rflib
RFCC26X2.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016-2019, Texas Instruments Incorporated
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * * Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  *
12  * * Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in the
14  * documentation and/or other materials provided with the distribution.
15  *
16  * * Neither the name of Texas Instruments Incorporated nor the names of
17  * its contributors may be used to endorse or promote products derived
18  * from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
27  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
28  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 /*!****************************************************************************
33 @file RFCC26X2.h
34 @brief Radio Frequency (RF) Core Driver for the CC13X2 and CC26X2 device
35  family.
36 
37 To use the RF driver, ensure that the correct driver library for your device
38 is linked in and include the top-level header file as follows:
39 
40 @code
41 #include <ti/drivers/rf/RF.h>
42 @endcode
43 
44 <hr>
45 @anchor rf_overview
46 Overview
47 ========
48 
49 The RF driver provides access to the radio core on the CC13x2/CC26x2 device
50 family. It offers a high-level interface for command execution and to the
51 radio timer (RAT). The RF driver ensures the lowest possible power consumption
52 by providing automatic power management that is fully transparent for the
53 application.
54 
55 @note This document describes the features and usage of the RF driver API. For a
56 detailed explanation of the RF core, please refer to the
57 <a href='../../proprietary-rf/technical-reference-manual.html'><b>Technical
58 Reference Manual</b></a> or the
59 <a href='../../proprietary-rf/proprietary-rf-users-guide.html'><b>Proprietary
60 RF User Guide</b></a>.
61 
62 <b>Key features are:</b>
63 
64 @li @ref rf_command_execution "Synchronous execution of direct and immediate radio commands"
65 @li @ref rf_command_execution "Synchronous and asynchronous execution of radio operation commands"
66 @li Various @ref rf_event_callbacks "event hooks" to interact with RF commands and the RF driver
67 @li Automatic @ref rf_power_management "power management"
68 @li @ref rf_scheduling "Preemptive scheduler for RF operations" of different RF driver instances
69 @li Convenient @ref rf_rat "Access to the radio timer" (RAT)
70 @li @ref rf_tx_power "Programming the TX power level"
71 
72 @anchor rf_setup_and_configuration
73 Setup and configuration
74 =======================
75 
76 The RF driver can be configured at 4 different places:
77 
78 1. In the build configuration by choosing either the single-client or
79  multi-client driver version.
80 
81 2. At compile-time by setting hardware and software interrupt priorities
82  in the board support file.
83 
84 3. During run-time initialization by setting #RF_Params when calling
85  #RF_open().
86 
87 4. At run-time via #RF_control().
88 
89 
90 Build configuration
91 -------------------
92 
93 The RF driver comes in two versions: single-client and multi-client. The
94 single-client version allows only one driver instance to access the RF core at
95 a time. The multi-client driver version allows concurrent access to the RF
96 core with different RF settings. The multi-client driver has a slightly larger
97 footprint and is not needed for many proprietary applications. The driver
98 version can be selected in the build configuration by linking against a
99 RFCC26X2_multiMode pre-built library. The multi-client driver is the default
100 configuration in the SimpleLink SDKs.
101 
102 
103 Board configuration
104 -------------------
105 
106 The RF driver handles RF core hardware interrupts and uses software interrupts
107 for its internal state machine. For managing the interrupt priorities, it
108 expects the existence of a global #RFCC26XX_HWAttrsV2 object. This is
109 usually defined in the board support file, for example `CC2652RB_LAUNCHXL.c`,
110 but when developing on custom boards, it might be kept anywhere in the
111 application. By default, the priorities are set to the lowest possible value:
112 
113 @code
114 const RFCC26XX_HWAttrsV2 RFCC26XX_hwAttrs = {
115  .hwiPriority = INT_PRI_LEVEL7, // Lowest HWI priority: INT_PRI_LEVEL7
116  // Highest HWI priority: INT_PRI_LEVEL1
117 
118  .swiPriority = 0, // Lowest SWI priority: 0
119  // Highest SWI priority: Swi.numPriorities - 1
120 
121  .xoscHfAlwaysNeeded = true // Power driver always starts XOSC-HF: true
122  // RF driver will request XOSC-HF if needed: false
123 };
124 @endcode
125 
126 
127 Initialization
128 --------------
129 
130 When initiating an RF driver instance, the function #RF_open() accepts a
131 pointer to a #RF_Params object which might set several driver parameters. In
132 addition, it expects an #RF_Mode object and a setup command which is usually
133 generated by SmartRF Studio:
134 
135 @code
136 RF_Params rfParams;
137 RF_Params_init(&rfParams);
138 rfParams.nInactivityTimeout = 2000;
139 
140 RF_Handle rfHandle = RF_open(&rfObject, &RF_prop,
141  (RF_RadioSetup*)&RF_cmdPropRadioDivSetup, &rfParams);
142 @endcode
143 
144 The function #RF_open() returns a driver handle that is used for accessing the
145 correct driver instance. Please note that the first RF operation command
146 before an RX or TX operation command must be a `CMD_FS` to set the synthesizer
147 frequency. The RF driver caches both, the pointer to the setup command and the
148 physical `CMD_FS` for automatic power management.
149 
150 
151 Run-time configuration
152 ----------------------
153 
154 While a driver instance is opened, it can be re-configured with the function
155 #RF_control(). Various configuration parameters @ref RF_CTRL are available.
156 Example:
157 
158 @code
159 uint32_t timeoutUs = 2000;
160 RF_control(rfHandle, RF_CTRL_SET_INACTIVITY_TIMEOUT, &timeoutUs);
161 @endcode
162 
163 <hr>
164 @anchor rf_command_execution
165 Command execution
166 =================
167 
168 The RF core supports 3 different kinds of commands:
169 
170 1. Direct commands
171 2. Immediate commands
172 3. Radio operation commands
173 
174 Direct and immediate commands are dispatched via #RF_runDirectCmd() and
175 #RF_runImmediateCmd() respectively. These functions block until the command
176 has completed and return a status code of the type #RF_Stat when done.
177 
178 @code
179 #include <ti/devices/${DEVICE_FAMILY}/driverlib/rf_common_cmd.h>
180 
181 RF_Stat status = RF_runDirectCmd(rfHandle, CMD_ABORT);
182 assert(status == RF_StatCmdDoneSuccess);
183 @endcode
184 
185 Radio operation commands are potentially long-running commands and support
186 different triggers as well as conditional execution. Only one command can be
187 executed at a time, but the RF driver provides an internal queue that stores
188 commands until the RF core is free. Two interfaces are provided for radio
189 operation commands:
190 
191 1. Asynchronous: #RF_postCmd() and #RF_pendCmd()
192 2. Synchronous: #RF_runCmd()
193 
194 The asynchronous function #RF_postCmd() posts a radio operation into the
195 driver's internal command queue and returns a command handle of the type
196 #RF_CmdHandle which is an index in the command queue. The command is
197 dispatched as soon as the RF core has completed any previous radio operation
198 command.
199 
200 @code
201 #include <ti/devices/${DEVICE_FAMILY}/driverlib/rf_common_cmd.h>
202 
203 RF_Callback callback = NULL;
204 RF_EventMask subscribedEvents = 0;
205 RF_CmdHandle rxCommandHandle = RF_postCmd(rfHandle, (RF_Op*)&RF_cmdRx,
206  RF_PriorityNormal, callback, subscribedEvents);
207 
208 assert(rxCommandHandle != RF_ALLOC_ERROR); // The command queue is full.
209 @endcode
210 
211 Command execution happens in background. The calling task may proceed with
212 other work or execute direct and immediate commands to interact with the
213 posted radio operation. But beware that the posted command might not have
214 started, yet. By calling the function #RF_pendCmd() and subscribing events of
215 the type #RF_EventMask, it is possible to re-synchronize to a posted command:
216 
217 @code
218 // RF_EventRxEntryDone must have been subscribed in RF_postCmd().
219 RF_EventMask events = RF_pendCmd(rfHandle, rxCommandHandle,
220  RF_EventRxEntryDone);
221 
222 // Program proceeds after RF_EventRxEntryDone or after a termination event.
223 @endcode
224 
225 The function #RF_runCmd() is a combination of both, #RF_postCmd() and
226 #RF_pendCmd() and allows synchronous execution.
227 
228 A pending or already running command might be aborted at any time by calling
229 the function #RF_cancelCmd() or #RF_flushCmd(). These functions take command
230 handles as parameters, but can also just abort anything in the RF driver's
231 queue:
232 
233 @code
234 uint8_t abortGraceful = 1;
235 
236 // Abort a single command
237 RF_cancelCmd(rfHandle, rxCommandHandle, abortGraceful);
238 
239 // Abort anything
240 RF_flushCmd(rfHandle, RF_CMDHANDLE_FLUSH_ALL, abortGraceful);
241 @endcode
242 
243 When aborting a command, the return value of #RF_runCmd() or #RF_pendCmd()
244 will contain the termination reason in form of event flags. If the command is
245 in the RF driver queue, but has not yet start, the #RF_EventCmdCancelled event is
246 raised.
