.2 Operation

_ipcfg.TcpKeepMaxIdlealign — Keep Probe Timeout (0.1 Sec Units)

Default Value 750 (75 seconds)

Description This parameter only affects sockets that have specified the SO_KEEPALIVE socket
option. It specifies the time between probe intervals once TCP begins sending KEEP
probes.

_ipcfg.TcpKeepMaxIdlealign Keep Probe Timeout (0.1 Sec Units)

Default Value 6000 (10 minutes)

Description This parameter only affects sockets that have specified the SO_KEEPALIVE socket
option. It is the time the TCP will continue to send unanswered KEEP probes before
timing out the connection.

_ipcfg.IcmpDontReplyBCast Do NOT Reply to ICMP Echo Request Packets Sent to broadcast/directed
broadcast addresses

Default Value 0 (Reply to ICMP Echo Request packets sent to broadcast/directed broadcast
addresses)

Description When set, causes ICMP to not reply to ICMP Echo Request packets sent to broadcast or
directed broadcast addresses.

_ipcfg.IcmpDontReplyMCast Do NOT Reply to ICMP Echo Request Packets Sent to multicast
addresses

Default Value 0 (Reply to ICMP Echo Request packets sent to multicast addresses)

Description When set, causes ICMP to not reply to ICMP Echo Request
packets sent to multicast addresses.

The stack includes a small network address translation (NAT) function that can be used to setup virtual
networks when the stack is acting as a router. When enabled, NAT will translate routed packets sent from
or to a targeted virtual network.

NAT works by altering the TCP/UDP port numbers of a packet sent from a virtual network, and then using
an alternate IP on the physical network to transfer the packet. For ICMP packets, the Id field of ICMP
requests is used.

When configured, NAT will have a target virtual network that consists of a IP base address and a subnet
mask. It also has a physical IP address that is used as a type of proxy for the translated packets.

The types of packets translated include:

• Any TCP or UDP packet
• ICMP ECHO and TSTAMP packets sent from the virtual network
• ICMP ECHOREPLY and TSTAMPREPLY packets sent to the virtual network
• ICMP error packets sent to the virtual network in response to a translated packet sent from the virtual

network

The translation entries are created dynamically, and have a lifetime based on their protocol. ICMP and
UDP translation entries have a fixed time limit based on the last time they were accessed. TCP expiration
is based on the state of the TCP connection.

156 Internal Stack Functions SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

A.13.3 NAT Configuration

A.14 Obtaining Stack Statistics

NatSetConfig — Configure the Network Address Translation Module

Note that some protocols (like FTP) communicate TCP/UDP port information in the packet payload. These
types of protocols will not function under NAT without a custom proxy program to alter the packet payload.
Individual proxies are not provided.

To use NAT, it must be configured via the following function. Also, by default, the NAT code is not called
by the stack. This increases stack efficiency when NAT is not in use. To enable the NAT module, the
IpNatEnable element of the stack configuration structure must be set.

Note that when using the NAT service feature in NETTOOLS or when using the configuration system, this
low-level configuration is not required.

NatSetConfig Configure the Network Address Translation Module

Syntax void NatSetConfig(IPN IPAddr, IPN IPMask, IPN IPServer, uint MTU);

Parameters

IPAddr IP address of the Virtual Network

IPMask IP mask of the Virtual Network

IPSever Physical IP address of the server that will host the NAT translation

MTU IP Packet MTU (1500 for Ethernet, 1492 for PPPoE, etc.)

Description This function configures NAT with a virtual network and a physical server. Note that both
the virtual and physical addresses must also be contained in the stack's route table. NAT
should only be used when the stack is acting as a router, and when there are more than
one Ethernet devices present.

The MTU parameter must be in the range of 64 to 1500. When set less than 1500, TCP
connection negotiation will be altered so that TCP sessions through NAT will be limited
to the MTU specified. This prevents unnecessary fragmentation when using NAT over
dissimilar packet devices. (Note this MTU is the IP packet MTU, not the TCP MTU.)

Stack statistics are available from global structures or global arrays exported by the stack library. The
declaration of these global identifiers appears in the interface specification for the individual protocols. The
following protocols contain statistics information:

Protocol Statistics Definition

IP IPIF.H

ICMP ICMPIF.H

TCP TCPIF.H

UDP UDPIF.H

Raw Transport (non-TCP/UDP) RAWIF.H

Network Address Translation NATIF.H

SPRU524C–January 2007 Internal Stack Functions 157
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Internal Stack Functions158 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Appendix B
SPRU524C–January 2007

Network Address Translation

This section is required only for system programming that needs low level access to the
Network Address Translation (NAT) layer. This API does not apply to sockets
application programming.

This section describes functions that are callable from the kernel layer. You should be
familiar with the operation of the operation of llEnter()/llExit() functions before
attempting to use the APIs described in this section (see Section A.1.2).

NAT has a unique status in the stack software because it can be an integral part of
programming at both the user and kernel levels, or can be entirely redundant and even
purged from the stack build.

This section describes the operation of the Network Address Translation software
included in the NDK, how to configure it, how to install port mappings, and how to
program proxy filter routines to support protocols like FTP.

Topic .. Page

B.1 NAT Operation .. 160
B.2 NAT Port Mapping ... 170
B.3 NAT Proxy Filters .. 172

SPRU524C–January 2007 Network Address Translation 159
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

B.1 NAT Operation

B.1.1 Typical Configuration

Home Router
(HR)

Using NAT

Internet

Host 1
(H1)

Host 2
(H2)

Internet Host
(IH)

Home
LAN

64.1.1.100

192.168.0.33192.168.0.32

192.168.0.1

128.1.2.12ISP
WAN

192.168.0.x

B.1.2 Basic NAT

NAT Operation

NAT is a translation of packet IP address. It is used by the stack when routing, to translate the IP address
of a packet to/from a private LAN from/to a public WAN. NAT is required when the IP address paradigms
on either side of the router are incompatible; for example, virtual addresses vs. physical addresses, or
private vs. public. In the case of a home LAN, NAT allows multiple clients on the home LAN to use a
single ISP account by sharing the router WAN IP address obtained from the ISP.

For the examples that follow, consider the typical configuration illustrated in Figure B-1. The NDK is
executing as a home router (HR) and connects the home LAN subnet (192.168.0.x) to the Internet (WAN)
via an ISP that has assigned HR an address of 128.1.2.12. The hosts on the home network (H1 and H2)
have obtained their internet addresses from HR via DHCP. The IP of HR on the home LAN as well as the
IP subnet used by the home LAN is pre-configured in HR. Figure B-1 also shows a host on the public
internet (IH) to which the LAN hosts will connect. Lastly, it is assumed that the home LAN subnet is virtual,
and NAT is required to allow H1 and H2 to share the WAN IP address assigned to HR by the ISP
(128.1.2.12).

Figure B-1. Basic Home Network Configuration

When sharing a single WAN IP address, the IP address obtained from the ISP is assigned to the router
(the NDK in routing mode). Client machines that are to share the IP address are placed on the home LAN.
The router routes traffic between the LAN and the WAN (internet via the ISP).

As packets traverse from the LAN to the WAN across the router, the source IP address of the packet (a
LAN address) is replaced with the public IP address of the router. The result is that all packets sent to the
WAN appear to have originated from the router with the public IP address obtained from the ISP.

As packets traverse from the WAN to the LAN across the router, the destination IP address of the packet
(the router's WAN IP as obtained from the ISP) is replaced with the home LAN IP address of the physical
client machine to which the packet is ultimately destined.

To perform this translation successfully, some details must be addressed. First, to allow multiple clients to
share the public IP address in a non-ambiguous fashion, there must exist a deterministic method of
mapping packets from the WAN to their correct destination on the LAN. This is done by keeping records of
LAN IP clients that have initiated IP traffic, and by altering the TCP/UDP port (or ICMP Id field) as well as
the IP address when performing the translation.

160 Network Address Translation SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

NAT Operation

Every time a LAN client sends a packet to the WAN, the local IP address, port/id, and protocol is recorded
for reverse mapping, as well as the destination IP address and port for security. When a packet is
received from the WAN, the destination port/id is checked against the current database of NAT entries to
see if the packet's destination address and port/id should be translated to a LAN client.

For example, when accessing the Internet, all communication is normally initiated by the client. In this
case, communication will be initiated by H1 or H2. Assume that H1 attempts to establish an HTTP
connection with the Internet host (IH). It will send a connection request to the IP address assigned to IH,
and a TCP port value of 80, which is HTTP. The request will be from its own IP address with an
ephemeral port value that is picked from a pool (consider it random for these purposes- for example,
1001). So the request will be addressed as follows:

Packet 1

To From Protocol

64.1.1.100 : 80 192.168.0.32 : 1001 TCP

When the router HR receives this packet, it searches for a NAT entry that matches the From address of
the packet. Because this is the first packet, assume the table is empty. When no entry is found, (skipping
proxies for now) the router will create a new entry. It does this by recording information from packet 1, as
well as picking a new port value from its own pool that has been specifically reserved for NAT (assume
the range is 50000 to 55000, and that it chooses 50001). The new port is used as the packet's source
port. The NAT entry record would look like the following:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout

64.1.1.100 80 192.168.0.32 1001 50001 TCP SYNSENT 00:01:00

The Local IP and Local Port values are those that are local to hosts on the home LAN. The Foreign IP
value is the foreign side of the connection as viewed by hosts on the home LAN. The Mapped Port value
is the source port when the packet is sent from HR. The source IP address used in the packet is that
assigned to HR by the ISP. The IP protocol of the packet is recorded, and when using TCP, the state of
the TCP connection is tracked to establish a reasonable timeout value. The SYNSENT value indicates
that a connection request was sent. Before a full connection is established, the timeout is set fairly low -
for example, 1 minute.

As the packet is transmitted from HR to the ISP, it would look like the following:

Packet 1 (modified)

To From Protocol

64.1.1.100 : 80 128.1.2.12 : 50001 TCP

When IH receives the packet, it believes that the connection request came from HR. It thus sends the
response packet to HR. The packet would be addressed as follows:

Packet 2 (response to packet 1)

To From Protocol

128.1.2.12 : 50001 64.1.1.100 : 80 TCP

When HR receives the packet, it checks the NAT entry table for an entry with a Mapped Port value equal
to the destination port of the packet (in this case 50001). The value of Protocol and the source IP
address/port values must also match the Protocol, Foreign IP, and Foreign Port fields of the NAT entry.
This helps ensure that the reply is from the desired server.

Here, HR finds the entry and proceeds to modify the packet. It replaces the destination address/port with
the local address/port stored in the entry. It also resets the timeout of the entry. After modification, the
packet would be addressed as follows:

SPRU524C–January 2007 Network Address Translation 161
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

B.1.3 NAT Port Mapping

NAT Operation

Packet 2 (modified)

To From Protocol

192.168.0.32 : 1001 64.1.1.100 : 80 TCP

Once a connection is established, the timeout of the entry is set high (for example, five hours), because
TCP connections can stay connected for an indefinite period of time without exchanging any packets.

If H2 attempts to connect to the same host simultaneously, it can share the public IP address assigned to
HR. For example, H2 sends a connection request to IH addressed as follows:

Packet 3

To From Protocol

64.1.1.100 : 80 192.168.0.33 : 1024 TCP

HR would not find a NAT entry for 192.168.0.33:1024, so it would create one:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout

64.1.1.100 80 192.168.0.33 1024 50002 TCP SYNSENT 00:01:00

64.1.1.100 80 192.168.0.32 1001 50001 TCP CONNECT 04:59:23

The modified packet and its reply would proceed similar to packets 1 and 2. Packets that pass from the
LAN to the WAN are searched based on Local IP combined with Local Port. Packets that pass from the
WAN to the LAN are searched based on Mapped Port. Note that for all entries on the NAT entry table,
these values are unique.

So far, you have examined communication that has been initiated by hosts on the home LAN. Note that
any unsolicited packets sent to HR from the WAN will not match any entry in the NAT table. These
packets will be forwarded to the internal protocol stacks on HR, where they may or may not be used.

Now assume that a host on the home LAN (for example, H2) must place an HTTP server on the Internet.
With what has been examined so far, it would be impossible to contact such a server from the WAN
because no unsolicited traffic (like an HTTP connect request) can pass from the WAN to the LAN.
However, H2 can acquire a portion of HR's WAN presence by mapping one of the well-known port values
on the public WAN IP address to itself through port mapping.

In port mapping, a NAT entry is created to send all traffic destined for a specific port on the public IP
address to an alternate destination. For well known ports like HTTP, the port value is not usually altered.
Only the destination IP address changes. In this case, port 80 (HTTP) on the public IP address is mapped
to port 80 of the LAN host H2. The entry would look as follows:

162 Network Address Translation SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

NAT Operation

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout

wild wild 192.168.0.32 80 80 TCP – STATIC

When a connection request arrives from a remote host for the public IP address assigned to HR, as with
the basic NAT discussion of the previous section, the destination port of the packet is matched with the
Mapped Port value of the NAT entry. Normally, the Foreign IP and Port of the NAT entry must also match
for source IP and port of the packet, but here the values are wild. This is because when the entry is
created, the foreign peer is unknown. Because, every TCP connection state must be tracked in its own
NAT entry, a second entry must be spawned. Any match of a wild NAT entry will spawn a fully qualified
entry. For example, assume the following packet arrives:

Packet 4

To From Protocol

128.1.2.12 : 80 64.1.1.100 : 2006 TCP

The resulting NAT entry table would be:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout

64.1.1.100 2006 192.168.0.32 80 80 TCP SYNSENT 00:01:00

wild wild 192.168.0.32 80 80 TCP – STATIC

The packet sent to the LAN by HR would be:

Packet 4 (modified)

To From Protocol

192.168.0.32 : 80 64.1.1.100 : 2006 TCP

Note that the wildcard entry's timeout is STATIC. This means that the entry will never expire. Note that
when the new entry is spawned, it acquires a timeout.

One last point to note here is that the installation of a port map for port 80 does not prohibit HR from
running its own HTTP server hosted on its private LAN IP address (192.168.0.1). This means that local
hosts could get to a local HTTP server on 192.168.0.1, and the public HTTP server on 192.168.0.32, but
outside hosts connecting to 128.1.2.12 could only get to the public HTTP server on 192.168.0.32.

For example, assume the same topology as before, with the HR running both and HTTP and Telnet
servers, H1 running an HTTP server, and H2 running a Telnet server. This is illustrated in Figure B-2.

SPRU524C–January 2007 Network Address Translation 163
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Home Router
(HR)

Using NAT

Internet

Host 1
(H1)

Host 2
(H2)

Internet Host
(IH)

Home
LAN

64.1.1.100

192.168.0.33192.168.0.32

192.168.0.1

128.1.2.12ISP
WAN

192.168.0.x
HTTP
Server

Telnet
Server

HTTP Server

Telnet Server

NAT Operation

Figure B-2. Public Servers on the Home Network

To make the servers on H1 and H2 public, the following NAT port mapping entries are installed on HR:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout

wild wild 192.168.0.33 23 23 TCP – STATIC

wild wild 192.168.0.32 90 90 TCP – STATIC

With these mappings, the externally available HTTP server and Telnet server publicly accessible on the
WAN IP (128.1.2.12) are actually executing on H1 and H2. However, HR can have its own HTTP and
Telnet servers and make them available to hosts on the LAN.

Also note that, regardless of how hosts on the LAN access HR (either through 192.168.0.1 or 128.1.2.12),
their packets are not processed via NAT. Thus, they are never altered. The following are some connection
examples:

Client Protocol Used Target Address Resulting Server Connection

IH HTTP 128.1.2.12 HTTP on H1

H2 HTTP 128.1.2.12 HTTP on HR

H2 HTTP 192.168.0.1 HTTP on HR

H2 HTTP 192.168.0.32 HTTP on H1

IH Telnet 128.1.2.12 Telnet on H2

H1 Telnet 128.1.2.12 Telnet on HR

H1 Telnet 192.168.0.1 Telnet on HR

H1 Telnet 192.168.0.33 Telnet on H2

Network Address Translation164 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

B.1.4 NAT Proxy Filters

B.1.4.1 Problem Synopsis

B.1.4.2 Problem Example - FTP Clients on the LAN

NAT Operation

Translating the IP destination address of a packet via NAT guarantees that all packets can be redirected
to their correct physical destination, but it does not guarantee that the information will be understood by
the recipient. Because one side of the connection always believes they are actually connected to a
different IP address than their physical peer, there is a possibility that the application using the information
will become confused. The confusion arises when there is information in the packet payload that is
dependent on the IP address/port of the peer connection.

As a straightforward example of a situation that requires a proxy filter, consider FTP (file transfer protocol).
FTP actually uses two ports to transmit a file. The first port establishes the control connection. Then, new
ports establish the data connection to actually send the file. The FTP protocol allows an FTP client to
specify its port for the data connection to the server. If no port is specified by the client, the client's control
port value is used.

