
TMS320C6000
Network Developer's Kit (NDK) Software

User's Guide

Literature Number: SPRU523C

January 2007

2 SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

Contents

Preface ... 7

1 Overview ... 9
1.1 Introduction... 10

1.2 NDK Setup ... 10

1.2.1 Setting Up the NDK .. 10

1.2.2 Rebuilding NDK Libraries ... 10

1.3 NDK Library Design... 11

1.3.1 Stack Library Design... 11

1.3.2 Programming API .. 12

1.3.3 NDK Software Directory ... 13

2 Example Applications ... 19
2.1 The Network Client Example Application .. 20

2.1.1 Introduction.. 20

2.1.2 Building the Application.. 20

2.1.3 Loading the Application.. 20

2.1.4 Testing the Application .. 20

2.2 The Network Configuration Example Application ... 21

2.2.1 Introduction.. 21

2.2.2 Building the Application.. 21

2.2.3 Loading the Application.. 21

2.2.4 Configuring the Application ... 21

2.2.5 Testing the Application .. 22

2.3 The Network HelloWorld Example Application .. 23

2.3.1 Introduction.. 23

2.3.2 Building the Application.. 23

2.3.3 Loading the Application.. 23

2.3.4 Testing the Application .. 23

2.4 The Serial Client Example Application ... 23

2.4.1 Introduction.. 23

2.4.2 Setting Up the Network .. 24

2.4.3 Building the Application.. 24

2.4.4 Loading the Application.. 24

2.4.5 Testing the Application .. 24

2.5 The Serial Router Example Application .. 25

2.5.1 Introduction.. 25

2.5.2 Setting Up the Network .. 25

2.5.3 Building the Application.. 25

2.5.4 Loading the Application.. 25

2.5.5 Testing the Application .. 26

3 Network Application Development .. 27
3.1 Using Code Composer Studio ... 28

3.1.1 Required Configuration Entries... 28

3.1.2 Include Files and Library Files.. 28

SPRU523C–January 2007 Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

3.1.3 CCStudio Project Link Order.. 28

3.1.4 NDK Memory Sections .. 29

3.1.5 Using Cache .. 29

3.2 Developing Socket Applications with DSP/BIOS.. 29

3.2.1 Default Environment API Restrictions ... 30

3.2.2 Creating a Task... 30

3.2.3 Memory Allocation.. 31

3.2.4 Example Code .. 31

3.3 NDK Initialization and Configuration .. 33

3.3.1 NDK Initialization Using NETCTRL .. 33

3.3.2 Adding Standard Services .. 36

3.3.3 Initialization Examples ... 37

3.3.4 Controlling NDK and OS Options via the Configuration... 41

3.3.5 Saving and Loading a Configuration... 42

3.4 Application Debug and Troubleshooting ... 43

3.4.1 Most Common Problems .. 43

3.4.2 Controlling Debug Messages ... 44

3.4.3 Interpreting Debug Messages .. 45

3.4.4 Memory Corruption... 46

3.4.5 Program Lockups... 46

3.4.6 Memory Management Reports ... 47

4 Network Control Functions .. 49
4.1 Introduction to NETCTRL Source ... 50

4.1.1 History ... 50

4.1.2 NETCTRL Source Files ... 50

4.1.3 Main Functions ... 50

4.1.4 Additional Functions ... 51

4.1.5 Booting and Scheduling ... 51

4.2 NETCTRL Scheduler ... 52

4.2.1 Scheduler Overview.. 52

4.2.2 Scheduling Options .. 52

4.2.3 Scheduler Thread Priority ... 53

4.2.4 Tracking Events with STKEVENT.. 53

4.2.5 Scheduler Loop Source Code .. 54

4.3 Disabling On-Demand Services ... 56

5 OS Adaptation Layer : OS.LIB and MiniPrintf.LIB ... 57
5.1 Introduction to OS Source.. 58

5.1.1 History ... 58

5.1.2 Source Files... 58

5.2 Task Thread Abstraction - TASK.C ... 58

5.2.1 TaskSetEnv() and TaskGetEnv()... 59

5.2.2 TaskCreate(), TaskExit(), and TaskDestroy()... 59

5.2.3 Choosing the llEnter()/llExit() Exclusion Method ... 59

5.3 Packer Buffer Manager - PBM.C .. 60

5.3.1 Packet Buffer Pool ... 60

5.3.2 Packet Buffer Allocation Method ... 60

5.3.3 Referenced Route Handles ... 61

5.4 Memory Allocation System - MEM.C ... 61

4 Contents SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

5.4.1 mmBulkAllocSeg – Set the DSP/BIOS Heap Segment for Bulk Allocation Functions 62

5.5 Embedded File System - EFS.C .. 62

5.6 General OS Support - OSSYS.C.. 62

5.7 Print Functions - MINIPRINTF.C .. 62

SPRU523C–January 2007 Contents 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

List of Figures

1-1 Stack Control Flow ... 11

6 List of Figures SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

Preface
SPRU523C–January 2007

Read This First

About This Manual

The document covers programming as it applies to the TMS320C6000 programming environment,
including Code Composer Studio™ (CCStudio) Development Tools. It is not intended as an API reference.
This manual also provides necessary information regarding how to effectively install, build, and use the
Network Developer's Kit (NDK) in user systems and applications.

How to Use This Manual

The information presented in this document is divided into the following chapters:

• Chapter 1 - Overview, introduces the stack and developing network applications.
• Chapter 2 - Example Applications, provides examples that are good for platform test and

demonstration, and also serve as a good starting point for developing your own network applications.
• Chapter 3 - Network Application Development, describes the NDK software, and how to start

developing network applications now.
• Chapter 4 - Network Control Functions, describes the internal workings of the network control layer

(NETCTRL).
• Chapter 5 - OS Adaptation Layer: OS.LIB and MiniPrintf.LIB, describes the OS adaptation layer

that controls how the NDK uses DSP/BIOS resources. This includes tasks, semaphores, memory and
printing. Anything that is related to OS can be adjusted here.

Notational Conventions

This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special typeface.
• In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in

plainface within parentheses. Portions of a syntax that are in bold should be entered as shown;
portions of a syntax that are within parentheses describe the type of information that should be
entered.

• Macro names are written in uppercase text; function names are written in lowercase.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x™ devices and related support tools. To obtain a copy of
any of these TI documents, call the Texas Instruments Literature Response Center at (800) 477–8924.
When ordering, please identify the book by its title and literature number. Many of these documents can
be found on the Internet at http://www.ti.com.

SPRU189 —TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000 ™digital signal
processors (DSPs).

SPRU190 —TMS320C6000 DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000™ family of digital signal
processors (DSPs).

SPRU197 —TMS320C6000 Technical Brief. Provides an introduction to the TMS320C62x™ and
TMS320C67x™ digital signal processors (DSPs) of the TMS320C6000™ DSP family. Describes
the CPU architecture, peripherals, development tools and third-party support for the C62x™ and
C67x™ DSPs.

SPRU523C–January 2007 Read This First 7
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/www.ti.com
http://www-s.ti.com/sc/techlit/spru189
http://www-s.ti.com/sc/techlit/spru190
http://www-s.ti.com/sc/techlit/spru197
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

Related Documentation From Texas Instruments

SPRU198 —TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000™
digital signal processors (DSPs). Before you use this manual, you should install your code
generation and debugging tools. Includes a brief description of the C6000 DSP architecture and
code development flow, includes C code examples and discusses optimization methods for the C
code, describes the structure of assembly code and includes examples and discusses optimizations
for the assembly code, and describes programming considerations for the C64x™ DSP.

SPRU509 —TMS320C6000 Code Composer Studio ™Development Tools v3.3 Getting Started
Guide. Introduces some of the basic features and functionalities in Code Composer Studio™ to
enable you to create and build simple projects.

SPRU524 —TMS320C6000 Network Developer's Kit (NDK) Programmer’s Reference Guide.
Describes the various API functions provided by the stack libraries, including the low level hardware
APIs.

Trademarks

TMS320C6x, TMS320C6000, TMS320C62x, TMS320C67x, C62x, C67x, C64x, Code Composer Studio,
DSP/BIOS are trademarks of Texas Instruments.

Windows is a registered trademark of Microsoft.

8 Read This First SPRU523C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru198
http://www-s.ti.com/sc/techlit/spru509
http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

Chapter 1
SPRU523C–January 2007

Overview

This chapter introduces the TMS320C6000 Network Developer's Kit (NDK) by providing
a brief overview of the purpose and construction of the NDK, along with hardware and
software environment specifics in the context of NDK deployment. This Network
Developer's Kit (NDK) Software User's Guide serves as an introduction to both the
TMS320C6000 NDK and to developing network applications.

Topic .. Page

1.1 Introduction.. 10
1.2 NDK Setup ... 10
1.3 NDK Library Design... 11

SPRU523C–January 2007 Overview 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

1.1 Introduction

1.2 NDK Setup

1.2.1 Setting Up the NDK

1.2.1.1 NDK Contents

1.2.2 Rebuilding NDK Libraries

Introduction

The TMS320C6000™ NDK has been designed as a platform for development and demonstration of
network enabled applications on the TMS320C6000 DSP family. The NDK includes demonstration
software showcasing C6000 DSP capabilities across a range of network enabled applications. In addition,
the NDK serves as a rapid prototyping platform for the development of network and packet processing
applications, or to add network connectivity to existing DSP applications for communications,
configuration, and control. Using the software and hardware components provided with the NDK,
developers can quickly move from development concepts to working implementations attached to the
network.

This section provides information about the installation, setup, and testing of the NDK software to help you
get started with the NDK software and with the C6000-based network hardware platforms.

This section defines the NDK and provides instructions on its setup and use.

The NDK is a networking stack that operates on top of the DSP/BIOS Real-Time Operating System
(RTOS). The stack can be ported to any TMS320C6000 based hardware.

The NDK root directory contains a batch file used to build the three user serviceable stack libraries:
OS.LIB, MiniPrintf.LIB and NETCTRL.LIB. This batch file is called MAKELIB.BAT. Before using MAKELIB
from a command prompt, the batch file DOSRUN_BIOS.BAT must be run from the root NDK install
directory in order to set up the proper environment for running the TI code generation tools from a
command prompt. Make sure that the TI_DIR environment variable is set to point to your Code Composer
Studio Development Tools installation.

The form of the MAKELIB command is:

makelib [platform] [library] (noclean)

In this command, the platform and library names are required. The platform argument determines the CPU
environment for which the library is built. The value of platform can be any of the following:

c64 TMS320C6400

c64+ TMS320C64Plus

The value of library determines what device library to build. The value of library can be any of the
following:

os OS Adaptation Layer

netctrl Network Control layer

miniPrintf Small Printf Functions

The final parameter noclean can be added to the command line to suppress cleaning old object files from
the target directory. This is only useful when rebuilding the same driver for the same platform.

Overview10 SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

1.3 NDK Library Design

1.3.1 Stack Library Design

1.3.1.1 Design Philosophy

1.3.1.2 Organization

OS adaptation

layer

(OS, MiniPrintf)

DSP/BIOS

Network tools

(NETTOOL)

TCP/IP stack

library (STACK)

Network

application

Hardware

adaptation

layer (HAL) (NETCTRL)

control

Network

1.3.1.2.1 STACK.LIB Library

NDK Library Design

The NDK software package is designed to be a transparent add-on to DSP/BIOS and Code Composer
Studio ™Development Tools. This section provides information concerning the design, philosophy and
organization of the NDK library.

The NDK was designed to provide a full TCP/IP functional environment, with or without routing, in a small
memory footprint.

The NDK is isolated from both the native OS and the low-level hardware by abstracted programming
interfaces. The native OS is abstracted by an operating system adaptation layer (OS.LIB), and custom
hardware is supported via a hardware adaptation layer (HAL.LIB) library. These libraries are used to
interface the stack to DSP/BIOS and to the system peripherals.

Figure 1 shows a conceptual diagram of how the stack package is organized in terms of function call
control flow. The five main libraries that make up the NDK are shown. These are STACK.LIB,
NETTOOL.LIB, OS.LIB and MiniPrintf.LIB, HAL.LIB, and NETCTRL.LIB. All these libraries are
summarized below.

Figure 1-1. Stack Control Flow

The STACK library is the main TCP/IP networking stack. It contains everything from the sockets layer at
the top to the Ethernet and Point-to-point protocol (PPP) layers at the bottom. The library is compiled to
make use of the DSP/BIOS operating system, and does not need to be ported when moved from one
platform to another. Several builds of the library are included in the NDK. Different versions of the library
either include or exclude features like PPP, PPP over Ethernet (PPPoE), and Network Address
Translation (NAT).

SPRU523C–January 2007 Overview 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

1.3.1.2.2 NETTOOL.LIB Library

1.3.1.2.3 OS.LIB and MiniPrintf Libraries

1.3.1.2.4 HAL.LIB Library

1.3.1.2.5 NETCTRL.LIB Library

1.3.2 Programming API

1.3.2.1 Operating System Abstraction

1.3.2.2 Sockets and Stream IO API

NDK Library Design

The NETTOOL library contains all the sockets based network services supplied with the NDK, plus a few
additional tools designed to aid in the development of network applications. The most frequently used
component in the NETTOOL library is the tag based configuration system. The configuration system
controls nearly every facet of the stack and its services. Configurations can be stored in non-volatile RAM
for auto-loading at BOOT time.

These libraries form a thin adaptation layer that maps some abstracted OS function calls to DSP/BIOS
function calls. This adaptation layer allows the DSP/BIOS system programmer to tune the NDK system to
any OS based on DSP/BIOS. This includes task thread management, memory allocation, packet buffer
management, printing, logging, critical sectioning, and cache coherency.

MiniPrintf.LIB provides slim printing functions to help keep the footprint small. They are packaged into a
separate library, so you can use either the full-fledged RTS printing functions provided with the Code
Composer Studio, or the small functions included with the MiniPrintf.LIB library.

The HAL.LIB contains files that interface the hardware peripherals to the NDK. These include timers, LED
indicators, Ethernet devices, and serial ports.

The NETCTRL or Network Control library can be considered the center of the stack. It controls the
interaction between the TCP/IP and the outside world. Of all the stack modules, it is the most important to
the operation of the NDK. Its responsibilities include:

• Initializing the NDK and low level device drivers
• Booting and maintaining system configuration via configuration service provider callback functions
• Interfacing to the low level device drivers and scheduling driver events to call into the NDK
• Unloading the system configuration and driver cleanup on exit

As previously stated, the stack has been designed for optimal isolation, and so that it may seamlessly plug
in to varying run-time environments. Therefore, you may be have the opportunity to use to several
different programming interfaces. They are listed here in decreasing order of relevance. All of the following
are described in detail in the TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference
Guide (SPRU524).

The OS abstraction consists of a custom task and semaphore API contained in the OS adaptation layer.
The STACK and NETTOOL libraries use these abstractions so that their OS use can be adjusted by
adjusting the implementation of the abstraction in OS.LIB. Note that task and semaphore handles created
by these APIs are physically DSP/BIOS TSK and SEM objects.

The sockets API is primarily consists of the standard BSD socket layer API, but contains a few other
useful calls. These functions are reentrant and thread safe. They appear as an extension of the standard
IO supplied with the operating system, and should not conflict with any native file support functions.

Overview12 SPRU523C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

1.3.2.3 Initialization and Configuration

1.3.2.4 NETTOOL Support Functions

1.3.2.5 NETTOOL Services

1.3.2.6 Internal Stack API

1.3.2.7 Hardware Adaptation Layer API

1.3.3 NDK Software Directory

NDK Library Design

Stack initialization and configuration, and the configuration and initialization of the services that execute on
the stack can be a tedious task. For this reason, and to support the ability to save and restore
configurations using non-volatile RAM, a configuration manager is supplied, which maintains a
configuration database. Service providers can register with the configuration manager and define what
action is performed based on information that is written to the configuration. The NDK includes source
code to a network control module (NETCTRL) that initializes the stack and provides service functions for
the standard configuration entities (network services, network addresses, address pools, etc.). This
network control module can be used as-is, or modified to suit a custom environment.

The NETTOOL library includes both network services and basic network support functions. The API to the
support functions is standardized to that of Berkeley Unix where it makes sense, with some additional
functions provided for custom features.

The NETTOOL services include most network protocol servers required to operate the stack as a network
server or router. The API to the services is standardized and uniform across all supported services, plus
services may also be invoked by using the configuration system, bypassing the NETTOOLS API entirely.