247 
248 <hr>
249 @anchor rf_event_callbacks
250 Event callbacks
251 ===============
252 
253 The RF core generates multiple interrupts during command execution. The RF
254 driver maps these interrupts 1:1 to callback events of the type #RF_EventMask.
255 Hence, it is unnecessary to implement own interrupt handlers. Callback events
256 are divided into 3 groups:
257 
258 - Command-specific events, documented for each radio operation command. An example
259  is the #RF_EventRxEntryDone for the `CMD_PROP_RX`.
260 
261 - Generic events, defined for all radio operations and originating on the RF core.
262  These are for instance #RF_EventCmdDone and #RF_EventLastCmdDone. Both events
263  indicate the termination of one or more RF operations.
264 
265 - Generic events, defined for all radio operations and originating in the RF driver,
266  for instance #RF_EventCmdCancelled.
267 
268 @sa @ref RF_Core_Events, @ref RF_Driver_Events.
269 
270 How callback events are subscribed was shown in the previous section. The
271 following snippet shows a typical event handler callback for a proprietary RX
272 operation:
273 
274 @code
275 void rxCallback(RF_Handle handle, RF_CmdHandle command, RF_EventMask events)
276 {
277  if (events & RF_EventRxEntryDone)
278  {
279  Semaphore_post(rxPacketSemaphore);
280  }
281  if (events & RF_EventLastCmdDone)
282  {
283  // ...
284  }
285 }
286 @endcode
287 
288 In addition, the RF driver can generate error and power-up events that do not
289 relate directly to the execution of a radio command. Such events can be
290 subscribed by specifying the callback function pointers #RF_Params::pErrCb and
291 #RF_Params::pPowerCb.
292 
293 All callback functions run in software interrupt (SWI) context. Therefore,
294 only a minimum amount of code should be executed. When using absolute timed
295 commands with tight timing constraints, then it is recommended to set the RF
296 driver SWIs to a high priority.
297 See @ref rf_setup_and_configuration "Setup and configuration" for more details.
298 
299 <hr>
300 @anchor rf_power_management
301 Power management
302 ================
303 
304 The RF core is a hardware peripheral and can be switched on and off. The RF
305 driver handles that automatically and provides the following power
306 optimization features:
307 
308 - Lazy power-up and radio setup caching
309 - Power-down on inactivity
310 - Deferred dispatching of commands with absolute timing
311 
312 
313 Lazy power-up and radio setup caching
314 -------------------------------------
315 
316 The RF core optimizes the power consumption by enabling the RF core as late as
317 possible. For instance does #RF_open() not power up the RF core immediately.
318 Instead, it waits until the first radio operation command is dispatched by
319 #RF_postCmd() or #RF_runCmd().
320 
321 The function #RF_open() takes a radio setup command as parameter and expects a
322 `CMD_FS` command to follow. The pointer to the radio setup command and the
323 whole `CMD_FS` command are cached internally in the RF driver. They will be
324 used for every proceeding power-up procedure. Whenever the client re-runs a
325 setup command or a `CMD_FS` command, the driver updates its internal cache
326 with the new settings.
327 
328 By default, the RF driver measures the time that it needs for the power-up
329 procedure and uses that as an estimate for the next power cycle. On the
330 CC13x0/CC26x0 devices, power-up takes usually 1.6 ms. Automatic measurement
331 can be suppressed by specifying a custom power-up time with
332 #RF_Params::nPowerUpDuration. In addition, the client might set
333 #RF_Params::nPowerUpDurationMargin to cover any uncertainty when doing
334 automatic measurements. This is necessary in applications with a high hardware
335 interrupt load which can delay the RF driver's internal state machine
336 execution.
337 
338 
339 Power-down on inactivity
340 ------------------------
341 
342 Whenever a radio operation completes and there is no other radio operation in
343 the queue, the RF core might be powered down. There are two options in the RF
344 driver:
345 
346 - **Automatic power-down** by setting the parameter
347  #RF_Params::nInactivityTimeout. The RF core will then start a timer after
348  the last command in the queue has completed. The default timeout is "forever"
349  and this feature is disabled.
350 
351 - **Manual power-down** by calling #RF_yield(). The client should do this
352  whenever it knows that no further radio operation will be executed for a
353  couple of milliseconds.
354 
355 During the power-down procedure the RF driver stops the radio timer and saves
356 a synchronization timestamp for the next power-up. This keeps the radio timer
357 virtually in sync with the RTC even though it is not running all the time. The
358 synchronization is done in hardware.
359 
360 
361 Deferred dispatching of commands with absolute timing
362 -----------------------------------------------------
363 
364 When dispatching a radio operation command with an absolute start trigger that
365 is ahead in the future, the RF driver defers the execution and powers the RF
366 core down until the command is due. It does that only, when:
367 
368 1. `cmd.startTrigger.triggerType` is set to `TRIG_ABSTIME`
369 
370 2. The difference between #RF_getCurrentTime() and `cmd.startTime`
371  is at not more than 3/4 of a full RAT cycle. Otherwise the driver assumes
372  that `cmd.startTime` is in the past.
373 
374 3. There is enough time to run a full power cycle before `cmd.startTime` is
375  due. That includes:
376 
377  - the power-down time (fixed value, 1 ms) if the RF core is already
378  powered up,
379 
380  - the measured power-up duration or the value specified by
381  #RF_Params::nPowerUpDuration,
382 
383  - the power-up safety margin #RF_Params::nPowerUpDurationMargin
384  (the default is 282 microseconds).
385 
386 If one of the conditions are not fulfilled, the RF core is kept up and
387 running and the command is dispatched immediately. This ensures, that the
388 command will execute on-time and not miss the configured start trigger.
389 
390 <hr>
391 @anchor rf_scheduling
392 Preemptive scheduling of RF commands in multi-client applications
393 =================================================================
394 
395 Schedule BLE and proprietary radio commands.
396 
397 @code
398 RF_Object rfObject_ble;
399 RF_Object rfObject_prop;
400 
401 RF_Handle rfHandle_ble, rfHandle_prop;
402 RF_Params rfParams_ble, rfParams_prop;
403 RF_ScheduleCmdParams schParams_ble, schParams_prop;
404 
405 RF_Mode rfMode_ble =
406 {
407  .rfMode = RF_MODE_MULTIPLE, // rfMode for dual mode
408  .cpePatchFxn = &rf_patch_cpe_ble,
409  .mcePatchFxn = 0,
410  .rfePatchFxn = &rf_patch_rfe_ble,
411 };
412 
413 RF_Mode rfMode_prop =
414 {
415  .rfMode = RF_MODE_MULTIPLE, // rfMode for dual mode
416  .cpePatchFxn = &rf_patch_cpe_genfsk,
417  .mcePatchFxn = 0,
418  .rfePatchFxn = 0,
419 };
420 
421 // Init RF and specify non-default parameters
422 RF_Params_init(&rfParams_ble);
423 rfParams_ble.nInactivityTimeout = 200; // 200us
424 
425 RF_Params_init(&rfParams_prop);
426 rfParams_prop.nInactivityTimeout = 200; // 200us
427 
428 // Configure RF schedule command parameters directly.
429 schParams_ble.priority = RF_PriorityNormal;
430 schParams_ble.endTime = 0;
431 schParams_ble.allowDelay = RF_AllowDelayAny;
432 
433 // Alternatively, use the helper function to configure the default behavior
434 RF_ScheduleCmdParams_init(&schParams_prop);
435 
436 // Open BLE and proprietary RF handles
437 rfHandle_ble = RF_open(rfObj_ble, &rfMode_ble, (RF_RadioSetup*)&RF_cmdRadioSetup, &rfParams_ble);
438 rfHandle_prop = RF_open(rfObj_prop, &rfMode_prop, (RF_RadioSetup*)&RF_cmdPropRadioDivSetup, &rfParams_prop);
439 
440 // Run a proprietary Fs command
441 RF_runCmd(rfHandle_pro, (RF_Op*)&RF_cmdFs, RF_PriorityNormal, NULL, NULL);
442 
443 // Schedule a proprietary RX command
444 RF_scheduleCmd(rfHandle_pro, (RF_Op*)&RF_cmdPropRx, &schParams_prop, &prop_callback, RF_EventRxOk);
445 
446 // Schedule a BLE advertiser command
447 RF_scheduleCmd(rfHandle_ble, (RF_Op*)&RF_cmdBleAdv, &schParams_ble, &ble_callback,
448  (RF_EventLastCmdDone | RF_EventRxEntryDone | RF_EventTxEntryDone));
449 
450 @endcode
451 
452 <hr>
453 @anchor rf_rat
454 Accessing the Radio Timer (RAT)
455 ==============================
456 
457 The Radio Timer on the RF core is an independent 32 bit timer running at a
458 tick rate of 4 ticks per microsecond. It is only physically active while the
459 RF core is on. But because the RF driver resynchronizes the RAT to the RTC on
460 every power-up, it appears to the application as the timer is always running.
