AWR1xxx Radar Interface Control Document

Revision 0.98

October 19, 2018

Contents

		Page
C	onter	s x
Li	st of	igures x
Li	st of	ables xvi
Re	evisio	n History xviii
1	Intr 1.1 1.2	duction1Scope1ntended Audience1
2	AW 2.1 2.2 2.3	1xxx Communications Overview2Communication Link Description2Communication Link configuration22.2.1SPI22.2.2Mailbox2Radar Message Structure42.3.1SYNC52.3.2MSGHDR52.3.3MSGDATA112.3.4CRC12
3	3.1 3.2	sage Processing13Communication protocol13Communication Sequence143.2.1Command/Response Sequence (Host)143.2.2Flow Diagram (Host) – Command/Response153.2.3Flow Diagram (Host) – Bootup/ Asynchronous Event163.2.4SPI Message Sequence – Command/Response17
4	Rac 4.1 4.2	In Interface Messages Descriptions18Summary of all messages and their associated sub-blocks18AWR_ACK_MSG23

	4.3	AWR_NA	CK_MSG	24
	4.4	AWR_ER	ROR_MSG	24
	4.5	AWR_RF	_STATIC_CONF_SET_MSG	25
	4.6	AWR_RF	_STATIC_CONF_GET_MSG	26
	4.7	AWR_RF	_INIT_MSG	26
	4.8	AWR_RF	_DYNAMIC_CONF_SET_MSG	27
	4.9	AWR_RF	_DYNAMIC_CONF_GET_MSG	28
	4.10	AWR_RF	_FRAME_TRIG_MSG	29
	4.11	AWR_RF	_ADVANCED_FEATURES_CONF_SET_MSG	29
	4.12	AWR_RF	_MONITORING_CONF_SET_MSG	30
	4.13	AWR_RF	_STATUS_GET_MSG	32
	4.14	AWR_RF	_MONITORING_REPORT_GET_MSG	32
	4.15	AWR_RF	_MISC_CONF_SET_MSG	33
	4.16	AWR_RF	_MISC_CONF_GET_MSG	33
	4.17	AWR_RF	_ASYNC_EVENT_MSG1	34
	4.18	AWR_RF	_ASYNC_EVENT_MSG2	35
	4.19	AWR_DE	V_RFPOWERUP_MSG	36
	4.20	AWR_DE	V_CONF_SET_MSG	37
	4.21	AWR_DE	V_CONF_GET_MSG	38
	4.22	AWR_DE	V_FILE_DOWNLOAD_MSG	39
	4.23	AWR_DE	V_FRAME_CONFIG_APPLY_MSG	39
	4.24	AWR_DE	V_STATUS_GET_MSG	40
	1 25		V_ASYNC_EVENT_MSG	41
	4.20			T 1
5		lar Funct	ional APIs	42
5		l ar Funct Sub blocl	tional APIs < related to AWR_ERROR_MSG	42 42
5	Rad 5.1	l ar Funct Sub block 5.1.1	tional APIs < related to AWR_ERROR_MSG	42 42 42
5	Rad	l ar Funct Sub block 5.1.1 Sub block	ional APIs <pre>related to AWR_ERROR_MSG</pre>	42 42 42 43
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1	tional APIs < related to AWR_ERROR_MSG	42 42 42 43 43
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2	tional APIs <pre>related to AWR_ERROR_MSG</pre>	42 42 43 43 43
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3	tional APIs <pre>related to AWR_ERROR_MSG</pre>	42 42 43 43 45 47
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4	tional APIs <pre>crelated to AWR_ERROR_MSG</pre>	42 42 43 43 45 47 47
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	ional APIs < related to AWR_ERROR_MSG	42 42 43 43 45 47 47 48
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4	ional APIs < related to AWR_ERROR_MSG	42 42 43 43 45 47 47 48 49
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	ional APIs < related to AWR_ERROR_MSG	42 42 43 43 45 47 47 48 49 51
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	ional APIs < related to AWR_ERROR_MSG	42 42 43 43 45 47 47 48 49 51 52
5	Rad 5.1	lar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	ional APIs < related to AWR_ERROR_MSG	42 42 43 43 45 47 47 48 49 51 52 52
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8	ional APIs < related to AWR_ERROR_MSG	42 42 43 43 45 47 47 48 49 51 52 52
5	Rad 5.1	lar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9	ional APIs <pre>related to AWR_ERROR_MSG Sub block 0x0000 - AWR_RESP_ERROR_SB <pre>s related to AWR_RF_STATIC_CONF_SET_MSG Sub block 0x0080 - AWR_CHAN_CONF_SET_SB Sub block 0x0082 - AWR_ADCOUT_CONF_SET_SB Sub block 0x0083 - AWR_LOWPOWERMODE_CONF_SET_SB Sub block 0x0084 - AWR_DYNAMICPOWERSAVE_CONF_SET_SB Sub block 0x0085 - AWR_HIGHSPEEDINTFCLK_CONF_SET_SB Sub block 0x0086 - AWR_RF_DEVICE_CFG_SB Sub block 0x0087 - AWR_RF_RADAR_MISC_CTL_SB Sub block 0x0088 - AWR_CAL_MON_FREQUENCY_LIMITS_SB Sub block 0x008A - AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB Sub block 0x008A - AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB</pre></pre>	42 42 43 43 45 47 47 48 49 51 52 52 52
5	Rad 5.1	lar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9	ional APIs <pre>related to AWR_ERROR_MSG Sub block 0x0000 – AWR_RESP_ERROR_SB <pre>s related to AWR_RF_STATIC_CONF_SET_MSG Sub block 0x0080 – AWR_CHAN_CONF_SET_SB Sub block 0x0082 – AWR_ADCOUT_CONF_SET_SB Sub block 0x0083 – AWR_LOWPOWERMODE_CONF_SET_SB Sub block 0x0084 – AWR_DYNAMICPOWERSAVE_CONF_SET_SB Sub block 0x0085 – AWR_HIGHSPEEDINTFCLK_CONF_SET_SB Sub block 0x0086 – AWR_RF_DEVICE_CFG_SB Sub block 0x0087 – AWR_RF_RADAR_MISC_CTL_SB Sub block 0x0088 – AWR_CAL_MON_FREQUENCY_LIMITS_SB Sub block 0x008A – AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_</pre></pre>	42 42 43 43 45 47 47 48 49 51 52 52 52
5	Rad 5.1	ar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10	ional APIs <pre>related to AWR_ERROR_MSG Sub block 0x0000 - AWR_RESP_ERROR_SB <pre>s related to AWR_RF_STATIC_CONF_SET_MSG Sub block 0x0080 - AWR_CHAN_CONF_SET_SB Sub block 0x0082 - AWR_ADCOUT_CONF_SET_SB Sub block 0x0083 - AWR_LOWPOWERMODE_CONF_SET_SB Sub block 0x0084 - AWR_DYNAMICPOWERSAVE_CONF_SET_SB Sub block 0x0085 - AWR_HIGHSPEEDINTFCLK_CONF_SET_SB Sub block 0x0086 - AWR_RF_DEVICE_CFG_SB Sub block 0x0087 - AWR_RF_RADAR_MISC_CTL_SB Sub block 0x0088 - AWR_CAL_MON_FREQUENCY_LIMITS_SB Sub block 0x008A - AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB Sub block 0x008A - AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB</pre></pre>	42 42 43 43 45 47 47 48 49 51 52 52 52
5	Rad 5.1	lar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.11 5.2.12	ional APIs related to AWR_ERROR_MSG Sub block 0x0000 – AWR_RESP_ERROR_SB (s related to AWR_RF_STATIC_CONF_SET_MSG Sub block 0x0080 – AWR_CHAN_CONF_SET_SB Sub block 0x0082 – AWR_ADCOUT_CONF_SET_SB Sub block 0x0083 – AWR_LOWPOWERMODE_CONF_SET_SB Sub block 0x0083 – AWR_LOWPOWERMODE_CONF_SET_SB Sub block 0x0084 – AWR_DYNAMICPOWERSAVE_CONF_SET_SB Sub block 0x0085 – AWR_HIGHSPEEDINTFCLK_CONF_SET_SB Sub block 0x0086 – AWR_RF_DEVICE_CFG_SB Sub block 0x0087 – AWR_RF_RADAR_MISC_CTL_SB Sub block 0x0088 – AWR_CAL_MON_FREQUENCY_LIMITS_SB Sub block 0x008A – AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB Sub block 0x008B – AWR_CAL_DATA_RESTORE_SB	42 42 43 43 45 47 47 47 48 49 51 52 52 52 53 55 56
5	Rad 5.1 5.2	lar Funct Sub block 5.1.1 Sub block 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.11 5.2.12	Sional APIs <	42 42 43 43 45 47 47 48 49 51 52 52 52 53 55 56 57

	5.3.3	Sub block 0x00AC – AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB 57
5.4		cks related to AWR_RF_INIT_MSG
0	5.4.1	Sub block 0x00C0 – AWR_RF_INIT_SB
5.5	-	cks related to AWR_RF_DYNAMIC_CONF_SET_MSG
	5.5.1	Sub block 0x0100 – AWR_PROFILE_CONF_SET_SB
	5.5.2	Sub block 0x0101 – AWR_CHIRP_CONF_SET_SB
	5.5.3	Sub block 0x0102 – AWR_FRAME_CONF_SET_SB
	5.5.4	Sub block 0x0103 – AWR_CONT_STREAMING_MODE_CONF_SET_SB 69
	5.5.5	Sub block 0x0104 – AWR_CONT_STREAMING_MODE_EN_SB 72
	5.5.6	Sub block 0x0105 – AWR_ADVANCED_FRAME_CONF_SB
	5.5.7	Sub block 0x0106 – AWR_PERCHIRPPHASESHIFT_CONF_SB 80
	5.5.8	Sub block 0x0107 – AWR_PROG_FILT_COEFF_RAM_SET_SB 81
	5.5.9	Sub block 0x0108 – AWR_PROG_FILT_CONF_SET_SB
	5.5.10	Sub block 0x0109 – AWR_CALIB_MON_TIME_UNIT_CONF_SB 83
	5.5.11	Sub block 0x010A – AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_
		SB
	5.5.12	Sub block 0x010B – AWR_INTER_RX_GAIN_PHASE_CONTROL_SB 88
	5.5.13	Sub block 0x010C – AWR_RX_GAIN_TEMPLUT_SET_SB
	5.5.14	Sub block 0x010D – AWR_TX_GAIN_TEMPLUT_SET_SB
	5.5.15	Sub block 0x010E – AWR_LOOPBACK_BURST_CONF_SET_SB 93
	5.5.16	Sub block 0x010F – AWR_DYN_CHIRP_CONF_SET_SB 98
	5.5.17	Sub block 0x0110 - AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_
		SET_SB
	5.5.18	Sub block 0x0111 – AWR_DYN_CHIRP_ENABLE_SB
	5.5.19	Sub block 0x0112 – AWR_INTERCHIRP_BLOCKCONTROLS_SB 103
	5.5.20	Sub block 0x0113 – AWR_SUBFRAME_START_CONF_SB 106
5.6		cks related to AWR_RF_DYNAMIC_CONF_GET_SB
	5.6.1	Sub block 0x0120 – AWR_PROFILE_CONF_GET_SB
	5.6.2	Sub block 0x0121 – AWR_CHIRP_CONF_GET_SB
	5.6.3	Sub block 0x0122 – AWR_FRAME_CONF_GET_SB
	5.6.4	Sub block 0x0123 – RESERVED
	5.6.5	Sub block 0x0124 – RESERVED
	5.6.6	Sub block 0x0125 – AWR_ADV_FRAME_CONF_GET_SB
	5.6.7	Sub block 0x0126 - RESERVED 109 Sub block 0x0107 - RESERVED 100
	5.6.8	Sub block 0x0127 – RESERVED
	5.6.9 5.6.10	Sub block 0x0128 – RESERVED
	5.6.11	Sub block 0x0129 – RESERVED
	5.6.12	Sub block 0x012B – RESERVED
	5.6.12	Sub block 0x012C – AWR_RX_GAIN_TEMPLUT_GET_SB
	5.6.13	Sub block 0x012D – AWR_RX_GAIN_TEMPLUT_GET_SB
5.7		cks related to AWR_FRAME_TRIG_MSG
0.7	5.7.1	Sub block 0x0140 – AWR_FRAMESTARTSTOP_CONF_SB
5.8		cks related to AWR_RF_ADVANCED_FEATURES_CONF_SET_MSG 111
5.5	22.0 0.0	

	5.8.1	Sub block 0x0180 – AWR_BPM_COMMON_CONF_SET_SB
	5.8.2	Sub block 0x0181 – AWR_BPM_CHIRP_CONF_SET_SB
5.9	Sub bloc	ks related to AWR_RF_STATUS_GET_MSG
	5.9.1	Sub block 0x0220 – AWR_RF_VERSION_GET_SB
	5.9.2	Sub block 0x0221 – AWR_RF_CPUFAULT_STATUS_GET_SB 114
	5.9.3	Sub block 0x0222 – AWR_RF_ESMFAULT_STATUS_GET_SB 116
	5.9.4	Sub block 0x0223 – AWR_RF_DIEID_GET_SB
	5.9.5	Sub block 0x0224 – AWR_RF_BOOTUPBIST_STATUS_GET_SB 119
5.10	Sub bloc	ks related to AWR_RF_MONITORING_REPORT_GET_MSG
	5.10.1	Sub block 0x0260 – AWR_RF_DFE_STATISTICS_REPORT_GET_SB 121
5.11	Sub bloc	ks related to AWR_RF_MISC_CONF_SET_MSG
	5.11.1	Sub block 0x02C0 – RESERVED
	5.11.2	Sub block 0x02C1 – RESERVED
	5.11.3	Sub block 0x02C2 – AWR_RF_TEST_SOURCE_CONFIG_SET_SB 129
	5.11.4	Sub block 0x02C3 – AWR_RF_TEST_SOURCE_ENABLE_SET_SB 131
	5.11.5	Sub block 0x02C4 – 0x02CB RESERVED
	5.11.6	Sub block 0x02CC – AWR_RF_LDO_BYPASS_SB
	5.11.7	Sub block 0x02CD – AWR_RF_PALOOPBACK_CFG_SB
	5.11.8	Sub block 0x02CE – AWR_RF_PSLOOPBACK_CFG_SB
	5.11.9	Sub block 0x02CF – AWR_RF_IFLOOPBACK_CFG_SB
	5.11.10	Sub block 0x02D0 – AWR_RF_GPADC_CFG_SET_SB
	5.11.11	Sub block 0x02D1 – RESERVED
	5.11.12	Sub block 0x02D2 – RESERVED
	5.11.13	Sub block 0x02D3 - RESERVED 139
5.12	Sub bloc	ks related to AWR_RF_MISC_CONF_GET_MSG
	5.12.1	Sub block 0x02E0 to 0x2E9 – RESERVED
	5.12.2	Sub block 0x02EA – AWR_RF_TEMPERATURE_GET_SB
5.13	Sub bloc	ks related to AWR_RF_ASYNC_EVENT_MSG1
	5.13.1	Sub block 0x1000 – RESERVED
	5.13.2	Sub block 0x1001 – RESERVED
	5.13.3	Sub block 0x1002 – AWR_AE_RF_CPUFAULT_SB
	5.13.4	Sub block 0x1003 – AWR_AE_RF_ESMFAULT_SB
	5.13.5	Sub block 0x1004 – AWR_AE_RF_INITCALIBSTATUS_SB 144
	5.13.6	Sub block 0x1005 – RESERVED
	5.13.7	Sub block 0x1006 – RESERVED
	5.13.8	Sub block 0x1007 – RESERVED
	5.13.9	Sub block 0x1008 – RESERVED
	5.13.10	Sub block 0x1009 – RESERVED
	5.13.11	Sub block 0x100A – RESERVED
	5.13.12	Sub block 0x100B – AWR_AE_RF_FRAME_TRIGGER_RDY_SB 147
	5.13.13	Sub block 0x100C – AWR_AE_RF_GPADC_RESULT_DATA_SB 147
	5.13.14	Sub block 0x100E - RESERVED
	5.13.15	Sub block 0x100D – RESERVED
	5.13.16	Sub block 0x100E - RESERVED

	5.13.17	Sub block 0x100F – AWR_FRAME_END_AE_SB
	5.13.18	Sub block 0x1010 – AWR_ANALOGFAULT_AE_SB
	5.13.19	Sub block 0x1011 – AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB 150
	5.13.20	Sub block 0x1012 – AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_
		SB
	5.13.21	Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_
		AE_SB
	5.13.22	Sub block 0x1014 – RESERVED
	5.13.23	Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB 154
	5.13.24	Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_
		SB
	5.13.25	Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 155
	5.13.26	Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB157
	5.13.27	Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_
		SB
	5.13.28	Sub block 0x101A – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB 160
	5.13.29	Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_SB 162
	5.13.30	Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_SB 163
	5.13.31	Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_SB 164
	5.13.32	Sub block 0x101E – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_
		SB
	5.13.33	Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_
		SB
5.1	4 Sub bloc	ks related to AWR_RF_ASYNC_EVENT_MSG2
	5.14.1	Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_
		SB
	5.14.2	Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_
		AE_SB
	5.14.3	Sub block 0x1022 – AWR_MONITOR_TX0_BPM_REPORT_AE_SB 170
	5.14.4	Sub block 0x1023 – AWR_MONITOR_TX1_BPM_REPORT_AE_SB 171
	5.14.5	Sub block 0x1024 – AWR_MONITOR_TX2_BPM_REPORT_AE_SB 172
	5.14.6	Sub block 0x1025 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_
		REPORT_AE_SB
	5.14.7	Sub block 0x1026 – AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB
	5.14.8	Sub block 0x1027 – AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB
	5.14.9	Sub block 0x1028 – AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB
	5.14.10	Sub block 0x1029 – AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB
	5.14.11	Sub block 0x102A – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB

	5.14.12	Sub block 0x102B - AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_	
		SIGNALS_REPORT_AE_SB	. 180
	5.14.13	Sub block 0x102C - AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIG	NALS.
		REPORT_AE_SB	. 181
	5.14.14	Sub block 0x102D - AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPOR	RT_
		AE_SB	. 182
	5.14.15	Sub block 0x102E – AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_	
		AE_SB	. 184
	5.14.16	Sub block 0x1031 - AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_	
		AE_SB	. 185
5.15	Sub bloc	ks related to AWR_DEV_RFPOWERUP_MSG	. 186
	5.15.1	Sub block 0x4000 – AWR_DEV_RFPOWERUP_SB	. 186
5.16	Sub bloc	ks related to AWR_DEV_CONF_SET_MSG	. 187
	5.16.1	Sub block 0x4040 – AWR_DEV_MCUCLOCK_CONF_SET_SB	. 187
	5.16.2	Sub block 0x4041 – AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB	. 188
	5.16.3	Sub block 0x4042 – AWR_DEV_RX_DATA_PATH_CONF_SET_SB	. 189
	5.16.4	Sub block 0x4043 – AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB	. 192
	5.16.5	Sub block 0x4044 – AWR_DEV_RX_DATA_PATH_CLK_SET_SB	. 193
	5.16.6	Sub block 0x4045 – AWR_DEV_LVDS_CFG_SET_SB	. 194
	5.16.7	Sub block 0x4046 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_	
		SET_SB	. 196
	5.16.8	Sub block 0x4047 – AWR_DEV_CSI2_CFG_SET_SB	. 197
	5.16.9	Sub block 0x4048 – AWR_DEV_PMICCLOCK_CONF_SET_SB	. 199
	5.16.10	Sub block 0x4049 – AWR_MSS_PERIODICTESTS_CONF_SB	. 203
	5.16.11	Sub block 0x404A – AWR_MSS_LATENTFAULT_TEST_CONF_SB	. 204
	5.16.12	Sub block 0x404B – AWR_DEV_TESTPATTERN_GEN_SET_SB	. 206
	5.16.13	Sub block 0x404C – AWR_DEV_CONFIGURATION_SET_SB	. 209
5.17	Sub bloc	ks related to AWR_DEV_CONF_GET_MSG	. 209
	5.17.1	Sub block 0x4060 – AWR_DEV_MCUCLOCK_GET_SB	. 209
	5.17.2	Sub block 0x4061 – AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB .	. 210
	5.17.3	Sub block 0x4062 – AWR_DEV_RX_DATA_PATH_CONF_GET_SB	. 210
	5.17.4	Sub block 0x4063 – AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB	. 210
	5.17.5	Sub block 0x4064 – AWR_DEV_RX_DATA_PATH_CLK_GET_SB	. 211
	5.17.6	Sub block 0x4065 – AWR_DEV_LVDS_CFG_GET_SB	. 211
	5.17.7	Sub block 0x4066 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_	
		GET_SB	. 211
	5.17.8	Sub block 0x4067 – AWR_DEV_CSI2_CFG_GET_SB	. 211
	5.17.9	Sub block 0x4068 – AWR_DEV_PMICCLOCK_CONF_GET_SB	. 212
	5.17.10	Sub block 0x4069 – AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB	. 212
	5.17.11	Sub block 0x406A – AWR_MSS_PERIODICTESTS_CONF_GET_SB	. 212
	5.17.12	Sub block 0x406B – AWR_DEV_TESTPATTERN_GEN_GET_SB	. 213
5.18	Sub bloc	ks related to AWR_DEV_FILE_DOWNLOAD_MSG	. 213
	5.18.1	Sub block 0x4080 – AWR_DEV_FILE_DOWNLOAD_SB	. 213
5.19	Sub bloc	ks related to AWR_DEV_FRAME_CONFIG_APPLY_MSG	. 214

		5.19.1	Sub block 0x40C0 – AWR_DEV_FRAME_CONFIG_APPLY_SB	. 214
		5.19.2	Sub block 0x40C1 – AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB	. 214
	5.20	Sub bloc	ks related to AWR_DEV_STATUS_GET_MSG	. 216
		5.20.1	Sub block 0x40E0 – AWR_MSSVERSION_GET_SB	. 216
		5.20.2	Sub block 0x40E1 – AWR_MSSCPUFAULT_STATUS_GET_SB	. 218
		5.20.3	Sub block 0x40E2 – AWR_MSSESMFAULT_STATUS_GET_SB	. 219
	5.21	Sub bloc	ks related to AWR_DEV_ASYNC_EVENT_MSG	. 224
		5.21.1	Sub block 0x5000 – AWR_AE_DEV_MSSPOWERUPDONE_SB	. 224
		5.21.2	Sub block 0x5001 – AWR_AE_DEV_RFPOWERUPDONE_SB	. 226
		5.21.3	Sub block 0x5002 – AWR_AE_MSS_CPUFAULT_SB	. 228
		5.21.4	Sub block 0x5003 – AWR_AE_MSS_ESMFAULT_STATUS_SB	. 229
		5.21.5	Sub block 0x5004 – RESERVED	. 232
		5.21.6	Sub block 0x5005 – AWR_AE_MSS_BOOTERRORSTATUS_SB	. 232
		5.21.7	Sub block 0x5006 – AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB	. 234
		5.21.8	Sub block 0x5007 – AWR_AE_MSS_PERIODICTEST_STATUS_SB	. 236
		5.21.9	Sub block 0x5008 – AWR_AE_MSS_RFERROR_STATUS_SB	. 236
		5.21.10	Sub block 0x5009 – AWR_AE_MSS_VMON_ERRORSTATUS_SB	. 237
		5.21.11	Sub block 0x500A – AWR_AE_MSS_ADC_DATA_SB	. 238
		5.21.12	Sub block 0x500B – RESERVED	
	5.22	Brief not	es on the order of issuing API SBs	. 238
		5.22.1	Single device mode	
		5.22.2	Cascaded device mode	. 240
		5.22.3	Continuous streaming mode (in single device case)	
		5.22.4	Continuous streaming (CW) mode (in cascaded device case)	. 242
6		Error Co	adaa	245
0	6.1		des for boot on SPI	
	0.1			. 204
7	Rad	lar Moni	toring APIs	256
	7.1		n Configurations and Reports	. 256
		7.1.1	Sub block 0x01C0 - AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_S	
		7.1.2	Sub block 0x01C1 – AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB .	. 258
		7.1.3	Sub block 0x01C2 – AWR_MONITOR_ANALOG_ENABLES_CONF_SB	. 258
	7.2	Tempera	ture Monitor	. 260
		7.2.1	Sub block 0x01C3 – AWR_MONITOR_TEMPERATURE_CONF_SB	
	7.3	RX Gain	and Phase Monitor	. 261
		7.3.1	Sub block 0x01C4 – AWR_MONITOR_RX_GAIN_PHASE_CONF_SB	. 262
	7.4	RX Nois	e Monitor	. 265
		7.4.1	Sub block 0x01C5 – AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB	. 265
	7.5	RX IF St	age Monitor	. 266
		7.5.1	Sub block 0x01C6 – AWR_MONITOR_RX_IFSTAGE_CONF_SB	. 266
	7.6	TX Powe	er Monitor	. 267
		7.6.1	Sub block 0x01C7 – AWR_MONITOR_TX0_POWER_CONF_SB	. 267
		7.6.2	Sub block 0x01C8 – AWR_MONITOR_TX1_POWER_CONF_SB	. 269

	7.6.3	Sub block 0x01C9 – AWR_MONITOR_TX2_POWER_CONF_SB 271
7.7	TX Ball E	Break Monitor
	7.7.1	Sub block 0x01CA – AWR_MONITOR_TX0_BALLBREAK_CONF_SB 272
	7.7.2	Sub block 0x01CB – AWR_MONITOR_TX1_BALLBREAK_CONF_SB 273
	7.7.3	Sub block 0x01CC – AWR_MONITOR_TX2_BALLBREAK_CONF_SB 274
7.8	TX Gain	and Phase Mismatch Monitoring
	7.8.1	Sub block 0x01CD - AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_
		CONF_SB
7.9	TX BPM	Phase Monitor
	7.9.1	Sub block 0x01CE – AWR_MONITOR_TX0_BPM_CONF_SB
	7.9.2	Sub block 0x01CF – AWR_MONITOR_TX1_BPM_CONF_SB
	7.9.3	Sub block 0x01D0 – AWR_MONITOR_TX2_BPM_CONF_SB
7.10	Synthesi	izer Frequency Monitoring
	7.10.1	Sub block 0x01D1 - AWR_MONITOR_SYNTHESIZER_FREQUENCY_
		CONF_SB
7.11	External	Analog Signals Monitor
	7.11.1	Sub block 0x01D2 - AWR_MONITORING_EXTERNAL_ANALOG_SIGNALS_
		CONF_SB
7.12	Internal /	Analog Signals Monitor
	7.12.1	Sub block 0x01D3 - AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_
		CONF_SB
	7.12.2	Sub block 0x01D4 – AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_
		CONF_SB
	7.12.3	Sub block 0x01D5 - AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_
		CONF_SB
	7.12.4	Sub block 0x01D6 - AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_
		CONF_SB
	7.12.5	Sub block 0x01D7 – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_
	7 4 9 9	SIGNALS_CONF_SB
	7.12.6	Sub block 0x01D8 – AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS
7 4 0		CONF_SB
7.13		
	7.13.1	Sub block 0x01D9 – AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_
7 4 4	Duel Ole	CONF_SB
7.14	7.14.1	ck Comparator Based Clock Frequency Monitor
7 15		ration Detection Monitor
7.15	7.15.1	Sub block 0x01DB – AWR_MONITOR_RX_SATURATION_DETECTOR_
	7.10.1	CONF_SB
	7.15.2	Sub block 0x01DC - AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB . 298
7.16	RX mixe	r input power monitor
	7.16.1	Sub block 0x01DD – AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB299
7.17	Sub bloc	k 0x01DE – RESERVED
7.18	Analog F	Fault injection

	7.18.1	Sub block 0	x01DF –	AWR	_ANA	LOG	FAUL	T_IN	JEC	TIO	N_C	ONF	_SB	300
Chi	rp Paran	neters (CP)	and Ch	irp C	ualit	y (CC	ג) da	ta						307
8.1	Chirp Pa	rameters dat	a											307
8.2	Chirp Qu	ality data .												308
	8.2.1	CQ1												310
	8.2.2	CQ2												313
Cal	ibration a	and monito	oring du	ratio	ns									316
Cal 9.1		and monito	•											
	Boot time		durations	. .										316
9.1	Boot time Run time	e calibration	durations lurations	• • • •	· · · · · ·									
9.1 9.2	Boot time Run time Monitorir	e calibration calibration c	durations lurations	•••••	 	 	· · ·	 	 	 	 	 	 	316 316 317
9.1 9.2 9.3	Boot time Run time Monitorir	e calibration of calibration of calibration of calibration of the cali	durations lurations	• • • •	· · · ·	· · · ·	· · · ·	 	 	 	 	 	 	316 316 317 319
	8.1	Chirp Param 8.1 Chirp Pa 8.2 Chirp Qu 8.2.1	Chirp Parameters (CP) 8.1 Chirp Parameters dat 8.2 Chirp Quality data 8.2.1 CQ1	Chirp Parameters (CP) and Ch8.1Chirp Parameters data8.2Chirp Quality data8.2.1CQ1	Chirp Parameters (CP) and Chirp G8.1Chirp Parameters data8.2Chirp Quality data8.2.1CQ1	Chirp Parameters (CP) and Chirp Qualit8.1Chirp Parameters data8.2Chirp Quality data8.2.1CQ1	Chirp Parameters (CP) and Chirp Quality (CC8.1Chirp Parameters data8.2Chirp Quality data8.2.1CQ1	Chirp Parameters (CP) and Chirp Quality (CQ) da 8.1 Chirp Parameters data	Chirp Parameters (CP) and Chirp Quality (CQ) data8.1Chirp Parameters data8.2Chirp Quality data8.2.1CQ1	Chirp Parameters (CP) and Chirp Quality (CQ) data 8.1 Chirp Parameters data	Chirp Parameters (CP) and Chirp Quality (CQ) data 8.1 Chirp Parameters data	Chirp Parameters (CP) and Chirp Quality (CQ) data 8.1 Chirp Parameters data	Chirp Parameters (CP) and Chirp Quality (CQ) data 8.1 Chirp Parameters data	Chirp Parameters (CP) and Chirp Quality (CQ) data 8.1 Chirp Parameters data 8.2 Chirp Quality data 8.2.1 CQ1

List of Figures

2.1	xWR12xx Software Architecture
2.2	xWR16xx Software Architecture
2.3	Radar Message Structure 4
2.4	Message Header Format 5
2.5	OPCODE Format
2.6	MSGLEN Format
2.7	FLAGS Format
2.8	NSBC Format
2.9	Message Sub block structure
3.1	Flow Diagram (API)
3.2	Flow Diagram (Asynchronous Events) 16
3.3	SPI Message Sequence
5.1	Frame trigger delay in case of external hardware trigger
5.2	Dynamic chirp configuration use case timing diagram
5.3	Lane formats and the order of receiving the data from the lanes
8.1	Chirp parameter information fields
8.2	Chirp parameter information from DSS registers
8.3	CQ data start address configuration in single chirp use case
8.4	CQ data start address configuration in multi chirp use case
8.5	Time slices during RX signal and image band monitor and saturation monitor 311
8.6	CQ1 data format in memory in 16-bit mode
8.7	CQ1 data format in memory in 12-bit mode
8.8	CQ1 data format in memory in 14-bit mode
8.9	CQ2 data format in memory in 16-bit mode
8.10	CQ2 data format in memory in 12-bit mode
8.11	CQ2 data format in memory in 14-bit mode
9.1	Watchdog idle time calculation

List of Tables

2.1	Possible SYNC values and their usage
2.3	MSGLEN field descriptions
2.4	FLAGS field description
2.5	NSBC field description
2.6	Checksum computation example
2.7	CRC types and their polynomials
4.1	Summary of all Radar messages and their associated sub blocks
5.1	AWR_RESP_ERROR_SB contents
5.2	AWR_CHAN_CONF_SET_SB contents
5.3	AWR_ADCOUT_CONF_SB contents
5.4	AWR_LOWPOWERMODE_CONF_SET_SB contents
5.5	AWR_DYNAMICPOWERSAVE_CONF_SET_SB contents
5.6	AWR_HIGHSPEEDINTFCLK_CONF_SET_SB contents
5.7	AWR_RF_DEVICE_CFG_SB contents
5.8	AWR_RF_MISC_CTL_SB contents
5.9	AWR_CAL_MON_FREQUENCY_LIMITS_SB contents
	AWR_RF_INIT_CALIBRATION_CONF_SB contents
	AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB contents
	AWR_CAL_DATA_RESTORE_SB contents
5.13	AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB contents
5.14	AWR_CAL_DATA_SAVE_SB contents
5.15	AWR_CAL_DATA_SAVE_SB response packet contents
5.16	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB contents
5.17	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB response packet contents 58
5.18	AWR_RF_INIT_SB contents
5.19	AWR_PROFILE_CONF_SB contents
5.20	Note on maximum sampling rate
5.21	AWR_CHIRP_CONF_SET_SB contents
5.22	AWR_FRAME_CONF_SET_SB contents
5.23	AWR_CONT_STREAMING_MODE_CONF_SET_SB contents
5.24	AWR_CONT_STREAMING_MODE_EN_SB contents
5.25	AWR_ADVANCED_FRAME_CONF_SB contents
5.26	AWR_PERCHIRPPHASESHIFT_CONF_SB contents

5.27 AWR_PROG_FILT_COEFF_RAM_SET_SB contents
5.28 AWR_PROG_FILT_CONF_SET_SB contents
5.29 AWR_CALIB_MON_TIME_UNIT_CONF_SB contents
5.30 AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB contents
5.31 AWR_INTER_RX_GAIN_PHASE_CONTROL_SB contents
5.32 AWR_RX_GAIN_TEMPLUT_SET_SB contents
5.33 AWR_TX_GAIN_TEMPLUT_SET_SB contents
5.34 AWR_LOOPBACK_BURST_CONF_SET_SB contents
5.35 AWR_DYN_CHIRP_CONF_SET_SB contents
5.36 AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB contents
5.37 AWR_DYN_CHIRP_ENABLE_SB contents
5.38 AWR_INTERCHIRP_BLOCKCONTROLS_SB contents
5.39 AWR_SUBFRAME_START_CONF_SB contents
5.40 AWR_PROFILE_CONF_GET_SB contents
5.41 AWR_CHIRP_CONF_GET_SB contents
5.42 AWR_FRAME_CONF_GET_SB contents
5.43 AWR_ADV_FRAME_CONF_GET_SB contents
5.44 AWR_RX_GAIN_TEMPLUT_GET_SB contents
5.45 AWR_TX_GAIN_TEMPLUT_GET_SB contents
5.46 AWR_FRAMESTARTSTOP_CONF_SB contents
5.47 AWR_BPM_COMMON_CONF_SET_SB contents
5.48 AWR_BPM_CHIRP_CONF_SET_SB contents
5.49 AWR_RF_VERSION_GET_SB contents
5.50 AWR_RF_VERSION_SB response contents
5.51 AWR_RF_CPUFAULT_STATUS_GET_SB response contents
5.52 AWR_RF_CPUFAULT_STATUS_GET_SB response contents
5.53 AWR_RF_ESMFAULT_STATUS_GET_SB response contents
5.54 AWR_RF_ESMFAULT_STATUS_SB response contents
5.55 AWR_RF_DIEID_GET_SB response contents
5.56 AWR_RF_DIEID_STATUS_SB response contents
5.57 AWR_RF_BOOTUPBIST_STATUS_GET_SB response contents
5.58 AWR_RF_BOOTUPBIST_STATUS_DATA_SB response contents
5.59 AWR_RF_DFE_STATISTICS_REPORT_GET_SB response contents
5.60 AWR_RF_DFE_STATISTICS_REPORT_SB response contents
5.61 AWR_RF_TEST_SOURCE_CONFIG_SET_SB contents
5.62 AWR_RF_TEST_SOURCE_ENABLE_SET_SB contents
5.63 AWR_RF_LDO_BYPASS_SB contents
5.64 AWR_RF_PALOOPBACK_CFG_SB contents
5.65 AWR_RF_PSLOOPBACK_CFG_SB contents
5.66 AWR_RF_IFLOOPBACK_CFG_SB contents
5.67 AWR_RF_GPADC_CFG_SET_SB contents
5.68 AWR_RF_TEMPERATURE_GET_SB contents
5.69 AWR_RF_TEMPERATURE_DATA_SB contents
5.70 AWR_AE_RF_CPUFAULT_SB response contents
·

5.71 AWR_AE_RF_ESMFAULT_STATUS_SB response contents
5.72 AWR_AE_RF_INITCALIBSTATUS_SB response contents
5.73 AWR_AE_RF_FRAME_TRIGGER_RDY_SB response contents
5.74 AWR_AE_RF_GPADC_RESULT_DATA_SB response contents
5.75 AWR_FRAME_END_AE_SB response contents
5.76 AWR_ANALOGFAULT_AE_SB response contents
5.77 AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB response contents
5.78 AWR_RUN_TIME_CALIB_SYMMARY_REPORT_AE_SB response contents 151
5.79 AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB response contents 153
5.80 AWR_MONITORING_REPORT_HEADER_AE_SB response contents
5.81 AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB contents
5.82 AWR_MONITORING_TEMPERATURE_REPORT_AE_SB contents
5.83 AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB contents
5.84 AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB contents
5.85 AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB contents
5.86 AWR_MONITOR_TX0_POWER_REPORT_AE_SB contents
5.87 AWR_MONITOR_TX1_POWER_REPORT_AE_SB contents
5.88 AWR_MONITOR_TX2_POWER_REPORT_AE_SB contents
5.89 AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB contents
5.90 AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB contents
5.91 AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB contents
5.92 AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB contents
5.93 AWR_MONITOR_TX0_BPM_REPORT_AE_SB contents
5.94 AWR_MONITOR_TX1_BPM_REPORT_AE_SB contents
5.95 AWR_MONITOR_TX2_BPM_REPORT_AE_SB contents
5.96 AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB contents
5.97 AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents
5.98 AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents 177
5.99 AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents 177
5.100 AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents 177
5.101 AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents . 179
5.102AWR_MONITOR_PM_CLK_LO_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB con-
5.103AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB con-
5.104AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB contents
5.105AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB contents
5.106AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB contents
5.107 AWR_DEV_POWERUP_SB contents
5.108AWR_DEV_MCUCLOCK_CONF_SET_SB contents
5.109AWR_DEV_RX_DATA_FORMAT_CONF_SB contents
5.110AWR_DEV_RX_DATA_PATH_CONF_SB contents
5.111 AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB contents
5.112AWR_DEV_RX_DATA_PATH_CLK_SET_SB contents

194
197
197
199
202
203
204
206
209
210
210
210
210
211
211
211
212
212
212
212
213
213
214
214
216
217
218
218
221
221
224
226
228
229
232
234
236
236
237
238
240

5.154	4Sequence of APIs to be issued to master and slave devices in cascaded mode for CW mode measurements	. 243
6.1	BSS API error codes	045
6.2	MSS API error codes (Applicable only in xWR1243)	
6.2 6.3	Bit field describing the error status during boot on SPI	
0.3		. 200
7.1	AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB contents	. 256
7.2	AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB contents	. 258
7.3	AWR_MONITOR_ANALOG_ENABLES_CONF_SB contents	. 259
7.4	AWR_MONITOR_TEMPERATURE_CONF_SB contents	. 260
7.5	AWR_MONITOR_RX_GAIN_PHASE_CONF_SB contents	. 262
7.6	AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB contents	. 265
7.7	AWR_MONITOR_RX_IFSTAGE_CONF_SB contents	. 266
7.8	AWR_MONITOR_TX0_POWER_CONF_SB contents	. 268
7.9	AWR_MONITOR_TX1_POWER_CONF_SB contents	. 269
7.10	AWR_MONITOR_TX2_POWER_CONF_SB contents	. 271
7.11	AWR_MONITOR_TX0_BALLBREAK_CONF_SB contents	. 273
7.12	AWR_MONITOR_TX1_BALLBREAK_CONF_SB contents	. 273
7.13	AWR_MONITOR_TX2_BALLBREAK_CONF_SB contents	. 274
7.14	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB contents	. 275
7.15	AWR_MONITOR_TX0_BPM_CONF_SB contents	. 278
7.16	AWR_MONITOR_TX1_BPM_CONF_SB contents	. 280
7.17	AWR_MONITOR_TX2_BPM_CONF_SB contents	. 282
7.18	AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB contents	. 284
7.19	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB contents	. 285
7.20	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	. 288
7.21	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	. 289
7.22	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	. 290
7.23	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	. 290
7.24	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	291
7.25	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_CONF_SB contents .	. 292
7.26	AWR_MONITOR_PLL_CONTROL_VOLTAGE_CONF_SB contents	. 293
7.27	DCC Clock monitor pairs	. 295
7.28	AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB contents	. 295
7.29	AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB contents	. 297
7.30	AWR_MONITOR_RX_SIG_IMG_MONITOR_CONF_SB contents	. 298
7.31	AWR_MONITOR_MIXER_IN_POWER_CONF_SB contents	. 299
7.32	AWR_ANALOG_FAULT_INJECTION_CONF_SB contents	. 300
9.1	Duration of boot time calibrations	.316
9.2	Duration of run time calibrations	
9.3	Duration of analog monitors	
9.4	Duration of digital monitors	
0.7		.010

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

Revision History

Revision	Date	Description
Revision 0.97	Date 13.09.2018	 Added a new parameter CASCADING_PINOUT_CFG in AWR_CHAN_CONF_SET_SB in Section 5.2.1 on page 43. Added a new parameter PA LDO disable in AWR_RF_LDO_ BYPASS_SB API in Section 5.11.6 on page 132. Added new APIs AWR_PHASE_SHIFTER_CAL_DATA_SAVE_ SB in page 57 and AWR_PHASE_SHIFTER_CAL_DATA_SAVE_ STORE_SB in page 56. Added a new parameter LDO_SC_MONITORING_EN in AWR_ MONITOR_ANALOG_ENABLES_CONF_SB in page 258. Fixed the length for the SBLKID AWR_DEV_CONFIGURA- TION_SET_SB in page 209. Added a note in AWR_CHIRP_CONF_SET_SB in page 66 that dither parameters are only additive to the programmed pa- rameters in AWR_PROFILE_CONF_SB. Updated the valid range of SFx_PERIOD parameter in AWR_ ADVANCED_FRAME_CONF_SB in page 72 to 1.342 s. Added a note below AWR_SUBFRAME_START_CONF_SB on page 107 indicating that watchdog feature is not available when software based sub-frame trigger mode is used.
		 Added new parameters in AWR_MONITOR_PMCLKLO_IN- TERNAL_ANALOG_SIGNALS_CONF_SB in page 291 for 20 GHz sync signal monitoring. Also updated AWR_MONITOR_ PMCLKLO_INTERNAL_ANALOG_SIGNALS_REPORT_AE_ SB in page 180 with 20 GHz monitoring report.

- Added parameters in AWR_MONITOR_TXn_BPM_CONF_SB in page numbers 170, 171 and 172 for phase shifter monitoring. Also updated AWR_MONITOR_TXn_BPM_REPORT_AE_ SB in pages 170, 171 and 172 for phase shifter monitoring reports.
- 11. Added a note in page 83 indicating that programmble filter APIs should not be issued when frames are ongoing.
- 12. Updated the mapping of PGA_GAIN_INDEX numbers to gain values in AWR_RF_PSLOOPBACK_CFG_SB in page 135.
- Added a note after AWR_BPM_CHIRP_CONF_SET_SB in page 111 and AWR_PERCHIRPPHASESHIFT_CONF_SB in page 80 indicating when the BPM and phase shifters are applied.
- 14. Added TX_CAL_EN_CFG parameter in AWR_PROFILE_ CONF_SET_SB in page 59.
- 15. Added a note in AWR_RF_INIT_CALIBRATION_CONF_SB in page 52 indicating that if TX boot time calibration is disabled, no other backoff other than 0 dB is supported.
- Added the monitoring duration of TX phase shifter in Table 9.3 in page 318.
- 17. Added a new API AWR_RF_DIEID_GET_SB in page 118 which reads the Die ID of the device.
- Added a note in section AWR_LOOPBACK_BURST_CONF_ SET_SB in page 93 indicating that when using loopback burst, the corresponding sub-frame in advanced frame configuration should use SFx_NUM_UNIQUE_CHIRPS_PER_BURST as 1.
- 19. Corrected the sequence of issuing APIs in page 238 loopback burst config API should be issued after profile config API.
- 20. Updated error code 49 in Table 6.1 to include the maximum sampling rate based on device variant.
- 21. Added a note in page 319 explaining the watchdog clearing window calculation by the firmware.
- 22. Added a note in page 87 indicating if user has not enabled any one time calibrations, but if calibration report is enabled, then after issuing the AWR_RUN_TIME_CALIBRA-TION_CONF_AND_TRIGGER_SB API, the firmware will immediately sent out a calibration report.
- 23. Added the RFLDOBYPASS_EN API after AWR_ADCOUT_ CONF_SET_SB in Table 5.22.1, Table 5.22.3, Table 5.153 and Table 5.154.

- 24. Added a note after AWR_FRAME_CONF_SET_SB indicating the pulse width requirements of the SYNC_IN pulse in hard-ware triggered mode.
- 25. Added a new parameter CHIRP_ROW_SELECT in AWR_ DYN_CHIRP_CONF_SET_SB API in page 98 to enable faster configuration of chirps dynamically.
- 26. Updated the definition of REPORTING_MODE in AWR_ MSS_LATENTFAULT_TEST_CONF_SB and AWR_MSS_PERI-ODICTESTS_CONF_SB APIs in pages 203 and 204.
- 27. Added new error code 159 to indicate incorrect CHIRP_ROW_ SELECT value and updated error code 135 to account for CHIRP_ROW_SELECT values.
- 28. Added new error codes 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048 and 1050 in Table 6.2 in page 252.
- 29. Added examples of PMIC clock configuration in Section 5.16.9 in page 199.
- 30. Added a note in AWR_ANALOG_FAULT_INJECTION_CONF_ SB in page 300 under SUPPLY_LDO_FAULT indicating that this fault ineffective under LDO_BYPASS condition.
- 31. Added a note about when to stop the frames when using subframe trigger or hardware trigger mode in page 106.
- 32. Updated font type to Helvetica.
- 33. Added a note about usage of CW CZ mode in page 69.
- 34. Added a note about TX3 gain and phase imbalance offset wrt. TX1 and TX2 in page 275.
- Added a note about inter-burst idle time requirement in page 47.
- 36. Added a note about Noise figure Values reporting in NF Monitoring report AE in page 158.
- 37. Added a note in MSS powerup done AE in page 224.
- Added a note about Tx output Power backoff in profile config API in page 59.
- 39. Added a note about Tx output Power monitoring in page 162.
- 40. Added a note about Programmable filter tap start index selection in page 81.
- 41. Added a note in AWR_AE_MSS_BOOTERRORSTATUS_SB AE in page 232.
- 42. Updated runtime VCO calibration time in page 316.
- 43. Updated VCO control voltage monitor upper threshold in page 182.

Revision	Date	Description
0.98	19.10.2018	 Added Aurix support fields in AWR_DEV_LVDS_CFG_SET_SB subblock in page 194.
		Updated note on VCO selection and phase in page 59

3. Added a note in Noise figure monitoring configuration SBC

265

1 Introduction

1.1 Scope

The xWR1243, xWR1642 and xWR1843 products are highly-integrated 77GHz CMOS automotive radar devices. The devices integrate all of the RF and Analog functionality, including VCO, PLL, PA, LNA, Mixer and ADC for multiple TX/RX channels into a single chip. The xWR1243 is an RF transceiver device and it includes 4 receiver channels and 3 transmit channels in a single chip. The xWR1243 also supports multi-chip cascading. The xWR1642/xWR1843 is a radar-on-a-chip device, which includes 4 receive channels and 2 transmit channels and additionally an integrated DSP for radar signal processing.

Both devices include a built-in BIST (Built-in Self-Test) processor, which is responsible to configure the RF/Analog and digital front-end in real-time, as well as to periodically schedule calibration and functional safety monitoring. This enables the mm-Wave front-end to be self-contained and capable of adapting itself to handle temperature and aging effects, and to enable significant easeof-use from an external host perspective.

This document contains the Interface Control Specification for communications on the serial interface (SPI) between the Radar device and the external host processor. The same protocol is used in xWR16xx when the messages are sent to Radar Control subsystem (BIST subsystem) from the MCU subsystem (Master subsystem).

1.2 Intended Audience

The intended audience for this document is firmware, host software, and validation engineers needing to understand the format and contents of all communications between the Radar device and the host processor.

2 AWR1xxx Communications Overview

2.1 Communication Link Description

The xWR12xx radar device communicates with the external host processor using the SPI interface. The radar device is configured and controlled from the external host processor by sending commands to xWR12xx device over SPI.

The xWR16xx radar device is configured and controlled using the internal MCU (Master subsystem) and it communicates with an external ECU using the CAN interface.

This document only talks about the communication protocol between radar device and external host processor using SPI in xWR12xx. In xWR16xx, the same protocol is used to communicate between the BIST subsystem and Master subsystem.

2.2 Communication Link configuration

2.2.1 SPI

This interface is synchronous. The interface includes four signals (SPICCLK, SPICS, and Data In and Data Out) and supports clock rates up to 40 MHz. The xWR12xx radar device is always the SPI slave and the external host processor will be the SPI master.

2.2.2 Mailbox

This interface includes a SRAM and an interrupt line from Master subsystem to BIST subsystem. A reverse channel which includes a different SRAM and a different interrupt line from the BIST subsystem to Master subsystem is used for responses which originate from BIST subsystem.