The above scenario presents a couple problems for standard NAT. First, if NAT creates an entry for the
FTP control connection, the entry could not be used for the data connection. As an example, H1 sends an
FTP connection request to IH. The packet would be addressed as follows:

Packet 1

To From Protocol

64.1.1.100 : 21 192.168.0.32 : 1137 TCP

HR would not find a NAT entry for 192.168.0.33:1137, so it would create one:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout

64.1.1.100 21 192.168.0.32 1137 50003 TCP SYNSENT 00:01:00

The modified packet and its reply would proceed as discussed in Section B.1.2. The modified packet
would be:

Packet 1 (modified)

To From Protocol

64.1.1.100 : 21 128.1.2.12 : 50003 TCP

Now assume that eventually the FTP server on IH attempts to establish a data connection back to what it
thinks is the FTP client's ephemeral port (50003). Note classic FTP uses port 20 to establish data
connections. Its connection request packet would be:

Packet 2 (Data connection request)

To From Protocol

128.1.2.12 : 50003 64.1.1.100 : 20 TCP

Because there is no NAT entry record that will match the address values in this packet (specifically port 20
in the From field), this packet will not be forwarded to the FTP client. For this to work, there must be a port
mapping installed for 64.1.1.100 that has a wildcard port value (it is not certain that the connection request
will arrive on port 20). The NAT entry table would be as follows:

SPRU524C–January 2007 Network Address Translation 165
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

NAT Operation

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout

64.1.1.100 wild 192.168.0.32 1137 50003 TCP – STATIC

64.1.1.100 21 192.168.0.32 1137 50003 TCP CONNECT 04:58:39

With such a mapping, if a connection request from port 20 arrived, the wild card entry would be matched,
and another entry spawned for port 20 on IH. The table would look as follows:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout

64.1.1.100 20 192.168.0.32 1137 50003 TCP SYNSENT 00:01:00

64.1.1.100 wild 192.168.0.32 1137 50003 TCP – STATIC

64.1.1.100 21 192.168.0.32 1137 50003 TCP CONNECT 04:58:39

The second issue in dealing with an FTP client is that the client can change the port on which the FTP
server attempts connection. This is done via a PORT command sent from the client to the server. The
PORT command contains information about the client in the packet payload.

For example, assume the FTP client (H1) creates a new socket for the data connection, and its ephemeral
port value is 1142. H1 would then send an FTP PORT command on the control connection to the server.
The server would then attempt a connection. The following is an approximation of the operation (it is not
the exact syntax of the port command).

Packet 3 (FTP Client H1 Sends Port Command for Port 1142)

To From Protocol Packet Payload

64.1.1.100 : 21 192.168.0.32 : 1137 TCP "PORT 192.168.0.32, 1142"

As a reminder, the FTP server would normally see the packet as:

Packet 3 (modified incorrectly)

To From Protocol Packet Payload

64.1.1.100 : 21 128.1.2.12 : 50003 TCP "PORT 192.168.0.32, 1142"

This packet creates a couple of problems. First, the IP address in the PORT command does not match the
IP address of the FTP server's connected peer. This would produce an error. Plus, the IP address in the
PORT command is not a real Internet address. Lastly, even if the FTP server tried to connect to
128.1.2.12:1142, there is no mapping for the port number in the NAT entry table.

The correct procedure for modifying this packet is to solve all the above problems. First, a new NAT entry
is created for 192.168.0.32:1142. The foreign IP address is left as a wildcard because as before, because
it is not certain what port the FTP server will use. The NAT entry table would then look as follows:

166 Network Address Translation SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

B.1.4.3 NDK Support for Proxy Filters

NAT Operation

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout

64.1.1.100 wild 192.168.0.32 1142 50004 TCP – 00:02:00

64.1.1.100 wild 192.168.0.32 1137 50003 TCP – STATIC

64.1.1.100 21 192.168.0.32 1137 50003 TCP CONNECT 04:58:39

To review, note that you have the original NAT entry for the FTP control connection, and now two wildcard
entries for possible FTP data connection requests.

The final step of the modification is to alter the payload of the packet so that the information in the PORT
command matches the WAN IP address of HR (128.1.1.21) and the Mapped Port of the new NAT entry
(50004). The correctly modified packet would be:

Packet 3 (modified correctly)

To From Protocol Packet Payload

64.1.1.100 : 21 128.1.2.12 : 50003 TCP "PORT 128.1.2.12, 50004"

It is also possible for a client to request the FTP server to create a new port (the PASV command), but
that does not create any issues for FTP clients on the LAN. If the FTP server were on the LAN and the
client on the WAN, the proxy process would key off the PASV command.

The modification procedure discussed above does have some multifaceted problems:

1. The creation of the first data connection wildcard entry depends on the knowledge by some entity that
an FTP control connection has occurred, and what IP/PORT the connection occurred on.

2. The creation of the second data connection wildcard entry depends on the detection of a PORT
command being passed from the client to the server.

3. The modification of the data payload of the packet containing the PORT command requires that some
entity is examining packet payloads.

4. Modification of a TCP packet payload can permanently alter the values of the TCP sequence and
acknowledge fields in the TCP header of all future packets on the control connection.

The first three problems are very specific to FTP, and the fourth problem (TCP sequence) is specific to
any alteration of a TCP packet payload. Fortunately, the proxy filter support routines remove much of the
burden of supporting these transformations.

The solution is twofold. First, the stack allows you to install proxy filter callback functions on specified
TCP/UDP port values, either outgoing (for clients) or incoming (for servers). There are three callback
functions involved.

The first callback function Enable is called when a new connection is attempted, or when the NAT entry
expires. This function allows you to establish the basic connection state for the protocol in question. In the
case of the FTP client example, the first wildcard data connection mapping would be installed here. Note
that this function can also be used to filter connection requests. If this function returns zero, the connection
request is ignored.

The second and third callback functions are mirrors of the other. They are the Tx and Rx functions. The Tx
callback is called with the IP header of every packet that passes from the LAN to the WAN for the
connection in question, while the Rx callback is called with the IP header of every packet that passes from
the WAN to the LAN. While in these functions, the programmer can call a packet modify function to modify
the payload of the packet. The system will automatically track and perform modifications to the TCP
sequence values (when using TCP).

In the case of the FTP client, there would be no Rx callback because only packets from the client need to
be examined. The Tx callback would look for PORT commands from the client, and when one was
detected, it would install the second wildcard port mapping as discussed in the previous section, and then
modify the packet payload so that the PORT command reflected the WAN IP of HR, and the Mapped Port
of the NAT entry.

SPRU524C–January 2007 Network Address Translation 167
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

B.1.4.4 FTP Proxy Filter Example Code

NAT Operation

From the discussion in this section, it would be easy to draw the conclusion that developing proxy filter
code would be horribly complicated. However, the actual implementation is straightforward. The code to
implement the filter discussed in Section B.1.4.3 is shown below. The API for NAT and Proxy is discussed
in the following sections.
//
// GetVal - Convert ASCII decimal string to integer
//
static uint GetVal(UINT8 **pData)
{

uint v = 0;
while(**pData >= '0' && **pData <= '9')

v = v*10 + (*(*pData)++ - '0');
(*pData)++;
return(v);

}

//
// FTPCProxyEnable - Proxy for FTP Clients behind firewall
//
// NOTE: Proxy callback function operate at the kernel level. They
// may not make calls to user-level functions.
//
int FTPCProxyEnable(NATINFO *pin, uint Enable)
{

HANDLE hNat;

// Some implementations of FTP require the host to listen for
// connections on the ephemeral port used to connect to the FTP
// server. We create a STATIC mapping to handle this.
if(Enable)
{

// Create it
hNat = NatNew(pNI->IPLocal, pNI->PortLocal, pNI->IPForeign, 0,

IPPROTO_TCP, pNI->PortMapped, 0);
pNI->pUserData = hNat;

}
else
{

// Destroy it
NatFree(pNI->pUserData);

}
return(1);

}

//
// FTPCProxyTx - Proxy for FTP Clients behind firewall
//
// NOTE: Proxy callback function operate at the kernel level. They
// may not make calls to user-level functions.
//
int FTPCProxyTx(NATINFO *pNI, IPHDR *pIpHdr)
{

UINT16 Length, Offset;
TCPHDR *pTcpHdr;
UINT8 *pData;
HANDLE hNAT;
NATINFO *pNINew;
char tmpstr[32];
UINT16 PortNew;
IPN IPNew;

pData = (UINT8*)pIpHdr;
// Get pointer to TCP header
Offset = (pIpHdr->VerLen & 0xf) * 4;

168 Network Address Translation SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

NAT Operation

pTcpHdr = (TCPHDR *)(pData + Offset);

// Get length of the IP payload
Length = HNC16(pIpHdr->TotalLen) - Offset;

// Get the offset into the TCP payload and payload size
Offset += pTcpHdr->HdrLen >> 2;
Length -= pTcpHdr->HdrLen >> 2;

// Get pointer to TCP payload
pData += Offset;

//
// For clients, we only care about sending PORT commands
//
// For example, if our client IP is 192.138.139.32, and it reports
// port 384, the form of the command sent to the FTP server would
// be: "PORT 192,138,139,32,1,128\r\n"
//
// We replace the Client IP with the router's IP, and the client
// port with a NAT port which is mapped to the client port.
//
if(!strncmp(pData, "PORT ", 5))
{

// Get the IP/Port declared by sender
// Form is "i1,i2,i3,i4,p1,p2"
pData += 5;
IPNew = ((UINT32)GetVal (&pDada)) << 24;
IPNew |= ((UINT32)GetVal (&pDada)) << 16;
IPNew |= ((UINT32)GetVal (&pDada)) << 8;
IPNew |= ((UINT32)GetVal (&pData));
IPNew = htonl(IPNew);
PortNew = GetVal(&pData);
PortNew = (PortNew<<8) + GetVal (&pData);

// Add a NAT mapping to client's IP and Port
hNAT = NatNew(IPNew, PortNew, pNI->IPForeign, 0, IPPROTO_TCP,

0, NAT_IDLE_SECONDS);
if(!hNAT)

return(0);

// Get Server IP and Mapped Port
IPNew = htonl(NatIpServer);
pNINew = NatGetPNI(hNAT);
PortNew = pNINew->PortMapped;

// Print a replacement string with IP and Port
sprintf(tmpstr, "%u,%u,%u,%u,%u,%u\r\n",

((uint)(IPNew >> 24)),
((uint)(IPNew >> 16)&0xFF),
((uint)(IPNew >> 8)&0xFF),
((uint)(IPNew)&0xFF),
PortNew>>8, PortNew&0xFF);

// Replace the original string with ours
ProxyPacketMod(Offset+5, Length-5, strlen(tmpstr), tmpstr);

}

return(1);
}

SPRU524C–January 2007 Network Address Translation 169
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

B.2 NAT Port Mapping

B.2.1 Synopsis

B.2.2 Function Overview

B.2.3 NAT Entry Information Structure

NAT Port Mapping

NAT port mapping allows a client machine on the LAN (or home network) to appear on a specific port of
the router's public WAN IP address. This API (and NAT in general) is only used when the NDK is acting
as an IP router, and when the IP network on one side of the router is using virtual IP addresses.

The functions described in this section illustrates how to install and remove port mappings. The functional
operation of NAT and NAT Port Mapping is discussed in more detail in Section B.1.

The following functions create and destroy port mappings:

NatNew() Create a new NAT entry (for port mapping)

NatFree() Free a NAT entry

NatGetPNI() Get a pointer to a NAT entry's NATINFO structure

A port mapping is just a NAT entry. Each NAT entry has its own information structure. This NATINFO
structure allows you to examine the status of a particular entry.

The specification of the NATINFO structure is as follows:
typedef struct _natinfo {

uint TcpState; // Current TCP State (Simplified)
#define NI_TCP_CLOSED 0 // Closed or closing
#define NI_TCP_SYNSENT 1 // Connecting
#define NI_TCP_ESTAB 2 // Established

IPN IPLocal; // Translated IP Address
UINT16 PortLocal; // Translated TCP/UDP Port
IPN IPForeign; // IP Address of Foreign Peer
UINT16 PortForeign; // Port of Foreign Peer
UINT8 Protocol; // IP Potocol
UINT16 PortMapped; // Locally Mapped TCP/UDP Port (router)
HANDLE hProxyEntry; // Handle to Proxy Entry (if any)
UINT32 Timeout; // Expiration time in SECONDS
void *pUserData; // Pointer to proxy callback data
} NATINFO;

The individual fields are defined as follows:

• uint TcpState;

This is a condensed version of the state of the TCP connection that is being translated by this entry.
This field is only valid when the Protocol field is set to IPPROTO_TCP. The defined values are:

NI_TCP_CLOSED The connection is closed

NI_TCP_SYNSENT The peers are in the process of connecting

NI_TCP_ESTAB A connection has been established

• IPN IPLocal;

This is the IP address (in network format) of the peer host on the local network (LAN). It is the entity
that has been assigned a virtual IP address behind the firewall.

• UINT16 PortLocal;

This is the port in use by the peer host on the local network (LAN). It is the entity that has been
assigned a virtual IP address behind the firewall.

170 Network Address Translation SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

B.2.4 NAT API Functions

NatNew — Create a NAT Entry (for Port Mapping)

• IPN IPForeign;

This is the IP address (in network format) of the peer host on the public network (WAN). It is the entity
that is on the physical network outside the firewall.

• UINT16 PortForeign;

This is the port in use by the peer host on the public network (WAN). It is the entity that is on the
physical network outside the firewall.

• UINT8 Protocol;

This is protocol in use by the NAT entry. It must be IPPROTO_TCP, IPPROTO_UDP, or
IPPROTO_ICMP.

• UINT16 PortMapped;

This is the port in use by the router on its public (WAN) IP address. It is this port that maps back to a
specific local IP/port on the LAN.

• HANDLE hProxyEntry;

When a NAT entry is created as a result of a proxy filter being installed on a specific port, the HANDLE
to the proxy filter that spawned the NAT entry is stored here.

• UINT32 Timeout;

This is time in seconds when the proxy entry will expire. The system checks with a fairly large
granularity, so the actual expiration can occur 10 to 20 seconds later. If this value is ZERO, the entry is
static. A NAT entry must be specified as STATIC when it is created. Setting Timeout to ZERO will
cause the entry to expire in 0 to 20 seconds.

• void * pUserData;

This field is reserved for use by proxy filter callback functions. It is not used by the system software.

The NAT information structure is of little importance when only port mapping is required. It is mostly for
use in NAT proxy filters.

NatNew Create a NAT Entry (for Port Mapping)

Syntax HANDLE NatNew(IPN IPLocal, UINT16 PortLocal, IPN IPForeign, UINT16 PortForeign,
UINT8 Protocol, UINT16 PortMapped, UINT32 Timeout);

Parameters

IPLocal IP address (in network format) of host on the LAN to map

PortLocal TCP/UDP port value of host on the LAN to map

IPForeign IP address of WAN peer (usually NULL/wild for port mappings)

PortForeign TCP/UDP port of WAN peer (usually NULL/wild)

Protocol IP protocol (IPPROTO_TCP or IPPROTO_UDP)

PortMapped Port on router's public WAN to map (usually a well-known port)

Timeout Timeout of entry in seconds (NULL for STATIC)

Return Value Handle to NAT entry, or NULL on error.

Description This function creates a NAT entry with the parameters as specified.

For example, to allow a host on a virtual IP address of 1.2.3.4 to run a Telnet server
reachable via the router's public (physical) IP address, a mapping would be installed to
map TCP port 23 (telnet) to 1.2.3.4:23. If the connection were to be open to all foreign
hosts, then IPForeign and PortForeign would be left NULL. The value of Timeout would
also be NULL to make the entry STATIC.

hNatTelnet = NatNew(htonl(0x01020304), 23, 0, 0, IPPROTO_TCP, 23, 0);

The function returns a handle to the NAT entry created. This handle should be freed with

SPRU524C–January 2007 Network Address Translation 171
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

B.3 NAT Proxy Filters

B.3.1 Synopsis

B.3.2 Function Overview

B.3.3 NAT Proxy Filter Callback Functions

NatFree — Destroy a NAT Entry

NatFree() when the mapping is no longer desired.

NatFree Destroy a NAT Entry

Syntax void NatFree(HANDLE hNat);

Parameters

hNat Handle to NAT entry created with NatNew()

Return Value None.

Description This function frees the supplied NAT entry. It is called to remove a STATIC NAT entry
that is no longer required.

NatGetPNI Get a Pointer to a NAT Entry's NATINFO Structure

Syntax NATINFO NatGetPNI(HANDLE hNat);

Parameters

hNat Handle to NAT entry created with NatNew()

Return Value Pointer to NATINFO structure or NULL on error.

Description This function returns a pointer to the NATINFO structure defined in Section B.2.3. It is
used mainly by NAT proxy filter callback functions.

NAT proxy filters allow NAT to operate correctly with network protocols that have addressing specific data
in their packet payload data. This API (and NAT in general) is only used when the NDK is acting as an IP
router, and when the IP network on one side of the router is using virtual IP addresses.

The functions described in this section illustrate how to install and remove port proxy filters and their
associated callback functions. The functional operation of NAT and NAT Port Mapping, and NAT Proxy is
discussed in more detail in Section B.2.3.

The following functions create and destroy proxy filters:

ProxyNew() Create Proxy Filter for NAT entries

ProxyFree() Destroy a Proxy Filter declaration

The following function can be called from within a proxy filter callback function:

ProxyPacketMod() Modify a packet being processed by NAT

The proxy filter callback functions allow the proxy programmer to examine NAT entry properties as the
entries are created, plus the examination of packet data as packets pass between the LAN and WAN. This
section describes the syntax of the callback functions that are supplied to the proxy filter when it is first
installed in the system.

172 Network Address Translation SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

ProxyEnableCallback — Proxy Enable Callback Function

ProxyEnableCallback Proxy Enable Callback Function

Syntax int SampleProxyEnableCallback(NATINFO *pNI, uint EnableFlag);

Parameters

pNI Pointer to NATINFO structure of NAT entry created

EnableFlag Set to 1 for an enable request

Return Value 1 to allow normal operation, or NULL to abort new NAT entry.

Description This function is called when a NAT entry containing a proxy is created or destroyed.
When the entry is created, the value of EnableFlag is 1. When the entry is being
destroyed, the value of EnableFlag is zero.