461 The RAT accuracy depends on the system HF clock while the RF core is active
462 and on the LF clock while the RF core is powered down.
463 
464 The current RAT time stamp can be obtained by #RF_getCurrentTime():
465 
466 @code
467 uint32_t now = RF_getCurrentTime();
468 @endcode
469 
470 The RAT has 8 independent channels that can be set up in capture and compare
471 mode by #RF_ratCapture() and #RF_ratCompare() respectively. Three of these
472 channels are accessible by the RF driver. Each channel may be connected to
473 physical hardware signals for input and output or may trigger a callback
474 function.
475 
476 In order to allocate a RAT channel and trigger a callback function at a
477 certain time stamp, use #RF_ratCompare():
478 
479 @code
480 RF_Handle rfDriver;
481 RF_RatConfigCompare config;
482 RF_RatConfigCompare_init(&config);
483 config.callback = &onRatTriggered;
484 config.channel = RF_RatChannelAny;
485 config.timeout = RF_getCurrentTime() + RF_convertMsToRatTicks(1701);
486 
487 RF_RatHandle ratHandle = RF_ratCompare(rfDriver, &config, nullptr);
488 assert(ratHandle != RF_ALLOC_ERROR);
489 
490 void onRatTriggered(RF_Handle h, RF_RatHandle rh, RF_EventMask e, uint32_t compareCaptureTime)
491 {
492  if (e & RF_EventError)
493  {
494  // RF driver failed to trigger the callback on time.
495  }
496  printf("RAT has triggered at %u.", compareCaptureTime);
497 
498  // Trigger precisely with the same period again
499  config.timeout = compareCaptureTime + RF_convertMsToRatTicks(1701);
500  ratHandle = RF_ratCompare(rfDriver, &config, nullptr);
501  assert(ratHandle != RF_ALLOC_ERROR);
502 }
503 @endcode
504 
505 The RAT may be used to capture a time stamp on an edge of a physical pin. This
506 can be achieved with #RF_ratCapture().
507 
508 @code
509 #include <ti/drivers/pin/PINCC26XX.h>
510 // Map IO 26 to RFC_GPI0
511 PINCC26XX_setMux(pinHandle, IOID_26, PINCC26XX_MUX_RFC_GPI0);
512 
513 RF_Handle rfDriver;
514 RF_RatConfigCapture config;
515 RF_RatConfigCapture_init(&config);
516 config.callback = &onSignalTriggered;
517 config.channel = RF_RatChannelAny;
518 config.source = RF_RatCaptureSourceRfcGpi0;
519 config.captureMode = RF_RatCaptureModeRising;
520 config.repeat = RF_RatCaptureRepeat;
521 
522 RF_RatHandle ratHandle = RF_ratCapture(rfDriver, &config, nullptr);
523 assert(ratHandle != RF_ALLOC_ERROR);
524 
525 void onSignalTriggered(RF_Handle h, RF_RatHandle rh, RF_EventMask e, uint32_t compareCaptureTime)
526 {
527  if (e & RF_EventError)
528  {
529  // An internal error has occurred
530  }
531  printf("Rising edge detected on IO 26 at %u.", compareCaptureTime);
532 }
533 @endcode
534 
535 In both cases, the RAT may generate an output signal when being triggered. The
536 signal can be routed to a physical IO pin:
537 
538 @code
539 // Generate a pulse on an internal RAT output signal
540 RF_RatConfigOutput output;
541 RF_RatConfigOutput_init(&output);
542 output.mode = RF_RatOutputModePulse;
543 output.select = RF_RatOutputSelectRatGpo3;
544 RF_ratCompare(...);
545 
546 // Map RatGpo3 to one of four intermediate doorbell signals.
547 // This has to be done in the override list in order to take permanent effect.
548 // The override list can be found in the RF settings .c file exported from
549 // SmartRF Studio.
550 // Attention: This will change the default mapping of the PA and LNA signal as well.
551 #include <ti/devices/[DEVICE_FAMILY]/inc/hw_rfc_dbell.h>
552 static uint32_t pOverrides[] =
553 {
554  HW_REG_OVERRIDE(0x1110, RFC_DBELL_SYSGPOCTL_GPOCTL2_RATGPO3),
555  // ...
556 }
557 
558 // Finally, route the intermediate doorbell signal to a physical pin.
559 #include <ti/drivers/pin/PINCC26XX.h>
560 PINCC26XX_setMux(pinHandle, IOID_17, PINCC26XX_MUX_RFC_GPO2);
561 @endcode
562 
563 <hr>
564 @anchor rf_tx_power
565 Programming the TX power level
566 ==============================
567 
568 The application can program a TX power level for each RF client with the function
569 #RF_setTxPower(). The new value takes immediate effect if the RF core is up and
570 running. Otherwise, it is stored in the RF driver client configuration.
571 
572 TX power may be stored in a lookup table in ascending order. This table is usually
573 generated and exported from SmartRF Studio together with the rest of the PHY configuration.
574 A typical power table my look as follows:
575 @code
576 RF_TxPowerTable_Entry txPowerTable[] = {
577  { .power = 11, .value = { 0x1233, RF_TxPowerTable_DefaultPA }},
578  { .power = 13, .value = { 0x1234, RF_TxPowerTable_DefaultPA }},
579  // ...
580  RF_TxPowerTable_TERMINATION_ENTRY
581 };
582 @endcode
583 
584 @note Some devices offer a high-power PA in addition to the default PA.
585 A client must not mix configuration values in the same power table and must
586 not hop from a default PA configuration to a high-power PA configuration unless it
587 can guarantee that the RF setup command is re-executed in between.
588 
589 Given this power table format, the application may program a new power level in multiple
590 ways. It can use convenience functions to search a certain power level
591 in the power table or may access the table index-based:
592 @code
593 // Set a certain power level. Search a matching level.
594 RF_setTxPower(h, RF_TxPowerTable_findValue(txPowerTable, 17));
595 
596 // Set a certain power level with a known level.
597 RF_setTxPower(h, txPowerTable[3].value);
598 
599 // Set a certain power without using a human readable level.
600 RF_setTxPower(h, value);
601 
602 // Set maximum power. Search the value.
603 RF_setTxPower(h, RF_TxPowerTable_findValue(txPowerTable, RF_TxPowerTable_MAX_DBM));
604 
605 // Set minimum power without searching.
606 RF_setTxPower(h, txPowerTable[0].value);
607 
608 // Set minimum power. Search the value.
609 RF_setTxPower(h, RF_TxPowerTable_findValue(txPowerTable, RF_TxPowerTable_MIN_DBM));
610 
611 // Set maximum power without searching.
612 int32_t lastIndex = sizeof(txPowerTable) / sizeof(RF_TxPowerTable_Entry) - 2;
613 RF_setTxPower(h, txPowerTable[lastIndex].value);
614 @endcode
615 
616 The current configured power level for a client can be retrieved by #RF_getTxPower().
617 @code
618 // Get the current configured power level.