Interface Control Document Revision 0.98 - October 19, 2018

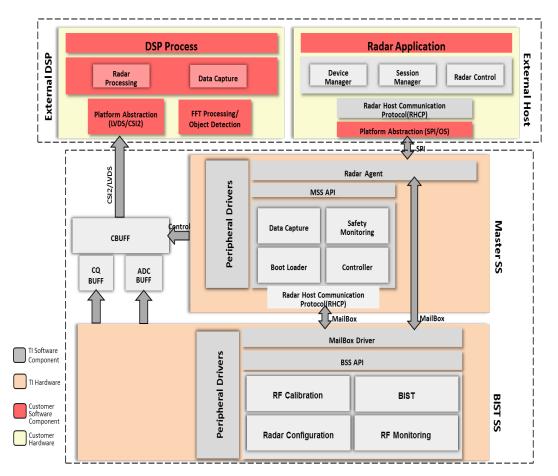


Figure 2.1: xWR12xx Software Architecture

Interface Control Document Revision 0.98 - October 19, 2018

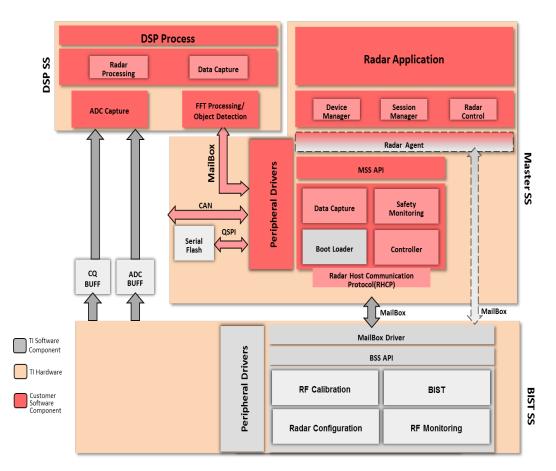


Figure 2.2: xWR16xx Software Architecture

2.3 Radar Message Structure

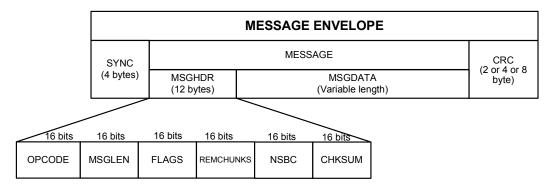


Figure 2.3: Radar Message Structure

Copyright © 2014-2017, Texas Instruments Incorporated

Each message is sent in a message envelope, which starts with four special bytes called a sync pattern. Next, the message envelope contains the actual message and a CRC converted to a stream of bytes. Figure 2.3 defines the general form of radar messages. All communication messages between external host processor and the radar device will follow this message format. Each message consists of a 12-byte message header, variable length message data followed by a variable length CRC.

NOTE:	The CRC and all the fields in the message headers and message
	data that are larger than one byte are sent in little-endian byte order
	i.e. the least significant byte is sent first.

A message envelope contains only one message.

2.3.1 SYNC

SYNC is a unique 4 byte pattern which marks the start of the message. It can take one of the following 3 values, in memory all the bytes are stored in little endian format (least significant byte first).

SYNC word value	Description
0x43211234	Messages from master to slave indicating a new command
0x87655678	Messages from external host to device indicating the host is now ready to receive a message from the device This pattern is defined as CNYS in this document.
0xABCDDCBA	Messages from slave to master

 Table 2.1: Possible SYNC values and their usage

2.3.2 MSGHDR

Figure 2.4 defines the content of the message header. Each radar message must begin with this 12 byte message header in little endian format.

OPCODE	LENGTH	FLAGS	REMCHUNKS	NSBC	CHKSUM
(16 bits)					

Figure 2.4:	Message	Header	Format
-------------	---------	--------	--------

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				MS	GID					MSG	TYPE		DIRE	CTION	

Figure 2.5: OPCODE Format

OPCODE

The OPCODE is unique for a given message type. Figure 2.5 defines the OPCODE format.

Bits	Field	Descri	ption
[3:0]	DIRECTION		on of command
		0000	Invalid
		0001	Communication between Host to BSS
		0010	Communication between BSS to Host
		0011	Communication between Host to DSS
		0100	Communication between DSS to Host
		0101	Communication between Host to Master
		0110	Communication between Master to Host
		0111	Communication between BSS to Master
		1000	Communication between Master to BSS
		1001	Communication between BSS to DSS
		1010	Communication between DSS to BSS
		1011	Communication between Master to DSS
		1100	Communication between DSS to Master
		1101	RESERVED
		1110	RESERVED
		1111	RESERVED
[5:4]	MSGTYPE	Messa	ge type
		00	COMMAND
		01	RESPONSE (ACK or ERROR)
		10	NACK
		11	ASYNC
[15:6]	MSGID	Messa	ge ID
		0x00	AWR_ERROR_MSG
		0x01	RESERVED
		0x02	RESERVED
		0x03	RESERVED
		0x04	AWR_RF_STATIC_CONF_SET_MSG
		0x05	AWR_RF_STATIC_CONF_GET_MSG
		0x06	AWR_RF_INIT_MSG
		0x07	RESERVED
		0x08	AWR_RF_DYNAMIC_CONF_SET_MSG
		0x09	AWR_RF_DYNAMIC_CONF_GET_MSG
		0x0A	AWR_RF_FRAME_TRIG_MSG
		0x0B	RESERVED

0x00	C AWR_RF_ADVANCED_FEATURES_CONF_ SET_MSG
10×0	D RESERVED
0×0	E AWR_RF_MONITORING_CONF_SET_MSG
IOx0	F RESERVED
0x10	D RESERVED
0x11	AWR_RF_STATUS_GET_MSG
0x12	2 RESERVED
0x13	3 AWR_RF_MONITORING_REPORT_GET_MSG
0x14	4 RESERVED
0x15	5 RESERVED
0x16	AWR_RF_MISC_CONF_SET_MSG
0x17	7 AWR_RF_MISC_CONF_GET_MSG
0x18	3 RESERVED
0x15	9 RESERVED
0x80) AWR_RF_ASYNC_EVENT_MSG1
0x8	AWR_RF_ASYNC_EVENT_MSG2
0x20	00 AWR_DEV_RFPOWERUP_MSG
0x20	01 RESERVED
0x20	2 AWR_DEV_CONF_SET_MSG
0x20	03 AWR_DEV_CONF_GET_MSG
0x20	04 AWR_DEV_FILE_DOWNLOAD_MSG
0x20	05 RESERVED
0x20	06 AWR_DEV_FRAME_CONFIG_APPLY_MSG
0x20	07 AWR_DEV_STATUS_GET_MSG
0x20	08 RESERVED
0x20	09 RESERVED
0x20	DA RESERVED
0x20	DB RESERVED
0x20	DC RESERVED
0x20	DD RESERVED
0x28	AWR_DEV_ASYNC_EVENT_MSG

LENGTH

The length field contains the length of the message in bytes including the message header, message data and CRC. Note that length field does not include the length of the sync field. The minimum length of the message is 12 bytes and maximum is 252 bytes. The message length minus CRC length must also be a multiple of 4 bytes.

Revision 0.98 - October 19, 2018

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESE	RVED							LE	ΞN					

Figure 2.6: MSGLEN Format

Table 2.3:	MSGLEN	field	descriptions
10010 100	THE CHERT	more	accouptions

Bits	Field	Description
[11:0]	LEN	Message length in bytes (It includes message header, message data and CRC)
[15:12]	RESERVED	Keep these bits as 0s

FLAGS

The FLAGS is used to control the communication between the radar device and external host

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEC	NUM		CRC	LEN	CRC	REQ	PRO	тосоі	LVER	SION	ACQ	REQ	RET	ſRY

Figure 2.7: FLAGS Format

Bits	Field	Description					
[1:0]	RETRY	RETRY Value 00 New message 11 Retransmitted message					
		01 RESERVED					
		10 RESERVED					
[3:2]	ACKREQ	Acknowledgement Request type 00 Acknowledgement is requested for the current message					
		11 Acknowledgement is not re- quested for the current message					
		01 RESERVED					
		10 RESERVED					

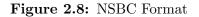
Table 2.4: FLAGS field description

Continued on next page

		nanded nom providuo page
[7:4]	PROTOCOL VERSION	Version number of the protocol that is used to communicate with the device (4 bits)
[9:8]	CRCREQ	CRC request type
		00 CRC is appended to the message
		11 CRC is not appended to the mes- sage
		01 RESERVED
		10 RESERVED
[11:10]	CRCLEN	Length of CRC appended to the message
		00 16-bit CRC
		01 32-bit CRC
		10 64-bit CRC
		11 RESERVED
[15:12]	SEQNUM	4 bit sequence number of the message. Se- quence number is reset to 0 after a de- vice boot and each new message has the incremented sequence number. Whenever the same message is retransmitted, the se- quence number is not incremented.

Table 2.4 – continued from previous page

NOTE:	It is recommended to always append CRC to the message to pre-
	vent any message integrity issues


REMCHUNKS

If the message length is larger than 256 bytes, then it is split into multiple chunks of sizes less than 256 bytes. When this field is non-zero, this field indicates the number of remaining chunks that are to be expected.

NSBC

The message may contain several configuration sub blocks with structure as defined in Figure 2.3. The NSBC field indicates the total number sub blocks inside the message data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RE	SERV	ED		NSBC										
	TIL.	.SETTV	LD							NODO					

Bits	Field	Description
[10:0]	NSBC	Number of sub blocks in the message
[15:11]	RESERVED	Keep these bits as 0s

 Table 2.5:
 NSBC field description

CHKSUM

The message header is protected by a 16-bit checksum to enable the receiver to check the integrity of the message header. The checksum is computed on MSGHDR only (MSGID, MSGLEN, FLAGS, REMCHUNKS and NSBC fields). Note that SYNC field is not included in checksum calculation.

Checksum is 16-bit one's complement of the one's complement sum of all 16-bit words in the message header (Ref. https://tools.ietf.org/html/rfc1071).

For e.g., suppose the message header contents looks like this

	1
Field	Value
OPCODE	0x0281
MSGLEN	0x0800
FLAGS	0x040C
REMCHUNKS	0x0000
NSBC	0x0001
CHKSUM	0xF171

Table 2.6: Checksum	computation example
-----------------------------	---------------------

The receiver will compute the checksum as follows 0x0281 + 0x0800 = 0x0A81.

Then, 0x0A81 + 0x040C = 0x0E8D.

Then, 0x0E8D + 0x0000 = 0x0E8D.

Then, 0x0E8D + 0x0001 = 0x0E8E.

Ones complement of 0x0E8E is 0xF171 which matches with the received checksum.

2.3.3 MSGDATA

The message data contains the actual message specific data for the message. The message data contains sub blocks with structure as defined in Figure 2.9. More than one sub block can be appended in the MSGDATA to reduce the overall communication latency. The total number of sub blocks in MSGDATA is indicated in the NSBC field in the MSGHDR.

All data fields are aligned so that their offset in message is a multiple of the field size in bytes. For e.g. a 32 bit field in the message will be aligned to a 4 byte boundary and a 16 bit field will be aligned to a 2 byte boundary. This makes it possible to create a structure definition for the message for easy data access in most environments.

Any reserved (currently unused) fields in the messages should be always set as 0 when sent and ignored when received. This way those fields may be taken to use in later interface versions without modifying all old software.

All data structure in sub-blocks assumed to be in little endian format. For big endian Host system byte swap is required to match with defined protocol.

	MSGDATA						
SBLKID	KID SBLKLEN SBLKDATA						
(16 bits)	(16 bits) (16 bits) (Variable length)						

Figure 2.9: Message Sub block structure

SBLKID Unique ID of the sub block

SBLKLEN Length of the sub block in bytes

SBLKDATA Data corresponding to the sub block

2.3.4 CRC

This is a CRC which is appended to the message data to protect the integrity of the message. The CRC is computed on all the bytes in the MSGHDR and MSGDATA. Note that SYNC is not included in CRC calculation.

3 different types of CRCs can be used – 16 bit, 32 bit or 64 bit. The choice of the CRC type is indicated in the FLAGS field in the MSGHDR.

The polynomials used for each type of CRC calculation are

CRC type	Polynomial	Remarks
16 bit	$x^{16} + x^{12} + x^5 + 1$	16-bit CRC-CCITT
32 bit	$\begin{array}{c} x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + \\ x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + \\ x^2 + x + 1 \end{array}$	CRC-32 (used in Ether- net)
64 bit	$x^{64} + x^4 + x^3 + x + 1$	CRC-64-ISO (HDLC)

 Table 2.7: CRC types and their polynomials

3 Message Processing

3.1 Communication protocol

When requested by the message transmitter, all correctly formatted radar messages are acknowledged by the receiver. This request for an acknowledgement is specified in FLAGS field of the MSGHDR (message header) field (see Section 2.3.2). A correctly formatted message is one that is formatted properly with a SYNC, MSGHDR, MSGDATA and CRC and that passes the CRC test when received. If an incorrectly formatted message is received, the radar device responds with a NACK message (MSGTYPE field in the MSGHDR set to NACK response). If a correctly formatted message is received, and after processing the message no errors are encountered, the radar device responds with an ACK response. In case of errors on a correctly formatted message, the radar device responds with an ERROR response.

The ACK response is a radar message which contains SYNC, MSGHDR, MSGDATA and CRC. In case the MSGTYPE was COMMAND_GET the MSGDATA for ACK response will contain the parameter values read by the radar device.

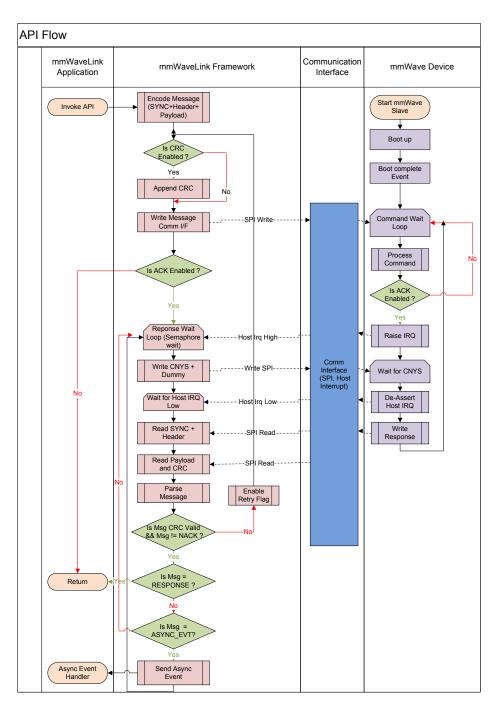
The NACK response is a radar message with only SYNC, MSGHDR and CRC. It does not contain MSGDATA.

For most commands the radar device prepares the acknowledgments and response packets immediately on reception. In certain cases, higher priority events in the system delay the execution of external communication function. The response time to command is a function of:

- Speed of the selected communication channel
- Although typical radar command/response occurs within a few hundreds of microseconds, it is recommended that host software wait up to 1 millisecond for response or acknowledgment before timing out on nonresponse.

The radar communication protocol is defined as follows

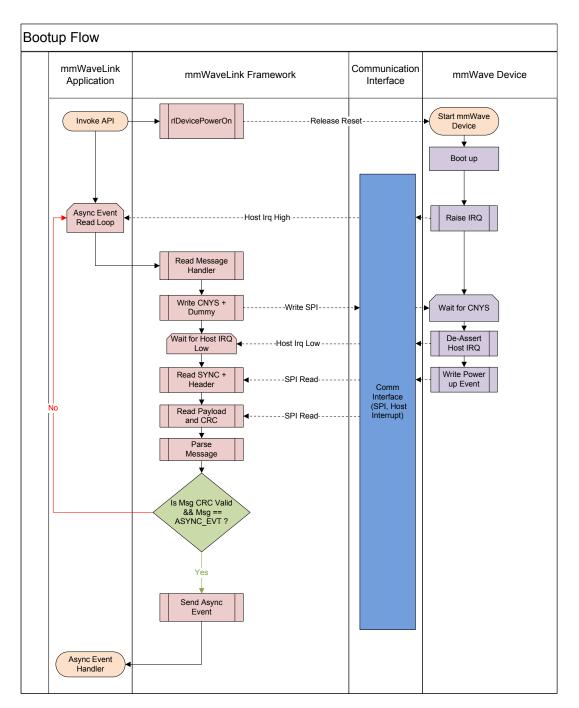
- 1. The host sends a message to the radar device requesting an acknowledgement. Host sets a timeout period of 1 ms for a response from the radar device.
- The radar device checks the CHKSUM field for Message header validity and checks the MSGDATA field for correctness and also computes the CRC of the message and compares it with the received CRC.
 - If the computed CHKSUM does not match the received CHKSUM, the radar device does not send any response. The transmitter will timeout and eventually resend the command again with RETRY flag set


- If the CRC matches and all parameters are valid/correct, the radar device sends an ACK to the host
- If the CRC matches, but any parameter in the message is invalid/incorrect, then the radar device sends an ERROR response to the host
- If the CRC does not match, the radar device sends a NACK response to the host
- 3. On reception of the ACK, the host can send the next command to the radar device.
- 4. If the host receives a NACK from the radar device within the timeout period, it sends the message again without the RETRY flag set.
- 5. If the host does not receive any response from the radar device within the timeout period then it sends the same command with the RETRY flag set.

3.2 Communication Sequence

3.2.1 Command/Response Sequence (Host)

- 1. Host prepares the message as defined by protocol in Section 2.3
- 2. Host writes the message to the communication channel and starts Retry Timer (\sim 1 ms)
- 3. Host then waits for HOST IRQ high Interrupt
 - a. If IRQ is received, go to Step 4
 - b. If Retry Time expires, Enable Retry Flag and go to Step 2
- 4. Host writes CNYS (SYNC word = 0x5678 0x8765) and Dummy bytes (0xFFFF 0xFFFF 0xFFFF) on communication channel
- 5. Host waits for low on Host IRQ line
 - a. If Host IRQ line is low, go to Step 6
 - b. If Retry Time expires, Flag Error
- 6. Host reads the header from communication channel
- 7. Host checks the validity of header (verify checksum)
 - a. If header is valid, parse the header and go to Step 8
 - b. If header is invalid, ignore the header and go to Step 3
- 8. Host reads the payload from communication channel
- 9. Host checks the validity of the message (verify CRC)
 - a. If message is valid, process the message
 - b. If message is invalid, go to Step 2



3.2.2 Flow Diagram (Host) – Command/Response

Figure 3.1: Flow Diagram (API)

3.2.3 Flow Diagram (Host) – Bootup/ Asynchronous Event

Figure 3.2: Flow Diagram (Asynchronous Events)

3.2.4 SPI Message Sequence – Command/Response

Figure 3.3: SPI Message Sequence

NOTE: 1.	Host should ensure that there is a delay of at least 2 SPI clocks between CS going low and start of SPI clock
2.	Host should ensure that CS is toggled for every 16 bits of transfer via SPI
3.	There should be a delay of at least 2 SPI Clocks between consecutive CS
4.	SPI needs to be operated at Mode 0 (Phase 0, Po- larity 0)
5.	SPI word length should be 16 bit (Half word)

4 Radar Interface Messages Descriptions

This section describes all the radar interface messages that are used in communication with the radar transceiver.

4.1 Summary of all messages and their associated sub-blocks

Radar Messages	Associated sub-blocks
AWR_ACK_MSG	NA
AWR_NACK_MSG	NA
AWR_ERROR_MSG	AWR_RESP_ERROR_SB
	AWR_CHAN_CONF_SET_SB
	AWR_ADCOUT_CONF_SET_SB
	AWR_LOWPOWERMODE_CONF_SET_SB
	AWR_DYNAMICPOWERSAVE_CONF_SET_SB
	AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
AWR_RF_STATIC_CONF_SET_MSG	AWR_RF_DEVICE_CFG_SB
	AWR_RF_RADAR_MISC_CTL_SB
	AWR_CAL_MON_FREQUENCY_LIMITS_SB
	AWR_RF_INIT_CALIBRATION_CONF_SB
	AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB
	AWR_CAL_DATA_RESTORE_SB
	AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB
AWR_RF_STATIC_CONF_GET_MSG	AWR_CAL_DATA_SAVE_SB
	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB
AWR_RF_INIT_MSG	AWR_RF_INIT_SB
AWR_RF_DYNAMIC_CONF_SET_ MSG	AWR_PROFILE_CONF_SET_SB
	AWR_CHIRP_CONF_SET_SB
	AWR_FRAME_CONF_SET_SB
	AWR_CONT_STREAMING_MODE_CONF_SET_SB
	AWR_CONT_STREAMING_MODE_EN_SB

Table 4.1: Summary of all Radar messages and their associated sub blocks

Radar Messages	Associated sub-blocks
	AWR_ADVANCED_FRAME_CONF_SB
	AWR_PERCHIRPPHASESHIFT_CONF_SB
	AWR_PROG_FILT_COEFF_RAM_SET_SB
	AWR_PROG_FILT_CONF_SET_SB
	AWR_CALIB_MON_TIME_UNIT_CONF_SB
	AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB
	AWR_INTER_RX_GAIN_PHASE_CONTROL_SB
	AWR_RX_GAIN_TEMPLUT_SET_SB
	AWR_TX_GAIN_TEMPLUT_SET_SB
	AWR_LOOPBACK_BURST_CONF_SET_SB
	AWR_DYN_CHIRP_CONF_SET_SB
	AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB
	AWR_DYN_CHIRP_ENABLE_SB
	AWR_INTERCHIRP_BLOCKCONTROLS_SB
	AWR_SUBFRAME_START_CONF_SB
AWR_RF_DYNAMIC_CONF_GET_ MSG	AWR_PROFILE_CONF_GET_SB
	AWR_CHIRP_CONF_GET_SB
	AWR_FRAME_CONF_GET_SB
	AWR_ADVANCED_FRAME_CONF_GET_SB
	AWR_RX_GAIN_TEMPLUT_GET_SB
	AWR_TX_GAIN_TEMPLUT_GET_SB
AWR_RF_FRAME_TRIG_MSG	AWR_FRAMESTARTSTOP_CONF_SB
AWR_RF_ADVANCED_FEATURES_	AWR_BPM_COMMON_CONF_SET_SB
CONF_SET_MSG	AWR_BPM_CHIRP_CONF_SET_SB
AWR_RF_MONITORING_CONF_ SET_MSG	AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB
	AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB
	AWR_MONITOR_ANALOG_ENABLES_CONF_SB
	AWR_MONITOR_TEMPERATURE_CONF_SB
	AWR_MONITOR_RX_GAIN_PHASE_CONF_SB
	AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB
	AWR_MONITOR_RX_IFSTAGE_CONF_SB
	AWR_MONITOR_TX0_POWER_CONF_SB
	AWR_MONITOR_TX1_POWER_CONF_SB
	AWR_MONITOR_TX2_POWER_CONF_SB

Radar Messages	Associated sub-blocks
	AWR_MONITOR_TX0_BALLBREAK_CONF_SB
	AWR_MONITOR_TX1_BALLBREAK_CONF_SB
	AWR_MONITOR_TX2_BALLBREAK_CONF_SB
	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB
	AWR_MONITOR_TX0_BPM_CONF_SB
	AWR_MONITOR_TX1_BPM_CONF_SB
	AWR_MONITOR_TX2_BPM_CONF_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB
	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_ SB
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_ SB
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_ SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_ SB
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_CONF_ SB
	AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB
	AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB
	AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB
	AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB
	AWR_ANALOG_FAULT_INJECTION_CONF_SB
AWR_RF_MONITORING_REPORT_ GET_MSG	AWR_RF_DFE_STATISTICS_REPORT_GET_SB
AWR_RF_STATUS_GET_MSG	AWR_RF_VERSION_GET_SB
	AWR_RF_CPUFAULT_STATUS_GET_SB
	AWR_RF_ESMFAULT_STATUS_GET_SB
	AWR_RF_DIEID_GET_SB
	AWR_RF_BOOTUPBIST_STATUS_GET_SB
AWR_RF_MISC_CONF_SET_MSG	AWR_RF_TEST_SOURCE_CONFIG_SET_SB
	AWR_RF_TEST_SOURCE_ENABLE_SET_SB
L	

Radar Messages	Associated sub-blocks
	AWR_RF_LDO_BYPASS_SB
	AWR_RF_PALOOPBACK_CFG_SB
	AWR_RF_PSLOOPBACK_CFG_SB
	AWR_RF_IFLOOPBACK_CFG_SB
	AWR_RF_GPADC_CFG_SET_SB
AWR_RF_MISC_CONF_GET_MSG	AWR_RF_TEMPERATURE_GET_SB
	AWR_AE_RF_CPUFAULT_SB
	AWR_AE_RF_ESMFAULT_SB
	AWR_AE_RF_INITCALIBSTATUS_SB
	AWR_AE_RF_FRAME_TRIGGER_RDY_SB
	AWR_AE_RF_GPADC_RESULT_DATA_SB
	AWR_FRAME_END_AE_SB
	AWR_ANALOGFAULT_AE_SB
	AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB
	AWR_RUN_TIME_CALIBRATION_SUMMARY_REPORT_AE_SB
	AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB
AWR_RF_ASYNC_EVENT_MSG1	AWR_MONITOR_REPORT_HEADER_AE_SB
	AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB
	AWR_MONITOR_TEMPERATURE_REPORT_AE_SB
	AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB
	AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB
	AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB
	AWR_MONITOR_TX0_POWER_REPORT_AE_SB
	AWR_MONITOR_TX1_POWER_REPORT_AE_SB
	AWR_MONITOR_TX2_POWER_REPORT_AE_SB
	AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB
	AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB
AWR_RF_ASYNC_EVENT_MSG2	AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB
	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_ SB
	AWR_MONITOR_TX0_BPM_REPORT_AE_SB
	AWR_MONITOR_TX1_BPM_REPORT_AE_SB
	AWR_MONITOR_TX2_BPM_REPORT_AE_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_REPORT_AE_ SB

Radar Messages	Associated sub-blocks
	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSREPORT_ AE_SB
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_RE- PORT_AE_SB
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_RE- PORT_AE_SB
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_RE- PORT_AE_SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_RE- PORT_AE_SB
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB
	AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB
	AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB
AWR_DEV_RFPOWERUP_MSG	AWR_DEV_RFPOWERUP_SB
AWR_DEV_CONF_SET_MSG	AWR_DEV_MCUCLOCK_CONF_SET_SB
	AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
	AWR_DEV_RX_DATA_PATH_CONF_SET_SB
	AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB
	AWR_DEV_RX_DATA_PATH_CLK_SET_SB
	AWR_DEV_LVDS_CFG_SET_SB
	AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB
	AWR_DEV_CSI2_CFG_SET_SB
	AWR_DEV_PMICCLOCK_CONF_SET_SB
	AWR_MSS_LATENTFAULT_TEST_CONF_SB
	AWR_MSS_PERIODICTESTS_CONF_SB
	AWR_DEV_TESTPATTERN_GEN_SET_SB
	AWR_DEV_CONFIGURATION_SET_SB
AWR_DEV_CONF_GET_MSG	AWR_DEV_MCUCLOCK_GET_SB
	AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB
	AWR_DEV_RX_DATA_PATH_CONF_GET_SB
	AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB
	AWR_DEV_RX_DATA_PATH_CLK_GET_SB
	AWR_DEV_LVDS_CFG_GET_SB

Radar Messages	Associated sub-blocks
	AWR_DEV_RX_CONTSTREAMING_MODE_CONF_GET_SB
	AWR_DEV_CSI2_CFG_GET_SB
	AWR_DEV_PMICCLOCK_CONF_GET_SB
	AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB
	AWR_MSS_PERIODICCONF_GET_SB
	AWR_DEV_TESTPATTERN_GEN_GET_SB
AWR_DEV_FILE_DOWNLOAD_MSG	AWR_DEV_FILE_DOWNLOAD_SB
AWR_DEV_FRAME_CONFIG_	AWR_DEV_FRAME_CONFIG_APPLY_SB
APPLY_MSG	AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB
	AWR_MSSVERSION_GET_SB
AWR_DEV_STATUS_GET_MSG	AWR_MSSCPUFAULT_STATUS_GET_SB
	AWR_MSSESMFAULT_STATUS_GET_SB
	AWR_AE_DEV_MSSPOWERUPDONE_SB
	AWR_AE_DEV_RFPOWERUPDONE_SB
	AWR_AE_MSS_CPUFAULT_SB
	AWR_AE_MSS_ESMFAULT_SB
AWR DEV ASYNC EVENT MSG	AWR_AE_MSS_BOOTERRORSTATUS_SB
AWR_DEV_ASTINC_EVENT_INISG	AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB
	AWR_AE_MSS_PERIODICTEST_STATUS_SB
	AWR_AE_MSS_RFERROR_STATUS_SB
	AWR_AE_MSS_VMON_ERRORSTATUS_SB
	AWR_AE_MSS_ADC_DATA_SB

4.2 AWR_ACK_MSG

The AWR_ACK_MSG is sent by the radar transceiver on a successful reception of a command after its CRC check.

Field Name	Number of bytes	Description
SYNC	4	Value = 0xABCDDCBA
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 01
		b15:6 MSGID Same as MSGID in the command
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
CRC	Variable	Based on CRCLEN field in FLAGS

4.3 AWR_NACK_MSG

The AWR_NACK_MSG is sent by the radar transceiver if the CRC check of the command fails.

Field Name	Number of bytes	Description
SYNC	4	Value = 0xABCDDCBA
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 10
		b15:6 MSGID Same as MSGID in the command
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
CRC	Variable	Based on CRCLEN field in FLAGS

4.4 AWR_ERROR_MSG

The AWR_RF_ERROR_MSG is sent by the radar transceiver on finding errors in the command send by host.

Field Name	Number of bytes	Description
SYNC	4	Value = 0xABCDDCBA
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 01
		b15:6 MSGID 0x00
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_RESP_ERROR_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.5 AWR_RF_STATIC_CONF_SET_MSG

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x04
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_CHAN_CONF_SET_SB
		AWR_ADCOUT_CONF_SET_SB

		AWR_LOWPOWERMODE_CONF_SET_SB
		AWR_DYNAMICPOWERSAVE_CONF_SET_SB
		AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
		AWR_RF_DEVICE_CFG_SB
		AWR_RF_RADAR_MISC_CTL_SB
		AWR_CAL_MON_FREQUENCY_LIMITS_SB
		AWR_RF_INIT_CALIBRATION_CONF_SB
		AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB
		AWR_CAL_DATA_RESTORE_SB
		AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.6 AWR_RF_STATIC_CONF_GET_MSG

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x05
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_CAL_DATA_SAVE_SB
		AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.7 AWR_RF_INIT_MSG

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x06
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_RF_INIT_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.8 AWR_RF_DYNAMIC_CONF_SET_MSG

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x08
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_PROFILE_CONF_SET_SB
		AWR_CHIRP_CONF_SET_SB

1	I	
		AWR_FRAME_CONF_SET_SB
		AWR_CONT_STREAMING_MODE_CONF_SET_SB
		AWR_CONT_STREAMING_MODE_EN_SB
		AWR_ADVANCED_FRAME_CONF_SB
		AWR_PERCHIRPPHASESHIFT_CONF_SB
		AWR_PROG_FILT_COEFF_RAM_SET_SB
		AWR_PROG_FILT_CONF_SET_SB
		AWR_CALIB_MON_TIME_UNIT_CONF_SB
		AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_ SB
		AWR_INTER_RX_GAIN_PHASE_CONTROL_SB
		AWR_RX_GAIN_TEMPLUT_SET_SB
		AWR_TX_GAIN_TEMPLUT_SET_SB
		AWR_LOOPBACK_BURST_CONF_SET_SB
		AWR_DYN_CHIRP_CONF_SET_SB
		AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB
		AWR_DYN_CHIRP_ENABLE_SB
		AWR_INTERCHIRP_BLOCKCONTROLS_SB
		AWR_SUBFRAME_START_CONF_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.9 AWR_RF_DYNAMIC_CONF_GET_MSG

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x09
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message

CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_PROFILE_CONF_GET_SB
		AWR_CHIRP_CONF_GET_SB
		AWR_FRAME_CONF_GET_SB
		AWR_ADVANCED_FRAME_CONF_GET_SB
		AWR_RX_GAIN_TEMPLUT_GET_SB
		AWR_TX_GAIN_TEMPLUT_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.10 AWR_RF_FRAME_TRIG_MSG

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x0A
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_FRAMESTARTSTOP_CONF_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.11 AWR_RF_ADVANCED_FEATURES_CONF_SET_MSG

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x0C
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_BPM_COMMON_CONF_SET_SB
		AWR_BPM_CHIRP_CONF_SET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.12 AWR_RF_MONITORING_CONF_SET_MSG

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x0E
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB
		AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB

		AWR_MONITOR_ANALOG_ENABLES_CONF_SB
		AWB MONITOB TEMPERATURE SONE SB
		AWB_MONITOR_RX_GAIN_PHASE_CONF_SB
		AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB
		AWR_MONITOR_RX_IFSTAGE_CONF_SB
		AWR_MONITOR_TX0_POWER_CONF_SB
		AWR_MONITOR_TX1_POWER_CONF_SB
		AWR_MONITOR_TX2_POWER_CONF_SB
		AWR_MONITOR_TX0_BALLBREAK_CONF_SB
		AWR_MONITOR_TX1_BALLBREAK_CONF_SB
		AWR_MONITOR_TX2_BALLBREAK_CONF_SB
		AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_ SB
		AWR_MONITOR_TX0_BPM_CONF_SB
		AWR_MONITOR_TX1_BPM_CONF_SB
		AWR_MONITOR_TX2_BPM_CONF_SB
		AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_ SB
		AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_ CONF_SB
		AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ CONF_SB
		AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ CONF_SB
		AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ CONF_SB
		AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ CONF_SB
		AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIG- NALS_CONF_SB
		AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIG- NALS_CONF_SB
		AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_ CONF_SB
		AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB
		AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_ SB
		AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB
		AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB
		AWR_ANALOG_FAULT_INJECTION_CONF_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.13 AWR_RF_STATUS_GET_MSG

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x11
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_RF_VERSION_GET_SB
		AWR_RF_CPUFAULT_STATUS_GET_SB
		AWR_RF_ESMFAULT_STATUS_GET_SB
		AWR_RF_DIEID_GET_SB
		AWR_RF_BOOTUPBIST_STATUS_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.14 AWR_RF_MONITORING_REPORT_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x13

MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_RF_DFE_STATISTICS_REPORT_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.15 AWR_RF_MISC_CONF_SET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x16		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_TEST_SOURCE_CONFIG_SET_SB		
		AWR_RF_TEST_SOURCE_ENABLE_SET_SB		
		AWR_RF_LDO_BYPASS_SB		
		AWR_RF_PALOOPBACK_CFG_SB		
		AWR_RF_PSLOOPBACK_CFG_SB		
		AWR_RF_IFLOOPBACK_CFG_SB		
		AWR_RF_GPADC_CFG_SET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.16 AWR_RF_MISC_CONF_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x17		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_TEMPERATURE_GET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.17 AWR_RF_ASYNC_EVENT_MSG1

The AWR_RF_ASYNC_EVENT_MSG1 is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDBCA		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 11		
		b15:6 MSGID 0x80		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		

1	I	
		AWR_AE_RF_CPUFAULT_SB
		AWR_AE_RF_ESMFAULT_SB
		AWR_AE_RF_INITCALIBSTATUS_SB
		AWR_AE_RF_FRAME_TRIGGER_RDY_SB
		AWR_AE_RF_GPADC_RESULT_DATA_SB
		AWR_FRAME_END_AE_SB
		AWR_ANALOGFAULT_AE_SB
		AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB
		AWR_RUN_TIME_CALIBRATION_SUMMARY_REPORT_ AE_SB
		AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_ SB
		AWR_MONITOR_REPORT_HEADER_AE_SB
		AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB
		AWR_MONITOR_TEMPERATURE_REPORT_AE_SB
		AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB
		AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB
		AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB
		AWR_MONITOR_TX0_POWER_REPORT_AE_SB
		AWR_MONITOR_TX1_POWER_REPORT_AE_SB
		AWR_MONITOR_TX2_POWER_REPORT_AE_SB
		AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB
		AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.18 AWR_RF_ASYNC_EVENT_MSG2

The AWR_RF_ASYNC_EVENT_MSG2 is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value =	0xABCDDBCA	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	11
		b15:6	MSGID	0x81

MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB	
		AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_RE- PORT_AE_SB	
		AWR_MONITOR_TX0_BPM_REPORT_AE_SB	
		AWR_MONITOR_TX1_BPM_REPORT_AE_SB	
		AWR_MONITOR_TX2_BPM_REPORT_AE_SB	
		AWR_MONITOR_SYNTHESIZER_FREQUENCY_RE- PORT_AE_SB	
		AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSRE- PORT_AE_SB	
		AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB	
		AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB	
		AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB	
		AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB	
		AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIG- NALS_REPORT_AE_SB	
		AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIG- NALS_REPORT_AE_SB	
		AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_ AE_SB	
		AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB	
		AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_ SB	
CRC	Variable	Based on CRCLEN field in FLAGS	

4.19 AWR_DEV_RFPOWERUP_MSG

The AWR_DEV_RFPOWERUP_MSG is sent by the host to the MSS. This message indicates that BSS can now be powered up.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDBCA		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x200		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_DEV_RFPOWERUP_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.20 AWR_DEV_CONF_SET_MSG

The AWR_DEV_CONF_SET_MSG is sent by the host to the radar transceiver. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Descri	otion	
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x202
MSGLEN	2	Length length)	of the message in	bytes (do not include sync
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_D	EV_MCUCLOCK_CC	NF_SET_SB

		AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
		AWR_DEV_RX_DATA_PATH_CONF_SET_SB
		AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB
		AWR_DEV_RX_DATA_PATH_CLK_SET_SB
		AWR_DEV_LVDS_CFG_SET_SB
		AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_ SB
		AWR_DEV_CSI2_CFG_SET_SB
		AWR_DEV_PMICCLOCK_CONF_SET_SB
		AWR_MSS_LATENTFAULT_TEST_CONF_SB
		AWR_MSS_PERIODICTESTS_CONF_SB
		AWR_DEV_TESTPATTERN_GEN_SET_SB
		AWR_DEV_CONFIGURATION_SET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.21 AWR_DEV_CONF_GET_MSG

The AWR_DEV_CONF_GET_MSG is sent by the host to the radar transceiver to read back the configuration values.

Field Name	Number of bytes	Description	
SYNC	4	Value = 0x43211234	
OPCODE	2	Bits Variable name Value	
		b3:0 DIRECTION See Table 2.2	
		b5:4 MSGTYPE 00	
		b15:6 MSGID 0x203	
MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_DEV_MCUCLOCK_GET_SB	
		AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB	
		AWR_DEV_RX_DATA_PATH_CONF_GET_SB	

		AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB
		AWR_DEV_RX_DATA_PATH_CLK_GET_SB
		AWR_DEV_LVDS_CFG_GET_SB
		AWR_DEV_RX_CONTSTREAMING_MODE_CONF_GET_ SB
		AWR_DEV_CSI2_CFG_GET_SB
		AWR_DEV_PMICCLOCK_CONF_GET_SB
		AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB
		AWR_MSS_PERIODICCONF_GET_SB
		AWR_DEV_TESTPATTERN_GEN_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.22 AWR_DEV_FILE_DOWNLOAD_MSG

The AWR_DEV_FILE_DOWNLOAD_MSG is sent by the host to MSS. This message sends a file to be written into the device.

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x204
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_DEV_FILE_DOWNLOAD_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.23 AWR_DEV_FRAME_CONFIG_APPLY_MSG

The AWR_DEV_FRAME_CONFIG_APPLY_MSG is sent by the host to MSS. This message indicates to MSS to apply all the regular framing mode configurations related to ADC buffer and CBUFF.

Field Name	Number of bytes	Description				
SYNC	4	Value = 0x43211234				
OPCODE	2	Bits Variable name Value				
		b3:0 DIRECTION See Table 2.2				
		b5:4 MSGTYPE 00				
		b15:6 MSGID 0x206				
MSGLEN	2	Length of the message in bytes (do not include sync length)				
FLAGS	2	See Section 2.3.2				
REMCHUNKS	2	Value = 0				
NSBC	2	Number of sub blocks contained in the message				
CHKSUM	2	See Section 2.3.2				
MSGDATA	Variable	Supported sub blocks				
		AWR_DEV_FRAME_CONFIG_APPLY_SB				
		AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB				
CRC	Variable	Based on CRCLEN field in FLAGS				

4.24 AWR_DEV_STATUS_GET_MSG

The AWR_DEV_STATUS_GET_MSG is sent by the host to MSS to get some status information from the device.

Field Name	Number of bytes	Description					
SYNC	4	Value = 0x43211234					
OPCODE	2	Bits Variable name Value					
		b3:0 DIRECTION See Table 2.2					
		b5:4 MSGTYPE 00					
		b15:6 MSGID 0x207					
MSGLEN	2	Length of the message in bytes (do not include sync length)					
FLAGS	2	See Section 2.3.2					
REMCHUNKS	2	Value = 0					
NSBC	2	Number of sub blocks contained in the message					
CHKSUM	2	See Section 2.3.2					
MSGDATA	Variable	Supported sub blocks					

		AWR_MSSVERSION_GET_SB
		AWR_MSSCPUFAULT_STATUS_GET_SB
		AWR_MSSESMFAULT_STATUS_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.25 AWR_DEV_ASYNC_EVENT_MSG

The AWR_DEV_ASYNC_EVENT_MSG is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description					
SYNC	4	Value = 0x43211234					
OPCODE	2	Bits Variable name Value					
		b3:0 DIRECTION See Table 2.2					
		b5:4 MSGTYPE 11					
		b15:6 MSGID 0x280					
MSGLEN	2	Length of the message in bytes (do not include sync length)					
FLAGS	2	See Section 2.3.2					
REMCHUNKS	2	Value = 0					
NSBC	2	Number of sub blocks contained in the message					
CHKSUM	2	See Section 2.3.2					
MSGDATA	Variable	Supported sub blocks					
		AWR_AE_DEV_MSSPOWERUPDONE_SB					
		AWR_AE_DEV_RFPOWERUPDONE_SB					
		AWR_AE_MSS_CPUFAULT_SB					
		AWR_AE_MSS_ESMFAULT_SB					
		AWR_AE_MSS_BOOTERRORSTATUS_SB					
		AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB					
		AWR_AE_MSS_PERIODICTEST_STATUS_SB					
		AWR_AE_MSS_RFERROR_STATUS_SB					
		AWR_AE_MSS_VMON_ERRORSTATUS_SB					
		AWR_AE_MSS_ADC_DATA_SB					
CRC	Variable	Based on CRCLEN field in FLAGS					

5 Radar Functional APIs

This section describes all the radar interface sub blocks that are used in messages for communicating with the radar transceiver. Some of the sub blocks are status responses from the radar device.

5.1 Sub block related to AWR_ERROR_MSG

5.1.1 Sub block 0x0000 – AWR_RESP_ERROR_SB

This sub block contains the error response for an API command. Table 5.1 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0000
SBLKLEN	2	Value = 8
API_RESP	2	0x0001 ERROR_CMD: Incorrect MSGID
		0x0002 ERROR_CMD: No Sub block found in the MSG
		0x0003 ERROR_CMD: Incorrect Sub block ID
		0x0004 ERROR_CMD: Incorrect Sub block Length
		0x0005 ERROR_CMD: Incorrect Sub block data
		0x0006 ERROR_PROC: Error in processing the com- mand
		0x0007 ERROR_FILECRCMISMATCH: File CRC mis- matched
		0x0008 ERROR_FILETYPEMISMATCH: File type mis- matched w.r.t. magic number
		0x0009 See Section 6 for details on error codes from each - API
		0xFFFF

Table 5.1: AWR_RESP_ERROR_SB

API_RESP_ER-	2	0x0000	Sub-Block ID in which	Error	Occurred	for	sub
ROR_SBC_ID		_	block related errors				
		0xFFFF					

5.2 Sub blocks related to AWR_RF_STATIC_CONF_SET_MSG

5.2.1 Sub block 0x0080 – AWR_CHAN_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - how many RX and TX channels are needed for operation. It also defines static configurations related to whether the sensor uses a single xWR1xxx or multiple xWR1xxx chips to realize a larger antenna array (multiple is applicable only in xWR12xx). Table 5.2 describes the contents of this sub block.

Field Name	Number of bytes	Descr	iption			
SBLKID	2	Value	= 0x008	30		
SBLKLEN	2	Value	= 12			
RX_CHAN_EN	2	This fie	This field specifies which RX channels are to be enabled			
		Bit	Descr	iption		
		b0	RX_CI	HAN0_EN		
			0	Disable RX Channel 0		
			1	Enable RX Channel 0		
		b1	1 RX_CHAN1_EN			
			0	Disable RX Channel 1		
			1 Enable RX Channel 1			
		b2	RX_CHAN2_EN			
			0	Disable RX Channel 2		
			1	Enable RX Channel 2		
		b3	RX_CI	HAN3_EN		
			0	Disable RX Channel 3		
			1	Enable RX Channel 3		
		b15:4	5:4 RESERVED			
			0b000	00000000		

Table 5.2: AWR_CHAN_CONF_SET_SB contents

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

		1		nom previous page		
TX_CHAN_EN	2		This field specifies which TX channels are to be enabled			
		Bit	Bit Description			
		b0	TX_C	HAN0_EN		
			0	Disable TX Channel 0		
			1	Enable TX Channel 0		
		b1	TX₋C	HAN1_EN		
			0	Disable TX Channel 1		
			1	Enable TX Channel 1		
		b2	TX_C	HAN2_EN		
			0	Disable TX Channel 2		
			1	Enable TX Channel 2		
		b15:3	RESI	ERVED		
			0b00	00000000		
CASCADING_	2	This field	d specif	ies the cascading configuration.		
CFG		Value Description				
		0x0000	0x0000 SINGLECHIP: Single xWR1xxx sensor application			
		0x0001 MULTICHIP_MASTER: Multiple xWR12xx sensor application. This xWR12xx is the master chip and generates LO and conveys to other xWR12xx's in the sensor. This is applicable only in xWR12xx.				
	0x0002 MULTICHIP_SLAVE: Multiple xWR plication. This AWR12xx is a slave LO conveyed to it by the master x sensor. This is applicable only in xW MULTICHIP_MASTER and MULTICHIP_SLAV					
		referred to as MULTICHIP applications, where larger anter array sizes are possible in comparison with SINGLECH cases.				

Table 5.2 – continued from previous page

1		1	
		Bit	Description
		b0	FM_CW_CLKOUT_MASTER_DIS Applicable only in MUTICHIP_MASTER device. Default value is 0 0 Enable FM_CW_CLKOUT on master
			1 Disable FM_CW_CLKOUT on master
		b1	FM_CW_SYNCOUT_MASTER_DIS Applicable only in MULTICHIP_MASTER device. Default value is 0 0 Enable FM_CW_SYNCOUT on master
			1 Disable FM_CW_SYNCOUT on master
		b2	FM_CW_CLKOUT_SLAVE_EN Applicable only in MULTICHIP_SLAVE device. Default value is 0 0 Disable FM_CW_CLKOUT on slave
			1 Enable FM_CW_CLKOUT on slave
CASCADING_ PINOUTCFG	2	b3	FM_CW_SYNCOUT_SLAVE_EN Applicable only in MULTICHIP_SLAVE device. Default value is 0 0 Disable FM_CW_SYNCOUT on slave
			1 Enable FM_CW_SYNCOUT on slave
		b4	INTLO_MASTER_EN Applicable only in MULTICHIP_MASTER device. Default value is 0 0 Use externally looped back LO
			1 Use internal LO in master Note that the externally looped-back LO mode is useful when length-matching the 20 GHz path between master and slave device.
		b5	OSCCLKOUT_MASTER_DIS Applicable only in MULTICHIP_MASTER device. Default value is 0
			0 Enable OSCCLKOUT in master
		b1E-C	1 Disable OSCCLKOUT in master
		b15:6	RESERVED

5.2.2 Sub block $0x0082 - AWR_ADCOUT_CONF_SET_SB$

This sub block contains static device configurations (applicable for the given power cycle) - regarding the data format of the ADC output (including the digital filtering). Table 5.3 describes the contents of this sub block.

Field Name	Number	Description				
	of bytes	N/ L 0.0000				
SBLKID	2	Value = 0x0082				
SBLKLEN	2	Value = 12				
NUM_ADC_BITS	1	Bit Description				
		b1:0 Value Definition				
		00 12 bits				
		01 14 bits				
		10 16 bits				
		Other RESERVED				
		b7:2 RESERVED				
		0b00000				
FULL_SCALE_ REDUCTION_ FACTOR	1	Number of bits to reduce ADC full scale by Valid range: 0 to (16 – Number of ADC bits) For e.g. for 12 bit ADC output, this field can take va 1, 2 or 3 For 14 bit ADC output, this field can take values 0, For 16 bit ADC output, this field can take only value Example: If the user desires 12 bit ADC output, the digital front end (DFE) chain drops 4 LSBs before the data in ADC buffer (DFE output is 16 bits wide) user sets FULL_SCALE_REDUCTION_FACTOR as the DFE will drop only 3 LSBs but still restricting the in ADC buffer to be within $\pm 2^{12}$. This allows wide swings in smaller signal conditions.	1 or 2 0 hen the placing . If the 1, then he data			
ADC_OUT_FMT	2	Bits Description				
		b1:0 Value Definition				
		00 Real				
		01 Complex 1x (image band filtered out)				
		10 Complex 2x (image band visible)				
		11 Pseudo Real				
		b15:2 RESERVED				
		0b000000000000				
RESERVED	2	0x0000				
RESERVED	2	0x0000				

Table 5.3: AWR_ADCOUT_CONF_SB contents

5.2.3 Sub block 0x0083 – AWR_LOWPOWERMODE_CONF_SET_SB

This sub block contains static device configurations (applicable for this power cycle) - Sigma Delta ADC root sampling clock rate (reducing rate to half to save power in small IF bandwidth applications).