You will almost never use the internal stack API (can be thought of as kernel level API). However, it is
required for some types of stack maintenance, and it is called by some of the sample source code.

You will most likely never call the HAL API directly, but it is required when moving the stack to an
alternate hardware platform. The HAL is described in more detail in the TMS320C6000 Network
Developer's Kit (NDK) Programmer's Reference Guide (SPRU524), and the Support Package document
for a particular platform, such as TMS320C6000 Network Developer's Kit (NDK) Support Package for
DSK6455 User's Guide (SPRUES4) and TMS320C6000 Network Developer's Kit (NDK) Support Package
for EVMDM642 User's Guide (SPRUES5).

Once the NDK is installed from the CD, all the necessary files for using the stack software are contained
in the NDK base directory (<CCS_DIR>\ndk_<version>, i.e., c:\CCStudio_v3.3\ndk_1_92). The
NDK_INSTALL_DIR environment variable must be created, and set to the base directory. All of the stack
files are located under <NDK_INSTALL_DIR>/packages, and organized in the following subdirectories:

<DOCS> NDK documentation

<EXAMPLE> Example applications

<INC> NDK include file directory

<LIB> NDK linkable library directory

<SRC> NDK source code

<WINAPPS> Windows® DOS Box text utilities

SPRU523C–January 2007 Overview 13
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www-s.ti.com/sc/techlit/sprues4
http://www-s.ti.com/sc/techlit/sprues5
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

1.3.3.1 Example Programs

1.3.3.2 NDK Include File Directory

NDK Library Design

The example directory is broken down into several subdirectories. These are as follows:

<TOOLS> Example application source code

<TOOLS \COMMON> Common source code used by multiple examples

<TOOLS \COMMION\BINSRC> Utility for creating embedded WEB page data

<TOOLS \COMMION\CGI> Functions for use when creating embedded HTTP CGI files

<TOOLS \COMMON\CONSOLE> Command line based console program

<TOOLS \COMMION\HDLC> HDLC Serial Interface (SI) module for PPP over serial

<TOOLS \COMMION\SERVERS> Test servers used for testing

<NETWORK> Demos of the software in COMMON for different platforms

<NETWORK\CFGDEMO> Examples showing embedded system configuration via HTTP

<NETWORK\CLIENT> Standard IP client demonstration

<NETWORK\HELLOWORLD> Basic stack setup demonstration

<SERIAL> Example programs using the serial connection

<SERIAL\CLIENT> HDLC/PPP client over serial (no Ethernet)

<SERIAL\ROUTER> Router with HDLC/PPP Server over serial and Ethernet

In each of the NETWORK and SERIAL examples, the directories are further broken down by platform and
common code. For example, the following directories are available under example\network\client after
installing the NDK and NDK Support Packages for EVMDM642 and DSK6455:

<COMMON> Example source code that is common to all platforms

<EVMDM642> Project files for the DM642 EVM

<DSK6455> Project files for the 6455 DSK/EVM using internal memory

When choosing an example to run, select the directory that matches your hardware platform.

The include file directory (INC) contains all the include files that can be referenced by a network
application. It is necessary to include this directory in the software tools default search path, or in the
search path of the CCStudio project file. The latter method is used in the example programs. The major
include files are as follows:

<INC> Main include file directory

NETMAIN.H Master include file for applications (STACKSYS.H,
_NETTOOL.H, _NETCTRL.H

STACKSYS.H Main include file (minus the end-application oriented include files)
(USERTYPE.H, SERRNO.H, SOCKET.H, OSIF.H, HAL.H)

_NETCTRL.H Includes references for the NETCTRL scheduler library

_NETTOOL.H Includes references for all the services in the NETTOOL library

_OSKERN.H Includes kernel level OS functions declarations

_STACK.H Includes all low level STACK interface functions

SERRNO.H Standard error values

14 Overview SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

1.3.3.3 Linkable Libraries Directory

1.3.3.3.1 NDK Libraries

NDK Library Design

SOCKET.H Prototypes for all file descriptor based functions

STKMAIN.H Include file used by low-level modules (not for use by
applications)

USERTYPE.H Standard types used by the stack

The LIB directory contains two sets of libraries, the NDK libraries that are platform independent, and the
HAL libraries that are platform dependent. The top level structure of the LIB directory is as follows:

<LIB> Linkable Library Files

<LIB\C6400> NDK libraries for TMS320C64x DSP

<LIB\C64PLUS> NDK libraries for TMS320C64+ DSP

<LIB\HAL> NDK HAL libraries

The NDK library files are those that do not change when moving from platform to platform. Several builds
of the main stack library are provided with PPP, PPPoE, and NAT either enabled or disabled. The NDK
supports big and little endianness. The libraries are named as <lib_name>.lib for little endian, and
<library_name>e.lib for big endian. For example, the directory structure for TMS320C64x is as follows:

<C6400> NDK libraries for TMS320C64x DSP

NETCTRL.LIB Network Initialization and Control library (Little Endian)

NETCTRLE.LIB Network Initialization and Control library (Big Endian)

NETTOOL.LIB Network Tools function library (Little Endian)

NETTOOLE.LIB Network Tools function library (Big Endian)

OS.LIB OS Adaptation Layer library (with priority exclusion) (Little
Endian)

OSE.LIB OS Adaptation Layer library (with priority exclusion) (Big Endian)

OS_SEM.LIB OS Adaptation Layer library (with semaphore exclusion) (Little
Endian)

OS_SEME.LIB OS Adaptation Layer library (with semaphore exclusion) (Big
Endian)

MiniPrintf.LIB Small code size printf library (Little Endian)

MiniPrintfe.LIB Small code size printf library (Big Endian)

STACK.LIB NDK library (Little Endian)

STACKE.LIB NDK library (Big Endian)

<C6400\ALL_STK> Alternate builds of the stack library

STK.LIB Stack without PPP, PPPoE, and NAT (Little Endian)

STKE.LIB Stack without PPP, PPPoE, and NAT (Big Endian)

STK_NAT.LIB Stack with NAT, but without PPP and PPPoE (Little Endian)

STK_NATE.LIB Stack with NAT, but without PPP and PPPoE (Big Endian)

STK_NAT_PPP.LIB Stack with PPP and NAT, but without PPPoE (Little Endian)

STK_NAT_PPPE.LIB Stack with PPP and NAT, but without PPPoE (Big Endian)

SPRU523C–January 2007 Overview 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

1.3.3.3.2 HAL Libraries

NDK Library Design

STK_NAT_PPP_PPPOE.LIB Stack with PPP, PPPoE, and NAT (Little Endian)

STK_NAT_PPP_PPPOEE.LIB Stack with PPP, PPPoE, and NAT (Big Endian)

STK_PPP.LIB Stack with PPP, but without PPPoE and NAT (Little Endian)

STK_PPPE.LIB Stack with PPP, but without PPPoE and NAT (Big Endian)

STK_PPP_PPPOE.LIB Stack with PPP and PPPoE, but without NAT (default library)
(Little Endian)

STK_PPP_PPPOEE.LIB Stack with PPP and PPPoE, but without NAT (default library) (Big
Endian)

<C6400\HAL> NDK Drivers for TMS320C64x DSP

HAL_ETH_STUB.LIB Ethernet Stub Driver (Little Endian)

HAL_ETH_STUBE.LIB Ethernet Stub Driver (Big Endian)

HAL_SER_STUB.LIB Serial Stub Driver (Little Endian)

HAL_SER_STUBE.LIB Serial Stub Driver (Big Endian)

HAL_TIMER_BIOS.LIB Timer Driver Using DSP/BIOS PRD object (Little Endian)

HAL_TIMER_BIOSE.LIB Timer Driver Using DSP/BIOS PRD object (Big Endian)

HAL_USERLED_STUB.LIB User LED Stub Driver (Little Endian)

HAL_USERLED_STUBE.LIB User LED Stub Driver (Big Endian)

The NDK HAL libraries are arranged by platform and device. The NDK does not contain platform or device
specific HAL libraries. However, after installing the NDK Support Package for a platform, the libraries are
created under the <LIB/HAL> directory as follows:

<LIB\HAL> Linkable Library Files

<LIB\HAL\EVMDM642> HAL libraries for DM642 EVM

<LIB\HAL\DSK6455> HAL libraries for C6455 DSK/EVM

Inside each HAL directory is a set of driver files. The driver files use the naming convention of
HAL_CLASS_DEVICE.LIB. For example, HAL_ETH_DM642.LIB is an Ethernet driver based on the
DM642. As an example of what is contained in the HAL for a specific platform, the HAL files for the
DM642 EVM are:

<EMDM642> NDK libraries for EMDM642 Platform

HAL_ETH_DM642.LIB Ethernet Driver using DM642 EMAC (Little Endian)

HAL_ETH_DM642E.LIB Ethernet Driver using DM642 EMAC (Big Endian)

HAL_SER_TI752.LIB Serial port driver for TI TL16C752 (Little Endian)

HAL_SER_TI752E.LIB Serial port driver for TI TL16C752 (Big Endian)

HAL_USERLED_DM642.LIB User LED indicator driver for EVMDM642 Platform (Little Endian)

HAL_USERLED_DM642E.LIB User LED indicator driver for EVMDM642 Platform (Big Endian)

Note that some devices are not available with all platforms. The contents of any one HAL platform
directory may vary.

Overview16 SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

1.3.3.4 Library Source Directory

1.3.3.5 Windows Test Utilities

NDK Library Design

The SRC directory contains source code to the serviceable libraries in the NDK. Source code includes the
following directories:

<SRC> Source Code to Library Files

<SRC\HAL> Source to HAL drivers for eth_stub, ser_stub, timer_bios, and
userled_stub.

<SRC\NETCTRL> Source to the Network Control Module

<SRC\OS> Source to the OS Adaptation Layer

<SRC\MiniPrintf> Source to the small footprint printing routines

The NETCTRL, OS and MiniPrintf source modules are discussed in detail at the end of this document.
The HAL is discussed in the TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference
Guide (SPRU524) and the NDK Support Package document of hardware platform, such as
TMS320C6000 Network Developer's Kit (NDK) Support Package for DSK6455 User's Guide (SPRUES4)
and TMS320C6000 Network Developer's Kit (NDK) Support Package for EVMDM642 User's Guide
(SPRUES5).

The WINAPPS directory contains four very simple test applications that can be run from a Windows DOS
box to verify the operation of the Console example program. These test applications act as network clients
for TCP send, receive, and echo, and for UDP echo operations. Most of the NDK example programs
contain network data servers that can communicate with these test applications. The SEND, RECV,
ECHOC, and TESTUDP applications are referenced in the description of these examples that can be
found in Chapter 2.

SPRU523C–January 2007 Overview 17
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www-s.ti.com/sc/techlit/sprues4
http://www-s.ti.com/sc/techlit/sprues5
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

Overview18 SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

Chapter 2
SPRU523C–January 2007

Example Applications

This section describes the main example applications included with the NDK software
release. The example applications are designed to provide a small sample of potential
applications that can be developed with the NDK.

These sample applications can be run as is for a quick demonstration, but it is
recommended to use these samples as sample source code in developing new
applications. For this, a working knowledge of how the Code Composer Studio
environment interacts with the NDK is helpful. Chapter 3 of this User's Guide is
dedicated to the development of networking applications using CCStudio.

Note: Some of the example applications described in this section require a
network with support for DHCP. If DHCP is not available, only the
Configuration example can be run as-is. The remaining examples
can be rebuilt to use a fixed IP configuration using Code Composer
Studio. See Chapter 3 for details on network application initialization.

Note: On some platforms, it is necessary to reset the DSP before loading
an OUT file. If the example file fails to initialize properly, it can be
stopped or sent off into the weeds. This is caused by cache and
interrupts being in non-default state when loading.

Topic .. Page

2.1 The Network Client Example Application 20
2.2 The Network Configuration Example Application 21
2.3 The Network HelloWorld Example Application 23
2.4 The Serial Client Example Application ... 23
2.5 The Serial Router Example Application.. 25

SPRU523C–January 2007 Example Applications 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

2.1 The Network Client Example Application

2.1.1 Introduction

2.1.2 Building the Application

2.1.3 Loading the Application

2.1.4 Testing the Application

2.1.4.1 HTTP Server

2.1.4.2 Telnet Server

The Network Client Example Application

The client example is the most important of all the example programs since it includes the most
components of an actual network application. The client example can use either DHCP or a statically
configured IP address. It launches a console application accessible via Telnet, an HTTP server with a
couple of example WEB pages, plus several data servers that can be tested by running client test
applications on a Windows PC.

The client example is located in the EXAMPLE\NETWORK\CLIENT directory off the NDK root. The
application can be rebuilt directly from its project file using Code Composer Studio™.

The application is loaded and executed via Code Composer Studio. It is a good idea to reset the board
before loading CCStudio, but this should not be required. The application displays status messages in
CCStudio's standard IO output window (Stdout).

On a successful execution, one of the status lines printed by the application displays the client's IP
address (either through DHCP or static configuration). Once this address is displayed, the DSP responds
to requests made to its IP address. When using DHCP, it is possible that the application will be unable to
obtain an IP address from a DHCP server. If so, the application eventually prints a DHCP status message
with the fault condition. Note that all the messages are generated by the main client module in CLIENT.C.

Once the application is executing and has printed out its IP address, several tests can be performed.

To see the HTTP server in action, run an Internet browser, and point it to the IP address displayed by the
application. If the client application's IP address is 196.12.1.14, the URL would be:

http://196.12.1.14

Be sure and disable any proxy settings on the browser if your network is behind a firewall.

The browser displays a small WEB page describing the example application. There are server status
screens that can be accessed off this page. The source code used to generate these pages is further
described in the HTTP appendix of the TMS320C6000 Network Developer's Kit (NDK) Programmer's
Reference Guide (SPRU524).

The client example application also includes a console application with several tests and status query
functions available. In order to get to the console, simply telnet into the application's IP address. Note that
the console program will timeout and disconnect after a period of inactivity.

To get a list of console commands, type help or simply ?. This action prints a list of console commands to
the telnet terminal. The console program is important as a programming demonstration as much as a run
time demonstration. There are many functions in the console program that display or test features
particular to the NDK. When an application developer wants to use these features in their application, the
console example source code can be useful as a guide.

Example Applications20 SPRU523C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

2.1.4.3 Data Servers

2.2 The Network Configuration Example Application

2.2.1 Introduction

2.2.2 Building the Application

2.2.3 Loading the Application

2.2.4 Configuring the Application

2.2.4.1 Setting the Initial IP Address

The Network Configuration Example Application

To try out the data servers, use the Windows test applications found in the WINAPPS directory off the
NDK root. The applications are command line driven and require a target IP address. For example, type:

send 196.12.1.14

to start the data receiver. This requests data from the server running on the DSP. To get more accurate
benchmark numbers, the number of display updates can be reduced by typing an update period. For
example:

recv 196.12.1.14 100

starts the data send test (receive from the DSP's point of view) with a display update interval of 100
iterations.

echoc 196.12.1.14 100

starts the TCP data echo test (echoes back the characters it receives from the DSP) with a display update
interval of 100 iterations.

testudp 196.12.1.14

starts an UDP data server that tests the UDP client running on the DSP.

All the Windows test clients run until a key is pressed, or Control-C in the event of an error (for instance,
trying to connect to a bad IP address).

The Configuration Demo (CFGDEMO) example illustrates how the stack running in an embedded
environment can be easily configured without relying on DHCP. The demo boots up the DSP in an idle
state with no IP address. You assign a temporary IP address, and then an HTTP client browser completes
the configuration.

The client example is located in the EXAMPLE\NETWORK\CFGDEMO directory off the NDK root. The
application can be rebuilt directly from its project file using Code Composer Studio.

The application is loaded and executed via Code Composer Studio. The application displays status
messages in CCStudio's standard IO output window (Stdout).

On a successful execution, one of the status lines printed by the application displays GetIP Ready. This
indicates that the DSP board is ready to have an IP address assigned by you. Note that all the messages
are generated by the main module in CFGDEMO.C.

Once the application is executing and has printed out its GetIP Ready message, it is ready for
configuration.

The first step in configuring the device is to assign it a temporary (or permanent) IP address. The
CFGDEMO application uses the ICMP ping message to initially detect its IP address.

Once a free IP address is chosen (say 192.63.10.5), you can assign the IP address to the DSP by using
the ping command from another machine. Note that the DSK does not reply to ARP requests when not
configured; therefore, the MAC address for the chosen IP must be manually entered.