619 int8_t power = RF_TxPowerTable_findPowerLevel(txPowerTable, RF_getTxPower(h));
620 @endcode
621 
622 <hr>
623 @anchor rf_convenience_features
624 Convenience features
625 ====================
626 
627 The RF driver simplifies often needed tasks and provides additional functions.
628 For instance, it can read the RSSI while the RF core is in RX mode using the
629 function :tidrivers_api:`RF_getRssi`:
630 
631 @code
632 int8_t rssi = RF_getRssi(rfHandle);
633 assert (rssi != RF_GET_RSSI_ERROR_VAL); // Could not read the RSSI
634 @endcode
635 
636 <hr>
637  ******************************************************************************
638  */
639 
640 //*****************************************************************************
641 //
646 //
647 //*****************************************************************************
648 
649 #ifndef ti_drivers_rfcc26x2__include
650 #define ti_drivers_rfcc26x2__include
651 
652 #ifdef __cplusplus
653 extern "C" {
654 #endif
655 
656 #include <stdint.h>
657 #include <stdbool.h>
658 
659 #include <ti/drivers/dpl/ClockP.h>
660 #include <ti/drivers/dpl/SemaphoreP.h>
661 #include <ti/drivers/utils/List.h>
662 
663 #include <ti/devices/DeviceFamily.h>
664 #include DeviceFamily_constructPath(driverlib/rf_common_cmd.h)
665 #include DeviceFamily_constructPath(driverlib/rf_prop_cmd.h)
666 #include DeviceFamily_constructPath(driverlib/rf_ble_cmd.h)
667 
679 #define RF_EventCmdDone (1 << 0)
680 #define RF_EventLastCmdDone (1 << 1)
681 #define RF_EventFGCmdDone (1 << 2)
682 #define RF_EventLastFGCmdDone (1 << 3)
683 #define RF_EventTxDone (1 << 4)
684 #define RF_EventTXAck (1 << 5)
685 #define RF_EventTxCtrl (1 << 6)
686 #define RF_EventTxCtrlAck (1 << 7)
687 #define RF_EventTxCtrlAckAck (1 << 8)
688 #define RF_EventTxRetrans (1 << 9)
689 #define RF_EventTxEntryDone (1 << 10)
690 #define RF_EventTxBufferChange (1 << 11)
691 #define RF_EventPaChanged (1 << 14)
692 #define RF_EventRxOk (1 << 16)
693 #define RF_EventRxNOk (1 << 17)
694 #define RF_EventRxIgnored (1 << 18)
695 #define RF_EventRxEmpty (1 << 19)
696 #define RF_EventRxCtrl (1 << 20)
697 #define RF_EventRxCtrlAck (1 << 21)
698 #define RF_EventRxBufFull (1 << 22)
699 #define RF_EventRxEntryDone (1 << 23)
700 #define RF_EventDataWritten (1 << 24)
701 #define RF_EventNDataWritten (1 << 25)
702 #define RF_EventRxAborted (1 << 26)
703 #define RF_EventRxCollisionDetected (1 << 27)
704 #define RF_EventModulesUnlocked (1 << 29)
705 #define RF_EventInternalError (uint32_t)(1 << 31)
706 #define RF_EventMdmSoft 0x0000002000000000
707 
716 #define RF_EventCmdCancelled 0x1000000000000000
717 #define RF_EventCmdAborted 0x2000000000000000
718 #define RF_EventCmdStopped 0x4000000000000000
719 #define RF_EventRatCh 0x0800000000000000
720 #define RF_EventPowerUp 0x0400000000000000
721 #define RF_EventError 0x0200000000000000
722 #define RF_EventCmdPreempted 0x0100000000000000
723 
741 #define RF_CTRL_SET_INACTIVITY_TIMEOUT 0
742 
751 #define RF_CTRL_UPDATE_SETUP_CMD 1
752 
757 #define RF_CTRL_SET_POWERUP_DURATION_MARGIN 2
758 
765 #define RF_CTRL_SET_PHYSWITCHING_DURATION_MARGIN 3
766 
773 #define RF_CTRL_SET_RAT_RTC_ERR_TOL_VAL 4
774 
785 #define RF_CTRL_SET_POWER_MGMT 5
786 
807 #define RF_CTRL_SET_HWI_PRIORITY 6
808 
829 #define RF_CTRL_SET_SWI_PRIORITY 7
830 
839 #define RF_CTRL_SET_AVAILABLE_RAT_CHANNELS_MASK 8
840 
853 #define RF_TxPowerTable_MIN_DBM -128
854 
861 #define RF_TxPowerTable_MAX_DBM 126
862 
868 #define RF_TxPowerTable_INVALID_DBM 127
869 
887 #define RF_TxPowerTable_INVALID_VALUE 0x3fffff
888 
904 #define RF_TxPowerTable_TERMINATION_ENTRY \
905  { .power = RF_TxPowerTable_INVALID_DBM, .value = { .rawValue = RF_TxPowerTable_INVALID_VALUE, .paType = RF_TxPowerTable_DefaultPA } }
906 
913 #define RF_TxPowerTable_DEFAULT_PA_ENTRY(bias, gain, boost, coefficient) \
914  { .rawValue = ((bias) << 0) | ((gain) << 6) | ((boost) << 8) | ((coefficient) << 9), .paType = RF_TxPowerTable_DefaultPA }
915 
922 #define RF_TxPowerTable_HIGH_PA_ENTRY(bias, ibboost, boost, coefficient, ldotrim) \
923  { .rawValue = ((bias) << 0) | ((ibboost) << 6) | ((boost) << 8) | ((coefficient) << 9) | ((ldotrim) << 16), .paType = RF_TxPowerTable_HighPA }
924 
925 
932 #define RF_GET_RSSI_ERROR_VAL (-128)
933 #define RF_CMDHANDLE_FLUSH_ALL (-1)
934 #define RF_ALLOC_ERROR (-2)
935 #define RF_SCHEDULE_CMD_ERROR (-3)
936 #define RF_ERROR_RAT_PROG (-255)
937 #define RF_ERROR_INVALID_RFMODE (-256)
938 #define RF_ERROR_CMDFS_SYNTH_PROG (-257)
939 
940 #define RF_NUM_SCHEDULE_ACCESS_ENTRIES 2
941 #define RF_NUM_SCHEDULE_COMMAND_ENTRIES 8
942 #define RF_NUM_SCHEDULE_MAP_ENTRIES (RF_NUM_SCHEDULE_ACCESS_ENTRIES + RF_NUM_SCHEDULE_COMMAND_ENTRIES)
943 #define RF_SCH_MAP_CURRENT_CMD_OFFSET RF_NUM_SCHEDULE_ACCESS_ENTRIES
944 #define RF_SCH_MAP_PENDING_CMD_OFFSET (RF_SCH_MAP_CURRENT_CMD_OFFSET + 2)
945 
946 #define RF_ABORT_PREEMPTION (1<<2)
947 #define RF_ABORT_GRACEFULLY (1<<0)
948 
949 #define RF_SCH_CMD_EXECUTION_TIME_UNKNOWN 0
950 
951 #define RF_RAT_ANY_CHANNEL (-1)
952 #define RF_RAT_TICKS_PER_US 4
953 
954 #define RF_LODIVIDER_MASK 0x7F
955 
956 
963 #define RF_STACK_ID_DEFAULT 0x00000000
964 #define RF_STACK_ID_154 0x8000F154
965 #define RF_STACK_ID_BLE 0x8000FB1E
966 #define RF_STACK_ID_EASYLINK 0x8000FEA2
967 #define RF_STACK_ID_THREAD 0x8000FEAD
968 #define RF_STACK_ID_TOF 0x8000F00F
969 #define RF_STACK_ID_CUSTOM 0x0000FC00
970 
975 #define RF_convertUsToRatTicks(microseconds) \
976  ((microseconds) * (RF_RAT_TICKS_PER_US))
977 
981 #define RF_convertMsToRatTicks(milliseconds) \
982  ((milliseconds) * 1000 * (RF_RAT_TICKS_PER_US))
983 
987 #define RF_convertRatTicksToUs(ticks) \
988  ((ticks) / (RF_RAT_TICKS_PER_US))
989 
993 #define RF_convertRatTicksToMs(ticks) \
994  ((ticks) / (1000 * (RF_RAT_TICKS_PER_US)))
995 
996 
1008 typedef struct {
1009  uint32_t rawValue:22;
1010  uint32_t __dummy:9;
1014  uint32_t paType:1;
1019 
1038 typedef struct
1039 {
1040  int8_t power;
1041 
1044 } __attribute__((packed)) RF_TxPowerTable_Entry;
1045 
1046 
1053 typedef enum {
1057 
1058 
1073 
1074 
1083 typedef struct {
1084  uint8_t rfMode;
1085  void (*cpePatchFxn)(void);
1086  void (*mcePatchFxn)(void);
1087  void (*rfePatchFxn)(void);
1088 } RF_Mode;
1089 
1100 typedef enum {
1104 } RF_Priority;
1105 
1114 typedef enum {
1120  RF_StatError = 0x80,
1124 } RF_Stat;
1125 
1130 typedef uint64_t RF_EventMask;
1131 
1141 typedef union {
1143  rfc_CMD_RADIO_SETUP_t common;
1152 } RF_RadioSetup;
1153 
1182 typedef enum {
1185 
1189 } RF_ClientEvent;
1190 
1232 typedef enum {
1234 
1238 
1241  RF_GlobalEventInit = (1 << 2),
1242 } RF_GlobalEvent;
1245 
1246 
1250 typedef uint32_t RF_ClientEventMask;
1251 
1255 typedef uint32_t RF_GlobalEventMask;
1256 
1269 typedef int16_t RF_CmdHandle;
1270 
1291 typedef struct RF_ObjectMultiMode RF_Object;
1292 
1296 struct RF_ObjectMultiMode{
1298  struct {
1299  uint32_t nInactivityTimeout;
1300  RF_Mode* pRfMode;
1301  RF_RadioSetup* pRadioSetup;
1302  uint32_t nPhySwitchingDuration;
1303  uint32_t nPowerUpDuration;
1304  bool bMeasurePowerUpDuration;
1305  bool bUpdateSetup;
1306  uint16_t nPowerUpDurationMargin;
1307  void* pPowerCb;
1308  void* pErrCb;
1309  void* pClientEventCb;
1310  RF_ClientEventMask nClientEventMask;
1311  uint16_t nPhySwitchingDurationMargin;