Table 5.4 describes the contents of this sub block.

Table 5.4: AWR_LOWPOWERMODE_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0083
SBLKLEN	2	Value = 8
RESERVED	2	0x0000
LP_ADC_MODE	2	Value Definition
		0x00 Regular ADC mode
		0x01 Low power ADC mode

NOTE:	Low power ADC mode is mandatory on a 5 MHz part variant (for
	e.g. xWR1642).

5.2.4 Sub block 0x0084 – AWR_DYNAMICPOWERSAVE_CONF_SET_SB

This sub block defines static device configuration - whether to enable dynamic power saving during inter-chirp IDLE times by turning off various circuits e.g. TX, RX, LO Distribution blocks. If Idle time + Tx start time < 10us or Idle time < 3.5us then inter-chirp dynamic power save option will be disabled, in that case, 15us of inter-burst idle time will be utilized to configure sequencer LO, TX and RX signal timings by firmware.

Table 5.4 describes the contents of this sub block.

Table 5.5:	AWR	_DYNAMICPOWERSAVE	_CONF_SET_SB contents
-------------------	-----	-------------------	-----------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0084
SBLKLEN	2	Value = 8

BLOCK_CFG	2	Bits	Definition
		b0	Enable power save by switching off TX during inter-chirp IDLE period 0 Disable 1 Enable Default value: 1 (power saving is enabled)
		b1	Enable power save by switching off RX during inter-chirp IDLE period 0 Disable 1 Enable Default value: 1 (power saving is enabled)
		b2	Enable power save by switching off LO Distribu- tion blocks during inter-chirp IDLE period 0 Disable 1 Enable Default value: 1 (power saving is enabled)
		b15:3	RESERVED 0b000000000000
RESERVED	2	0x000	

5.2.5 Sub block 0x0085 – AWR_HIGHSPEEDINTFCLK_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - regarding high speed interface clock rates which are related to sending the ADC data from AWR device to the host in either LVDS or CSI2 format.

Table 5.6 describes the contents of this sub block.

Table 5.6: AWR_HIGHSPEEDINTFCLK_CONF_SET_SB	contents
---	----------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0085
SBLKLEN	2	Value = 8

HSICLKRATE_ CODE	2	rate, need times the and $N = 1$ Bit 15:5 =	ded by the L	VDS or CS data rate, w ode. all 0).	I2 module. /here N = 2	ce input clock It should be N 2 in DDR mode as follows:
			b1:0 00	b1:0 01	b1:0 10	b1:0 11
		b3:2 00	Reserved	800 MHz	400 MHz	200 MHz
		b3:2 01	Reserved	900 MHz	450 MHz	225 MHz
		b3:2 10	Reserved	1200 MHz	600 MHz	300 MHz
		b3:2 11	Reserved	1800 MHz	Reserved	Reserved
		choose B	•	1, and for	•	te with DDR, output rate with
RESERVED	2	0x0000				

5.2.6 Sub block 0x0086 – AWR_RF_DEVICE_CFG_SB

This sub block configures the direction of async event from BSS. Typically async events are sent to MSS. With this API, the user can configure the destination of async event. Table 5.7 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0086
SBLKLEN	2	Value = 16

Table 5.7:	AWR_RF_DEVICE.	CFG_SB contents
-------------------	----------------	-----------------

RF_AE_DIREC- 4 Bits Definition TION b1:0 ASYNC_EVENT_DIR 00 BSS to MSS 01 BSS to HOST 10 BSS to DSS 11 RESERVED The ASYNC_EVENT_DIR controls the direction for 1 CBULEAULT
00 BSS to MSS 01 BSS to HOST 10 BSS to DSS 11 RESERVED The ASYNC_EVENT_DIR controls the direction fo following ASYNC_EVENTS
01 BSS to HOST 10 BSS to DSS 11 RESERVED The ASYNC_EVENT_DIR controls the direction for following ASYNC_EVENTS
10 BSS to DSS 11 RESERVED The ASYNC_EVENT_DIR controls the direction fo following ASYNC_EVENTS
11 RESERVED The ASYNC_EVENT_DIR controls the direction fo following ASYNC_EVENTS
The ASYNC_EVENT_DIR controls the direction for following ASYNC_EVENTS
following ASYNC_EVENTS
1. CPU_FAULT
2. ESM_FAULT
3. ANALOG_FAULT
All other ASYNC_EVENTs are sent to the subsystem which issues the API
Default value: 0b00
b3:2 MONITORING_ASYNC_EVENT_DIR
00 BSS to MSS
01 BSS to HOST
10 BSS to DSS
11 RESERVED
Default value: 0b00
b31:4 RESERVED
0x000000
AE_CONTROL 1 Bits Definition
b0 FRAME_START_ASYNC_EVENT_DIS
0 Frame Start async event enable
1 Frame Start async event disable
Default value: 0
b1 FRAME_STOP_ASYNC_EVENT_DIS
0 Frame Stop async event enable
1 Frame Stop async event disable
Default value: 0
b7:2 RESERVED
b7:2 RESERVED 0b000000

BSS_DIG_CTRL	1	Bits	Definition
		b0	WDT_DISABLE
			0 Keep watchdog disabled
			1 Enable watch dog
		b7:1	RESERVED
			0b000000
ASYNC_EVENT_	1	Value	Description
CRC_CONFIG		0	16 bit CRC for BSS async events
		1	32 bit CRC for BSS async events
		2	64 bit CRC for BSS async events
RESERVED	3	0x000	000

5.2.7 Sub block 0x0087 – AWR_RF_RADAR_MISC_CTL_SB

This sub block controls miscellaneous global RF controls for e.g. per-chirp phase shifter global control.

Table 5.8 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0087
SBLKLEN	2	Value = 12
		Bits Definition
		b0 PERCHIRP_PHASESHIFTER_EN
		0 Per chirp phase shifter is disabled
		1 Per chirp phase shifter is enabled
RF_MISC_CTL	4	This control is applicable only in devices which support phase shifter (refer data sheet). For other devices, this is a RESERVED bit and should be set to 0.
		Default value: 0
		b31:1 RESERVED
		0b000_0000_0000_0000_0000_0000_0000_0000
RESERVED	4	0x0000000

Table 5.8: AWR_RF_MISC_CTL_SB contents

5.2.8 Sub block 0x0088 - AWR_CAL_MON_FREQUENCY_LIMITS_SB

This sub block sets the limits for RF frequency transmission. Table 5.9 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0088
SBLKLEN	2	Value = 16
FREQ_LIMIT_ LOW	2	The sensor's lower frequency limit for calibrations and monitoring is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 100 MHz Valid range: 760 to 810 Default value: 760
FREQ_LIMIT_ HIGH	2	The sensor's higher frequency limit for calibrations and monitoring is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 100 MHz
		Valid range: 760 to 810
		Default value: 810
		NOTE: FREQ_LIMIT_HIGH should be strictly greater than FREQ_LIMIT_LOW
		Examples: For an LRR device deployed in the US, one might typically configure FREQ_LIMIT_LOW to 760 and FREQ_LIMIT_HIGH to 770.
RESERVED	8	RESERVED
		0x0000_0000_0000

Table 5.9: AWR_CAL_MON_FREQUENCY_LIMITS_SB contents

5.2.9 Sub block 0x0089 – AWR_RF_INIT_CALIBRATION_CONF_SB

This sub block configures device to perform boot time calibration. Table 5.10 describes the contents of this sub block.

Table 5.10:	AWR_RF_INIT_CALIBRATION_CONF_SB contents	5
-------------	--	---

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0089
SBLKLEN	2	Value = 16

	10010 0.1	to – continueu nom previous page
RF_INIT_CALIB_ ENABLE_MASK	4	Normally, upon receiving RF INIT message, the BSS per- forms all relevant initial calibrations. This step can be dis- abled by the host by setting the corresponding calibration bit in this field to 0x0. If disabled, the host needs to send the INJECT CALIB DATA message so that the BSS can operate using the calibration data thus injected. Internal/Debug use: Each of these calibrations can be se-
		lectively disabled by issuing this message before RF INIT message.
		Bit Definition
		b0 RESERVED
		b1 RESERVED
		b2 RESERVED
		b3 RESERVED
		b4 Enable LODIST calibration
		b5 Enable RX ADC DC offset calibration
		b6 Enable HPF cutoff calibration
		b7 Enable LPF cutoff calibration
		b8 Enable Peak detector calibration
		b9 Enable TX power calibration
		b10 Enable RX gain calibration
		b11 Enable TX Phase calibration (Device dependent feature, please refer data sheet)
		b12 Enable RX IQMM calibration
		b31:13 RESERVED
		0b000_0000_0000_0000
		Default value: 0x1FF0 NOTE: If TX power calibration is disabled, then backoff other than 0 dB is not supported
RESERVED	4	0x0000000
RESERVED	4	0x0000000

5.2.10 Sub block 0x008A - AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB

This sub block sets the limits for RF frequency transmission for each TX and also TX power limits.

$\textbf{Table 5.11: AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB contents}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008A
SBLKLEN	2	Value = 28
FREQ_LIMIT_ LOW_TX0	2	The sensor's lower frequency limit for calibrations and monitoring for TX0 is encoded in 2 bytes (16 bit unsigned number)
		1 LSB = 10 MHz
		Valid range: 7600 to 8100
		Default value: 7600
FREQ_LIMIT_ LOW_TX1	2	The sensor's lower frequency limit for calibrations and monitoring for TX1 is encoded in 2 bytes (16 bit unsigned number)
		1 LSB = 10 MHz
		Valid range: 7600 to 8100
		Default value: 7600
FREQ_LIMIT_ LOW_TX2	2	The sensor's lower frequency limit for calibrations and monitoring for TX2 is encoded in 2 bytes (16 bit unsigned number)
		1 LSB = 10 MHz
		Valid range: 7600 to 8100
		Default value: 7600
FREQ_LIMIT_ HIGH_TX0	2	The sensor's higher frequency limit for calibrations and monitoring for TX0 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz Valid range: 7600 to 8100 Default value: 8100 NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
FREQ_LIMIT_ HIGH_TX1	2	The sensor's higher frequency limit for calibrations and monitoring for TX1 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz Valid range: 7600 to 8100 Default value: 8100 NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn

FREQ_LIMIT_ HIGH_TX2	2	The sensor's higher frequency limit for calibrations and monitoring for TX2 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz Valid range: 7600 to 8100 Default value: 8100 NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
TX0_POWER_ BACKOFF	1	TX0 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
TX1_POWER_ BACKOFF	1	TX1 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
TX2_POWER_ BACKOFF	1	TX2 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
RESERVED	1	0x00
RESERVED	2	0x0000

5.2.11 Sub block 0x008B – AWR_CAL_DATA_RESTORE_SB

This sub block restores the calibration data which was stored previously using the AWR_CAL_ DATA_SAVE_SB command. The async event AWR_AE_RF_INITCALIBSTATUS_SB will be issued after this API indicating that the calibration data is applied.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008B
SBLKLEN	2	Value = 232
RESERVED	2	0x0000
CHUNK_ID	2	Index of the current chunk

Table 5.12: AWR_CAL_DATA_RESTORE_SB cont	tents
--	-------

CAL_DATA	224	Calibration data which was stored in non-volatile memory
----------	-----	--

5.2.12 Sub block 0x008C - AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB

This sub block restores the calibration data which was stored previously using the AWR_PHASE_ SHIFTER_CAL_DATA_SAVE_SB command.

Field Name	Number of bytes	Description			
SBLKID	2	Value	Value = 0x008C		
SBLKLEN	2	Value	= 136		
TX₋INDX	1	Index applie		for which the following data	
CAL_APPLY	1	mitter	Set this to 1 after applying calibration data from all trans- mitters. This bit will indicate to the firmware to start the correction process.		
OBS_PHSHIFT_ DATA	128	Observed phase shift corresponding to each desired phase shift. Index n corresponds to desired phase shift o $n\times 5.625^\circ.$ For e.g.			
		n	Desired phase shift	Observed phase shift is injected in the following bytes	
		0	0.000°	byte[1], byte[0]	
		1	5.625°	byte[3], byte[2]	
		2	11.250°	byte[5], byte[4]	
		3	16.875°	byte[7], byte[6]	
		:	:		
		63	354.375°	byte[127], byte[126]	
		$1 \text{ LSB} = 360^{\circ}/2^{10}$			
RESERVED	2	0x0000			

 $Table \ 5.13: \ {\rm AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB \ contents}$

5.3 Sub blocks related to AWR_RF_STATIC_CONF_GET_MSG

5.3.1 Sub block 0x00A0 – 0x00AA – RESERVED

5.3.2 Sub block 0x00AB - AWR_CAL_DATA_SAVE_SB

This sub block reads the calibration data from the device which can be injected later using the AWR_CAL_DATA_RESTORE_SB command.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x00AB	
SBLKLEN	2	Value = 8	
RESERVED	2	0x0000	
CHUNK₋ID	2	Index of the requested chunk	
		Valid values: 0 to NUM_CHUNKS - 1	

Table 5.14: AWR_CAL_DATA_SAVE_SB contents

Response to the above command will contain the calibration data which is formatted as shown below

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x00AB	
SBLKLEN	2	Value = 232	
NUM_CHUNKS	2	Total number of calibration data chunks	
CHUNK_ID	2	Current chunk number	
CAL_DATA	224	Calibration data	

Table 5.15:AWR_CAL_DATA_SAVE_SB response packet contents

5.3.3 Sub block 0x00AC - AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB

This sub block reads the phase shifter calibration data from the device which can be injected later using the AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB command.

${\bf Table \ 5.16: \ AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB \ contents}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AC
SBLKLEN	2	Value = 8
TX₋INDX	1	Index of the transmitter channel for which the phase shift is desired
RESERVED	3	0x00000

Response to the above command will contain the phase shifter calibration data which is formatted as shown below

 Table 5.17:
 AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB response packet contents

Field Name	Number	Description		
	of bytes			
SBLKID	2	Value = 0	x00AC	
SBLKLEN	2	Value = 13	36	
TX_INDX	1		the transmitter cha ft values applies	nnel for which the following
RESERVED	1	0x00		
OBS_PHSHIFT_ DATA	128	Observed phase shift corresponding to each desired phase shift. Index n corresponds to desired phase shift of $n \times 5.625^{\circ}$. For e.g.		
		n De	esired phase shift	Observed phase shift is read in the following bytes
		0	0.000°	byte[1], byte[0]
		1	5.625°	byte[3], byte[2]
		2	11.250°	byte[5], byte[4]
		3	16.875°	byte[7], byte[6]
		:	:	
		63	354.375°	byte[127], byte[126]
		1 LSB = 3	$60^{\circ}/2^{10}$	
RESERVED	2	0x0000		

5.4 Sub blocks related to AWR_RF_INIT_MSG

5.4.1 Sub block 0x00C0 – AWR_RF_INIT_SB

This sub block, needed to be initially issued, triggers one time calibrations such as those related to APLL and synthesizer. The BSS processor is woken up upon receiving this sub block, the RF analog and digital baseband sections are initialized.

Table 5.18 describes the content of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x00C0	
SBLKLEN	2	Value = 4	

Table 5.18: AWR_RF_INIT_SB

NOTE:	This sub block will be acknowledged immediately but an async
	event AWR_AE_RF_INITCALIBSTATUS_SB from BSS will indicate
	that the RF initialization is complete. No commands shall be sent
	to BSS till the async event is received.

5.5 Sub blocks related to AWR_RF_DYNAMIC_CONF_SET_MSG

5.5.1 Sub block 0x0100 - AWR_PROFILE_CONF_SET_SB

This sub block contains FMCW radar chirp profiles or properties (FMCW slope, chirp duration, TX power etc.). Since the device supports multiple profiles, each profile is defined in this sub block. Internal RF and analog calibrations may be triggered upon receiving this sub block and ASYNC_EVENT response sent once completed.

NOTE:	This API can be issued dynamically to change profile parameters. Few parameters which cannot be changed are
	1. PF_NUM_ADC_SAMPLES
	2. PF_DIGITAL_OUTPUT_SAMPLING_RATE
	3. Programmable filter coefficients in xWR1642 or xWR1843

Table 5.19 describes the contents of this sub block.

Field Name	Number	Description		
	of bytes			
SBLKID	2		e = 0x0100	
SBLKLEN	2	Value		
PF_INDX	2	The p cable	profile index for which the rest of the fields are appli- e for	
PF_VCO_SE-	1	Bit	Description	
LECT		b0	FORCE_VCO_SEL	
			0 Use internal VCO selection	
			1 Forced external VCO selection	
		b1	VCO_SEL	
			0 VCO1 (76 - 78 GHz)	
			1 VCO2 (77 – 81 GHz)	
		 NOTE: There is an overlap region of 77-78 GHz in which any of the VCOs can be used, for other regions use only the VCO which can work in that region. For e.g. for 76-78 GHz use only VCO1 and for 77-81GHz use only VCO2, for 77-78 GHz, any VCO can be used. Also note that users can intermix chirps from different VCOs within the same frame. b7:2 RESERVED 0b000000 		
PF_CALLUT_	1	Bit	Description	
UPDATE		b0	RETAIN_TXCAL_LUT	
			0 Update TX calibration LUT	
			1 Do not update TX calibration LUT	
		b1	RETAIN_RXCAL_LUT	
			0 Update RX calibration LUT and update RX IQMM correction	
			1 Do not update RX calibration LUT	
		b7:2	RESERVED (set it to 0b000000)	
		If PF_TX_OUTPUT_POWER_BACKOFF is changed set RETAIN_TXCAL_LUT to 0, else set it to 1 and i RX_GAIN or if sweep bandwidth is changed, then set TAIN_RXCAL_LUT to 0 else set them to 1		

Table 5.19: AWR_PROFILE_CONF_SB contents

	1			
PF_FREQ_ START_CONST	4	Start frequency for this profile 1 LSB = $3.6e9/2^{26}$ Hz \approx 53.644 Hz Valid range: 0x5471C71B to 0x5A000000		
PF_IDLE_TIME_ CONST	4	Idle time for each profile 1 LSB = 10 ns Valid range: 0 to 524287		
PF_ADC_START_ TIME_CONST	4	Time of starting of ADC capture relative to the knee of the ramp 1 LSB = 10 ns Valid range: 0 to 4095		
PF_RAMP_END_ TIME	4	End of ramp time relative to the knee of the ramp 1 LSB = 10 ns Valid range: 0 to 500000 Ensure that the total frequency sweep is either within 76-78 GHz or 77-81 GHz		
PF_TX_OUT-	4	Bits Description		
		b7:0 TX0 output power back off		
BACKOFF		b15:8 TX1 output power back off		
		b23:16 TX2 output power back off		
		b31:24 RESERVED (set it to 0x00)		
		This field defines how much the transmit power should be reduced from the maximum.		
		1 LSB = 1 dB NOTE: For best inter-TX channel matching performance, same chirp profile and same TX backoff value should be used for all the TXs that are used in beam-forming		
PF_TX_PHASE_	4	Bits Description		
SHIFTER		b1:0 RESERVED (set it to 0b00)		
		b7:2 TX0 phase shift value		
		1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$		
		b9:8 RESERVED (set it to 0b00)		
		b15:10 TX1 phase shift value		
		1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$		
		b17:16 RESERVED (set it to 0b00)		
		b23:18 TX2 phase shift value		
		$1 \text{ LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ}$		
		b31:24 RESERVED		
		0x00		
		This field defines the additional phase shift to be intro- duced on each transmitter output.		

			rom previous pa	
			corresponding to have phase coher	different profiles are not ency.
PF_FREQ_ SLOPE_CONST	2	Frequency slope for each profile is encoded in 2 bytes (16 bit signed number)		
		1 LSB = 3.6 <i>e</i> 9	$ imes 900/2^{26}~{\rm Hz} pprox 1$	$48.279~{ m kHz}/\mu{ m s}$
		Valid range: -2	072 to 2072	
PF_TX_START_ TIME	2	Time of start of	transmitter relativ	e to the knee of the ramp
		1 LSB = 10 ns		
		Valid range: -4	096 to 4095	
				TX after knee of the ramp art of TX before the knee
PF_NUM_ADC_ SAMPLES	2	Number of AD	C samples to capt	ure in a chirp for each RX
		NUM_SAMPLE data fits into 10 kB memory in > suming 2 bytes complex 1x and	S is such that all t 6 kB memory in x WR1642/xWR184 s for real ADC out d complex 2x ADC	SAMPLES, where MAX_ the enabled RX channels' WR1243/xWR1443 or 32 43, with each sample con- tput case and 4 bytes for coutput cases. For exam- the ADC buffer size is 16
		Number of ADC format MAX_NUM_ RX chains SAMPLES		-
		4	Complex	1024
		4	Real	2048
		2	Complex	2048
		2	Real	4096
PF_DIGITAL_ OUTPUT_SAM- PLING_RATE	2	ADC Sampling bit unsigned nu 1 LSB = 1 ksps Valid range 200	imber)	is encoded in 2 bytes (16
PF_HPF1_COR- NER_FREQ	1	HPF1 corner f byte	requency for eacl	h profile is encoded in 1
		Value HPF1 co	rner frequency de	finition
		0x00 175 kH	Ζ	
		0x01 235 kH	Z	
		0x02 350 kH	Z	
1		0x03 700 kH	7	

		0 001	anded nom previous page
PF_HPF2_COR- NER_FREQ	1	HPF2 corner frequency for each profile is encoded in byte	
		Value	HPF2 corner frequency definition
		0x00	350 kHz
		0x01	700 kHz
		0x02	1.4 MHz
		0x03	2.8 MHz
TX_CAL_EN_CFG	2	calibra are er	er of transmitters to turn on during TX power tion. During actual operation, if more than 1 TXs habled during the chirp, then enabling the same uring calibration will have better TX output power acy Definition
		-	
		b2:0	TX enabled during TX0 calibration b0 - TX0, b1 - TX1, b2 - TX2
		b5:3	TX enabled during TX1 calibration b3 - TX0, b4 - TX1, b5 - TX2
		b8:6	TX enabled during TX2 calibration b6 - TX0, b7 - TX1, b8 - TX2
		b14:9	RESERVED
		b15	Enable multi TX enable during TX power calibra- tion If this bit is not set, only 1 TX is enabled during the TX power calibration. For e.g. during TX0 calibration, only TX0 will be enabled; during TX1 calibration, only TX1 will be enabled and so on
PF_RX_GAIN	2	Bit	Definition
		b5:0	RX_GAIN
			This field defines RX gain for each profile.
			1 LSB = 1 dB
			Valid values: all even values from 24 to 52
		b7:6	RF_GAIN_TARGET
			Value RF gain target
			00 30 dB
			01 34 dB
			10 RESERVED
			11 26 dB
		b15:8	RESERVED (set it to 0x00)
			Continued on next page

		The total RX gain is achieved as a sum of RF gain and IF amplifiers gain. The RF Gain target (30 dB, 34 dB and 26 dB) allows the user to control the RF gain independently from the total RX gain, thus giving flexibility to the user to trade-off linearity vs. noise figure. Out of multiple gain set- tings for the RF stages, the firmware calibration algorithm uses the one that makes the RF gain as close as possible to the user programmed RF Gain Target.
RESERVED	2	0x0000

	Table 5.20: Note on maximum sampling rate
NOTE:	The maximum sampling rate supported is limited based on the information in the table below
	When device supports 15 MHz IF bandwidth (refer device data sheet)
	Real/Pseudo Complex1x Complex2x Real
	Regular ADC 37.5 Msps 18.75 Msps 37.5 Msps mode
	Low power 18.75 Msps 9.375 Msps 18.75 Msps ADC mode
	When device supports 10 MHz IF bandwidth (refer device data sheet)
	Real/Pseudo Complex1x Complex2x Real
	Regular ADC 25 Msps 12.5 Msps 25 Msps mode
	Low power 18.75 Msps 9.375 Msps 18.75 Msps ADC mode
	When device supports 5 MHz IF bandwidth (refer device data sheet)
	Real/Pseudo Complex1x Complex2x Real
	Regular ADC 12.5 Msps 6.25 Msps 12.5 Msps mode
	Low power 12.5 Msps 6.25 Msps 12.5 Msps ADC mode
	• The IF bandwidth here refers to the IF frequency of the far- thest reflection desired to be detected
	 Typically, the IF frequency range preserved well in the receiver baseband is 0.9 × Sampling Rate in Complex 1x and 0.45 × Sampling Rate in Complex 2x and Real/Pseudo Real.
	 The maximum sampling rates are also subject to restrictions from LVDS/CSI2 interface rate and ADC bits configurations. Typically in Complex2x mode, the maximum sampling rate would be 25 Msps

 Table 5.20:
 Note on maximum sampling rate

5.5.2 Sub block 0x0101 – AWR_CHIRP_CONF_SET_SB

This sub block contains chirp to chirp variations on top of the chirp profiles defined in the AWR_ PROFILE_CONF_SET_SB. E.g. which profile is to be used for each chirp in a frame, and small dithers in FMCW start frequency and idle time for each chirp are possible to be defined here. The dithers used in this configuration sub block are only additive on top of programmed parameters in AWR_PROFILE_CONF_SET_SB.

Table 5.21 describes the contents of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0101	
SBLKLEN	2	Value = 24	
CHIRP_START_ INDX	2	Valid range 0 to 511	
CHIRP_END_ INDX	2	Valid range CHIRP_START_INDX to 511	
PROFILE_INDX	2	Valid range 0 to 3	
RESERVED	2	0x0000	
CHIRP_FREQ_ START_VAR	4	1 LSB = $3.6e9/2^{26} \approx 53.644$ Hz Valid range: 0 to 8388607	
CHIRP_FREQ_ SLOPE_VAR	2	1 LSB = $3.6e9 \times 900/2^{26} \approx 48.279$ kHz Valid range: 0 to 63	
CHIRP_IDLE_ TIME_VAR	2	Idle time of each chirp is encoded in 2 bytes (16 bit un- signed number) 1 LSB = 10 ns Valid range: 0 to 4095	
CHIRP_ADC_ START_TIME_ VAR	2	ADC start time of each chirp is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 ns Valid range: 0 to 4095	
CHIRP_TX_EN	2	TX enable selection Bit Definition b0 TX0 Enable b1 TX1 Enable b2 TX2 Enable b15:3 RESERVED 0b0_0000_0000_0000 NOTE: Maximum number of TXs that can be turned on in a chirp depends on the device data sheet specification	

Table 5.21: AWR_CHIRP_CONF_SET_SB contents

5.5.3 Sub block 0x0102 – AWR_FRAME_CONF_SET_SB

This sub block defines a frame, i.e. a sequence of chirps to be transmitted subsequently, the no. of frames to be transmitted, frame periodicity and how to trigger them. Table 5.22 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0102
SBLKLEN	2	Value = 28
RESERVED	2	May use to indicate Frame mode or Continuous chirping mode of operation.
CHIRP_START_ INDX	2	Valid range 0 to 511
CHIRP_END_ INDX	2	Valid range CHIRP_START_INDX to 511
NUM_LOOPS	2	Number of times to repeat from CHIRP_START_INDX to CHIRP_END_INDX in each frame Valid range 1 to 255
NUM_FRAMES	2	Number of frames to transmit This field is ignored and internally assumed as 1 if this xWR1xxx is configured as MULTICHIP_SLAVE in AWR_ CHAN_CONF_SB. 16 bit unsigned number Valid range: 0 to 65535 (0 for infinite frames)
RESERVED	2	0x0000
FRAME_PERIOD-ICITY	4	1 LSB = 5 ns Valid range: 40000 + (1 chirp duration) to 268400000 This is the frame repetition period.

Table 5.22: AWR_FRAME_CONF_SET_SB

TRIGGER_SE-	2	Value	Definition
LECT			SWTRIGGER (Software API based trigger- ing): Frame is triggered upon receiving AWR_ FRAMESTARTSTOP_CONF_SB. There could be several tens of micro seconds uncertainty in trig- gering. This mode is not applicable if this xWR1xx is configured as MULTICHIP_SLAVE in AWR_ CHAN_CONF_SB.
			HWTRIGGER (Hardware SYNC_IN based trig- gering): Each frame is triggered by rising edge of pulse in SYNC_IN pin, after receiving AWR_ FRAMESTARTSTOP_CONF_SB (this is to pre- vent spurious transmission). W.r.t. the SYNC_ IN pulse, the actual transmission has 5ns un- certainty in SINGLECHIP and only a 300 ps un- certainty (due to tight inter-chip synchronization needed) in MULTICHIP sensor applications as defined in AWR_CHAN_CONF_SB.
RESERVED	2	0x0000	
FRAME_TRIG- GER_DELAY	4	currence sensor aj It is reco of multipl avoidanc Typical ra	time delay from the SYNC_IN trigger to the oc- of frame chirps. Applicable only in SINGLECHIP pplications, as defined in AWR_CHAN_CONF_SB. ommended only for staggering the transmission le radar sensors around the car for interference e, if needed. ange is 0 to 100 micro seconds. LSB = 5 ns

NOTE1:	If hardware triggered mode is used, the SYNC_IN pulse width should be less than the ON time of the frame (in case of legacy frame config mode) or the ON time of the burst (in case of advanced frame config mode). Also, the minimum pulse width of SYNC_IN should be 25 ns.
NOTE2:	If frame trigger delay is used with hardware triggered mode, then external SYNC_IN pulse periodicity should take care of the config- ured frame trigger delay and frame periodicity. The external pulse should be issued only after the sum total of frame trigger delay and frame periodicity. See figure below

	SYNC_IN Periodicity > (T + δ)	1	1 1 N
SYNC_IN			
	MM		
Frame Trigger De		δ	δ

Figure 5.1: Frame trigger delay in case of external hardware trigger

NOTE:	The inter-frame blank time should be at least 250 μ s. (100 μ s for frame preparation and 150 μ s for any calibration updates to hardware)
	Add 150 μ s to inter-frame blank time for test source configuration if test source is enabled.

5.5.4 Sub block 0x0103 - AWR_CONT_STREAMING_MODE_CONF_SET_SB

This sub block contains configuration needed to enable continuous streaming mode from the device.

Table 5.23 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0103
SBLKLEN	2	Value = 24
PF_FREQ_ START_CONST	4	Frequency start for each profile is encoded in 4 bytes (32 bit unsigned number) 1 LSB = $3.6e9/2^{26}$ Hz ≈ 53.644 Hz Valid range: 0 to 0x7FFFFFF

 Table 5.23:
 AWR_CONT_STREAMING_MODE_CONF_SET_SB

	10010 0.2		niueu nom previous page
PF_TX_OUT-	4	Bits	Description
		b7:0	TX0 output power back off
BACKOFF		b15:8	TX1 output power back off
		b23:16	TX2 output power back off
		This field	RESERVED (set it to 0x00) d defines how much the transmit power should be from the maximum. 1 dB
PF_TX_PHASE_	4	Bits	Description
SHIFTER		b1:0	RESERVED (set it to 0b00)
		b7:2	TX0 phase shift value 1 LSB = $360^{\circ}/2^6 \approx 5.625^{\circ}$
		b9:8	RESERVED (set it to 0b00)
		b15:10	TX1 phase shift value 1 LSB = $360^{\circ}/2^6 \approx 5.625^{\circ}$
		b17:16	RESERVED (set it to 0b00)
		b23:18	TX2 phase shift value 1 LSB = $360^{\circ}/2^6 \approx 5.625^{\circ}$
		b31:24	RESERVED 0x00
			Id defines the additional phase shift to be intro- n each transmitter output.
PF_DIGITAL_ OUTPUT_SAM- PLING_RATE	2	(16 bit u 1 LSB =	Impling rate for each profile is encoded in 2 bytes Insigned number) I ksps Inge 2000 to 37500
PF_HPF1_COR- NER_FREQ	1	HPF1 c byte	orner frequency for each profile is encoded in 1
		Value	HPF1 corner frequency definition
		0x00	175 kHz
		0x01	235 kHz
		0x02	350 kHz
		0x03	700 kHz

PF_HPF2_COR-	1	1	corner frequency for each profile is encoded in 1
NER_FREQ		byte	
		Value	HPF2 corner frequency definition
		0x00	350 kHz
		0x01	700 kHz
		0x02	1.4 MHz
		0x03	2.8 MHz
PF_RX_GAIN	1	This fiel	Id defines RX gain for continuous streaming mode.
		Bit	Definition
		5:0	RX_GAIN
			This field defines RX gain for each profile. 1 LSB = 1 dB
			Valid values: all even values from 24 to 52
		7:6	RF_GAIN_TARGET
			Value RF gain target
			00 30 dB
			01 34 dB
			10 RESERVED
			11 26 dB
		amplifie dB) allo from the trade-of tings for uses the	al RX gain is achieved as a sum of RF gain and IF ers gain. The RF Gain target (30 dB, 34 dB and 26 ows the user to control the RF gain independently e total RX gain, thus giving flexibility to the user to ff linearity vs. noise figure. Out of multiple gain set- r the RF stages, the firmware calibration algorithm e one that makes the RF gain as close as possible user programmed RF Gain Target.
VCO_SELECT	1	Bit	Description
		b0	FORCE_VCO_SEL
			0 Use internal VCO selection
			1 Forced external VCO selection
		b1	
			0 VCO1 (76 - 78 GHz)
			1 VCO2 (77 - 81 GHz)
		b7:2	RESERVED 0b00_0000
RESERVED	2	0x0000	

NOTE:	Continuous streaming (CW) mode is useful for RF lab characteri-
	zation and debug. In this mode, the device is configured to transmit
	a single continuous wave (CW - 0 slope) tone at a specific RF fre-
	quency continuously.

5.5.5 Sub block 0x0104 – AWR_CONT_STREAMING_MODE_EN_SB

This sub block contains configuration needed to enable continuous streaming mode from the device.

Table 5.24 describes the contents of this sub block.

Table 5.24:	AWR_CONT_STREAMING_MODE_EN_SB contents
-------------	--

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0104
SBLKLEN	2	Value = 8
CONT_STREAM- ING_EN	2	ValueDefinition0x0000Disable continuous streaming mode0x0001Enable continuous streaming mode
RESERVED	2	0x0000

5.5.6 Sub block 0x0105 - AWR_ADVANCED_FRAME_CONF_SB

This sub block contains advanced frame configuration options. Table 5.25 describes the contents of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0105	
SBLKLEN	2	Value = 152	
NUM_SUB- FRAMES	1	Number of sub frames enabled in this frame Valid range: 1 to 4	

Table 5.25: AWR_ADVANCED_FRAME_CONF_SB contents

	1	Value	Definition
PROFILE		0x0	The profile index set in Chirp Config API message governs which profile is used when that chirp is transmitted
		0x1	The profile index indicated in Chirp Config mes- sage is ignored and all the chirps in each sub frame use a single profile as indicated by that sub frame's profile index set in this message.
LOOPBACK_CFG	1	Bit	Definition
		b0	LOOPBACK_CFG_EN 0 Disable
			1 Enable
		b2:1	SUB_FRAME_ID Sub frame ID for which the loopback configuration applies
		b7:3	RESERVED
SUB_	1	0	Disabled (default)
FRAMETRIG- GER		1	Enabled (Need to trigger each sub-frame either by SW in software triggered mode or HW in hard- ware triggered mode)
SF1_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3 Not applicable for loop-back sub-frame	
SF1_CHIRP_ START_INDX	2	Start index of the first chirp for the first burst in sub frame 1 Valid range: 0 to 511 Not applicable for loop-back sub-frame	
SF1_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Valid rar	r of unique chirps per burst nge: 1 to 512 licable for loop-back sub-frame
SF1_NUM_ LOOPS_PER_ BURST	2	burst, w	of times to loop through the unique chirps in each ithout gaps, using HW. nge: 1 to 255

SF1_BURST_ PERIOD	4	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
SF1_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET \times BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET \times BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). Not applicable for loop-back sub-frame	
SF1_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Not applicable for loop-back sub-frame	
SF1_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 Not applicable for loop-back sub-frame	
RESERVED	2	0x0000	

Table 5.25 – continued nom previous page				
SF1_PERIOD	4	$\begin{array}{l} {\sf PERIOD} \geq {\sf Sum} \mbox{ total time of all bursts} + {\it InterSubFrame-BlankTime}, \\ {\sf where, Sum total time of all bursts} = {\sf Num Outer Loops} * \\ {\sf Num Bursts} * {\sf Burst Period.} \\ {\it InterSubFrameBlankTime} \mbox{ is primarily for sensor calibration/monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. \\ {\sf InterSubFrameBlankTime} \geq 100 \ \mu {\sf s} \\ {\sf With loopback enabled, InterSubFrameBlankTime} \geq 350 \ \mu {\sf s} \\ {\sf Add 150} \ \mu {\sf s to InterSubFrameBlankTime} \ for test source configuration if test source is enabled. \\ 1 \ {\sf LSB} = 5 \ {\sf ns} \\ {\sf Valid range 100} \ \mu {\sf s to 1.342 \ s} \end{array}$		
RESERVED	4	0×0000000		
RESERVED	4	0x0000000		
SF2_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3		
SF2_CHIRP_ START_INDX	2	Start index of the first chirp for the first burst in sub frame 2 Valid range: 0 to 511		
SF2_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512		
SF2_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255		
SF2_BURST_ PERIOD	4	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

Table 5.25 – continued from previous page				
SF2_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts).		
SF2_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512		
SF2_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64		
RESERVED	2	0x0000		
SF2_PERIOD	4	PERIOD \geq Sum total time of all bursts + <i>InterSubFrame-BlankTime</i> , Where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. <i>InterSubFrameBlankTime</i> is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. <i>InterSubFrameBlankTime</i> \geq 100 μ s With loopback enabled, InterSubFrameBlankTime \geq 350 μ s Add 150 μ s to <i>InterSubFrameBlankTime</i> for test source configuration if test source is enabled. 1 LSB = 5 ns Valid range: 100 μ s to 1.342 s		
RESERVED	4	0x0000000		
RESERVED	4	0x0000000		
SF3_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3		
SF3_CHIRP_ START_INDX	2	Start index of the first chirp in this sub frame Valid range: 0 to 511		
SF3_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512		

Table 5.2	25 – continued from previous page	

SF3_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255
SF3_BURST_ PERIOD	4	$\begin{array}{llllllllllllllllllllllllllllllllllll$
SF3_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET \times BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts).
SF3_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512
SF3_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64
RESERVED	2	0x0000

		o - continueu nom previous page
SF3_PERIOD	4	PERIOD \geq Sum total time of all bursts + <i>InterSubFrame-BlankTime</i> , Where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. <i>InterSubFrameBlankTime</i> is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. <i>InterSubFrameBlankTime</i> \geq 100 μ s With loopback enabled, InterSubFrameBlankTime \geq 350 μ s Add 150 μ s to <i>InterSubFrameBlankTime</i> for test source configuration if test source is enabled. 1 LSB = 5 ns Valid range: 100 μ s to 1.342 s
RESERVED	4	0x0000000
RESERVED	4	0x0000000
SF4_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3
SF4_CHIRP_ START_INDX	2	Start index of the first chirp in this sub frame Valid range: 0 to 511
SF4_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512
SF4_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255
SF4_BURST_ PERIOD	4	$\begin{array}{llllllllllllllllllllllllllllllllllll$

SF4_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_ INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_ CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts).	
SF4_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512	
SF4_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64	
RESERVED	2	0x0000	
SF4_PERIOD	4	$\begin{array}{l} {\sf SF_PERIOD} \geq {\sf Sum} \mbox{ total time of all bursts + InterSub-FrameBlankTime,} \\ {\sf where, Sum total time of all bursts = Num Outer Loops * } \\ {\sf Num Bursts * Burst Period.} \\ {\sf InterSubFrameBlankTime} \mbox{ is primarily for sensor calibration } \\ {\sf / monitoring, thermal control, transferring out any safety } \\ {\sf monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. \\ {\sf InterSubFrameBlankTime} \geq 100 \ \mu s \\ \\ {\sf With loopback enabled, InterSubFrameBlankTime} \geq 350 \ \mu s \\ \\ {\sf Add 150 \ \mu s to \ InterSubFrameBlankTime for test source configuration if test source is enabled. \\ {\sf 1 LSB = 5 ns} \\ \\ {\sf Valid range: 100 \ \mu s to 1.342 s} \\ \end{array}$	
RESERVED	4	0x0000000	
RESERVED	4	0x0000000	
NUM_FRAMES	2	Number of frames to transmit (1 frame = all enabled sub frames). If set to 0, frames are transmitted endlessly till Frame Stop message is received. Valid range: 0 to 65535	

		o - continueu nom previous page	
TRIGGER_SE- LECT	2	0x0001 SWTRIGGER (Software API based trigger- ing): Frame is triggered upon receiving AWR_ FRAMESTARTSTOP_CONF_SB. There could be several tens of micro seconds uncertainty in trig- gering. This mode is not applicable if this xWR1xx is configured as MULTICHIP_SLAVE in AWR_ CHAN_CONF_SB.	
		0x0002 HWTRIGGER (Hardware SYNC_IN based trig- gering): Each frame is triggered by rising edge of pulse in SYNC_IN pin, after receiving AWR_ FRAMESTARTSTOP_CONF_SB (this is to pre- vent spurious transmission). w.r.t. the SYNC_ IN pulse, the actual transmission has 5ns un- certainty in SINGLECHIP and only a 300 ps un- certainty (due to tight inter-chip synchronization needed) in MULTICHIP sensor applications as defined in AWR_CHAN_CONF_SB.	
FRAME_TRIG- GER_DELAY	4	Optional time delay from the SYNC_IN trigger to the oc- currence of frame chirps. Applicable only in SINGLECHIP sensor applications, as defined in AWR_CHAN_CONF_SB. It is recommended only for staggering the transmission of multiple radar sensors around the car for interference avoidance, if needed. Typical range is 0 to few tens of micro seconds. Units: 1 LSB = 5 ns	
RESERVED	4	0x0000000	
RESERVED	4	0x0000000	

NOTE:	If hardware trigger mode is used with advanced frame configuration
	with SUBFRAMETRIGGER = 0, then the trigger should be issued
	for each burst. With SUBFRAMETRIGGER = 1, then the trigger
	needs to be issued for each sub-frame.

5.5.7 Sub block 0x0106 – AWR_PERCHIRPPHASESHIFT_CONF_SB

This sub block defines static phase shift configurations per chirp in each of the TXs. The API is applicable only in xWR1243P. This API will be honored after enabling PERCHIRP_PHASESHIFTER_ EN in AWR_RF_RADAR_MISC_CTL_SB.

Table 5.26 describes the contents of this sub block.

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0106		
SBLKLEN	2	Value = 12		
CHIRP_START_ INDX	2	Start index of the chirp for configuring the phase shifter Valid range 0 to 511		
CHIRP_END_ INDX	2	End index of the chirp for configuring the phase shifter Valid range 0 to 511		
TX0_PHASE_	1	TX0 phase shift value		
SHIFTER		Bits TX0 phase shift definition		
		b1:0 RESERVED (set it to 0b00)		
		b7:2 TX0 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63		
TX1_PHASE_	1	TX1 phase shift value		
SHIFTER		Bits TX1 phase shift definition		
		b1:0 RESERVED (set it to 0b00)		
		b7:2 TX1 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63		
TX2_PHASE_	1	TX2 phase shift value		
SHIFTER		Bits TX2 phase shift definition		
		b1:0 RESERVED (set it to 0b00)		
		b7:2 TX2 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63		
RESERVED	1	0x00		

Table 5.26: AWR_PERCHIRPPHASESHIFT_CONF_SB contents

NOTE: Phase shifters are applied at the knee of the ramp.

5.5.8 Sub block 0x0107 - AWR_PROG_FILT_COEFF_RAM_SET_SB

This sub block can be used to program the coefficients for the external programmable filter. The API is applicable only in xWR1642 or xWR1843.

Note that the programmable filter is applicable in Complex 1X and Real-only output modes for sampling rates under 6.25 Msps (Complex 1X) and under 12.5 Msps (Real). This is to allow for a trade-off between digital filter chain setting time and close-in anti-alias attenuation. A real-coefficient FIR with up to 26 taps (16-bit coefficients) is supported in the Complex 1X output

mode, and a real-coefficient FIR with up to 20 taps (16-bit coefficients) in supported in the Real output mode

NOTE: This API should be issued before AWR_PROFILE_CONF_SET_SB.

Table 5.27 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0107
SBLKLEN	2	Value = 212
COEFF_ARRAY	208	The array of coefficients for the programmable filter, across all profiles, to be stored in the coefficient RAMS. Each tap is a 16-bit signed <1.15, s> number. The exact set of taps to be used for a given profile can be specified through AWR_PROG_FILT_CONF_SB NOTE: All the filter taps across profiles are to be provided in one shot. There is a HW constraint that each profile's filter taps should start at four 32-bit word aligned address (i.e., the coefficients corresponding to any profile should start at array index which is a multiple of 8). Unused coef- ficients shall be initialized to zero.

Table 5.27: AWR_PROG_FILT_COEFF_RAM_SET_SB contents

5.5.9 Sub block 0x0108 - AWR_PROG_FILT_CONF_SET_SB

This sub block can be used to configure the coefficients for the external programmable filter and associate them to a certain profile. The API is applicable only in xWR1642 or xWR1843. This API should be issued before AWR_PROFILE_CONF_SET_SB. Table 5.28 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0108
SBLKLEN	2	Value = 8
PROFILE_INDX	1	This field indicates the profile Index for which this configu- ration applies.

Table 5.28: AWR_PROG_FILT_CONF_SET_SB contents

PROG_FILT_ COEFF_START_ INDEX	1	The index of the first coefficient of the programmable fil- ter taps corresponding to this profile in the coefficient RAM programmed using AWR_PROG_FILT_COEFF_SET_SB NOTE: The profile's filter tap start index shall be 8 tap aligned (four 32-bit word aligned address).
PROG_FILT_ LENGTH	1	The length (number of taps) of the filter corresponding to this profile. Together with the previous field, this deter- mines the set of coefficients picked up from the coefficient RAM to form the filter taps for this profile. NOTE: This has to be an even number. For odd-length fil- ters, a 0 (zero) tap needs to be appended at the end to make the length even. This is a HW constraint.
PROG_FILT_ FREQ_SHIFT_ FACTOR	1	Relevant only for the Complex 1x output mode with the programmable filter. Determines the magnitude of the frequency shift do be done before filtering using the real-coefficient programmable filter. 1 LSB = $0.01 \times Fs$ shift, where Fs is the output sampling rate, specified as PF_DIGITAL_OUTPUT_SAMPLING_RATE in AWR_PROFILE_CONF_SET_SB

NOTE1:	PROG_FILT_COEFF_START_INDEX should be 8 tap aligned (four 32-bit word aligned address)
NOTE2:	Programmable filter APIs (AWR_PROG_FILT_COEFF_RAM_SET_ SB and AWR_PROG_FILT_CONF_SET_SB) should not be issued when frames are ongoing.

5.5.10 Sub block 0x0109 - AWR_CALIB_MON_TIME_UNIT_CONF_SB

This API sub block is used to set calibration and monitoring time unit.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0109
SBLKLEN	2	Value = 12

Table 5.29: AWR_CALIB_MON_TIME_UNIT_CONF_SB contents

CALIB_MON_ TIME_UNIT	2	Defines the basic time unit, in terms of which calibration and/or monitoring periodicities are to be defined.
		If any monitoring functions are desired and enabled, the monitoring infrastructure automatically inherits this time unit as the period over which the various monitors are cyclically executed; so this should be set to the desired FTTI.
		For calibrations, a separate CALIB_PERIODICITY can be specified, as a multiple of this time unit, in AWR_RUN_ TIME_CALIBRATION_CONF_AND_TRIGGER_SB NOTE: Even though calibrations many not be desired every time unit, every time unit shall be made long enough to include active chirping time, time required for all enabled calibrations and monitoring functions.
		Recommendation: See examples in Section 9 Default value: 100
NUM_OF_CAS- CADED_DEV	1	Applicable only in cascaded mode. In non-cascaded mode set this to 1 Default value: 1
DEVICE_ID	1	Applicable only in cascaded mode. In non-cascaded mode set this to 0 Default value: 0
RESERVED	4	0x0000_0000

5.5.11 Sub block 0x010A – AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_ SB

This API is used to trigger one time calibrations instantaneously or schedule periodic run time time calibrations which will be scheduled by the firmware while framing during any available idle slot of 200 μ s.