SPRU523C–January 2007 Example Applications 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

2.2.4.2 Full System Configuration

2.2.5 Testing the Application

2.2.5.1 Telnet Server

2.2.5.2 Data Servers

The Network Configuration Example Application

For those devices requiring a daughtercard, the MAC address of the DSK is usually found on the white
label affixed to the Ethernet daughtercard. For example, if the MAC address were 08-00-28-32-08-26, to
assign this MAC address to the selected IP address, on a Windows command line, type:

arp -s 192.63.10.5 08-00-28-32-08-26

Next, to assign the IP address to the CFGDEMO application on the DSK, type

ping 192.63.10.5

The DSK board should start replying to the ping command. Since the demo application prints some
additional status messages to CCStudio, it may miss a ping request during this time.

Once the application is responding to ping requests, it is ready for full configuration.

To complete the system configuration, an Internet browser is used. Run the browser and point it to the IP
address assigned to the DSP in the previous step. If the IP address is 192.63.10.5, the URL would be:

http://192.63.10.5

Be sure and disable any proxy settings on the browser if your network is behind a firewall.

The browser displays a small WEB page describing the example application. There is a button on this
page that takes you to the configuration page. The password required to enter the configuration page is
printed on the screen.

Once in the configuration page, simply fill out the form and press the Submit button.

If DHCP was selected on the configuration form, the application attempts to get an IP address from a
DHCP server as with the Client example described in the previous section.

Once the application is configured, has restarted and printed out its IP address, several tests can be
performed. These tests are identical to those in the previous Client example.

The example application includes a console application with several tests and status query functions
available. In order to get to the console, simply telnet into the application's IP address. Note that the
console program will timeout and disconnect after a period of inactivity. Note also that the Telnet console
can be disabled from the configuration WEB page.

To try out the data servers, use the Windows test applications found in the \WINAPPS directory. The
applications are command line driven and require a target IP address. For example, type:

recv 192.63.10.5

to start the data receiver. This action requests data from the server running on the DSP. To get more
accurate benchmark numbers, the number of display updates can be reduced by typing an update period.
For example:

send 192.63.10.5 100

starts the data send test (receive from the DSP's point of view) with a display update interval of 100
iterations.

echoc 192.63.10.5 100

starts the TCP data echo test (echoes back the characters it receives from the DSP) with a display update
interval of 100 iterations.

22 Example Applications SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

2.3 The Network HelloWorld Example Application

2.3.1 Introduction

2.3.2 Building the Application

2.3.3 Loading the Application

2.3.4 Testing the Application

2.3.4.1 HelloWorld

2.4 The Serial Client Example Application

2.4.1 Introduction

The Network HelloWorld Example Application

testudp 196.12.1.14

starts an UDP data server that tests the UDP client running on the DSP.

All the Windows test clients run until a key is pressed, or Control-C in the event of an error (for instance,
trying to connect to a bad IP address).

The helloWorld example is a skeleton application intended to provide the application programmer with a
basic stack setup, to which you can add your code.

The client example is located in the EXAMPLE\NETWORK\HELLOWORLD directory off the NDK root. The
application can be rebuilt directly from its project file using Code Composer Studio.

The application is loaded and executed using Code Composer Studio. The application displays status
messages in CCStudio's standard IO output window (Stdout).

On a successful execution, one of the status lines printed by the application displays the client's IP
address (either through DHCP or static configuration). Once this address is displayed, the DSP responds
to requests made to its IP address. When using DHCP, it is possible that the application will be unable to
obtain an IP address from a DHCP server. If so, the application eventually prints a DHCP status message
with the fault condition. Note that all the messages are generated by the main client module in
HELLOWORLD.C.

Once the application is executing and has printed out its IP address, several tests can be performed.

To try out the example, use the Windows test application found in the WINAPPS directory of the NDK
root. The application is command driven and requires a target IP address, such as:

helloWorld 192.63.10.5

This sends Hello World! through a UDP socket connection, and reads the transmitted information by the
stack.

The serial client example includes the same application components as the network example, with the
communication link as Point-to-Point, over a UART cable. The example is delivered only for platforms that
have a supported UART connection.

SPRU523C–January 2007 Example Applications 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

2.4.2 Setting Up the Network

2.4.3 Building the Application

2.4.4 Loading the Application

2.4.5 Testing the Application

2.4.5.1 Telnet Server

2.4.5.2 Data Servers

The Serial Client Example Application

To test the PPP connection when the DSP is acting as a client and a PC as a server, set up an incoming
connection on the PC. To do this, go to Start→ Accessories→ Communications→ New Connection
Wizard. Click Next, and then select Set up an advanced connection. On the next screen, select Accept
incoming connections. When the Devices for Incoming Connections screen appears, select
Communications cable between two computers (COM1). Set the properties for this connection at 115200
for port speed and no flow control. On the Advanced tab of the Properties, select 8 Data bits, no parity,
and 1 stop bit. On the next screen, select Do not allow virtual private connections.

After you set up the Incoming connections, open the Network Connections window and select Properties
from the right click menu of the Incoming Connections. Create a new user on the Users tab, using the
password password. On the Users tab, also make sure that Require all users to secure their passwords
and data is unchecked. Otherwise, the DSP NDK will not be able to establish a serial connection with the
PC.

The serial client example is located in the EXAMPLE\SERIAL\CLIENT directory off the NDK root. The
application can be rebuilt directly from its project file using Code Composer Studio.

The application is loaded and executed via Code Composer Studio. It is a good idea to reset the board
before loading CCStudio, but this is not required. The application displays status messages in CCStudio's
standard IO output window (Stdout).

On a successful execution, one of the status lines printed by the application displays the client's IP
address. Once this address is displayed, the DSP responds to requests made to its IP address. You may
also notice that a new networking icon appears on the PC status bar, with the name of the incoming
connection you set up.

Once the application is executing and has printed out its IP address, several tests can be performed.

The client example application also includes a console application with several tests and status query
functions available. In order to get to the console, simply telnet into the application's IP address. Note that
the console program will timeout and disconnect after a period of inactivity.

To get a list of console commands, type help or simply ?. A list of console commands will be printed to the
telnet terminal. The console program is important as a programming demonstration as much as a run time
demonstration. There are many functions in the console program that display or test features particular to
the NDK. When an application developer wants to use these features in their application, the console
example source code can be very useful as a guide.

To try out the data servers, use the Windows test applications found in the WINAPPS directory off the
NDK root. The applications are command line driven and require a target IP address. For example, type:

send 196.12.1.14

to start the data receiver. This action requests data from the server running on the DSP. To get more
accurate benchmark numbers, the number of display updates can be reduced by typing an update period.
For example:

recv 196.12.1.14 100

starts the data send test (receive from the DSP's point of view) with a display update interval of 100
iterations.

24 Example Applications SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

2.5 The Serial Router Example Application

2.5.1 Introduction

2.5.2 Setting Up the Network

2.5.3 Building the Application

2.5.4 Loading the Application

The Serial Router Example Application

echoc 196.12.1.14 100

starts the TCP data echo test (echoes back the characters it receives from the DSP) with a display update
interval of 100 iterations.

testudp 196.12.1.14

starts an UDP data server that tests the UDP client running on the DSP.

All the Windows test client run until a key is pressed, or Control-C in the event of an error (for instance,
trying to connect to a bad IP address).

The serial router example illustrates how to build a router serving both PPP/serial and Ethernet interfaces.
A simple UART connection is used for the serial interface. The example is delivered only for platforms that
have a supported UART connection.

To test the PPP connection when the DSP is acting as a server and a PC as a client, set up a client
connection on the PC. To do this, go to Start→ Accessories→ Communications→ New Connection
Wizard. Click Next, and then select Set up an advanced connection. On the next screen, select Connect
directly to another computer. On the next screen select Guest, so the PC can act as a client for the PPP
connection. Next, give the connection a name, such as TIDSP. Next, select Communications cable
between two computers (COM1), and complete the setup with the default settings.

Set the properties for this connection at 115200 for port speed and no flow control. On the Advanced tab
of the Properties screen, select 8 Data bits, no parity, and 1 stop bit. On the next screen, select Do not
allow virtual private connections.

After you set up the client connection, open the Network Connections window and select Properties from
the right click menu of the direct connection you just set up. Set the properties for the COM1 device at
115200 for port speed and no flow control. On the Networking tab, click the Settings button and make sure
that Enable LCP extensions is unchecked.

The serial router example is located in the EXAMPLE\SERIAL\ROUTER directory off the NDK root. The
application can be rebuilt directly from its project file using Code Composer Studio.

The application is loaded and executed via Code Composer Studio. It is a good idea to reset the board
before loading CCStudio, but this may not be required. The application displays status messages in
CCStudio's standard IO output window (Stdout).

If an Ethernet connection is available, one of the status lines printed by the application displays the
Ethernet interface IP address on a successful execution (either through DHCP or static configuration).
When using DHCP, it is possible that the application will be unable to obtain an IP address from a DHCP
server. In this case, the application will eventually print a DHCP status message with the fault condition.

Also, one of the printed lines indicates that the serial connection is ready to accept connections. Once
Sctrl: Ready is displayed, you can double click the icon of the client connection you have set up earlier,
and log in with the name username and password password. Once the connection is completed,
CCStudio prints the IP address assigned to the serial interface. You may also notice that a new
networking icon appears on the PC status bar, with the name of the client connection you set up.

The DSP now responds to requests made to its both its serial and its Ethernet IP addresses.

SPRU523C–January 2007 Example Applications 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

2.5.5 Testing the Application

2.5.5.1 HTTP Server

2.5.5.2 Telnet Server

2.5.5.3 Data Servers

The Serial Router Example Application

Once the application is executing and has printed out its IP address, several tests can be performed.

To see the HTTP server in action, run an Internet browser, and point it to one of the IP addresses
displayed by the application. For an IP address of 196.12.1.14, the URL would be:

http://196.12.1.14

Be sure and disable any proxy settings on the browser if your network is behind a firewall.

The browser displays a small WEB page describing the example application. There are server status
screens that can be accessed off this page. The source code used to generate these pages is further
described in the HTTP appendix of the TMS320C6000 Network Developer's Kit (NDK) Programmer's
Reference Guide (SPRU524).

The client example application also includes a console application with several tests and status query
functions available. In order to get to the console, simply telnet into the application's IP address. Note that
the console program timeouts and disconnects after a period of inactivity.

To get a list of console commands, type help or simply ?. A list of console commands is printed to the
telnet terminal. The console program is important as a programming demonstration as much as a run time
demonstration. There are many functions in the console program that display or test features particular to
the NDK. If you want to use these features in your application, the console example source code can be
useful as a guide.

To try out the data servers, use the Windows test applications found in the WINAPPS directory off the
NDK root. The applications are command line driven and require a target IP address. For example, type:

send 196.12.1.14

to start the data receiver. This requests data from the server running on the DSK. To get more accurate
benchmark numbers, the number of display updates can be reduced by typing an update period. For
example:

recv 196.12.1.14 100

starts the data send test (receive from the DSP's point of view) with a display update interval of 100
iterations.

echoc 196.12.1.14 100

starts the TCP data echo test (echoes back the characters it receives from the DSP) with a display update
interval of 100 iterations.

testudp 196.12.1.14

starts an UDP data server that tests the UDP client running on the DSP.

All the Windows test clients run until a key is pressed, or Control-C in the event of an error (for instance,
trying to connect to a bad IP address).

26 Example Applications SPRU523C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

Chapter 3
SPRU523C–January 2007

Network Application Development

Developing a network application with the C6000 NDK software is as easy as
programming with a standard sockets API. However, integrating with Code Composer
Studio, DSP/BIOS™, and system initialization may be unfamiliar. This chapter
describes how to start developing network applications, as it discusses the issues and
guidelines involved in the development of network applications using the NDK libraries.

Topic .. Page

3.1 Using Code Composer Studio .. 28
3.2 Developing Socket Applications with DSP/BIOS 29
3.3 NDK Initialization and Configuration.. 33
3.4 Application Debug and Troubleshooting...................................... 43

SPRU523C–January 2007 Network Application Development 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.1 Using Code Composer Studio

3.1.1 Required Configuration Entries

3.1.1.1 PRD Object

3.1.1.2 HOOK Object

3.1.2 Include Files and Library Files

3.1.3 CCStudio Project Link Order

Using Code Composer Studio

All network application development is performed in Code Composer Studio (CCStudio). The stack
libraries are designed to work with Code Composer Studio. This section provides some guidelines for
developing NDK applications under CCStudio.

The NDK does not have any special requirements, but is bolted to DSP/BIOS and the hardware via the
OS adaptation layer and the HAL layer. These libraries do require DSP/BIOS objects to be created in
order for them to work properly. This requirement can be altered by altering the OS and HAL layers.

The timer driver in the HAL requires that a PRD function be created to drive its main timer. The PRD must
be configured to fire every 100mS, and call the timer driver function llTimerTick().

The task adaptation module in the OS library requires a hook to be able to save and load private
environment pointers for the NDK. This is done by creating a DSP/BIOS hook. A hook module must be
created to call the OS hook functions NDK_hookInit() and NDK_hookCreate().

The base release package is organized as a set of library files and an include file directory. The directory
structure is shown in the previous section. When developing an application, it is best to include the base
NDK include directory in the project build options of the CCStudio project. For example, with the default
installation, the project should be set to include the include file path
<NDK_INSTALL_DIR>\packages\ti\ndk\inc.

The selection of available library files is described in the previous section. It is easiest to add desired
library files directly into the project. This way, the linker will know where to find them. This can become an
issue for link ordering, so be sure to take note of the following section on link order.

CCStudio has the ability to link object files and libraries in a specific order. This link order is a very
important step in getting a NDK application to work correctly. By default, CCStudio projects do not have a
link order, and sometimes the unordered link order causes problems; the linker may report multiply
defined symbols, or the program may link without errors and simply fail to operate correctly.

To ensure a correct project build, you must enable the link order options on any CCStudio project. To
start, select Build Options from the Project menu, then select the Link Order tab. The project files should
be listed at the bottom of the dialog. Add all project files to the link order using the Add to link order list
button. Finally, manipulate the order using the arrow buttons so that all .LIB files are at the end of the link
order list. Alternately, you can use the -priority linker switch to establish a link order.

The best order for the NDK libraries that you added to the end of the list is as follows: NETCTRL.LIB,
HAL_xxx.LIB, NETTOOL.LIB, STACK.LIB, OS.LIB, and MiniPrintf.LIB. When the small footprint printing
library is not added to the project, the standard RTS functions will be used for printing.

Network Application Development28 SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.1.4 NDK Memory Sections

3.1.5 Using Cache

3.2 Developing Socket Applications with DSP/BIOS

Developing Socket Applications with DSP/BIOS

The NDK defines some special memory segments via the pragma:

#pragma DATA_SECTION(memory_label, "SECTIONNAME")

The NDK sections are defined by default as subsections of the far memory segment. External memory is
usually used for the far section. The additional section names are shown below.

.far:NDK_PACKETMEM — This section is defined in the HAL and OS adaptation layers for packet buffer
memory. The size required is normally 32k bytes to 48k bytes. This is set by the packet buffer
manager (pbm.c) in the OS adaptation layer.

.far:NDK_MMBUFFER — This section is defined by the memory allocation system for use as a
scratchpad memory resource. The size of the memory declared in this section is adjustable, but the
default is less than 48k bytes.

.far:NDK_OBJMEM — This section is a catch-all for other large data buffer declarations. It is used by the
example application code and the OS adaptation layer (for print buffers).

Instead of using the default project CMD file, the example networking code includes an alternate CMD file
that specifies the Chip Support Library (CSL) when required by the project. The alternate linker command
file includes the project's default command file. If the project is changed, the include line must also be
altered.

All these memory sections are defined in either the network application, HAL, or OS adaptation layer. You
have full control over the placement of the NDK sections in memory. If you want to place these special
segments into a user-defined section called MYSDRAM, instead of the default far memory section, just
add the following lines at the end of the alternate CMD file for your project:
SECTIONS
{

.far:PACKETMEM: {} > MYSDRAM

.far:MMBUFFER: {} > MYSDRAM

.far:OBJMEM: {} > MYSDRAM
}

The example program for each individual platform is pre-set with the preferred cache configuration. When
internal memory is not required, 4-way cache is used. Otherwise, cache is selected to meet internal
memory requirements. Any system that requires a specific memory/cache map should be clearly
documented. Also, the HAL drivers all assume that there is at least some L2 cache. The drivers may not
behave properly if L2 is mapped entirely to SRAM.