When EnableFlag is set, the return value of this function determines if the NAT entry will
be enabled. If this function returns NULL, the NAT entry is immediately destroyed (in this
event, the callback is not called a second time for this destroy). This can be used to
restrict peer connections.

ProxyTx/RxCallback Proxy Tx/Rx Callback Functions

Syntax int SampleProxyTxCallback(NATINFO *pNI, IPHDR *pIpHdr);

int SampleProxyRxCallback(NATINFO *pNI, IPHDR *pIpHdr);

Parameters

pNI Pointer to NATINFO structure of NAT entry in use

pIpHdr Pointer to the IP header of the packet being translated

Return Value 1 to allow normal operation, or NULL to abort the supplied packet.

Description This function is called when a packet is crossing the router from the WAN to the LAN
(Rx callback) or from the LAN to the WAN (Tx callback). The NAT entry containing a
proxy that matches the packet is described by the supplied NATINFO structure. This
structure was described in Section B.2.3.

The purpose of the callback is to examine the packet and take appropriate action based
on its contents. The packet payload can be easily modified by the ProxyPacketMod()
function described later in this section. The translation of the IP address and port
information cannot be altered by this callback; however, the callback can act as a packet
filter and discard unwanted packets by returning a value of NULL.

SPRU524C–January 2007 Network Address Translation 173
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

B.3.4 NAT Proxy API Functions

ProxyNew — Create a New Proxy Filter for NAT Entries

ProxyNew Create a New Proxy Filter for NAT Entries

Syntax HANDLE ProxyNew(uint NatMode, UINT8 Protocol, UINT16 Port, IPN IPTarget, int
(*pfnEnableCb)(NATINFO *, uint), int (*pfnTxCb)(NATINFO *, IPHDR *), int
(*pfnRxCb)(NATINFO *, IPHDR *));

Parameters

NatMode Port direction to detect (NAT_MODE_RX or NAT_MODE_TX)

Protocol Protocol to use (IPPROTO_TCP or IPPROTO_UDP)

Port Port value for RX or TX packets to detect

IPTarget New IP destination NAT_MODE_RX proxy

pfnEnableCb Pointer to proxy Enable callback function (NULL if none)

pfnTxCb Pointer to proxy Tx callback function (NULL if none)

pfnRxCb Pointer to proxy Rx callback function (NULL if none)

Return Value Handle to new proxy, or NULL on error.

Description This function creates a hook that is examined whenever a new NAT entry is created.

The calling parameter NatMode specifies the direction of the proxy (NAT_MODE_RX for
servers behind the firewall, and NAT_MODE_TX for clients behind the firewall).

The Protocol and Port values are the IP protocol and well known port of the protocol to
proxy.

For example, if setting up a FTP client proxy, set:

NatMode = NAT_MODE_TX, Protocol = IPPROTO_TCP, and Port = 21.

IPTarget is used only in server proxies (when NatMode is set to NAT_MODE_RX). This
specifies the machine behind the firewall that is actually providing the service.

The three pointers to callback functions correspond to the proxy filter callback functions
described in the previous section.

The function returns a handle to the new proxy. Note that a proxy handle is not the same
as (or compatible with) a NAT entry handle.

The proxy should be destroyed by calling ProxyFree() when it is no longer needed.

ProxyFree Destroy a Proxy Filter Declaration

Syntax void ProxyFree(HANDLE hProxy);

Parameters

hProxy Handle to Proxy Filter entry created with ProxyNew()

Return Value None.

Description This function frees the supplied Proxy Filter entry. It is called to remove an entry that is
no longer required.

174 Network Address Translation SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

ProxyPacketMod — Modify the Contents of a Packet

ProxyPacketMod Modify the Contents of a Packet

Syntax IPHDR *ProxyPacketMod(uint Offset, uint OldSize, uint NewSize, UINT8 *pNewData);

Parameters

Offset Offset in bytes from start of IP header to first modified byte

OldSize Size of old data at Offset

NewSize Size of new data to replace old data at Offset

pNewData Pointer to new data to replace old data

Return Value Pointer to new IP header of packet. This pointer is used for further modifications (if
needed).

Description This function may only be called from a proxy filter callback function. Its purpose is to
modify the contents of a TCP or UDP packet, and perform the necessary adjustments for
packet size - including TCP sequencing adjustment.

SPRU524C–January 2007 Network Address Translation 175
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

NAT Proxy Filters

Network Address Translation176 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Appendix C
SPRU524C–January 2007

Point-to-Point Protocol

Point to point protocol (PPP) was originally designed as a replacement for SLIP (serial
line IP) in sending IP packets via a serial line. In addition to its massive popularity in
performing this function, PPP has also been increasingly used for the transmission of
packets over other media. This is due to PPP's inherent peer-to-peer nature, allowing
for per-connection security and billing.

The NDK has built-in support for both PPP servers and clients. The PPP support API is
designed to be shared by one or more physical devices. One obvious device that can
be hooked to PPP is a serial line, but the stack also contains support for PPP over
Ethernet (PPPoE). The low level PPP API as well as Serial HDLC and PPPoE are all
discussed in this appendix.

Topic .. Page

C.1 Low Level PPP Support.. 178
C.2 Serial HDLC Client and Server Support 185
C.3 PPPoE Client and Server Support ... 190
C.4 Creating PPP Server User Accounts .. 194

SPRU524C–January 2007 Point-to-Point Protocol 177
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.1 Low Level PPP Support

C.1.1 PPP Operation

TCP/IP
Stack

Packet Decoding

PPP Connect
Session API

Application Software

Packet Encoding

Serial Interface
(SI) Callback

Call StatusTX Packet

Hardware
Timer

Low Level PPP Support

This section describes the operation of the PPP support API included in the NDK.

Note: Unlike the HDLC and PPPoE APIs that are application callable, the low level PPP support
API is designed to be called from the kernel layer only. You should be thoroughly familiar
with the operation of the kernel and the llEnter()/llExit() functions before attempting to use
the APIs described in this section.

PPP is very much like Ethernet in that there is a defined packet format. The basic PPP packet is shown
below. It consists of flag delimiters, address and control bytes, protocol field (similar to ether-type under
Ethernet), and a two byte checksum.

Figure C-1. Standard PPP Frame Over Serial Line

Flag (7E) Addr (FF) Control (03) Protocol Payload CRC Flag (7E)

1 1 1 2 1500 2 1

To abstract out the actual processing of the PPP data from the processing of the PPP frame encoding, the
PPP support included in the NDK expects a smaller frame, consisting of the protocol and payload fields
only. This format is shown in Figure C-2.

Figure C-2. PPP Frame Processed by PPP API

Protocol Payload

2 Size specified by layer 2 (about 1500)

The abstraction of PPP from the layer 2 encoding allows PPP to be carried by a variety of physical
devices. The programming interface to the PPP layer called by the application is actually exposed by the
layer 2 encoder. This layer 2 encoder is referred to as a serial interface (SI), but does not have to be a
serial port. This interoperation between PPP and the SI is shown in Figure C-3. The functions shown in
the dotted rectangle are those provided by the serial interface software.

Figure C-3. Serial Interface (SI) Abstraction

As shown in Figure C-3, the SI interface has the responsibility of providing for connection control, a timer

178 Point-to-Point Protocol SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.1.2 Function Overview

C.1.3 Supported Protocols

C.1.4 SI Module Callback Function

C.1.4.1 Function Declaration

SIControl — Notify the Serial Interface of a Change in Status, or when SI Needs to Transmit a Packet

used by PPP for timeout, packet encoding and decoding, and a SI callback function for status messages
and packet transmission. Note that the SI driver developer also defines the actual API used by the
application software to establish and tear down PPP connection sessions. There is no specific
requirements in specifying the session API for any particular PPP device, but the APIs defined for HDLC
and PPPoE can be used as a guide.

The SI interface module is charged with communicating with both the hardware and the application
program, but the PPP packets themselves are processed via the PPP support functions in the stack. The
PPP support software provides the following functions for use by the SI module:

pppNew() Create a new PPP connection instance

pppFree() Destroy an existing PPP connection instance

pppTimer() Inform PPP that a 1 second timer tick has expired

pppInput() Pass in a received PPP packet for processing

The formal declaration of these functions appear later in this section (see Section C.1.6).

Note: These functions can only be called in kernel mode. See Appendix for programming in
kernel mode.

In keeping with trying to maintain a small footprint, the PPP software supports a subset of the general
PPP protocols. The following are supported:

• Link Control Protocol (LCP)
• Internet Protocol Control Protocol (IPCP)
• Password Authentication Protocol (PAP)
• Challenge Handshake Authentication Protocol (CHAP) using MD5
• Internet Protocol (IP)

The PPP support API is used for connection instance creation and destruction, and to pass received
packets to the stack. To get information about PPP back from the stack, and to allow the stack to request
the transmission of PPP packets, the SI module supplies a callback function. A pointer to this callback is
passed to PPP as a parameter to pppNew().

Note: This function is called in kernel mode. See Appendix for programming in kernel mode.

The SI callback function is provided in the SI code module using the following definition:

SIControl Notify the Serial Interface of a Change in Status, or when SI Needs to Transmit a
Packet

Syntax void SIControl(HANDLE hSI, uint Message, UINT32 Data, PBM_Handle hPkt);

Parameters

SPRU524C–January 2007 Point-to-Point Protocol 179
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.1.4.2 SI_MSG_CALLSTATUS Message

Low Level PPP Support

hSI Handle to SI private data

Message Message code describing the PPP event

Data Additional data concerning the message

hPkt Handle to a PBM packet when Message is SI_MSG_SENDPACKET

Return Value None.

Description This function is called when a PPP needs to notify the serial interface (SI) of a change in
status, or when it needs SI to transmit a packet.

The hSI parameter is a handle (pointer to a void) that is originally passed to PPP via
pppNew(). This value allows the SI module to know which of its own connection
instances is in use. The PPP instance handle in use is not supplied, but rather should be
obtained by reference from the supplied SI handle. If the programmer of the SI module
does not wish to track handles, then this parameter may be NULL (always as originally
supplied to pppNew()). This is NOT the handle to the PPP instance that is passed to
other functions in the PPP API.

The purpose of the callback is determined by the value of the Message parameter. The
following message values are defined for this parameter:

SI_MSG_CALLSTATUS PPP connection status has changed

SI_MSG_SENDPACKET PPP is requesting a packet to be encoded and transmitted

SI_MSG_PEERCMAP LCP has received the peer's 32 bit asynchronous character
map

When this message value is set, the callback function was called by PPP to update the status of the
connection instance. When the callback is called with this message, the value of Data contains additional
information about the call. Data can be set to any of the following values:

SI_CSTATUS_WAITING Connection instance is idle

SI_CSTATUS_NEGOTIATE Instance in LCP negotiation stage

SI_CSTATUS_AUTHORIZE Instance in authorization stage

SI_CSTATUS_CONFIGURE Instance in IP configuration stage

SI_CSTATUS_CONNECTED Instance is fully connected and operational

SI_CSTATUS_DISCONNECT Connection dropped

SI_CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage

SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage

SI_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage

In the case that Data is set to any of disconnect messages, pppFree() should be called to destroy the
connection instance. For all other status values, no action is required.

Note: It is always safe to assume that when the value of Data >= SI_CSTATUS_DISCONNECT,
the message is some type of disconnect.

Point-to-Point Protocol180 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.1.4.3 SI_MSG_ SENDPACKET Message

C.1.4.4 SI_MSG_ PEERCMAP Message

C.1.4.5 Example Callback Function Implementation

Low Level PPP Support

When this message value is set, the callback function was called by PPP to transmit a packet. The Data
parameter is set to the 16 bit PPP protocol of the packet, and the hPkt parameter contains a handle to a
packet (PKT) object that contains the packet payload. It is the job of the SI callback function to encode the
packet and transmit it on the physical hardware.

Serial interfaces to PPP require a translation map for the first 32 character values. This map informs the
packet encoded which characters must be escaped and which do not. The default value of the peer CMAP
should be 0xffffffff, and updated only when this message is received. Whether or not PPP will attempt to
exchange CMAP information with its peer, is determined by passing flags to pppNew() when the
connection instance is created.

The following is an example of a SI module callback function from the HDLC module code in the example
applications. The code illustrates the basic processing that must be done for the various SI callback
messages. The function calls made in this example are described in Appendix .
//--
// SI Control Function
//--
void hdlcSI(HANDLE hSI, uint Msg, UINT32 Aux, PBM_Handle hPkt)
{

HDLC_INSTANCE *pi = (HDLC_INSTANCE *)hSI;
HANDLE hTmp;
uint Offset,Size;
UINT8 *pBuf;

switch(Msg)
{
case SI_MSG_CALLSTATUS:

// Update Connection Status
pi->Status = (uint)Aux;
if(Aux >= SI_CSTATUS_DISCONNECT)
{

// Close PPP
if(pi->hPPP)
{

hTmp = pi->hPPP;
pi->hPPP = 0;
pppFree(hTmp);

}
}
break;

case SI_MSG_PEERCMAP:
// Update Out CMAP for Transmit
pi->cmap_out = Aux;
llSerialHDLCPeerMap(pi->DevSerial, Aux);
break;

case SI_MSG_SENDPACKET:
if(!hPkt)
{

DbgPrintf(DBG_ERROR,"hdlcSI: No packet");
break;

}

Offset = PBM_getDataOffset(hPkt);
Size = PBM_getValidLen(hPkt);

// Make sure packet is valid, with room for protocol, room for checksum

SPRU524C–January 2007 Point-to-Point Protocol 181
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module Instance

C.1.5.1 Multiple Instances

C.1.5.2 Using the Timer Object

C.1.5.3 Registering Packet Padding Requirements

Low Level PPP Support

if((Offset<4) || ((Offset+Size+2)>PBM_getBufferLen(hPkt)))
{

DbgPrintf(DBG_ERROR,"hdlcSI: Bad packet");
PBM_free(hPkt);
break;

}

// Add in 2 byte Protocol and 2 byte header. Also add in size for
// 2 byte checksum. Note that the outgoing checksum is corrected
// (calculated) by the serial driver.
Offset -= 4;
Size += 6;
PBM_setDataOffset(hPkt, Offset);
PBM_setValidLen(hPkt, Size);
pBuf = PBM_getDataBuffer(hPkt)+Offset;
*pBuf++ = 0xFF;
*pBuf++ = 0x03;
*pBuf++ = (UINT8)(Aux/256);
*pBuf = (UINT8)(Aux%256);

// Send the buffer to the serial driver
llSerialSendPkt(pi->DevSerial, hPkt);
break;

}
}

PPP supports multiple instances, but the SI module implementation tracks multiple instances of itself. This
is done in two ways. One method is for the SI module to have a locally global head pointer to its first
instance, and an array or linked list for additional instances. Or, the instance can be bound to the next
layer down. In the case of the HDLC module, one PPP instance is bound to one serial port driver instance.
So the HDLC module does not need to track instances independently.

When a new PPP connection is established, a new SI module instance should be allocated and a handle
to the new SI instance is passed to the pppNew() function. The handle that pppNew() returns must be
associated with the handle to the SI instance. The PPP handle must be passed to all other PPP API
functions, and PPP will pass back the SI instance handle to the SI callback function.

When new data arrives from the hardware, it is the responsibility of the SI module to associate that data
with a specific SI instance. The SI instance can then be accessed to retrieve the handle to the PPP
instance to use with any PPP function calls. In the case of HDLC, the SI instance is known because it is
associated with a particular serial device instance.

PPP requires that its pppTimer() function be called once every second. This can be PRD driven if
necessary, but the timer callback cannot be called from a PRD because it must be called from within
kernel mode (an llEnter()/llExit()) pairing.

Although a serial interface will probably not have any special requirements for packets from the stack, it
must at least be able to construct valid packets to send to the pppInput() function. To use the packet
allocation function provided by the IF API (see Appendix), the SI module should declare its padding
requirements via the IFSetPad() function. For a serial interface that does not use the packet buffer to
physically send the packet, the size of the PPP header would be 4 bytes (2 byte HDLC header and 2 byte
protocol field), and the padding would be 2 bytes (checksum).

Point-to-Point Protocol182 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.1.6 PPP API Functions
pppNew — Create a New PPP Connection Instance

The following is the full description of the PPP functions described in this section.

pppNew Create a New PPP Connection Instance

Syntax HANDLE pppNew(HANDLE hSI, uint pppFlags, uint mru, IPN IPServer, IPN IPMask, IPN
IPClient, char *Username, char *Password, UINT32 cmap, void (*pfnSICtrl)(HANDLE,
uint, UINT32, HANDLE));

Parameters

hSI Handle to SI module to be passed back to callback function

pppFlags Connection option flags

mru Maximum receive unit (maximum size of Payload)

IPServer IP address of server in server mode (NULL in client mode)

IPMask IP subnet mask of client in server mode (NULL in client mode)

IPClient IP address of client in server mode (NULL in client mode)

Username Pointer to username in client mode (NULL in server mode)

Password Pointer to password in client mode (NULL in server mode)

cmap 32-bit local CMAP to pass to peer

pfnSICtrl Pointer to SI module callback function

Return Value Handle to new PPP connection instance, or NULL on error.

Description This function is called to create a new PPP connection instance. The type of connection
created is determined by the calling parameters.

• hSI - This is a private handle created by the caller that points back to the caller's
instance data. It is passed back to the caller via the callback function pointed to by
pfnSICtrl, and can be used to link back to caller's instance data when the callback is
executed.

• pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, one
and only one of the following flags must be set:

PPPFLG_SERVER Create PPP server connection instance

PPPFLG_CLIENT Create PPP client connection instance

When operating in SERVER mode, any of the following flags can also be set:

PPPFLG_OPT_AUTH_PAP Require PAP authentication

PPPFLG_OPT_AUTH_CHAP Require CHAP authentication

PPPFLG_OPT_USE_MSE Use MS extensions as server

PPPFLG_OPT_LOCALDNS Claim Local IP as DNS server

PPPFLG_SIOPT_SENDCMAP Send an async character map

PPPFLG_SIOPT_RECVCMAP Accept an async character map

PPPFLG_CH1 Allow server channel/group 1 account users

PPPFLG_CH2 Allow server channel/group 2 account users

PPPFLG_CH3 Allow server channel/group 3 account users

PPPFLG_CH4 Allow server channel/group 4 account users

SPRU524C–January 2007 Point-to-Point Protocol 183
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

pppFree — Destroy PPP Connection Instance

PPPFLG_OPT_ALLOW_IP Allow client to declare its own IP address

PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

When operating in CLIENT mode, any of the following flags can also be set:

PPPFLG_OPT_USE_MSE Use MS extensions as client

PPPFLG_OPT_CLIENT_P2P Treat the connection as a pure peer to peer
(i.e., do not create a default route using the
peer as a gateway)

PPPFLG_SIOPT_SENDCMAP Send an async character map

PPPFLG_SIOPT_RECVCMAP Accept an async character map

PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• mru - The MRU is maximum receive unit, or the maximum size of the payload portion
of a PPP packet. For a standard serial link, the MRU is typically 1500, but can be
smaller.

• IPServer - When creating the PPP instance in SERVER mode, this is the IP address
in network format of the NDK reported to the peer. When operating in CLIENT mode,
this value is NULL.

• IPMask - When creating the PPP instance in SERVER mode, this is the IP subnet
mask of the peer's IP network reported to the peer. When operating in CLIENT mode,
this value is NULL.

• IPClient - When creating the PPP instance in SERVER mode, this is the IP address
in network format of the peer reported to the peer. When operating in CLIENT mode,
this value is NULL.

• Username - When creating the PPP instance in CLIENT mode, this is a pointer to a
NULL terminated string containing the username to use in PAP or CHAP
authentication. The maximum string length is defined by PPPNAMELEN. When
operating in SERVER mode, this value is NULL.

• Password - When creating the PPP instance in CLIENT mode, this is a pointer to a
NULL terminated string containing the password to use in PAP or CHAP
authentication. The maximum string length is defined by PPPNAMELEN. When
operating in SERVER mode, this value is NULL.

• cmap - When the PPPFLG_SIOPT_SENDCMAP flag is set in the pppFlags
parameter, this is the CMAP value that is sent to the peer; otherwise it is NULL.

• pfnSICtrl - This is a required pointer to the caller's callback function to handle status
updates from the stack, and requests to transmit PPP packets. See Section C.1.4 for
more detail.

When run in SERVER mode, the name of the PPP server defaults to DSPIP in CHAP
authentication; however, this can be changed by using the
CFGITEM_SYSINFO_REALMPPP configuration tag. For example:
// Name our authentication group for PPP (Max size = 31)
// This is the authentication "realm" name returned by the PPP
// server when authentication is required.
// (Note the length "16" includes the NULL terminator)

CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_SYSINFO_REALMPPP,
0, 16, (UINT8 *)"PPP_SAMPLE_NAME", 0);

When successful, this function returns a handle to a new PPP instance. This handle is
used by the caller when calling other functions in the PPP API.

pppFree Destroy PPP Connection Instance

Syntax void pppFree(HANDLE hPPP);

184 Point-to-Point Protocol SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.2 Serial HDLC Client and Server Support

C.2.1 Synopsis

C.2.2 Function Overview

pppInput — Send a PPP Packet to PPP for Processing

Parameters

hPPP Handle to PPP instance created with pppNew()

Return Value None.

Description This function is called to close and destroy a PPP connection instance created with
pppNew(). This function must be called to free the PPP handle, even if the PPP
connection itself is already disconnected.

pppInput Send a PPP Packet to PPP for Processing

Syntax void pppInput(HANDLE hPPP, PBM_Pkt *pPkt);

Parameters

hPPP Handle to PPP instance created with pppNew()

pPkt Pointer to a PBM packet

Return Value None.

Description This function is called when a PPP packet is received on a active serial interface. The
packet is data decoded into the PPP protocol and payload fields, and given to PPP as a
packet object. The handle hPPP is the PPP connection instance returned from pppNew()
for this connection, and pPkt is a packet object created by the packet buffer manager
(PBM).

pppTimer Notify PPP of One Second Tick

Syntax void pppTimer(HANDLE hPPP);

Parameters

hPPP Handle to PPP instance created with pppNew()

Return Value None.

Description This function is called on an active PPP instance to notify PPP that one second has
elapsed. Because the PPP API is entirely stateless, it relies on the serial interface for
time tick notification.

Note: The HDLC API is user-callable. Unlike the low level PPP support API, you should not use
the llEnter()/llExit() functions when calling the functions described in this section.

This implementation of HDLC for the NDK library is included in the example applications. It interfaces to
the serial port driver described in the HAL.

Called by Application:

hdlcNew() Create a Serial HDLC Client Session

hdlcFree() Destroy a Serial HDLC Client Session

SPRU524C–January 2007 Point-to-Point Protocol 185
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Serial HDLC Client and Server Support

hdlcGetStatus() Get the Call Status of a Serial HDLC Client Session

hdlcsNew() Create a Serial HDLC Server Session

hdlcsFree() Destroy a Serial HDLC Server Session

hdlcsGetStatus() Get the Call Status of a Server HDLC Client Session

Called by Serial Port Driver:

hdlcInput() Send HDLC input buffer for processing

Point-to-Point Protocol186 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.2.3 HDLC API Functions

hdlcNew — Create a Serial HDLC Client Session

hdlcNew Create a Serial HDLC Client Session

Syntax HANDLE hdlcNew(uint Dev, uint pppFlags, UINT32 cmap, char *Username, char
*Password);

Parameters

Dev Physical index of serial port to use

pppFlags Connection option flags

cmap Async control character map

Username Pointer to client account username

Password Pointer to client account password

Return Value If it succeeds, the function returns a handle to a HDLC client instance. Otherwise, it
returns NULL.

Description This function is called to create a new serial HDLC client instance on the physical serial
interface specified by the index Dev.

• pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_CLIENT Create PPP client connection instance

In addition, any of the following flags can also be set:

PPPFLG_OPT_USE_MSE Use MS extensions as client

PPPFLG_OPT_CLIENT_P2P Treat the connection as a pure peer to peer
(i.e., don't create a default route using the
peer as a gateway).

PPPFLG_SIOPT_SENDCMAP Send an async character map (strongly
recommended)

PPPFLG_SIOPT_RECVCMAP Accept an async character map (strongly
recommended)

PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• cmap - This is the desired value of the async character control map that is sent to the
peer to allow frame compression by skipping the escape coding of characters when it
is not required. The mask contains a set bit for each character (0 to 31) that must be
escaped when sent by the peer. If the PPPFLG_SIOPT_SENDCMAP option is not
set, it is assumed that all 32 characters must be sent via the escape sequence.

• Username - This is a pointer to a NULL terminated string containing the username to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

• Password - This is a pointer to a NULL terminated string containing the password to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

When successful, this function returns a handle to a new serial HDLC instance. The
current status of the connection can be queried at any time by calling hdlcGetStatus().

hdlcFree Destroy a Serial HDLC Client Session

Syntax void hdlcFree(HANDLE hHDLC);

SPRU524C–January 2007 Point-to-Point Protocol 187
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

hdlcGetStatus — Get the Status of a Serial HDLC Client Session

Parameters

hHDLC Handle to HDLC Client Session

Return Value None.

Description This function is called to close and destroy a serial HDLC client session that was created
with hdlcNew(). This function is always called once for every HDLC instance handle. If
the connection is no longer active, it frees the instance memory. If the connection is still
active, it disconnects the call first.

hdlcGetStatus Get the Status of a Serial HDLC Client Session

Syntax uint hdlcGetStatus(HANDLE hHDLC);

Parameters

hHDLC Handle to HDLC Client Session

Return Value This function returns a uint that will be set to one of the following values:

SI_CSTATUS_WAITING Connection is idle (HDLC session opening)

SI_CSTATUS_NEGOTIATE Connection in LCP negotiation stage

SI_CSTATUS_AUTHORIZE Connection in authorization stage

SI_CSTATUS_CONFIGURE Connection in IP configuration stage

SI_CSTATUS_CONNECTED Connection is fully connected and operational

SI_CSTATUS_DISCONNECT Connection dropped

SI_CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage

SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage

SI_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage

Description This function is called to get the connection status of a serial HDLC client session using
the HDLC instance handle returned from hdlcNew(). This function can be called anytime
after the handle is created with hdlcNew(), and before it is destroyed with hdlcFree().

hdlcsNew Create a Serial HDLC Server Session

Syntax HANDLE hdlcsNew(uint Dev, uint pppFlags, UINT32 cmap, IPN IPServer, IPN IPMask,
IPN IPClient);

Parameters

Dev Physical index of serial port to use

pppFlags Connection option flags

cmap Async control character map

IPServer IP address of server in network format

IPMask IP subnet mask in network format of the peer's network

IPClient IP address in network format of the client

Return Value If it succeeds, the function returns a handle to a serial HDLC server instance. Otherwise,
it returns NULL.

Description This function is called to create a new serial HDLC server instance on the physical serial
interface specified by the index Dev.

• pppFlags - The flags determine what type of connection instance to create, and what

188 Point-to-Point Protocol SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

hdlcsFree — Destroy a Serial HDLC Server Session

type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_SERVER Create PPP server connection instance

In addition, any of the following flags can also be set:

PPPFLG_OPT_AUTH_PAP Require PAP authentication

PPPFLG_OPT_AUTH_CHAP Require CHAP authentication (PAP is
fallback when specified)

PPPFLG_OPT_USE_MSE Use MS extensions as server

PPPFLG_SIOPT_SENDCMAP Send an async character map (strongly
recommended)

PPPFLG_SIOPT_RECVCMAP Accept an async character map (strongly
recommended)

PPPFLG_CH1 Allow server channel/group 1 account users

PPPFLG_CH2 Allow server channel/group 2 account users

PPPFLG_CH3 Allow server channel/group 3 account users

PPPFLG_CH4 Allow server channel/group 4 account users

PPPFLG_OPT_ALLOW_IP Allow client to declare its own IP address

PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• cmap - This is the desired value of the async character control map that is sent to the
peer to allow frame compression by skipping the escape coding of characters when it
is not required. The mask contains a set bit for each character (0 to 31) that must be
escaped when sent by the peer. If the PPPFLG_SIOPT_SENDCMAP option is not
set, it is assumed that all 32 characters must be sent via the escape sequence.

• IPServer - This is the IP address in network format of the NDK reported to the peer.
• IPMask - This is the IP subnet mask of the peer's IP network reported to the peer.
• IPClient - This is the IP base address in network format of the IP address to be

assigned to the client.

When successful, this function returns a handle to a new serial HDLC server instance.
The current status of the connection can be queried at any time by calling
hdlcsGetStatus().

The name of the PPP server defaults to DSPIP in CHAP authentication; however, this
can be changed by using the CFGITEM_SYSINFO_REALMPPP configuration tag. For
example:
// Name our authentication group for PPP (Max size = 31)
// This is the authentication "realm" name returned by the PPP
// server when authentication is required.
// (Note the length "16" includes the NULL terminator)

CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_SYSINFO_REALMPPP,
0, 16, (UINT8 *)"PPP_SAMPLE_NAME", 0);

hdlcsFree Destroy a Serial HDLC Server Session

Syntax void hdlcsFree(HANDLE hHDLC);

Parameters

SPRU524C–January 2007 Point-to-Point Protocol 189
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.3 PPPoE Client and Server Support

C.3.1 Synopsis

hdlcsGetStatus — Get the Status of a Serial HDLC Server Session

hHDLC Handle to HDLC Server Session

Return Value None.

Description This function is called to close and destroy a serial HDLC server session that was
created with hdlcsNew(). This function is always called once for every HDLC instance
handle. If the connection is no longer active, it frees the instance memory. If the
connection is still active, it disconnects the call first.

hdlcsGetStatus Get the Status of a Serial HDLC Server Session

Syntax uint hdlcsGetStatus(HANDLE hHDLC);

Parameters

hHDLC HDLC Server Session

Return Value This function returns a uint that will be set to one of the following values:

SI_CSTATUS_WAITING Connection is idle (PPPoE session opening)

SI_CSTATUS_NEGOTIATE Connection in LCP negotiation stage

SI_CSTATUS_AUTHORIZE Connection in authorization stage

SI_CSTATUS_CONFIGURE Connection in IP configuration stage

SI_CSTATUS_CONNECTED Connection is fully connected and operational

SI_CSTATUS_DISCONNECT Connection dropped

SI_CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage

SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage

SI_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage

Description This function is called to get the connection status of a serial HDLC server session using
the HDLC instance handle returned from hdlcsNew(). This function can be called
anytime after the handle is created with hdlcsNew(), and before it is destroyed with
hdlcsFree().

Note: The PPPoE API is user callable. Unlike the low level PPP support API, you should not
use the llEnter()/llExit() functions when calling the functions described in this section.

The PPPoE (PPP over Ethernet) specification allows for PPP packets to be transmitted in a peer to peer
method over an Ethernet tunnel. The standard has gained in popularity because it allows for the use of
multiple user accounts on a single Ethernet network.

The implementation of PPPoE supplied in the NDK library is built into the stack library code, and linked to
the Ether object that handles packets from all Ethernet devices in the HAL layer. Thus, is it not necessary
to access or alter the HAL to use PPPoE.

The software can be used as a PPP server or PPP client, but not both simultaneously. In both cases,
PPPoE uses the the PPP programming interfaces described earlier in this section. Thus, for server mode,
the PPP server will use the same user account information as a serial based server.

Point-to-Point Protocol190 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.3.2 Function Overview

C.3.3 PPPoE API Functions

pppoeNew — Create a PPPoE Client Session

The PPPoE function API is short:

pppoeNew() Create a PPPoE Client Session

pppoeFree() Destroy a PPPoE Client Session

pppoeGetStatus() Get the Call Status of a PPPoE Client Session

pppoesNew() Create a PPPoE Server Session

pppoesFree() Terminate a PPPoE Server Session

pppoeNew Create a PPPoE Client Session

Syntax HANDLE pppoeNew(HANDLE hEther, uint pppFlags, INT8 *Username, INT8 *Password
);

Parameters

hEther Handle to Ether device on which to look for a PPPoE server

pppFlags Connection option flags

Username Pointer to client account username

Password Pointer to client account password

Return Value If it succeeds, the function returns a handle to a PPPoE client instance. Otherwise, it
returns NULL.

Description This function is called to create a new PPPoE client instance on the Ether type interface
specified by the handle hEther.

• pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_CLIENT Create PPP client connection instance

In addition, any of the following flags can also be set:

PPPFLG_OPT_USE_MSE Use MS extensions as client

PPPFLG_OPT_CLIENT_P2P Treat the connection as a pure peer to peer
(i.e., do not create a default route using the
peer as a gateway)

PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• Username - This is a pointer to a NULL terminated string containing the username to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

• Password - This is a pointer to a NULL terminated string containing the password to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

When successful, this function returns a handle to a new PPPoE instance The current
status of the PPPoE connection can be queried at any time by calling pppoeGetStatus().

SPRU524C–January 2007 Point-to-Point Protocol 191
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

pppoeFree — Destroy a PPPoE Client Session

pppoeFree Destroy a PPPoE Client Session

Syntax void pppoeFree(HANDLE hPPPOE);

Parameters

hPPPOE Handle to PPPoE Client Session

Return Value None.

Description This function is called to close and destroy a PPPoE client session that was created with
pppoeNew(). This function is always called once for every PPPoE instance handle. If the
connection is no longer active, it frees the instance memory. If the connection is still
active, it first disconnects the call.

pppoeGetStatus Get the Status of a PPPoE Client Session

Syntax uint pppoeGetStatus(HANDLE hPPPOE);

Parameters

hPPPOE Handle to PPPoE Client Session

Return Value This function returns a uint that will be set to one of the following values:

SI_CSTATUS_WAITING Connection is idle (PPPoE session opening)

SI_CSTATUS_NEGOTIATE Connection in LCP negotiation stage

SI_CSTATUS_AUTHORIZE Connection in authorization stage

SI_CSTATUS_CONFIGURE Connection in IP configuration stage

SI_CSTATUS_CONNECTED Connection is fully connected and operational

SI_CSTATUS_DISCONNECT Connection dropped

SI_CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage

SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage

SI_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage

Description This function is called to get the connection status of a PPPoE client session using the
PPPoE instance handle returned from pppoeNew(). This function can be called anytime
after the handle is created with pppoeNew(), and before it is destroyed with pppoeFree().

pppoesNew Create a PPPoE Server Session

Syntax HANDLE pppoesNew(HANDLE hEther, uint pppFlags, uint SessionMax, IPN IPServer,
IPN IPMask, IPN IPClientBase, INT8 *ServerName, INT8 *ServiceName);

Parameters

hEther Handle to Ether device on which to invoke the PPPoE server

pppFlags Connection option flags

SessionMax Maximum number of client connections allowed

IPServer IP address of server in network format

IPMask IP subnet mask in network format of the client address pool

IPClientBase IP base address in network format of the client address pool

ServerName Server name reported via PPPoE protocol

192 Point-to-Point Protocol SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

pppoesNew — Create a PPPoE Server Session

ServiceName Service name reported via PPPoE protocol

Return Value If it succeeds, the function returns a handle to a PPPoE server instance. Otherwise, it
returns NULL.