Table 5.30:	AWR RUN TIM	IE CALIBRATION	CONF AND	_TRIGGER_SB contents
T (1)10 01001	TTU TU TU TU TU			

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010A
SBLKLEN	2	Value = 24

ONE_TIME_ CALIB_ENABLE_ MASK	4	Upon receiving this trigger message, one time calibration of various RF/analog aspects are triggered if the corre- sponding bits in this field are set to 1. The response is in the form of an asynchronous event sent to the host. The calibrations, if enabled, are performed after the completion of any ongoing calibration cycle, and the calibration results take effect from the frame that begins after the asynchronous event response is sent from the BSS. APLL and SYNTH calibrations are done always internally irrespective of bits are enabled or not, the time required for these calibrations must be allocated.		
		Bit	Definition	
		b0	RESERVED	
		b1	RESERVED	
		b2	RESERVED	
		b3	RESERVED	
		b4	LODIST_CALIBRATION_EN	
		b5	RESERVED	
		b6	RESERVED	
		b7	RESERVED	
		b8	PD_CALIBRATION_EN	
		b9	TX_POWER_CALIBRATION_EN	
		b10	RX_GAIN_CALIBRATION_EN	
		b11	RESERVED	
		b12	RESERVED	
		b31:13	RESERVED	
		0b0000_0000_0000_0000_000 Default value: 0		

	4	Automati	c periodic triggering of calibrations of various	
	- T	RF/analog aspects can be set up by the host issuing this		
MASK		message with corresponding bits in this field set to 1.		
		Bit	Definition	
		b0	RESERVED	
		b1	RESERVED	
		b2	RESERVED	
		b3	RESERVED	
		b4	LODIST_CALIBRATION_EN	
		b5	RESERVED	
		b6	RESERVED	
		b7	RESERVED	
		b8	PD_CALIBRATION_EN	
		b9	TX_POWER_CALIBRATION_EN	
		b10	RX_GAIN_CALIBRATION_EN	
		b11	RESERVED	
		b12	RESERVED	
		b31:13	RESERVED	
		APLL and SYNTH calibrations are done always internally (at a periodicity of 1 second) irrespective of bits are enabled or not, the time required for these calibrations must be allocated. Refer to Table 9.2 for the duration of run time calibrations		
		Default v		

CALIBRATION_ PERIODICITY	.	
	4	This field is applicable only for those calibrations which are enabled to be done periodically in the PERIODIC_CALIB_ ENABLE_MASK field. This field indicates the desired periodicity of calibrations. If this field is set to N, the results of the first calibration (based on ONE_TIME_CALIB_ENABLE_MASK) are appli- cable for the first N CALIB_MON_TIME_UNITs. The results of the next calibration are applicable for the next N CALIB_ MON_TIME_UNITs, and so on. Recommendation: Set CALIBRATION_PERIODIC- ITY such that frequency of calibrations is greater than or equal to 1 second. 1 LSB = 1 CALIB_MON_TIME_UNIT, as specified in AWR_CALIB_MON_TIME_UNIT_CONF_SB. If the user does not wish to receive calibration re- ports when periodic calibrations are not enabled, then the user should set CALIBRATION_PERIODICITY to 0 Default value: 0
ENABLE_CAL_ REPORT	1	Bit Definition b0 ENABLE_SUMMARY_REPORT 0 Summary reports are disabled 1 Summary reports are enabled Default value: 0 Default value: 0 b7:1 RESERVED NOTE1: If calibration reports are enabled, the reports will be sent every 1 second whenever internal calibrations (APLL and SYNTH) are triggered and at every CALIBRA- TION_PERIODICITY when the user enabled calibrations
		are triggered. NOTE2: If user has not enabled any one time calibrations, but if calibration report is enabled, then after issuing this API, the firmware will attempt to run the APLL and SYNTH calibrations and the calibration report will be immediately sent out.

TX_POWER_	1	Bit	Definition
		-	
		b0	TX_POWER_CAL_MODE
			0 Update TX gain setting from LUT and do
			a closed loop calibration (OLPC + CLPC)
			1 Update TX gain settings from LUT only (OLPC only)
			OLPC: Open Loop Power Control. In this
			mode the TX stage codes are set based
			on a coarse measurement and a LUT
			generated for every temperature and the
			stage codes are picked from the LUT
			CLPC: Closed Loop Power Control. In this mode the TX stage codes are picked from
			the coarse LUT as generated in OLPC
			step. Later the TX power is measured
			and the TX stage codes are corrected to
			achieve the desired TX power accuracy.
			Default value: 0
		b7:1	RESERVED
RESERVED	1	0x00	
RESERVED	4	0x00000	000

Table 5.30 – continued from previous page

NOTE:	The API AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_
	SB should be issued when the device is not framing

5.5.12 Sub block 0x010B - AWR_INTER_RX_GAIN_PHASE_CONTROL_SB

This API can be used to induce different gain/phase offsets on the different RXs, for inter-RX mismatch compensation.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010B
SBLKLEN	2	Value = 28
PROFILE_INDX	1	This field indicates the profile Index for which this configu- ration applies.
RESERVED	3	0x00000

TADIE 5.51: AW N_INTER_NA_GAIN_F HASE_OON I NOL_SD CONTENIS	Table 5.31:	AWR_INTER_RX_GAIN_PHASE_CONTROL_SB	contents
---	-------------	------------------------------------	----------

DIGITAL_GAIN	4	One byte per RX (8-bit signed number)	
		Bits Assignment	
		b7:0 RX0 digital gain	
		b15:8 RX1 digital gain	
		b23:16 RX2 digital gain	
		b31:24 RX3 digital gain	
		1 LSB = 0.1 dB	
		Valid Range: -120 to 119	
DIGITAL_PHASE_	8	Two bytes per RX	
SHIFT		Bits Assignment	
		b15:0 RX0 digital phase shift	
		b31:16 RX1 digital phase shift	
		b47:32 RX2 digital phase shift	
		b63:48 RX3 digital phase shift	
		1 LSB = $360^{\circ}/2^{16} \approx 0.0055^{\circ}$	
		Valid Range: 0 to 65535	
		NOTE: This field is NOT applicable when ADC_OUT_FMT	
		is 00 (real output)	
RESERVED	8	0x0000000	

Table 5.31 – continued from previous page

5.5.13 Sub block 0x010C - AWR_RX_GAIN_TEMPLUT_SET_SB

This API can be used to overwrite the RX gain temperature LUT used in firmware. This API should be issued after profile configuration API.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x010C	
SBLKLEN	2	Value = 28	
PROFILE_INDX	1	This field indicates the profile Index for which this configu- ration applies.	
RESERVED	1	0x00	

Table 5.32: AWR_RX_GAIN_TEMPLUT_SET_SB contents

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

Table 5.32 – continued from previous page				
RX_GAIN_CODE	19	Byte0:	RX gain code for temperature ${<}\text{-30}\ ^\circ\text{C}$	
		Byte1:	RX gain code for temperature [-30, -20) $^\circ\text{C}$	
		Byte2:	RX gain code for temperature [-20, -10) $^\circ\text{C}$	
		Byte3:	RX gain code for temperature [-10, 0) $^\circ\text{C}$	
		Byte4:	RX gain code for temperature [0, 10) $^\circ\text{C}$	
		Byte5:	RX gain code for temperature [10, 20) $^\circ\text{C}$	
		Byte6:	RX gain code for temperature [20, 30) $^\circ\text{C}$	
		Byte7:	RX gain code for temperature [30, 40) $^\circ\text{C}$	
		Byte8:	RX gain code for temperature [40, 50) $^\circ\text{C}$	
		Byte9:	RX gain code for temperature [50, 60) $^\circ\text{C}$	
		Byte10:	RX gain code for temperature [60, 70) $^\circ\text{C}$	
		Byte11:	RX gain code for temperature [70, 80) $^\circ\text{C}$	
		Byte12:	RX gain code for temperature [80, 90) $^\circ\text{C}$	
		Byte13:	RX gain code for temperature [90, 100) $^\circ\text{C}$	
		Byte14:	RX gain code for temperature [100, 110) $^\circ\text{C}$	
		Byte15:	RX gain code for temperature [110, 120) $^\circ\text{C}$	
		Byte16:	RX gain code for temperature [120, 130) $^\circ\text{C}$	
		Byte17:	RX gain code for temperature [130, 140) $^\circ\text{C}$	
		Byte18:	RX gain code for temperature \geq 140 $^{\circ}C$	
			e is encoded as follows	
		Bits		
		b4:0	IF_GAIN_CODE IF gain is IF_GAIN_CODE $\times 2-6$ dB	
			Valid values: 0 to 17	
			1 LSB = 2 dB	
		b7:5		
			Value RF Gain	
			0 Maximum RF gain	
			1 Maximum RF gain – 2 dB	
			2 Maximum RF gain – 4 dB	
			3 Maximum RF gain – 6 dB	
		000	4 Maximum RF gain – 8 dB	
RESERVED	1	0x00		
RESERVED	2	0x0000		

Table 5.32 – continued from previous page

5.5.14 Sub block 0x010D - AWR_TX_GAIN_TEMPLUT_SET_SB

This API can be used to overwrite the TX gain temperature LUT used in firmware. This API should be issued after profile configuration API.

Field Name	Number of bytes	Descript	ion
SBLKID	2	Value = 0	Dx010D
SBLKLEN	2	Value = 6	58
PROFILE_INDX	1	This field indicates the profile Index for which this configu- ration applies	
RESERVED	1	0x00	
TX0_GAIN_CODE	19	Byte0:	TX0 gain code for temperature $<$ -30 $^{\circ}$ C
		Byte1:	TX0 gain code for temperature [-30, -20) $^\circ\text{C}$
		Byte2:	TX0 gain code for temperature [-20, -10) $^\circ\text{C}$
		Byte3:	TX0 gain code for temperature [-10, 0) $^\circ\text{C}$
		Byte4:	TX0 gain code for temperature [0, 10) $^\circ\text{C}$
		Byte5:	TX0 gain code for temperature [10, 20) $^\circ\text{C}$
		Byte6:	TX0 gain code for temperature [20, 30) $^\circ\text{C}$
		Byte7:	TX0 gain code for temperature [30, 40) $^\circ\text{C}$
		Byte8:	TX0 gain code for temperature [40, 50) $^\circ\text{C}$
		Byte9:	TX0 gain code for temperature [50, 60) $^\circ\text{C}$
		Byte10:	TX0 gain code for temperature [60, 70) $^\circ\text{C}$
		Byte11:	TX0 gain code for temperature [70, 80) $^\circ\text{C}$
		Byte12:	TX0 gain code for temperature [80, 90) $^\circ\text{C}$
		Byte13:	TX0 gain code for temperature [90, 100) $^\circ\text{C}$
		Byte14:	TX0 gain code for temperature [100, 110) $^\circ C$
		Byte15:	TX0 gain code for temperature [110, 120) $^\circ C$
		Byte16:	TX0 gain code for temperature [120, 130) $^\circ C$
		Byte17:	TX0 gain code for temperature [130, 140) $^\circ C$
		Byte18: Each byt	TX0 gain code for temperature \geq 140 $^{\circ}$ C e is encoded as follows
		Bits	Definition
		b5:0	STG_CODE Higher values for higher gain
		b7:6	RESERVED
RESERVED	1	0x00	

Table 5.33: AWR_TX_GAIN_TEMPLUT_SET_SB

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

	Table 5.33 – continued from previous page				
TX1_GAIN_CODE	19	Byte0:	TX1 gain code for temperature ${<}{\text{-30}}^{\circ}\text{C}$		
		Byte1:	TX1 gain code for temperature [-30, -20) $^\circ\text{C}$		
		Byte2:	TX1 gain code for temperature [-20, -10) $^\circ\text{C}$		
		Byte3:	TX1 gain code for temperature [-10, 0) $^\circ\text{C}$		
		Byte4:	TX1 gain code for temperature [0, 10) $^\circ\text{C}$		
		Byte5:	TX1 gain code for temperature [10, 20) $^\circ C$		
		Byte6:	TX1 gain code for temperature [20, 30) $^\circ\text{C}$		
		Byte7:	TX1 gain code for temperature [30, 40) $^\circ C$		
		Byte8:	TX1 gain code for temperature [40, 50) $^\circ\text{C}$		
		Byte9:	TX1 gain code for temperature [50, 60) $^\circ\text{C}$		
		Byte10:	TX1 gain code for temperature [60, 70) $^\circ C$		
		Byte11:	TX1 gain code for temperature [70, 80) $^\circ\text{C}$		
		Byte12:	TX1 gain code for temperature [80, 90) $^\circ C$		
		Byte13:	TX1 gain code for temperature [90, 100) $^\circ\text{C}$		
		Byte14:	TX1 gain code for temperature [100, 110) $^\circ\text{C}$		
		Byte15:	TX1 gain code for temperature [110, 120) $^\circ\text{C}$		
		Byte16:	TX1 gain code for temperature [120, 130) $^\circ\text{C}$		
		Byte17:	TX1 gain code for temperature [130, 140) $^\circ\text{C}$		
		Byte18: Each byt	TX1 gain code for temperature \geq 140 $^{\circ}$ C e is encoded as follows		
		Bits	Definition		
		b5:0	STG_CODE		
			Higher values for higher gain		
		b7:6	RESERVED		
RESERVED	1	0x00			

Table 5.33 – continued from previous page

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

			ueu nom previous page
TX2_GAIN_CODE	19	Byte0:	TX2 gain code for temperature ${<}\text{-30}\ ^\circ\text{C}$
		Byte1:	TX2 gain code for temperature [-30, -20) $^\circ\text{C}$
		Byte2:	TX2 gain code for temperature [-20, -10) $^\circ\text{C}$
		Byte3:	TX2 gain code for temperature [-10, 0) $^\circ\text{C}$
		Byte4:	TX2 gain code for temperature [0, 10) $^\circ\text{C}$
		Byte5:	TX2 gain code for temperature [10, 20) $^\circ\text{C}$
		Byte6:	TX2 gain code for temperature [20, 30) $^\circ\text{C}$
		Byte7:	TX2 gain code for temperature [30, 40) $^\circ C$
		Byte8:	TX2 gain code for temperature [40, 50) $^\circ C$
		Byte9:	TX2 gain code for temperature [50, 60) $^\circ\text{C}$
		Byte10:	TX2 gain code for temperature [60, 70) $^\circ C$
		Byte11:	TX2 gain code for temperature [70, 80) $^\circ\text{C}$
		Byte12:	TX2 gain code for temperature [80, 90) $^\circ C$
		Byte13:	TX2 gain code for temperature [90, 100) $^\circ\text{C}$
		Byte14:	TX2 gain code for temperature [100, 110) $^\circ C$
		Byte15:	TX2 gain code for temperature [110, 120) $^\circ\text{C}$
		Byte16:	TX2 gain code for temperature [120, 130) $^\circ C$
		Byte17:	TX2 gain code for temperature [130, 140) $^\circ C$
		Byte18:	TX2 gain code for temperature \geq 140 °C e is encoded as follows
		Bits	Definition
		b5:0	STG_CODE
			Higher values for higher gain
		b7:6	RESERVED
RESERVED	1	0x00	
RESERVED	2	0x0000	

Table 5.33 – continued from previous page

5.5.15 Sub block 0x010E – AWR_LOOPBACK_BURST_CONF_SET_SB

This API can be used to introduce loopback chirps within the functional frames. This loopback chirps will be introduced only if advanced frame configuration is used where user can define which sub-frame contains loopback chirps. The following loopback configuration will apply to one burst and user can program up to 16 different loopback configurations in 16 different bursts of a given sub-frame. User has to ensure that the corresponding sub-frame is defined in AWR_ADVANCED_FRAME_CONF_SB and sufficient time is given to allow the loopback bursts to be transmitted.

NOTE1:	If user desires to enable loopback chirps within functional frames, then this API should be issued after AWR_PROFILE_CONF_SET_ SB
NOTE2:	Only profile based phase shifter is supported in loopback config- uration. Per-chirp phase shifter if enabled will not be reflected in loopback chirps.
NOTE3:	For the sub-frame in which loopback is desired, user should set SFx_NUM_UNIQUE_CHIRPS_PER_BURST as 1 and can use SFx_NUM_LOOPS_PER_BURST for multiple chirps in the burst.

Table 5.34: AWR_LOOPBACK_BURST_CONF_SET_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x010E			
SBLKLEN	2	Value = 48			
LOOPBACK_SEL	1	Value Definition			
		0 No loopback			
		1 IF loopback			
		2 PS loopback			
		3 PA loopback			
		Others RESERVED			
BASE_PROFILE_	1	Base profile used for loopback chirps			
INDX		Valid values 0 to 3			
BURST_INDX	1	Indicates the index of the burst in the loopback sub-frame			
		for which this configuration applies Valid values 0 to 15			
RESERVED	1	0x00			
FREQ_CONST	4	Start frequency for loopback. The start frequency configured here should be within profile's sweep bandwidth. 1 LSB = $3.6e9/2^{26}$ Hz \approx 53.644 Hz Valid range: 0x5471C71B to 0x5A000000			
SLOPE_CONST	2	Frequency slope for loopback burst (32 bit signed number) 1 LSB = $3.6e9 \times 900/2^{26} \approx 48.279 \text{ kHz}/\mu\text{s}$ Valid range: -2072 to 2072			
RESERVED	2	0x0000			

AWR1xxx Radar Interface Control Document

Revision 0.98 - October 19, 2018

TX_BACKOFF	4	Bits	Definition
		b7:0	TX0 back off
			1 LSB = 1 dB
		b15:8	TX1 back off
			1 LSB = 1 dB
		b23:16	TX2 back off
			1 LSB = 1 dB
		b31:24	RESERVED
RX_GAIN	2	Bits	Definition
		b5:0	RX_GAIN
			This field defines RX gain for each profile
			1 LSB = 1 dB
			Valid values: all even values from 24 to 52
		b7:6	
			Value RF gain target
			00 30 dB
			01 34 dB
			10 RESERVED
			11 26 dB
		b15:8	RESERVED
TX_ENABLE	1	Bits	Definition
		b0	TX0 Enable
		b1	TX1 Enable
		b2	TX2 Enable
		b7:3	RESERVED
RESERVED	1	0x00	

Table 5.34 – continued from previous page

BPM_CONFIG	2	Bit	Definition				
			CONST_BPM_VAL_T Value of Binary Phas idle time		lue for TX0, during		
		b1	CONST_BPM_VAL_TX0_ON Value of Binary Phase Shift value for TX0, during chirp				
		b2	CONST_BPM_VAL_T For TX1	X1_OFF			
		b3	CONST_BPM_VAL_T For TX1	X1_ON			
		b4	CONST_BPM_VAL_T For TX2	X2_OFF			
		b5	CONST_BPM_VAL_T For TX2	X2_ON			
		b15:6	RESERVED				
DIGITAL_COR- 2 RECTION_DIS- ABLE	2	Bits	Digital corrections				
		b0	IQMM correction disable (only for PS and PA loopback, for IF loopback IQMM is disabled by firmware) 0 - Enable, 1 - Disable				
		b1	Inter-RX Gain and Phase correction disable 0 - Enable, 1 - Disable				
		b15:2	RESERVED				
IF_LOOPBACK_ FREQ	1	Value	IF Loopback frequency	Value	IF Loopback frequency		
		0	180 kHz	8	4.02 MHz		
		1	240 kHz	9	5 MHz		
		2	360 kHz	10	6 MHz		
		3	720 kHz	11	8.03 MHz		
		4	1 MHz	12	9 MHz		
		5	2 MHz	13	10 MHz		
		6	2.5 MHz	255-14	RESERVED		
		7	3 MHz				
IF_LOOPBACK_ MAG	1	1 LSB = Valid rar	10 mV nge: 1 to 63				

Table 5.34 – continued from previous page

AWR1xxx Radar

Interface Control Document Revision 0.98 - October 19, 2018

	10010 0.0	4 - com	nueu noi	n previous	Jage		
PS1_PGA_GAIN_ INDEX	1	Value	PGA value	gain	Value	PGA value	gain
		0	PGA is C	DFF	15	-3 dB	
		1	-22 dB		16	-2 dB	
		2	-16 dB		17	-1 dB	
		3	-15 dB		18	0 dB	
		4	-14 dB		19	1 dB	
		5	-13 dB		20	2 dB	
		6	-12 dB		21	3 dB	
		7	-11 dB		22	4 dB	
		8	-10 dB		23	5 dB	
		9	-9 dB		24	6 dB	
		10	-8 dB		25	7 dB	
		11	-7 dB		26	8 dB	
		12	-6 dB		27	9 dB	
		13	-5 dB		255-28	RESERV	ED
		14	-4 dB				
PS2_PGA_GAIN_ INDEX	1	Value	PGA value	gain	Value	PGA value	gain
		0	PGA is C	DFF	15	-3 dB	
		1	-22 dB		16	-2 dB	
		2	-16 dB		17	-1 dB	
		3	-15 dB		18	0 dB	
		4	-14 dB		19	1 dB	
		5	-13 dB		20	2 dB	
		6	-12 dB		21	3 dB	
		7	-11 dB		22	4 dB	
		8	-10 dB		23	5 dB	
		9	-9 dB		24	6 dB	
		10	-8 dB		25	7 dB	
		11	-7 dB		26	8 dB	
		12	-6 dB		27	9 dB	
		13	-5 dB		255-28	RESERV	ED
		14	-4 dB				

Table 5.34 – continued from previous page

PS_LOOPBACK_ FREQ	4	Phase shifter loop back frequency in kHz 1 LSB = 1 kHz Bits Definition b15:0 TX0 Loopback Frequency [b31:16] TX1 Loopback Frequency
RESERVED	4	RESERVED
PA_LOOPBACK_ FREQ	2	This value is a 100 MHz divider which sets the loopback frequency For e.g. for a 1 MHz frequency, set this to 100 For a 2 MHz frequency, set this to 50 NOTE: To ensure no leakage of signal power, user has to ensure that 100MHz/LOOPBACK_FREQ is an integer mul- tiple of bin width For e.g. if user choses 25Msps sampling rate and 2048 samples/chirp, then LOOPBACK_FREQ of 64 (=1.5625 MHz) will ensure no leakage
RESERVED	2	0x0000
RESERVED	2	0x0000
RESERVED	2	0x0000

Table 5.34 – continued from previous page

5.5.16 Sub block 0x010F - AWR_DYN_CHIRP_CONF_SET_SB

This API can be used to dynamically change the chirp configuration while frames are on-going. The configuration will be stored in software and the new configuration will be applied after receiving the AWR_DYN_CHIRP_ENABLE_SB API.

Table 5.35: AWR_DYN_CHIRP_CONF_SET_S	B contents
--------------------------------------	------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010F
SBLKLEN	2	Value = 200

CHIRP_ROW_	1	Bits	Descript	ion
SELECT		b3:0	RESER	
		b7:4	If user of rows, the configure the use effective CHIRP_I API par CHIRP <i>x</i> mean CI	does not wish to reconfigure all 3 chirp ten the following mode can be used to e only one row per chirp which enables r to configure 48 chirps in one API, ly saving on the reconfiguration time. If ROW_SELECT[7:4] is non-zero, then the ameters CHIRP x_R1 , CHIRP x_R2 and x_R3 for $1 \le x \le 16$ in this API would HIRP $(3x-2)_Ry$, CHIRP $(3x-1)_Ry$ and $3x)_Ry$ where y is as per the below table
			Value	Definition
			0b0000	Enables all 3 chirp rows to be reconfig- ured
			0b0001	Enables only chirp row 1 to be reconfig- ured
			0b0010	Enables only chirp row 2 to be reconfig- ured
			0b0011	Enables only chirp row 3 to be reconfig- ured
			Others	RESERVED
CHIRP_SEG- MENT_SELECT	1		•	31. Indicates the segment of the chirp chirp definitions in this sub block map to
PROGRAM_	2	Bits	Descript	ion
MODE		b0	Value	Definition
			0	Program the new configuration when AWR_DYN_CHIRP_ENABLE API is is- sued
			1	Program the new configuration imme- diately NOTE: User has to ensure that the chirps which are being reconfigured are not the ones which are currently in use for chirping
		b15:1	RESER	VED

Table 5.35 – continued from previous page

AWR1xxx Radar Interface Control Document

Revision 0.98 - October 19, 2018

				in previous page	
CHIRP1_R1	4	Bits	Definition		
		b3:0		-E_INDX	
			Valid ra	nge 0 to 3	
		b7:4	RESER	VED	
		b13:8		SLOPE_VAR	
				$= 3.6e9 imes 900/2^{26} pprox$ 48.279 kHz	
			Valid ra	nge: 0 to 63	
		b15:14	RESER	VED	
		b18:16	TX_ENA	ABLE	
			Bit	Definition	
			b0	TX0 Enable	
			b1	TX1 Enable	
			b2	TX2 Enable	
		b23:19	RESER	VED	
		h29.24	BPM C	ONSTANT_BITS	
		520.21	Bit	Definition	
			b0	CONST_BPM_VAL_TX0_OFF	
				Value of Binary Phase Shift value for	
				TX0, during idle time	
			b1	CONST_BPM_VAL_TX0_ON	
				Value of Binary Phase Shift value for	
				TX0, during chirp	
			b2	CONST_BPM_VAL_TX1_OFF	
				For TX1	
			b3	CONST_BPM_VAL_TX1_ON	
				For TX1	
			b4	CONST_BPM_VAL_TX2_OFF For TX2	
			b5	CONST_BPM_VAL_TX2_ON For TX2	
		1.04.05	DECES		
		b31:30	RESER	VED	
CHIRP1_R2	4	Bits	Definitio	on	
		b22:0	FREQ_START_VAR		
			1 LSB = $3.6e9/2^{26} \approx$ 53.644 Hz		
			Valid range: 0 to 8388607		
		b31:23	RESER	VED	

Table 5.35 – continued from previous page

CHIRP1_R3	4	Bits	Definition		
		b11:0	IDLE_TIME_VAR 1 LSB = 10 ns Valid range: 0 to 4095		
		b15:12	RESERVED		
		b27:16	ADC_START_TIME_VAR 1 LSB = 10 ns Valid range: 0 to 4095		
		b31:28	RESERVED		
CHIRP2_R1	4	See des	scription for CHIRP1_R1		
CHIRP2_R2	4	See description for CHIRP1_R2			
CHIRP2_R3	4	See description for CHIRP1_R3			
CHIRP16₋R1	4	See description for CHIRP1_R1			
CHIRP16_R2	4	See description for CHIRP1_R2			
CHIRP16_R3	4	See des	cription for CHIRP1_R3		

Table 5.35 – continued from previous page

5.5.17 Sub block 0x0110 - AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SET_SB

This API can be used to dynamically change the per-chirp phase shifter configuration (applicable only in xWR1243P) while frames are on-going. The configuration will be stored in software and the new configuration will be applied after receiving the AWR_DYN_CHIRP_ENABLE_SB API.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0110
SBLKLEN	2	Value = 56
RESERVED	1	0x00
CHIRP_SEG- MENT_SELECT	1	Indicates the segment of the chirp RAM that the 16 chirp definitions in this sub block map to. Valid range 0 to 31
CHIRP1_TX0_ PHASE_SHIFTER	1	TX0 phase shift valueBitsTX0 phase shift definitionb1:0RESERVED (set it to 0b00)b7:2TX0 phase shift value1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63

Table 5.36:	AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB content	ts
Table 0.00.		00

				in previous page
CHIRP1_TX1_	1	TX1 pha	ase shift v	alue
PHASE_SHIFTER		Bits	TX1 pha	se shift definition
		b1:0	RESER	/ED (set it to 0b00)
		b7:2	1 LSB =	se shift value $360^{\circ}/2^{6} = 5.625^{\circ}$ age: 0 to 63
CHIRP1_TX2_	1	TX2 pha	ase shift v	alue
PHASE_SHIFTER		Bits	TX1 pha	se shift definition
		b1:0	RESER	/ED (set it to 0b00)
		b7:2	1 LSB =	se shift value $360^{\circ}/2^{6} = 5.625^{\circ}$ age: 0 to 63
CHIRP2_TX0_ PHASE_SHIFTER	1	See des	cription fo	or CHIRP1_TX0_PHASE_SHIFTER
CHIRP2_TX1_ PHASE_SHIFTER	1	See des	cription fo	or CHIRP2_TX1_PHASE_SHIFTER
CHIRP2_TX2_ PHASE_SHIFTER	1	See des	cription fo	or CHIRP3_TX2_PHASE_SHIFTER
CHIRP16_TX0_ PHASE_SHIFTER	1	See des	cription fo	or CHIRP1_TX0_PHASE_SHIFTER
CHIRP16_TX1_ PHASE_SHIFTER	1	See des	cription fo	or CHIRP2_TX1_PHASE_SHIFTER
CHIRP16_TX2_ PHASE_SHIFTER	1	See des	cription fo	or CHIRP3_TX2_PHASE_SHIFTER
	2	Bits	Descript	ion
	2	Bits b0	Descript Value	ion Definition
PROGRAM	2		-	
PROGRAM	2		Value	Definition Program the new configuration when AWR_DYN_CHIRP_ENABLE API is is- sued Program the new configuration imme- diately NOTE: User has to ensure that the chirps which are being reconfigured are not the ones which are currently in use for chirping

Table 5.36 – continued from previous page

5.5.18 Sub block 0x0111 – AWR_DYN_CHIRP_ENABLE_SB

This API can be used to trigger the copy of chirp configuration from software to hardware. The copy will be performed at the end of the ongoing frame.

Table 5.37: AWR_DYN_CHIRP_ENABLE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0111
SBLKLEN	2	Value = 8
RESERVED	4	0x0000000

NOTE:	HW reconfiguration time (as shown in the figure below) is around
	200 μ s. User has to ensure that AWR_DYN_CHIRP_ENABLE_SB
	API is issued at least 200 μ s before the start of the next frame

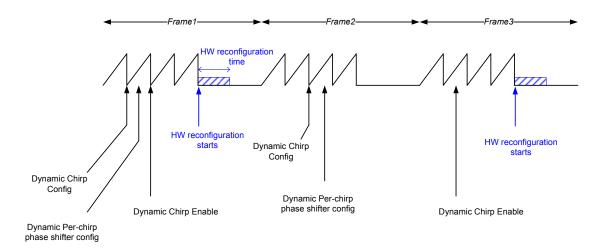


Figure 5.2: Dynamic chirp configuration use case timing diagram

5.5.19 Sub block 0x0112 - AWR_INTERCHIRP_BLOCKCONTROLS_SB

This API can be used to program the inter-chip turn on and turn off times or various RF blocks.

Table 5.38: AWR_INTERCHIRP_BLOCKCONTROLS_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0112		
SBLKLEN	2	Value = 44		
RX02_RF_TURN_ OFF_TIME	2	Time to wait after ramp end before turning off RX0 and RX2 RF stages. 1 LSB = 10 ns Valid range: -1024 to 1023		
RX13_RF_TURN_ OFF_TIME	2	Time to wait after ramp end before turning off RX1 and RX3 RF stages. 1 LSB = 10 ns Valid range: -1024 to 1023		
RX02_BB_TURN_ OFF_TIME	2	Time to wait after ramp end before turning off RX0 and RX2 baseband stages. 1 LSB = 10 ns Valid range: -1024 to 1023		
RX13_BB_TURN_ OFF_TIME	2	Time to wait after ramp end before turning off RX1 and RX3 baseband stages. 1 LSB = 10 ns Valid range: -1024 to 1023		
RX02_RF_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX0 and RX2 RF stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023		
RX13_RF_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX1 and RX3 RF stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023		
RX02_BB_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX1 and RX3 baseband stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023		
RX13_BB_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX2 and RX4 baseband stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023		
RX02_RF_TURN_ ON_TIME	2	Time before TX Start Time when RX1 and RX3 RF stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023		

		o – continueu nom previous page
RX13_RF_TURN_ ON_TIME	2	Time before TX Start Time when RX2 and RX4 RF stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RX02_BB_TURN_ ON_TIME	2	Time before TX Start Time when RX1 and RX3 baseband stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RX13_BB_TURN_ ON_TIME	2	Time before TX Start Time when RX2 and RX4 baseband stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RX_LO_CHAIN_ TURN_OFF_TIME	2	Time to wait after ramp end before turning off RX LO chain. 1 LSB = 10 ns Valid range: -1024 to 1023
TX_LO_CHAIN_ TURN_OFF_TIME	2	Time to wait after ramp end before turning off TX LO chain. 1 LSB = 10 ns Valid range: -1024 to 1023
RX_LO_CHAIN_ TURN_ON_TIME	2	Time before TX Start Time when the RX LO chain is to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
TX_LO_CHAIN_ TURN_ON_TIME	2	Time before TX Start Time when the TX LO chain is to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RESERVED	4	0x0000000
RESERVED	4	0x0000000

Table 5.38 – continued from previous page

NOTE:	The minimum inter-chirp time should be greater than maximum of the following
	1. abs(RX02_RF_TURN_OFF_TIME) + max(abs(RX02_RF_ PRE_ENABLE_TIME), abs(RX02_RF_TURN_ON_TIME))
	2. abs(RX13_RF_TURN_OFF_TIME) + max(abs(RX13_RF_ PRE_ENABLE_TIME), abs(RX13_RF_TURN_ON_TIME))
	3. abs(RX02_BB_TURN_OFF_TIME) + max(abs(RX02_BB_ PRE_ENABLE_TIME), abs(RX02_BB_TURN_ON_TIME))
	4. abs(RX13_BB_TURN_OFF_TIME) + max(abs(RX13_BB_ PRE_ENABLE_TIME), abs(RX13_BB_TURN_ON_TIME)
	5. abs(RX_LO_TURN_OFF_TIME) + abs(RX_LO_TURN_ON_ TIME)
	6. abs(TX_LO_TURN_OFF_TIME) + abs(TX_LO_TURN_ON_ TIME)

5.5.20 Sub block 0x0113 - AWR_SUBFRAME_START_CONF_SB

This API can be used to trigger each sub-frame individually in software triggered mode. This API takes effect only when the advanced frame configuration indicates that each sub-frame needs to be individually triggered by the user.

Field Name	Number of bytes	Descrip	tion	
SBLKID	2	Value =	0x0113	
SBLKLEN	2	Value =	8	
START_CMD	2	Bits	Definitio	n
		b15:0	Value	Definition
			0x0000	No effect
			0x0001	Trigger next sub-frame in software trig- gered sub-frame mode
RESERVED	2	0x0000		

Table 5 20.	AWR_SUBFRAME_START_CONF_SB contents
Table 5.59:	AWR_SUDFRAME_START_CONF_SD contents

NOTE1:	If the user wishes to trigger each sub-frame independently, then after advanced frame config, the FRAME START command should be issued once using AWR_FRAMESTARTSTOP_CONF_SB. This does not start any sub-frames but it will prepare the hardware for sub-frame trigger. Next any subsequent sub-frame trigger will start the sub-frames
NOTE2:	If the user wishes to use sub-frame trigger, he has to ensure that sub-frame trigger command is issued $k \cdot N$ times where k is the number of sub-frames in each frame and N is the number of frames. If the user wishes to stop frames in between, then he has to issue the FRAME STOP command (using AWR_FRAMESTARTSTOP_CONF_SB) only after $k \cdot M$ triggers of sub-frame trigger command (where M is an integer). i.e. FRAME STOP command can be issued only at frame boundaries
NOTE3:	If software based sub-frame trigger mode is chosen by the user, watchdog feature will not be available. User has to ensure that the watchdog is disabled before enabling the software based sub-frame trigger mode.
NOTE4:	If sub-frame trigger or hardware trigger mode is used to trigger the frames/sub-frames and if frames need to be stopped before the specified number of frames, then the the FRAME_STOP command using AWR_FRAMESTARTSTOP_CONF_SB API should be issued while the frame is on-going. If the frames are stopped while the device is idle, it can lead to errors.

5.6 Sub blocks related to AWR_RF_DYNAMIC_CONF_GET_SB

5.6.1 Sub block 0x0120 - AWR_PROFILE_CONF_GET_SB

This sub block reads the parameters of a given profile. The profile details are available as part of the acknowledgment. The structure is same as AWR_PROFILE_CONF_SET_SB Table 5.40 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0120
SBLKLEN	2	Value = 8

Table 5.40: AWR_PROFILE_CONF_GET_SB contents

Table 5.40 – continued from previous page

PROFILE_INDX	2	Valid range 0 to 3 Index of the profile which is to be read
RESERVED	2	0x0000

5.6.2 Sub block 0x0121 – AWR_CHIRP_CONF_GET_SB

This sub block reads the parameters of a given chirp. The profile details are available as part of the acknowledgement. The structure is same as AWR_CHIRP_CONF_SET_SB Table 5.41 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0121
SBLKLEN	2	Value = 8
CHIRP_START_ INDX	2	Valid range 0 to 511 Starting index of the chirp which is to be read
CHIRP_END_ INDX	2	Valid range 0 to 511 Ending index of the chirp which is to be read

Table 5.41: AWR_CHIRP_CONF_GET_SB contents

5.6.3 Sub block 0x0122 – AWR_FRAME_CONF_GET_SB

This sub block reads the parameters of the configured frame. The profile details are available as part of the acknowledgement. The structure is same as AWR_FRAME_CONF_SET_SB Table 5.42 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0122
SBLKLEN	2	Value = 4

5.6.4 Sub block 0x0123 – RESERVED

5.6.5 Sub block 0x0124 – RESERVED

5.6.6 Sub block 0x0125 - AWR_ADV_FRAME_CONF_GET_SB

This sub block reads the parameters of the configured frame. The profile details are available as part of the acknowledgement. The structure is same as AWR_ADVANCED_FRAME_CONF_SET_SB

Table 5.43 describes the contents of this sub block.

Table 5.43:	AWR_ADV	FRAME.	CONF	GET_SB	contents
-------------	---------	--------	------	--------	----------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0125
SBLKLEN	2	Value = 4

- 5.6.7 Sub block 0x0126 RESERVED
- 5.6.8 Sub block 0x0127 RESERVED
- 5.6.9 Sub block 0x0128 RESERVED
- 5.6.10 Sub block 0x0129 RESERVED
- 5.6.11 Sub block 0x012A RESERVED
- 5.6.12 Sub block 0x012B RESERVED

5.6.13 Sub block 0x012C - AWR_RX_GAIN_TEMPLUT_GET_SB

This API is issued to read the temperature based RX gain LUT used by the firmware. This API should be issued after the profile configuration API. The acknowledgement packet sent in response to this API will contain the LUT. The structure is same as AWR_RX_GAIN_LUT_SET_SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x012C
SBLKLEN	2	Value = 8
PROFILE_INDX	1	Profile index for which the RX gain LUT is desired
RESERVED	3	0x00000

Table 5.44: AWR_RX_GAIN_TEMPLUT_GET_SB contents

5.6.14 Sub block 0x012D - AWR_TX_GAIN_TEMPLUT_GET_SB

This API is issued to read the temperature based TX gain LUT used by the firmware. This API should be issued after the profile configuration API. The acknowledgement packet sent in response to this API will contain the LUT. The structure is same as AWR_TX_GAIN_LUT_SET_SB.

Table 5.45:	AWR_TX_GAIN_TEMPLUT_GET_SB contents
-------------	-------------------------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x012D
SBLKLEN	2	Value = 8
PROFILE_INDX	1	Profile index for which the TX gain LUT is desired
RESERVED	3	0x00000

5.7 Sub blocks related to AWR_FRAME_TRIG_MSG

5.7.1 Sub block 0x0140 - AWR_FRAMESTARTSTOP_CONF_SB

This sub block starts or stops transmission of frames. Table 5.46 describes the contents of this sub block.

Table 5.46:	AWR_FRAMESTARTSTOP_CONF_SB contents
-------------	-------------------------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0140
SBLKLEN	2	Value = 8
START_STOP_	2	Value Definition
CMD		0x0000 Stop the transmission of frames after the current frame is over
		0x0001 Trigger a frame in software triggered mode. In hardware SYNC_IN triggered mode, this command allows subsequent SYNC_IN trig- ger to be honored
RESERVED	2	0x0000

5.8 Sub blocks related to AWR_RF_ADVANCED_FEATURES_CONF_ SET_MSG

5.8.1 Sub block 0x0180 - AWR_BPM_COMMON_CONF_SET_SB

This API sub block defines static configurations related to BPM (Binary Phase Modulation) feature in each of the TXs. E.g. the source of the BPM pattern (one constant value for each chirp as defined, or intra-chirp pseudo random BPM pattern as found by a programmable LFSR or a programmable sequence inside each chirp), are defined here. Table 5.47 describes the contents of this sub block.

Field Name Number **Description** of bytes SBLKID 2 Value = 0x0180SBLKLEN 2 Value = 20BPM_MODE_CFG 2 Bits Description b1:0 BPM_SRC_SEL (select source of BPM pattern) Value Definition 00 CHIRP_CONFIG_BPM (refer to AWR_BPM_CHIRP_CONF_SB) 01 RESERVED 10 RESERVED 11 RESERVED b15:2 RESERVED RESERVED 2 0x0000 RESERVED 2 0x0000 RESERVED 2 0x0000 RESERVED 4 0x0000000 RESERVED 4 0x0000000

Table 5.47: AWR_BPM_COMMON_CONF_SET_SB contents

5.8.2 Sub block 0x0181 - AWR_BPM_CHIRP_CONF_SET_SB

This sub block defines static configurations related to BPM (Binary Phase Modulation) feature in each of the TXs.

Table 5.48 describes the contents of this sub block.

Field Name	Number of bytes	Descrip	tion
SBLKID	2	Value =	0x0181
SBLKLEN	2	Value =	12
CHIRP_START_ INDX	2		lex of the chirp for configuring the constant BPM nge 0 to 511
CHIRP_END_ INDX	2		ex of the chirp for configuring the constant BPM nge 0 to 511
CONST_BPM_	2	Bit	Definition
VAL		b0	CONST_BPM_VAL_TX0_TXOFF Value of Binary Phase Shift value for TX0, when during idle time
		b1	CONST_BPM_VAL_TX0_TXON Value of Binary Phase Shift value for TX0, during chirp
		b2	CONST_BPM_VAL_TX1_TXOFF Value of Binary Phase Shift value for TX1, when during idle time
		b3	CONST_BPM_VAL_TX1_TXON Value of Binary Phase Shift value for TX1, during chirp
		b4	CONST_BPM_VAL_TX2_TXOFF Value of Binary Phase Shift value for TX2, when during idle time
		b5	CONST_BPM_VAL_TX2_TXON Value of Binary Phase Shift value for TX2, during chirp
		b15:6	RESERVED
RESERVED	2	0x0000	

Table 5.48: AWR_BPM_CHIRP_CONF_SET_SB contents

NOTE:

BPM values are applied at TX_START_TIME.

5.9 Sub blocks related to AWR_RF_STATUS_GET_MSG

5.9.1 Sub block 0x0220 – AWR_RF_VERSION_GET_SB

This sub block reads RF HW and FW versions. The information returned by the device will be in the format as given in AWR_RFVERSION_SB.

Table 5.49 describes the contents of the request sub block

Table 5.49: AWR_RF_VERSION_GET_SB cd	contents
--------------------------------------	----------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0220
SBLKLEN	2	Value = 4

Response to AWR_RFVERSION_GET_SB

AWR_RFVERSION_SB sub block is sent by the radar device in response to AWR_RFVERSION_ GET_SB. Note that SBLKID for both AWR_RFVERSION_GET_SB and AWR_RFVERSION_SB are same.

Table 5.50 describes the contents of the response sub block.

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0220		
SBLKLEN	2	Value = 20		
HW₋VARIANT	1	HW variant number		
HW₋VERSION₋ MAJOR	1	HW version major number		
HW_VERSION_ MINOR	1	HW version minor number		
BSS_FW_VER- SION_MAJOR	1	BSS FW version major number		
BSS_FW_VER- SION_MINOR	1	BSS FW version minor number		
BSS_FW_VER- SION_BUILD	1	BSS FW version build number		
BSS_FW_VER- SION_DEBUG	1	BSS FW version debug number		
BSS_FW_VER- SION_YEAR	1	Year of BSS FW version release		
BSS_FW_VER- SION_MONTH	1	Month of BSS FW version release		
BSS_FW_VER- SION_DAY	1	Day of BSS FW version release		
BSS_FW_VER- SION_PATCH_ MAJOR	1	BSS FW version patch major number		

Table 5.50: AWR_RF_VERSION_SB response contents

BSS_FW_VER- SION_PATCH_ MINOR	1	BSS FW version patch minor number		
BSS_FW_VER- SION_PATCH_ YEAR	1	Year of BSS FW patch release		
BSS_FW_VER- SION_PATCH_ MONTH	1	Month of BSS FW patch release		
BSS_FW_VER- SION_PATCH_ DAY	1	Day of BSS FW patch release		
BSS_FW_PATCH_ BUILD_DEBUG_ VERSION	1	BitDefinitionb3:0DEBUG version numberb7:4BUILD version number		

Table 5.50 – continued from previous page

5.9.2 Sub block 0x0221 – AWR_RF_CPUFAULT_STATUS_GET_SB

This sub block provides the RF BSS CPU fault information. Table 5.51 describes the content of this sub block.

Table 5.51:	AWR_RF.	CPUFAULT	_STATUS_G	ET_SB	response contents
-------------	---------	----------	-----------	-------	-------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0221
SBLKLEN	2	Value = 4

AWR_RF_CPUFAULT_STATUS_SB is sent in response to AWR_RF_CPUFAULT_STATUS_GET_SB.

Table 5.52 describes the content of AWR_RF_CPUFAULT_STATUS_SB

 Table 5.52:
 AWR_RF_CPUFAULT_STATUS_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0221
SBLKLEN	2	Value = 36

			1 13	
FAULT_TYPE	1	Value	Definition	
		0	RF Processor Undefined Instruction Abort	
		1	RF Processor Instruction pre-fetch Abort	
		2	RF Processor Data Access Abort	
		3	RF Processor Firmware Fatal Error	
		0x4 - 0xFE	RESERVED	
		0xFF	No fault	
RESERVED	1	0x00		
LINE_NUM	2	-	case of FAULT type is 0x3, provides the number at which fatal error occurred.	
FAULT_LR	4	The instruction	on PC address at which Fault occurred	
FAULT_PREV_LR	4		dress of the function from which fault function ed (Call stack LR)	
FAULT_SPSR	4	The CPSR re	gister value at which fault occurred	
FAULT_SP	4	The SP register value at which fault occurred		
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)		
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type – valid only for fault type 0x0 to 0x2) 0x000 BACKGROUND_ERR		
		0x001 ALI0	GNMENT_ERR	
		0x002 DEE	BUG_EVENT	
		0x00D PEF	RMISSION_ERR	
		0x008 SYN	ICH_EXTER_ERR	
		0x406 ASY	NCH_EXTER_ERR	
		0x409 SYN		
		0x408 ASY	NCH_ECC_ERR	
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only f fault type 0x0 to 0x2)		
		0x0 ERF	R_SOURCE_AXI_MASTER	
		0x1 ERF	R_SOURCE_ATCM	
		0x2 ERF	R_SOURCE_BTCM	
FAULT_AXI_ER- ROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)		
		0x0 AXI.	DECOD_ERR	
		0x1 AXI.	_SLAVE_ERR	

FAULT_ACCESS_ TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR 0x1 WRITE_ERR	
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)0x0UNRECOVERY0x1RECOVERY	
RESERVED	2	0x0000	

Table 5.52 – continued from previous page

5.9.3 Sub block 0x0222 – AWR_RF_ESMFAULT_STATUS_GET_SB

This sub block provides the information regarding additional RF sub system faults. Table 5.53 describes the content of this sub block.

Table 5 53.	AWR_RF_ESMFAULT_STATUS_GET_SB response conten	ts
Table 0.00.	AWIGIT - ESMITACET -STATOS-GET-SE TESPOISE CONTEN	60

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0222
SBLKLEN	2	Value = 4

The response to above request is given in the AWR_RF_ESMFAULT_STATUS_SB. Table 5.54 describes the contents of AWR_RF_ESMFAULT_STATUS_SB.

Table 5.54:	AWR_RF.	ESMFAULT.	STATUS_SB	response contents
-------------	---------	-----------	-----------	-------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0222
SBLKLEN	2	Value = 12

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

Table 5.54 – Continued nom previous page			
ESM_GROUP1_	4	Bit	Error Information
ERRORS		b0	RAMPGEN_SB_ERROR
		b1	RESERVED
		b2	GPADC_RAM_SB_ERROR
		b3	VIM_RAM_SB_ERROR
		b4	DFE_SELFTEST_ERROR
		b5	VIM_SELFTEST_ERRROR
		b6	B0TCM_SB_ERROR
		b7	B1TCM_SB_ERROR
		b8	CCMR4_SELFTEST_ERROR
		b9	ATCM_SB_ERROR
		b10	RAMPGEN_SELFTEST_ERROR
		b11	RAMPGEN_PAR_SELFTST_ERROR
		b12	SEQ_EXT_SELFTEST_ERROR
		b13	SEQ_EXT_SB_ERROR
		b14	RESERVED
		b15	AGC_RAM_SB_ERROR
		b16	B1TCM_PAR_CHK_ERROR
		b17	B0TCM_PAR_CHK_ERROR
		b18	ATCM_PAR_CHK_ERROR
		b19	MB_MSS2BSS_SB_ERROR
		b20	MB_BSS2MSS_SB_ERROR
		b31:21	RESERVED

Table 5.54 – continued from previous page

AWR1xxx Radar Interface Control Document

Revision 0.98 - October 19, 2018

	Table 5.54 – continued from previous page				
ESM_GROUP2_	4	Bit	Error Information		
ERRORS		b0	DFE_STC_ERROR		
		b1	CR4_STC_ERROR		
		b2	CCMR4_COMP_ERROR		
		b3	B0TCM_DB_ERROR		
		b4	B1TCM_DB_ERROR		
		b5	ATCM_DB_ERROR		
		b6	DCC_ERROR		
		b7	SEQ_EXT_ERROR		
		b8	SYNT_FREQ_MON_ERROR		
		b9	DFE_PARITY_ERROR		
		b10	RAMPGEN_DB_ERROR		
		b11	BUBBLE_CORRECTION_FAIL		
		b12	RAMPGEN_LOCSTEP_ERROR		
		b13	RTI_RESET_ERROR		
		b14	GPADC_RAM_DB_ERROR		
		b15	VIM_COMP_ERROR		
		b16	CR4_LIVE_LOCK_ERROR		
		b17	WDT_NMI_ERROR		
		b18	VIM_RAM_DB_ERROR		
		b19	RAMPGEN_PAR_ERROR		
		b20	SEQ_EXT_DB_ERROR		
		b21	DMA_MPU_ERROR		
		b22	AGC_RAM_DB_ERROR		
		b23	CRC_COMP_ERROR		
		b24	WAKEUP_STS_ERROR		
		b25	SHORT_CIRCUIT_ERROR		
		b26	B1TCM_PAR_ERROR		
		b27	B0TCM_PAR_ERROR		
		b28	ATCM_PAR_ERROR		
		b29	MB_MSS2BSS_DB_ERROR		
		b30	MB_BSS2MSS_DB_ERROR		
		b31	CCC_ERROR		

Table 5.54 – continued from previous page

5.9.4 Sub block 0x0223 - AWR_RF_DIEID_GET_SB

This sub block provides the information regarding the Die ID of the device.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0223
SBLKLEN	2	Value = 4

The response to above request is given in the AWR_RF_DIEID_STATUS_SB. Table 5.56 describes the contents of AWR_RF_DIEID_STATUS_SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0223	
SBLKLEN	2	Value = 36	
LOT_NO	4	Lot number	
WAFER_NO	4	Wafer number	
DEV_X	4	X cordinate of the die in the wafer	
DEV_Y	4	Y cordinate of the die in the wafer	
RESERVED	4	0x0000000	

5.9.5 Sub block 0x0224 - AWR_RF_BOOTUPBIST_STATUS_GET_SB

This sub block provides the information regarding boot up self-test status. Table 5.57 describes the content of this sub block.