Chapter 2 of the TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference Guide
(SPRU524) describes the API for using file descriptors in a DSP/BIOS task thread. This section discusses
some of the issues when using this task and file descriptor table environment, but does not discuss the
entire API.

SPRU523C–January 2007 Network Application Development 29
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.2.1 Default Environment API Restrictions

3.2.2 Creating a Task

Developing Socket Applications with DSP/BIOS

The stack is designed to be flexible, and has a OS adaptation layer that can be adjusted to support any
system software environment that is built on top of DSP/BIOS. Although the environment can be adjusted
to suit any need by adjusting the HAL, NETCTRL and OS modules, the following restrictions should be
noted for the most common environments:

1. The Network Control Module (NETCTRL) contains a network scheduler thread that schedules the
processing of network events. The scheduler thread can run at any priority with the proper adjustment.
Typically, the scheduler priority is low (lower than any network task), or high (higher than any network
task). Running the scheduler thread at a low priority places certain restrictions on how a task can
operate at the socket layer. For example:

• If a task polls for data using the recv() function in a non-block mode, no data is ever received
because the application never blocks to allow the scheduler to process incoming packets.

• If a task calls send() in a loop using UDP, and the destination IP address is not in the ARP table,
the UDP packets are not sent because the scheduler thread is never allowed to run to process the
ARP reply.
These cases are seen more in UDP operation than in TCP. To make the TCP/IP behave more like
a standard socket environment for UDP, the priority of the scheduler thread can be set to high
priority. See Chapter 4 for more details on network event scheduling.

2. The NDK requires a re-entrance exclusion methodology to call into internal stack functions. This is
called kernel mode by the NDK, and is entered by calling the function llEnter() and exited via llExit().
Application programmers do not typically call these functions, but you must be aware of how the
functions work.
By default, priority inversion is used to implement the kernel exclusion methods. When in kernel mode,
a task’s priority is raised to OS_TASKPRIKERN. Application programmers need to be careful not to
call stack functions from threads with a priority equal to or above that of OS_TASKPRIKERN, as this
could cause illegal reentrancy into the stack's kernel functions. For systems that cannot tolerate priority
restrictions, the NDK can be adjusted to use semaphores for kernel exclusion. This can be done by
altering the OS adaptation layer as discussed in Section 5.2.3, or by using the semaphore based
version of the OS library: OS_SEM.LIB.

The process of creating a sockets application begins with the creation of the task thread. With the supplied
stack library, tasks can be created using the standard DSP/BIOS API or the provided task abstraction. For
example, the following call creates a basic task:
struct TSK_Attrs ta;
ta = TSK_ATTRS;
ta.priority = OS_TASKPRINORM;
ta.stack = 0;
ta.stacksize = stacksize;
ta.stackseg = 0;
ta.environ = 0;
ta.name = "TaskName";
ta.exitflag = 0;
hMyTask = TSK_create((Fxn)entrypoint, &ta, arg1, arg2, arg3);

The same task can be created via the TaskCreate() function in the task abstraction API. The abstracted
function is a little more restrictive. It creates a task thread with exactly 3 parameters (they do not all have
to be used) with the same basic task attributes as DSP/BIOS. For example, the following call would create
an identical task to that shown above:
hMyTask = TaskCreate(entrypoint, "TaskName", OS_TASKPRINORM,

stacksize, arg1, arg2, arg3);

In both cases, hMyTask is a handle to a DSP/BIOS TSK task thread.

30 Network Application Development SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.2.2.1 Stack Size

3.2.2.2 Choosing Task Priorities

3.2.2.3 Initializing the File Descriptor Table

3.2.3 Memory Allocation

3.2.4 Example Code

Developing Socket Applications with DSP/BIOS

Care should be taken when choosing a stack size. Due to its recursive nature, the stack tends to consume
a significant amount of stack. A stack size of 3072 is appropriate for UDP based communications. For
TCP, 4096 should be used as a minimum, with 5120 being chosen for protocol servers. The thread that
calls the NETCTRL library functions should have a stack size of at least 4096 bytes. If lesser values are
used, stack overflow conditions may occur.

In general, tasks that use functions in the network stack should be of a priority no less than
OS_TASKPRILOW, and no higher than OS_TASKPRIHIGH. For a typical task, use a priority of
OS_TASKPRINORM. The values for these #define variables can be altered by adjusting the OSENVCFG
structure as described in the TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference
Guide (SPRU524); however, this is strongly discouraged. When altering the priority band, care must be
taken to account for both the network scheduler thread and the kernel priority.

Each task thread that must use the sockets or file API included in the stack must allocate a file descriptor
table and associate the table with the task handle. This process is described fully in the TMS320C6000
Network Developer's Kit (NDK) Programmer's Reference Guide (SPRU524). Basically, a call to
fdOpenSession() must be performed before any file descriptor oriented functions are used, and then
fdCloseSession() is called when they are no longer required.

Section 2.4 of the TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference Guide
(SPRU524) describes the memory allocation API provided by the OS library for use by the various stack
libraries. Although the stack's memory allocation API has some benefits (it is portable, bucket based to
prevent fragmentation, and tracks memory leaks), the application code is expected to use the standard
malloc()/free() or equivalent MEM allocation routines provided by DSP/BIOS.

The following is an echo sockets application for DSP/BIOS. It creates a socket, connects to port 7, sends
some data, and then tries to receive it back.

The lines of code in boldface represent new functions required to provide sockets functionality to
DSP/BIOS. The functions in bold italics are standard, but their names have been adjusted to avoid
naming conflicts with Code Composer Studio's runtime support library. The remainder of the functions
should be familiar to Berkeley sockets programmers. All of these functions are described in detail in the
TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference Guide (SPRU524).
void EchoTcp(IPN IPAddr)
{

SOCKET s = INVALID_SOCKET;
struct sockaddr_in sin1;
int I;
char *pBuf = 0;
struct timeval timeout;

// Allocate the file descriptor environment for this task
fdOpenSession((HANDLE)TSK_self());

printf("\n== Start TCP Echo Client Test ==\n");

// Create test socket
s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if(s == INVALID_SOCKET)
{

printf("failed socket create (%d)\n",fdError());
goto leave;

}

SPRU523C–January 2007 Network Application Development 31
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www-s.ti.com/sc/techlit/spru524
http://www-s.ti.com/sc/techlit/spru524
http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

Developing Socket Applications with DSP/BIOS

// Prepare address for connect
bzero(&sin1, sizeof(struct sockaddr_in));
sin1.sin_family = AF_INET;
sin1.sin_len = sizeof(sin1);
sin1.sin_addr.s_addr = IPAddr;
sin1.sin_port = htons(7);

// Configure our Tx and Rx timeout to be 5 seconds
timeout.tv_sec = 5;
timeout.tv_usec = 0;
setsockopt(s, SOL_SOCKET, SO_SNDTIMEO, &timeout, sizeof(timeout));
setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, &timeout, sizeof(timeout));

// Connect socket
if(connect(s, (PSA) &sin1, sizeof(sin1)) < 0)
{

printf("failed connect (%d)\n",fdError());
goto leave;

}

// Allocate a working buffer
if(!(pBuf = malloc(4096)))
{

printf("failed temp buffer allocation\n");
goto leave;

}

// Fill buffer with a test pattern
for(I=0; i<4096; I++)

*(pBuf+I) = (char)I;

// Send the buffer
if(send(s, pBuf, 4096, 0) < 0)
{

printf("send failed (%d)\n",fdError());
goto leave;

}

// Try and receive the test pattern back
I = recv(s, pBuf, 4096, MSG_WAITALL);
if(I < 0)
{

printf("recv failed (%d)\n",fdError());
goto leave;

}

// Verify reception size and pattern
if(I != test)
{

printf("received %d (not %d) bytes\n",i,test);
goto leave;

}

for(I=0; i<test; I++)
if(*(pBuf+I) != (char)I)
{

printf("verify failed at byte %d\n",I);
break;

}

// If here, the test passed
if(i==test)

printf("passed\n");

leave:
if(pBuf)

free(pBuf);

if(s != INVALID_SOCKET)

32 Network Application Development SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.3 NDK Initialization and Configuration

3.3.1 NDK Initialization Using NETCTRL

3.3.1.1 The NETCTRL Task Thread

3.3.1.2 Pre-Initialization

NDK Initialization and Configuration

fdClose(s);

printf("== End TCP Echo Client Test ==\n\n");

// Free the file descriptor environment for this task
fdCloseSession((HANDLE)TSK_self());

TSK_exit();
}

Before a sockets application like the example shown in Section 3.2.4 can be executed, the stack must be
properly configured and initialized. To facilitate a standard initialization process, and yet allow
customization, source code to the network control module (NETCTRL.LIB) is included in the NDK. The
NETCTRL module is the center of the stack's initialization, configuration, and event scheduling. A solid
comprehension of NETCTRL's operation is essential for building a solid networking application. This
section describes how to use NETCTRL in an networking application. An explanation of how NETCTRL
works and how it can be tuned is provided in Chapter 4.

The process of initialization and configuration of the NDK is described in detail in Chapter 4 of the
TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference Guide (SPRU524). This section
closely mirrors the initialization procedure described in the NDK Software Directory of that document. Here
we describe the information with a more practical slant. Programmers concerned with the exact API of the
functions mentioned here should refer to the TMS320C6000 Network Developer's Kit (NDK) Programmer's
Reference Guide (SPRU524) for a more precise description.

The NETCTRL task thread (called scheduler thread) is the task thread on which nearly all the NETCTRL
activity takes place. This thread is created by the programmer, either in the DSP/BIOS .tcf file or via the
DSP/BIOS API. In all the example applications, there is one main application thread created in the
DSP/BIOS configuration. The main thread is the program’s entry-point, and it is this thread that eventually
becomes the NETCTRL scheduler thread. Although it starts out as performing initialization, the NETCTRL
thread eventually becomes the NDK's event scheduler thread. Therefore, control of this thread is not
returned to the caller until the stack has been shut down. Application tasks - network oriented or otherwise
- are not executed on this thread.

Before calling any other of the stack API functions, the primary initialization function NC_SystemOpen()
must be called. This initializes the stack and the memory environment used by all the stack components.
Two calling arguments, Priority and OpMode, indicate how the scheduler should execute.

Priority is set to either NC_PRIORITY_LOW or NC_PRIORITY_HIGH, and determines the scheduler
task’s priority relative to other networking tasks in the system. OpMode is set to either
NC_OPMODE_POLLING or NC_OPMODE_INTERRUPT, and determines when the scheduler attempts to
execute. The interrupt mode is used in the vast majority of applications. Note that polling mode attempts to
run continuously, so when polling is used, Priority must be set to NC_PRIORITY_LOW.

For example, all the example applications included in the NDK contain the following:
//
// THIS IS THE FIRST THING DONE IN AN APPLICATION!!
//
rc = NC_SystemOpen(NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT);
if(rc)
{

printf("NC_SystemOpen Failed (%d)\n",rc);
for(;;);

}

SPRU523C–January 2007 Network Application Development 33
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.3.1.3 System Configuration

3.3.1.4 Network Startup

NDK Initialization and Configuration

To use the NETCTRL API, a system configuration must be created. The configuration is a handle based
object that holds a multitude of system parameters. These parameters control the operation of the stack.
Typical configuration parameters include:

• Network Hostname
• IP Address and Subnet Mask
• IP Address of Default Routes
• Services to be Executed (DHCP, DNS, HTTP, etc.)
• IP Address of name servers
• Stack Properties (IP routing, socket buffer size, ARP timeouts, etc.)

The process of creating a configuration always starts out with a call to CfgNew() to create a configuration
handle. Once the configuration handle is created, configuration information can be loaded into the handle
in bulk or constructed into it one entry at a time.

Loading a configuration in bulk requires that a previously constructed configuration has been saved to
non-volatile storage. Once the configuration is in memory, the information can be loaded into the
configuration handle by calling CfgLoad(). Another option is to manually add individual items to the
configuration for the various desired properties. This is done by calling CfgAddEntry() for each individual
entry to add.

The exact specification of the stack's configuration API appears in Section 4 of the TMS320C6000
Network Developer's Kit (NDK) Programmer's Reference Guide (SPRU524). Some additional
programming examples are provided in the Section 3.3.3 section of this document, and in the NDK
example programs.

Once the configuration handle is loaded with the proper configuration, the network (and the network event
scheduler) is invoked by calling the NETCTRL function NC_NetStart(). Besides the handle to the
configuration, this function takes three additional callback pointer parameters; a pointer to a Start callback
function, a Stop function, and a IP Address Event function.

The first two callback functions are called only once. The Start callback is called when the system is
initialized and ready to execute network applications (note there may not be a local IP network address
installed yet). The Stop callback is called when the system is shutting down and signifies that the stack will
soon not be able to execute network applications. The third callback can be called multiple times. It is
called when a local IP address is either added or removed from the system. This can be useful in
detecting new DHCP or PPP address events, or just to record the local IP address for use by local
network applications. The call to NC_NetStart() will not return until the system has shut down, and then it
returns a shutdown code as its return value. How the system was shut down may be important to
determine if the stack should be rebooted. For example, a reboot may be desired in order to load a new
configuration. The return code from NC_NetStart() can be used to determine if NC_NetStart() should be
called again (and hence perform the reboot).

For a simple example, the following code continuously reboots the stack using the current configuration
handle if the stack shuts down with a return code greater than zero. The return code is set when the stack
is shutdown via a call to NC_NetStop().
//
// Boot the system using our configuration
//
// We keep booting until the function returns 0. This allows
// us to have a "reboot" command.
//
do
{

rc = NC_NetStart(hCfg, NetworkStart, NetworkStop, NetworkIPAddr);
} while(rc > 0);

Network Application Development34 SPRU523C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.3.1.5 Invoking New Network Tasks and Services

NDK Initialization and Configuration

Some standard network services can be specified in the system configuration, and these are loaded and
unloaded automatically by the NETCTRL module. Other services, including those written by an
applications programmer should be launched from the Start callback function that was supplied to
NC_NetStart().

As an example of a network start callback, the NetworkStart() function below opens a user SMTP server
application by calling an open function to create the main application thread.
static SMTP_Handle hSMTP;

//
// NetworkStart
//
// This function is called after the configuration has booted
//
static void NetworkStart()
{

// Create an SMTP server
task hSMTP = SMTP_open();

}

The above code launches a self contained application that needs no further monitoring, but the application
must be shut down when the system shuts down. This is done via the NetworkStop() callback function.
Therefore, the NetworkStop() function must undo what was done in NetworkStart().

//
// NetworkStop
//
// This function is called when the network is shutting down
//
static void NetworkStop()
{

// Close our SMTP server task
SMTP_close(hSMTP);

}

The above example assumes that the network task can be launched whether or not the stack has a local
IP address. This is true for servers that listen on a wildcard address of 0.0.0.0. In some rare cases, an IP
address may be required for task initialization, or perhaps an IP address on a certain device type is
required. In these circumstances, the NetworkIPAddr() callback function signals the application that it
is safe to start.

The following example illustrates the calling parameters to the NetworkIPAddr() callback. Note that the
IFIndexGetHandle() and IFGetType() functions can be called to get the type of device (HTYPE_ETH or
HTYPE_PPP) on which the new IP address is being added or removed. This example just prints a
message. The most common use of this callback function is to synchronize network tasks that require a
local IP address to be installed before executing.

//
// NetworkIPAddr
//
// This function is called whenever an IP address binding is
// added or removed from the system.
//
static void NetworkIPAddr(IPN IPAddr, uint IfIdx, uint fAdd)
{

IPN IPTmp;

if(fAdd)
printf("Network Added: ");

else
printf("Network Removed: ");

// Print a message

SPRU523C–January 2007 Network Application Development 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.3.1.6 Shutdown

3.3.2 Adding Standard Services

NDK Initialization and Configuration

IPTmp = ntohl(IPAddr);

printf("If-%d:%d.%d.%d.%d\n", IfIdx,
(UINT8)(IPTmp>>24)&0xFF, (UINT8)(IPTmp>>16)&0xFF,
(UINT8)(IPTmp>>8)&0xFF, (UINT8)IPTmp&0xFF);

}

There are two ways the stack can be shut down. The first is a manual shutdown that occurs when an
application calls NC_NetStop(). Here, the calling argument to the function is returned to the NETCTRL
thread as the return value from NC_NetStart(). Therefore, for the example code, calling NC_NetStop(1)
reboots the network stack, while calling NC_NetStop(0) shuts down the network stack.