Description This function is called to create a new PPPoE server instance on the Ether type interface
specified by the handle hEther.

• SessionMax - This value is the maximum number of simultaneous peer connections
to be allowed at any given time. Thus, it is also the minimum size of the client IP
address pool.

• pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_SERVER Create PPP server connection instance

In addition, any of the following flags can also be set:

PPPFLG_OPT_AUTH_PAP Require PAP authentication

PPPFLG_OPT_AUTH_CHAP Require CHAP authentication

PPPFLG_OPT_USE_MSE Use MS extensions as server

PPPFLG_OPT_LOCALDNS Claim Local IP as DNS server

PPPFLG_CH1 Allow server channel/group 1 account users

PPPFLG_CH2 Allow server channel/group 2 account users

PPPFLG_CH3 Allow server channel/group 3 account users

PPPFLG_CH4 Allow server channel/group 4 account users

PPPFLG_OPT_ALLOW_IP Allow client to declare its own IP address

PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• IPServer - This is the IP address in network format of the NDK reported to the peer.
• IPMask - This is the IP subnet mask of the peer's IP network reported to the peer.
• IPClientBase - This is the IP base address in network format of the IP address pool

to be assigned to and reported to peer connections. The size of the address pool is
determined by the value of SessionMax.

• ServerName - This is a required pointer to a NULL terminated string containing the
server name that is reported to PPPoE clients. The maximum length of this name
including the NULL terminator is defined by PPPOE_NAMESIZE. If a longer name is
supplied, this function will fail.

• ServiceName - This is a required pointer to a NULL terminated string containing the
service name that is reported to PPPoE clients. The maximum length of this name,
including the NULL terminator, is defined by PPPOE_NAMESIZE. If a longer name is
supplied, this function will fail.
The name of the PPP server defaults to DSPIP in CHAP authentication. This is
independent of the PPPoE server name. However, the name can be changed by
using the CFGITEM_SYSINFO_REALMPPP configuration tag. For example:
// Name our authentication group for PPP (Max size = 31)
// This is the authentication "realm" name returned by the PPP
// server when authentication is required.
// (Note the length "16" includes the NULL terminator)

CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_SYSINFO_REALMPPP,
0, 16, (UINT8 *)"PPP_SAMPLE_NAME", 0);

When successful, this function returns a handle to a new PPPoE server instance. The
status of individual connections is not available to the caller, but tracked automatically by
PPPoE. When sessions are added or destroyed, the IP address callback supplied to

SPRU524C–January 2007 Point-to-Point Protocol 193
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.4 Creating PPP Server User Accounts

C.4.1 Synopsis

C.4.2 Adding and Reviewing User Accounts

C.4.2.1 Adding a PPP User Account

pppoesFree — Destroy a PPPoE Server Session

NC_NetStart() is called and connections can be tracked by the applications programmer
via this function callback.

pppoesFree Destroy a PPPoE Server Session

Syntax void pppoesFree(HANDLE hPPPOES);

Parameters

hPPPOES Handle to PPPoE Server Session

Return Value None.

Description This function is called to close and destroy a PPPoE server session that was created
with pppoesNew(). This function is always called once to shut down the PPPoE server.
Any external client currently connected to the server is disconnected.

To use the PPP or PPPoE protocol in server mode, it advisable to protect access to the system through
the use of a PPP authentication protocol. The PPP supplied in the stack library allows for the use of either
PAP or CHAP in user authentication. The database of authorized users (name and password) is stored in
the configuration system.

The definition of the user account entry in the configuration system is defined in Section 4.4.7. Note in that
section that the server channel flags PPPFLG_CH1 through PPPFLG_CH4 are duplicated in both the
server flags and the client account flags. This allows the system programmer to allow different classes of
services for different channels.

The methodology of adding, querying, and removing user accounts is the same for any other tag in the
configuration system. Some simple examples follow. More example code can be found in the sample
console program.

The following code adds a PPP user account for the user supplied in name with a password supplied in
password. Note that it also uses the AcctFind() function to verify that the account does not already exist.
void AcctAdd(char *name, char *password)
{

CI_ACCT CA;
HANDLE hAcct;
int rc;

// Check string lengths for name and password
if(strlen(name) >= CFG_ACCTSTR_MAX ||

strlen(password) >= CFG_ACCTSTR_MAX)
{

printf("Name or password too long, %d character max\n\n",
CFG_ACCTSTR_MAX-1);

return;
}

// See if the account already exists
hAcct = AcctFind(tok2);
if(hAcct)
{

printf("Account exits - remove old account first\n\n");

194 Point-to-Point Protocol SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.4.2.2 Searching for a PPP User Account

Creating PPP Server User Accounts

// We must de-reference the account we found
CfgEntryDeRef(hAcct);
return;

}

// Fill in the CA record
strcpy(CA.Username, name);
strcpy(CA.Password, password);

// Give user access to all channels
CA.Flags =

CFG_ACCTFLG_CH1|CFG_ACCTFLG_CH2|CFG_ACCTFLG_CH3|CFG_ACCTFLG_CH4;

// Add it to the configuration
rc = CfgAddEntry(0, CFGTAG_ACCT, CFGITEM_ACCT_PPP,

CFG_ADDMODE_NOSAVE, sizeof(CI_ACCT),
(UINT8 *)&CA, 0);

if(rc < 0)
printf("Error adding account\n");

else
printf("Account added\n");

return;
}

The following code implements the AcctFind() function called in the previous example. Note that the same
method could be used to print out a list of all accounts.
HANDLE AcctFind(char *name)
{

HANDLE hAcct;
CI_ACCT CA;
int rc;
int size;

// Get the first user account
rc = CfgGetEntry(0, CFGTAG_ACCT, CFGITEM_ACCT_PPP, 1, &hAcct);

// If there are no accounts, then we did not find it
if(rc <= 0)

return(0);

// Search until we run out of accounts or have a match
while(1)
{

// Get the data for this entry into CA
size = sizeof(CA);
rc = CfgEntryGetData(hAcct, &size, (UINT8 *)&CA);
if(rc <= 0)
{

// This is an unexpected error - deref the handle and abort
CfgEntryDeRef(hAcct);
return(0);

}

// See if the username matches the search name. If so, return
// the referenced handle
if(!strcmp(name, CA.Username))

return(hAcct);

// Since we did not match, get the next entry. If there is no
// next entry, we are done searching.

SPRU524C–January 2007 Point-to-Point Protocol 195
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

C.4.2.3 Removing a PPP User Account

Creating PPP Server User Accounts

rc = CfgGetNextEntry(0, hAcct, &hAcct);
if(rc <= 0)

return(0);
}

}

Removing a specific user account is done by finding the account and removing the entry handle.

The following uses the AcctFind() function to find the target account.
void AcctDelete(char *name)
{

HANDLE hAcct;

// Find the account to delete
hAcct = AcctFind(name);

// If we found the account, remove it
if(hAcct)
{

CfgRemoveEntry(0, hAcct);
printf("Account removed\n");

}
}

196 Point-to-Point Protocol SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Appendix D
SPRU524C–January 2007

Hardware Adaptation Layer (HAL)

As discussed in the introduction, hardware devices are supported through a Hardware
Adaptation Layer. This section describes the HAL API.

This section is required only for system programming that needs low level access to the
hardware for configuration and monitoring. This API does not apply to sockets
application programming.

Topic .. Page

D.1 Overview .. 198
D.2 Low-Level LED Driver (llUserLed).. 198
D.3 Low-Level Timer Driver (llTimer) ... 200
D.4 Low-Level Packet Driver (llPacket) .. 201
D.5 Low-Level Serial Port Driver (llSerial) .. 204

SPRU524C–January 2007 Hardware Adaptation Layer (HAL) 197
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

D.1 Overview

D.1.1 HAL Function Types

D.1.2 External Calls from HAL Functions

D.2 Low-Level LED Driver (llUserLed)

D.2.1 Synopsis

D.2.2 Function Overview

Overview

The function of the HAL is to provide resources to the stack library functions and allow them to operate
independently of the current run-time environment. The HAL contains the functionality required by the
stack that depends directly on the hardware in a particular environment.

The HAL is interspersed with two different types of functions; those that are called at kernel level (inside
an llEnter()/llExit() pairing), and those that are not. (For more information on the llEnter() and llExit()
functions, see Section A.1.)

To distinguish kernel level functions from application support functions, both have been given a different
naming conventions. Kernel level functions are named with an ll prefix, without a leading underscore, for
example: llPacketSend(), while application functions have an underscore, for example: _llPacketInit().

Because HAL functions are called from the stack kernel, they are executing within an llEnter()/llExit() pair.
These HAL functions can call the stack API directly, but should not call normal application functions.

If a HAL function must call an external application function, or if it is going to call a potentially blocking
function, then it should first call llExit(). Then, when it has completed, it should call llEnter() before
returning to the stack. It is important not to block while in an llEnter()/llExit() pair.

The User LED driver is not really a driver at all. It is a collection of functions to control (ON|OFF|TOGGLE)
LED lights on a given hardware platform.

Application Functions:

_llUserLedInit() Initialize the LED displays to their default state

_llUserLedShutdown() Shut down the LED environment

LED_ON() Turn on a LED

LED_OFF() Turn off a LED

LED_TOGGLE() Toggle the state of a LED

Hardware Adaptation Layer (HAL)198 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

D.2.3 Low-Level LED API Functions

_llUserLedInit — Initialize the LED Displays to their Default State

The following functions are required.

_llUserLedInit Initialize the LED Displays to their Default State

Syntax void _ llUserLedInit();

Return Value None.

Description This function initializes anything necessary to get the LED displays to their default state.

_llUserLedShutdown Shutdown the LED Environment

Syntax void _llUserLedShutdown();

Return Value None.

Description This function is called when shutting down the system to shut down and clean up the
LED environment. Typically, this is an empty function.

LED_ON Turn On an LED

Syntax void LED_ON(UINT32 ledId);

Description This function turns on the specified LED in the calling argument.

LED_OFF Turn Off an LED

Syntax void LED_OFF(UINT32 ledId);

Description This function turns off the LED specified in the calling argument.

LED_TOGGLE Toggle the State of an LED

Syntax void LED_TOGGLE(UINT32 ledId);

Description This function toggles the on/off state of an LED specified in the calling argument.

SPRU524C–January 2007 Hardware Adaptation Layer (HAL) 199
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

D.3 Low-Level Timer Driver (llTimer)

D.3.1 Synopsis

D.3.2 Function Overview

D.3.3 Low-Level Timer API Functions

Low-Level Timer Driver (llTimer)

The stack code requires a very basic simple time function. It consists of two parts: a function API, which
can be called from the stack to get the current time, and a scheduler that sends timer event notifications
every 100ms using the STKEVENT event object.

Application Functions:

_llTimerInit() Initialize Timer Environment

_llTimerShutdown() Shutdown Timer Environment

Kernel Layer Functions:

llTimerGetTime() Get the Current Time

llTimerGetStartTime() Get the Initial Startup Time

The following functions are required.

_llTimerInit Initialize Timer Environment

Syntax void _llTimerInit(STKEVENT_Handle hEvent, UINT32 ctime);

Return Value None.

Description This function is called to initialize the timer environment, and to set the initial time. The
value of ctime is the number of seconds elapsed from a known reference. An initial value
of zero is also acceptable. The stack software is only tracks relative time. Take care
when setting this value because the stack does not manage the timer value wrapping.
This occurs every 136 years, or in 2116 if time is based off of Jan 1, 1980.

Every 100mS, the timer driver will indicate a timer event to the event object specified by
hEvent. This STKEVENT object is discussed in Section A.4.

_llTimerShutdown Shutdown Timer Environment

Syntax void _llTimerShutdown();

Return Value None.

Description This function is called when shutting down the system, to shut down and clean up the
timer environment.

200 Hardware Adaptation Layer (HAL) SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

D.4 Low-Level Packet Driver (llPacket)

D.4.1 Synopsis

D.4.2 Function Overview

llTimerGetTime — Get Current Time in Seconds and Milliseconds

llTimerGetTime Get Current Time in Seconds and Milliseconds

Syntax UINT32 llTimerGetTime(UINT32 *pMSFrac);

Description Returns the number of seconds that have elapsed since the timer driver was started. If
the pointer pMSFrac is non-zero, the function writes the fractional seconds (in
milliseconds) to this location (0 to 999).

Note: Although the stack does not require real time, do not simply use a
millisecond timer and divide by 1000, as the value will wrap every 50
days. Device drivers should attempt to provide a time value accurate
down to millisecond granularity.

llTimerGetStartTime Get the Initial Startup Time

Syntax UINT32 llTimerGetStartTime();

Return Value Initial start time in seconds.

Description Returns the initial start time that was passed to _llTimerOpen().

The stack code requires a very basic packet function library. Note that although the high level packet API
is documented here, the HAL contains a generic packet driver that implements this API. It is more efficient
to use the standard llPacket driver and provide a hardware specific mini-driver than to implement the
llPacket API from scratch. The llPacket mini-driver is described in the support package documentation for
your hardware platform (TMS320C6000 Network Developer's Kit (NDK) Support Package for DSK6455
User's Guide (SPRUES4) or TMS320C6000 Network Developer's Kit (NDK) Support Package for
EVMDM642 User's Guide (SPRUES5)).

Application Functions:

_llPacketInit() Initialize Driver Environment and Enumerate Devices

_llPacketShutdown () Shutdown Driver Environment

_llPacketServiceCheck() Check for Packet Activity

Kernel Layer Functions:

llPacketOpen() Open Driver and Bind Logical Ether Object to Device Id

llPacketClose() Close Driver and Unbind Logical Ether Object from Device Id

llPacketSetRxFilter() Set Packet Receive Filter

llPacketGetMacAddr() Get MAC address

llPacketGetMCastMax() Get the Maximum Number of Multicast Addresses

llPacketGetMCast() Get Multicast Address List

llPacketSetMCast() Set Multicast Address List

llPacketService() Service a Queued Packet

llPacketSend() Send a Packet

SPRU524C–January 2007 Hardware Adaptation Layer (HAL) 201
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUES4
http://www-s.ti.com/sc/techlit/SPRUES5
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

D.4.3 Low-Level Packet API Functions

_llPacketInit — Initialize Driver Environment and Enumerate Devices

The low-level support layer must provide the following functions:

_llPacketInit Initialize Driver Environment and Enumerate Devices

Syntax uint _llPacketInit(STKEVENT_Handle hEvent);

Return Value Returns the number of physical packet devices.

Description This function is called by NETCTRL to initialize the packet driver environment. This
function also enumerates all the physical packet devices in the system, and returns a
device count. The stack will then call the llPacketOpen() function once for each physical
device indicated.

The hEvent calling parameter is a handle to a STKEVENT object that must be signaled
whenever a packet is received. This STKEVENT object is discussed in Section A.4.

_llPacketShutdown Shutdown Driver Environment

Syntax void _llPacketShutdown();

Return Value None.

Description This function is called by NETCTRL to indicate a final shutdown of the packet driver
environment. When called, there should be no currently open packet drivers, and
_llPacketInit() will be called again before any call to llPacketOpen().

_llPacketServiceCheck Check for Ethernet Packet Activity

Syntax void _llPacketServiceCheck(uint fTimerTick);

Return Value None.

Description This function is called by NETCTRL to check if packets are available from the Ethernet
device. In a polling system, this function is called continuously. In an interrupt driven
semaphore system, it is called when packet activity is indicated via the STKEVENT
object, and also by the scheduler at 100ms timer intervals for dead man polling checks.

In both polling and interrupt environments, the fTimerTick flag will be set whenever a
100ms timer tick has occurred.

If any new packets are detected from within this function, the packet driver should signal
the STKEVENT object in the passive mode (do not set the fHwAsynch flag in the
STKEVENT_signal() function). This only applies to new packet events detected from
within this function. The STKEVENT object is discussed in Section A.4.

llPacketOpen Open Driver and Bind Logical Ether Object to Device ID

Syntax uint llPacketOpen(uint dev, HANDLE hEther);

Return Value This function should return 1 on success, and 0 on failure.

Description Opens the low level packet driver specified by the one's based index dev. The maximum
value of dev is the number of devices returned from the _llPacketInit() function. When
opening the device, the packet driver should bind the physical index with the logical
Ether object handle specified in hEther. This handle is used in receive indications to the
stack.

202 Hardware Adaptation Layer (HAL) SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

llPacketClose — Close Driver and Unbind Logical Ether Object from Device ID

llPacketClose Close Driver and Unbind Logical Ether Object from Device ID

Syntax void llPacketClose(uint dev);

Return Value None.

Description Closes the low level packet driver specified by the one's based index dev. The maximum
value of dev is the number of devices returned from the _llPacketInit() function. After this
call, the packet driver should no longer attempt to indicate received packets to the stack.

llPacketSetRxFilter Set Packet Receive Filter

Syntax void llPacketSetRxFilter(uint dev, uint filter);

Return Value None.

Description Called to set the types of packets that should be received via the receive indication
function. Each level of filter is inclusive of the previous level. They are:

ETH_PKTFLT_NOTHING No Packets

ETH_PKTFLT_DIRECT Only directed Ethernet

ETH_PKTFLT_BROADCAST Directed plus Ethernet Broadcast

ETH_PKTFLT_MULTICAST Directed, Broadcast, and selected Ethernet
Multicast

ETH_PKTFLT_ALLMULTICAST Directed, Broadcast, and all Multicast

ETH_PKTFLT_ALL All packets

llPacketGetMacAddr Get MAC Address

Syntax void llPacketGetMacAddr(uint dev, UINT8 *pbData);

Return Value None.