 Table 5.57:
 AWR_RF_BOOTUPBIST_STATUS_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0224
SBLKLEN	2	Value = 4

The response of this sub block will be AWR_RF_BOOTUPBIST_STATUS_DATA_SB with content as shown in Table 5.58

${\bf Table \ 5.58: \ AWR_RF_BOOTUPBIST_STATUS_DATA_SB \ response \ contents}$

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0224	
SBLKLEN	2	Value = 0x0224 Value = 20	
RF_POWERUP_	4		5, 0 - FAIL
BIST_STATUS_	4	Bit	Status Information
FLAGS		b0	ROM CRC check
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	STC test of diagnostic
		b5	CR4 STC
		b6	CRC test
		b7	RAMPGEN memory ECC test
		b8	DFE Parity test
		b9	DFE memory ECC
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test
		b12	DFE memory PBIST
		b13	RAMPGEN memory PBIST
		b14	PBIST test
		b15	WDT test
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	FFT test
		b25	RTI test
		b26	PCR test
		b31:27	RESERVED
POWERUP_TIME	4		SS power up time
		1 LSB =	5 ns

Table 5.58 – continued from	previous page
	previous page

RESERVED	4	0x0000000
RESERVED	4	0x0000000

5.10 Sub blocks related to AWR_RF_MONITORING_REPORT_GET_ MSG

5.10.1 Sub block 0x0260 - AWR_RF_DFE_STATISTICS_REPORT_GET_SB

Table 5.59 describes the content of this sub block.

 Table 5.59:
 AWR_RF_DFE_STATISTICS_REPORT_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0260
SBLKLEN	2	Value = 4

The response of this sub block will be AWR_RF_DFE_STATISTICS_REPORT_SB with content as shown in Table 5.60

 ${\bf Table \ 5.60: \ AWR_RF_DFE_STATISTICS_REPORT_SB \ response \ contents}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0260
SBLKLEN	2	Value = 196
PF0_RX0_ICH	2	Residual DC value in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX0_QCH	2	Residual DC value in Q chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX0_ISQ	2	RMS power in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input

Table 5.60 – continued from previous page		
PF0_RX0_QSQ	2	RMS power in Q chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF0_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF0_RX1_ICH	2	Residual DC value in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input
PF0_RX1_QCH	2	Residual DC value in Q chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input
PF0_RX1_ISQ	2	RMS power in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF0_RX1_QSQ	2	RMS power in Q chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF0_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF0_RX2_ICH	2	Residual DC value in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX2_QCH	2	Residual DC value in Q chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX2_ISQ	2	RMS power in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input

Table 5.60 – continued from previous page

Iable 5.60 – continued from previous page				
PF0_RX2_QSQ	2	RMS power in Q chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input		
PF0_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input		
PF0_RX3_ICH	2	Residual DC value in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input		
PF0_RX3_QCH	2	Residual DC value in Q chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input		
PF0_RX3_ISQ	2	RMS power in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input		
PF0_RX3_QSQ	2	RMS power in Q chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input		
PF0_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input		
PF1_RX0_ICH	2	Residual DC value in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input		
PF1_RX0_QCH	2	Residual DC value in Q chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input		
PF1_RX0_ISQ	2	RMS power in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input		

	Table 5.0	ou – continued from previous page
PF1_RX0_QSQ	2	RMS power in Q chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF1_RX1_ICH	2	Residual DC value in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX1_QCH	2	Residual DC value in Q chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX1_ISQ	2	RMS power in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX1_QSQ	2	RMS power in Q chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF1_RX2_ICH	2	Residual DC value in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX2_QCH	2	Residual DC value in Q chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX2_ISQ	2	RMS power in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input

	Table 5.0	ou – continued from previous page
PF1_RX2_QSQ	2	RMS power in Q chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF1_RX3_ICH	2	Residual DC value in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input
PF1_RX3_QCH	2	Residual DC value in Q chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input
PF1_RX3_ISQ	2	RMS power in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX3_QSQ	2	RMS power in Q chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF2_RX0_ICH	2	Residual DC value in I chain for profile 2 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{ V}/2^{15}$ referred to ADC input
PF2_RX0_QCH	2	Residual DC value in Q chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF2_RX0_ISQ	2	RMS power in I chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input

	Table 5.0	60 – continued from previous page
PF2_RX0_QSQ	2	RMS power in Q chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF2_RX1_ICH	2	Residual DC value in I chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input
PF2_RX1_QCH	2	Residual DC value in Q chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{ V}/2^{15}$ referred to ADC input
PF2_RX1_ISQ	2	RMS power in I chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX1_QSQ	2	RMS power in Q chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF2_RX2_ICH	2	Residual DC value in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF2_RX2_QCH	2	Residual DC value in Q chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF2_RX2_ISQ	2	RMS power in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input

	Table 5.0	50 – continued from previous page
PF2_RX2_QSQ	2	RMS power in Q chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF2_RX3_ICH	2	Residual DC value in I chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input
PF2_RX3_QCH	2	Residual DC value in Q chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input
PF2_RX3_ISQ	2	RMS power in I chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX3_QSQ	2	RMS power in Q chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF3_RX0_ICH	2	Residual DC value in I chain for profile 3 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{ V}/2^{15}$ referred to ADC input
PF3_RX0_QCH	2	Residual DC value in Q chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX0_ISQ	2	RMS power in I chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input

Iable 5.60 – continued from previous page				
PF3_RX0_QSQ	2	RMS power in Q chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input		
PF3_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input		
PF3_RX1_ICH	2	Residual DC value in I chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input		
PF3_RX1_QCH	2	Residual DC value in Q chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input		
PF3_RX1_ISQ	2	RMS power in I chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input		
PF3_RX1_QSQ	2	RMS power in Q chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input		
PF3_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input		
PF3_RX2_ICH	2	Residual DC value in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input		
PF3_RX2_QCH	2	Residual DC value in Q chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input		
PF3_RX2_ISQ	2	RMS power in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input		
		Continued on next name		

		o – continuca nom previous page
PF3_RX2_QSQ	2	RMS power in Q chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF3_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF3_RX3_ICH	2	Residual DC value in I chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{ V}/2^{15}$ referred to ADC input
PF3_RX3_QCH	2	Residual DC value in Q chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX3_ISQ	2	RMS power in I chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF3_RX3_QSQ	2	RMS power in Q chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF3_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input

5.11 Sub blocks related to AWR_RF_MISC_CONF_SET_MSG

- 5.11.1 Sub block 0x02C0 RESERVED
- 5.11.2 Sub block 0x02C1 RESERVED

5.11.3 Sub block 0x02C2 - AWR_RF_TEST_SOURCE_CONFIG_SET_SB

This sub block is used to configure the test source of BSS Table 5.61 describes the content of this sub block.

$Table \ 5.61: \ {\rm AWR_RF_TEST_SOURCE_CONFIG_SET_SB \ contents}$

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x02C2			
SBLKLEN	2	Value = 72			
POSITION_VEC1	[2+2+2]	Relative position in Cartesian coordinate from radar to objects, [x, y, z] (all signed, though for y, only unsigned makes sense if forward looking: our radar is on y=0 plane). Object 0 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: \pm 32767 cm			
VELOCITY_VEC1	[2+2+2]	Relative velocity in Cartesian coordinate, similar to position vector (all signed) Object 0 1 LSB = 1 cm/s Valid Range = +/- 5000 (i.e. +/-180 kmph)			
SIG_LEV_VEC1	[2]	Reflecting objects' signal level at ADC output, relative to ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enable/disable each object by programming appropriate levels.			
BOUNDARY_ MIN_VEC1	[2+2+2]	Boundary minimum limit for each of x, y, z. When the current position crosses this boundary, the emu- lator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: x: 0 to 32767 cm, y & z: \pm 32767 cm			
BOUNDARY_ MAX_VEC1	[2+2+2]	Boundary maximum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: x: 0 to 32767 cm, y & z: \pm 32767 cm			
POSITION_VEC2	[2+2+2]	Relative position in Cartesian coordinate from radar to objects, [x, y, z] (all signed, though for y, only unsigned makes sense if forward looking: our radar is on y=0 plane). Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: \pm 32767 cm			

VELOCITY_VEC2 [2+2+2] Relative velocity in Cartesian coordinate, similar vector (all signed) Object 1	to position
1 LSB = 1 cm/s Valid Range = +/- 5000 (i.e. +/-180 kmph)	
SIG_LEV_VEC2 [2] Reflecting objects' signal level at ADC output, ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enal each object by programming appropriate levels.	ble/disable
BOUNDARY_ [2+2+2] Boundary minimum limit for each of x, y, z. MIN_VEC2 When the current position crosses this boundary lator returns the corresponding coordinate to the programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: x: 0 to 32767 cm, y & z: ±32767 cm	e originally
BOUNDARY_ MAX_VEC2[2+2+2]Boundary maximum limit for each of x, y, z. When the current position crosses this boundary lator returns the corresponding coordinate to the programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: x: 0 to 32767 cm, y & z: ±32767 cm	e originally
RX_ANT_POS_XZ 8 Receiver Antenna positions to be modeled. The radar is on y=0 plane. Only x and z coordin provided. 1 LSB = Wavelength/8 Valid range = ±15 wave lengths Byte 0: RX0 X coordinate (may be 0 as reference) Byte 1: RX0 Z (may be 0 as reference) Byte 2: RX1 X Byte 3: RX1 Z Byte 4: RX2 X Byte 5: RX2 Z	
Byte 6: RX3 X Byte 7: RX3 Z	

Table 5.61 – continued from previous page

5.11.4 Sub block 0x02C3 - AWR_RF_TEST_SOURCE_ENABLE_SET_SB

This sub block is used to enable test source of BSS

Table 5.62 describes the content of this sub block.

Field Name	Number of bytes	Description				
SBLKID	2	Value =	Value = 0x02C3			
SBLKLEN	2	Value =	Value = 8			
TS_EN	2	Bit Definition				
		b0	0	Disable (revert to normal functionality)		
			1	Enable (enter test source functionality)		
		b15:1	RE	SERVED		
RESERVED	2	0x0000				

Table 5.62: AWR_RF_TEST_SOURCE_ENABLE_SET_SB contents

5.11.5 Sub block 0x02C4 – 0x02CB RESERVED

5.11.6 Sub block 0x02CC - AWR_RF_LDO_BYPASS_SB

This sub block enables LDO bypass option within BSS.

CAUTION:	Do not enable RF LDO bypass option when the PMIC is configured
	to supply 1.3V to VIN_13RF1 and VIN_13RF2 analog and RF power
	supply inputs. This may damage the device. Typically in TI EVMs,
	PMIC is configured to supply 1.3V to the RF supplies.

Table 5.63 describes the content of this sub block.

Table 5.63: AWR_RF_LDO_BYPASS_SB	contents
--	----------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02CC
SBLKLEN	2	Value = 8

RFLDO_BYPASS_	2	Bit	Descript	tion	•	
EN		b0	Value	Description		
			0	RF LDO not	bypassed	
			1	RF LDO by		
		b1	Value	Description		
			0	PA LDO ena	abled	
			1	PA LDO dis	abled	
			package	e reliability iss Γ_PA on the b	sues, VIN ₋ 13I	used, to avoid RF2 is shorted PA LDO should
		b15:2	RESER			
		The usa	ge of thes	se configuration		he table below
		USECA	SE		LDO_ BYPASS	PA_LDO_ DISABLE
		1.3V VII 13RF2 s	-	and $\text{VIN}_{\text{-}}$	0	0
		1.0V VII 13RF2 s	-	and $\text{VIN}_{\text{-}}$	1	0
		13RF2	supplies	and VIN_ and VIN_ to VOUT_	1	1
SUPPLY_MONI- TOR_IRDROP	1	device p in perce threshol	oin. The entage ur ds for me	user should its which wil asuring the e	program the	output to the voltage drop adjusting the es.
		Value	Descript			
		0	IR drop			
		2	IR drop IR drop			
		2	IR drop			
IO_SUPPLY_	1	-	•		monitoring of	
		Value	Descript		monitoring of	
		0	3.3 V IC			
		1	1.8 V IC			
		I	1.0 V IU	suppiy		

5.11.7 Sub block 0x02CD - AWR_RF_PALOOPBACK_CFG_SB

This sub block enables/disables PA loopback for all enabled profiles. This is used to debug both the TX and RX chains are working correctly.

Table 5.64 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock 0x02CD,
	0x02CE, 0x02CF), then loopback will not work after montoring is
	complete. To use loopback with monitoring, use AWR_ADVANCED_
	FRAME_CONF_SB with AWR_LOOPBACK_BURST_CONF_SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02CD
SBLKLEN	2	Value = 8
PA_LOOPBACK_ FREQ	2	This value is a 100 MHz divider which sets the loopback frequency For e.g. for a 1 MHz frequency, set this to 100 For a 2 MHz frequency, set this to 50 NOTE: To ensure no leakage of signal power, user has to ensure that 100 MHz/LOOPBACK_FREQ is an integer mul- tiple of bin width For e.g. if user choses 25 Msps sampling rate and 2048 samples/chirp, then LOOPBACK_FREQ of 64 (=1.5625 MHz) will ensure no leakage
PA_LOOPBACK_	1	Value Description
EN		0 PA loopback is not enabled
		1 PA loopback is enabled
RESERVED	1	0x00

Table 5.64: AWR_RF_PALOOPBACK_CFG_SB contents

5.11.8 Sub block 0x02CE - AWR_RF_PSLOOPBACK_CFG_SB

This sub block enables/disables PS (phase shifter) loopback for all enabled profiles. This is used to debug the TX (before the PA) and RX chains.

Table 5.65 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock 0x02CD,
	0x02CE, 0x02CF), then loopback will not work after montoring is
	complete. To use loopback with monitoring, use AWR_ADVANCED_
	FRAME_CONF_SB with AWR_LOOPBACK_BURST_CONF_SB.

Table 5.65: AWR_RF_PSLOOPBACK_CFG_SB contents

Field Name	Number of bytes	Description					
SBLKID	2	Value = 0x02CE					
SBLKLEN	2	Value =	12				
PS_LOOPBACK_ FREQ	2		Loop back frequency in kHz 1 LSB = 1 kHz				
RESERVED	2	0x0000					
PS_LOOPBACK_	1	Value	Definition	ı			
EN		0	PS loopt	ack is	not enabl	ed	
		1	PS loopt	ack is	enabled		
PS_LOOPBACK_	1	Bit	Definition	۱			
TXID		b0	TX0 is us	sed for	loopback		
		b1	TX1 is us	sed for	loopback		
		b7:2	RESERV	/ED			
PGA_GAIN_	1						
INDEX		Value	PGA value	gain	Value	PGA value	gain
		0	PGA is C	OFF	15	-3 dB	
		1	-22 dB		16	-2 dB	
		2	-16 dB		17	-1 dB	
		3	-15 dB		18	0 dB	
		4	-14 dB		19	1 dB	
		5	-13 dB		20	2 dB	
		6	-12 dB		21	3 dB	
		7	-11 dB		22	4 dB	
		8	-10 dB		23	5 dB	
		9	-9 dB		24	6 dB	
		10	-8 dB		25	7 dB	
		11	-7 dB		26	8 dB	
		12	-6 dB		27	9 dB	
		13	-5 dB		255-28	RESERV	'ED
		14	-4 dB				
RESERVED	1	0x00					

5.11.9 Sub block 0x02CF - AWR_RF_IFLOOPBACK_CFG_SB

This sub block enables/disables IF loopback for all enabled profiles. This is used to debug the RX IF chain.

Table 5.66 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock 0x02CD,
	0x02CE, 0x02CF), then loopback will not work after montoring is
	complete. To use loopback with monitoring, use AWR_ADVANCED_
	FRAME_CONF_SB with AWR_LOOPBACK_BURST_CONF_SB.

Table 5.66: AWR_RF_IFLOOPBACK_CFG_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value =	Value = 0x02CF		
SBLKLEN	2	Value =	8		
IF_LOOPBACK_	2	Value	IF Loopback frequency value		
FREQ		0	180 kHz		
		1	240 kHz		
		2	360 kHz		
		3	720 kHz		
		4	1 MHz		
		5	2 MHz		
		6	2.5 MHz		
		7	3 MHz		
		8	4.017857 MHz		
		9	5 MHz		
		10	6 MHz		
		11	8.035714 MHz		
		12	9 MHz		
		13	10 MHz		
		65535- 14	RESERVED		
IF_LOOPBACK_	1	Value	Definition		
EN		0	IF loopback is not enabled		
		1	IF loopback is enabled		
RESERVED	1	0x00			

5.11.10 Sub block 0x02D0 - AWR_RF_GPADC_CFG_SET_SB

This sub block enables the GPADC reads for external inputs (available only in xWR1642 or xWR1843).

Table 5.67 describes the content of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x02D0	
SBLKLEN	2	Value = 32	
SIGNAL_INPUT_ ENABLES	1	This field indicates the sets of externally fed DC sig- nals which are to be monitored using GPADC. When each bit in this field is set, the corresponding signal is monitored. Bit Definition	
		0 ANALOGTEST1	
		1 ANALOGTEST2	
		2 ANALOGTEST3	
		3 ANALOGTEST4	
		4 ANAMUX	
		5 VSENSE	
		Others RESERVED	
SIGNAL_ BUFFER_EN- ABLES	1	This field indicates the sets of externally fed DC signals which are to be buffered before being fed to the GPADC. When each bit in this field is set, the corresponding signal is buffered before the GPADC. Bit SIGNAL	
		0 ANALOGTEST1	
		1 ANALOGTEST2	
		2 ANALOGTEST3	
		3 ANALOGTEST4	
		4 ANAMUX	
		Others RESERVED	

Table 5.67: AWR_RF_GPADC_CFG_SET_SB

2	Bit Definition
	b7:0 Number of samples to collect
	1 sample takes 1.6 μ s
	b15:8 Settling time 1 LSB = 0.8 μs
	Valid range: 0 to 12 μ s
	Valid programming condition: all the signals that are en-
	abled should take a total of < 100 μ s including the
	programmed settling times and measurement time per enabled signal.
0	
2	Bit Definition
	b7:0 Number of samples to collect
	1 sample takes 1.6 μ s
	b15:8 Settling time 1 LSB = 0.8 μs
	Valid range: 0 to 12 μ s
	Valid programming condition: all the signals that are en-
	abled should take a total of $<$ 100 μ s including the
	programmed settling times and measurement time per enabled signal.
0	
2	Bit Definition
	b7:0 Number of samples to collect 1 sample takes 1.6 μs
	b15:8 Settling time
	1 LSB = 0.8 μs
	Valid range: 0 to 12 μ s
	Valid range: 0 to 12 μs Valid programming condition: all the signals that are en-
	Valid range: 0 to 12 μs Valid programming condition: all the signals that are enabled should take a total of $<$ 100 μs including the
	Valid range: 0 to 12 μs Valid programming condition: all the signals that are en-
2	Valid range: 0 to 12 μ s Valid programming condition: all the signals that are en- abled should take a total of < 100 μ s including the programmed settling times and measurement time per
2	Valid range: 0 to 12 μ s Valid programming condition: all the signals that are en- abled should take a total of < 100 μ s including the programmed settling times and measurement time per enabled signal.
2	Valid range: 0 to 12 μ sValid programming condition: all the signals that are enabled should take a total of < 100 μ s including the programmed settling times and measurement time per enabled signal.BitDefinitionb7:0Number of samples to collect
2	Valid range: 0 to 12 μ sValid programming condition: all the signals that are enabled should take a total of < 100 μ s including the programmed settling times and measurement time per enabled signal.BitDefinitionb7:0Number of samples to collect 1 sample takes 1.6 μ sb15:8Settling time 1 LSB = 0.8 μ s
2	Valid range: 0 to 12 μ sValid programming condition: all the signals that are enabled should take a total of < 100 μ s including the programmed settling times and measurement time per enabled signal.BitDefinitionb7:0Number of samples to collect 1 sample takes 1.6 μ sb15:8Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s
2	Valid range: 0 to 12 μ sValid programming condition: all the signals that are enabled should take a total of < 100 μ s including the programmed settling times and measurement time per enabled signal.BitDefinitionb7:0Number of samples to collect 1 sample takes 1.6 μ sb15:8Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ sValid programming condition: all the signals that are en-
2	Valid range: 0 to 12 μ sValid programming condition: all the signals that are enabled should take a total of < 100 μ s including the programmed settling times and measurement time per enabled signal.BitDefinitionb7:0Number of samples to collect 1 sample takes 1.6 μ sb15:8Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s
	2 2 2 2

ANAMUX_CFG	2	Bit	Definition
		b7:0	Number of samples to collect 1 sample takes 1.6 μ s
		abled s	Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s ogramming condition: all the signals that are en- hould take a total of < 100 μ s including the imed settling times and measurement time per signal.
VSENSE_CFG	2	Bit	Definition
		b7:0	Number of samples to collect 1 sample takes 1.6 μ s
		abled s	Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s ogramming condition: all the signals that are en- hould take a total of < 100 μ s including the imed settling times and measurement time per signal.
RESERVED	2	0x0000	
RESERVED	4	0x00000	0000
RESERVED	4	0x00000	0000
RESERVED	4	0x00000	0000

The response to the AWR_RF_GPADC_CFG_SET_SB is an async event AWR_AE_RF_GPADC_ RESULT_DATA_SB which contains the measured values for each of the enabled channels.

5.11.11 Sub block 0x02D1 – RESERVED

5.11.12 Sub block 0x02D2 – RESERVED

5.11.13 Sub block 0x02D3 – RESERVED

5.12 Sub blocks related to AWR_RF_MISC_CONF_GET_MSG

5.12.1 Sub block 0x02E0 to 0x2E9 - RESERVED

5.12.2 Sub block 0x02EA - AWR_RF_TEMPERATURE_GET_SB

This sub block provides the device temperature sensor information. Table 5.68 describes the content of this sub block.

Table 5.68: AWR_RF_TEMPERATURE_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02EA
SBLKLEN	2	Value = 4

AWR_RF_TEMPERATURE_DATA_SB sub block is sent by the radar device in response to AWR_ RF_TEMPERATURE_GET_SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02EA
SBLKLEN	2	Value = 28
TIME	4	BSS local Time from device power up 1 LSB = 1 ms
TEMP_RX0_ SENS	2	RX0 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_RX1_ SENS	2	RX1 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_RX2_ SENS	2	RX2 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_RX3_ SENS	2	RX3 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_TX0_ SENS	2	TX0 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_TX1_ SENS	2	TX1 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_TX2_ SENS	2	TX2 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_PM_SENS	2	PM temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_DIG1_ SENS	2	Digital temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_DIG2_ SENS	2	Digital temperature sensor reading (signed value) [Appli- cable only in xWR1642 or xWR1843] 1 LSB = 1°C

Table 5.69: AWR_RF_TEMPERATURE_DATA_SB contents

5.13 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG1

5.13.1 Sub block 0x1000 - RESERVED

5.13.2 Sub block 0x1001 - RESERVED

5.13.3 Sub block 0x1002 - AWR_AE_RF_CPUFAULT_SB

This sub block indicates CPU fault status of BIST SS. Table 5.70 describes the content of this sub block.

Table 5.70: AWR_AE_RF_CPUFAULT_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1002
SBLKLEN	2	Value = 36
FAULT_TYPE	1	Value Definition
		0 RF Processor Undefined Instruction Abort
		1 RF Processor Instruction pre-fetch Abort
		2 RF Processor Data Access Abort
		3 RF Processor Firmware Fatal Error
		0x4 - RESERVED 0xFE
		0xFF No fault
RESERVED	1	0x00
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.
FAULT_LR	4	The instruction PC address at which Fault occurred
FAULT_PREV_LR	4	The return address of the function from which fault function has been called (Call stack LR)
FAULT_SPSR	4	The CPSR register value at which fault occurred
FAULT_SP	4	The SP register value at which fault occurred
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2) $% \left(\frac{1}{2}\right) =0$

	10010 011	0 - continueu nom previous page
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type – valid only for fault type 0x0 to 0x2) 0x000 BACKGROUND_ERR 0x001 ALIGNMENT_ERR 0x002 DEBUG_EVENT 0x00D PERMISSION_ERR 0x008 SYNCH_EXTER_ERR 0x406 ASYNCH_EXTER_ERR 0x409 SYNCH_ECC_ERR 0x408 ASYNCH_ECC_ERR
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only forfault type 0x0 to 0x2)0x0ERR_SOURCE_AXI_MASTER0x1ERR_SOURCE_ATCM0x2ERR_SOURCE_BTCM
FAULT_AXI_ER- ROR_TYPE	1	The AXI Error type (Error Source type - valid only for faulttype 0x0 to 0x2)0x0AXI_DECOD_ERR0x1AXI_SLAVE_ERR
FAULT_ACCESS_ TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR 0x1 WRITE_ERR
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)0x0UNRECOVERY0x1RECOVERY
RESERVED	2	0x0000

5.13.4 Sub block 0x1003 - AWR_AE_RF_ESMFAULT_SB

This sub block indicates the status of any other faults in the BIST SS. Table 5.71 describes the content of this sub block.

$\textbf{Table 5.71: } AWR_AE_RF_ESMFAULT_STATUS_SB \ response \ contents$

Field Name	Number of bytes	Descrip	tion
SBLKID	2	Value =	0x1003
SBLKLEN	2	Value =	12
ESM_GROUP1_	4	Bit	Error Information
ERRORS		b0	RAMPGEN_SB_ERROR
		b1	RESERVED
		b2	GPADC_RAM_SB_ERROR
		b3	VIM_RAM_SB_ERROR
		b4	DFE_SELFTEST_ERROR
		b5	VIM_SELFTEST_ERRROR
		b6	B0TCM_SB_ERROR
		b7	B1TCM_SB_ERROR
		b8	CCMR4_SELFTEST_ERROR
		b9	ATCM_SB_ERROR
		b10	RAMPGEN_SELFTEST_ERROR
		b11	RAMPGEN_PAR_SELFTST_ERROR
		b12	SEQ_EXT_SELFTEST_ERROR
		b13	SEQ_EXT_SB_ERROR
		b14	RESERVED
		b15	AGC_RAM_SB_ERROR
		b16	B1TCM_PAR_CHK_ERROR
		b17	B0TCM_PAR_CHK_ERROR
		b18	ATCM_PAR_CHK_ERROR
		b19	MB_MSS2BSS_SB_ERROR
		b20	MB_BSS2MSS_SB_ERROR
		b31:21	RESERVED

AWR1xxx Radar Interface Control Document

Revision 0.98 - October 19, 2018

	14010 011	1 00110	nued from previous page
ESM_GROUP2_	4	Bit	Error Information
ERRORS		b0	DFE_STC_ERROR
		b1	CR4_STC_ERROR
		b2	CCMR4_COMP_ERROR
		b3	B0TCM_DB_ERROR
		b4	B1TCM_DB_ERROR
		b5	ATCM_DB_ERROR
		b6	DCC_ERROR
		b7	SEQ_EXT_ERROR
		b8	SYNT_FREQ_MON_ERROR
		b9	DFE_PARITY_ERROR
		b10	RAMPGEN_DB_ERROR
		b11	BUBBLE_CORRECTION_FAIL
		b12	RAMPGEN_LOCSTEP_ERROR
		b13	RTI_RESET_ERROR
		b14	GPADC_RAM_DB_ERROR
		b15	VIM_COMP_ERROR
		b16	CR4_LIVE_LOCK_ERROR
		b17	WDT_NMI_ERROR
		b18	VIM_RAM_DB_ERROR
		b19	RAMPGEN_PAR_ERROR
		b20	SEQ_EXT_DB_ERROR
		b21	DMA_MPU_ERROR
		b22	AGC_RAM_DB_ERROR
		b23	CRC_COMP_ERROR
		b24	WAKEUP_STS_ERROR
		b25	SHORT_CIRCUIT_ERROR
		b26	B1TCM_PAR_ERROR
		b27	B0TCM_PAR_ERROR
		b28	ATCM_PAR_ERROR
		b29	MB_MSS2BSS_DB_ERROR
		b30	MB_BSS2MSS_DB_ERROR
		b31	CCC_ERROR

Table 5.71 – continued from previous page

5.13.5 Sub block $0x1004 - AWR_AE_RF_INITCALIBSTATUS_SB$

This sub block indicates the initial calibrations of RF BIST SS are complete.

Table 5.72 describes the content of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1004
SBLKLEN	2	Value = 24
CALIBRATION_ STATUS	4	This field indicates the status of each calibration(0 - FAIL, 1 - PASS). If a particular calibration was not enabled, then its corresponding field should be ignored.BitDefinition (0 - FAIL, 1 - PASS)b0RESERVEDb1APLL tuningb2SYNTH VCO1 tuningb3SYNTH VCO2 tuningb4LODIST calibrationb5RX ADC DC offset calibrationb6HPF cutoff calibrationb7LPF cutoff calibrationb8Peak detector calibrationb9TX Power calibrationb1RX gain calibrationb1TX Phase calibrationb1RX IQMM calibrationb2RX IQMM calibration

 Table 5.72:
 AWR_AE_RF_INITCALIBSTATUS_SB response contents

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

		z – continueu nom previous page
CALIBRATION_ UPDATE	4	This field indicates if a particular calibration data has been updated in hardware. (0 – no update, 1 – updated)BitDefinitionb0RESERVEDb1APLL tuningb2SYNTH VCO1 tuningb3SYNTH VCO2 tuningb4LODIST calibrationb5RX ADC DC offset calibrationb6HPF cutoff calibrationb7LPF cutoff calibrationb8Peak detector calibrationb9TX Power calibrationb10RX gain calibrationb11TX Phase calibrationb12RX IQMM calibration
TEMPERATURE	2	b31:13 RESERVED Measured temperature, based on average of temperature
		sensors near all enabled TX and RX channels at the time of calibration. 1 LSB = 1° C
RESERVED	2	0x0000
TIME_STAMP	4	This field indicates time stamp at the time of performing calibration updates. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)
RESERVED	4	0x0000000

Table 5.72 – continued from previous page

5.13.6 Sub block 0x1005 – RESERVED

- 5.13.7 Sub block 0x1006 RESERVED
- 5.13.8 Sub block 0x1007 RESERVED
- 5.13.9 Sub block 0x1008 RESERVED
- 5.13.10 Sub block 0x1009 RESERVED
- 5.13.11 Sub block 0x100A RESERVED

5.13.12 Sub block 0x100B - AWR_AE_RF_FRAME_TRIGGER_RDY_SB

This sub block indicates that the slave device is now ready to receive the external sync in for frame triggers. In SW triggered mode, this async event indicates that frames are triggered. Table 5.73 describes the content of this sub block.

Table 5.73: AWR_AE_RF_FRAME_TRIGGER_RDY_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100B
SBLKLEN	2	Value = 4

5.13.13 Sub block 0x100C - AWR_AE_RF_GPADC_RESULT_DATA_SB

This sub block indicates that GPADC measurement is complete and it also contains the measured data of each of the enabled channels. The data for channels which are not enabled can be ignored.

Table 5.74 describes the content of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100C
SBLKLEN	2	Value = 76
ANATEST1_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024
ANATEST1_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024

	Table 5.7	4 – continued from previous page
ANATEST1_AVG_ DATA	2	Average GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024
ANATEST2_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024
ANATEST2_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024
ANATEST2_AVG_ DATA	2	Average GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024
ANATEST3_MIN₋ DATA	2	Minimum GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024
ANATEST3_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024
ANATEST3_AVG_ DATA	2	Average GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024
ANATEST4_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024
ANATEST4_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024
ANATEST4_AVG_ DATA	2	Average GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024
ANAMUX_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024
ANAMUX_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024
ANAMUX_AVG_ DATA	2	Average GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024
VSENSE_MIN_ DATA	2	Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024

		- continued nom providuo puge
VSENSE_MAX_ DATA	2	Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024
VSENSE_AVG_ DATA	2	Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024
RESERVED	2	0x0000
RESERVED	4	0x0000000

5.13.14 Sub block 0x100E - RESERVED

5.13.15 Sub block 0x100D - RESERVED

5.13.16 Sub block 0x100E - RESERVED

5.13.17 Sub block 0x100F – AWR_FRAME_END_AE_SB

This sub block indicates end of the frames. Table 5.75 describes the content of this sub block.

Table 5.75:	AWR_FRAME_END_AE_SB response contents
-------------	---------------------------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100F
SBLKLEN	2	Value = 4

5.13.18 Sub block 0x1010 - AWR_ANALOGFAULT_AE_SB

This sub block indicates fault in analog supplies or LDO short circuit condition. Once a fault is detected the functionality cannot be resumed from then on and the sensor needs to be re-started.

Field Name	Number of bytes	Descrip	tion
SBLKID	2	Value =	0x1010
SBLKLEN	2	Value =	16
FAULT_TYPE	1	Value	Definition
		0	NO FAULT
		1	ANALOG_SUPPLY_FAULT
		Others	RESERVED
RESERVED	1	0x00	
RESERVED	2	0x0000	
FAULT_SIG	4	Bit	Definition
		b0	1.8V BB ANA supply fault detected
		b1	13V/1.0V RF supply fault detected
		b2	Synth VCO LDO short circuit detected
		b3	PA LDO short circuit detected
		b31:4	RESERVED
RESERVED	4	0x00000	0000

Table 5.76: AWR_ANALOGFAULT_AE_SB response contents

5.13.19 Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB

This sub block indicates any timing failure related to calibration or monitoring. Table 5.77 describes the content of this sub block.

Table 5.77: AWI	R_CAL_MON_TIMING	_FAIL_REPORT_A	AE_SB response contents
------------------------	------------------	----------------	-------------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1011
SBLKLEN	2	Value = 8

TIMING_FAIL-	2	Bit	Defi	nition
URE_CODE		b0	RES	SERVED
		b1	0	No Failure
			1	Total monitoring and calibration time do not fit in one CALIB_MON_TIME_ UNIT in AWR_RUN_TIME_CALIBRATION_ CONF_AND_TRIGGER when ONE_TIME_ CALIB is enabled
		b2	0	No Failure
			1	Total monitoring and calibration time do not fit in one CALIB_MON_TIME_ UNIT in AWR_RUN_TIME_CALIBRATION_ CONF_AND_TRIGGER when PERIODIC_ CALIB is enabled
		b3	0	No Failure
			1	Runtime timing violation: Monitoring func- tions or calibrations could not be com- pleted in one CALIB_MON_TIME_UNIT
		b15:4	RES	SERVED
RESERVED	2	0x0000		

5.13.20 Sub block 0x1012 - AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB

This sub block indicates the calibration status (one time or run time) if the calibration reports are enabled in the AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB.

NOTE:	The calibration report is sent if the calibrations are triggered due to
	temperature change or whenever the internal calibratons are trig-
	gered i.e. every 1 s

$\textbf{Table 5.78: } AWR_RUN_TIME_CALIB_SYMMARY_REPORT_AE_SB \ response$

contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1012	
SBLKLEN	2	Value = 24	

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

CALIBRATION_ ERROR.FLAG 4 This field indicates the status of each calibration. 1 - calibration is passed, 0 - calibration is failed or not enabled/performed at least once. Bit Definition b0 RESERVED b1 APLL tuning b2 SYNTH VC01 tuning b3 SYNTH VC02 tuning b4 LODIST calibration b5 RESERVED b6 RESERVED b7 RESERVED b6 RESERVED b7 RESERVED b6 RESERVED b7 RESERVED b8 PD calibration b9 TX power calibration b10 RX gain calibration b11 RESERVED b12 RESERVED b131:13 RESERVED b11:1 RESERVED b12 RESERVED b131:13 RESERVED b131:13 RESERVED b14 LODIST calibration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Anal				nueu nom previous page
b0RESERVEDb1APLL tuningb2SYNTH VCO1 tuningb3SYNTH VCO2 tuningb4LODIST calibrationb5RESERVEDb6RESERVEDb7RESERVEDb8PD calibrationb9TX power calibrationb10RX gain calibrationb11RESERVEDb2RESERVEDb31:13RESERVEDb12RESERVEDb31:13RESERVEDb31:13RESERVEDb31:14RESERVEDb31:15RESERVEDb31:16Definitionb0RESERVEDb1APLL tuningb2SYNTH VCO1 tuningb3SYNTH VCO2 tuning		4	1 - calib enabled	pration is passed, 0 - calibration is failed or not /performed at least once.
b1APLL tuningb2SYNTH VCO1 tuningb3SYNTH VCO2 tuningb4LODIST calibrationb5RESERVEDb6RESERVEDb7RESERVEDb8PD calibrationb9TX power calibrationb10RX gain calibrationb11RESERVEDb22SYNTH VCO1 tuningb3STA power calibrationb10RX gain calibrationb11RESERVEDb12RESERVEDb13RESERVEDb14Calibration resulted in a reconfiguration of RF is indicatedby a value of 1 in the respective bit in this field.0ARESERVEDb1APLL tuningb2SYNTH VCO1 tuningb3SYNTH VCO1 tuningb3SYNTH VCO2 tuning			-	
b2SYNTH VCO1 tuningb3SYNTH VCO2 tuningb4LODIST calibrationb5RESERVEDb6RESERVEDb7RESERVEDb8PD calibrationb9TX power calibrationb10RX gain calibrationb11RESERVEDb22RESERVEDb12RESERVEDb13RESERVEDb13RESERVEDb14RESERVEDb15RESERVEDb16RESERVEDb17RESERVEDb18RESERVEDb11RESERVEDb12RESERVEDb31:13RESERVEDCALIBRATIONL UPDATE.STATUS4AEach bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is not updated 1 - Analog/RF is not updated 			b0	-
b3SYNTH VCO2 tuningb4LODIST calibrationb5RESERVEDb6RESERVEDb7RESERVEDb8PD calibrationb9TX power calibrationb10RX gain calibrationb11RESERVEDb12RESERVEDb13RESERVEDb11RESERVEDb12RESERVEDb13RESERVEDb11RESERVEDb12RESERVEDb31:13RESERVEDCALIBRATIONL4CALIBRATIONL4CALIBRATIONL4CALIBRATIONL4CALIBRATIONL6DATE_STATUS6DATE_STATUS6DATE_STATUS6DATE_STATUS6DATE_STATUS6DATE_STATUS7DATE_STATUS6DATE_STATUS8DATE_STATUS9DATE_STAT			b1	-
CALIBRATION. UPDATE.STATUS4LODIST calibration h5RESERVED b6RESERVED b7RESERVED b8PD calibration b9b10RX gain calibration b10b11RESERVED b12b12RESERVED b12b13RESERVED b12CALIBRATION. UPDATE.STATUS46Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration Bitb1RESERVED b10b2SYNTH VCO1 tuning b3b3SYNTH VCO2 tuning			b2	SYNTH VCO1 tuning
CALIBRATION_ UPDATE_STATUS46RESERVED b76RESERVED b78PD calibration b95TX power calibration b10b11RESERVED b12b2RESERVED b31:136RESERVED b31:136RESERVED b31:136RESERVED b31:136RESERVED b31:136RESERVED b31:13788PD calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration Bit8Definition b09RESERVED b19APLL tuning b29SYNTH VCO1 tuning b39SYNTH VCO2 tuning			b3	SYNTH VCO2 tuning
b6RESERVEDb7RESERVEDb7RESERVEDb8PD calibrationb9TX power calibrationb10RX gain calibrationb11RESERVEDb12RESERVEDb31:13RESERVEDCALIBRATION_ UPDATE_STATUS44Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration Bitb1APLL tuning b2b2SYNTH VCO1 tuning b3b3SYNTH VCO2 tuning			b4	LODIST calibration
b7RESERVEDb8PD calibrationb9TX power calibrationb10RX gain calibrationb11RESERVEDb12RESERVEDb31:13RESERVEDCALIBRATION- UPDATE_STATUS44Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration Bitb1RESERVEDb1APLL tuning b2b2SYNTH VCO1 tuning b3b3SYNTH VCO2 tuning			b5	RESERVED
bit PD calibration b8 PD calibration b9 TX power calibration b10 RX gain calibration b11 RESERVED b12 RESERVED b31:13 RESERVED cALIBRATION. 4 Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration Bit Definition b0 RESERVED b1 APLL tuning b2 SYNTH VCO1 tuning b3 SYNTH VCO2 tuning			b6	RESERVED
b9TX power calibrationb10RX gain calibrationb11RESERVEDb12RESERVEDb31:13RESERVEDCALIBRATION_ UPDATE_STATUS44Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration Bit Definitionb0RESERVEDb1APLL tuning b2b2SYNTH VCO1 tuning b3b3SYNTH VCO2 tuning			b7	RESERVED
b10RX gain calibrationb11RESERVEDb12RESERVEDb31:13RESERVEDCALIBRATION_ UPDATE_STATUS4Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration Bitb0RESERVEDb1APLL tuningb2SYNTH VCO1 tuning b3b3SYNTH VCO2 tuning			b8	PD calibration
b11RESERVEDb12RESERVEDb31:13RESERVEDCALIBRATION. UPDATE_STATUS4Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration BitBitDefinitionb0RESERVEDb1APLL tuningb2SYNTH VCO1 tuning b3b3SYNTH VCO2 tuning			b9	TX power calibration
b12RESERVED b31:13CALIBRATION_ UPDATE_STATUS4Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration BitBitDefinitionb0RESERVED b1b1APLL tuning b2b2SYNTH VCO1 tuning b3b3SYNTH VCO2 tuning			b10	RX gain calibration
CALIBRATION UPDATE_STATUS4Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration Bit Definition b0 RESERVED b1 APLL tuning b2 SYNTH VCO1 tuning b3 SYNTH VCO2 tuning			b11	RESERVED
CALIBRATION_ UPDATE_STATUS4Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 - Analog/RF is not updated 1 - Analog/RF is updated after a respective calibration Bit Definition b0RESERVED b1 APLL tuning b2SYNTH VCO1 tuning b3SYNTH VCO2 tuning			b12	RESERVED
UPDATE_STATUScalibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. $0 - Analog/RF$ is not updated $1 - Analog/RF$ is updated after a respective calibration Bit Definition b0 RESERVED b1 APLL tuning b2 SYNTH VCO1 tuning b3 SYNTH VCO2 tuning			b31:13	RESERVED
b0RESERVEDb1APLL tuningb2SYNTH VCO1 tuningb3SYNTH VCO2 tuning		4	calibratio by a valu 0 – Anal	on resulted in a reconfiguration of RF is indicated ue of 1 in the respective bit in this field. og/RF is not updated
b1APLL tuningb2SYNTH VCO1 tuningb3SYNTH VCO2 tuning			Bit	Definition
b2 SYNTH VCO1 tuning b3 SYNTH VCO2 tuning			b0	RESERVED
b3 SYNTH VCO2 tuning			b1	APLL tuning
			b2	SYNTH VCO1 tuning
b4 LODIST calibration			b3	SYNTH VCO2 tuning
			b4	LODIST calibration
b5 RESERVED			b5	RESERVED
b6 RESERVED			b6	RESERVED
b7 RESERVED			b7	RESERVED
b8 PD calibration			b8	PD calibration
b9 TX power calibration			b9	TX power calibration
b10 RX gain calibration			b10	RX gain calibration
b11 RESERVED			b11	-
b12 RESERVED			b12	RESERVED
b31:13 RESERVED	1			

Table 5.78 – continued from previous page

TEMPERATURE	2	Measured temperature, based on average of temperature sensors near all enabled TX and RX channels at the time of calibration. 1 LSB = 1° C
RESERVED	2	RESERVED
TIME_STAMP	4	This field indicates time stamp at the time of performing calibration updates. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)
RESERVED	4	0x0000000

5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_ SB

This async event contains the status of digital monitoring for latent faults.

Table 5.79: AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1013
SBLKLEN	2	Value = 8

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

	Table 5.79 – continued from previous page				
DIG_MON_LA-	4		S, 0 – FAIL		
TENT_FAULT_ STATUS		Bit	Definition		
514105		b0	RESERVED		
		b1	CR4 and VIM lockstep test		
		b2	RESERVED		
		b3	VIM test		
		b4	RESERVED		
		b5	RESERVED		
		b6	CRC test		
		b7	RAMPGEN memory ECC test		
		b8	DFE Parity test		
		b9	DFE memory ECC test		
		b10	RAMPGEN lockstep test		
		b11	FRC lockstep test		
		b12	RESERVED		
		b13	RESERVED		
		b14	RESERVED		
		b15	RESERVED		
		b16	ESM test		
		b17	DFE STC		
		b18	RESERVED		
		b19	ATCM, BTCM ECC test		
		b20	ATCM, BTCM parity test		
		b21	RESERVED		
		b22	RESERVED		
		b23	RESERVED		
		b24	FFT test		
		b25	RTI test		
		b26	PCR test		
		b31:27	RESERVED		

Table 5.79 – continued from previous page

5.13.22 Sub block 0x1014 – RESERVED

5.13.23 Sub block 0x1015 - AWR_MONITOR_REPORT_HEADER_AE_SB

The report header includes common information across all enabled monitors like current FTTI number and current temperature.