1312  uint32_t nID;
1313  } clientConfig;
1315  struct {
1316  struct {
1317  rfc_CMD_FS_t cmdFs;
1318  } mode_state;
1319  SemaphoreP_Struct semSync;
1320  RF_EventMask volatile eventSync;
1321  void* pCbSync;
1322  RF_EventMask unpendCause;
1323  ClockP_Struct clkReqAccess;
1324  bool bYielded;
1325  } state;
1326 };
1327 
1336 
1337 
1346 typedef int8_t RF_RatHandle;
1347 
1351 typedef enum {
1358 } RF_InfoType;
1359 
1365 typedef union {
1366  RF_CmdHandle ch;
1367  uint16_t availRatCh;
1369  RF_Handle pClientList[2];
1370  uint32_t phySwitchingTimeInUs[2];
1372 } RF_InfoVal;
1373 
1377 typedef struct {
1378  RF_CmdHandle ch;
1379  RF_Handle pClient;
1380  uint32_t startTime;
1381  uint32_t endTime;
1384 
1388 typedef struct {
1391 } RF_ScheduleMap;
1392 
1418 typedef void (*RF_Callback)(RF_Handle h, RF_CmdHandle ch, RF_EventMask e);
1419 
1433 typedef void (*RF_RatCallback)(RF_Handle h, RF_RatHandle rh, RF_EventMask e, uint32_t compareCaptureTime);
1434 
1450 typedef void (*RF_ClientCallback)(RF_Handle h, RF_ClientEvent event, void* arg);
1451 
1465 typedef void (*RF_GlobalCallback)(RF_Handle h, RF_GlobalEvent event, void* arg);
1466 
1475 typedef struct {
1477 
1479  uint32_t nPowerUpDuration;
1480 
1484 
1487 
1489 
1494 
1496 
1498  RF_ClientEventMask nClientEventMask;
1499 
1501  uint32_t nID;
1502 } RF_Params;
1503 
1507 typedef enum {
1510 } RF_StartType;
1511 
1515 typedef enum {
1520  } RF_EndType;
1521 
1522 /* RF command. */
1523 typedef struct RF_Cmd_s RF_Cmd;
1524 
1525 /* RF command . */
1526 struct RF_Cmd_s {
1527  List_Elem _elem; /* Pointer to next and previous elements. */
1528  RF_Callback volatile pCb; /* Pointer to callback function */
1529  RF_Op* pOp; /* Pointer to (chain of) RF operations(s) */
1530  RF_Object* pClient; /* Pointer to client */
1531  RF_EventMask bmEvent; /* Enable mask for interrupts from the command */
1532  RF_EventMask pastifg; /* Accumulated value of events happened within a command chain */
1533  RF_EventMask rfifg; /* Return value for callback 0:31 - RF_CPE0_INT, 32:63 - RF_HW_INT */
1534  RF_CmdHandle ch; /* Command handle */
1535  RF_Priority ePri; /* Priority of RF command */
1536  uint8_t volatile flags; /* [0: Aborted, 1: Stopped, 2: canceled] */
1537  uint32_t startTime; /* Command start time (in RAT ticks) */
1538  RF_StartType startType; /* Command start time type */
1539  uint32_t allowDelay; /* Delay allowed if the start time cannot be met. */
1540  uint32_t endTime; /* Command end time (in RAT ticks) */
1541  RF_EndType endType; /* Command end type */
1542  uint32_t duration; /* Command duration (in RAT ticks) */
1543  uint32_t activityInfo; /* General value supported by user */
1544 };
1545 
1551 typedef struct {
1552  uint8_t hwiPriority;
1553  uint8_t swiPriority;
1556  RF_GlobalEventMask globalEventMask;
1558 
1563 typedef enum
1564 {
1568 } RF_Conflict;
1569 
1572 typedef enum
1573 {
1581 
1600 typedef RF_ScheduleStatus (*RF_SubmitHook)(RF_Cmd* pCmdNew, RF_Cmd* pCmdBg, RF_Cmd* pCmdFg, List_List* pPendQueue, List_List* pDoneQueue);
1601 
1614 typedef RF_Conflict (*RF_ConflictHook)(RF_Cmd* pCmdBg, RF_Cmd* pCmdFg, List_List* pPendQueue, List_List* pDoneQueue);
1615 
1621 typedef struct {
1625 
1629 typedef enum {
1631  RF_AllowDelayAny = UINT32_MAX
1632 } RF_AllowDelay;
1633 
1634 /* @brief RF schedule command parameter struct
1635  *
1636  * RF schedule command parameters are used with the RF_scheduleCmd() call.
1637  */
1638 typedef struct {
1639  uint32_t startTime;
1641  uint32_t allowDelay;
1642  uint32_t endTime;
1647  uint32_t duration;
1648  uint32_t activityInfo;
1650 
1655 typedef struct {
1656  uint32_t duration;
1657  uint32_t startTime;
1659 } RF_AccessParams;
1660 
1667 typedef enum {
1673 
1679 typedef enum {
1689 
1695 typedef enum {
1701 
1708 typedef enum {
1712 
1727 typedef enum {
1735 
1745 typedef enum {
1754 
1759 typedef struct {
1761  RF_RatHandle channel;
1766 
1771 typedef struct {
1773  RF_RatHandle channel;
1774  uint32_t timeout;
1777 
1782 typedef struct {
1786 
1819 extern RF_Handle RF_open(RF_Object *pObj, RF_Mode *pRfMode, RF_RadioSetup *pRadioSetup, RF_Params *params);
1820 
1831 extern void RF_close(RF_Handle h);
1832 
1843 extern uint32_t RF_getCurrentTime(void);
1844 
1899 extern RF_CmdHandle RF_postCmd(RF_Handle h, RF_Op *pOp, RF_Priority ePri, RF_Callback pCb, RF_EventMask bmEvent);
1900 
1911 extern RF_ScheduleStatus RF_defaultSubmitPolicy(RF_Cmd* pCmdNew, RF_Cmd* pCmdBg, RF_Cmd* pCmdFg, List_List* pPendQueue, List_List* pDoneQueue);
1912 
1922 extern RF_Conflict RF_defaultConflictPolicy(RF_Cmd* pCmdBg, RF_Cmd* pCmdFg, List_List* pPendQueue, List_List* pDoneQueue);
1923 
1924 
1933 extern void RF_ScheduleCmdParams_init(RF_ScheduleCmdParams *pSchParams);
1934 
1961 extern RF_CmdHandle RF_scheduleCmd(RF_Handle h, RF_Op *pOp, RF_ScheduleCmdParams *pSchParams, RF_Callback pCb, RF_EventMask bmEvent);
1962 
2022 extern RF_EventMask RF_pendCmd(RF_Handle h, RF_CmdHandle ch, RF_EventMask bmEvent);
2023 
2051 extern RF_EventMask RF_runCmd(RF_Handle h, RF_Op *pOp, RF_Priority ePri, RF_Callback pCb, RF_EventMask bmEvent);
2052 
2072 extern RF_EventMask RF_runScheduleCmd(RF_Handle h, RF_Op *pOp, RF_ScheduleCmdParams *pSchParams, RF_Callback pCb, RF_EventMask bmEvent);
2073 
2093 extern RF_Stat RF_cancelCmd(RF_Handle h, RF_CmdHandle ch, uint8_t mode);
2094 
2113 extern RF_Stat RF_flushCmd(RF_Handle h, RF_CmdHandle ch, uint8_t mode);
2114 
2128 extern RF_Stat RF_runImmediateCmd(RF_Handle h, uint32_t *pCmdStruct);
2129 
2143 extern RF_Stat RF_runDirectCmd(RF_Handle h, uint32_t cmd);
2144 
2159 extern void RF_yield(RF_Handle h);
2160 
2171 extern void RF_Params_init(RF_Params *params);
2172 
2183 extern RF_Stat RF_getInfo(RF_Handle h, RF_InfoType type, RF_InfoVal *pValue);
2184 
2193 extern int8_t RF_getRssi(RF_Handle h);
2194 
2204 extern RF_Op* RF_getCmdOp(RF_Handle h, RF_CmdHandle cmdHnd);
2205 
2214 extern void RF_RatConfigCompare_init(RF_RatConfigCompare* channelConfig);
2215 
2224 extern void RF_RatConfigCapture_init(RF_RatConfigCapture* channelConfig);
2225 
2234 extern void RF_RatConfigOutput_init(RF_RatConfigOutput* ioConfig);
2235 
2277 extern RF_RatHandle RF_ratCompare(RF_Handle rfHandle, RF_RatConfigCompare* channelConfig, RF_RatConfigOutput* ioConfig);
2278 
2318 extern RF_RatHandle RF_ratCapture(RF_Handle rfHandle, RF_RatConfigCapture* channelConfig, RF_RatConfigOutput* ioConfig);
2319 
2337 extern RF_Stat RF_ratDisableChannel(RF_Handle rfHandle, RF_RatHandle ratHandle);
2338 
2349 extern RF_Stat RF_control(RF_Handle h, int8_t ctrl, void *args);
2350 
2369 extern RF_Stat RF_requestAccess(RF_Handle h, RF_AccessParams *pParams);
2370 
2390 extern RF_TxPowerTable_Value RF_getTxPower(RF_Handle h);
2391 
2411 extern RF_Stat RF_setTxPower(RF_Handle h, RF_TxPowerTable_Value value);
2412 
2432 
2457 extern RF_TxPowerTable_Value RF_TxPowerTable_findValue(RF_TxPowerTable_Entry table[], int8_t powerLevel);
2458 
2459 
2460 #ifdef __cplusplus
2461 }
2462 #endif
2463 
2464 #endif /* ti_drivers_rfcc26x2__include */
2465 
2466 //*****************************************************************************
2467 //
2471 //
2472 //*****************************************************************************
2473 
RF Hardware attributes.