Description Copies the 6 byte MAC address of the physical device index dev into the supplied data
buffer.

llPacketGetMCastMax Get the Maximum Number of Multicast Addresses

Syntax uint llPacketGetMCastMax(uint dev);

Return Value The maximum number of 6 byte MAC addresses that can be supplied for
llPacketSetMCast().

Description Called to get the maximum number of multicast addresses that can be supported on the
physical packet device.

llPacketGetMCast Get Multicast Address List

Syntax uint llPacketGetMCast(uint dev, uint maxaddr, UINT8 *pbAddr);

Return Value The number of 6 byte MAC addresses written to pbAddr.

Description Called to get the current list of multicast addresses installed on the physical device. The
maximum size of the list (supplied as an address count) is in maxaddr. The list is a
contiguous stream of 6 byte addresses pointed to by pbAddr. The function returns the
number of addresses in the list supplied.

SPRU524C–January 2007 Hardware Adaptation Layer (HAL) 203
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

D.5 Low-Level Serial Port Driver (llSerial)

D.5.1 Synopsis

D.5.2 Function Overview

llPacketSetMCast — Set Multicast Address List

llPacketSetMCast Set Multicast Address List

Syntax void llPacketSetMCast(uint dev, uint addrcnt, UINT8 *pbAddr);

Return Value None.

Description Called to install a list of multicast addresses on the physical device. The size of the list
(supplied as an address count) is in addrcnt. The list is a contiguous stream of 6 byte
addresses pointed to by pbAddr. The new list preempts any previously installed list, and
thus an address count of ZERO removes all multicast addresses.

llPacketService Service a Queued Packet

Syntax void llPacketService();

Description This function is called to inform the driver that it may now indicate any queued packet
buffers to the Ether object corresponding to the physical ingress device. Packet drivers
must internally queue their own packets. Queued packets cause events to be sent to the
scheduler that will in turn call this function.

Packets are passed to the Ether object via EtherRxPacket().

llPacketSend Send a Packet

Syntax void llPacketSend(uint dev, PBM_Handle hPkt);

Description Called to send a packet out the physical packet device indicated by dev. The information
about the packet (size and location) is contained in the PBM packet buffer specified by
the handle hPkt. Once the packet has been sent, the packet buffer must be freed by
calling PBM_free().

The PBM packet buffer object is described in detail in Section A.3.

In the current directory structure, the serial port driver (llSerial) may or may not be part of the HAL
directory (as it is an optional component). However, it is part of the HAL architecture, and should be
programmed using the same guidelines used for the llTimer and llPacket drivers..

Application Functions:

_llSerialInit() Initialize Driver Environment and Enumerate Devices

_llSerialShutdown() Shutdown Driver Environment

_llSerialServiceCheck() Check for packet activity

_llSerialSend() Send Raw Data to the Serial Port

Kernel Layer Functions:

llSerialOpen() Open Driver in Character Mode

llSerialClose() Close Driver Character mode

llSerialOpenHDLC() Open Driver HDLC Session

llSerialCloseHDLC() Close Driver HDLC Session

llSerialConfig() Set Serial Port Configuration

204 Hardware Adaptation Layer (HAL) SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

D.5.3 Low-Level Serial API Functions

_llSerialInit — Initialize Driver Environment and Enumerate Devices

llSerialHDLCPeerMap() Update the HDLC encoding peer CMAP

llSerialService() Service HDLC Packets

llSerialSendPkt() Send a Serial Data Packet

The low level support layer must provide the following functions:

_llSerialInit Initialize Driver Environment and Enumerate Devices

Syntax uint _llSerialInit(STKEVENT_Handle hEvent);

Return Value Returns the number of physical serial devices.

Description This function is called by NETCTRL to initialize the system to use the serial port. It also
enumerates all the physical devices in the system, and returns a device count. The stack
will then call the llSerialOpen() function and/or the llSerialOpenHDLC() function for each
physical device it requires.

The hEvent calling parameter is a handle to a STKEVENT object that must be signaled
whenever a serial packet (or raw data) is received. This STKEVENT object is discussed
in Section A.4.

_llSerialShutdown Shutdown Driver Environment

Syntax void _llSerialShutdown();

Return Value None.

Description This function is called by NETCTRL to indicate a final shutdown of the serial driver
environment. When called, there should be no currently open serial drivers, and
_llSerialInit() will be called again before any call to llSerialOpen() or llSerialOpenHDLC().

_llSerialServiceCheck Check for Serial Port Activity

Syntax uint _llSerialServiceCheck(uint fTimerTick);

Return Value None.

Description This function is called by NETCTRL to check if serial packets (or data) are available from
the serial device. In a polling system, this function is called continuously. In an interrupt
driven semaphore system, it is called when packet activity is indicated via the
STKEVENT object, and also by the scheduler at 100mS timer intervals for dead man
polling checks.

In both polling and interrupt environments, the fTimerTick flag will be set whenever a
100mS timer tick has occurred.

If any new serial packets are detected from within this function, the packet driver should
signal the STKEVENT object in the passive mode (do not set the fHwAsynch flag in the
STKEVENT_signal() function). This only applies to new packet events detected from
within this function. The STKEVENT object is discussed in Section A.4.

Finally, if the driver is only open in character mode (not HDLC), and there are characters
for the character mode device waiting, they are passed into the user application from this
function by calling character mode input callback function passed to llSerialOpen().

SPRU524C–January 2007 Hardware Adaptation Layer (HAL) 205
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

_llSerialSend — Send Raw Data to the Serial Port

_llSerialSend Send Raw Data to the Serial Port

Syntax uint _llSerialSend(uint dev, UINT8 *pBuf, uint len);

Return Value The number of bytes sent to the serial port.

Description This function is called by the application to send raw unpacketized serial data to the
serial port. This function may only be called when the serial driver is not open for HDLC
mode. The function returns the number of bytes sent, which will always be either the
number of bytes it was told to send specified by the len parameter, or NULL on an error.

Note that this function is provided mainly for convenience to the application programmer.
The implementation of this function is to packetize the data specified in the pBuf and len
parameters into a PBM buffer, and then call SerialSendPkt().

llSerialOpen Open Driver in Character Mode

Syntax uint llSerialOpenCharmode(uint dev, void (*pCharmodeRxCb)(char c));

Return Value This function should return 1 on success, and 0 on failure.

Description Opens the low level serial driver specified by the one's based index dev in character
mode. The maximum value of dev is the number of devices returned from the
_llSerialInit() function.

Character mode input simply passes all characters received at the port to the character
mode receiver.

When opening the device, the driver should save the callback function pointer
pCharmodeRxCb. This function is called for each character received while in character
mode when the _llSerialServiceCheck() function is called. Serial drivers queue up serial
data, signaling an event to the STKEVENT object passed to _llSerialInit(), and then pass
the serial data to the application callback function from within the _llSerialServiceCheck()
function.

When the driver is opened in HDLC mode, no character mode input is received. When
the HDLC mode is closed, the character mode becomes active again.

llSerialClose Close Driver Character Mode

Syntax void llSerialClose(uint dev);

Return Value None.

Description Closes the character mode of the low level serial driver specified by the one's based
index dev. Once called, the serial driver should not attempt to call any character mode
callback function.

206 Hardware Adaptation Layer (HAL) SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

llSerialOpenHDLC — Open Driver HDLC Session

llSerialOpenHDLC Open Driver HDLC Session

Syntax uint llSerialOpenHDLC(uint dev, HANDLE hHDLC, void (*cbTimer)(HANDLE h), void
(*cbHDLCInput)(PBM_Handle hPkt));

Return Value This function should return 1 on success, and 0 on failure.

Description Opens the low level serial driver specified by the one's based index dev in HDLC mode.
The maximum value of dev is the number of devices returned from the _llSerialInit()
function.

The hHDLC parameter is a handle to the HDLC device. Any HDLC packet received has
its Rx interface in the PBM packet buffer set to this device handle.

The callback function cbTimer is called by the driver every second to drive any timeouts
required by the caller. Note the serial driver calls cbTimer from kernel mode.

Serial drivers queue up HDLC packets. When a complete HDLC packet is ready, the
driver signals an event to the STKEVENT object passed to _llSerialInit(), and then
passes the HDLC packet (as a PBM packet buffer) to the application callback function
cbHDLCInput from within the llSerialService() function.

This is similar to character mode operation, but different because the entire packet is
passed over at one time, and it is done from the llSerialService() function, not from
_llSerialServiceCheck() as with character mode data. The cbHDLCInput function is
called from kernel mode while the character mode application callback is not.

When the driver is in HDLC mode, the driver receives serial data as HDLC packets, and
creates a PBM packet buffer object to hold each HDLC frame. Note that the HDLC flag
character (0x7E) is always removed from the HDLC packets. The HDLC packet passed
to the cbHDLCInput function is formatted as follows:

Addr (FF) Control (03) Protocol Payload CRC

1 1 2 1500 2

The serial driver processes the HDLC packet data as it arrives to remove any escaped
characters and to verify the CRC. When a HDLC packet is ready, the driver signals an
event to the STKEVENT object.

SPRU524C–January 2007 Hardware Adaptation Layer (HAL) 207
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

llSerialCloseHDLC — Close Driver HDLC Session

llSerialCloseHDLC Close Driver HDLC Session

Syntax void llSerialCloseHDLC(uint dev);

Return Value None.

Description Closes the HDLC mode of the low level serial driver specified by the one's based index
dev. Once called, the serial driver should not attempt to indicate HDLC frame buffers to
the scheduler or stack. Any queued buffers should be flushed.

llSerialConfig Configure Serial Port

Syntax void llSerialConfig(uint dev, uint baud, uint mode, uint flowctrl);

Return Value None.

Description This function is called to configure the serial port attributes for the indicated device.

The value of baud is the baud rate, and must be an even denominator of 230400, up to
a maximum baud rate of 230400. For example: 230400, 115200, 57600, 38400, 28800,
and 19200 are all legal values, while 56000 is not.

The value of mode indicates the mode of the device including data bits, parity, and stop
bits. Only the two most commonly used modes are defined:

HAL_SERIAL_MODE_8N1 8 Data Bits, No Parity, 1 Stop Bit

HAL_SERIAL_MODE_7E1 7 Data Bits, Even Parity, 1 Stop Bit

The value of flowctrl indicates the desired flow control operation. Legal values for this
parameter are:

HAL_SERIAL_FLOWCTRL_NONE No Flow Control

HAL_SERIAL_FLOWCTRL_HARDWARE Hardware Flow Control

This function can be called before or after the device is opened.

llSerialHDLCPeerMap Update the HDLC Encoding Peer CMAP

Syntax void llSerialHDLCPeerMap(uint dev, UINT32 peerMap);

Return Value None.

Description When in HDLC mode, the serial driver sends all serial data as HDLC frames. This
requires it to add the frame flag characters, and do any character escaping necessary to
encode the frame for transmission over the serial link. This includes escaping characters
that appear in the peer's character map (CMAP).

By default, the CMAP is set to 0xFFFFFFFF. For character codes 0 to 31, if the bit
(1<<charval) is set in the CMAP, then the serial driver performs an HDLC escape
sequence when sending the character in an HDLC frame.

This function allows the application to update the peer's CMAP as it gets information
from the peer allowing it to do so.

208 Hardware Adaptation Layer (HAL) SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

llSerialService — Service HDLC Packets

llSerialService Service HDLC Packets

Syntax void llSerialService();

Return Value None.

Description This function is called to inform the driver that it may now indicate any queued HDLC
buffers to the HDLC callback function corresponding to the serial port. Serial drivers
internally queue a PBM packet buffer for each HDLC frame received. When a new
packet is received, the driver signals the STKEVENT object, which will cause this
function to be called by the network scheduler.

llSerialSendPkt Send a Serial Data Packet

Syntax void llSerialSendPkt(uint dev, PBM_Handle hPkt);

Return Value None.

Description Called to send a serial data packet out the physical serial device indicated by dev. The
information about the packet (size and location) is contained in the PBM packet buffer
specified by the handle hPkt. Once the packet has been sent, the packet buffer must be
freed by calling PBM_free().

The data is treated as raw bytes when the driver is not open in HDLC mode. When in
HDLC mode, the data packet is an HDLC frame with the following format:

Addr (FF) Control (03) Protocol Payload CRC

1 1 2 1500 2

Note that the CRC on the packet does not need to be valid. The serial port driver will
validate the CRC when the packet is sent. However, the 2 byte space-holder for the
CRC must be present in the packet.

SPRU524C–January 2007 Hardware Adaptation Layer (HAL) 209
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

Low-Level Serial Port Driver (llSerial)

Hardware Adaptation Layer (HAL)210 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

Appendix E
SPRU524C–January 2007

Web Programming with the HTTP Server

The easiest way to get information from an embedded network device is through the
web server. The HTTP server pulls files from the embedded file system (EFS) that is
included in the NDK software package's OS adaptation layer. These files can be
compiled into the DSP application, located on a network file system, a memory-based
file system, or on a physical disk interfaced to the DSP. The NDK HTTP server
accesses files through the EFS application interface, which can be ported to any file
system desired. The server currently supports the HTTP/1.0 protocol.

Common Gateway Interface (CGI) programs execute on a web server and process
input from a user. They are useful as interfaces to services running on the device.
Writing CGI programs for the NDK is relatively simple and only requires a few specific
functions. A single CGI interface function can be written to support both HTTP POST
requests and GET requests.

The CGI program is built from a single C callable entry-point (or CGI function). Each
CGI function is called on its own independent task thread. The task threads are created
with a priority of OS_TASKPRINORM and a stack size of OS_TASKSTKHIGH. Note
that consecutive calls to the same CGI function will not be on the same task thread.
Thus, CGI functions cannot share sockets from one call to the next. In general, there is
no persistent data in a CGI function.

Also, file detection of CGI functions is done purely on the file extension. If the file ends
with .cfg (case insensitive), then a POST or a GET of the file will result in a call to the
CGI function mapped to that filename. A POST call to a non-CGI file is not allowed.

Topic .. Page

E.1 Adding Web Content.. 212
E.2 Writing CGI Functions.. 213
E.3 HTTP Authentication.. 217
E.4 CGI Function Example ... 219
E.5 HTTP Server Exported Functions .. 222

SPRU524C–January 2007 Web Programming with the HTTP Server 211
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.1 Adding Web Content

E.1.1 Operation

E.1.2 Converting Standard HTML Files

E.1.3 Declaring HTML Files to EFS

Adding Web Content

As previously mentioned, the HTTP server allows access to files using the embedded file system (EFS)
API. The default installation of this API is a RAM based file system that resides in the OS adaptation layer.
This OS adaptation layer allows the HTTP server to work on any file storage device contained in the
system.

The default RAM based file system is built up mainly from a standard file I/O API, with the addition of
some private functions. These private functions allow files to be created and destroyed by passing in
memory pointers to where they are stored. These functions are fully documented in Section 2.6.

The example code supplied with the NDK adds Web pages by converting them from binary HTML files
into data arrays declared in C. An MS-DOS utility binsrc is supplied to allow conversion of files to a C
array.

The calling format for binsrc is:

binsrc <input file name> <output file name> <identifier>

Parameters:

input file name File to be converted

output file name Name for file containing C data representation of the input file name

identifier C name for data

For example, to convert an HTML file default.htm for use by EFS, the following command could be
executed from the Windows command window:
binsrc default.htm default.c DEFAULT

The file default.c would contain the following:
#define DEFAULT_SIZE 1610
unsigned char DEFAULT[] = {0x3C, 0x21, 0x64, 0x6F, 0x63, 0x74, 0x79, 0x70, 0x65, 0x20, 0x68,
0x74, ...

Once the HTML file is converted to a memory image, the file is declared to the EFS file system by calling
the function efs_createfile(). All the HTML files are typically created at the same time, during initialization,
and before the HTTP server is actually invoked. In the example code, there are two functions used,
AddWebFiles() and RemoveWebFiles(). These functions include all the code necessary to initialize and
clean up the EFS file environment.

An example implementation of AddWebFiles() is shown below. Note the addition of two file creation calls.
The first call to efs_createfile() creates the file declared in default.c as converted from the file default.htm.
The second call creates a CGI file that is a C function entry-point. When a post is attempted to
sample.cgi, the function cgiSample() is called.
// Include our externally converted pages
#pragma DATA_SECTION(DEFAULT, "HTMLDATA");
#include "default.c"

// Declare our CGI function entry point
static int cgiSample(int htmlSock, int ContentLength);

// Our function to initialize EFS with our Web files

212 Web Programming with the HTTP Server SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.1.4 Cleaning up HTML Files

E.2 Writing CGI Functions

E.2.1 Adding Functions to the EFS

E.2.2 CGI Function Declaration

Writing CGI Functions

void AddWebFiles(void)
{

efs_createfile("index.html", DEFAULT_SIZE, DEFAULT);
efs_createfile("sample.cgi", 0, (UINT8 *)cgiSample);

}

Once the above code is run, the EFS system is ready for the HTTP server to serve up the content. Note
the inclusion of the #pragma to place the converted Web page into a memory section named HTMLDATA.
This allows the page to be placed out of the way by specifying the section's location in the linker
command file.

Because the EFS system uses memory records to simulate file content from static data, the system
should be flushed or cleaned when shutting down or rebooting. In the example code, the function
RemoveWebFiles() is called when the EFS files are no longer required.

An implementation of RemoveWebFiles() that corresponds to the AddWebFiles() function shown above
would be as follows:
void RemoveWebFiles(void)
{

efs_destroyfile("sample.cgi");
efs_destroyfile("index.html");

}

CGI programs must be in the EFS for the HTTP server to see them. An example of this was shown in the
previous section by adding an entry for the file sample.cgi that translated into the C function cgiSample().
Whenever a POST is made to the file sample.cgi, the cgiSample() function is called.