Table 5.80: AWR_MONITORING_REPORT_HEADER_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1015
SBLKLEN	2	Value = 12
FTTI_COUNT	4	FTTI free running counter value, incremented every CAL_MON_TIME_UNIT
AVG_TEMPERA- TURE	2	Average temperature at which was monitoring performed
RESERVED	2	0x0000

5.13.24 Sub block 0x1016 - AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB

This async event is sent periodically to indicate the status of periodic digital monitoring tests.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1016
SBLKLEN	2	Value = 12
RF_DIG_MON_	4	1 – PASS, 0 – FAIL
PERIODIC_STA-		Bit Monitoring type
TUS		b0 PERIODIC_CONFG_REGISTER_READ
		b1 ESM_MONITORING
		b2 DFE_STC
		b3 FRAME_TIMING_MONITORING
		b31:4 RESERVED
TIMESTAMP	4	This field indicates when the last monitoring in the enabled
		set was performed.
		1 LSB = 1 millisecond (time stamp rolls over upon exceed-
		ing allotted bit width)

Table 5.81: AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB contents

5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured temperature near various RF analog and digital modules. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.82: AWR_MONITORING_TEMPERATURE_REPORT_AE_SB contents

	Number of bytes	Description
SBLKID	2	Value = 0x1017
SBLKLEN	2	Value = 36
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_ANA_TEMP_MIN
		b1 STATUS_ANA_TEMP_MAX
		b2 STATUS_DIG_TEMP_MIN
		b3 STATUS_DIG_TEMP_MAX
		b4 STATUS_TEMP_DIFF_THRESH
		b15:5 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TEMP_VALUES	20	The measured onchip temperature is reported here. Byte numbers corresponding to different tem- perature sensors reported in this field are here: Bytes Temperature sensor 1:0 TEMP_RX0 3:2 TEMP_RX0 3:2 TEMP_RX1 5:4 TEMP_RX2 7:6 TEMP_RX2 7:6 TEMP_RX3 9:8 TEMP_TX0 11:10 TEMP_TX1 13:12 TEMP_TX1 13:12 TEMP_TX2 15:14 TEMP_PM 17:16 TEMP_DIG1 19:18 TEMP_DIG2 (Applicable only in xWR1642 or xWR1843) 1 LSB = 1°C, signed number
RESERVED	4	0x0000000

Table 5.62 – Continued from previous page			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled	
		set was performed.	
		1 LSB = 1 millisecond (time stamp rolls over upon exceed-	
		ing allotted bit width)	

5.13.26 Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB

This sub block is a monitoring report which the AWR device sends to the host, containing the measured RX gain and phase values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1018
SBLKLEN	2	Value = 72
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_RX_GAIN_ABS
		b1 STATUS_RX_GAIN_MISMATCH
		b2 STATUS_RX_GAIN_FLATNESS
		b3 STATUS_RX_PHASE_MISMATCH
		b15:4 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring
		Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies.
RESERVED	3	0x00000

Table 5.83: AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB contents

RX_GAIN_VALUE	24	The measured RX gain for each enabled channel, at each enabled RF frequency (i.e., lowest, center and highest in the profile's RF band) is reported here.
		Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3
		RX0 1:0 9:8 17:16
		RX1 3:2 11:10 19:18
		RX2 5:4 13:12 21:20
		RX3 7:6 15:14 23:22 1 LSB = 0.1 dB
		Only the entries of enabled RF Frequencies and enabled RX channels are valid.
RX_PHASE_ VALUE	24	The measured RX phase for each enabled channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3
		RX0 1:0 9:8 17:16
		RX1 3:2 11:10 19:18
		RX2 5:4 13:12 21:20
		RX3 7:6 15:14 23:22
		1 LSB = $360^{\circ}/2^{16}$ Only the entries of enabled RF Frequencies and enabled RX channels are valid. NOTE: These phases include an unknown bias common to all RX channels.
RESERVED	4	0x0000000
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX noise figure values corresponding to the full IF band of a profile. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.84: AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x1019			
SBLKLEN	2	Value = 52			
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.			
		Bit STATUS_FLAG for monitor			
		b0 STATUS_RX_NOISE_FIGURE			
		b15:1 RESERVED			
		0 – FAIL or check wasn't done 1 – PASS			
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
PROFILE_INDX	1	Profile Index for which this monitoring report applies.			
RESERVED	3	0x000000			
RX_NOISE_FIG- URE_VALUE	24	The measured RX input referred for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different RX and RF,			
		in this field are here:			
		RF1 RF2 RF3			
		RX0 1:0 9:8 17:16			
		RX1 3:2 11:10 19:18			
		RX2 5:4 13:12 21:20			
		RX3 7:6 15:14 23:22 1 LSB = 0.1 dB			
		Only the entries of enabled RF Frequencies and enabled RX channels are valid.			
RESERVED	4	0x0000000			
RESERVED	4	0x0000000			
RESERVED	4	0x0000000			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)			

NOTE:	The noise monitor reports the real receivers' noise figure. In com-
	plex receiver modes (i.e., complex 1x, complex 2x and pseudo
	real), the system noise figure is 3dB lower (better) than the reported
	number

5.13.28 Sub block 0x101A - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX IF filter attenuation values at the given IF frequencies. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x101A			
SBLKLEN	2	Value = 48			
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.			
		Bit STATUS_FLAG for monitor			
		b0 STATUS_RX_HPF_ERROR			
		b1 STATUS_RX_LPF_ERROR			
		b2 STATUS_RX_IFA_GAIN_ERROR			
		b15:3 RESERVED			
		0 – FAIL or check wasn't done 1 – PASS			
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
PROFILE_INDX	1	Profile Index for which this monitoring report applies.			
RESERVED	3	0x000000			

Table 5.85: AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB contents

HPF_CUTOFF_ 8 The deviations of RX IFA HPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. VALUE HPF_CUTOFF_FREQ_ERROR = 100*(Measured Cutoff Frequency / Expected Cutoff Frequency) - 100, for RX IF filter in the HPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q channel ICANNO 4 RX1 1 RX2 2 RX3 3 The deviations of RX IFA HPF cutoff frequency from the ideally expected values for all the enabled channels. LPF_CUTOFF_ REQ_ERROR_ VALUE 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled channels. LPF_CUTOFF_ 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency – 100, for RX IF filter in the LPF regi		Table 5.65 – continued from previous page				
off Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the HPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number Applicable only for the enabled channels. LPF_CUTOFF. 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. VALUE LPF_CUTOFF.FREQ_ERROR = 100×(Measured Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency = ror on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX1 <	FREQ_ERROR_	8	ideally expected values for all the enabled RX channels			
quency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number Applicable only for the enabled channels. LPF_CUTOFF_ 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. VALUE LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q 0 4 RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number 5			off Frequency / Expected Cutoff Frequency) - 100, for RX			
RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number Applicable only for the enabled channels. LPF_CUTOFF_ 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. VALUE 8 The deviations of RX IFA LPF cutoff frequency) – 100, for RX IF frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number 7			quency error on different RX channels, in this field are here:			
RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number Applicable only for the enabled channels. LPF_CUTOFF_ 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. VALUE 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number The signed number						
RX2 2 6 RX3 3 7 1 LSB = 1%, signed number Applicable only for the enabled channels. LPF_CUTOFF_ 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. VALUE 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number ILSB = 1%, signed number						
RX3 3 7 1 LSB = 1%, signed number Applicable only for the enabled channels. LPF_CUTOFF_ 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. VALUE LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number 5			RX1 1 5			
1 LSB = 1%, signed number Applicable only for the enabled channels. LPF_CUTOFF_ FREQ_ERROR_ VALUE 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number Signed number			RX2 2 6			
Applicable only for the enabled channels. LPF_CUTOFF_ FREQ_ERROR_ VALUE 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number Signed number						
LPF_CUTOFF_ 8 The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here. VALUE LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number Signed number						
FREQ_ERROR_ VALUE ideally expected values for all the enabled RX channels are reported here. LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cut- off Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff fre- quency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number The second secon						
off Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region. Byte numbers corresponding to measured cutoff fre- quency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number	FREQ_ERROR_	8	ideally expected values for all the enabled RX channels			
quency error on different RX channels, in this field are here: I channel Q channel RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number			off Frequency / Expected Cutoff Frequency) - 100, for RX			
RX0 0 4 RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number 1			quency error on different RX channels, in this field are			
RX1 1 5 RX2 2 6 RX3 3 7 1 LSB = 1%, signed number 7			I channel Q channel			
RX2 2 6 RX3 3 7 1 LSB = 1%, signed number			RX0 0 4			
RX3 3 7 1 LSB = 1%, signed number			RX1 1 5			
1 LSB = 1%, signed number			RX2 2 6			
-			RX3 3 7			
-						
			-			

Table 5.85 – continued from previous page

	1				
RX_IFA_GAIN_ ERROR_VALUE	8	The deviations of RX IFA Gain from the ideally expected values for all the enabled RX channels are reported here.			
		Byte numbers corresponding to measured cutoff fre- quency error on different RX channels and HPF/LPF, in this field are here: I channel Q channel			
		RX0 0 4			
		RX1 1 5			
		RX2 2 6			
		RX3 3 7			
		1 LSB = 0.1 dB, signed number			
		Applicable only for the enabled channels.			
IFA_GAIN_EXP	1	Expected IFA gain 1 LSB = 1 dB			
RESERVED	3	0x00000			
RESERVED	4	0x0000000			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)			

Table 5.85 – continued from previous page

5.13.29 Sub block 0x101B - AWR_MONITOR_TX0_POWER_REPORT_AE_SB

NOTE:	The TX[0:2] power monitoring accuracy degrades at high TX back-
	offs and is unreliable for backoffs higher than 20dB.

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101B
SBLKLEN	2	Value = 24

Table 5.86: AWR_MONITOR_TX0_POWER_REPORT_AE_SB contents

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor. Bit STATUS_FLAG for monitor b0 STATUS_ABS_ERR b1 STATUS_FLATNESS_ERR		
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3 TX0 1:0 3:2 5:4 (other bytes are reserved) 1 LSB = 0.1 dBm, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.		
RESERVED	2	0x0000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

Table 5.86 – continued from previous page

5.13.30 Sub block 0x101C - AWR_MONITOR_TX1_POWER_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.87: AWR_MONITOR_TX1_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x101C		
SBLKLEN	2	Value = 24		
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_ABS_ERR		
		b1 STATUS_FLATNESS_ERR		
		b15:2 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here.		
		Byte numbers corresponding to different TX and RF, in this field are here: BE1 BE2 BE3		
		TX1 1:0 3:2 5:4		
		(other bytes are reserved)		
		1 LSB = 0.1 dBm, signed number		
		Only the entries of enabled RF Frequencies and enabled RX channels are valid.		
RESERVED	2	0x0000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

5.13.31 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.88: AWR_MONITOR_TX2_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x101D	
SBLKLEN	2	Value = 24	
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_ABS_ERR	
		b1 STATUS_FLATNESS_ERR	
		b15:2 RESERVED	
		0 – FAIL or check wasn't done 1 – PASS	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error	
PROFILE_INDX	1	Profile Index for which this monitoring report applies	
RESERVED	3	0x00000	
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3 TX2 1:0 3:2 5:4 (other bytes are reserved) 1 LSB = 0.1 dBm, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.	
RESERVED	2	0x0000	
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)	

5.13.32 Sub block 0x101E - AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

SBLKID

SBLKLEN

2

2

Field Name Number **Description** of bytes SBLKID 2 Value = 0x101ESBLKLEN 2 Value = 20STATUS_FLAGS 2 Status flag indicating pass fail results corresponding to various threshold checks under this monitor. Bit STATUS FLAG for monitor b0 STATUS_TX0_BALLBREAK b15:1 RESERVED 0 - FAIL or check wasn't done 1 – PASS ERROR_CODE 2 Indicates any error reported during monitoring Value of 0 indicates no error TX_REFL_CO-The TX reflection coefficient's magnitude for this channel 2 EFF_VALUE is reported here. 1 LSB = 0.1 dB, signed number RESERVED 2 0x0000 RESERVED 4 0x0000000 TIME_STAMP 4 This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

Table 5.89: AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB contents

5.13.33 Sub block 0x101F - AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number	Description
	of bytes	

Value = 0x101F

Value = 20

Table 5.90: AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB contents

Continued on next page	Continued	on	next	page
------------------------	-----------	----	------	------

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO- EFF_VALUE	2	The TX reflection coefficient's magnitude for this channel is reported here. 1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.90 – continued from previous page

5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2

5.14.1 Sub block 0x1020 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.91:	AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB contents
-------------	---

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1020
SBLKLEN	2	Value = 20

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO- EFF_VALUE	2	The TX reflection coefficient's magnitude for this channel is reported here. 1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.91 – continued from previous page

5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX gain and phase mismatch values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.92:	AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB contents
-------------	---

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1021
SBLKLEN	2	Value = 60

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX_GAIN_MISMATCH
		b1 STATUS_TX_PHASE_MISMATCH
		b15:2 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x00000
TX_GAIN_VALUE	18	The measured TX PA loopback tone power at the RX ADC input, for each enabled TX channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different TX and RF, in this field are here:
		RF1 RF2 RF3
		TX0 1:0 7:6 13:12
		TX1 3:2 9:8 15:14
		TX2 5:4 11:10 17:16 1 LSB = 0.1dBm, signed number
		Only the entries of enabled RF Frequencies and enabled TX channels are valid.
TX_PHASE_ VALUE	18	The measured TX phase for each enabled channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3
		TX0 1:0 7:6 13:12
		TX1 3:2 9:8 15:14
		TX2 5:4 11:10 17:16
		$1 \text{ LSB} = 360^{\circ}/2^{16}$
		Only the entries of enabled RF Frequencies and enabled
		TX channels are valid. NOTE: these phases include an unknown bias common to all TX channels.
RESERVED	4	0x0000000
L	I	1

RESERVED	4	0x0000000
TIMESTAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.92 – continued from previous page

5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_BPM_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX0 BPM error values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1022
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BPM_PHASE
		b1 STATUS_TX0_BPM_AMPLITUDE
		b15:2 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring
		Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
PH_SHIFTER_ MON_VAL2_MSB	1	MSB of the monitored phase shift for PH_SHIFTER_MON2 for TX0
		When combined with PH_SHIFTER_MON_VAL2_LSB, this represents the phase shift value in 16 bits.
		$\label{eq:phised-state} \begin{array}{llllllllllllllllllllllllllllllllllll$
PH_SHIFTER_ MON_VAL1	2	Monitored phase shift for PH_SHIFTER_MON1 for TX0 1 LSB = $360^{\circ}/2^{16}$

Table 5.93: AWR_MONITOR_TX0_BPM_REPORT_AE_SB contents

TX_BPM_PHASE_ DIFF_VALUE	2	The TX output phase difference between the two BPM settings (phase for TX BPM setting 0 – phase for TX BPM setting 1) is reported here. 1 LSB = $360^{\circ}/2^{16}$
TX_BPM_AM- PLITUDE_DIFF_ VALUE	1	The deviation of the TX output amplitude difference be- tween the two BPM settings (amplitude for TX BPM setting 0 – amplitude for TX BPM setting 1) from the ideal 0dB is reported here. 1 LSB = 0.1 dB, signed number
PH_SHIFTER_ MON_VAL2_LSB	1	LSB of the monitored phase shift for PH_SHIFTER_MON2 for TX0 When combined with PH_SHIFTER_MON_VAL2_MSB, this represents the phase shift value in 16 bits. PH_SHIFTER_MON_VAL2 = PH_SHIFTER_MON_VAL2_MSB $\times 2^8$ + PH_SHIFTER_MON_VAL2_LSB 1 LSB = $360^{\circ}/2^{16}$
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.93 – continued from previous page

5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_BPM_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX1 BPM error values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1023
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX1_BPM_PHASE
		b1 STATUS_TX1_BPM_AMPLITUDE
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS

Table 5.94: AWR_MONITOR_TX1_BPM_REPORT_AE_SB contents

ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
PH_SHIFTER_ MON_VAL2_MSB	1	$\begin{array}{l} \mbox{MSB of the monitored phase shift for PH_SHIFTER_MON2} \\ \mbox{for TX1} \\ \mbox{When combined with PH_SHIFTER_MON_VAL2_LSB, this} \\ \mbox{represents the phase shift value in 16 bits.} \\ \mbox{PH_SHIFTER_MON_VAL2} = \mbox{PH_SHIFTER_MON_VAL2_} \\ \mbox{MSB} \times 2^8 + \mbox{PH_SHIFTER_MON_VAL2_LSB} \end{array}$
PH_SHIFTER_ MON_VAL1	2	Monitored phase shift for PH_SHIFTER_MON1 for TX1 1 LSB = $360^{\circ}/2^{16}$
TX_BPM_PHASE_ DIFF_VALUE	2	The TX output phase difference between the two BPM settings (phase for TX BPM setting 0 – phase for TX BPM setting 1) is reported here. 1 LSB = $360^{\circ}/2^{16}$
TX_BPM_AM- PLITUDE_DIFF_ VALUE	1	The deviation of the TX output amplitude difference be- tween the two BPM settings (amplitude for TX BPM setting 0 – amplitude for TX BPM setting 1) from the ideal 0dB is reported here. 1 LSB = 0.1 dB, signed number
PH_SHIFTER_ MON_VAL2_LSB	1	LSB of the monitored phase shift for PH_SHIFTER_MON2 for TX0 When combined with PH_SHIFTER_MON_VAL2_MSB, this represents the phase shift value in 16 bits. PH_SHIFTER_MON_VAL2 = PH_SHIFTER_MON_VAL2_MSB $\times 2^8$ + PH_SHIFTER_MON_VAL2_LSB 1 LSB = $360^{\circ}/2^{16}$
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.94 – continued from previous page

5.14.5 Sub block 0x1024 – AWR_MONITOR_TX2_BPM_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX2 BPM error values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.95: AWR_MONITOR_TX2_BPM_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1024
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX2_BPM_PHASE
		b1 STATUS_TX2_BPM_AMPLITUDE
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
PH_SHIFTER_ MON_VAL2_MSB	1	MSB of the monitored phase shift for PH_SHIFTER_MON2 for TX2 When combined with PH_SHIFTER_MON_VAL2_LSB, this represents the phase shift value in 16 bits. PH_SHIFTER_MON_VAL2 = PH_SHIFTER_MON_VAL2_MSB $\times 2^8$ + PH_SHIFTER_MON_VAL2_LSB
PH_SHIFTER_ MON_VAL1	2	Monitored phase shift for PH_SHIFTER_MON1 for TX2 1 LSB = $360^{\circ}/2^{16}$
TX_BPM_PHASE_ DIFF_VALUE	2	The TX output phase difference between the two BPM settings (phase for TX BPM setting 0 – phase for TX BPM setting 1) is reported here. 1 LSB = $360^{\circ}/2^{16}$
TX_BPM_AM- PLITUDE_DIFF_ VALUE	1	The deviation of the TX output amplitude difference be- tween the two BPM settings (amplitude for TX BPM setting 0 – amplitude for TX BPM setting 1) from the ideal 0dB is reported here. 1 LSB = 0.1 dB, signed number
PH_SHIFTER_ MON_VAL2_LSB	1	LSB of the monitored phase shift for PH_SHIFTER_MON2 for TX0 When combined with PH_SHIFTER_MON_VAL2_MSB, this represents the phase shift value in 16 bits. PH_SHIFTER_MON_VAL2 = PH_SHIFTER_MON_VAL2_MSB $\times 2^8$ + PH_SHIFTER_MON_VAL2_LSB 1 LSB = $360^{\circ}/2^{16}$

Table 5.35 – continued from previous page		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled
		set was performed.
		1 LSB = 1 millisecond (time stamp rolls over upon exceed-
		ing allotted bit width)

Table 5.95 – continued from previous page

5.14.6 Sub block 0x1025 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information related to measured frequency error during the chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1025
SBLKLEN	2	Value = 32
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SYNTH_FREQ_ERR
		b15:1 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
MAX_FRE- QUENCY_ER- ROR_VALUE	4	This field indicates the maximum instantaneous frequency error measured during the chirps for which frequency mon- itoring has been enabled in the previous monitoring period. Bits Parameter
		b31:0 Maximum frequency error value, signed number. 1 LSB = 1 kHz.

 Table 5.96:
 AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB contents

FREQUENCY_ FAILURE_ COUNT	4	This field indicates the number of times during chirping in the previous monitoring period in which the measured frequency error violated the allowed threshold. Frequency error threshold violation is counted every 10 ns. Bits Parameter b31:19 RESERVED b18:0 Failure count, unsigned number
RESERVED	4	0x0000000
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.96 – continued from previous page

5.14.7 Sub block 0x1026 – AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the external signal voltage values measured using the GPADC. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.97: AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_REPORT_AE_SB

contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1026
SBLKLEN	2	Value = 28

STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit Definition
		b0 STATUS_ANALOGTEST1
		b1 STATUS_ANALOGTEST2
		b2 STATUS_ANALOGTEST3
		b3 STATUS_ANALOGTEST4
		b4 STATUS_ANAMUX
		b5 STATUS_VSENSE
		b15:6 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
EXTERNAL_ANA- LOG_SIGNAL_	12	MEASURED_VALUE
VALUES		Bytes SIGNAL
		1:0 ANALOGTEST1
		3:2 ANALOGTEST2
		5:4 ANALOGTEST3
		7:6 ANALOGTEST4
		9:8 ANAMUX
		11:10 VSENSE 1 LSB = 1.8V/1024
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.97 – continued from previous page

5.14.8 Sub block 0x1027 – AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX0 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.98: AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_ SB contents

Etald Manua	NI	Description
Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1027
SBLKLEN	2	Value = 16
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SUPPLY_TX0
		b1 STATUS_DCBIAS_TX0
		b15:2 RESERVED 0 – FAIL or check wasn't done
		1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x00000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed.
		1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

5.14.9 Sub block 0x1028 – AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX1 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.99: AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_REPORT_AE_ SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1028
SBLKLEN	2	Value = 16

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SUPPLY_TX1
		b1 STATUS_DCBIAS_TX1
		b15:2 RESERVED
		0 – FAIL or check wasn't done
		1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.99 – continued from previous page

5.14.10 Sub block 0x1029 – AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX2 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.100: AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_ AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1029
SBLKLEN	2	Value = 16

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SUPPLY_TX2
		b1 STATUS_DCBIAS_TX2
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.100 – continued from previous page

5.14.11 Sub block 0x102A – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal RX internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.101: AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_REPORT_ AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x102A	
SBLKLEN	2	Value = 16	

STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_SUPPLY_RX0		
		b1 STATUS_SUPPLY_RX1		
		b2 STATUS_SUPPLY_RX2		
		b3 STATUS_SUPPLY_RX3		
		b4 STATUS_DCBIAS_RX0		
		b5 STATUS_DCBIAS_RX1		
		b6 STATUS_DCBIAS_RX2		
		b7 STATUS_DCBIAS_RX3		
		b8 STATUS_PWRDET_RX0		
		b9 STATUS_PWRDET_RX1		
		b10 STATUS_PWRDET_RX2		
		b11 STATUS_PWRDET_RX3		
		b15:12 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

Table 5.101 – continued from previous page

5.14.12 Sub block 0x102B – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal PM, CLK and LO subsystems' internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.102: AWR_MONITOR_PM_CLK_LO_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x102B		
SBLKLEN	2	Value = 16		
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_SUPPLY_PMCLKLO		
		b1 STATUS_DCBIAS_PMCLKLO		
		b2 STATUS_LVDS_PMCLKLO (Use this status bit only if LVDS is used, else ig- nore this)		
		b3 STATUS_SYNC_20G		
		b15:4 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
SYNC_20G_ POWER	1	Monitored 20 GHz signal power, signed number Unit: 1 LSB = 0.5 dBm		
RESERVED	2	0x00000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

5.14.13 Sub block 0x102C – AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about the measured value of the GPADC input DC signals whose measurements were enabled. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.103: AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x102C		
SBLKLEN	2	Value = 20		
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_GPADC_REF1		
		b1 STATUS_GPADC_REF2		
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
GPADC_REF1_ VALUE	2	The measured GPADC outputs corresponding to internal DC signal (GPADC_REF1, expected level 0.45V) is reported here. 1 LSB = 1.8V/1024		
GPADC_REF2_ VALUE	2	The measured GPADC outputs corresponding to internal DC signal (GPADC_REF2, expected level 1.2V) is reported here. 1 LSB = 1.8V/1024		
RESERVED	4	0x0000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

5.14.14 Sub block 0x102D – AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_ AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured PLL control voltage values during explicit monitoring chirps. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.104: AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB contents

Etable No.	News	D	contents		
Field Name	Number of bytes	Descrip	otion		
	2	Value	0,1000		
SBLKID			Value = 0x102D		
SBLKLEN	2	Value =			
STATUS_FLAGS	2		flags indicating pass fail resu various threshold checks under		
		Bit	STATUS_FLAG for monitor		
		b0	STATUS_APLL_VCTRL		
		b1	STATUS_SYNTH_VCO1_VCTRL	_MAX_FREQ	
		b2	STATUS_SYNTH_VCO1_VCTRL	_MIN_FREQ	
		b3	STATUS_SYNTH_VCO1_SLOPE		
		b4	STATUS_SYNTH_VCO2_VCTRL	_MAX_FREQ	
		b5	STATUS_SYNTH_VCO2_VCTRL	_MIN_FREQ	
		b6	STATUS_SYNTH_VCO2_SLOPE		
		b15:7	RESERVED		
		-	L or check wasn't done		
	0	1 – PAS			
ERROR_CODE	2		Indicates any error reported during monitoring Value of 0 indicates no error		
PLL_CONTROL_ VOLTAGE_VAL- UES	16	The measured values of PLL control voltage levels an Synthesizer VCO slopes are reported here.			
010		-	umbers corresponding to difference ues reported in this field are here:	ent control volt-	
		Bytes	SIGNAL	1 LSB	
		1:0	APLL_VCTRL	1 mV	
		3:2	SYNTH_VCO1_VCTRL_MAX_ FREQ	1 mV	
		5:4	SYNTH_VCO1_VCTRL_MIN_ FREQ	1 mV	
		7:6	SYNTH_VCO1_SLOPE	1 MHz/V	
		9:8	SYNTH_VCO2_VCTRL_MAX_ FREQ	1 mV	
		11:10	SYNTH_VCO2_VCTRL_MIN_ FREQ	1 mV	
		13:12	SYNTH_VCO2_SLOPE	1 MHz/V	
		15:14	RESERVED	RESERVED	
	I	T	Continu	ued on next page	

Table 5.104 – continued from previous page

		Only the fields corresponding to the enabled monitors are valid. The failure thresholds are based on the following: Valid VCTRL values are [140 to 1400] mV. Valid VCO1_SLOPE values are [1760 to 2640] MHz/V. Valid VCO2_SLOPE values are [3520 to 5280] MHz/V. NOTE: The VCOx_SLOPE should be ignored when synth fault is injected.
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

5.14.15 Sub block 0x102E – AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_ SB

This API is a monitoring report API which the AWR device sends to the host, containing information about the relative frequency measurements. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value =	0x102E
SBLKLEN	2	Value =	32
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit	STATUS_FLAG for monitor
		b0	STATUS_CLK_PAIR0
		b1	STATUS_CLK_PAIR1
		b2	STATUS_CLK_PAIR2
		b3	STATUS_CLK_PAIR3
		b4	STATUS_CLK_PAIR4
		b5	STATUS_CLK_PAIR5
		b15:6	RESERVED
		0 – FAII 1 – PAS	_ or check wasn't done S

Table 5.105: AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB contents

ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
FREQ_MEAS_ VALUES	16	The measured clock frequencies from the enabled clock pair measurements are reported here.			
		-	Byte numbers corresponding to different frequency measurement values reported in this field are here:		
		Bytes CLOCK PAIR MEASURED CLOCK FREQUENCY			
		1:0 0 BSS_600M			
		3:2 1 BSS_200M			
		5:4 2 BSS_100M			
		7:6 3 GPADC_10M			
		9:8	4	RCOSC_10M	
		11:10	5	RAMPGEN_100M	
		15:12 1 LSB =	RESERVED 0.1 MHz, unsigne	RESERVED d number	
RESERVED	4	0x0000000			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)			

Table 5.105 – continued from previous page

5.14.16 Sub block 0x1031 – AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX mixer input voltage swing values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1031	
SBLKLEN	2	Value = 24	

Table 5.106: AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB contents

		ou - continueu nom previous page		
STATUS_FLAGS	2	Bit STATUS_FLAG for monitor		
		b0 STATUS_MIXER_IN_POWER_RX0		
		b1 STATUS_MIXER_IN_POWER_RX1		
		b2 STATUS_MIXER_IN_POWER_RX2		
		b3 STATUS_MIXER_IN_POWER_RX3		
		b15:4 RESERVED		
		0 – FAIL or check wasn't done		
		1 – PASS		
ERROR_CODE	2	Internal sanity check violations are reported here. Value = 0: No error Other values: Error (see error code definition matrix)		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x00000		
RX_MIXER_IN_ VOLTAGE_VALUE	4	The measured RX mixer input voltage swing values are reported here. The byte location of the value for each receivers is tabulated here:		
		Receiver Byte Location		
		RX0 0		
		RX1 1		
		RX2 2		
		RX3 3		
		1 LSB = 1800 mV/256, unsigned number		
		Only the entries of enabled RX channels are valid.		
RESERVED	4	0x0000000		
TIME_STAMP	4	When this monitoring began is indicated here. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

Table 5.106 – continued from previous page

5.15 Sub blocks related to AWR_DEV_RFPOWERUP_MSG

5.15.1 Sub block 0x4000 - AWR_DEV_RFPOWERUP_SB

This sub block is a command to power up the BSS 5.107 describes the content of this sub block.

Table 5.107: AWR_DEV_POWERUP_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4000	
SBLKLEN	2	Value = 4	

5.16 Sub blocks related to AWR_DEV_CONF_SET_MSG

5.16.1 Sub block 0x4040 - AWR_DEV_MCUCLOCK_CONF_SET_SB

This sub block contains the configurations to setup the desired frequency of the MCU Clock that is output from the device.

Table 5.108 describes the contents of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4040	
SBLKLEN	2	Value = 8	
MCUCLOCK_ CTRL	1	This field controls the enable-disable of the MCU clock. Value Description	
		0x0 Disable MCU clock	
		0x1 Enable MCU clock	
MCUCLOCK_ SRC	1	This field specifies the source of the MCU clock. Applicable only in case of MCU clock enable. Else ignored. Value Description	
		0x0 XTAL (as connected to the device)	
		0x2 600MHz PLL divided clock	
SRCCLOCK_DIV	1	This field specifies the division factor to be applied to source clock. Applicable only in case of MCU clock enable. Else ignored. Value Description	
		0x0 Divide by 1	
		0x1 Divide by 2	
		0xFF Divide by 256	
RESERVED	1	0x00	

Table 5.108: AWR_DEV_MCUCLOCK_CONF_SET_SB contents

5.16.2 Sub block 0x4041 – AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB

This sub block contains the configuration of the data format of the samples received over the receive chain to be transferred out to an external host over the configured data path (LVDS or CSI2).

Table 5.109 describes the content of this sub block.

Field Name Number Description of bytes SBLKID 2 Value = 0x4041 SBLKLEN 2 Value = 16RX_CHAN_EN 2 **Bits Definition** b0 RX_CHAN0_EN 0 Disable RX Channel 0 Enable RX Channel 0 1 b1 RX_CHAN0_EN 0 **Disable RX Channel 1** 1 Enable RX Channel 1 RX_CHAN0_EN b2 **Disable RX Channel 2** 0 Enable RX Channel 2 1 RX_CHAN0_EN b3 0 **Disable RX Channel 3** 1 Enable RX Channel 3 b15:4 RESERVED NUM_ADC_BITS 2 Bits Definition 12 bits b1:0 00 01 14 bits 10 16 bits Reserved Other b15:2 RESERVED ADC_OUT_FMT 2 Bits Definition b1:0 00 Real

Table 5.109: AWR_DEV_RX_DATA_FORMAT_CONF_SB contents

Continued on next page

01

b15:2

Other Res RESERVED

Complex

Reserved

IQ_SWAP_SEL	1	Bits	Definition
		b1:0	To swap the IQ samples (if complex format)
			00 Sample interleave mode – I first
			01 Sample interleave mode – Q first
			Other Reserved
		b7:2	RESERVED
CHAN_INTER-	1	Bits	Definition
LEAVE		b1:0	Channel interleaving of the samples stored in the ADC buffer to be transferred out on the data path. 00 Interleaved mode of storage
			01 Non-interleaved mode of storage
			Other Reserved
		b7:2	RESERVED
RESERVED	4	0x0000	00000

Table 5.109 – continued from previous page

5.16.3 Sub block 0x4042 - AWR_DEV_RX_DATA_PATH_CONF_SET_SB

This sub block contains the configurations of the data path to transfer the captured ADC samples received over the receive chain to be transferred out to an external host. Table 5.110 describes the content of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4042	
SBLKLEN	2	Value = 12	
DATA_INTF_SEL	1	This field specifies the data path selected to transfer the Radar info.ValueDescription0x0CSI2 interface select0x1LVDS interface select0x2SPI interface selected (applicable when a large inter-frame time is provided to transfer the data over the SPI)	

 Table 5.110:
 AWR_DEV_RX_DATA_PATH_CONF_SB contents

DATA_TRANS_	1	Bits	Descript	ion
FMT_PKT0		b5:0	Packet 0	content selection
			Value	Definition
			000001	ADC
			000110	CP_ADC (See note at the bottom of this table)
			001001	ADC_CP
			110110	CP_ADC_CQ (See note at the bottom of this table)
		b7:6	Packet (CSI2)) virtual channel number (valid only for
			Value	Definition
			00	Virtual channel number 0 (Default)
			01	Virtual channel number 1
			10	Virtual channel number 2
			11	Virtual channel number 3
DATA_TRANS_	1	Bits	Descript	ion
FMT_PKT1		b5:0	Packet 1 Value	content selection Definition
			000000	Suppress packet 1 transmission
			001110	CP_CQ (See note at the bottom of this table)
			001011	CQ_CP (See note at the bottom of this table)
		b7:6	Packet ber	1 virtual channel num- (valid only for CSI2)
			Value	Definition
			00	Virtual channel number 0 (Default)
			01	Virtual channel number 1
			10	Virtual channel number 2
			11	Virtual channel number 3

Table 5.110 – continued from previous page

	1	This appaifies the data size of CO samples as the large
CQ_CONFIG		This specifies the data size of CQ samples on the lanes
		Bits Description b1:0 Value Definition
		00 12 bit
		01 14 bit
		10 16 bit
		11 RESERVED
		b7:2 RESERVED
		NOTE: The CQ size can be configured only if CQ and ADC data is sent in separate packets. When ADC and CQ is sent in the same packet, then CQ size will be same as ADC data size.
CQ0_TRANS_ SIZE	1	Number of samples (in 16 bit halfwords) of CQ0 data to be transferred. Valid range [32 halfwords to 128 halfwords] Value 0 = Disabled. NOTE: Ensure that the number of halfwords specified are a multiple of the number of lanes selected.
CQ1_TRANS_ SIZE	1	Number of samples (in 16 bit halfwords) of CQ1 data to be transferred. Valid range [32 halfwords to 128 halfwords] Value 0 = Disabled. NOTE: Ensure that the number of halfwords specified are a multiple of the number of lanes selected.
CQ2_TRANS_ SIZE	1	Number of samples (in 16 bit halfwords) of CQ2 data to be transferred. Valid range [32 halfwords to 128 halfwords] Value 0 = Disabled. NOTE: Ensure that the number of halfwords specified are a multiple of the number of lanes selected.
RESERVED	1	0x00
	1	

Table 5.110 – continued from previous page

NOTE1:	CP is C follows	CP is Chirp Parameter information which is defined for each RX as		
	Bit	Description		
	b11:0	Chirp number		
	011.0	In legacy frame configuration, chirp number		
		for starts from 1 and increments for each		
		chirp within the frame and resets to 0 for the next frame.		
		In advanced frame configuration chirp num- ber starts from 1 and increments for each		
		chirp within the burst and resets to 0 for the		
		next burst.		
	b15:12			
	b17:16			
		The receive channel number which is en-		
		coded as		
		00 RX0		
		01 RX1		
		10 RX2		
		11 RX3		
	b21:18	Profile number		
		The profile number to which the chirp belongs		
	b31:22	RESERVED		
NOTE2:	CQ is C	hirp Quality information which is defined in Section 8		

5.16.4 Sub block 0x4043 – AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB

This sub block contains the configurations to enables the lanes of the LVDS/CSI2 path to transfer Radar information to an external host.

Table 5.111 describes the content of this sub block.

Table 5.111: AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB con	tents
---	-------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4043
SBLKLEN	2	Value = 8

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

LANE_EN	2	Bits	Description
		b0	LANE0_EN
			0 Disable lane 0
			1 Enable lane 0
		b1	LANE1_EN
			0 Disable lane 1
			1 Enable lane 1
		b2	LANE2_EN
			0 Disable lane 2
			1 Enable lane 2
		b3	LANE3_EN
			0 Disable lane 3
			1 Enable lane 3
		b15:4	RESERVED
RESERVED	2	0x0000	

Table 5.111 – continued from previous page

5.16.5 Sub block 0x4044 - AWR_DEV_RX_DATA_PATH_CLK_SET_SB

This sub block contains the clock configurations for data transfer on the LVDS/CSI2 lanes. Table 5.112 describes the content of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4044
SBLKLEN	2	Value = 8
LANE_CLK_CFG (Selection valid only for LVDS. For CSI2, DDR is used always)	1	Bits Description b0 BIT_CLK_SEL 0 SDR clock 1 DDR clock (Only valid value for CSI2) b7:1 RESERVED

Table 5.112: AWR_DEV_RX_DATA_PATH_CLK_SET_SB contents

DATA_RATE	1	Data rate selection	
		Value	Description
		0000b	900 Mbps (DDR only)
		0001b	600 Mbps (DDR only)
		0010b	450 Mbps (SDR, DDR)
		0011b	400 Mbps (DDR only)
		0100b	300 Mbps (SDR, DDR)
		0101b	225 Mbps (DDR only)
		0110b	150 Mbps (DDR only)
		Others	RESERVED
RESERVED	2	0x0000	

Table 5.112 – continued from previous page

5.16.6 Sub block 0x4045 - AWR_DEV_LVDS_CFG_SET_SB

This sub block contains the configurations of the LVDS lanes. Table 5.113 describes the content of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4045	
SBLKLEN	2	Value = 8	
LANE_FMT_MAP	2	LANE0 Format Map. The mapping of the data on the lanes is depicted in the figure below 0x0000 Format map 0 0x0001 Format map 1	

Table 5.113: AWR_DEV_LVDS_CFG_SET_SB contents

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

LANE_PARAM_	2	Bit	Description
CFG		b0	MSB_FIRST
			0 Disable (LSB First)
			1 Enable (MSB First)
		b1	Packet End Pulse Enable 0 Disable
			1 Enable
		b2	CRC Enable 0 Disable
			1 Enable
		b7:3	RESERVED
		b8	Configures LSB/MSB first for CRC
			0 CRC value swapped wrt to MSB_ FIRST setting
			1 CRC value follows MSB_FIRST set- ting
		b9	Frame clock state during idle
			0 Frame clock is held low
			1 Frame clock is held high
		b10	Frame clock period for CRC(when CRC enable - b2)
			0 32-bit CRC is trasmitted as sin- gle sample with frame clock set to 16high, 16low configuration
			1 32-bit CRC is trasmitted as single sample with frame clock set to 8high, 8low configuration
		b11	Bit clock state during idle
			0 Bit clock toggles during idle when there are no transmission
			1 Bit clock doesn't toggle during idle when there are no transmission, the value of bit clock is held low
		b12	CRC inversion control(when CRC enabled - b2)
			0 The calcualted value of 32-bit ether- net polynomial CRC is inverted and sent out
			1 The calcualted value of 32-bit ether- net polynomial CRC is sent without inversion
		b15:13	RESERVED

Table 5.113 – continued from previous page

Continued on next page

Copyright © 2014-2017, Texas Instruments Incorporated

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

Table 5.113 – continued from previous page

The mapping of the 8 sample (8*16 = 128 bit) information onto the serial interface lanes is determined by the LANE_FMT_MAP parameter. The choice of format map translating to the transfer of data on the lanes is depicted in the image below (the x axis represents time - hence the samples are as available on the lanes in time and the receiver will receive the samples in the reverse order as depicted below).

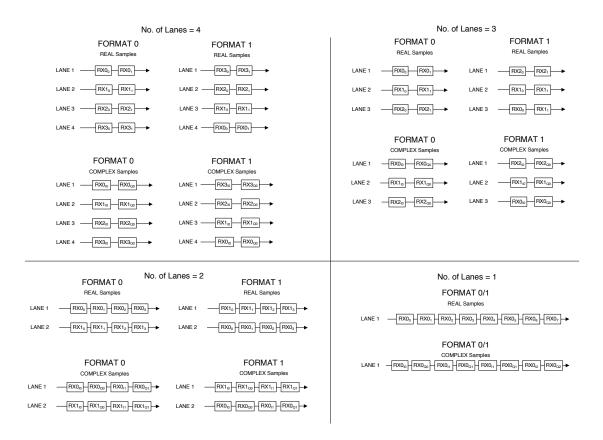


Figure 5.3: Lane formats and the order of receiving the data from the lanes

5.16.7 Sub block 0x4046 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_ SB

This sub block contains the configurations of the data path to transfer the captured ADC samples continuously without any break to an external host. Table 5.114 describes the content of this sub block.

Table 5.114: AWR_DEV_RX_CONTSTREAMING_MODE_CFG_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4046	
SBLKLEN	2	Value = 8	
CONT_STREAM- ING_MODE	2	Continuous streaming mode enableValueDescription0x0Continuous streaming mode data transfer disable0x1Continuous streaming mode data transfer enable	
RESERVED	2	0x0000	

5.16.8 Sub block 0x4047 - AWR_DEV_CSI2_CFG_SET_SB

This sub block contains the various configurations of the parameters of the CSI2 module. Table 5.115 describes the content of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4047
SBLKLEN	2	Value = 12

Table 5.115:	AWR_DEV	_CSI2_CFG	_SET_SB	contents
--------------	---------	-----------	---------	----------

 DATA_LANE1_POS bits Definition c) DATA_LANE0_POS c) Data_LANE0_POL bits DATA_LANE1_POS bits DATA_LANE1_POS bits DATA_LANE1_POS bits DATA_LANE1_POS bits enabled, ignored if lane 1 is not enabled): 000b c) Unused, 001b - Position 1, 010b - Position 2, 011b - Position 1, 010b - Position 4, 101b - Position 5 bit DATA_LANE1_POL bb DATA_LANE1_POL bb DATA_LANE2_POS Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4 (default), 101b - Position 5 bit DATA_LANE2_POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4 (default), 101b - Position 3, 100b - Position 4 (default), 01b - Position 3, 100b - Position 4, 101b - Position 5 bit DATA_LANE2_POL bb - PLUSMINUS pin order, 1b - MINUSPLUS pin order bit DATA_LANE3_POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4, 101b - Position 5, (default) bits DATA_LANE3_POL bits DATA_LANE3_POL bits DATA_LANE3_POL bits DATA_LANE3_POL bits DATA_LANE3_POL		4	Dite	Definition
 Valid values (Should be a unique position if lane 0 is enabled, ignored if lane 0 is not enabled): 000b – Unused, 001b – Position 1 (default), 010b – Position 2, 011b – Position 3, 100b – Position 4, 101b – Position 5 DATA.LANE0.POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order DATA.LANE1.POS Valid values (Should be a unique position if lane 1 is enabled, ignored if lane 1 is not enabled): 000b – Unused, 001b – Position 3, 100b – Position 2 (default), 011b – Position 1, 010b – Position 2 (default), 011b – Position 3, 100b – Position 4, 101b – Position 5 DATA.LANE1.POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b10:8 DATA.LANE2.POS Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is not enabled): 000b – Unused, 001b – Position 1, 010b – Po- sition 2, 011b – Position 5 b11 DATA.LANE2.POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b14:12 DATA.LANE3.POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2, 011b – Position 3, 100b – Position 1, 010b – Position 2, 011b – Position 3, 100b – Position 4, 101b – Position 5 (default) b15 DATA.LANE3.POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b16:10 CLOCK.POS Valid values (Should be a unique position; 0000b – Unused, 010b – Position 4, 101b – Position 2, 011b – Position 3 (default), 100b – Position 2, 011b – Position 3 (default), 100b – Position 2, 011b – Position 3 (default), 100b – Position 4 	LANE_POS_POL_	4	Bits	Definition
0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b6:4 DATA_LANE1.POS Valid values (Should be a unique position if lane 1 is enabled, ignored if lane 1 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2 (default), 011b - Position 3, 100b - Position 4, 101b - Position 5 b7 DATA_LANE1.POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b10:8 DATA_LANE2.POS Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is not enabled): 000b - Unused, 001b - Position 1, 010b - Po- sition 2, 011b - Position 3, 100b - Position 4 (de- fault), 101b - Position 5 b11 DATA_LANE2.POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b14:12 DATA_LANE3.POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4, 101b - Po- sition 5 (default) b15 DATA_LANE3.POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b18:16 CLOCK.POS Valid values (Should be a unique position): 000b - Unused, 001b - Unused, 010b - Position 2, 011b - Position 3 (default), 100b - Position 2, 011b - Position 3 (default), 100b - Position 2, 011b - Position 3 (default), 100b - Position 4			b2:0	Valid values (Should be a unique position if lane 0 is enabled, ignored if lane 0 is not enabled): 000b – Unused, 001b – Position 1 (default), 010b – Position 2, 011b – Position 3, 100b – Position 4,
 Valid values (Should be a unique position if lane 1 is enabled, ignored if lane 1 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2 (default), 011b – Position 3, 100b – Position 4, 101b – Position 5 b7 DATA_LANE1_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b10:8 DATA_LANE2_POS Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is not enabled): 000b – Unused, 001b – Position 1, 010b – Po- sition 2, 011b – Position 3, 100b – Position 4 (de- fault), 101b – Position 5 b11 DATA_LANE2_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b14:12 DATA_LANE3_POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2, 011b – Position 3, 100b – Position 4, 101b – Po- sition 5 (default) b15 DATA_LANE3_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b16:16 CLOCK_POS Valid values (Should be a unique position): 000b – Unused, 001b – Unused, 010b – Position 2, 011b – Position 3 (default), 100b – Position 2, 011b – Position 3 (default), 100b – Position 4 b19 CLOCK_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order 			b3	0b - PLUSMINUS pin order, 1b - MINUSPLUS
0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b10:8 DATA_LANE2_POS Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4 (default), 101b - Position 5 b11 DATA_LANE2_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b14:12 DATA_LANE3_POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4, 101b - Position 5 b15 DATA_LANE3_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b15 DATA_LANE3_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b16 DATA_LANE3_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b18:16 CLOCK_POS Valid values (Should be a unique position): 0000b - Unused, 001b - Unused, 010b - Position 2, 011b - Position 3 (default), 100b - Position 4 b19 CLOCK_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order			b6:4	Valid values (Should be a unique position if lane 1 is enabled, ignored if lane 1 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2 (default), 011b – Position 3, 100b – Position 4,
 Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2, 011b – Position 3, 100b – Position 4 (default), 101b – Position 5 b11 DATA_LANE2_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b14:12 DATA_LANE3_POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2, 011b – Position 3, 100b – Position 4, 101b – Position 5 b15 DATA_LANE3_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b16 DATA_LANE3_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b18:16 CLOCK_POS Valid values (Should be a unique position): 0000b – Unused, 001b – Unused, 010b – Position 2, 011b – Position 3 (default), 100b – Position 4 b19 CLOCK_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order 			b7	0b - PLUSMINUS pin order, 1b - MINUSPLUS
0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b14:12 DATA_LANE3_POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4, 101b - Position 5 (default) b15 DATA_LANE3_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b18:16 CLOCK_POS Valid values (Should be a unique position): 0000b - Unused, 001b - Unused, 010b - Position 2, 011b - Position 3 (default), 100b - Position 4 b19 CLOCK_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order			b10:8	Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is not enabled): 000b – Unused, 001b – Position 1, 010b – Po- sition 2, 011b – Position 3, 100b – Position 4 (de-
 Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2, 011b – Position 3, 100b – Position 4, 101b – Position 5 (default) b15 DATA_LANE3_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order b18:16 CLOCK_POS Valid values (Should be a unique position): 0000b – Unused, 001b – Unused, 010b – Position 2, 011b – Position 3 (default), 100b – Position 4 b19 CLOCK_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order 			b11	0b - PLUSMINUS pin order, 1b - MINUSPLUS
0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order b18:16 CLOCK_POS Valid values (Should be a unique position): 0000b - Unused, 001b - Unused, 010b - Position 2, 011b - Position 3 (default), 100b - Position 4 b19 CLOCK_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order			b14:12	Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2, 011b – Position 3, 100b – Position 4, 101b – Po-
Valid values (Should be a unique position): 0000b – Unused, 001b – Unused, 010b – Position 2, 011b – Position 3 (default), 100b – Position 4 b19 CLOCK_POL 0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order			b15	0b – PLUSMINUS pin order, 1b – MINUSPLUS
0b – PLUSMINUS pin order, 1b – MINUSPLUS pin order			b18:16	Valid values (Should be a unique position): 0000b – Unused, 001b – Unused, 010b – Position
b31:20 RESERVED			b19	0b - PLUSMINUS pin order, 1b - MINUSPLUS
			b31:20	RESERVED

Table 5.115 – continued from previous page

RESERVED 4	0x0000000
------------	-----------

5.16.9 Sub block 0x4048 – AWR_DEV_PMICCLOCK_CONF_SET_SB

This sub block contains the configurations to setup the desired frequency of the PMIC Clock that is output from the device. The configurations also allow setting up the dither values for the clock. Table 5.116 describes the contents of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4048	
SBLKLEN	2	Value = 16	
PMICCLOCK_ CTRL	1	This field controls the enable-disable of the PMIC clock. Value Description	
		0x0 Disable PMIC clock	
		0x1 Enable PMIC clock	
PMICCLOCK_ SRC	1	This field specifies the source of the PMIC clock. Applicable only in case of PMIC clock enable. Else ignored.	
		Value Description	
		0x0 XTAL (as connected to the device)	
		0x2 600 MHz PLL divided clock	
SRCCLOCK_DIV	1	This field specifies the division factor to be applied to source clock. Applicable only in case of PMIC clock enable. Else ignored.	
		Value Description	
		0x0 Divide by 1	
		0x1 Divide by 2	
		0xFF Divide by 256	

Table 5.116: AWR_DEV_PMICCLOCK_CONF_SET_SB contents

Table 5.1	16 – continued from previous page

MODE_SELECT	1	This field specifies the mode of operation for the PMIC	
		clock generation. Applicable only in case of PMIC clock enable. Else ignored.	
		Value Description	
		0x0 Continuous mode (free running mode where the frequency change/jump is triggered based on configured number of PMIC clock ticks)	
		0x1 Chirp-to-Chirp staircase mode (frequency change/jump is triggered at every chirp bound-ary)	
FREQ_SLOPE	4	Applicable only in case of PMIC clock enable. Else ignored.	
		Bit Description	
		b25:0 Frequency slope value to be applied in [7.18] unsigned format 1 LSB = $1/2^{18}$	
		b31:26 RESERVED	
		In continuous mode this value is accumulated every PMIC clock tick with the seed as MIN_NDIV_VAL till MAX_NDIV_VAL is reached	
		In the stair case mode this value is accumulated every chirp with the seed as MIN_NDIV_VAL till MAX_NDIV_VAL is reached	
MIN_NDIV_VAL	1	Applicable only in case of PMIC clock enable. Else ig- nored.	
		Minimum allowed divider value (depends upon the highest desired clock frequency)	
MAX_NDIV_VAL	1	Applicable only in case of PMIC clock enable. Else ig-	
		nored. Maximum allowed divider value (depends upon the lowest desired clock frequency)	
CLK_DITHER_EN	1	Applicable only in case of PMIC clock enable and fre- quency slope is non-zero. Else ignored. This field controls the enable-disable of the clock dithering. Adds a pseudo random real number (0 or 1) to the accu- mulated divide value. Hence it brings a random dithering of 1 LSB. Value Description	
		0x0 Clock dithering disabled	
		0x1 Clock dithering enabled	
RESERVED	1	0x00	

Example 1. PMIC clock with no slope in continuous mode

Objective: To configure the PMIC clock at frequency of 2 MHz with no slope. Configurations:

- 1. PMICCLK_SRC = 0x2 (600 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 29, Reference clock = 600 MHz /(29 + 1) = 20 MHz
- 3. MIN_NDIV_VAL = MAX_NDIV_VAL = 10 (Computed as 20 MHz/2.0 MHz)
- 4. FREQ_SLOPE = 0

With the above configuration, the PMIC clock frequency would be PMIC clock = (20 MHz / 10) = 2 MHz

Example 2. Dithered PMIC clock with slope in chirp-to-chirp staircase mode Objective: To configure a dithered PMIC clock at frequencies ranging from 2 MHz to 2.5 MHz over 32 chirps.