The second way the stack can be shut down is when the stack code detects a fatal error. A fatal error is
an error above the fatal threshold set in the configuration. This type of error generally indicates that it is
not safe for the stack to continue. When this occurs, the stack code calls NC_NetStop(-1). It is then up to
you to determine what should be done next. The way the NC_NetStart() loop is coded determines if the
system will shut down (as in the example), or simply reboot.

Note that the critical threshold to shut down can also be disabled. The following code can be added to the
configuration to disable error related shutdown:
// We do not want the stack to abort on any error
uint rc = DBG_NONE;

CfgAddEntry(hCfg, CFGTAG_OS, CFGITEM_OS_DBGABORTLEVEL,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0);

The configuration system can also be used to invoke the standard network services found in the
NETTOOLS library. The services available to network applications using the NDK are discussed in detail
in Chapter 4 of the TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference Guide
(SPRU524). This section summarized the services described in that chapter.

When using the NETTOOLS library, the NETTOOLS status callback function is introduced. This callback
function tracks the state of services that are enabled through the configuration. There are two levels to the
status callback function. The first callback is made by the NETTOOLS service. It calls the configuration
service provider when the status of the service changes. The configuration service provider then adds its
own status to the information and calls back to the application's callback function. A pointer to the
application's callback is provided when the application adds the service to the system configuration.

The basic status callback function that is used in all the examples is as follows:
//
// Service Status Reports
//
static char *TaskName[] = { "Telnet","HTTP","NAT","DHCPS","DHCPC","DNS" };
static char *ReportStr[] = { "","Running","Updated","Complete","Fault" };
static char *StatusStr[] = { "Disabled", "Waiting", "IPTerm",

"Failed", "Enabled" }

static void ServiceReport(uint Item, uint Status, uint Report, HANDLE h)
{

printf("Service Status: %-9s: %-9s: %-9s: %03d\n",
TaskName[Item-1], StatusStr[Status],
ReportStr[Report/256], Report&0xFF);

}

Note that the names of the individual services are listed in the TaskName[] array. This order is specified
by the definition of the service items in the configuration system and is constant. See the file
INC\NETTOOLS\NETCFG.H for the physical declarations.

36 Network Application Development SPRU523C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.3.3 Initialization Examples

3.3.3.1 Constructing a Configuration for a Static IP and Gateway

NDK Initialization and Configuration

Note that the strings defining the master report code are listed in the ReportStr[] array. This order is
specified by the NETTOOLS standard reporting mechanism and is constant. See the file
INC\NETTOOLS\NETTOOLS.H for the physical declarations.

Note that the strings defining the task state are defined in the StatusStr[] array. This order is specified
by the definition of the standard service structure in the configuration system. See the file
INC\NETTOOLS\NETCFG.H for the physical declarations.

The last value this callback function prints is the least significant 8 bits of the value passed in Report. This
value is specific to the service in question. For most services this value is redundant. Usually, if the
service succeeds, it reports Complete, and if the service fails, it reports Fault. For services that never
complete (for example, a DHCP client that continues to run while the IP lease is active), the upper byte of
Report signifies Running and the service specific lower byte must be used to determine the current state.

For example, the status codes returned in the 8 least significant bits of Report when using the DHCP
client service are:
DHCPCODE_IPADD Client has added an IP address
DHCPCODE_IPREMOVE IP address removed and CFG erased
DHCPCODE_IPRENEW IP renewed, DHCP config space reset

These DHCP client specific report codes are defined in INC\NETTOOLS\INC\DHCPIF.H. In most cases,
you do not have to examine state report codes down to this level of detail, except in the following case.
When using the DHCP client to configure the stack, the DHCP client controls the first 256 entries of the
CFGTAG_SYSINFO tag space. These entries correspond to the 256 DHCP option tags. An application
may check for DHCPCODE_IPADD or DHCPCODE_IPRENEW return codes so that it can read or alter
information obtained by DHCP client. This is discussed further in Section 3.3.3.2.

This section contains some sample code for constructing configurations. These examples use the same
initialization, configuration, and callback functions discussed in the previous sections.

The NetworkTest() function in this example consists of the main initialization thread for the stack. It
creates a new configuration, adds a static IP address, subnet, and default gateway, and then boots up the
stack.

In this case, it is assumed that the addressing and name information is stored in non-volatile memory.
Here, we have defined some strings to hold the information. For example:
char *LocalIPAddr = "194.16.11.12";
char *LocalIPMask = "255.255.255.0";
char *GatewayIP = "194.16.10.1";
char *HostName = "testhost";
char *DomainName = "demo.net";

The code below performs the following operations :

1. Call NC_SystemOpen() and Create a new configuration.
2. Create and add a configuration entry for the local IP address and subnet using the supplied

LocalIPAddr, LocalIPMask, and DomainName strings.
3. Create and add a configuration entry for the local hostname using the Hostname string.
4. Create and add a default route to the router supplied in the GatewayIP string.
5. Boot the system using this configuration by calling NC_NetStart().
6. Free the configuration on system shutdown (when NC_NetStart() returns) and call NC_SystemClose().
int NetworkTest()
{

int rc;
CI_IPNET NA;
CI_ROUTE RT;
HANDLE hCfg;

//

SPRU523C–January 2007 Network Application Development 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

NDK Initialization and Configuration

// THIS MUST BE THE ABSOLUTE FIRST THING DONE IN AN APPLICATION!!
//
rc = NC_SystemOpen(NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT);
if(rc)
{

printf("NC_SystemOpen Failed (%d)\n",rc);
for(;;);

}

//
// Create and build the system configuration from scratch.
//

// Create a new configuration
hCfg = CfgNew();
if(!hCfg)
{

printf("Unable to create configuration\n");
goto main_exit;

}

// We better validate the length of the supplied names
if(strlen(DomainName) >= CFG_DOMAIN_MAX ||

strlen(HostName) >= CFG_HOSTNAME_MAX)
{

printf("Names too long\n");
goto main_exit;

}

// Manually configure our local IP address
bzero(&NA, sizeof(NA));
NA.IPAddr = inet_addr(LocalIPAddr);
NA.IPMask = inet_addr(LocalIPMask);
strcpy(NA.Domain, DomainName);
NA.NetType = 0;

// Add the address to interface 1
CfgAddEntry(hCfg, CFGTAG_IPNET, 1, 0,

sizeof(CI_IPNET), (UINT8 *)&NA, 0);

// Add our hostname
CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_HOSTNAME, 0,

strlen(HostName), (UINT8 *)HostName, 0);

// Add the default gateway. Since it is the default, the
// destination address and mask are both zero (we go ahead
// and show the assignment for clarity).
bzero(&RT, sizeof(RT));
RT.IPDestAddr = 0;
RT.IPDestMask = 0;
RT.IPGateAddr = inet_addr(GatewayIP);

// Add the route
CfgAddEntry(hCfg, CFGTAG_ROUTE, 0, 0,

sizeof(CI_ROUTE), (UINT8 *)&RT, 0);

//
// Boot the system using this configuration
//
// We keep booting until the function returns less than 1. This allows
// us to have a "reboot" command.
//
do
{

rc = NC_NetStart(hCfg, NetworkStart, NetworkStop, NetworkIPAddr);
} while(rc > 0);

38 Network Application Development SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.3.3.2 Constructing a Configuration using the DHCP Client Service

NDK Initialization and Configuration

// Delete Configuration
CfgFree(hCfg);

// Close the OS

main_exit:
NC_SystemClose();
return(0);

}

In this section we take the initialization example of the previous section and alter it to instruct the stack to
use the DHCP (Dynamic Host Configuration Protocol) client service to perform its IP address
configuration.

Since DHCP provides the IP address, route, domain, and domain name servers, you only need to provide
the hostname. The NetworkTest() function would look as follows (see the TMS320C6000 Network
Developer's Kit (NDK) Programmer's Reference Guide (SPRU524) for more details on using DHCP).

The code below performs the following operations :

1. Call NC_SystemOpen() and create a new configuration.
2. Create and add a configuration entry specifying the DHCP client service to be used.
3. Create and add a configuration entry for the local hostname using the Hostname string.
4. Boot the system using this configuration by calling NC_NetStart().
5. Free the configuration on system shutdown (when NC_NetStart() returns) and call NC_SystemClose().
char *HostName = "testhost";

int NetworkTest()
{

int rc;
CI_SERVICE_DHCPC dhcpc;
HANDLE hCfg;

//
// THIS MUST BE THE ABSOLUTE FIRST THING DONE IN AN APPLICATION!!
//
rc = NC_SystemOpen(NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT);
if(rc)
{

printf("NC_SystemOpen Failed (%d)\n",rc);
for(;;);

}

//
// Create and build the system configuration from scratch.
//

// Create a new configuration
hCfg = CfgNew();
if(!hCfg)
{

printf("Unable to create configuration\n");
goto main_exit;

}

// We better validate the length of the supplied names
if(strlen(HostName) >= CFG_HOSTNAME_MAX)
{

printf("Names too long\n");
goto main_exit;

}

// Specify DHCP Service on interface 1

SPRU523C–January 2007 Network Application Development 39
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.3.3.3 Using a Statically Defined DNS Server

NDK Initialization and Configuration

bzero(&dhcpc, sizeof(dhcpc));
dhcpc.cisargs.Mode = CIS_FLG_IFIDXVALID;
dhcpc.cisargs.IfIdx = 1;
dhcpc.cisargs.pCbSrv = &ServiceReport;
CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPCLIENT, 0,

sizeof(dhcpc), (UINT8 *)&dhcpc, 0);

// Add our hostname
CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_HOSTNAME, 0,

strlen(HostName), (UINT8 *)HostName, 0);

//
// Boot the system using this configuration
//
// We keep booting until the function returns less than 1. This allows
// us to have a "reboot" command.
//
do
{

rc = NC_NetStart(hCfg, NetworkStart, NetworkStop, NetworkIPAddr);
} while(rc > 0);

// Delete Configuration
CfgFree(hCfg);

// Close the OS

main_exit:
NC_SystemClose();
return(0);

}

The area of the configuration system that is used by the DHCP client can be difficult. When the DHCP
client is in use, it has full control over the first 256 entries in the system information portion of the
configuration system. In some rare instances, it may be useful to share this space with DHCP.

For example, assume a network application needs to manually add the IP address of a Domain Name
System (DNS) server to the system configuration. When DHCP is not being used, this code is simple. To
add a DNS server of 128.114.12.2, the following code would be added to the configuration build process
(before calling NC_NetStart()).
IPN IPTmp;

// Manually add the DNS server "128.114.12.2"
IPTmp = inet_addr("128.114.12.2");

CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_DOMAINNAMESERVER,
0, sizeof(IPTmp), (UINT8 *)&IPTmp, 0);

Note that the CLIENT example program in the example applications uses a form of this code. Now, when
a DHCP client is used, it clears and resets the contents of the part of the configuration it controls. This
includes the DNS server addresses. Therefore, if the above code was added to an application that used
DHCP, the entry would be cleared whenever DHCP executed a status update.

To share this configuration space with DHCP (or to read the results of a DHCP configuration), the DHCP
status callback report codes must be used. The status callback function was introduced in Section 3.3.2.
When DHCP reports a status change, the application knows that the DHCP portion of the system
configuration has been reset.

The following code also appears in the CLIENT example program. This code manually adds a DNS server
address when the DHCP client is in use. Note that this code is part of the standard service callback
function that is supplied to the configuration when the DHCP client service is specified.
//
// Service Status Reports

40 Network Application Development SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.3.4 Controlling NDK and OS Options via the Configuration

NDK Initialization and Configuration

//
static char *TaskName[] = { "Telnet","HTTP","NAT","DHCPS","DHCPC","DNS" };
static char *ReportStr[] = { "","Running","Updated","Complete","Fault" };
static char *StatusStr[] = { "Disabled","Waiting","IPTerm",

"Failed","Enabled" };

static void ServiceReport(uint Item, uint Status, uint Report, HANDLE h)
{

printf("Service Status: %-9s: %-9s: %-9s: %03d\n",
TaskName[Item-1], StatusStr[Status],
ReportStr[Report/256], Report&0xFF);

// Example of adding to the DHCP configuration space
//
// When using the DHCP client, the client has full control over access
// to the first 256 entries in the CFGTAG_SYSINFO space. Here, we want
// to manually add a DNS server to the configuration, but we can only
// do it once DHCP has finished its programming.
//

if(Item == CFGITEM_SERVICE_DHCPCLIENT &&
Status == CIS_SRV_STATUS_ENABLED &&
(Report == (NETTOOLS_STAT_RUNNING|DHCPCODE_IPADD) ||
Report == (NETTOOLS_STAT_RUNNING|DHCPCODE_IPRENEW)))

{
IPN IPTmp;

// Manually add the DNS server when specified. If the address
// string reads "0.0.0.0", IPTmp will be set to zero.

IPTmp = inet_addr(DNSServer);

if(IPTmp)
CfgAddEntry(0, CFGTAG_SYSINFO, CFGITEM_DHCP_DOMAINNAMESERVER,

0, sizeof(IPTmp), (UINT8 *)&IPTmp, 0);
}

}

Along with specifying IP addresses, routes, and services, the configuration system allows you to directly
manipulate the configuration structures of the OS adaptation layer and the NDK. The OS configuration
structure is discussed in Section 2.1 of the TMS320C6000 Network Developer's Kit (NDK) Programmer's
Reference Guide (SPRU524), and the NDK configuration structure is discussed in Section A.12.2. The
configuration interface to these internal structures is consolidated into a single configuration API as
specified in Chapter 4.

Although the values in these two configuration structures can be modified directly, adding the parameters
to the system configuration is useful for two reasons. First, it provides a consistent API for all network
configuration, and second, if the configuration load and save feature is used, these configuration
parameters are saved along with the rest of the system configuration.

As a quick example of setting an OS configuration option, the following code makes a change to the
debug reporting mechanism. By default, all debug messages generated by the NDK are output to the
CCStudio output window. However, the OS configuration can be adjusted to print only messages of a
higher severity level, or to disable the debug messages entirely.

Most of the example applications included with the NDK will raise the threshold of printing debug
messages from the INFO level to the WARNING level. Here is how it appears in the source code:

// We do not want to see debug messages less than WARNINGS
rc = DBG_WARN;

CfgAddEntry(hCfg, CFGTAG_OS, CFGITEM_OS_DBGPRINTLEVEL,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0);

SPRU523C–January 2007 Network Application Development 41
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.3.5 Saving and Loading a Configuration

3.3.5.1 Saving the Configuration

3.3.5.2 Loading the Configuration

NDK Initialization and Configuration

Once a configuration is constructed, the application may save it off into non-volatile RAM so that it can be
reloaded on the next cold boot. This is especially useful in an embedded system where the configuration
can be modified at runtime using a serial cable, telnet, or an HTTP browser.

To save the configuration, convert it to a linear buffer, and then save the linear buffer off to storage. Here
is a quick example of a configuration save operation. Note the MyMemorySave() function is assumed to
save off the linear buffer into non-volatile storage.
int SaveConfig(HANDLE hCfg)
{

UINT8 *pBuf;
int size;

// Get the required size to save the configuration
CfgSave(hCfg, &size, 0);

if(size && (pBuf = malloc(size)))
{

CfgSave(hCfg, &size, pBuf);
MyMemorySave(pBuf, size);
Free(pBuf);
return(1);

}

return(0);
}

Once a configuration is saved, it can be loaded from non-volatile memory on startup. For this final
NetworkTest() example, assume that another task has created, edited, or saved a valid configuration to
some storage medium on a previous execution. In this network initialization routine, all that is required is
to load the configuration from storage and boot the NDK using the current configuration.