The standard declaration for a CGI function in C is:

Function CGI Function Declaration

Syntax static int cgiSample(int htmlSock, int ContentLength, char *pArgs);

Parameters

htmlSock The network socket on which the HTTP POST was issued

ContentLength The size of the POST content waiting on socket htmlSock

pArgs Pointer to NULL terminated arguments from a CGI 'GET'

Return Value All CGI functions return 1 if the input socket is left open, and 0 if it is closed or
transferred to another thread.

Description This function reads in the HTTP POST content from the socket htmlSock, and writes out
an HTML reply based on the function and the form content read. The size of the form
content is specified by ContentLength.

The CGI function must decide whether or not to close the socket on which the POST
arrived. By default, the socket is normally left open, but in some cases may need to be
closed. It is also possible that the CGI function may wish to take control of the socket
and close it at a later point in time. Note in this latter case, the socket would be
transferred to another thread, using the fdGetFileHandle() and FileHandleGetFd()
function calls.

SPRU524C–January 2007 Web Programming with the HTTP Server 213
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.2.3 Parsing CGI Form Data

E.2.4 Parsing CGI Multi-Part Form Data

Writing CGI Functions

The function must return either 0 or 1 to indicate the status of the socket htmlSock. If the
socket is closed or passed on to another task, the function returns 0. If the socket is still
active, the function returns 1.

When there is any doubt whether or not to close the socket, the socket is typically left
open for the HTTP server to close when appropriate.

The ContentLength argument is the size of the CGI argument still to be read from the
socket. On a CGI GET operation, the arguments have already been read from the
socket and are passed as a NULL terminated string in the pArgs parameter. Note that in
any given CGI call, either one or both of these parameters can be NULL. It is also
possible for pArgs to point to a zero length string.

The first task a CGI function will most likely perform is to read the POST form data from the socket. This
can be done easily because two of the calling arguments to the function are the socket to read and the
size of the data. To remain reentrant, the CGI function should allocate its memory buffer to hold the form
data.

After reading in the data from the socket, each form entry can be parsed from the from by using the
supplied example function: cgiParseVars().This function can be used to parse the NULL terminated option
string that may also be passed to the CGI function. The formal definition of the function is shown below.

Note that this function replaces parsePostVars(),a similar function that was included in earlier versions of
the NDK. The parsePostVars() function was not reentrant, and has been purged from the NDK release.
The source code to cgiParseVars() is included in the example application code shipped with the stack.

cgiParseVars Parse CGI Form POST Input

Syntax char *cgiParseVars(char PostInput[], int *pParseIndex);

Parameters

PostInput[] Pointer to the form data read in from the HTTP request socket

pParseIndex Pointer to an int holding the current parse position (initially zero)

Return Value A pointer to a NULL terminated string within PostInput[], signifying the name or value of
a form entry. Also updates the value pointed to by pParseIndex.

Description Reads input from a CGI POST operation pointed to by PostInput[] at an offset pointed to
by pParseIndex and returns in sequence a pointer to the name and then the value of
each post entry. This function modifies the data in PostInput[]. It also updates the current
parsing position in the variable pParseIndex. The parse index must be set to 0 on initial
call.

On the initial call to this function, the integer value pointed to by pParseIndex should
contain zero.

On reaching the end of the input, the function sets pParseIndex to -1. If called again, the
function will return a NULL pointer and leave the value of pParseIndex unchanged.

In some cases, it is preferable to use a multi-part form when posting CGI data. The multi-part form is
specified in the HTML code by adding the tag ENCTYPE="multipart/form-data" to the form type. When
this form type is used, form entries are sent in a slightly different format than with the standard form, thus
an alternate CGI parsing function is required.

After reading in the data from the socket, each form entry can be parsed from the multi-part form by using
the supplied example function: cgiParseMultiVars().This function parses the post data into individual
records. The formal definition of the function is shown below.

214 Web Programming with the HTTP Server SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.2.5 Sending HTTP/HTML Replies

cgiParseMultiVars — Parse CGI Form Multi-Part POST Input

cgiParseMultiVars Parse CGI Form Multi-Part POST Input

Syntax int cgiParseMultiVars(char *buffer, int buflen, CGIPARSEREC *recs, int maxrecs);

Parameters

buffer Buffer holding the entire post content

buflen Length of the post content

recs Pointer to an array of records of type CGIPARSEREC

maxrecs The maximum number of records that can be written to recs

Return Value The number of valid records parsed, or -1 on a parsing error.

Description Reads input from a CGI POST operation pointed to by buffer, with length buflen, and
returns a collection of CGIPARSEREC records to recs. The caller must provide buffer
space to hold recs, and indicate the maximum number of records that can be written to
the buffer in maxrecs.

The CGIPARSEREC record is defined as follows:
typedef struct {

char *Name; // NULL terminated entry "name"
char *Filename; // NULL terminated "filename" or NULL if not a file
char *Type; // NULL terminated "Content-Type" or NULL if no type
char *Data; // Pointer to file or entry data (NULL term for string)
int DataSize; // Length of data (valid on strings and file data)

} CGIPARSEREC;

This function modifies the data in buffer to add string delimiters. This function should
only be called once to parse all entries from the form data.

After parsing the CGI POST form data, the CGI function should send some sort of reply to the requesting
client. The reply takes the form of an HTTP message signifying success or error, potentially followed by
HTML data.

The HTTP server supplies several functions to aid in building and sending HTTP data over the socket. In
addition, the example applications contain various MACROS than can also help in initially developing a
CGI function. The HTTP functions are fully described at the end of this section, but the main reply
functions are usually one of the following:

httpSendFullResponse() Send full HTTP response, including a status code and an HTML file

httpSendErrorResponse() Send full HTTP error response, including an HTML message

or

httpSendStatusLine() Send HTTP status response, including a status code and content
type

httpSendEntityLength() Send HTTP content length and terminate HTTP header (optional)

httpSendClientStr() Used after httpSendStatusLine() to send content data

SPRU524C–January 2007 Web Programming with the HTTP Server 215
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.2.6 HTML Error Response

Writing CGI Functions

As an example of using these functions, consider the two response MACROS included in
inc\nettools\httpif.h.
//
// Common error responses
//
#define http404(Sock) httpSendErrorResponse(Sock, HTTP_NOT_FOUND)
#define http501(Sock) httpSendErrorResponse(Sock, HTTP_NOT_IMPLEMENTED)

These MACROS use the error response function to send a full error message to the client. Alternately, the
httpSendStatusLine() function can be used to start a message that is completed by the application. Under
normal circumstances, a CGI function will use the httpSendStatusLine() function to send an OK message
to the client, followed by the httpSendClientStr() function to send client data in the form of a NULL
terminated string. Note that an additional carriage return and line feed are required to separate the header
from the HTML data.

For example, the following code sends a quick Success message.
// Send response status
httpSendStatusLine(Sock, HTTP_OK, CONTENT_TYPE_HTML);

// Terminate the response header
httpSendClientStr(Sock, CRLF);

// Send the Success Message
httpSendClientStr(Sock, "<html><h1>Success!</h1>
</html>");

Note that the httpSendClientStr() function replaces the httpSendClientData()function from earlier releases
of the NDK. For data sizes that can be represented by an integer, client data can also be sent simply by
calling the sockets send() function.

The HTTP server generates a generic error response message for several possible HTTP errors. The
function httpSendErrorResponse() is part of this function. The error response consists of two parts, the
HTTP header and the HTML response message. It is the HTML message that is displayed to the web
browser when an error occurs.

The default HTML message used by the HTTP server is quite plain. For example, on the error 404, it
generates:

<html><body><h1>HTTP/1.0 404 - File Not Found</h1></body></html>

Some application developers may wish to enhance the HTML generation of errors. This is done by
hooking a callback function into the HTTP server error processing. The callback hook is defined as:

_extern int (*httpErrorResponseHook)(SOCKET Sock, int StatusCode);

Any function using the callback must generate the content length tag, and then the entire HTML response
page. (The content length is the length of the HTML response.) It can be written using the
httpSendEntityLength() function.

If the application does not wish to handle the error, it can return NULL indicating that it did not handle the
error. In this case, the HTTP server will use the default HTML. If the application returns 1, this tells the
HTTP server that the HTTP response was completed by the callback function.

The httpErrorResponseHook function pointer is NULL by default. If an application needs to install a
callback to this pointer, the value should be set before the HTTP server is initialized.

As an example of how the callback function may look, here is the default error response function. Any
substitute function provided by the application would be quite similar:
typedef struct _codestr {

int code;
char *string;

} CODESTR;

// Note MAX string length is 30 (since Data[] is 80 bytes)

216 Web Programming with the HTTP Server SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.3 HTTP Authentication

E.3.1 Authorization Realms

HTTP Authentication

CODESTR codestr[] = {
{ HTTP_OK, " OK" },
{ HTTP_NO_CONTENT, " No Content" },
{ HTTP_AUTH_REQUIRED, " Authorization Required" },
{ HTTP_NOT_FOUND, " File Not Found" },
{ HTTP_NOT_IMPLEMENTED, " Not Implemented" },
{ HTTP_NOT_ALLOWED, " Not Allowed" },
{ 0, " Unknown" } };

int httpSendErrorHTML(SOCKET Sock, int StatusCode)
{

char Data[80];
int I;

// Build the HTML response into Data[]
sprintf(Data, "<html><body><h1>HTTP/1.0 %3d -", StatusCode);
for(i=0;codestr[i].code && codestr[i].code!=StatusCode;i++);
strcat(Data, codestr[i].string);
strcat(Data,"</h1></body></html>");

// Send the length of the HTML response
// (this also terminates the HTTP header)
httpSendEntityLength(Sock, strlen(Data));

// Send the respone data
httpSendClientStr(Sock, Data);
return(1);

}

The HTTP server included in the NDK supports the Basic method of HTTP authentication, which is MIME
encoding of the username and password.

As with other HTTP functionality, the HTTP server calls an EFS function to perform file access
authentication. The EFS function used is efs_filecheck(). The function is passed the filename of the file to
be authenticated, and the username and password of the user attempting to access the file.

The exact method used to designate a file as protected and to authorize individual access, is determined
by the implementation of the efs_filecheck() function. This section describes the operation of the example
implementation of efs_filecheck() provided in the NDK.

Regardless of implementation of the authentication scheme at the EFS layer, the HTTP server
understands the authority system to be based on four authorization realms. The realms are enumerated 1
to 4, and the authorization realm index (when required) is returned to the HTTP server by the
efs_filecheck() function.

When the HTTP server indicates to the client that authorization is required, it supplies the name of the
authorization realm to the client. The application programmer can specify the name of each authorization
realm by using the configuration system. The configuration tag CFGTAG_SYSINFO is used for storing
authorization realm names. The item numbers used for the four realms are CFGITEM_SYSINFO_REALM1
through CFGITEM_SYSINFO_REALM4.

For example, to set the name of authorization realm 1, while building the configuration, the programmer
could write:
// Name our authentication group for HTTP (Max size = 31)
// This is the authorization "realm" name returned by the HTTP
// server when authentication is required on group 1.
CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_SYSINFO_REALM1,

0, 30, (UINT8 *)"DSP_CLIENT_DEMO_AUTHENTICATE1", 0);

If no realm name is supplied in the configuration, then a default realm name is used by the HTTP server.

SPRU524C–January 2007 Web Programming with the HTTP Server 217
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.3.2 User Accounts

E.3.3 Designating Protected Files

HTTP Authentication

How and whether user accounts are stored in the system is entirely up to the system programmer. The
user account is only accessed directly in the efs_filecheck() function.

However, the default implementation of efs_filecheck() uses the configuration system to access
usernames and passwords. These user accounts can be added to the configuration system at any time.
As an example, the following code adds a sample account to access authorization realm 1. The username
and password are simply username and password respectively:
CI_ACCT CA;

// Create a sample user account who is a member of realm 1.
strcpy(CA.Username, "username");
strcpy(CA.Password, "password");
CA.Flags = CFG_ACCTFLG_CH1; // Make a member of realm 1

rc = CfgAddEntry(hCfg, CFGTAG_ACCT, CFGITEM_ACCT_REALM,
0, sizeof(CI_ACCT), (UINT8 *)&CA, 0);

As with the authorization user accounts, the method of how a file is designated as protected depends on
the implementation of the efs_filecheck() function.

In the default implementation, files are grouped for authorization by their first level directory. For example,
the files index.html and banner.gif would both carry the same authorization requirements, while the files
mydir/sample.cgi and mydir/sample.htm would carry a different authorization. The file group is marked for
authorization by placing a special file in the directory, named %R%. This file is exactly 4 bytes long, and
contains an integer value, being the realm index 1 to 4. If there is no %R% file in the directory, then no
authorization is required.

For example, the following code sets up a small web page in an unprotected space (the root directory),
and then sets up sample.cgi and sample.htm in a protected directory, requiring authentication on
authorization realm 1.
//
// The authentication scheme works by looking for files
// named %R% in the subdirectory of any given filename, or in
// the root directory if no subdirectory exits. The file
// contains a single 4 byte int that is the authentication
// realm index. If there is no file, there is no authentication.
//
// Note for this implementation, only the first subdirectory level
// is validated.
//
// The int "OurRealm" will be our "%R%" realm file, forcing any file
// located in the same directory to be authenticated on realm 1. The
// system supports realms 1 to 4.
//
// Note that we are only going to protect the "protected/" subdir,
// but it is also possible to protect the entire web site by putting
// a %R% file in the root. Also, you can have the root protected
// on (say) realm 1, and a subdir on (say) realm 2, allowing for
// "users" (members of realm 1) and "superusers" (members of both
// realm 1 and realm 2).
//
static int OurRealm = 1;

void AddWebFiles(void)
{

efs_createfile("index.html", DEFAULT_SIZE, DEFAULT);
efs_createfile("logobar.gif", LOGOBAR_SIZE, LOGOBAR);
efs_createfile("dspchip.gif", DSPCHIP_SIZE, DSPCHIP);
efs_createfile("inform.cgi", 0, (UINT8 *)cgiInform);
efs_createfile("protected/%R%", 4, (UINT8 *)&OurRealm);
efs_createfile("protected/sample.htm", SAMPLE_SIZE, SAMPLE);

218 Web Programming with the HTTP Server SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.4 CGI Function Example

E.4.1 Create the HTML Page

E.4.2 Create the Base WEBPAGE Source File

CGI Function Example

efs_createfile("protected/sample.cgi", 0, (UINT8*)cgiSample);

}

As an example of using all the concepts described so far, consider a simple example. Assume an
applications programmer wishes to create a Web form that inputs and processes user data.

The HTML page can be created with an HTML editor, or by hand. For this example, there is an HTML
page that contains a simple CGI form. The contents of the example page, default.htm are shown
below.
<html>
<head><title>CGI Sample</title></head>
<body>
<h1>CGI Sample Form</h1>
<hr WIDTH="100%">

Fill in the form fields and hit 'Submit'.
<form name="my_form" method="POST" action="sample.cgi">
Name: <input type="text" name="name">

I dislike spam: <input type="checkbox" name="spam" value="no!">

Favorite Pizza:

<input type="radio" name="pizza" value="pepperoni"> Pepperoni
<input type="radio" name="pizza" value="sausage"> Sausage
<input type="radio" name="pizza" value="cheese" checked> Cheese
<input type="radio" name="pizza" value="other"> Other

Favorite Color: <select name="color">
<option value="red"> Red
<option value="green"> Green
<option value="blue"> Blue
<option value="yellow"> Yellow
<option value="cyan"> Cyan
<option value="magenta"> Magenta
<option value="black"> Black
<option value="white"> White
</select>

</p>
<input type="submit"> <input type="reset">

</form>
</body>
</html>

The next step performed is to convert this HTML file to C source file, as seen in Section E.1.2. Once the
page is in C source code form, it can be added to the program.

Once the HTML pages are ready in source form, the main WEBPAGE.C source file is created. This file
will perform all the necessary Web processing in the example. The basic source code declares the HTML
pages as files to the EFS file system. To do this, it exports two functions called from the main network
initialization routine, AddWebFiles() and RemoveWebFiles(). Note that a CGI function is also declared to
handle processing of the CGI form contained on the Web page, called sample.cgi.

SPRU524C–January 2007 Web Programming with the HTTP Server 219
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CGI Function Example

The source code as defined so far is shown below.

static int cgiSample(int htmlSock, int ContentLength, char *pArgs)
{

char *name = 0, *spam = 0, *pizza = 0, *color = 0;
char *buffer, *key, *value;
int len;
int parseIndex;
char htmlbuf[MAX_RESPONSE_SIZE];

// The pArgs parameter is used for passing arguments
// on the address line using the '?' operator. It is
// typcially not used on a CGI POST

// 1. Read in the request data

// First, allocate a buffer for the request
buffer = (char*) mmBulkAlloc(ContentLength + 1);
if (!buffer)

goto ERROR;

// Now read the data from the client
len = recv(htmlSock, buffer, ContentLength, MSG_WAITALL);
if (len < 1)

goto ERROR;

// 2. Parse request using cgiParseVars(), or a similar function

// Setup to parse the post data
parseIndex = 0;
buffer[ContentLength] = '\0';

// Process request variables until there are none left to do
{

key = cgiParseVars(buffer, &parseIndex);
value = cgiParseVars(buffer, &parseIndex);

if(!strcmp("name", key))
name = value;

else if(!strcmp("pizza", key))
pizza = value;

else if(!strcmp("spam", key))
spam = value;

else if(!strcmp("color", key))
color = value;

} while (parseIndex != -1);

// 3. Process request in some meaningful way . . .
// (OK, we really don't do this here.)