Definition: RFCC26X2.h:1551
Definition: RFCC26X2.h:1517
uint32_t allowDelay
Definition: RFCC26X2.h:1641
RF_RatCaptureMode captureMode
Configuration of the mode of event to cause a capture event.
Definition: RFCC26X2.h:1763
Default PA.
Definition: RFCC26X2.h:1054
Generates a one-clock period width pulse.
Definition: RFCC26X2.h:1728
RF_CmdHandle ch
Command handle (RF_GET_CURR_CMD).
Definition: RFCC26X2.h:1366
RF_StartType startType
Definition: RFCC26X2.h:1538
RF_EventMask RF_pendCmd(RF_Handle h, RF_CmdHandle ch, RF_EventMask bmEvent)
Synchronizes the calling task to an RF operation command ch and returns accumulated event flags...
Highest priority. Only use this for urgent commands.
Definition: RFCC26X2.h:1101
Configure RAT_CHANNEL[x] to interface with RAT_GPO[4].
Definition: RFCC26X2.h:1749
RF driver configuration parameters.
Definition: RFCC26X2.h:1475
rfc_CMD_RADIO_SETUP_PA_t common_pa
Radio setup command for BLE and IEEE modes with High Gain PA.
Definition: RFCC26X2.h:1148
RF_TxPowerTable_Value RF_TxPowerTable_findValue(RF_TxPowerTable_Entry table[], int8_t powerLevel)
Retrieves a power configuration value for a given power level in dBm.
uint32_t startTime
Start time window in RAT Time for radio access.
Definition: RFCC26X2.h:1657
RF_Callback volatile pCb
Definition: RFCC26X2.h:1528
RF_RatCallback callback
Callback function to be invoked upon a capture event (optional).
Definition: RFCC26X2.h:1772
Definition: RFCC26X2.h:1516
#define RF_NUM_SCHEDULE_ACCESS_ENTRIES
Number of access request entries.
Definition: RFCC26X2.h:940
Use RAT user channel 0.
Definition: RFCC26X2.h:1669
void RF_RatConfigOutput_init(RF_RatConfigOutput *ioConfig)
Initialize the configuration structure to be used to set up a RAT IO.
uint32_t RF_getCurrentTime(void)
Return current radio timer value.
Definition: RFCC26X2.h:1631
Function was called with an invalid parameter.
Definition: RFCC26X2.h:1118
void(* RF_GlobalCallback)(RF_Handle h, RF_GlobalEvent event, void *arg)
Handles global events as part of PHY configuration.
Definition: RFCC26X2.h:1465
uint16_t nPowerUpDurationMargin
Definition: RFCC26X2.h:1488
Definition: RFCC26X2.h:1685
Frequency Synthesizer Programming Command.
Definition: rf_common_cmd.h:234
Create a bitmask showing available RAT channels.
Definition: RFCC26X2.h:1353
int8_t RF_getRssi(RF_Handle h)
Get RSSI value.
rfc_CMD_PROP_RADIO_SETUP_PA_t prop_pa
Radio setup command for PROPRIETARY mode on 2.4 GHz with High Gain PA.
Definition: RFCC26X2.h:1150
uint8_t rfMode
Specifies which PHY modes should be activated. Must be set to RF_MODE_MULTIPLE for dual-mode operatio...
Definition: RFCC26X2.h:1084
void RF_close(RF_Handle h)
Close client connection to RF driver.
Definition: RFCC26X2.h:1241
RF_AllowDelay
Controls the behavior of the RF_scheduleCmd() API.
Definition: RFCC26X2.h:1629
Definition: RFCC26X2.h:1630
Command finished with an error.
Definition: RFCC26X2.h:1117
RF_ClientEventMask nClientEventMask
Definition: RFCC26X2.h:1498
RF_EndType endType
Definition: RFCC26X2.h:1541
Free the channel after the first capture event.
Definition: RFCC26X2.h:1709
Configure RAT_CHANNEL[x] to interface with RAT_GPO[5].
Definition: RFCC26X2.h:1750
RF_ScheduleStatus
Describes the location within the pend queue where the new command was inserted by the scheduler...
Definition: RFCC26X2.h:1572
RF schedule map entry structure.
Definition: RFCC26X2.h:1377
Chose the first available channel.
Definition: RFCC26X2.h:1668
RF_EventMask RF_runCmd(RF_Handle h, RF_Op *pOp, RF_Priority ePri, RF_Callback pCb, RF_EventMask bmEvent)
Runs synchronously an RF operation command or a chain of commands and returns the termination reason...
void RF_ScheduleCmdParams_init(RF_ScheduleCmdParams *pSchParams)
Initialize the configuration structure to default values to be used with the RF_scheduleCmd() API...
RF_Stat RF_requestAccess(RF_Handle h, RF_AccessParams *pParams)
Request radio access.
uint32_t allowDelay
Definition: RFCC26X2.h:1539
Cmd is found in the pool but was already ended.
Definition: RFCC26X2.h:1119
Selects the RTC update signal source.
Definition: RFCC26X2.h:1680
Configure RAT_CHANNEL[x] to interface with RAT_GPO[2].
Definition: RFCC26X2.h:1747
RF_EventMask rfifg
Definition: RFCC26X2.h:1533
Definition: RFCC26X2.h:1526
Definition: RFCC26X2.h:1518
RF_RatHandle channel
RF_RatHandle identifies the channel to be allocated.
Definition: RFCC26X2.h:1761
RF_Handle RF_open(RF_Object *pObj, RF_Mode *pRfMode, RF_RadioSetup *pRadioSetup, RF_Params *params)
Creates a a new client instance of the RF driver.
uint32_t nPowerUpDuration
Definition: RFCC26X2.h:1479
Retrieve a command handle of the current command.
Definition: RFCC26X2.h:1352
uint8_t swiPriority
Priority for SWIs belong to the RF driver.
Definition: RFCC26X2.h:1553
Rising edge of the selected source will trigger a capture event.
Definition: RFCC26X2.h:1696
Definition: RFCC26X2.h:1566
RF_Stat RF_setTxPower(RF_Handle h, RF_TxPowerTable_Value value)
Updates the transmit power configuration of the RF core.
RF_Conflict
Controls the behavior of the state machine of the RF driver when a conflict is identified run-time be...
Definition: RFCC26X2.h:1563
Definition: RFCC26X2.h:1233
uint8_t volatile flags
Definition: RFCC26X2.h:1536
uint32_t duration
Duration in RAT Ticks for the radio command.
Definition: RFCC26X2.h:1647
rfc_CMD_PROP_RADIO_DIV_SETUP_t prop_div
Radio setup command for PROPRIETARY mode on Sub-1 Ghz.
Definition: RFCC26X2.h:1147
List_Elem _elem
Definition: RFCC26X2.h:1527
RF_GlobalEventMask globalEventMask
Event mask which the globalCallback is invoked upon.
Definition: RFCC26X2.h:1556
RF_RatOutputSelect
Selects GPO to be used with RF_ratCompare() or RF_ratCapture().