For this example, assume that the function MyMemorySize() returns the size of the configuration in a
stored linear buffer and that MyMemoryLoad()loads the linear buffer from non-volatile storage.
int NetworkTest()
{

int rc;
HANDLE hCfg;
UINT8 *pBuf;
Int size;

//
// THIS MUST BE THE ABSOLUTE FIRST THING DONE IN AN APPLICATION!!
//
rc = NC_SystemOpen(NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT);
if(rc)
{

printf("NC_SystemOpen Failed (%d)\n",rc);
for(;;);

}

//
// First load the linear memory block holding the configuration
//

// Allocate a buffer to hold the information
size = MyMemorySize();
if(!size)

goto main_exit;

42 Network Application Development SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.4 Application Debug and Troubleshooting

3.4.1 Most Common Problems

Application Debug and Troubleshooting

pBuf = malloc(size);
if(!pBuf)

goto main_exit;

// Load from non-volatile storage
MyMemoryLoad(pBuf, size);

//
// Now create the configuration and load it
//

// Create a new configuration
hCfg = CfgNew();

if(!hCfg)
{

printf("Unable to create configuration\n");
free(pBuf);
goto main_exit;

}

// Load the configuration (and then we can free the buffer)
CfgLoad(hCfg, size, pBuf);

mmFree(pBuf);

//
// Boot the system using this configuration
//
// We keep booting until the function returns less than 1. This allows
// us to have a "reboot" command.
//
do
{

rc = NC_NetStart(hCfg, NetworkStart, NetworkStop, NetworkIPAddr);
} while(rc > 0);

// Delete Configuration
CfgFree(hCfg);

// Close the OS

main_exit:
NC_SystemClose();
return(0);

}

Although there is certainly no instant or easy way to debug an NDK application, the following sections
provide a quick description of some of the potential problem areas. Some of these topics are discussed
elsewhere in the documentation as well.

One of the most common support requests for the NDK deals with the inability to either send or receive
network packets. This may also take the form of dropping packets or general poor performance. There are
many causes for this type of behavior. For potential scheduling issues, see Section 3.2.1. It is also
recommended that application programmers fully understand the workings of the NETCTRL module. For
this, see Chapter 4.

SPRU523C–January 2007 Network Application Development 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.4.2 Controlling Debug Messages

Application Debug and Troubleshooting

Here is a quick list.

All socket calls return “error” (-1)
• Make sure there is a call to fdOpenSession() in the task before it uses sockets, and a call to

fdCloseSession() when the task terminates.

No link indication, or will not re-link when cable is disconnected and reconnected.
• Make sure there is a PRD function in your DSP/BIOS configuration that is calling the driver function

llTimerTick() every 100 ms.

Not receiving any packets – ever
• When polling for data by making recv(), fdPoll(), or fdSelect() calls in a non-blocking fashion, make

sure you do not have any scheduling issues. When the NETCTRL scheduler is running in low priority,
network applications are not allowed to poll without blocking. Try running the scheduler in high priority
(via NC_SystemOpen()).

• The NDK assumes there is some L2 cache. If the DSP is configured to all internal memory with
nothing left for L2 cache, the NDK drivers will not function properly.

Performance is sluggish. Very slow ping response.
• Make sure there is a PRD function in your DSP/BIOS configuration that is calling the driver function

llTimerTick() every 100 ms.
• If porting an Ethernet driver and running NETCTRL in interrupt mode, make sure your device is

correctly detecting interrupts. Make sure the interrupt polarity is correct.

UDP application drops packets on send() calls.
• If sending to a new IP address, the very first send may be held up in the ARP layer while the stack

determines the MAC address for the packet destination. While in this mode, subsequent sends are
discarded.

• When using UDP and sending multiple packets at once, make sure you have plenty of packet buffers
available (see Section 5.3.1).

• Verify you do not have any scheduling issues. Try running the scheduler in high priority (via
NC_SystemOpen()).

UDP application drops packets on recv() calls.
• Make sure you have plenty of packet buffers available (see Section 5.3.1).
• Make sure the packet threshold for UDP is high enough to hold all UDP data received in between calls

to recv() (see CFGITEM_IP_SOCKUDPRXLIMIT in the NDK Programmer’s Reference Guide).
• Verify you do not have any scheduling issues. Try running the scheduler in high priority (via

NC_SystemOpen()).
• It is possible that packets are being dropped by the Ethernet device driver. Some device drivers have

adjustable RX queue depths, while others do not. Refer to the source code of your Ethernet device
driver for more details (device driver source code is provided in NDK Support Package for your
hardware platform).

In General
• Do not try to tune the PRD function frequency. Make sure it calls llTimerTick() every 100 ms.
• Watch for out of memory conditions. These can be detected by the return from some functions, but will

also print out warning messages when the messages are enabled. These messages contain the
acronym OOM for out of memory. (Out of memory conditions can be caused by many things, but the
most common cause in the NDK is when TCP sockets are created and closed very quickly without
using the SO_LINGER socket option. This puts many sockets in the TCP timewait state, exhausting
scratchpad memory. The solution is to use the SO_LINGER socket option.)

Most of the text messages generated by a network application come from the application. However, it is
possible for the network stack to generate debug messages.

The NDK includes its own debug message system. This system can be ported to behave in any manner
desired, but by default, debug messages are printed to the debugger using an internal printf() function.

44 Network Application Development SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.4.3 Interpreting Debug Messages

3.4.3.1 TCP: Retransmit Timeout - Level DBG_INFO

3.4.3.2 FunctionName: Buffer OOM - Level DBG_WARN

3.4.3.3 mmFree: Double Free - Level DBG_WARN

3.4.3.4 FunctionName: HTYPE nnnn - Level DBG_ERROR

3.4.3.5 mmAlloc: PIT ???? Sync - Level DBG_ERROR

3.4.3.6 PBM_enq: Invalid Packet - Level DBG_ERROR

Application Debug and Troubleshooting

Debug messages also include an associated severity level. These levels are DBG_INFO, DBG_WARN,
and DBG_ERROR. The severity level is used for two purposes. First, it determines whether or not the
debug message will be printed, and second, it determines whether or not the debug message will cause
the NDK to shutdown.

By default, all debug messages are printed, and messages with a level of DBG_ERROR causes a stack
shutdown. This behavior can be modified by using the OS configuration structure or through the system
configuration. Although this information is contained in the TMS320C6000 Network Developer's Kit (NDK)
Programmer's Reference Guide (SPRU524), example code to change the printing and system shutdown
behavior of the debug system is supplied in this User's Guide in Section 3.3.4 and Section 3.3.1.6
respectively.

The following is a list of some of the debug messages that may occur during stack operation, along with
the most commonly associated cause.

This message is generated by TCP when it has sent a packet of data to a network peer, and the peer has
not replied in the expected amount of time. This can be just about anything; the peer has gone down, the
network is busy, the network packet was dropped or corrupted, and so on.

This message is generated by some modules when unexpected out of memory conditions occur. The
stack has an internal resource recovery routine to help deal with these situations; however, a significant
number of these messages may also indicate that there is not enough large block memory available, or
that there is a memory leak. See the notes on the memory manager reports in this section for more
details.

A double free message occurs when the mmFree() function is called on a block of memory that was not
marked as allocated. This can be caused by physically calling mmFree() twice for the same memory, but
more commonly is caused by memory corruption. See Section 3.4.4 for possible causes.

This message is generated only by the strong checking version of the stack. It is caused when a handle is
passed to a function that is not of the proper handle type. Since the object oriented nature of the stack is
hidden from the network applications writer, this error should never occur. If it is not caused by the attempt
to call internal stack functions, then it is most likely the result of memory corruption. See the notes on
memory corruption in this section for possible causes.

This message is generated by the scratch memory allocation system. PIT is an acronym for page
information table. Table synchronization errors can only be caused by memory corruption. See
Section 3.4.4 for possible causes.

This message is generated by the packet buffer manager (PBM) module driver in the OS adaptation layer.
When the PBM module initially allocates its packet buffer pool, it marks each packet buffer with a magic
number. During normal operation, packets are pushed and popped to and from various queues. On each
push operation, the packet's magic number is checked. When the magic number is invalid, this message
results. It is possible for an invalid packet to be introduced into the system when using the non copy
sockets API extensions, but the vastly more common cause is memory corruption. See the notes on
memory corruption in this section for possible causes.

SPRU523C–January 2007 Network Application Development 45
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.4.4 Memory Corruption

3.4.5 Program Lockups

Application Debug and Troubleshooting

The words memory corruption come up frequently when diagnosing NDK debug messages. This is
because it is easy to corrupt memory on cache devices. Most of the example programs included in the
NDK run using full L2 cache. In this mode, any read or write access to the internal memory range of the
CPU can cause cache corruption and hence cause memory corruption. Since the internal memory range
starts at address 0x00000000, a NULL pointer can cause problems when using full cache.

To check to see if corruption is being caused by a NULL pointer, change the cache mode to use less
cache. When there is some internal memory available, reads or writes to address 0x0 do not cause cache
corruption (the application still may not work, but the error messages should stop).

Another way to track down any kind of cache corruption is to break on CPU reads or writes to the entire
cache range. Code Composer Studio has the ability to trap reads or writes to a range of memory, but both
cannot be checked simultaneously. Therefore, a couple of trials may be necessary.

Of course, it is possible that the memory corruption has nothing to do with the stack. It could be a wild
pointer. However, since corrupting the cache can corrupt memory throughout the system, the cache is the
first place to start.

Most lockup conditions are caused by insufficient task stack sizes. For example, when writing an HTTP
CGI function, the CGI function task thread has only about 5000 bytes of total task stack. Therefore, using
large amounts of stack is not recommended. In general, do not use the following code:
myTask()
{

char TempBuffer[2000];

myFun(TempBuffer);
}

but instead, use the following:
myTask()
{

char *pTempBuf;

pTempBuf = MEM_alloc(0, 2000, 0)

if(pTempBuf != MEM_ILLEGAL)
{

myFun(pTempBuf);
MEM_free(pTempBuf, 2000);

}
}

If calling a memory allocation function is too much of a speed overhead, consider using an external buffer.

This is just an example, with a little forethought you can eliminate all possible stack overflow conditions,
and eliminate the possibility of program lockups from this condition.

Network Application Development46 SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.4.6 Memory Management Reports

Application Debug and Troubleshooting

The memory manager that manages scratch memory in the NDK has a built in reporting system. It tracks
the use of scratch memory closely (calls to mmAlloc() and mmFree()), and also tracks calls to the large
block memory allocated (calls to mmBulkAlloc() and mmBulkFree()). Note that the bulk allocation functions
simply call malloc() and free(). This behavior can be altered by adjusting the memory manager.

The memory report is shown below. It lists the max number of blocks allocated per size bucket, the
number of calls to malloc and free, and a list of allocated memory. An example report is shown below:

48:48 (75%) 18:96 (56%) 8:128 (33%) 28:256 (77%)
1:512 (16%) 0:1536 0:3072

(21504/46080 mmAlloc: 61347036/0/61346947, mmBulk: 25/0/17)

1 blocks alloced in 512 byte page
38 blocks alloced in 48 byte page
18 blocks alloced in 96 byte page
8 blocks alloced in 128 byte page
12 blocks alloced in 256 byte page
12 blocks alloced in 256 byte page

Here, the entry 18:96 (56%) means that at most, 18 blocks were allocated in the 96 byte bucket. The page
size on the memory manager is 3072, so 56% of a page was used. The entry 21504/46080 means that at
most 21,504 bytes were allocated, with a total of 46,080 bytes available.

The entry mmAlloc: 61347036/0/61346947 means that 61,347,036 calls were made to mmAlloc(), of which
0 failed, and 61,346,947 calls were made to mmFree(). Note that at any time, the call to mmAlloc plus the
failures must equal the calls to mmFree plus any outstanding allocations. Therefore, on a final report were
the report is mmAlloc: n1/n2/n3, n1+n2 should equal n3. If not, there is a memory leak.

There are several methods to obtain a memory report when using the telnet console program included
with most of the example applications. The console 'mem' command prints out a current report, but more
importantly, the console 'shutdown' command shuts down the stack and prints out a final report. If all
network applications are created and destroyed according to the specifications in this document, there
should be no memory leaks detected in the final report. The function called to obtain a memory report is
defined below.

SPRU523C–January 2007 Network Application Development 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

3.4.6.1 mmCheck – Generate Memory Manager Report

mmCheck — Generate Memory Manager Report

mmCheck Generate Memory Manager Report

Syntax void _mmCheck(uint CallMode, int (*pPrn)(const char *,...));

Parameters

CallMode Specifies the type of report to generate

pPrn Pointer to printf() compatible function

Description Prints out a memory report to the printf() compatible function pointed to by pPrn. The
type of report printed is determined by the value of CallMode. The reporting function has
the option of printing out memory block IDs. This means that the first uint sized field in
the memory block of each allocated block is printed in the report. This is a useful option
when the first field of allocated memory stores an object handle type, or some other
unique identifier.

Call Mode

Can be set to one of the following:

MMCHECK_MAP Map out allocated memory, but do not dump ID's

MMCHECK_DUMP Dump allocated block IDs

MMCHECK_SHUTDOWN Dump allocated block IDs & free scratchpad
memory

Note: Do not attempt to use any mmAlloc() functions after requesting a
MMCHECK_SHUTDOWN report!

Returns None

48 Network Application Development SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

Chapter 4
SPRU523C–January 2007

Network Control Functions

This chapter describes the network control functions.

Topic .. Page

4.1 Introduction to NETCTRL Source .. 50
4.2 NETCTRL Scheduler.. 52
4.3 Disabling On-Demand Services .. 56

SPRU523C–January 2007 Network Control Functions 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

4.1 Introduction to NETCTRL Source

4.1.1 History

4.1.2 NETCTRL Source Files

4.1.3 Main Functions

Introduction to NETCTRL Source

The NETCTRL module was originally a recommended initialization and scheduling method to execute the
NDK. Although mostly simple, this code became standard. Eventually, it was separated out into the
NETCTRL library.

The NETCTRL module is the center of the NDK because it connects the HAL and the OS adaptation layer
to the NDK. It controls both initialization and how events are scheduled for execution within the stack.
Understanding how the NETCTRL module works helps you tune your DSP networking application for ideal
performance.

Source code to the NETCTRL library consists of two C files located in the \SRC\NETCTRL directory:

NETCTRL.C Network Control (Initialization and Scheduling) Module

NETSRV.C Configuration service module (system configuration service provider)

There are two include files associated with NETCTRL in the \INC\NETCTRL directory:

NETCTRL.H Interface specification to NETCTRL

NETSRV.H Interface specification to NETSRV

The NETCTRL.C source module contains source code for all the functions with the NC_ prefix. The
function of the NETCTRL module has three basic parts.

The first function of NETCTRL.C is to perform the system initialization and shutdown that is necessary
before calling any other stack functions. These functions are declared as NC_SystemOpen() and
NC_SystemClose().

The second function of NETCTRL.C is to perform the driver environment initialization and configuration
bootstrap necessary to start the stack functionality. This startup function and its shutdown counterpart are
declared as NC_NetStart() and NC_NetStop().

The final function of NETCTRL.C that is hidden from the caller, is implementing the stack's event
scheduling, which is the center of the stack's operation.

The NETSRV.C module contains the code that boots all the services on the stack. This code takes what is
stored in the stack’s configuration and implements the necessary stack functions to keep the configuration
current. When an active item in the configuration is changed, there is code in the NETSRV module to
execute that change in the NDK.

Network Control Functions50 SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

4.1.4 Additional Functions

4.1.5 Booting and Scheduling

Introduction to NETCTRL Source

There are some additional NETCTRL functions that are not documented in the TMS320C6000 Network
Developer's Kit (NDK) Programmer's Reference Guide (SPRU524). These functions are
NC_BootComplete() and NC_IPUpdate(). They are both called from the NETSRV module.

The NC_NetStart() function initiates the configuration boot process by creating a boot thread with an entry
point of NS_BootTask() (from NETSRV.C). The NC_BootComplete() function is called by the configuration
boot thread when the configuration boot is complete. It signals to NETCTRL that it can now call the
NetworkStart() application callback that was passed to NC_NetStart() by the application. On return from
NC_BootComplete(), the boot thread is terminated. Therefore, the application programmer may take
control of the NetworkStart() callback thread, although this is not recommended.

The IP address update function is called by NETSRV when an address is added to or removed from the
system. It is this function that then calls the NetworkIPAddr() application callback that was originally
passed to NC_NetStart().

Section 3.3 discussed using the network control (NETCTRL.LIB) module. This section examines the
internal source code of the main NETCTRL module and the operation of the event scheduler.

The stack event scheduler is the routine that calls the stack to process packet and timer events. The
scheduler is called from within NC_NetStart() and does not return until the stack is being shut down, which
explains why the NC_NetStart() function does not return to the application until the system is shut down
and the scheduler terminates.

The basic flow of NC_NetStart() is as follows:
NC_NetStart()
{

Initialize_Devices();

CreateConfigurationBootThread() ;
NetScheduler();

CloseConfiguration();
CloseDevices();

}

Out of the functional stages for NC_NetStart() listed above, the two that are of the most concern are the
creation of the boot thread, and the implementation of the network event scheduler.