Configurations:

- 1. PMICCLK_SRC = 0x2 (600 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 2, Reference clock = 600 MHz /(2 + 1) = 200 MHz
- 3. MODE_SELECT = 1
- 4. FREQ_SLOPE = 169125 (Computed as (MAX_NDIV_VAL-MIN_NDIV_VAL) $\times 2^{18}/31$)
- 5. MIN_NDIV_VAL = 80 (Computed as 200 MHz/2.5 MHz)
- 6. MAX_NDIV_VAL = 100 (Computed as 200 MHz/2.0 MHz)
- 7. CLK_DITHER_EN = 1

With the above configuration, the PMIC clock frequency would be vary between (200 MHz / 80) and (200 MHz / 100) in steps of ($200 \text{ MHz} / \lfloor (80 + (N \times \text{FREQ}\text{-}\text{SLOPE}/2^{18} + X)) \rfloor$ where

- N =Chirp number
- X = random fractional value in the range (0, 1) that adds the dither

The PMIC clock frequency is determined by the clock divider value which starts with a value of 100, providing a PMIC clock of 2 MHz for the 1^{st} chirp, decrementing the divider by FREQ_SLOPE/ 2^{18} = 0.64516 every chirp and finally reaching a value of 20 for the 32^{nd} chirp providing a PMIC clock of 2.5 MHz.

Chirp Number	PMIC Clock Frequency (MHz)	Calculation
1	2.50000	$200/(80 + 0 \times 169125/2^{18})$
2	2.48000	$200/(80+1\times 169125/2^{18})$
3	2.46032	$200/(80+2\times 169125/2^{18})$
4	2.44094	$200/(80+3\times 169125/2^{18})$
5	2.42188	$200/(80 + 4 \times 169125/2^{18})$
6	2.40310	$200/(80+5\times 169125/2^{18})$
7	2.38462	$200/(80+6\times 169125/2^{18})$
8	2.36641	$200/(80+7\times 169125/2^{18})$
9	2.34848	$200/(80+8\times 169125/2^{18})$
10	2.33083	$200/(80+9\times 169125/2^{18})$
11	2.31343	$200/(80+10\times 169125/2^{18})$
12	2.29630	$200/(80+11\times 169125/2^{18})$
13	2.27941	$200/(80+12\times 169125/2^{18})$
14	2.26277	$200/(80+13\times 169125/2^{18})$
15	2.24638	$200/(80+14\times 169125/2^{18})$
16	2.23022	$200/(80+15\times 169125/2^{18})$
17	2.21429	$200/(80+16\times 169125/2^{18})$
18	2.19858	$200/(80+17\times 169125/2^{18})$
19	2.18310	$200/(80+18\times 169125/2^{18})$
20	2.16783	$200/(80+19\times 169125/2^{18})$
21	2.15278	$200/(80+20\times 169125/2^{18})$
22	2.13793	$200/(80+21\times 169125/2^{18})$
23	2.12329	$200/(80+22\times 169125/2^{18})$
24	2.10884	$200/(80+23\times 169125/2^{18})$
25	2.09459	$200/(80+24\times 169125/2^{18})$
26	2.08054	$200/(80+25\times 169125/2^{18})$
27	2.06667	$200/(80+26\times 169125/2^{18})$
28	2.05298	$200/(80+27\times 169125/2^{18})$
29	2.03947	$200/(80+28\times 169125/2^{18})$
30	2.02614	$200/(80+29\times 169125/2^{18})$
31	2.01299	$200/(80+30\times 169125/2^{18})$
32	2.00000	$200/(80+31\times 169125/2^{18})$

Table 5.117: PMIC clock frequency across chirps in chirp-to-chirp staircase mode in
an example when PMIC clock varies from 2 MHz to 2.5 MHz in 32
chirps

Example 3. Dithered PMIC clock with slope in continuous mode

Objective: To configure a dithered PMIC clock at frequencies ranging from 2 MHz to 2.5 MHz over 100 $\mu s.$

Configurations:

- 1. PMICCLK_SRC = 0x2 (600 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 2, Reference clock = 600 MHz /(2 + 1) = 200 MHz
- 3. $MODE_SELECT = 0$
- 4. FREQ_SLOPE = 23302 (Computed as (MAX_NDIV_VAL-MIN_NDIV_VAL) $\cdot 2^{18}/(100 \ \mu s \cdot (2.5 \ \text{MHz} + 2 \ \text{MHz})/2))$
- 5. MIN_NDIV_VAL = 80 (Computed as 200 MHz/2.5 MHz)
- 6. MAX_NDIV_VAL = 100 (Computed as 200 MHz/2.0 MHz)
- 7. CLK_DITHER_EN = 1

With the above configuration, the PMIC clock frequency would be PMIC clock would vary between = (200 MHz / 80) to (200 MHz / 100) in steps of (200 MHz/ $\lfloor (80 + (N \times 23302/2^{18} + X)) \rfloor$ where

- N = Iteration count that ticks every PMIC clock. The average value of PMIC clock here is \sim 2.25 MHz. Hence the iteration count ticks every (1/2.25 MHz) \sim 0.444 μ s.
- X = random fractional value in the range (0, 1) that adds the dither

The PMIC clock frequency is determined by the clock divider which starts with a value of 100, on the 1st PMIC clock period, providing a PMIC clock of 2 MHz, decrementing the divider value by $23303/2^{18} = 0.08889$ every PMIC clock period of 1/2.25 MHz $\sim 0.444 \ \mu$ s, finally reaching a value of 80 on 225th PMIC clock period, providing a PMIC clock of 2.5 MHz. Hence, the frequency varies from [2 MHz, 2.5 MHz] over 225 PMIC clock periods or $225 \times 0.444 \ \mu$ s or $\sim 100 \ \mu$ s.

5.16.10 Sub block 0x4049 - AWR_MSS_PERIODICTESTS_CONF_SB

This sub block is used to trigger the periodic tests in MSS. Table 5.118 describes the content of this sub block.

Table 5.118: AWR_MSS_PERIODICTESTS_CONF_SB content
--

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4049
SBLKLEN	2	Value = 16

Continued on next page

Copyright © 2014-2017, Texas Instruments Incorporated

PERIODICITY	4	Periodicity at which tests need to be run 1 LSB = 1 ms Minimum value is 40 ms
TEST_EN	4	1 – Enable, 0 – Disable Bit Monitoring type b0 PERIODIC_CONFG_REGISTER_READ_EN b1 ESM_MONITORING_EN b31:2 RESERVED
REPORTING_ MODE	1	Controls when the AWR device sends the report cor- responding to the periodic tests to the host. A report generically refers to both success/failure status flags.ValueDefinition0Report is sent every monitoring period1Report is sent only on a failure
RESERVED	3	0x00000

Table 5.118 – continued from previous page

5.16.11 Sub block 0x404A – AWR_MSS_LATENTFAULT_TEST_CONF_SB

This sub block is used to trigger the periodic tests in MSS. Table 5.119 describes the content of this sub block.

Table 5.119: AWR_MSS_LATENTFAULT_TEST_CONF_SB cor

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x404A
SBLKLEN	2	Value = 16

AWR1xxx Radar Interface Control Document

Revision 0.98 - October 19, 2018

			linued from previous page
TEST_EN_1	4	Bits	Definition
		b0	RESERVED
		b1	DMA self-test
		b2	RESERVED
		b3	RTI self-test
		b4	RESERVED
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	RESERVED
		b9	RESERVED
		b10	LVDS pattern generation test
		b11	CSI2 pattern generation test
		b12	Generating NERROR
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error
		b16	TCMA RAM single bit errors
		b17	TCMB RAM single bit errors
		b18	TCMA RAM double bit errors
		b19	TCMB RAM double bit errors
		b20	TCMA RAM parity errors.
		b21	TCMB RAM parity errors.
		b22	RESERVED
		b23	RESERVED
		b24	DMA MPU Region tests
		b25	MSS Mailbox single bit errors
		b26	MSS Mailbox double bit errors
		b27	BSS Mailbox single bit errors
		b28	BSS Mailbox double bit errors
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	CSI2 parity test
L		1	

Table 5.119 – continued from previous page

TEST_EN_2	4	Bits	Definition
		b0	DCC self-test
		b1	DCC fault insertion test
		b2	PCR fault generation test
		b3	VIM RAM parity test
		b4	SCI boot time test
		b31:5	RESERVED
REPORTING_ MODE	1	Value	Definition
		0	Report is sent after test completion
		1	Report is send only upon a failure
TEST_MODE	1	Value	Definition
		0	Production mode. Latent faults are tested and any failures are reported
		1	Characterization mode. Faults are injected and failures are reported which allows testing of the failure reporting
RESERVED	2	0x0000	

Table 5.119 – continued from previous page

5.16.12 Sub block 0x404B - AWR_DEV_TESTPATTERN_GEN_SET_SB

This sub block contains the configurations to setup the test pattern to be generated and transferred over the selected high speed interface (LVDS/CSI2). This command has to be issued after the data path configurations commands are issued. This can be used to perform a sanity test of the high speed interface connectivity and correct reception.

Table 5.120 describes the contents of this sub block.

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x404B		
SBLKLEN	2	Value = 48		
TESTPATTERN_ GEN_CTRL	1	This field controls the enable-disable of the generation of the test pattern.		
		Value Description		
		0x0 Disable test pattern generation		
		0x1 Enable test pattern generation		

				<u> </u>	•
TESTPATTERN_ GEN_TIMING	1	samples	for the tes	st pattern gen	MHz) between successive pattern enable. Else ig-
TESTPATTERN_ PKT_SIZE	2	Number of ADC samples to capture for each RX Valid range: 64 to MAX_NUM_SAMPLES, Where MAX_NUM_SAMPLES is such that all the enabled RX channels' data fits into 16 kB memory, with each sam- ple consuming 2 bytes for real ADC output case and 4 bytes for complex 1x and complex 2x ADC output cases. For example in xWR1243/xWR1443 when the ADC buffer size is 16 kB			
		Numbe RX cha		DC format	MAX_NUM_ SAMPLES
		4		Complex	1024
		4		Real	2048
		2		Complex	2048
		2		Real	4096
NUM_TESTPAT- TERN_PKTS	4	Number of test pattern packets to send For infinite packets set it to 0			
TESTPATTERN_ RX0_ICFG	4	This field specifies the values for Rx0, I channel. Applicable only in case of test pattern enable. Else ignored. Bits Description			
				et value to be st pattern data	e used for the first sample
		1		be added for e attern data	ach successive sample for
TESTPATTERN_ RX0_QCFG	4	This field specifies the values for Rx0, Q channel. Applicable only in case of test pattern enable. If ignored.			
		b15:0			e used for the first sample
				be added for e attern data	ach successive sample for

Table 5.120 – continued from previous page

			nued from previous page		
TESTPATTERN_ RX1_ICFG	4	This field specifies the values for Rx1, I channel. Applicable only in case of test pattern enable. Else ignored.			
		Bits	Description		
		b15:0	Start offset value to be used for the first sample for the test pattern data		
		b31:16	Value to be added for each successive sample for the test pattern data		
TESTPATTERN_ RX1_QCFG	4	This field specifies the values for Rx1, Q channel. Applicable only in case of test pattern enable. Els ignored.			
		Bits	Description		
		b15:0	Start offset value to be used for the first sample for the test pattern data		
		b31:16	Value to be added for each successive sample for the test pattern data		
TESTPATTERN_ RX2_ICFG	4	Applicab ignored.			
		Bits	Description		
		b15:0	Start offset value to be used for the first sample for the test pattern data		
		b31:16	Value to be added for each successive sample for the test pattern data		
TESTPATTERN_ RX2_QCFG	4	This field specifies the values for Rx2, Q channel. Applicable only in case of test pattern enable. Els ignored.			
		Bits	Description		
		b15:0	Start offset value to be used for the first sample for the test pattern data		
		b31:16	Value to be added for each successive sample for the test pattern data		
TESTPATTERN_ RX3_ICFG	4		d specifies the values for Rx3, I channel. le only in case of test pattern enable. Else		
		Bits	Description		
		b15:0	Start offset value to be used for the first sample for the test pattern data		
		b31:16	Value to be added for each successive sample for the test pattern data		

Table 5.120 – continued from previous page

TESTPATTERN_ RX3_QCFG	4	This field specifies the values for Rx3, Q channel. Applicable only in case of test pattern enable. Else ignored.		
		Bits	Description	
		b15:0	Start offset value to be used for the first sample for the test pattern data	
		b31:16	Value to be added for each successive sample for the test pattern data	
RESERVED	4	0x00000	0000	

Table 5.120 – continued from previous page

NOTE:	This test pattern can be us	sed only in LVDS testing and bring-up	
-------	-----------------------------	---------------------------------------	--

5.16.13 Sub block 0x404C - AWR_DEV_CONFIGURATION_SET_SB

This API is used to configure the CRC type for the async events from MSS. The default is 16 bit CRC if this API is not issued. The first async event after MSS powerup will have a 16 bit CRC.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x404C	
SBLKLEN	2	Value = 16	
ASYNC_EVENT_	1	Value Description	
CRC_CFG		0 16 bit CRC for MSS async events	
		1 32 bit CRC for MSS async events	
		2 64 bit CRC for MSS async events	
RESERVED1	1	0x00	
RESERVED2	2	0x0000	
RESERVED3	4	0x0000000	
RESERVED4	4	0x0000000	

Table 5.121: AWR_DEV_CONFIGURATION_SET_SB contents

5.17 Sub blocks related to AWR_DEV_CONF_GET_MSG

5.17.1 Sub block 0x4060 - AWR_DEV_MCUCLOCK_GET_SB

This API is used to read the MCU clock configuration. Response packet structure will be same as AWR_DEV_MCUCLOCK_SET_SB

Table 5.122: AWR_DEV_MCUCLOCK_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4060
SBLKLEN	2	Value = 4

5.17.2 Sub block 0x4061 - AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB

This API is used to read the RX data format configuration. Response packet structure will be same as AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB

Table 5.123: AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4061
SBLKLEN	2	Value = 4

5.17.3 Sub block 0x4062 - AWR_DEV_RX_DATA_PATH_CONF_GET_SB

This API is used to read the RX data path configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_CONF_SET_SB

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4062
SBLKLEN	2	Value = 4

5.17.4 Sub block 0x4063 - AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB

This API is used to read the RX data path lane enable configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB

Table 5.125: AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4063
SBLKLEN	2	Value = 4

5.17.5 Sub block 0x4064 - AWR_DEV_RX_DATA_PATH_CLK_GET_SB

This API is used to read the RX data path clock configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_CLK_SET_SB

Table 5.126: AWR_DEV_RX_DATA_PATH_CLK_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4064
SBLKLEN	2	Value = 4

5.17.6 Sub block 0x4065 – AWR_DEV_LVDS_CFG_GET_SB

This API is used to read the LVDS configuration. Response packet structure will be same as AWR_DEV_LVDS_CFG_SET_SB

Table 5.127: AWR_E	DEV_LVDS_CFG.	GET_SB contents
---------------------------	---------------	-----------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4065
SBLKLEN	2	Value = 4

5.17.7 Sub block 0x4066 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_GET_ SB

This API is used to read the continuous streaming mode configuration. Response packet structure will be same as AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB

Table 5.128: AWR_DEV_RX_CONTSTREAMING_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4066
SBLKLEN	2	Value = 4

5.17.8 Sub block 0x4067 – AWR_DEV_CSI2_CFG_GET_SB

This API is used to read the CSI2 configuration. Response packet structure will be same as AWR_DEV_CSI2_CFG_SET_SB

Table 5.129: AWR_DEV_CSI2_CFG_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4067
SBLKLEN	2	Value = 4

5.17.9 Sub block 0x4068 - AWR_DEV_PMICCLOCK_CONF_GET_SB

This API is used to read the PMIC clock configuration. Response packet structure will be same as AWR_DEV_PMICCLOCK_CONF_SET_SB

Table 5.130: AWR_DEV_PMICCLOCK_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4068
SBLKLEN	2	Value = 4

5.17.10 Sub block 0x4069 - AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB

This API is used to read the MSS latent fault test configuration. Response packet structure will be same as AWR_MSS_LATENTFAULT_TEST_CONF_SET_SB

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4069
SBLKLEN	2	Value = 4

5.17.11 Sub block 0x406A – AWR_MSS_PERIODICTESTS_CONF_GET_SB

This API is used to read the MSS periodic tests configuration. Response packet structure will be same as AWR_MSS_PERIODICTESTS_CONF_SET_SB

 Table 5.132:
 AWR_MSS_PERIODICTESTS_CONF_GET_SB

Field Name	Number	Description
	of bytes	

[SBLKID	2	Value = 0x406A
	SBLKLEN	2	Value = 4

5.17.12 Sub block 0x406B - AWR_DEV_TESTPATTERN_GEN_GET_SB

This API is used to read the test pattern generation configuration. Response packet structure will be same as AWR_DEV_TESTPATTERN_GEN_SET_SB

Table 5.133: AWR_DEV_TESTPATTERN_GEN_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x406B
SBLKLEN	2	Value = 4

5.18 Sub blocks related to AWR_DEV_FILE_DOWNLOAD_MSG

5.18.1 Sub block 0x4080 - AWR_DEV_FILE_DOWNLOAD_SB

This sub block is used to send the file in chunks/parts for download into RAM. Table 5.134 describes the content of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4080	
SBLKLEN	2	Value = Variable	
FILE_TYPE	4	Value Description	
		0x0 FILETYPE_BSS_BUILD	
		0x1 FILETYPE_CALIB_DATA	
		0x2 FILETYPE_CONFIG_INFO	
		0x3 FILETYPE_MSS_BUILD	
FILE_LENGTH	4	Length of File	
FILE_CONTENT	Variable	Content of File, may split into multiple chunks.	

Table 5.134: AWR_DEV_FILE_DOWNLOAD_SB conten	nts
--	-----

NOTE: In the first chunk of file, FILE_TYPE and FILE_LENGTH is available and then first chunk onward these two fields will not be part of SB content

5.19 Sub blocks related to AWR_DEV_FRAME_CONFIG_APPLY_MSG

5.19.1 Sub block 0x40C0 - AWR_DEV_FRAME_CONFIG_APPLY_SB

This sub block is used to indicate to MSS to apply all the device configurations in the hardware. Table 5.135 describes the content of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40C0
SBLKLEN	2	Value = 12
NUM_CHIRPS	4	Number of chirps per frame
HALF_WORDS_ PER_CHIRP	2	Number of half words in ADC buffer per chirp Example 1: In real mode, if number of ADC samples per chirp is 256 then this value will be 256 Example 2: In complex1x or complex2x modes, if number of ADC samples per chirp is 256 then this value will be 512
RESERVED	2	0x0000

 Table 5.135:
 AWR_DEV_FRAME_CONFIG_APPLY_SB contents

5.19.2 Sub block 0x40C1 - AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB

This sub block is used to indicate to MSS to apply all the advanced frame configuration configurations in the hardware.

Table 5.136 describes the content of this sub block.

Table 5.136: AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40C1
SBLKLEN	2	Value = 40
NUM_SUB- FRAMES	1	Number of sub frames enabled in this frame Valid range: 1 to 4
RESERVED	3	0x00
SF1_TOT_NUM_ CHIRPS	4	Number of chirps in sub frame 1

Table 5.136 -	continued fro	om previous page
---------------	---------------	------------------

Table 5.150 – continued from previous page			
SF1_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of half words (16 bits) of ADC samples per data packet in sub-frame 1 Example 1: In real mode, if number of ADC samples per chirp in subframe1 is 256 then this value will be 256 Example 2: In complex1x or complex2x modes, if number of ADC samples per chirp in subframe1 is 256 then this value will be 512 In xWR12xx: Program this as the same as number of ADC samples in each chirp of this sub frame (required to be the same) Exception: Can do #chirps based ping-pong as in xWR16xx (see below), if CP/CQ are not needed. Useful for chirp stitching use case. In xWR16xx: The ADC samples corresponding to one or more chirps can be grouped and sent to the DSP as a single packet. Program this as the number of half words of ADC samples per packet. Ensure that in one sub frame, there is integer number of such packets. Maximum size of a data packet: (16384 - 1) half words.	
SF1_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 1. In xWR12xx: Program this as 1. Exception: Can be > 1 as in 16xx if CP/CQ is not needed. Useful for chirp stitching use case. In xWR16xx: The ADC samples corresponding to one or more chirps can be grouped and sent to the DSP as a single packet. Program this as the corresponding number of chirps per packet. Maximum value = 8. Note on maximum size: 8 chirps for CP and BPM.	
RESERVED	1	0x00	
SF2_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame 2	
SF2_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC Samples per data packet in sub-frame 2 Same conditions apply as in sub-frame 1.	
SF2_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 2 Same conditions apply as in sub-frame 1.	
RESERVED	1	0x00	
SF3_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame3	

······································		
SF3_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC samples per data packet in sub-frame 3 Same conditions apply as in sub-frame 1.
SF3_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 3 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00
SF4_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame4
SF4_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC samples per data packet in sub-frame 4 Same conditions apply as in sub-frame 1.
SF4_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 4 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00

Table 5.136 – continued from previous page

5.20 Sub blocks related to AWR_DEV_STATUS_GET_MSG

5.20.1 Sub block 0x40E0 - AWR_MSSVERSION_GET_SB

This sub block reads MSS FW version. The information returned by the device will be in the format as given in AWR_MSSVERSION_SB.

Table 5.137 describes the contents of the request sub block

Table 5.137:	AWR_MSSVERSION_GET_SB contents
--------------	--------------------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E0
SBLKLEN	2	Value = 4

Response to AWR_MSSVERSION_GET_SB

AWR_MSSVERSION_SB sub block is sent by the radar device in response to AWR_MSSVERSION_ GET_SB. Note that SBLKID for both AWR_MSSVERSION_GET_SB and AWR_MSSVERSION_SB are same.

Table 5.138 describes the contents of the response sub block.

Table 5.138: AW	R_MSSVERSION_SB contents
-----------------	--------------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E0
SBLKLEN	2	Value = 20
HW_VARIANT	1	HW variant number
HW_VERSION_ MAJOR	1	HW version major number
HW_VERSION_ MINOR	1	HW version minor number
MSS_FW_VER- SION_MAJOR	1	MSS FW version major number
MSS_FW_VER- SION_MINOR	1	MSS FW version minor number
MSS_FW_VER- SION_BUILD	1	MSS FW version build number
MSS_FW_VER- SION_DEBUG	1	MSS FW version debug number
MSS_FW_VER- SION_YEAR	1	Year of MSS FW version release
MSS_FW_VER- SION_MONTH	1	Month of MSS FW version release
MSS_FW_VER- SION_DAY	1	Day of MSS FW version release
MSS_FW_VER- SION_PATCH_ MAJOR	1	MSS FW version patch major number
MSS_FW_VER- SION_PATCH_ MINOR	1	MSS FW version patch minor number
MSS_FW_VER- SION_PATCH_ YEAR	1	Year of MSS FW patch release
MSS_FW_VER- SION_PATCH_ MONTH	1	Month of MSS FW patch release
MSS_FW_VER- SION_PATCH_ DAY	1	Day of MSS FW patch release

Table 5.138 – continued from previous page				
MSS_FW_PATCH_	1	Bit	Definition	
		b3:0	DEBUG version number	
VERSION		b7:4	BUILD version number	

Table 5.138 – continued from previous page

5.20.2 Sub block 0x40E1 - AWR_MSSCPUFAULT_STATUS_GET_SB

This sub block provides the MSS CPU fault information. Table 5.139 describes the content of this sub block.

Table 5.139:	AWR.	MSSV	ERSIO	N_SB	contents
--------------	------	------	-------	------	----------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E1
SBLKLEN	2	Value = 4

Response to AWR_MSSCPUFAULT_STATUS_GET_SB

AWR_MSSCPUFAULT_STATUS_SB is sent in response to AWR_MSSCPUFAULT_STATUS_GET_SB.

Table 5.140 describes the content of AWR_MSSCPUFAULT_STATUS_SB

Table 5.140:	AWR_MSSCPUFAULT_STATUS_SB contents
--------------	------------------------------------

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x40	E1	
SBLKLEN	2	Value = 36		
FAULT_TYPE	1	Value	Definition	
		0	MSS Processor Undefined Instruction Abort	
		1	MSS Processor Instruction pre-fetch Abort	
		2	MSS Processor Data Access Abort	
		3	MSS Processor Firmware Fatal Error	
		0x4-0xFF	Reserved	
RESERVED	1	0x00		
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.		
FAULT_LR	4	The instruction PC address at which Fault occurred		

FAULT_PREVLB4The return address of the function from which fault function has been called (Call stack LR)FAULT_SPSR4The CPSR register value at which fault occurredFAULT_SP4The SP register value at which fault occurred (valid only for fault type 0x0 to 0x2)FAULT_CAUSE. ADDRESS4The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)FAULT_ERROR. STATUS2The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)FAULT_ERROR. STATUS2The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)FAULT_ERROR. SURCE2The source of the Error (Error Cause type - valid only for fault type 0x0 to 0x2)FAULT_ERROR. SOURCE1The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)FAULT_ERROR. SOURCE1The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)FAULT_ERROR. SOURCE1The Source of the Error Source type - valid only for fault type 0x0 to 0x2)FAULT_AXLER- ROR.TYPE1The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)FAULT_ACCESS. TYPE1The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2)FAULT_RECOV- ERY_TYPE1The Error Recovery type (Error Access type - valid only for fault type 0x0 to 0x2)FAULT_ARECOV- ERY_TYPE20x00UNRECOVERYAULT_RECOVERY0x1RECOVERYRESERVED20x000			to – continued from previous page		
FAULT.SP4The SP register value at which fault occurredFAULT_CAUSE. ADDRESS4The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)FAULT_ERROR_ STATUS2The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)FAULT_ERROR_ STATUS2The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)FAULT_ERROR_ STATUS2The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)Ox000BACKGROUND_ERR 0x001ALIGNMENT_ERR 0x0020x001ALIGNMENT_ERR 0x002DEBUG_EVENT 0x0000x002DEBUG_EVENT 0x000SYNCH_EXTER_ERR 0x4060x406ASYNCH_ECC_ERR 0x408ASYNCH_ECC_ERRFAULT_ERROR_ SOURCE1The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)0x0ERR_SOURCE_AXI_MASTER 0x1ERR_SOURCE_AXI_MASTERFAULT_AXI_ER- ROR_TYPE1The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)FAULT_ACCESS_ TYPE1The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2)0x0READ_ERR 0x1WRITE_ERRFAULT_RECOV- ERY_TYPE1The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)0x0UNRECOVERY 0x1RECOVERY0x1RECOVERY	FAULT_PREV_LR	4			
FAULT_CAUSE_ ADDRESS4The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)FAULT_ERROR_ STATUS2The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)FAULT_ERROR_ STATUS2The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)FAULT_ERROR_ SOURCE2The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)FAULT_ERROR_ SOURCE1The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)FAULT_ERROR_ SOURCE1The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)FAULT_ERROR_ SOURCE1The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)FAULT_AXILER- ROR_TYPE1The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)FAULT_ACCESS_ TYPE1The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2)FAULT_RECOV- ERY_TYPE1The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)FAULT_RECOV- ERY_TYPE1The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)FAULT_RECOV- ERY_TYPE1The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)0x0UNRECOVERY 0x1NRECOVERY0x1RECOVERY0x1RECOVERY	FAULT_SPSR	4	The CPSR register value at which fault occurred		
ADDRESSfault type 0x0 to 0x2)FAULT_ERROR_ STATUS2The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)STATUS2The status of Error (Error Cause type - valid only for fault type 0x000BACKGROUND_ERR0x000BACKGROUND_ERR0x001ALIGNMENT_ERR0x002DEBUG_EVENT0x000PERMISSION_ERR0x000SYNCH_EXTER_ERR0x406ASYNCH_EXTER_ERR0x409SYNCH_ECC_ERR0x408ASYNCH_ECC_ERR0x408ASYNCH_ECC_ERR0x1The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)0x0ERR_SOURCE_AXI_MASTER0x1ERR_SOURCE_ATCM0x2ERR_SOURCE_BTCMFAULT_AXLER- ROR_TYPE1FAULT_ACCESS- TYPE1FAULT_ACCESS- TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1FAULT_RECOV- ERY_TYPE1AThe Error Re	FAULT_SP	4	The SP register value at which fault occurred		
STATUStype 0x0 to 0x2)0x000BACKGROUND_ERR0x001ALIGNMENT_ERR0x002DEBUG_EVENT0x000PERMISSION_ERR0x000SYNCH_EXTER_ERR0x406ASYNCH_EXTER_ERR0x408SYNCH_ECC_ERR0x408ASYNCH_ECC_ERRFAULT_ERROR_1SOURCE1PAULT_AXI_ER-1ROR_TYPE1FAULT_AXI_ER-1ROR_TYPE1FAULT_ACCESS_1TYPE1FAULT_RECOV-1 <t< td=""><td></td><td>4</td><td></td></t<>		4			
FAULT_ERROR_ SOURCE 1 The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2) 0x0 0x0 ERR_SOURCE_AXI_MASTER 0x1 0x1 0x1 ERR_SOURCE_ATCM 0x2 0x2 0x1 ERR_SOURCE_BTCM FAULT_AXI_ER- ROR_TYPE 1 The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2) 0x0 AXI_DECOD_ERR 0x1 AXI_SLAVE_ERR FAULT_ACCESS_ TYPE 1 The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 0x0 READ_ERR 0x1 0x1 VI WRITE_ERR FAULT_RECOV- ERY_TYPE 1 FAULT_RECOV- ERY_TYPE 1 VI The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0 0x0 UNRECOVERY 0x1 0x1 RECOVERY 0x1		2	type 0x0 to 0x2) 0x000 BACKGROUND_ERR 0x001 ALIGNMENT_ERR 0x002 DEBUG_EVENT 0x00D PERMISSION_ERR 0x008 SYNCH_EXTER_ERR 0x406 ASYNCH_EXTER_ERR		
SOURCEfault type 0x0 to 0x2) 0x0ERR_SOURCE_AXI_MASTER 0x10x1ERR_SOURCE_ATCM 0x2ERR_SOURCE_BTCMFAULT_AXI_ER- ROR_TYPE1The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2) 0x0FAULT_ACCESS_ TYPE1The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0FAULT_ACCESS_ TYPE1The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0FAULT_RECOV- ERY_TYPE1The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0FAULT_RECOV- ERY_TYPE1The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0FAULT_RECOV- ERY_TYPE1The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0Ox1WRITE_ERRFAULT_RECOV- ERY_TYPE1The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0Ox1WRIECOVERY 0x1Ox1RECOVERY 0x1			0x408 ASYNCH_ECC_ERR		
ROR_TYPE type 0x0 to 0x2) 0x0 AXI_DECOD_ERR 0x1 AXI_SLAVE_ERR FAULT_ACCESS_ TYPE 1 The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR 0x1 WRITE_ERR FAULT_RECOV- ERY_TYPE 1 The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0 UNRECOVERY 0x1 WRECOVERY 0x1 RECOVERY 0x1 RECOVERY		1	fault type 0x0 to 0x2)0x0ERR_SOURCE_AXI_MASTER0x1ERR_SOURCE_ATCM		
TYPE fault type 0x0 to 0x2) 0x0 READ_ERR 0x1 WRITE_ERR FAULT_RECOV- ERY_TYPE 1 The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0 UNRECOVERY 0x1 RECOVERY 0x1 RECOVERY	-	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2) 0x0 AXI_DECOD_ERR		
ERY_TYPE for fault type 0x0 to 0x2) 0x0 UNRECOVERY 0x1 RECOVERY		1	fault type 0x0 to 0x2) 0x0 READ_ERR		
RESERVED 2 0x0000		1	for fault type 0x0 to 0x2) 0x0 UNRECOVERY		
	RESERVED	2	0x0000		

Table 5.140 – continued from previous page

5.20.3 Sub block 0x40E2 – AWR_MSSESMFAULT_STATUS_GET_SB

This sub block provides the information regarding additional Master sub system faults. Table 5.141 describes the content of this sub block.

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

$\textbf{Table 5.141: AWR_MSSESMFAULT_STATUS_GET_SB contents}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E2
SBLKLEN	2	Value = 4

The Response to above request is given in the AWR_MSSESMFAULT_STATUS_SB. Table 5.142 describes the contents of AWR_MSSESMFAULT_STATUS_SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40E2	
SBLKLEN	2	Value = 20	

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

			Definition
ESM_GROUP1_ ERRORS	4	Bits	
		b0	
		b1	RESERVED
		b2	DMA MPU Region tests
		b3	DMA Parity error
		b4	RESERVED
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	CSI TX FIFO Parity Err
		b8	TPCC parity error
		b9	CBUF ECC single bit error
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	Error response from the Peripheral when a DMA transfer is done
		b14	RESERVED
		b15	VIM RAM double bit errors
		b16	RESERVED
		b17	MibSPI double bit error test
		b18	ECC error on CBUFF
		b19	RESERVED
		b20	VIM RAM single bit errors
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	MibSPI single bit error test
		b26	TCMB RAM single bit errors
		b27	STC error
		b28	TCMB RAM single bit errors
		b29	TPTC0 read to protected memory
		b30	DCC compare error
		b31	CR4F self-test error.(test of error path by error forcing)

Table 5.142 – continued from previous page

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

ESM_GROUP2_	4	Bits	Definition
ERRORS		b0	TCMA RAM single bit errors
		b1	RESERVED
		b2	RESERVED
		b3	TPTC0 write to protected memory
		b4	RESERVED
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	VIM Self-Test Error
		b8	RESERVED
		b9	RESERVED
		b10	RESERVED
		b11	RESERVED
		b12	QSPI not able to perform the Write to FLASH
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	RESERVED
		b17	RESERVED
		b18	RESERVED
		b19	RESERVED
		b20	RESERVED
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	RESERVED
		b26	BSS Mailbox single bit errors
		b27	BSS Mailbox double bit errors
		b28	MSS Mailbox single bit errors
		b29	MSS Mailbox double bit errors
		b30	RESERVED
		b31	RESERVED
RESERVED	4	0x00000	0000
RESERVED	4	0x00000	0000

Table 5.142 – continued from previous page

5.21 Sub blocks related to AWR_DEV_ASYNC_EVENT_MSG

5.21.1 Sub block 0x5000 - AWR_AE_DEV_MSSPOWERUPDONE_SB

This sub block indicates that Master SS power up is now complete. It also indicates the status of boot up tests done by Master SS. This async event is sent when host IRQ is enabled. Table 5.143 describes the contents of this sub block

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5000
SBLKLEN	2	Value = 24
MSS_POWERUP_ TIME	4	Master SS power up time 1 LSB = 5 ns
MSS_POWERUP_ STATUS	8	Refer to Table 6.3 for bit map details

${\bf Table \ 5.143: \ AWR_AE_DEV_MSSPOWERUPDONE_SB \ contents}$

AWR1xxx Radar Interface Control Document

Revision 0.98 - October 19, 2018

BOOTTEST	8		S, 0 – FAIL
STATUS	0	Bit	Definition
		b0	MibSPI self-test
		b1	DMA self-test
		b2	Watchdog self-test
		b3	RTI self-test
		b4	ESM self-test
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	MPU self-test
		b9	Mailbox self-test
		b10	LVDS pattern generation test
		b11	CSI2 pattern generation test
		b12	NERROR generation test
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error test
		b16	TCMA RAM single bit error test
		b17	TCMB RAM single bit error test
		b18	TCMA RAM double bit error test
		b19	TCMB RAM double bit error test
		b20	TCMA RAM parity error test
		b21	TCMB RAM parity error test
		b22	VIM lockstep test
		b23	CCM R4 lockstep test
		b24	DMA MPU region test
		b25	MSS Mailbox single bit error test
		b26	MSS Mailbox double bit error test
		b27	BSS Mailbox single bit error test
		b28	BSS Mailbox double bit error test
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	CSI2 parity test
		b32	PBIST (VIM RAM/TCM RAM/MibSPI SRAM/Mail- box/EDMA/DMA/CSI2)
		b33	LBIST (VIM/CR4)
		b63:34	RESERVED

Table 5.143 – continued from previous page

	Table 5.143 – continued from previous page				
NOTE:	The functional APIs shall be sent to radar device only after re- ceiving AWR_AE_DEV_MSSPOWERUPDONE_SB Async-event af- ter power cycle.				

5.21.2 Sub block 0x5001 - AWR_AE_DEV_RFPOWERUPDONE_SB

This sub block indicates that BIST SS power up is now complete. Table 5.144 describes the contents of this sub block

Table 5.144: AWR_AE_DEV_RFPOWERUPDONE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5001	
SBLKLEN	2	Value = 20	

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

Table 5.144 – continued from previous page				
BSS_POWERUP_	4		S, 0 – FAIL	
		Bit	Status Information	
FLAGS		b0	ROM CRC check	
		b1	CR4 and VIM lockstep test	
		b2	RESERVED	
		b3	VIM test	
		b4	STC test of diagnostic	
		b5	CR4 STC	
		b6	CRC test	
		b7	RAMPGEN memory ECC test	
		b8	DFE Parity test	
		b9	DFE memory ECC	
		b10	RAMPGEN lockstep test	
		b11	FRC lockstep test	
		b12	DFE memory PBIST	
		b13	RAMPGEN memory PBIST	
		b14	PBIST test	
		b15	WDT test	
		b16	ESM test	
		b17	DFE STC	
		b18	RESERVED	
		b19	ATCM, BTCM ECC test	
		b20	ATCM, BTCM parity test	
		b21	RESERVED	
		b22	RESERVED	
		b23	RESERVED	
		b24	FFT test	
		b25	RTI test	
		b26	PCR test	
		b31:27		
POWERUP_TIME	4	RF BIST	SS Power up time	
		1 LSB =		
RESERVED	4	0x00000	0000	
RESERVED	4	0x0000000		

Table 5.144 – continued from previous page

5.21.3 Sub block 0x5002 - AWR_AE_MSS_CPUFAULT_SB

This sub block indicates CPU fault status of Master SS. Table 5.145 describes the content of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5002	
SBLKLEN	2	Value = 36	
FAULT_TYPE	1	0 MSS Processor Undefined Instruction Abort	
		1 MSS Processor Instruction pre-fetch Abort	
		2 MSS Processor Data Access Abort	
		3 MSS Processor Firmware Fatal Error	
		0x4- Reserved 0xFF	
RESERVED	1	0x00	
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.	
FAULT_LR	4	The instruction PC address at which Fault occurred	
FAULT_PREV_LR	4	The return address of the function from which fault function has been called (Call stack LR)	
FAULT_SPSR	4	The CPSR register value at which fault occurred	
FAULT_SP	4	The SP register value at which fault occurred	
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)	
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)	
		0x000 BACKGROUND_ERR	
		0x001 ALIGNMENT_ERR	
		0x002 DEBUG_EVENT	
		0x00D PERMISSION_ERR	
		0x008 SYNCH_EXTER_ERR	
		0x406 ASYNCH_EXTER_ERR	
		0x409 SYNCH_ECC_ERR	
		0x408 ASYNCH_ECC_ERR	

Table 5.145: AWR_AE_MSS_CPUFAULT_STATUS_SB contents

FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)
		0x0 ERR_SOURCE_AXI_MASTER
		0x1 ERR_SOURCE_ATCM
		0x2 ERR_SOURCE_BTCM
FAULT_AXI_ER- ROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)
		0x0 AXI_DECOD_ERR
		0x1 AXI_SLAVE_ERR
FAULT_ACCESS_ TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR
		0x1 WRITE_ERR
FAULT_RECOV-	1	The Error Recovery type (Error Recovery type - Valid only
ERY_TYPE		for fault type 0x0 to 0x2)
		0x0 UNRECOVERY
		0x1 RECOVERY
RESERVED	2	0x0000

Table 5.145 – continued from previous page

5.21.4 Sub block 0x5003 - AWR_AE_MSS_ESMFAULT_STATUS_SB

This sub block indicates any other faults inside the MSS. Table 5.146 describes the content of this sub block.

Table 5.146:	AWR_AE_MSS_ESMFAULT_STATUS_SB contents	
--------------	--	--

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5003	
SBLKLEN	2	Value = 12	

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

ESM_GROUP1_ 4 Bits Definition			
ERRORS	4	Bits	
		b0	
		b1	RESERVED
		b2	DMA MPU Region tests
		b3	DMA Parity error
		b4	RESERVED
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	CSI TX FIFO Parity Err
		b8	TPCC parity error
		b9	CBUF ECC single bit error
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	Error response from the Peripheral when a DMA transfer is done
		b14	RESERVED
		b15	VIM RAM double bit errors
		b16	RESERVED
		b17	MibSPI double bit error test
		b18	ECC error on CBUFF
		b19	RESERVED
		b20	VIM RAM single bit errors
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	MibSPI single bit error test
		b26	TCMB RAM single bit errors
		b27	STC error
		b28	TCMB RAM single bit errors
		b29	TPTC0 read to protected memory
		b30	DCC compare error
		b31	CR4F self-test error.(test of error path by error forcing)

Table 5.146 – continued from previous page

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

ESM_GROUP2_	4	Bits	Definition
ERRORS		b0	TCMA RAM single bit errors
		b1	RESERVED
		b2	RESERVED
		b3	TPTC0 write to protected memory
		b4	RESERVED
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	VIM Self-Test Error
		b8	RESERVED
		b9	RESERVED
		b10	RESERVED
		b11	RESERVED
		b12	QSPI not able to perform the Write to FLASH
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	RESERVED
		b17	RESERVED
		b18	RESERVED
		b19	RESERVED
		b20	RESERVED
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	RESERVED
		b26	BSS Mailbox single bit errors
		b27	BSS Mailbox double bit errors
		b28	MSS Mailbox single bit errors
		b29	MSS Mailbox double bit errors
		b30	RESERVED
		b31	RESERVED
RESERVED	4	0x00000	0000

Table 5.146 – continued from previous page

5.21.5 Sub block 0x5004 – RESERVED

5.21.6 Sub block 0x5005 - AWR_AE_MSS_BOOTERRORSTATUS_SB

This sub block indicates error status of MSS when booted over SPI. This async event is sent after the bootup over SPI is complete.

Table 5.147 describes the content of this sub block.

Table 5.147: AWR_AE_MSS_BOOTERRORSTATUS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5005
SBLKLEN	2	Value = 24
MSS_POWERUP_ TIME	4	Master SS power up time 1 LSB = 5 ns
MSS_POWERUP_ STATUS	8	Refer to Table 6.3 for bit map details

AWR1xxx Radar Interface Control Document

Revision 0.98 - October 19, 2018

BOOTTEST	8		S, 0 – FAIL
STATUS		Bit	Definition
		b0	MibSPI self-test
		b1	DMA self-test
		b2	Watchdog self-test
		b3	RTI self-test
		b4	ESM self-test
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	MPU self-test
		b9	Mailbox self-test
		b10	LVDS pattern generation test
		b11	CSI2 pattern generation test
		b12	NERROR generation test
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error test
		b16	TCMA RAM single bit error test
		b17	TCMB RAM single bit error test
		b18	TCMA RAM double bit error test
		b19	TCMB RAM double bit error test
		b20	TCMA RAM parity error test
		b21	TCMB RAM parity error test
		b22	VIM lockstep test
		b23	CCM R4 lockstep test
		b24	DMA MPU region test
		b25	MSS Mailbox single bit error test
		b26	MSS Mailbox double bit error test
		b27	BSS Mailbox single bit error test
		b28	BSS Mailbox double bit error test
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	CSI2 parity test
		b32	PBIST (VIM RAM/TCM RAM/MibSPI SRAM/Mail- box/EDMA/DMA/CSI2)
		b33	LBIST (VIM/CR4)
		b63:34	RESERVED

Table 5.147 – continued from previous page

	Table 5.147 – continued from previous page
NOTE:	The functional APIs shall be sent to radar device only after re- ceiving AWR_AE_MSS_BOOTERRORSTATUS_SB Async-event af- ter power-cycle.

5.21.7 Sub block 0x5006 - AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB

This sub block indicates the test status report of the latent fault tests. Table 5.148 describes the content of this sub block.

Table 5.148: AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5006
SBLKLEN	2	Value = 16

AWR1xxx Radar Interface Control Document

Revision 0.98 - October 19, 2018

TEST_STATUS_	4	148 – continued from previous page 1 – PASS, 0 - FAIL		
FLAG1		Bits	Definition	
		b0	MibSPI self-test	
		b1	DMA self-test	
		b2	Reserved	
		b3	RTI self-test	
		b4	ESM self-test	
		b5	EDMA self-test	
		b6	CRC self-test	
		b7	VIM self-test	
		b8	Reserved	
		b9	Mailbox self-test	
		b10	LVDS pattern generation test	
		b11	CSI2 pattern generation test	
		b12	Generating NERROR	
		b13	MibSPI single bit error test	
		b14	MibSPI double bit error test	
		b15	DMA Parity error	
		b16	TCMA RAM single bit errors	
		b17	TCMB RAM single bit errors	
		b18	TCMA RAM double bit errors	
		b19	TCMB RAM double bit errors	
		b20	TCMA RAM parity errors.	
		b21	TCMB RAM parity errors.	
		b22	Reserved	
		b23	Reserved	
		b24	DMA MPU Region tests	
		b25	MSS Mailbox single bit errors	
		b26	MSS Mailbox double bit errors	
		b27	BSS Mailbox single bit errors	
		b28	BSS Mailbox double bit errors	
		b29	EDMA MPU test	
		b30	EDMA parity test	
		b31	CSI2 parity test	

Table 5.148 – continued from previous page

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

			initiate nom providuo pago
TEST_STATUS_	4	Bits	Definition
FLAG2		b0	DCC self-test
		b1	DCC fault insertion test
		b2	PCR fault generation test
		b3	VIM RAM parity test
		b4	SCI boot time test
		b31:5	RESERVED
RESERVED	4	0x00000	0000

Table 5.148 – continued from previous page

5.21.8 Sub block 0x5007 – AWR_AE_MSS_PERIODICTEST_STATUS_SB

This sub block indicates test status of the periodic tests. Table 5.149 describes the content of this sub block.

Table 5.149:	AWR_AE_MSS_PERIODICTEST_STATUS_SB contents
--------------	--

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5007	
SBLKLEN	2	Value = 12	
TEST_STATUS_ FLAG	4	1 - PASS, 0 - FAILBitsDefinitionb0Periodic read back of static registersb1ESM self-testb31:2RESERVED	
RESERVED	4	0x0000000	

5.21.9 Sub block 0x5008 – AWR_AE_MSS_RFERROR_STATUS_SB

This sub block indicates the RF error status. Table 5.150 describes the content of this sub block.

Table 5.150:	AWR_AE_MSS	RFERROR	STATUS	SB contents
Table 0.100.		LUI DIGIOIO		

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5008

SBLKLEN	2	Value = 12		
ERROR_STATUS_	4	Value	Definition	
FLAG		0	No fault	
		1	BSS FW assert	
		2	BSS FW abort	
		3	BSS ESM GROUP1 ERROR	
		4	BSS ESM GROUP2 ERROR	
		Others	RESERVED	
RESERVED	4	0x00000	0000	

5.21.10 Sub block 0x5009 - AWR_AE_MSS_VMON_ERRORSTATUS_SB

This sub block indicates fault in analog supplies or LDO short circuit condition. Once a fault is detected the functionality cannot be resumed from then on and the sensor needs to be re-started.

Field Name	Number of bytes	Description	
SBLKID	2	Value =	0x5009
SBLKLEN	2	Value =	16
FAULT_TYPE	1	Value	Definition
		0	NO FAULT
		1	ANALOG_SUPPLY_FAULT
		Others	RESERVED
RESERVED	1	0x00	
RESERVED	2	0x0000	
FAULT_SIG	4	Bit	Definition
		b0	VDDIN under voltage indication
		b1	VDDIN over voltage indication
		b2	VIN_18CLK supply fault
		b3	VIOIN supply fault (Unable to resolve between 1.8V and 3.3V)
		b4	VIN_SRAM under voltage indication
		b5	VIOIN_18 supply fault
		b6	APLL_VCO_LDO short circuit
		b31:7	RESERVED

Table 5.151: AWR_AE_MSS_VMON_ERRORSTATUS_SB contents

RESERVED	4	0x0000000

5.21.11 Sub block 0x500A - AWR_AE_MSS_ADC_DATA_SB

This async event is in response to the command which indicates ADC data needs to be transferred over SPI. This async event contains the ADC data followed by more such async events for additional data.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x500A	
SBLKLEN	2	Value = Variable (max = 226)	
REMCHUNKS	2	Number of remaining chunks expected. (Remaining length / 220 bytes)	
ADC_DATA	Variable (4 - 220 bytes)	ADC data captured by the MMIC	

5.21.12 Sub block 0x500B – RESERVED

5.22 Brief notes on the order of issuing API SBs

5.22.1 Single device mode

This section briefly describes in which order to issue the various API SBs defined in this document for a single device.