Definition: RFCC26X2.h:1745
RF_Op * RF_getCmdOp(RF_Handle h, RF_CmdHandle cmdHnd)
Get command structure pointer.
Stores output parameters for RF_getInfo().
Definition: RFCC26X2.h:1365
RF_Handle pClient
Pointer to client object.
Definition: RFCC26X2.h:1379
RF_CmdHandle RF_postCmd(RF_Handle h, RF_Op *pOp, RF_Priority ePri, RF_Callback pCb, RF_EventMask bmEvent)
Appends RF operation commands to the driver&#39;s command queue and returns a command handle...
RF_RatHandle RF_ratCapture(RF_Handle rfHandle, RF_RatConfigCapture *channelConfig, RF_RatConfigOutput *ioConfig)
Setup a Radio Timer (RAT) channel in capture mode.
Default priority. Use this in single-client applications.
Definition: RFCC26X2.h:1103
RF_CmdHandle ch
Definition: RFCC26X2.h:1534
Provide the client list.
Definition: RFCC26X2.h:1356
RF_Priority ePri
Definition: RFCC26X2.h:1535
RF_EndType endType
End type for the end time.
Definition: RFCC26X2.h:1646
Definition: rf_common_cmd.h:112
RF_RatOutputMode
Selects the mode of the RAT_GPO[x] for RF_ratCompare() or RF_ratCapture().
Definition: RFCC26X2.h:1727
RAT related IO parameter structure.
Definition: RFCC26X2.h:1782
High-power PA.
Definition: RFCC26X2.h:1055
RF_CmdHandle ch
Command handle.
Definition: RFCC26X2.h:1378
Inverts the polarity of the output.
Definition: RFCC26X2.h:1731
RF_InfoType
Selects the entry of interest in RF_getInfo().
Definition: RFCC26X2.h:1351
uint32_t startTime
Start time in RAT Ticks for the radio command.
Definition: RFCC26X2.h:1639
RF_Priority priority
Priority of the command or access request.
Definition: RFCC26X2.h:1382
Definition: RFCC26X2.h:1184
RF_Stat RF_flushCmd(RF_Handle h, RF_CmdHandle ch, uint8_t mode)
Abort/stop/cancel command and any subsequent commands in command queue.
RF_StartType
Controls the behavior of the RF_scheduleCmd() API.
Definition: RFCC26X2.h:1507
void RF_RatConfigCompare_init(RF_RatConfigCompare *channelConfig)
Initialize the configuration structure to be used to set up a RAT compare event.
Definition: RFCC26X2.h:1577
RF_ratCapture parameter structure.
Definition: RFCC26X2.h:1759
Definition: rf_prop_cmd.h:900
Falling edge of the selected source will trigger a capture event.
Definition: RFCC26X2.h:1697
bool bRadioState
Current RF core power state (RF_GET_RADIO_STATE).
Definition: RFCC26X2.h:1368
RF_RatCaptureMode
Selects the mode of RF_ratCapture().
Definition: RFCC26X2.h:1695
RF_RatOutputSelect select
The signal which shall be connected to the GPO.
Definition: RFCC26X2.h:1784
RF_EndType
Controls the behavior of the RF_scheduleCmd() API.
Definition: RFCC26X2.h:1515
void(* RF_Callback)(RF_Handle h, RF_CmdHandle ch, RF_EventMask e)
Handles events related to RF command execution.
Definition: RFCC26X2.h:1418
RF_CmdHandle RF_scheduleCmd(RF_Handle h, RF_Op *pOp, RF_ScheduleCmdParams *pSchParams, RF_Callback pCb, RF_EventMask bmEvent)
Schedule an RF operation (chain) to the command queue.
Proprietary Mode Radio Setup Command for 2.4 GHz.
Definition: rf_prop_cmd.h:455
#define RF_NUM_SCHEDULE_COMMAND_ENTRIES
Number of scheduled command entries.
Definition: RFCC26X2.h:941
Definition: rf_common_cmd.h:676
uint32_t endTime
Definition: RFCC26X2.h:1540
uint32_t activityInfo
Activity info provided by user.
Definition: RFCC26X2.h:1648
RF_ScheduleStatus RF_defaultSubmitPolicy(RF_Cmd *pCmdNew, RF_Cmd *pCmdBg, RF_Cmd *pCmdFg, List_List *pPendQueue, List_List *pDoneQueue)
Sorts and adds commands to the RF driver internal command queue.
uint32_t duration
Radio access duration in RAT Ticks requested by the client.
Definition: RFCC26X2.h:1656
Command successfully scheduled for execution.
Definition: RFCC26X2.h:1122
RF_RatCaptureSource source
Configuration of the event source to cause a capture event.
Definition: RFCC26X2.h:1762
Configure RAT_CHANNEL[x] to interface with RAT_GPO[6].
Definition: RFCC26X2.h:1751
Radio Setup Command for Pre-Defined Schemes.
Definition: rf_common_cmd.h:176
RF_RatCaptureRepetition repeat
Configuration of the channel to be used in single or repeated mode.
Definition: RFCC26X2.h:1764
Proprietary Mode Radio Setup Command for All Frequency Bands.
Definition: rf_prop_cmd.h:561
Command not executed because RF core is powered down.
Definition: RFCC26X2.h:1116
uint32_t startTime
Start time (in RAT tick) of the command or access request.
Definition: RFCC26X2.h:1380
RF_GlobalCallback globalCallback
Pointer to a callback function serving client independent events listed in RF_GlobalEvent.
Definition: RFCC26X2.h:1555
RF_TxPowerTable_PAType
Selects a power amplifier path in a TX power value.
Definition: RFCC26X2.h:1053
Definition: RFCC26X2.h:1565
RF_Stat RF_control(RF_Handle h, int8_t ctrl, void *args)
Set RF control parameters.
Definition: RFCC26X2.h:1508
Selects the Generic event of Event Fabric as source.
Definition: RFCC26X2.h:1681
void RF_yield(RF_Handle h)
Signal that radio client is not going to issue more commands in a while.
Definition: RFCC26X2.h:1638
Definition: RFCC26X2.h:1574
Definition: RFCC26X2.h:1576
The RF core has been powered up the radio setup has been finished.
Definition: RFCC26X2.h:1183
void(* RF_ClientCallback)(RF_Handle h, RF_ClientEvent event, void *arg)
Handles events related to a driver instance.
Definition: RFCC26X2.h:1450
Deprecated. Not supported.
Definition: RFCC26X2.h:1355
Signals the client that the RF driver is about to switch over from another client.
Definition: RFCC26X2.h:1188
RF_Callback pPowerCb
Definition: RFCC26X2.h:1483
RF_StartType startType
Start type for the start time.
Definition: RFCC26X2.h:1640
RF_Stat RF_getInfo(RF_Handle h, RF_InfoType type, RF_InfoVal *pValue)
Get value for some RF driver parameters.
rfc_radioOp_t RF_Op
Base type for all radio operation commands.
Definition: RFCC26X2.h:1072
High priority. Use this for time-critical commands in synchronous protocols.
Definition: RFCC26X2.h:1102
int16_t RF_CmdHandle
Command handle that is returned by RF_postCmd().
Definition: RFCC26X2.h:1269
General error specifier.
Definition: RFCC26X2.h:1120
Definition: RFCC26X2.h:1579
RF_ClientCallback pClientEventCb
Definition: RFCC26X2.h:1495
void RF_RatConfigCapture_init(RF_RatConfigCapture *channelConfig)
Initialize the configuration structure to be used to set up a RAT capture event.
RF_Stat RF_runDirectCmd(RF_Handle h, uint32_t cmd)
Send any Direct command.
uint16_t availRatCh
Available RAT channels (RF_GET_AVAIL_RAT_CH).
Definition: RFCC26X2.h:1367
RF_GlobalEvent
Global RF driver events.
Definition: RFCC26X2.h:1232
RF_Object * RF_Handle
A handle that is returned by to RF_open().
Definition: RFCC26X2.h:1335
rfc_CMD_BLE5_RADIO_SETUP_PA_t ble5_pa
Radio setup command for BLE5 mode with High Gain PA.
Definition: RFCC26X2.h:1149
RF_Priority
Scheduling priority of RF operation commands.
Definition: RFCC26X2.h:1100
Definition: RFCC26X2.h:1519
RF_Stat
Status codes for various RF driver functions.
Definition: RFCC26X2.h:1114
Definition: rf_ble_cmd.h:1511
Definition: RFCC26X2.h:1575
RF_Stat RF_cancelCmd(RF_Handle h, RF_CmdHandle ch, uint8_t mode)
Abort/stop/cancel single command in command queue.
Definition: RFCC26X2.h:1682
uint32_t timeout
Definition: RFCC26X2.h:1774
uint32_t startTime
Definition: RFCC26X2.h:1537
uint32_t endTime
End time (in RAT tick) of the command or access request.