The boot thread is handled by a second C module in the NETCTRL library named NETSRV.C. This name
is an abbreviation for Network Service Manager. The NETSRV module hooks into the configuration
system as a configuration service provider. The configuration system module is just an active database. In
contrast, the network service module turns configuration entries into actual NDK objects. The service
module can be altered to fit a particular need. This likely involves the creation of custom configuration tags
for the configuration system. However, a full understanding of the code in NETSRV requires a basic
understanding of nearly all the API functions discussed in the TMS320C6000 Network Developer's Kit
(NDK) Programmer's Reference Guide (SPRU524).

You should be most concerned about the NetScheduler() function because this scheduler runs the NDK. It
looks for events that need to be processed by the NDK, and it performs the work necessary to start
processing.

SPRU523C–January 2007 Network Control Functions 51
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

4.2 NETCTRL Scheduler

4.2.1 Scheduler Overview

4.2.2 Scheduling Options

NETCTRL Scheduler

The NETCTRL scheduler code is an infinite loop function named NetScheduler() and appears at the end
of the source file NETCTRL.C. It looks for activity events from the low level device drivers, and acts when
events are detected. The loop terminates when a static variable is set through an outside call to
NC_NetStop().

Although the NDK provides a reentrant environment, the core of the stack is not reentrant. Portions of the
code must be protected from access by reentrant calls. Instead of using critical sections that block out all
other task execution, the software defines an operating mode called kernel mode. Kernel mode is defined
such that only one task may be in kernel mode at any given time. It does nothing to prevent tasks from
running that do not use the NDK. This provides protection for the stack, without affecting the execution of
unrelated code. There are two functions defined to enter and exit kernel mode, llEnter() and llExit(). They
are part of the OS adaptation layer, and are discussed in more detail in Section 5.2.3. In short, llEnter()
must be called before calling into the stack, and llExit() must be called when done calling stack functions.

The basic flow of the scheduler loop can be summarized by this pseudo code:
static void NetScheduler()
{

SetSchedulingPriority();

while(!NetHaltFlag)
{

WaitOrPollForEvents();
ServiceDeviceDrivers();

// Process current events in Kernel Mode
if(StackEvents)
{

// Enter Kernel Mode
llEnter();
ServiceStackEvents();

// Exit Kernel Mode
llExit();

}
}

}

The sections that follow address each of the highlighted functions in turn. Note that the code continues to
run until the NetHaltFlag is set. This flag is set when an application calls the NC_NetStop() function.

There are three basic ways to run the scheduler. They can be viewed as three operating modes:

1. Scheduler runs at low priority and only when there are network events to process.
2. Scheduler runs continuously at low priority, polling the device drivers for events.
3. Scheduler runs a high priority, but only when there are network events to process.

The best way to run the scheduler depends on the application and system architecture.

Mode 1 is the most efficient way to run the NDK. Here, the scheduler loop runs at a low priority. This
allows applications that potentially have real-time requirements to have priority over networking where the
real-time restrictions are more relaxed. In addition, the scheduling loop only runs when there is network
related activity; therefore, a standard DSP/BIOS idle loop can also be used.

Mode 2 is used when the device drivers are prevented from using interrupts. This is best for real-time
tasks, but worst for network performance. Since the scheduler thread runs continuously, it also prevents
the use of a DSP/BIOS idle loop. This is the mode that NETCTRL must use when using a device driver
that requires polling.

52 Network Control Functions SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

4.2.3 Scheduler Thread Priority

4.2.4 Tracking Events with STKEVENT

NETCTRL Scheduler

Mode 3 is the most Unix-like environment. Here, the network scheduler task runs at a higher priority than
any other networking task in the system. The stack runs whenever new network related events are
detected, pre-empting other tasks from potentially using the stack. This is the best method for keeping the
networking environment up to date without placing restrictions on how network applications are written.

Setting priority and polling or interrupt driven scheduling is done when the application first calls
NC_SystemOpen(). This is discussed further in Section 3.3.1.2 and in the NDK Programmer’s Reference
Guide.

The first lines of the actual implementation of NetScheduler() include the following code:
// Set the scheduler priority
TSK_setpri(TSK_self(), SchedulerPriority);

This code changes the priority of the task thread that calls into NC_NetStart(), so that there is a single
control point to set the scheduler priority. The priority used is that which was passed to the
NC_SystemOpen() function. This is discussed further in Section 3.3.1.2 and in the NDK Programmer’s
Reference Guide.

The scheduler priority (relative to network application thread priority) affects how network applications can
be programmed. For example, when running the scheduler in low priority, a network application cannot
poll for data by continuously calling recv() in a non-blocking fashion. This is because if the application
thread never blocks, the network scheduler thread never runs, and incoming packets are never processed
by the NDK.

As previously mentioned, the NETCTRL module is the interface between the stack and the device drivers
in the HAL layer. In older versions of the NDK, device drivers signaled the NETCTRL module through a
global semaphore. In order to improve this process slightly, the simple semaphore has been encapsulated
into an object called a STKEVENT.

From the device driver’s point of view, this event object is a handle that is passed to a function called
STKEVENT_signal(). In reality, this function is only a MACRO that operates on a structure of type
STKEVENT. The NETCTRL module operates directly on this structure. The STKEVENT structure is
defined as follows:

// Stack Event Object
typedef struct _stkevent {

SEM_Handle hSemEvent;
uint EventCodes[3];

} STKEVENT;

#define STKEVENT_TIMER 0
#define STKEVENT_ETHERNET 1
#define STKEVENT_SERIAL 2

There are two parts to the structure, a semaphore handle and an array of events. Each driver signals an
event by setting a flag in the EventCode[] array for its event type, and then optionally signaling the event
semaphore. The semaphore is only signaled when the driver detects an interrupt condition. If the event is
detected during driver polling (either periodic polling or constant in the case of a polling only driver), the
event is set, but the semaphore is not signaled.

Note that in a polling environment, the semaphore handle hSemEvent is NULL.

The NETCTRL module creates a private instance of the STKEVENT structure that it passes to device
drivers as a handle of type STKEVENT_Handle. The private instance that is operated on directly by
NETCTRL is declared as:
// Static Event Object
static STKEVENT stkEvent;

SPRU523C–January 2007 Network Control Functions 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

4.2.5 Scheduler Loop Source Code

NETCTRL Scheduler

In the full source to NetScheduler() that follows, the STKEVENT structure is referred to by its instance
stkEvent.

The code for the example scheduler implementation included in the NDK is shown below. This
implementation fleshes out the pseudo code shown in Section 4.2.1, using the methods and objects
described in this section. In this code, the number of serial port devices and Ethernet devices is passed in
as calling arguments. This device count is obtained from the device drivers when they are asked to
enumerate their physical devices.

#define FLAG_EVENT_TIMER 1
#define FLAG_EVENT_ETHERNET 2
#define FLAG_EVENT_SERIAL 4

static void NetScheduler(uint const SerialCnt, uint const EtherCnt)
{

register int fEvents;

// Set the scheduler priority
TSK_setpri(TSK_self(), SchedulerPriority);

while(!NetHaltFlag)
{

if(stkEvent.hSemEvent)
{

SEM_pend(stkEvent.hSemEvent, SYS_FOREVER);
SEM_reset(stkEvent.hSemEvent, 0);

}

// Clear our event flags
fEvents = 0;

// First we do driver polling. This is done from outside
// kernel mode since pure "polling" drivers can not spend
// 100% of their time in kernel mode.

// Check for a timer event and flag it
if(stkEvent.EventCodes[STKEVENT_TIMER])
{

stkEvent.EventCodes[STKEVENT_TIMER] = 0;
fEvents |= FLAG_EVENT_TIMER;

}

// Poll only once every timer event for ISR based drivers,
// and continuously for polling drivers. Note that "fEvents"
// can only be set to FLAG_EVENT_TIMER at this point.

if(fEvents || !stkEvent.hSemEvent)
{

// Poll Ethernet Packet Devices
if(EtherCnt)

_llPacketServiceCheck(fEvents);

// Poll Serial Port Devices
if(SerialCnt)

_llSerialServiceCheck(fEvents);
}

//
// Note we check for Ethernet and Serial events after
// polling since the ServiceCheck() functions may
// have passively set them.
//

54 Network Control Functions SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

NETCTRL Scheduler

// Check for a Ethernet event and flag it
if(EtherCnt && stkEvent.EventCodes[STKEVENT_ETHERNET])
{

// We call service check on an event to allow the
// driver to do any processing outside of kernel
// mode that it requires, but don't call it if we
// already called it due to a timer event.
if(!(fEvents & FLAG_EVENT_TIMER))

_llPacketServiceCheck(0);

// Clear the event and record it in our flags
stkEvent.EventCodes[STKEVENT_ETHERNET] = 0;
fEvents |= FLAG_EVENT_ETHERNET;

}

// Check for a Serial event and flag it
if(SerialCnt && stkEvent.EventCodes[STKEVENT_SERIAL])
{

// We call service check on an event to allow the
// driver to do any processing outside of kernel
// mode that it requires, but don't call it if we
// already called it due to a timer event.
if(!(fEvents & FLAG_EVENT_TIMER))

_llSerialServiceCheck(0);

// Clear the event and record it in our flags
stkEvent.EventCodes[STKEVENT_SERIAL] = 0;
fEvents |= FLAG_EVENT_SERIAL;

}

// Process current events in Kernel Mode
if(fEvents)
{

// Enter Kernel Mode
llEnter();

// Check for timer event
if(fEvents & FLAG_EVENT_TIMER)

ExecTimer();

// Check for packet event
if(fEvents & FLAG_EVENT_ETHERNET)

llPacketService();

// Check for serial port event
if(fEvents & FLAG_EVENT_SERIAL)

llSerialService();

// Exit Kernel Mode
llExit();

}
}

}

SPRU523C–January 2007 Network Control Functions 55
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

4.3 Disabling On-Demand Services

Disabling On-Demand Services

Services are specified by the configuration system at runtime, and can be executed on-demand. This
allows you to alter the configuration without rebuilding the network application, but has a liability because
any service that can be invoked via the configuration is always linked into the system executable. This
increases the footprint of the system software in order to support services that may never be used.

To cope with this problem, some #define declarations have been included in the source file
\INC\NETCTRL\NETSRV.H. These statements are as follows:

//
// The following #define statements are used to determine if certain service
// entry-points are linked into the executable. So if a service is not
// going to be used, set the corresponding #define to zero. When set
// to zero, the service is unavailable.
//

#define NETSRV_ENABLE_TELNET 1
#define NETSRV_ENABLE_HTTP 1
#define NETSRV_ENABLE_NAT 0
#define NETSRV_ENABLE_DHCPCLIENT 1
#define NETSRV_ENABLE_DHCPSERVER 1
#define NETSRV_ENABLE_DNSSERVER 1

By setting any of the above to 0 and rebuilding the NETCTRL library (which consists of two files), the
individual services can be purged from the executable. These services are then unavailable via the
configuration system.

56 Network Control Functions SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

Chapter 5
SPRU523C–January 2007

OS Adaptation Layer : OS.LIB and MiniPrintf.LIB

The OS adaptation layer controls how the NDK uses DSP/BIOS resources. This
includes tasks, semaphores, memory and printing. Anything OS related can be
adjusted here. This chapter also includes a history of the OS adaptation layer source,
and describes the files which comprise the source code.

Topic .. Page

5.1 Introduction to OS Source.. 58
5.2 Task Thread Abstraction - TASK.C.. 58
5.3 Packer Buffer Manager - PBM.C.. 60
5.4 Memory Allocation System - MEM.C.. 61
5.5 Embedded File System - EFS.C .. 62
5.6 General OS Support - OSSYS.C .. 62
5.7 Print Functions - MINIPRINTF.C .. 62

SPRU523C–January 2007 OS Adaptation Layer : OS.LIB and MiniPrintf.LIB 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

5.1 Introduction to OS Source

5.1.1 History

5.1.2 Source Files

5.2 Task Thread Abstraction - TASK.C

Introduction to OS Source

One reason the NDK contains an OS adaptation layer is so that applications that are coded to the
abstraction can be executed in any environment to which the abstraction is ported. For DSP centric
applications, cross-platform portability is not usually practical nor required. DSP programmers prefer to
use DSP/BIOS and take advantage of the support features provided by Code Composer Studio.

For most of the OS adaptation API, the abstraction functions are converted to direct DSP/BIOS calls
through the use of #define macros. However, there are some additions and refinements made at the OS
layer that tend to vary slightly from one DSP/BIOS based system to the next. For these refinements,
external OS abstraction functions are required. This allows the system programmer to adapt the OS layer
to meet the particular system requirements of their DSP/BIOS based environment.

This section covers the OS functions that may need to be adjusted. The OS source code referenced in
this section is found in the SRC\OS directory. Printing functions have been separated into a different
directory and library; this way, if you need to use the bigger size, more feature rich, printing APIs provided
with the standard RTS library, you can easily replace the slim APIs in MiniPrintf.LIB with the RTS API.

Source code to the OS library consists of several files, located in the SRC\OS directory:

TASK.C Task thread abstraction

PBM.C Packet Buffer Manager

MEM.C Memory allocation and memory copy functions

EFS.C Embedded (RAM based) File System

OSSYS.C Additional OS support (debug logging, stricmp() function)

OSCRIT.S62 DSP critical section and cache control

The printing functionality is contained in the following file, located in the SRC\MiniPrintf directory:

MINIPRINTF.C Basic printf() functions

Two additional include files are located in the INC\OS directory:

OSIF.H Interface specifications to the adaptation library

OSKERN.H Semi-private declarations for use by functions like NETCTRL

The TASK.C module contains a subset of the task abstraction API documented in the TMS320C6000
Network Developer's Kit (NDK) Programmer's Reference Guide (SPRU524). It also contains the source
code to the stack's exclusion method functions: llEnter() and llExit(). The latter are discussed in
Section 5.2.3 of this document.

Most of the task and semaphore functions defined in the TMS320C6000 Network Developer's Kit (NDK)
Programmer's Reference Guide (SPRU524) are in actuality macros which call DSP/BIOS. These macros
are defined in INC\OS\OSIF.H. The functions that do not directly map to DSP/BIOS are listed here.

58 OS Adaptation Layer : OS.LIB and MiniPrintf.LIB SPRU523C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

5.2.1 TaskSetEnv() and TaskGetEnv()

5.2.2 TaskCreate(), TaskExit(), and TaskDestroy()

5.2.3 Choosing the llEnter()/llExit() Exclusion Method

Task Thread Abstraction - TASK.C

The set environment and get environment functions are supplied in TASK.C so that they can be ported to
the DSP/BIOS based system in such a way that they do not conflict with other system use of the
TSK_setenv() and TSK_getenv() functions.

The ability to associate a data structure with a task thread is essential for the stack library. The problem
with the implementation in DSP/BIOS is that it only allows a single entity to assign this environment
pointer. The result is that any use of TSK_setenv() or TSK_getenv() by a third party conflicts with the
stack software.

The implementation of the TASK.C supplied in the NDK gets around this limitation by using the DSP/BIOS
task HOOK object. The HOOK object allows multiple entities to hook into DSP/BIOS task creation –
including the ability to expand the environment. For more information, see the DSP/BIOS documentation.

Note: In the TASK.C module provided, the TaskSetEnv() and TaskGetEnv() functions do not
implement the slot calling parameter. All internal stack functions use slot zero. The
additional slots were originally indented to be used by applications, but under DSP/BIOS,
applications must use TSK_setenv() and TSK_getenv() functions. Therefore, the
DSP/BIOS based implementation of TaskSetEnv() and TaskGetEnv() is simplified.

The create, exit and destroy functions all call their DSP/BIOS equivalents. However, they are provided in
this module as slightly tuned hook functions.

The main reason that these functions are not defined as macros is so that the TaskExit() function could be
tuned to perform its own cleanup. The TSK_exit() function provided in DSP/BIOS does not delete the task
that has exited. In fact, a task can only be deleted by another task - it cannot delete itself. Some system
software copes with this in a garbage collection thread, but the NDK library does not require nor
implement such a thread. This was done intentionally so that the NDK would not conflict with any IDLE
thread provided by the system programmer.

To allow TaskExit() to clean up after itself, some additional code is called to track the last thread to call the
TaskExit() function. In that cleanup function, the thread that previously called TaskExit() is deleted.
Therefore, thread deletion is always 1 behind thread exit, and no thread deletes itself.