// 4. Send a response. Keep in mind the first line of the
// response should indicate whether the request was
// successful or not.

httpSendStatusLine(htmlSock, HTTP_OK, CONTENT_TYPE_HTML);

// 5. Send appropriate headers

// No more header data to send - CRLF terminates header
html(CRLF);

// 6. Send the response data

// Build our HTML response

220 Web Programming with the HTTP Server SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

CGI Function Example

// Here we'll just echo back the input we received
// to an HTML table.
//
html("<html><body text=#000000 bgcolor=#ffffff>\r\n");
html("<h1>Form Information</h1>");
html(divider);
html("<table border cellspacing=0 cellpadding=5>\r\n");

if(name)
{

sprintf(htmlbuf, tablefmt, "Name:", name);
html(htmlbuf);

}

if(spam)
{

sprintf(htmlbuf, tablefmt, "Likes Spam:", spam);
html(htmlbuf);

}

if(pizza)
{

sprintf(htmlbuf, tablefmt, "Favorite Pizza:", pizza);
html(htmlbuf);

}

if(color)
{

sprintf(htmlbuf, tablefmt, "Favorite Color:", color);
html(htmlbuf);

}

html("</table>
\r\n");
html(divider);
html("Return to Main Page

\r\n");
html("</body></html>\r\n");

ERROR:
if(buffer)

mmBulkFree(buffer);

return(1);
}

SPRU524C–January 2007 Web Programming with the HTTP Server 221
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.5 HTTP Server Exported Functions

E.5.1 Commonly Used Strings

E.5.2 Function Overview

HTTP Server Exported Functions

The HTTP server module exports several functions and strings to aid in the creation of a CGI function.
This section contains the formal specification for these functions. The first part of this appendix describes
how to use these functions in creating a HTTP CGI function in C.

To aid in the creation of the response data, some commonly used HTML strings can be defined. Some of
these are already defined in the HTTPIF.H file. These include the following (note that all entries, except
the first three, include a trailing space character.):

Global Name String Value

DEFAULT_NAME "index.html"

CRLF "\r\n"

SPACE " "

HTTP_VER "HTTP/1.0 "

CONTENT_LENGTH "Content-length: "

CONTENT_TYPE "Content-type: "

CONTENT_TYPE_APPLET "application/octet-stream "

CONTENT_TYPE_AU "audio/au"

CONTENT_TYPE_DOC "application/msword "

CONTENT_TYPE_GIF "image/gif "

CONTENT_TYPE_HTML "text/html "

CONTENT_TYPE_JPG "image/jpeg "

CONTENT_TYPE_MPEG "video/mpeg "

CONTENT_TYPE_PDF "application/pdf "

CONTENT_TYPE_WAV "audio/wav "

CONTENT_TYPE_ZIP "application/zip "

The basic HTTP Server exported functions are as follows:

httpSendStatusLine() Send the status of this request to the client

httpSendClientStr() Send NULL terminated string data to client

httpSendFullResponse() Send a full formatted response to the client

httpSendEntityLength() Send the content length and terminate HTTP header

httpSendErrorResponse() Send a full formatted response to the client

Web Programming with the HTTP Server222 SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

E.5.3 HTTP Server Exported API Functions

httpSendStatusLine — Send the Status of this Request to the Client

httpSendStatusLine Send the Status of this Request to the Client

Syntax void httpSendStatusLine(int Sock, int StatusCode, char *ContentType);

Parameters

Sock Socket on which to send

StatusCode HTTP status code of the request

ContentType HTTP type string of the response

Return Value None.

Description Sends a formatted response message to Sock with the given status code and content
type. The value of ContentType can be NULL if no ContentType is required.

The status code and content type should match HTTP standard definitions. Some
content type strings are listed in Section E.5.1. The pre-defined status codes include:

HTTP_OK (200)

HTTP_NO_CONTENT (204)

HTTP_AUTH_REQUIRED (401)

HTTP_NOT_FOUND (404)

HTTP_NOT_ALLOWED (405)

HTTP_NOT_IMPLEMENTED (501)

httpSendClientStr Send NULL Terminated String Data to Client

Syntax void httpSendClientStr(int Sock, char *Response);

Parameters

Sock Socket on which to send

Response Pointer to NULL terminated string

Return Value None.

Description This function sends the indicated NULL terminated response string to the indicated client
socket. In other words, it calls strlen() and send().

httpSendFullResponse Send a Full Formatted Response to the Client

Syntax void httpSendFullResponse(int Sock, int StatusCode, char *RequestedFile);

Parameters

Sock Socket on which to send

StatusCode HTTP status code of the request

RequestedFile Pointer to filename of file to include in body

Return Value None.

Description Sends a full formatted response message to Sock, including the file indicated by the
filename pointed to by RequestedFile. The status code for this call is usually HTTP_OK.

SPRU524C–January 2007 Web Programming with the HTTP Server 223
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

www.ti.com

httpEntityLength — Send the Content Length and Terminate HTTP Header

httpEntityLength Send the Content Length and Terminate HTTP Header

Syntax void httpSendEntityLength(SOCKET Sock, INT32 EntityLength);

Parameters

Sock Socket on which to send

EntityLength Length of the entity (usually HTML page) to follow the HTTP header

Return Value None.

Description Writes out the entity length tag, and terminates the HTTP header with an additional
CRLF. Because the header is terminated, this must be the last tag written. Entity data
should follow immediately.

httpSendErrorResponse Send a Full Formatted Error Response to the Client

Syntax void httpSendErrorResponse(int Sock, int StatusCode);

Parameters

Sock Socket on which to send

StatusCode HTTP status code of the request

Return Value None.

Description Sends a full formatted error response message to Sock, including a small HTML file
displaying the status code. For example, HTTP_NOT_FOUND would generate:

<html><body><h1>HTTP/1.0 404 – File Not Found</h1></body></html>

224 Web Programming with the HTTP Server SPRU524C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524C

	Table of Contents
	Preface
	1 Introduction
	1.1 What This Document Covers
	1.1.1 Supplemental API Information

	2 Operating System Abstraction API
	2.1 Operating System Configuration
	2.1.1 Synopsis
	2.1.2 Configuration Structure

	2.2 Task Support
	2.2.1 Synopsis
	2.2.2 Function Overview
	2.2.3 Task API Functions

	2.3 Semaphore Support
	2.3.1 Synopsis
	2.3.2 Function Overview
	2.3.3 Semaphore API Functions

	2.4 Memory Allocation Support
	2.4.1 Synopsis
	2.4.2 Function Overview
	2.4.3 Memory Allocation API Functions

	2.5 Print and Debug Support
	2.5.1 Synopsis
	2.5.2 Standard API Functions
	2.5.3 Debug API Functions

	2.6 File I/O Support for Embedded Systems
	2.6.1 Synopsis
	2.6.2 Function Overview
	2.6.3 EFS Custom API Functions
	2.6.4 EFS Standard API Functions

	3 Sockets and Stream IO API
	3.1 File Descriptor Environment
	3.1.1 Organization
	3.1.2 Initializing the File System Environment
	3.1.2.1 When to Initialize the File Descriptor Environment

	3.2 File Descriptor Programming Interface
	3.2.1 Synopsis
	3.2.2 Function Overview
	3.2.3 File Descriptor API Functions
	3.2.4 File Descriptor Set (fd_set) Macros

	3.3 Sockets Programming Interface
	3.3.1 Synopsis
	3.3.2 Enhanced No-Copy Socket Operation
	3.3.3 Function Overview
	3.3.4 Sockets API Functions

	3.4 Full Duplex Pipes Programming Interface
	3.4.1 Synopsis
	3.4.2 Pipe API Functions

	3.5 Internet Group Management Protocol (IGMP)
	3.5.1 Synopsis
	3.5.2 Function Overview
	3.5.3 API Functions

	4 Initialization and Configuration
	4.1 Configuration Overview
	4.2 Configuration Manager
	4.2.1 Synopsis
	4.2.2 Function Overview
	4.2.3 Configuration API Functions
	4.2.4 Configuration Entry API Functions

	4.3 Network Control Initialization Procedure (NETCTRL)
	4.3.1 Synopsis
	4.3.2 Basics
	4.3.3 Function Overview
	4.3.4 Network Control API Functions

	4.4 Configuration Specification
	4.4.1 Synopsis
	4.4.2 Organization
	4.4.3 Network Service Specification (CFGTAG_SERVICE)
	4.4.3.1 Service Types
	4.4.3.2 Common Argument Structure
	4.4.3.3 Individual Configuration Entry Instance Structures
	4.4.3.4 Specifying Network Services

	4.4.4 IP Network Specification (CFGTAG_IPNET)
	4.4.5 IP Gateway Route Specification (CFGTAG_ROUTE)
	4.4.6 Client Record Specification (CFGTAG_CLIENT)
	4.4.7 Client User Account (CFGTAG_ACCT)
	4.4.8 System Information Specification (CFGTAG_SYSINFO)
	4.4.9 Extended System Information Tags
	4.4.10 OS / IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP)

	5 Network Tools Library - Support Functions
	5.1 Generic Support Calls
	5.1.1 Synopsis
	5.1.2 Function Overview
	5.1.3 Network Tools Support API Functions

	5.2 DNS Support Calls
	5.2.1 Synopsis
	5.2.2 Function Overview
	5.2.3 Standard Types and Definitions
	5.2.3.1 Host Entry Structure
	5.2.3.2 Function Return Codes

	5.2.4 DNS Support API Functions

	5.3 TFTP Support
	5.3.1 Synopsis
	5.3.2 TFTP Support API Functions

	5.4 TCP/UDP Server Daemon Support
	5.4.1 Synopsis
	5.4.2 Server Daemon Support API Functions
	5.4.3 Server Daemon Example

	6 Network Tools Library - Services
	6.1 Service Calling Conventions
	6.1.1 Specifying Network Services Using the Configuration
	6.1.1.1 Service Report Function

	6.1.2 Invoking Network Services by NETTOOLS API

	6.2 Telnet Server Service
	6.2.1 Synopsis
	6.2.2 Telnet Parameter Structure
	6.2.3 Specifying Service Using the Configuration
	6.2.4 Invoking the Service via NETTOOLS API

	6.3 DHCP Server Service
	6.3.1 Synopsis
	6.3.2 Operation
	6.3.3 DHCP Server Parameter Structure
	6.3.4 Specifying Service Using the Configuration
	6.3.5 Invoking the Service via NETTOOLS API

	6.4 DHCP Client Support
	6.4.1 Synopsis
	6.4.2 Operation
	6.4.3 DHCP Client Parameter Structure
	6.4.4 Specifying Service Using the Configuration
	6.4.5 Invoking the Service via NETTOOLS API

	6.5 HTTP Server Support
	6.5.1 Synopsis
	6.5.2 Operation
	6.5.3 HTTP Server Parameter Structure
	6.5.4 Using the HTTP Server and Adding Web Content
	6.5.5 Specifying Service Using the Configuration
	6.5.6 Invoking the Service via NETTOOLS API

	6.6 DNS Server Service
	6.6.1 Synopsis
	6.6.2 Operation
	6.6.3 DNS Server Parameter Structure
	6.6.4 Specifying Service Using the Configuration
	6.6.5 Invoking the Service via NETTOOLS API

	6.7 Network Address Translation (NAT) Service
	6.7.1 Synopsis
	6.7.2 Operation
	6.7.3 NAT Server Parameter Structure
	6.7.4 Specifying Service Using the Configuration
	6.7.5 Invoking the Service via NETTOOLS API

	A Internal Stack Functions
	A.1 Overview
	A.1.1 Interrupts and Preemption
	A.1.2 Proper Use of the llEnter() and llExit() Functions
	A.1.3 Objects

	A.2 Stack Executive (Exec)
	A.2.1 Synopsis
	A.2.2 API Functions

	A.3 Packet Buffer Manager (PBM) Object
	A.3.1 Synopsis
	A.3.2 Object Type
	A.3.3 API Function Overview
	A.3.4 API Function Description

	A.4 Packet Buffer Manager Queue (PBMQ) Object
	A.4.1 Synopsis
	A.4.2 Object Type
	A.4.3 API Function Overview
	A.4.4 API Function Description

	A.5 Stack Event (STKEVENT) Object
	A.5.1 Synopsis
	A.5.2 Object Type
	A.5.3 API Function Overview
	A.5.4 API Function Description

	A.6 Link Layer Information (LLI) Object
	A.6.1 Synopsis
	A.6.2 Object Type
	A.6.3 API Function Overview
	A.6.4 API Functions

	A.7 Interface (IF) Object
	A.7.1 Synopsis
	A.7.2 Object Type
	A.7.3 API Function Overview
	A.7.4 API Function Description

	A.8 Ether Object
	A.8.1 Synopsis
	A.8.2 Object Type
	A.8.3 API Function Overview
	A.8.4 API Functions

	A.9 Binding Object
	A.9.1 Synopsis
	A.9.2 Object Type
	A.9.3 BIND API Functions

	A.10 Route Object
	A.10.1 Synopsis
	A.10.2 Object Type
	A.10.3 Route Entry Flags Definition
	A.10.4 Route Entry Flags Guidelines
	A.10.5 API Functions

	A.11 Route Control Object
	A.11.1 8.12.1 Synopsis
	A.11.2 Route Control Messages
	A.11.3 Route Control API Functions

	A.12 Configuring the Stack
	A.12.1 Synopsis
	A.12.2 Configuration Structure

	A.13 Network Address Translation
	A.13.1 Synopsis
	A.13.2 Operation
	A.13.3 NAT Configuration

	A.14 Obtaining Stack Statistics

	B Network Address Translation
	B.1 NAT Operation
	B.1.1 Typical Configuration
	B.1.2 Basic NAT
	B.1.3 NAT Port Mapping
	B.1.4 NAT Proxy Filters
	B.1.4.1 Problem Synopsis
	B.1.4.2 Problem Example - FTP Clients on the LAN
	B.1.4.3 NDK Support for Proxy Filters
	B.1.4.4 FTP Proxy Filter Example Code

	B.2 NAT Port Mapping
	B.2.1 Synopsis
	B.2.2 Function Overview
	B.2.3 NAT Entry Information Structure
	B.2.4 NAT API Functions

	B.3 NAT Proxy Filters
	B.3.1 Synopsis
	B.3.2 Function Overview
	B.3.3 NAT Proxy Filter Callback Functions
	B.3.4 NAT Proxy API Functions

	C Point-to-Point Protocol
	C.1 Low Level PPP Support
	C.1.1 PPP Operation
	C.1.2 Function Overview
	C.1.3 Supported Protocols
	C.1.4 SI Module Callback Function
	C.1.4.1 Function Declaration
	C.1.4.2 SI_MSG_CALLSTATUS Message
	C.1.4.3 SI_MSG_ SENDPACKET Message
	C.1.4.4 SI_MSG_ PEERCMAP Message
	C.1.4.5 Example Callback Function Implementation

	C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module Instance
	C.1.5.1 Multiple Instances
	C.1.5.2 Using the Timer Object
	C.1.5.3 Registering Packet Padding Requirements

	C.1.6 PPP API Functions

	C.2 Serial HDLC Client and Server Support
	C.2.1 Synopsis
	C.2.2 Function Overview
	C.2.3 HDLC API Functions

	C.3 PPPoE Client and Server Support
	C.3.1 Synopsis
	C.3.2 Function Overview
	C.3.3 PPPoE API Functions

	C.4 Creating PPP Server User Accounts
	C.4.1 Synopsis
	C.4.2 Adding and Reviewing User Accounts
	C.4.2.1 Adding a PPP User Account
	C.4.2.2 Searching for a PPP User Account
	C.4.2.3 Removing a PPP User Account

	D Hardware Adaptation Layer (HAL)
	D.1 Overview
	D.1.1 HAL Function Types
	D.1.2  External Calls from HAL Functions

	D.2 Low-Level LED Driver (llUserLed)
	D.2.1 Synopsis
	D.2.2 Function Overview
	D.2.3 Low-Level LED API Functions

	D.3 Low-Level Timer Driver (llTimer)
	D.3.1 Synopsis
	D.3.2 Function Overview
	D.3.3 Low-Level Timer API Functions

	D.4 Low-Level Packet Driver (llPacket)
	D.4.1 Synopsis
	D.4.2 Function Overview
	D.4.3 Low-Level Packet API Functions

	D.5 Low-Level Serial Port Driver (llSerial)
	D.5.1 Synopsis
	D.5.2 Function Overview
	D.5.3 Low-Level Serial API Functions

	E Web Programming with the HTTP Server
	E.1 Adding Web Content
	E.1.1 Operation
	E.1.2 Converting Standard HTML Files
	E.1.3 Declaring HTML Files to EFS
	E.1.4 Cleaning up HTML Files

	E.2 Writing CGI Functions
	E.2.1 Adding Functions to the EFS
	E.2.2 CGI Function Declaration
	E.2.3 Parsing CGI Form Data
	E.2.4 Parsing CGI Multi-Part Form Data
	E.2.5 Sending HTTP/HTML Replies
	E.2.6 HTML Error Response

	E.3 HTTP Authentication
	E.3.1 Authorization Realms
	E.3.2 User Accounts
	E.3.3 Designating Protected Files

	E.4 CGI Function Example
	E.4.1 Create the HTML Page
	E.4.2 Create the Base WEBPAGE Source File

	E.5 HTTP Server Exported Functions
	E.5.1 Commonly Used Strings
	E.5.2 Function Overview
	E.5.3 HTTP Server Exported API Functions