Definition: RFCC26X2.h:1381
Definition: rf_prop_cmd.h:1009
Use RAT user channel 1.
Definition: RFCC26X2.h:1670
RF_RatCaptureRepetition
Selects the repetition of RF_ratCapture().
Definition: RFCC26X2.h:1708
int8_t power
Definition: RFCC26X2.h:1040
RF_ClientEvent
Client-related RF driver events.
Definition: RFCC26X2.h:1182
RF_RatCaptureSource
Selects the source signal for RF_ratCapture().
Definition: RFCC26X2.h:1679
Provide the client to client switching times.
Definition: RFCC26X2.h:1357
RF request access parameter struct.
Definition: RFCC26X2.h:1655
Bluetooth 5 Radio Setup Command for all PHYs.
Definition: rf_ble_cmd.h:702
int8_t RF_RatHandle
RAT handle that is returned by RF_ratCompare() or RF_ratCapture().
Definition: RFCC26X2.h:1346
Use RAT user channel 2.
Definition: RFCC26X2.h:1671
RF_RatOutputMode mode
The mode the GPO should operate in.
Definition: RFCC26X2.h:1783
uint32_t RF_ClientEventMask
Event mask for combining RF_ClientEvent event flags in RF_Params::nClientEventMask.
Definition: RFCC26X2.h:1250
RF_EventMask RF_runScheduleCmd(RF_Handle h, RF_Op *pOp, RF_ScheduleCmdParams *pSchParams, RF_Callback pCb, RF_EventMask bmEvent)
Runs synchronously a (chain of) RF operation(s) for dual or single-mode.
Configure RAT_CHANNEL[x] to interface with RAT_GPO[7].
Definition: RFCC26X2.h:1752
Definition: RFCC26X2.h:1237
Sets the output low independently of any RAT events.
Definition: RFCC26X2.h:1732
TX power configuration entry in a TX power table.
Definition: RFCC26X2.h:1038
Sets the output high independently of any RAT events.
Definition: RFCC26X2.h:1733
uint32_t activityInfo
Definition: RFCC26X2.h:1543
RF_Stat RF_runImmediateCmd(RF_Handle h, uint32_t *pCmdStruct)
Send any Immediate command.
A unified type for radio setup commands of different PHYs.
Definition: RFCC26X2.h:1141
void(* RF_RatCallback)(RF_Handle h, RF_RatHandle rh, RF_EventMask e, uint32_t compareCaptureTime)
Handles events related to the Radio Timer (RAT).
Definition: RFCC26X2.h:1433
RF_TxPowerTable_Value value
PA hardware configuration for that power level.
Definition: RFCC26X2.h:1043
RF_Op * pOp
Definition: RFCC26X2.h:1529
uint32_t nInactivityTimeout
Definition: RFCC26X2.h:1476
RF schedule map structure.
Definition: RFCC26X2.h:1388
RF_ScheduleStatus(* RF_SubmitHook)(RF_Cmd *pCmdNew, RF_Cmd *pCmdBg, RF_Cmd *pCmdFg, List_List *pPendQueue, List_List *pDoneQueue)
Handles the queue sorting algorithm when a new command is submitted to the driver from any of the act...
Definition: RFCC26X2.h:1600
RF_ratCompare parameter structure.
Definition: RFCC26X2.h:1771
RF_EventMask pastifg
Definition: RFCC26X2.h:1532
RF_SubmitHook submitHook
Function hook implements the scheduling policy to be executed at the time of RF_scheduleCmd API call...
Definition: RFCC26X2.h:1622
Sets the output low on a RAT event.
Definition: RFCC26X2.h:1730
uint32_t duration
Definition: RFCC26X2.h:1542
Configure RAT_CHANNEL[x] to interface with RAT_GPO[3].
Definition: RFCC26X2.h:1748
rfc_CMD_PROP_RADIO_DIV_SETUP_PA_t prop_div_pa
Radio setup command for PROPRIETARY mode on Sub-1 Ghz with High Gain PA.
Definition: RFCC26X2.h:1151
Command finished with success.
Definition: RFCC26X2.h:1121
RF_Conflict(* RF_ConflictHook)(RF_Cmd *pCmdBg, RF_Cmd *pCmdFg, List_List *pPendQueue, List_List *pDoneQueue)
Defines the conflict resolution in runtime.
Definition: RFCC26X2.h:1614
Function finished with success.
Definition: RFCC26X2.h:1123
int8_t RF_TxPowerTable_findPowerLevel(RF_TxPowerTable_Entry table[], RF_TxPowerTable_Value value)
Retrieves a power level in dBm for a given power configuration value.
Definition: RFCC26X2.h:1698
RF_RatHandle RF_ratCompare(RF_Handle rfHandle, RF_RatConfigCompare *channelConfig, RF_RatConfigOutput *ioConfig)
Setup a Radio Timer (RAT) channel in compare mode.
RF_RatHandle channel
RF_RatHandle identifies the channel to be allocated.
Definition: RFCC26X2.h:1773
bool xoscHfAlwaysNeeded
Indicate that the XOSC HF should be turned on by the power driver.
Definition: RFCC26X2.h:1554
Rearm the channel after each capture events.
Definition: RFCC26X2.h:1710
RF_Conflict RF_defaultConflictPolicy(RF_Cmd *pCmdBg, RF_Cmd *pCmdFg, List_List *pPendQueue, List_List *pDoneQueue)
Makes a final decision when a conflict in run-time is identified.
RF_ConflictHook conflictHook
Function hook implements the runtime conflict resolution, if any identified at the start time of next...
Definition: RFCC26X2.h:1623
Sets the output high on a RAT event.
Definition: RFCC26X2.h:1729
Configure RAT_CHANNEL[x] to interface with RAT_GPO[1].
Definition: RFCC26X2.h:1746
Show the current RF core power state. 0: Radio OFF, 1: Radio ON.
Definition: RFCC26X2.h:1354
RF_RatSelectChannel
Select the preferred RAT channel through the configuration of RF_ratCompare() or RF_ratCapture().
Definition: RFCC26X2.h:1667
RF scheduler policy.
Definition: RFCC26X2.h:1621
void RF_Params_init(RF_Params *params)
Function to initialize the RF_Params struct to its defaults.
Definition: rf_common_cmd.h:122
Specifies a RF core firmware configuration.
Definition: RFCC26X2.h:1083
uint32_t nID
RF handle identifier.
Definition: RFCC26X2.h:1501
Definition: RFCC26X2.h:1567
RF_Object * pClient
Definition: RFCC26X2.h:1530
rfc_command_t commandId
Definition: RFCC26X2.h:1142
Definition: RFCC26X2.h:1578
rfc_CMD_PROP_RADIO_SETUP_t prop
Radio setup command for PROPRIETARY mode on 2.4 GHz.
Definition: RFCC26X2.h:1146
rfc_CMD_BLE5_RADIO_SETUP_t ble5
Radio setup command for BLE5 mode.
Definition: RFCC26X2.h:1145
PA configuration value for a certain power level.
Definition: RFCC26X2.h:1008
RF_RatCallback callback
Callback function to be invoked upon a capture event (optional).
Definition: RFCC26X2.h:1760
Definition: RFCC26X2.h:1509
Command not executed because RF driver is busy.
Definition: RFCC26X2.h:1115
RF_Stat RF_ratDisableChannel(RF_Handle rfHandle, RF_RatHandle ratHandle)
Disable a RAT channel.
RF_Callback pErrCb
Definition: RFCC26X2.h:1486
uint8_t hwiPriority
Priority for HWIs belong to the RF driver.
Definition: RFCC26X2.h:1552
RF_TxPowerTable_Value RF_getTxPower(RF_Handle h)
Returns the currently configured transmit power configuration.
uint16_t nPhySwitchingDurationMargin
An additional safety margin to be used to calculate when conflicts shall be evaluated run-time...
Definition: RFCC26X2.h:1493
RF_EventMask bmEvent
Definition: RFCC26X2.h:1531
uint32_t RF_GlobalEventMask
Event mask for combining RF_GlobalEvent event flags in RFCC26XX_HWAttrsV2::globalEventMask.
Definition: RFCC26X2.h:1255
Stores the client&#39;s internal configuration and states.
RF_Priority priority
Access priority.
Definition: RFCC26X2.h:1658
uint64_t RF_EventMask
Data type for events during command execution.
Definition: RFCC26X2.h:1130
void * pScheduleMap
Deprecated. Not supported.
Definition: RFCC26X2.h:1371
© Copyright 1995-2019, Texas Instruments Incorporated. All rights reserved.
Trademarks | Privacy policy | Terms of use | Terms of sale