Although the NDK provides a reentrant environment, the core of the stack is not reentrant. Portions of the
code must be protected from access by reentrant calls. Instead of using critical sections that block out all
other task execution, the software defines an operating mode called kernel mode. Kernel mode is defined
such that only one task may be in kernel mode at any given time. It does nothing to prevent tasks from
running that do not use the NDK. This provides protection for the stack software, without affecting the
execution of unrelated code.

The llEnter() and llExit() functions are used throughout the stack code to enter and exit kernel mode, and
provide code exclusion without using critical sectioning. They are equivalent to the splhigh()/splx() Unix
functions and their multiple cousins.

There are two example implementations of the llEnter() and llExit() functions included in the NDK. The
example implementations provide exclusion through task priority or by using semaphores. Source code to
both implementations is included in the task abstraction source file: SRC\OS\TASK.C

One method of exclusion is the priority method. Here, the task that calls llEnter() is boosted to a priority
level of OS_TASKPRIKERN, which guarantees that it will not be pre-empted since it is impossible for
another task to be running (all tasks that can possibly call into the stack have a lower priority level). The
stack is coded so that a task at the kernel mode priority level will never block. When llExit() is called, the
task's original priority is restored. Note that time critical tasks can be assigned a priority higher than
OS_TASKPRIKERN, but they are not allowed to call into the NDK.

SPRU523C–January 2007 OS Adaptation Layer : OS.LIB and MiniPrintf.LIB 59
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

5.3 Packer Buffer Manager - PBM.C

5.3.1 Packet Buffer Pool

5.3.2 Packet Buffer Allocation Method

Packer Buffer Manager - PBM.C

An alternate implementation of the enter and exit functions uses a semaphore with an initial count of 1.
When llEnter() is called, the task calls a pend operation on the semaphore. If some other task is currently
executing in kernel mode, the new task will pend until llExit() is called by the original task. A call to llExit()
results in a post operation which frees up one task to enter the stack. This form of the function pair is safer
than the priority method, but may also be slower. In general, semaphore operations are a little slower than
task priority changes. However, this method also has its advantages. The main advantage with the
semaphore method is that tasks can be assigned priority levels more freely. There is no need to restrict
task priority or be concerned if a high priority task is going to call into the NDK.

By altering the #if statements around the two implementations, the system developer can choose to use
either implementation.

The Packet Buffer Manager (PBM) is charged with managing all the packet buffers in the system. Packet
buffers are used by the NDK and device drivers to carry networking packet data. The PBM programming
abstraction is discussed in the NDK Programmer’s Reference Guide. This section discusses the
implementation provided in the NDK.

There are two #define statements at the top of the PBM.C module:

#define PKT_NUM_FRAMEBUF 192
#define PKT_SIZE_FRAMEBUF 1664

These determine the number of packet buffers in the main buffer pool, and the size of the buffer. Note that
when the memory is declared, it is placed on a cache aligned boundary. Also, each packet buffer must be
an even number of cache lines in size so that it can be reliably flushed without the risk of conflicting with
other buffers.

Why use a 1664 byte packet buffer? In a very simple Ethernet system, the max size of the frame buffer
would be 1518, but a few things happen in the NDK environment to change that.

First, all devices use a standard packet header size from the start of the packet buffer to the IP header.
The result is that any packet can be routed to any device without altering the location of the IP header.
The standard size used is 22 bytes, which is the size of a PPPoE header plus the standard Ethernet
header.

Next, the Macronix Ethernet MAC transfers data in 16 byte bursts. However, the first four bytes of the first
transfer is 4 bytes of status, leaving only 12 bytes of data. A little math reveals the Macronix writes 1532
bytes into the packet buffer on a 1518 byte frame.

Taking the standard 1532 bytes required by Macronix, and adding an additional 8 byte pad for the
standard header (22 – standard 14 byte Ethernet) gives 1540 bytes which rounds to 1664 when expanded
to fill a full L2 cache line.

When not using the Macronix (LogicIO) Ethernet, PKT_SIZE_FRAMEBUF can be set to 1536.

The basic method of buffer allocation is the buffer pool. Buffers are allocated when the PBM_alloc()
function is called. This function can be called at interrupt time, so you must ensure only non-blocking calls
are made as a result. However, only device drivers can make calls from an ISR and device drivers never
ask for a buffer larger than PKT_SIZE_FRAMEBUF. Therefore, the fallback method for allocating larger
buffers can technically make blocking calls, although the implementation included in the NDK does not
make blocking calls under any circumstance.

60 OS Adaptation Layer : OS.LIB and MiniPrintf.LIB SPRU523C–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

5.3.3 Referenced Route Handles

5.4 Memory Allocation System - MEM.C

Memory Allocation System - MEM.C

The basic method of allocation is to check the size. When the size is less than or equal to
PKT_SIZE_FRAMEBUF, then the packet buffer is obtained off the free queue. If there are no free packet
buffers on the queue, the function returns NULL. Note that the PBM module could be modified to grow the
free pool or use memory allocation as a fallback, but any buffer supplied as a result of a request with the
size less than or equal to PKT_SIZE_FRAMEBUF, must adhere to the cache line restrictions outlined in
the previous section.

For packet buffers larger than PKT_SIZE_FRAMEBUF, standard memory can be used. These allocation
requests are only made for re-assembling large IP packets. The resulting packet cannot be submitted to a
hardware device without being fragmented. Therefore, the packet buffer does not need to be compatible
for hardware transmission.

One of the fields in the PBM structure is a referenced handle to a route used to route a packet to its final
destination. The PBM module must be aware of this handle when freeing a packet buffer or copying a
packet buffer.

When packet buffer is freed by calling PBM_free(), the PBM module must check for a route handle held by
the packet buffer, and dereference the handle if it exists. For example:
if(pPkt->hRoute)
{

RtDeRef(pPkt->hRoute);
pPkt->hRoute = 0;

}

As noted in the source code to PBM.C, the function RtDeRef() can only be called from kernel mode.
However, instead of defining two versions of the PBM_free() function, the PBM module relies on the fact
that device drivers are never given packet buffers containing routes. Therefore, any call to PBM_free()
where the buffer contains a route, must have been called from within kernel mode. It is, therefore, safe to
call RtDeRef().

When a packet buffer is copied with PBM_copy(), all the information about the packet is also copied. This
information may include a referenced route handle. If the handle to a route is copied in the process of
copying the packet buffer, then a reference to that handle must also be added by calling the RtRef()
function. The PBM module does not need to worry about kernel mode for the same reason as it did not
with PBM_free().

The memory allocation system consists of allocation functions for small blocks of memory, large blocks,
and for initializing and copying memory blocks. The API definitions for the files contained in this module is
defined in the TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference Guide (SPRU524).
These functions are used throughout the stack. The source code is provided so the systems programmer
can adapt the memory system to fit a particular need.

The allocation functions for the small memory blocks (mmAlloc() and mmFree()) should not be altered.
These functions are used by the NDK to allocate and free scratchpad type memory. They can be called at
interrupt time and are not allowed to block. The memory is currently allocated out of a static array. The
size and placement of this array can be altered by changing the declarations at the top of the source file.
The page size (RAW_PAGE_SIZE) is depended upon by various stack entities and should not be altered.
The number of pages used (RAW_PAGE_COUNT) can be adjusted up or down to increase or decrease
the scratchpad memory size.

The memory manipulation functions mmZeroInit() and mmCopy() are both coded in C. A system
programmer may recode these functions in assembly, or to use an EDMA channel to move memory.

The allocation functions for the large memory blocks (mmBulkAlloc() and mmBulkFree()) are currently
defined to use MEM_alloc() and MEM_free() on heap ID zero. These functions can be altered to use any
memory allocation system of choice. They are not called at interrupt time and are allowed to block.

SPRU523C–January 2007 OS Adaptation Layer : OS.LIB and MiniPrintf.LIB 61
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

www.ti.com

5.4.1 mmBulkAllocSeg – Set the DSP/BIOS Heap Segment for Bulk Allocation Functions

5.5 Embedded File System - EFS.C

5.6 General OS Support - OSSYS.C

5.7 Print Functions - MINIPRINTF.C

mmBulkAllocSeg — Set the DSP/BIOS Heap Segment for Bulk Allocation Functions

The heap ID can be altered using a custom function. This function is not documented in the NDK
Programmer’s Reference Guide as it is dependent on this particular implementation of
mmBulkAlloc()/mmBulkFree().

mmBulkAllocSeg Set the DSP/BIOS Heap Segment for Bulk Allocation Functions

Syntax void _mmBulkAllocSeg(uint segId)

Parameters

segId DSP/BIOS heap segment

Description Sets the DSP/BIOS segment to use in mmBulkAlloc() and mmBulkFree() function calls.
This function can only be called prior to any use of the bulk allocation functions. The
default segment value is zero.

Returns None

The EFS file system provides RAM based file support for the HTTP server and any CGI functions provided
by the applications programmer. This API is defined in the TMS320C6000 Network Developer's Kit (NDK)
Programmer's Reference Guide (SPRU524). The source code is provided for adapting the functions to
support a physical storage media. This allows the HTTP server to work on the physical device without
porting the server.

The OSSYS file is a generic catch-all for functions that do not have a home elsewhere. Currently, this
module contains DbgPrintf() - a debug logging function and stricmp(), which is not contained in the RTS.

The MINIPRINTF.C module under \SRC\MiniPrintf directory contains an implementation of printf(),
sprintf(), vprintf(), and vsprintf(). These are basic implementations that do not support floating point. The
function at the top of the module, printstr() can be altered to redirect standard output from the debugger to
a buffer or some external device.

62 OS Adaptation Layer : OS.LIB and MiniPrintf.LIB SPRU523C–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
 Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/lpw
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Overview
	1.1 Introduction
	1.2 NDK Setup
	1.2.1 Setting Up the NDK
	1.2.1.1 NDK Contents

	1.2.2 Rebuilding NDK Libraries

	1.3 NDK Library Design
	1.3.1 Stack Library Design
	1.3.1.1 Design Philosophy
	1.3.1.2 Organization
	1.3.1.2.1 STACK.LIB Library
	1.3.1.2.2 NETTOOL.LIB Library
	1.3.1.2.3 OS.LIB and MiniPrintf Libraries
	1.3.1.2.4 HAL.LIB Library
	1.3.1.2.5 NETCTRL.LIB Library

	1.3.2 Programming API
	1.3.2.1 Operating System Abstraction
	1.3.2.2 Sockets and Stream IO API
	1.3.2.3 Initialization and Configuration
	1.3.2.4 NETTOOL Support Functions
	1.3.2.5 NETTOOL Services
	1.3.2.6 Internal Stack API
	1.3.2.7 Hardware Adaptation Layer API

	1.3.3 NDK Software Directory
	1.3.3.1 Example Programs
	1.3.3.2 NDK Include File Directory
	1.3.3.3 Linkable Libraries Directory
	1.3.3.3.1 NDK Libraries
	1.3.3.3.2 HAL Libraries

	1.3.3.4 Library Source Directory
	1.3.3.5 Windows Test Utilities

	2 Example Applications
	2.1 The Network Client Example Application
	2.1.1 Introduction
	2.1.2 Building the Application
	2.1.3 Loading the Application
	2.1.4 Testing the Application
	2.1.4.1 HTTP Server
	2.1.4.2 Telnet Server
	2.1.4.3 Data Servers

	2.2 The Network Configuration Example Application
	2.2.1 Introduction
	2.2.2 Building the Application
	2.2.3 Loading the Application
	2.2.4 Configuring the Application
	2.2.4.1 Setting the Initial IP Address
	2.2.4.2 Full System Configuration

	2.2.5 Testing the Application
	2.2.5.1 Telnet Server
	2.2.5.2 Data Servers

	2.3 The Network HelloWorld Example Application
	2.3.1 Introduction
	2.3.2 Building the Application
	2.3.3 Loading the Application
	2.3.4 Testing the Application
	2.3.4.1 HelloWorld

	2.4 The Serial Client Example Application
	2.4.1 Introduction
	2.4.2 Setting Up the Network
	2.4.3 Building the Application
	2.4.4 Loading the Application
	2.4.5 Testing the Application
	2.4.5.1 Telnet Server
	2.4.5.2 Data Servers

	2.5 The Serial Router Example Application
	2.5.1 Introduction
	2.5.2 Setting Up the Network
	2.5.3 Building the Application
	2.5.4 Loading the Application
	2.5.5 Testing the Application
	2.5.5.1 HTTP Server
	2.5.5.2 Telnet Server
	2.5.5.3 Data Servers

	3 Network Application Development
	3.1 Using Code Composer Studio
	3.1.1 Required Configuration Entries
	3.1.1.1 PRD Object
	3.1.1.2 HOOK Object

	3.1.2 Include Files and Library Files
	3.1.3 CCStudio Project Link Order
	3.1.4 NDK Memory Sections
	3.1.5 Using Cache

	3.2 Developing Socket Applications with DSP/BIOS
	3.2.1 Default Environment API Restrictions
	3.2.2 Creating a Task
	3.2.2.1 Stack Size
	3.2.2.2 Choosing Task Priorities
	3.2.2.3 Initializing the File Descriptor Table

	3.2.3 Memory Allocation
	3.2.4 Example Code

	3.3 NDK Initialization and Configuration
	3.3.1 NDK Initialization Using NETCTRL
	3.3.1.1 The NETCTRL Task Thread
	3.3.1.2 Pre-Initialization
	3.3.1.3 System Configuration
	3.3.1.4 Network Startup
	3.3.1.5 Invoking New Network Tasks and Services
	3.3.1.6 Shutdown

	3.3.2 Adding Standard Services
	3.3.3 Initialization Examples
	3.3.3.1 Constructing a Configuration for a Static IP and Gateway
	3.3.3.2 Constructing a Configuration using the DHCP Client Service
	3.3.3.3 Using a Statically Defined DNS Server

	3.3.4 Controlling NDK and OS Options via the Configuration
	3.3.5 Saving and Loading a Configuration
	3.3.5.1 Saving the Configuration
	3.3.5.2 Loading the Configuration

	3.4 Application Debug and Troubleshooting
	3.4.1 Most Common Problems
	3.4.2 Controlling Debug Messages
	3.4.3 Interpreting Debug Messages
	3.4.3.1 TCP: Retransmit Timeout - Level DBG_INFO
	3.4.3.2 FunctionName: Buffer OOM - Level DBG_WARN
	3.4.3.3 mmFree: Double Free - Level DBG_WARN
	3.4.3.4 FunctionName: HTYPE nnnn - Level DBG_ERROR
	3.4.3.5 mmAlloc: PIT ???? Sync - Level DBG_ERROR
	3.4.3.6 PBM_enq: Invalid Packet - Level DBG_ERROR

	3.4.4 Memory Corruption
	3.4.5 Program Lockups
	3.4.6 Memory Management Reports
	3.4.6.1 mmCheck – Generate Memory Manager Report

	4 Network Control Functions
	4.1 Introduction to NETCTRL Source
	4.1.1 History
	4.1.2 NETCTRL Source Files
	4.1.3 Main Functions
	4.1.4 Additional Functions
	4.1.5 Booting and Scheduling

	4.2 NETCTRL Scheduler
	4.2.1 Scheduler Overview
	4.2.2 Scheduling Options
	4.2.3 Scheduler Thread Priority
	4.2.4 Tracking Events with STKEVENT
	4.2.5 Scheduler Loop Source Code

	4.3 Disabling On-Demand Services

	5 OS Adaptation Layer : OS.LIB and MiniPrintf.LIB
	5.1 Introduction to OS Source
	5.1.1 History
	5.1.2 Source Files

	5.2 Task Thread Abstraction - TASK.C
	5.2.1 TaskSetEnv() and TaskGetEnv()
	5.2.2 TaskCreate(), TaskExit(), and TaskDestroy()
	5.2.3 Choosing the llEnter()/llExit() Exclusion Method

	5.3 Packer Buffer Manager - PBM.C
	5.3.1 Packet Buffer Pool
	5.3.2 Packet Buffer Allocation Method
	5.3.3 Referenced Route Handles

	5.4 Memory Allocation System - MEM.C
	5.4.1 mmBulkAllocSeg – Set the DSP/BIOS Heap Segment for Bulk Allocation Functions

	5.5 Embedded File System - EFS.C
	5.6 General OS Support - OSSYS.C
	5.7 Print Functions - MINIPRINTF.C