- 1. Power up the device
- 2. Wait for AWR_AE_MSSPOWERUPDONE_SB
- 3. AWR_DEV_RFPOWERUP_SB
- 4. Wait for AWR_AE_RFPOWERUPDONE_SB
- 5. AWR_RF_MISC_CONF_SET_MSG
- 6. AWR_RF_STATIC_CONF_SET_MSG
 - a. AWR_CHAN_CONF_SET_SB
 - b. AWR_ADCOUT_CONF_SET_SB

- c. AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN set to 1 if RF supply is 1.0 V
- d. AWR_LOWPOWERMODE_CONF_SET_SB
- e. AWR_DYNAMICPOWERSAVE_CONF_SET_SB
- 7. Data path configurations
 - a. AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
 - b. AWR_DEV_RX_DATA_PATH_CONF_SET_SB
 - c. AWR_DEV_RX_DATA_PATH_LANE_EN_SB
 - d. AWR_DEV_RX_DATA_PATH_CLK_SET_SB
 - e. AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
 - f. AWR_DEV_LVDS_CFG_SET_SB / AWR_DEV_CSI2_CFG_SET_SB
- 8. AWR_RF_INIT_MSG
 - a. AWR_RFINIT_SB: This triggers very basic calibrations and RF initializations
 - b. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
- 9. AWR_RF_DYNAMIC_CONF_SET_MSG
 - a. AWR_PROG_FILT_COEFF_RAM_SET_SB (Applicable only in xWR1642 or xWR1843)
 - b. AWR_PROG_FILT_CONF_SET_SB (Applicable only in xWR1642 or xWR1843)
 - c. AWR_PROFILE_CONF_SET_SB
 - d. AWR_CHIRP_CONF_SET_SB
 - e. AWR_LOOPBACK_BURST_CONF_SET_SB
 - f. AWR_FRAME_CONF_SET_SB or AWR_ADVANCED_FRAME_CONF_SB (if using loopback burst)
 - g. AWR_CALIB_MON_TIME_UNIT_CONF_SB with CALIB_MON_TIME_UNIT value set to a value such that the total frame idle time across multiple CALIB_MON_TIME_UNITs is sufficient for all calibrations and monitoring. See Section 9 for details on calibration and monitoring durations.
 - h. AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB (set all ONE_TIME_CALIB_ ENABLE_MASK and set ENABLE_CAL_REPORT = 1)
 - i. Wait for AWR_RUN_TIME_CALIBRATION_SUMMARY_REPORT_AE_SB
 - j. AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB (set all RUN_TIME_CALIB_ ENABLE_MASK and set ENABLE_CAL_REPORT = 0 to avoid receiving periodic async events)
 - k. AWR_DEV_FRAME_CONFIG_APPLY_MSG
- 10. AWR_RF_FRAME_TRIG_MSG

- a. AWR_FRAMESTARTSTOP_CONF_SB in Start mode: after this, frames get transmitted
- 11. AWR_RF_FRAME_TRIG_MSG
 - a. AWR_FRAMESTARTSTOP_CONF_SB in Stop mode: after this, frames are stopped The AWR_RF_FRAME_TRIG_MSG may be issued multiple times for multiple sets of frames.

5.22.2 Cascaded device mode

This section briefly describes in which order to issue the various API SBs defined in this document for master and slave devices in a cascaded configuration.

When using cascaded devices, the reference clock is provided by master to slave. So unless master is powered-up and clock is available from master to slave, the slave device cannot be powered up.

SI. No	Master device sequence	Slave device sequence
1	Power up master device	
2	Wait for AWR_AE_DEV_MSSPOWERUP- DONE_SB	
3	AWR_DEV_RFPOWERUP_SB	
4	Wait for AWR_AE_DEV_RFPOWERUP- DONE_SB	
5	AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0001. This will enable the reference clock for slave device	
6		Power on slave device
7		Wait for AWR_AE_DEV_MSSPOWERUP- DONE_SB
8		AWR_DEV_RFPOWERUP_SB
9		Wait for AWR_AE_DEV_RFPOWERUP- DONE_SB
10		AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0002.
11	AWR_ADCOUT_CONF_SET_SB	AWR_ADCOUT_CONF_SET_SB
12	AWR_RF_LDO_BYPASS_SBwithRFLDOBYPASS_EN= 1 ifRFsupplyis 1.0V	AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V

Table 5.153:	Sequence of APIs to be issued to master and slave devices in cascaded	
	mode configuration for FMCW mode measurements	

	Table 5.153 – continued from	li previous page
13	AWR_LOWPOWERMODE_CONF_SET_ SB	AWR_LOWPOWERMODE_CONF_SET_ SB
14	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB
15	AWR_RF_INIT_SB	AWR_RF_INIT_SB
16	Wait for AWR_AE_RF_INITALIBSTATUS_ SB	Wait for AWR_AE_RF_INITALIBSTATUS_ SB
17	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB
18	AWR_DEV_RX_DATA_PATH_CONF_SET_ SB	AWR_DEV_RX_DATA_PATH_CONF_SET_ SB
19	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB
20	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB
21	AWR_DEV_RX_DATA_PATH_CLK_SET_SB	AWR_DEV_RX_DATA_PATH_CLK_SET_SB
22	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB
23	AWR_PROFILE_CONF_SET_SB	AWR_PROFILE_CONF_SET_SB
24	AWR_CHIRP_CONF_SET_SB	AWR_CHIRP_CONF_SET_SB
25	AWR_FRAME_CONF_SET_SB with TRIG- GER_SELECT = 0x0001	AWR_FRAME_CONF_SET_SB with TRIG- GER_SELECT = 0x0002
26	AWR_DEV_FRAME_CONFIG_APPLY_ MSG	AWR_DEV_FRAME_CONFIG_APPLY_ MSG
27		AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0001
28		Wait for AWR_AE_RF_FRAME_TRIGGER_ RDY_SB
29	AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0001	
30	Wait for AWR_AE_RF_FRAME_TRIGGER_ RDY_SB	

5.22.3 Continuous streaming mode (in single device case)

This section briefly describes in which order to issue the various API SBs defined in this document to enable continuous streaming mode on a single device

- 1. Power up the device
- 2. Wait for AWR_AE_MSSPOWERUPDONE_SB

- 3. AWR_DEV_RFPOWERUP_SB
- 4. Wait for AWR_AE_RFPOWERUPDONE_SB
- 5. AWR_RF_MISC_CONF_SET_MSG
- 6. AWR_RF_STATIC_CONF_SET_MSG
 - a. AWR_CHAN_CONF_SET_SB
 - b. AWR_ADCOUT_CONF_SET_SB
 - c. AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN set to 1 if RF supply is 1.0V
 - d. AWR_LOWPOWERMODE_CONF_SET_SB
 - e. AWR_DYNAMICPOWERSAVE_CONF_SET_SB
- 7. AWR_RF_STATIC_CONF_SET_MSG
- 8. Data path configurations
 - a. AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
 - b. AWR_DEV_RX_DATA_PATH_CONF_SET_SB
 - c. AWR_DEV_RX_DATA_PATH_LANE_EN_SB
 - d. AWR_DEV_RX_DATA_PATH_CLK_SET_SB
 - e. AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
 - f. AWR_DEV_LVDS_CFG_SET_SB / AWR_DEV_CSI2_CFG_SET_SB
- 9. AWR_RF_INIT_MSG
 - a. AWR_RFINIT_SB: This triggers very basic calibrations and RF initializations
 - b. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
- 10. AWR_CONT_STREAMING_MODE_CONF_SET_SB
- 11. AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB
- 12. AWR_CONT_STREAMING_MODE_EN_SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming
- 13. AWR_CONT_STREAMING_MODE_EN_SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming
- 14. Repeat steps 9-11 for a different configuration

5.22.4 Continuous streaming (CW) mode (in cascaded device case)

Table 5.154:	Sequence of APIs to be issued to master and slave devices in cascaded
	mode for CW mode measurements

SI. No	Master device sequence	Slave device sequence
1	Power up master device	
2	Wait for AWR_AE_DEV_MSSPOWERUP- DONE_SB	
3	AWR_DEV_RFPOWERUP_SB	
4	Wait for AWR_AE_DEV_RFPOWERUP- DONE_SB	
5	AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0001. This will enable the reference clock for slave device	
6		Power on slave device
7		Wait for AWR_AE_DEV_MSSPOWERUP- DONE_SB
8		AWR_DEV_RFPOWERUP_SB
9		Wait for AWR_AE_DEV_RFPOWERUP- DONE_SB
10		AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V
11		AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0002.
12	AWR_ADCOUT_CONF_SET_SB	AWR_ADCOUT_CONF_SET_SB
13	AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V	
14	AWR_LOWPOWERMODE_CONF_SET_ SB	AWR_LOWPOWERMODE_CONF_SET_ SB
15	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB
16	AWR_RF_INIT_SB	AWR_RF_INIT_SB
17	Wait for AWR_AE_RF_INITALIBSTATUS_ SB	Wait for AWR_AE_RF_INITALIBSTATUS_ SB
18	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB
19	AWR_DEV_RX_DATA_PATH_CONF_SET_ SB	AWR_DEV_RX_DATA_PATH_CONF_SET_ SB
20	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB

	Table 5.154 – continueu noi	ii pietiede page
21	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB
22	AWR_DEV_RX_DATA_PATH_CLK_SET_SB	AWR_DEV_RX_DATA_PATH_CLK_SET_SB
23	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB
24	AWR_CONT_STREAMING_MODE_ CONF_SET_SB	
25	AWR_CONT_STREAMING_MODE_EN_ SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming	
26		AWR_CONT_STREAMING_MODE_ CONF_SET_SB with the same RF fre- quency configuration as in master device
27		AWR_CONT_STREAMING_MODE_EN_ SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming
28		AWR_CONT_STREAMING_MODE_EN_ SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming
29	AWR_CONT_STREAMING_MODE_EN_ SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming	
30	Repeat steps 24-29 for a different CW mode configuration	

6 API Error Codes

	1	Incorrect API MSGID
	2	Sub block not found in the MSG
	3	Incorrect Sub block ID
Applicable to all API sub	4	Incorrect Sub block length
blocks	5	Incorrect Sub block data
	6	Error in processing the command
	7	Binary file CRC mismatch error
	8	Binary file type mismatch w.r.t. magic number
AWR_	20	Frames are already started when the FRAME_START com- mand was issued
FRAMESTARTSTOP_ CONF_SB	21	Frames are already stopped when the FRAME_STOP com- mand was issued
	22	No valid frame configuration API was issued and frames are started
	23	START_STOP_CMD parameter is out of range
AWR_CHAN_CONF_SET_	24	RX_CHAN_EN parameter is out of range (Max range may vary based on device variant)
SB	25	TX_CHAN_EN parameter is out of range (Max range may vary based on device variant)
	26	CASCADING_CFG parameter is out of range [0, 2]
	282	Device variant does not allow cascading but API is issued to enable cascading mode
	27	NUM_ADC_BITS parameter is out of range [0, 2]
AWR_ADCOUT_CONF_ SET_SB	28	ADC_OUT_FMT parameter is out of range [0, 3]
	127	$\label{eq:scale_reduction_factors} \left \begin{array}{l} {\sf FULL_SCALe_REDUCTION_FACTOR} \text{ is } > 0 \text{ for 16 bit ADC,} \\ {\sf or} > 2 \text{ for 14 bit ADC mode or } > 4 \text{ for 12 bit ADC mode} \end{array} \right.$
AWR_LOWPOWERMODE_	29	LP_ADC_MODE parameter is out of range [0, 1]
CONF_SET_SB	156	Regular ADC mode is used on a 5 MHz part variant device
AWR_DYNAMICPOW- ERSAVE_CONF_SET_ SB	30	BLOCK_CFG parameter is out of range [0, 7]
	31	HSICLKRATECODE[1:0] is 0
AWR_		Continued on next page

Table 6.1: BSS API error codes

HIGHSPEEDINTFCLK_ CONF_SET_SB

	32	RESERVED
	33	HSICLKRATECODE[3:2] is 3 and HSICLKRATECODE[1:0] is 2
	34	HSICLKRATECODE[3:2] is 3 and HSICLKRATECODE[1:0] is 2
	35	$PF_{I}INDX$ is \geq 4
	36	PF_FREQ_START_CONST is not within [76, 81] GHz
	37	$PF_IDLE_TIME_CONST > 5.24 ms$
	38	Maximum DFE spill time > PF_IDLE_TIME_CONST
	39	$PF_ADC_START_TIME_CONST > 4095$
	40	$PF_RAMP_END_TIME > 524287$
	41	PF_RAMP_END_TIME < PF_ADC_START_TIME_CONST + ADC_SAMPLING_TIME (ADC_SAMPLING_TIME is time taken to sample NUM_ADC_ SAMPLES)
	42	PF_TX_OUTPUT_POWER_BACKOFF for TX0 > 30
	43	PF_TX_OUTPUT_POWER_BACKOFF for TX1 > 30
AWR_PROFILE_CONF_	44	PF_TX_OUTPUT_POWER_BACKOFF for TX2 > 30
SET_SB	45	RESERVED
	46	Ramp end frequency is not within [76, 81] GHz
	47	Absolute value of TX_START_TIME is $>$ 38.45 μ s
	48	Number of ADC samples is not within [64, 8192]
	49	Output sampling rate is not within [2, MaxSamplingRate] Msps. See Table 5.20 for the MaxSamplingRate.
	50	HPF1 corner frequency is $>$ 700 kHz
	51	HPF2 corner frequency is $>$ 2.8 MHz
	52	PF_RX_GAIN is not within [24, 52] dB or PF_RX_GAIN is an odd number
	53	RESERVED
	54	RESERVED
	55	RESERVED
	56	RESERVED
	57	RESERVED
	58	RESERVED
AWR_CHIRP_CONF_SET_ SB	59	$CHIRP_START_INDX \ge 512$
	60	$CHIRP_END_INDX \geq 512$
	61	$CHIRP_START_INDX > CHIRP_END_INDX$

	62	$PROFILE_INDX \geq 4$
	63	If the profile corresponding to $PROFILE_INDX$ is not defined
	64	CHIRP_FREQ_START_VAR > 8388607
	65	$CHIRP_FREQ_SLOPE_VAR > 63$
	66	Chirp start frequency is outside [76, 78] GHz if the selected VCO is VCO1 or Chirp start frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [76, 78] GHz if the selected VCO is VCO1 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp bandwidth is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet
	67	CHIRP_IDLE_TIME_VAR > 4095
	68	CHIRP_ADC_START_TIME_VAR > 4095
	69	RAMP_END_TIME < ADC_START_TIME + ADC_SAM- PLING_TIME
	70	$\label{eq:CHIRP_TX_EN} CHIRP_TX_EN > maximum simultaneous TX allowed as per device data sheet$
	71	CHIRP_TX_EN indicates to enable a TX which is not enabled in AWR_CHAN_CONF_SET_SB
	72	$CHIRP_START_INDX \geq 512$
	73	$CHIRP_END_INDX \geq 512$
	74	$CHIRP_START_INDX > CHIRP_END_INDX$
	75	Chirp used in the frame is not configured by AWR_CHIRP_CONF_SET_SB
AWR_FRAME_CONF_SET_ SB	76	One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB
	77	NUM_LOOPS is outside [1, 255]
	78	RESERVED
	79	FRAME_PERIODICITY is outside [100 μ s, 1.342 s]
	80	$FRAME_ON_TIME < FRAME_PERIODICITY$
	81	TRIGGER_SELECT is outside [1, 2]
	82	$FRAME_TRIGGER_DELAY > 100\ \mus$
	83	API is issued when frames are ongoing

AWR.RF.TEST.SOURCE 84 NUM.SUBFRAMES is outside [1, 4] FRAME.CONF.SET.SB 85 FORCE_SINGLE_PROFILE is outside [0, 1] 85 FORCE_SINGLE_PROFILE is outside [0, 1] 86 FORCE_SINGLE_PROFILE 2 4 87 Profile defined by FORCE_SINGLE_PROFILE is not defined 88 SFX_CHIRP.START_INDX > 512 89 SFX_NUM_UNIQUE_CHIRPS.PER.BURST is outside the range [1, 512] 90 Chirp used in the frame is not configured by AWR.CHIRP.CONF.SET.SB 91 One of the profiles used in the frame is not configured by AWR.PROF.CONF.SET.SB 92 SFX.NUM_LOOPS.PER.BURST is outside the range [1, 255] 93 SFX.CHIRP.START_INDX_OFFSET > 512 94 Burst ON time is > BURST_PERIOD 95 SFX.CHIRP.START_INDX_OFFSET > 512 96 SFX.NUM_BURSTS is outside the range [1, 61] 97 SFX.NUM_BURSTS is outside the range [1, 61] 98 SFX.NUM_OOPS is outside the range [1, 64] 99 SFX_PERIOD is outside the range [1, 62] 98 SFX_PERIOD is outside the range [1, 62] 99 SFX_PERIOD is outside the range [1, 62] 9100 Subframe on time > SFX_PERIOD on whe			continued from previous page
85FORCE_SINGLE_PROFILE is outside [0, 1]86FORCE_SINGLE_PROFILE ≥ 4 87Profile defined by FORCE_SINGLE_PROFILE is not defined88SFx_CHIRP_START_INDX ≥ 512 89SFX_NUM_UNQUE_CHIRPS_PER_BURST is outside the range [1, 512]90Chirp used in the frame is not configured by AWR_CHIRP. CONF_SET_SB91One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB92SFx_NUM_LOOPS_PER_BURST is outside the range [1, 255]93SFx_BURST_PERIOD is outside the range [100 μ s, 1.342 s]94Burst ON time is > BURST_PERIOD95SFx_CHIRP_START_INDX ≥ 512 or SFX_CHIRP_START. INDX $\pm SFX_NUM_LOOFSET \geq 512$ 96SFx_NUM_BURST is outside the range [1, 64]99SFx_NUM_BURSTS is outside the range [1, 64]99SFX_NUM_BURSTS is outside the range [1, 64]99SFX_PERIOD is outside the range [1, 64]99SFUPERIOD is outside the range [1, 2]91RESERVED101RESERVED102TRIGGER_SELECT is outside the range [1, 2]103FRAME_TRIGGER_DELAY is > 100 μ sAWR_RF_TEST_SOURCE CONFIG_SET_SB105106RESERVED107VELOCITY_VECX[2] > 5000108SIG_LEV_VECX > 950109RX	FRAME_CONF_SET_	84	NUM_SUBFRAMES is outside [1, 4]
87Profile defined by FORCE_SINGLE_PROFILE is not defined88SFx_CHIRP_START_INDX \geq 51289SFx_NUM_UNIQUE_CHIRPS_PER_BURST is outside the range [1, 512]90Chirp used in the frame is not configured by AWR_CHIRP. CONF_SET_SB91One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB92SFx_NUM_LOOPS_PER_BURST is outside the range [1, 255]93SFx_BURST_PERIOD is outside the range [100 μ s, 1.342 s] Burst ON time is \geq BURST_PERIOD94Burst ON time is \geq STX_CHIRP_START_INDX_OFFSET \geq 51296SFx_CHIRP_START_INDX \geq 512 or SFx_CHIRP_START_ INDX + SFX_NUM_UNIQUE_CHIRPS_PER_BURST - 1 is \geq 51297SFX_NUM_BURSTS is outside the range [1, 64]99SFX_PERIOD is outside the range [1, 64]99SFX_DER_DELAY is > 100 μ s101RESERVED102TRIGGER_DELAY is > 100 μ s103FRAME_TRIGGER_DELAY is > 100 μ s104API is issued when frames are on goingAWR_RF_TEST_SOURCE_ CONFIG_SET_SB106106RESERVED107VELOCITY_VECx[x] > 5000108SIG_LEV_VECx > 950109RX_ANT_POS_XZ[Bytex] > 120		85	FORCE_SINGLE_PROFILE is outside [0, 1]
88SFX_CHIRP_START_INDX \geq 51289SFX_NUM_UNIQUE_CHIRPS_PER_BURST is outside the range [1, 512]90Chirp used in the frame is not configured by AWR_CHIRP_ CONF_SET_SB91One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB92SFX_NUM_LOOPS_PER_BURST is outside the range [1, 255]93SFX_BURST_PERIOD is outside the range [100 μ s, 1.342 s] Burst ON time is > BURST_PERIOD95SFX_CHIRP_START_INDX \geq 512 or SFX_CHIRP_START INDX > 512 or SFX_CHIRP_START_INDX \geq 512 or SFX_CHIRP_START_INDX \geq 51296SFX_CHIRP_START_INDX \geq 512 or SFX_CHIRP_START_ INDX + SFX_NUM_UNIQUE_CHIRPS_PER_BURST - 1 is \geq 51297SFX_NUM_BURSTS is outside the range [1, 64]99SFX_PERIOD is outside the range [1, 64]99SFX_PERIOD is outside the range [1, 64]99SFX_PERIOD is outside the range [1, 2]101RESERVED102TRIGGER_SELECT is outside the range [1, 2]103FRAME_TRIGGER_DELAY is > 100 μ s104API is issued when frames are on goingAWR_RF_TEST_SOURCE CONFIG_SET_SB106106RESERVED107VELOCITY_VECX[X] > 5000 or VELOCITY_VECX[y] > 5000 or VELOCITY_VECX[X] > 5000108SIG_LEV_VECX > 950109RX_ANT_POS_XZ[Bytex] > 120		86	
89SFX.NUM_UNIQUE_CHIRPS_PER_BURST is outside the range [1, 512]90Chirp used in the frame is not configured by AWR_CHIRP_ CONF_SET_SB91One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB92SFX.NUM_LOOPS_PER_BURST is outside the range [1, 255]93SFX_BURST_PERIOD is outside the range [100 μ s, 1.342 s] Burst ON time is > BURST_PERIOD95SFX_CHIRP_START_INDX_OFFSET \geq 51296SFX_CHIRP_START_INDX_OFFSET \geq 51297SFX_NUM_BURSTS is outside the range [1, 512]98SFX_NUM_OUTER_LOOPS is outside the range [1, 64]99SFX_PERIOD is outside the range [1, 64]99SFX_PERIOD is outside the range [1, 64]91Subframe on time > SFX_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 μ s101RESERVED102TRIGGER_DELAY is > 100 μ sAWR.RF_TEST_SOURCE. CONFIG.SET_SB105POSITION_VECx[y] < 0		87	Profile defined by FORCE_SINGLE_PROFILE is not defined
Image [1, 512]Image [1, 512]90Chirp used in the frame is not configured by AWR.CHIRP. CONF.SET.SB91One of the profiles used in the frame is not configured by AWR.PROF.CONF.SET.SB92SFx.NUM.LOOPS.PER.BURST is outside the range [1, 255]93SFx.BURST.PERIOD is outside the range [100 μ s, 1.342 s]94Burst ON time is > BURST.PERIOD95SFx.CHIRP.START.INDX.OFFSET \geq 51296SFx.CHIRP.START.INDX \geq 512 or SFx.CHIRP.START. INDX + SFx.NUM.UNIQUE.CHIRPS.PER.BURST - 1 is \geq 51297SFx.NUM.BURSTS is outside the range [1, 64]98SFx.NUM.OUTER.LOOPS is outside the range [1, 64]99SFx.PERIOD is outside the range [1, 64]99SFx.PERIOD is outside the range [1, 64]91SUbframe on time $>$ SFx.PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 μ s101RESERVED102TRIGGER.SELECT is outside the range [1, 2]103FRAME.TRIGGER.DELAY is > 100 μ sAWR.RF.TEST.SOURCE. CONFIG.SET.SB105006RESERVED107VELOCITY.VECx[y] > 5000 or VELOCITY.VECx[y] > 5000108SIG.LEV.VECx > 950109RX.ANT.POS.XZ[Bytex] > 120		88	$SFx_CHIRP_START_INDX \ge 512$
Image: Configure in the intermediation of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB91One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB92SFx.NUM_LOOPS_PER_BURST is outside the range [1, 255]93SFx_BURST_PERIOD is outside the range [100 μ s, 1.342 s] Burst ON time is > BURST_PERIOD95SFx_CHIRP_START_INDX_OFFSET > 51296SFx_CHIRP_START_INDX > 512 or SFx_CHIRP_START. INDX + SFx_NUM_UNIQUE_CHIRPS_PER_BURST - 1 is > 51297SFx_NUM_BURSTS is outside the range [1, 512]98SFx_NUM_OUTER_LOOPS is outside the range [1, 64]99SFx_PERIOD is outside the range [100 μ s, 1.342 s]100Subframe on time > SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 μ s101RESERVED102TRIGGER_SELECT is outside the range [1, 2]103FRAME_TRIGGER_DELAY is > 100 μ sAWR_RF_TEST_SOURCE CONFIG_SET_SB106106RESERVED107VELOCITY_VECx[x] > 5000 or VELOCITY_VECx[y] > 5000 or VELOCITY_VECx[z] > 5000108SIG_LEV_VECx > 950109RX_ANT_POS_XZ[Bytex] > 120		89	
AWR_PROF.CONF.SET.SB92SFx_NUM_LOOPS_PER_BURST is outside the range [1, 255]93SFx_BURST_PERIOD is outside the range [100 μ s, 1.342 s] 9494Burst ON time is > BURST_PERIOD95SFx_CHIRP_START_INDX_OFFSET \geq 51296SFx_CHIRP_START_INDX \geq 512 or SFx_CHIRP_START. INDX + SFx_NUM_UNIQUE_CHIRPS_PER_BURST - 1 is \geq 51297SFx_CNUM_BURSTS is outside the range [1, 512]98SFx_NUM_OUTER_LOOPS is outside the range [1, 64]99SFx_PERIOD is outside the range [100 μ s, 1.342 s]100Subframe on time > SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 μ s101RESERVED102TRIGGER_SELECT is outside the range [1, 2]103FRAME_TRIGGER_DELAY is > 100 μ sAWR_RF_TEST_SOURCE CONFIG_SET_SB106106RESERVED107VELOCITY_VECx[x] > 5000 or VELOCITY_VECx[y] > 5000 or VELOCITY_VECx[z] > 5000108SIG_LEV_VECx > 950109RX_ANT_POS_XZ[Bytex] > 120		90	
AWR_RF_TEST_SOURCE CONFIG_SET_SB255]4255]93SFx_BURST_PERIOD is outside the range [100 μ s, 1.342 s]94Burst ON time is > BURST_PERIOD95SFx_CHIRP_START_INDX_OFFSET > 51296SFx_CHIRP_START_INDX > 512 or SFx_CHIRP_START_ INDX + SFx_NUM_UNIQUE_CHIRPS_PER_BURST - 1 is > 51297SFx_NUM_BURSTS is outside the range [1, 512]98SFx_NUM_OUTER_LOOPS is outside the range [1, 64]99SFx_PERIOD is outside the range [100 μ s, 1.342 s]100Subframe on time > SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 μ s101RESERVED102TRIGGER_SELECT is outside the range [1, 2]103FRAME_TRIGGER_DELAY is > 100 μ sAWR_RF_TEST_SOURCE CONFIG_SET_SB105106RESERVED107VELOCITY_VECx[y] > 5000 or VELOCITY_VECx[y] > 5000 or VELOCITY_VECx[z] > 5000108SIG_LEV_VECx > 950109RX_ANT_POS_XZ[Bytex] > 120		91	
94Burst ON time is > BURST.PERIOD95SFx.CHIRP.START.INDX.OFFSET \geq 51296SFx.CHIRP.START.INDX \geq 512 or SFx.CHIRP.START.INDX \geq 5512 or SFx.NUM.OUTER.LOOPS is outside the range [1, 64]99SFx.NUM.OUTER.LOOPS is outside the range [1, 64]99SFx.PERIOD is outside the range [1, 00 μ s.International deliging is called, SubFrame Idle time is < 150 μ s101RESERVED102TRIGGER.SELECT is outside the range [1, 2]103FRAME.TRIGGER.DELAY is > 100 μ sAWR.RF.TEST.SOURCE. CONFIG.SET.SB105104API is issued when frames are on goingAWR.RF.TEST.SOURCE. CONFIG.SET.SB106108RESERVED109RXLOCITY.VECX[z] > 5000108SIG.LEV.VECx > 950109RX.ANT.POS.XZ[Bytex] > 120		92	
95SFx.CHIRP.START.INDX.OFFSET \geq 51296SFx.CHIRP.START.INDX \geq 512 or SFx.CHIRP.START.INDX + SFx.NUM.UNIQUE.CHIRPS.PER.BURST - 1 is \geq 51297SFx.NUM.BURSTS is outside the range [1, 512]98SFx.NUM.OUTER.LOOPS is outside the range [1, 64]99SFx.PERIOD is outside the range [100 μ s, 1.342 s]100Subframe on time > SFx.PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 μ s101RESERVED102TRIGGER.SELECT is outside the range [1, 2]103FRAME.TRIGGER.DELAY is > 100 μ sAWR.RF.TEST.SOURCE.1050POSITION.VECx[y] < 0		93	SFx_BURST_PERIOD is outside the range [100 μ s, 1.342 s]
96SFx.CHIRP_START_INDX \geq 512 or SFx.CHIRP_START_INDX $+$ SFx.NUM_UNIQUE_CHIRPS_PER_BURST -1 is \geq 51297SFx_NUM_BURSTS is outside the range [1, 512]98SFx_NUM_OUTER_LOOPS is outside the range [1, 64]99SFx_PERIOD is outside the range [100 μ s, 1.342 s]100Subframe on time $>$ SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is $<$ 150 μ s101RESERVED102TRIGGER_SELECT is outside the range [1, 2]103FRAME_TRIGGER_DELAY is $>$ 100 μ sAWR_RF_TEST_SOURCE CONFIG_SET_SB105106RESERVED107VELOCITY_VECx[x] $>$ 5000 or VELOCITY_VECx[y] $>$ 5000 or VELOCITY_VECx[z] $>$ 5000108SIG_LEV_VECx $>$ 950109RX_ANT_POS_XZ[Bytex] $>$ 120		94	Burst ON time is $>$ BURST_PERIOD
INDX + SFX.NUM_UNIQUE_CHIRPS_PER_BURST - 1 is > 51297SFX_NUM_BURSTS is outside the range [1, 512]98SFX_NUM_OUTER_LOOPS is outside the range [1, 64]99SFX_PERIOD is outside the range [100 µs, 1.342 s]100Subframe on time > SFX_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 µs		95	$SFx_CHIRP_START_INDX_OFFSET \geq 512$
$ \begin{array}{ c c c c } & 98 & SFx.NUM.OUTER_LOOPS is outside the range [1, 64] \\ & 99 & SFx_PERIOD is outside the range [100 μs, 1.342 $s] \\ & 100 & Subframe on time > SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 μs \\ & 101 & RESERVED \\ & 102 & TRIGGER_SELECT is outside the range [1, 2] \\ & 103 & FRAME_TRIGGER_DELAY is > 100 μs \\ & 104 & API is issued when frames are on going \\ & AWR_RF_TEST_SOURCE \\ & CONFIG_SET_SB & 105 & POSITION_VECx[y] < 0 \\ & 106 & RESERVED \\ & 107 & VELOCITY_VECx[x] > 5000 or VELOCITY_VECx[y] > 5000 \\ & or \\ & VELOCITY_VECx[z] > 5000 \\ & 108 & SIG_LEV_VECx > 950 \\ & 109 & RX_ANT_POS_XZ[Bytex] > 120 \\ \end{array} $		96	$INDX + SFx_NUM_UNIQUE_CHIRPS_PER_BURST - 1 \text{ is} \geq$
99SFx_PERIOD is outside the range $[100 \ \mu s, 1.342 \ s]$ 100Subframe on time > SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 \music 101101RESERVED102TRIGGER_SELECT is outside the range $[1, 2]$ 103FRAME_TRIGGER_DELAY is > 100 \music 104AWR_RF_TEST_SOURCE CONFIG_SET_SB105106RESERVED107VELOCITY_VECx[y] < 0		97	SFx_NUM_BURSTS is outside the range [1, 512]
100Subframe on time > SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is < 150 µs		98	SFx_NUM_OUTER_LOOPS is outside the range [1, 64]
		99	SFx_PERIOD is outside the range [100 μ s, 1.342 s]
$ \begin{array}{ c c c c } \hline 102 & TRIGGER_SELECT is outside the range [1, 2] \\ \hline 103 & FRAME_TRIGGER_DELAY is > 100 \mu s \\ \hline 104 & API is issued when frames are on going \\ \hline AWR_RF_TEST_SOURCE_CONFIG_SET_SB & 105 & POSITION_VECx[y] < 0 \\ \hline 106 & RESERVED \\ \hline 107 & VELOCITY_VECx[x] > 5000 or VELOCITY_VECx[y] > 5000 \\ or \\ VELOCITY_VECx[z] > 5000 \\ 108 & SIG_LEV_VECx > 950 \\ \hline 109 & RX_ANT_POS_XZ[Bytex] > 120 \\ \hline \end{array} $		100	
103FRAME_TRIGGER_DELAY is > 100 µs104API is issued when frames are on goingAWR_RF_TEST_SOURCE_ CONFIG_SET_SB105POSITION_VECx[y] < 0		101	RESERVED
104 API is issued when frames are on going AWR_RF_TEST_SOURCE_ CONFIG_SET_SB 105 POSITION_VECx[y] < 0		102	TRIGGER_SELECT is outside the range [1, 2]
AWR_RF_TEST_SOURCE_ CONFIG_SET_SB 105 POSITION_VECx[y] < 0 106 RESERVED 107 VELOCITY_VECx[x] > 5000 or VELOCITY_VECx[y] > 5000 or VELOCITY_VECx[z] > 5000 108 SIG_LEV_VECx > 950 109 RX_ANT_POS_XZ[Bytex] > 120		103	$FRAME_TRIGGER_DELAY \text{ is } > 100 \ \mu s$
CONFIG_SET_SB Image: Marcine and the second se		104	API is issued when frames are on going
107 VELOCITY_VECx[x] > 5000 or VELOCITY_VECx[y] > 5000 or VELOCITY_VECx[y] > 5000 or VELOCITY_VECx[z] > 5000 108 SIG_LEV_VECx > 950 109 RX_ANT_POS_XZ[Bytex] > 120		105	POSITION₋VECx[y] < 0
or VELOCITY_VECx[z] > 5000 108 SIG_LEV_VECx > 950 109 RX_ANT_POS_XZ[Bytex] > 120		106	RESERVED
109 RX_ANT_POS_XZ[Bytex] > 120		107	or
		108	SIG_LEV_VECx > 950
110 RESERVED		109	RX_ANT_POS_XZ[Bytex] > 120
		110	RESERVED

Revision 0.98 - October 19, 2018

		continued from previous page	
AWR_PROG_FILT_CONF_ SET_SB	111	PROG_FILT_COEFF_START_INDEX is an odd number	
	112	$PROFILE_INDX \geq 4$	
	126	DFE mode is pseudo real	
AWR_PROG_FILT_COEFF_ RAM_SET_SB	113	API is issued for a non xWR1642/xWR1843 device	
	126	DFE mode is pseudo real	
AWR_RF_RADAR_MISC_ CTL_SB	114	API is issued for a non xWR1243 device	
AWR_	115	$CHIRP_START_INDX \ge 512$	
PERCHIRPPHASESHIFT_	116	$CHIRP_END_INDX \ge 512$	
CONF_SB	117	$CHIRP_START_INDX > CHIRP_END_INDX$	
AWR_RUN_TIME_CALI- BRATION_CONF_AND_ TRIGGER_SB	118	Boot time calibrations are not done so cannot run runtime calibrations	
AWR_CAL_MON_FRE- QUENCY_LIMITS_SB	119	FREQ_LIMIT_HIGH < 76 GHz or FREQ_LIMIT_HIGH > 81 GHz or FREQ_LIMIT_LOW > FREQ_LIMIT_HIGH	
AWR_CALIB_MON_TIME_ UNIT_CONF_SB	120	CALIB_MON_TIME_UNIT ≤ 0	
	121	CALIBRATION_PERIODICITY = 0	
AWR_RUN_TIME_	122	API is issued when continuous streaming mode is on	
CALIBRATION_CONF_ AND_TRIGGER_SB	123	RX gain run time calibration was requested but boot time calibration was not performed	
	124	LO distribution run time calibration was requested but boot time calibration was not performed	
	125	TX power run time calibration was requested but boot time calibration was not performed	
	132	LOOPBACK_SEL is > 3	
AWR_LOOPBACK_ BURST_CONF_SET_SB	133	$BURST_INDX \ge 16$	
	134	Burst is not valid but loopback is enabled for this burst	
AWR_DYN_CHIRP_CONF_ SET_SB	135	$\label{eq:chirp_segment_select} \begin{array}{l} CHIRP_SEGMENT_SELECT > 31 \text{ if } CHIRP_ROW_SELECT \\ \texttt{= 0 or} \\ CHIRP_SEGMENT_SELECT > 11 \text{ if } CHIRP_ROW_SELECT \\ \texttt{!= 0} \end{array}$	
	159	$CHIRP_ROW_SELECT > 3$	
AWR_DYN_PER_CHIRP_ PHASESHIFTER_CONF_ SB	136	CHIRP_SEGMENT_SELECT > 31	

Table 6.1 – continued from previous page

		continueu nom previous page
AWR_CAL_DATA_RE- STORE_SB	137	$CHUNK_ID \geq NUM_CHUNKS$
	138	CAL_DATA is invalid
AWR_INTERCHIRP_ BLOCKCONTROLS_SB	139	RX02_RF_TURN_OFF_TIME is not within the range [-1024, 1023]
	140	RX13_RF_TURN_OFF_TIME is not within the range [-1024, 1023]
	141	RX02_BB_TURN_OFF_TIME is not within the range [-1024, 1023]
	142	RX13_BB_TURN_OFF_TIME is not within the range [-1024, 1023]
	143	RX02_RF_PREENABLE_TIME is not within the range [-1024, 1023]
	144	RX13_RF_PREENABLE_TIME is not within the range [-1024, 1023]
	145	RX02_BB_PREENABLE_TIME is not within the range [-1024, 1023]
	146	RX13_BB_PREENABLE_TIME is not within the range [-1024, 1023]
	147	RX02_RF_TURN_ON_TIME is not within the range [-1024, 1023]
	148	RX13_RF_TURN_ON_TIME is not within the range [-1024, 1023]
	149	RX02_BB_TURN_ON_TIME is not within the range [-1024, 1023]
	150	RX13_BB_TURN_ON_TIME is not within the range [-1024, 1023]
	151	RX_LO_TURN_OFF_TIME is not within the range [-1024, 1023]
	152	TX_LO_TURN_OFF_TIME is not within the range [-1024, 1023]
	153	RX_LO_TURN_ON_TIME is not within the range [-1024, 1023]
	154	TX_LO_TURN_ON_TIME is not within the range [-1024, 1023]
AWR_SUBFRAME_ START_CONF_SB	155	Sub-frame start command is issued but the frame is not con- figured for sub frame trigger mode
	250	Device type is not ASILB
	251	Fault injection API or Digital latent fault API is issued when frames are ongoing
Common to all monitoring	252	Invalid reporting mode
configuration APIs		Continued on next page

configuration APIs

		continued from previous page
	253	Configured profile ID is not within [0, 3]
	254	Monitoring profile ID is not configured yet
	260	Invalid RF bit mask
	281	Analog monitoring is not supported
	290	Monitoring chirp error
AWR_MONITOR_RF_DIG_ LATENTFAULT_CONF_SB	251	API is issued when frames are on-going
AWR_MONITORING_ EXTERNAL_ANALOG_ SIGNALS_CONF_SB	255	Settling time is configured is more than 12 μ s
AWR_MONITOR_RX_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	256	None of the RXs are enabled
AWR_MONITOR_TX0_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	257	TX0 is not enabled
AWR_MONITOR_TX1_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	258	TX1 is not enabled
AWR_MONITOR_TX2_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	259	TX2 is not enabled
-	261	RESERVED
-	262	RESERVED
AWR_MONITOR_TXn_ BALLBREAK_CONF_SB	263	Monitored TX channel is not enabled
AWR_MONITOR_RX_ GAIN_PHASE_CONF_SB	264	Monitored RX channel is not enabled
AWR_MONITOR_RX_ NOISE_FIGURE_CONF_ SB		
	265	TX selected for RX gain phase monitor is TX2 (Only TX0 or TX1 is allowed)
GAIN_PHASE_CONF_SB	291	PD power level is less than -40dBm (Used for RX Gain Mon- itor)
	295	PGA Gain used for monitoring is incorrect
	266	SAT_MON_SEL is not in [0, 3]
	267	SAT_MON_PRIMARY_TIME_SLICE_DURATION is less than 0.64 μ s or greater than ADC sampling time
DETECTOR_CONF_SB	268	SAT_MON_NUM_SLICES is 0 or greater than 127
	1	

	283	RX saturation monitor is not supported
	269	SIG_IMG_MON_NUM_SLICES is 0 or greater than 127
AWR_MONITOR_SIG_IMG_ MONITOR_CONF_SB	270	NUM_SAMPLES_PER_PRIMARY_TIME_SLICE is odd, or less than 4 in Complex1x mode or less than 8 in non- Complex1x modes or greater than NUM_ADC_SAMPLES
	280	Signal and image band monitor is not supported
AWR_ANALOG_FAULT_ INJECTION_CONF_SB	279	LDO fault inject is requested but LDOs are bypassed
AWR_MONITOR_TXn_ POWER_CONF_SB	294	PD Reading incorrect (RF OFF reading higher than RF ON reading)
AWR_MONITOR_TXn_ BALLLBREAK_CONF_SB		
AWR_MONITOR_RX_ INTERNAL_ANALOG_ SIGNALS_CONF_SB		
AWR_MONITOR_RX_ GAIN_PHASE_CONF_SB	292	ADC power level higher than +7 dBm or lower than -9.5 dBm
AWR_MONITOR_TX_ GAIN_PHASE_CONF_SB		
AWR_MONITOR_TXn_ BPM_CONF_SB		
AWR_MONITOR_RX_ NOISE_FIGURE_CONF_ SB	293	Low RX noise figure (Noise Figure is less than 0 dB)

Table 6.2: MSS API error codes (Applicable only in xWR1243)

	1	Incorrect API MSGID
	2	Sub block not found in the MSG
	3	Incorrect Sub block ID
Applicable to all API sub	4	Incorrect Sub block length
blocks	5	Incorrect Sub block data
	6	Error in processing the command
	7	Binary file CRC mismatch error
	8	Binary file type mismatch w.r.t. magic number
AWR_DEV_RX_DATA_ FORMAT_CONF_SET_SB	1001	RX_CHAN_EN > 0xF
	1002	$NUM_ADC_BITS > 2$
	1003	$ADC_OUT_FMT > 1$

		continued nom providuo page
	1004	$IQ_SWAP_SEL > 1$
	1005	$CHAN_INTERLEAVE > 1$
AWR_DEV_RX_DATA_ PATH_CONF_SET_SB	1006	DATA_INTF_SEL > 1
	1007	DATA_TRANS_FMT_PKT0 [5:0] not a valid value. Valid set $\{0x1, 0x6, 0x9, 0x36\}$
	1008	DATA_TRANS_FMT_PKT1 [5:0] not a valid value. Valid set $\{0x0,0xD,0xB\}$
	1050	CQ_CONFIG is out of range
AWR_DEV_RX_DATA_ PATH_LANEEN_SET_SB	1009	LANE_EN > 0xF
	1010	Reserved
AWR_DEV_RX_DATA_ PATH_CLK_SET_SB	1011	LANE_CLK_CFG > 1
	1012	LANE_CLK_CFG != 1 for CSI2
	1013	DATA_RATE - Invalid combination of data rate and DDR or SDR operation
AWR_DEV_LVDS_CFG_ SET_SB	1014	LANE_FMT_MAP > 1
	1015	$LANE_PARAM_CFG > 7$
AWR_DEV_RX_CON- TSTREAMING_MODE_ CONF_SET_SB	1016	CONT_STREAMING_MODE > 1
	1017	CONT_STREAMING_MODE already in requested mode
AWR_DEV_CSI2_CFG_ SET_SB	1018	LANE_POS_POL_SEL [DATA_LANE0_POS] >5
	1019	LANE_POS_POL_SEL [DATA_LANE1_POS] >5
	1020	LANE_POS_POL_SEL [DATA_LANE2_POS] >5
	1021	LANE_POS_POL_SEL [DATA_LANE3_POS] >5
	1022	LANE_POS_POL_SEL [CLOCK_POS] is outside the range [2,4]
AWR_DEV_FRAME_CON- FIG_APPLY_SB	1023	HALF_WORDS_PER_CHIRP is outside the range [64, 8192]
AWR_DEV_ADV_FRAME_ CONFIG_APPLY_SB	1024	NUM_SUBFRAMES is outside the range [1,4]
	1025	SF1_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF]
	1025 1026	SF1_TOT_NUM_CHIRPS is outside the range [1, 0xFFF] SF1_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192]

	1028	SF2_TOT_NUM_CHIRPS is outside the range [1, 0xFFF], if NUM_SUBFRAMES \geq 2
	1029	SF2_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES ≥ 2
	1030	SF2_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_SUBFRAMES \geq 2
	1031	SF3_TOT_NUM_CHIRPS is outside the range [1, 0xFFF], if NUM_SUBFRAMES $\geq\!\!3$
	1032	SF3_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES \geq 3
	1033	SF3_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_SUBFRAMES $\geq \! 3$
	1034	SF4_TOT_NUM_CHIRPS is outside the range [1, 0xFFF], if NUM_SUBFRAMES == 4
	1035	SF4_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES == 4
	1036	SF4_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_ SUBFRAMES == 4
AWR_DEV_MCUCLOCK_ CONF_SET_SB	1040	MCUCLOCK_CTRL is out of range
	1041	MCUCLOCK_SRC is out of range
AWR_DEV_PMICCLOCK_ CONF_SET_SB	1042	PMICCLOCK_CTRL is out of range
	1043	PMICCLOCK_SRC is out of range
	1044	MODE_SELECT is out of range
	1045	FREQ_SLOPE is out of range
	1046	CLK_DITHER_EN is out of range
AWR_DEV_TESTPAT- TERN_GEN_SET_SB	1047	TESTPATTERN_GEN_CTRL is out of range
	1048	DATA_INTF_SEL (Data interface selected in AWR_DEV_RX_ DATA_PATH_CONF_SET_SB) is SPI

6.1 Error codes for boot on SPI

Error description	Error code	Error code bit position
CERT_AUTH_FAILURE	0x0000001	BIT0
CERT_PARSER_FAILURE	0x0000002	BIT1
RPRC_IMG1_AUTH_FAILURE	0x00000004	BIT2
RPRC_IMG2_AUTH_FAILURE	0x0000008	BIT3
RPRC_IMG3_AUTH_FAILURE	0x00000010	BIT4
RPRC_HDR_NOT_FOUND	0x00000020	BIT5
METAHEADER_NOT_FOUND	0x00000040	BIT6
SW_ANTIROLLBACK_CHK_FAILURE	0x0000080	BIT7
EFUSE_INTEGRITY_FAILURE	0x00000100	BIT8
CERT_FIELD_VALIDITY_FAILURE	0x00000200	BIT9
CERT_FIELD_INVALID_AUTH_KEY_INDEX	0x00000400	BIT10
CERT_FIELD_INVALID_HASH_TYPE	0x0000800	BIT11
CERT_FIELD_INVALID_SUBSYSTEM	0x00001000	BIT12
CERT_FIELD_INVALID_DECRYPT_KEY_INDEX	0x00002000	BIT13
CERT_FIELD_CEK_EFUSE_MISMATCH	0x00004000	BIT14
CERT_FIELD_CEK1_EFUSE_MISMATCH	0x00008000	BIT15
CERT_FIELD_CEK2_EFUSE_MISMATCH	0x00010000	BIT16
CERT_FIELD_INVALID_SUBSYSTEM_BANK_ALLO-CATION	0x00020000	BIT17
CERT_FIELD_INVALID_TOTAL_BANKS_ALLOCATION	0x00040000	BIT18
RPRC_PARSER_FILE_LENGTH_MISMATCH	0x00080000	BIT19
RPRC_PARSER_MSS_FILE_OFFSET_MISMATCH	0x00100000	BIT20
RPRC_PARSER_BSS_FILE_OFFSET_MISMATCH	0x00200000	BIT21
RPRC_PARSER_DSS_FILE_OFFSET_MISMATCH	0x00400000	BIT22
CERT_FIELD_INVALID_DECRYPT_KEY	0x00800000	BIT23
CERT_FIELD_INVALID_AUTH_KEY	0x01000000	BIT24
HS_DEVICE_CERT_NOT_PRESENT	0x02000000	BIT25
TEST_PORT_ENABLING_FAILED	0x04000000	BIT26
SHARED_MEM_ALLOC_FAILED	0x08000000	BIT27
MSSIMAGE_NOT_FOUND	0x10000000	BIT28
METAHEADER_NUMFILES_ERROR	0x20000000	BIT29
METAHEADER_CRC_FAILURE	0x4000000	BIT30

Table 6.3:	Bit field	describing	the error	status	during	boot on SPI	
------------	-----------	------------	-----------	-------------------------	--------	-------------	--

7 Radar Monitoring APIs

AWR monitoring can be configured through a set of API sub blocks defined in this section. Note that these APIs cover the RF/Analog related monitoring mechanisms. There are separate monitoring mechanisms for the digital logic (including the processor, memory, etc.) which are internal to the device and not explicitly enabled through these APIs.

The monitoring APIs are structured as follows. There are common configuration APIs that control the overall periodicity of monitoring, as well as, enable/disable control for each monitoring mechanism. Then, for each monitoring mechanism there is an individual API to allow the customer to set an appropriate threshold for declaring failure from that monitoring. Also, for each monitoring mechanism, there is an individual API to report soft (raw) values from that monitoring.

NOTE:	Each monitor can perform monitoring on only one profile at a time.
	Though it is possible that different monitors can monitor different
	profiles simultaneously.

7.1 Common Configurations and Reports

This section covers the APIs corresponding to the common configurations and reports.

NOTE:	Except for RX saturation monitor and RX signal and image band
	monitor, any monitor described in this section is not applicable for
	an IWR device

7.1.1 Sub block 0x01C0 – AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB

This API SB contains the consolidated configuration of all digital monitoring. This is issued by the host to the AWR device.

The enabled monitoring functions are executed when the API is issued. The scheduling of these monitoring should be handled in the external application. Report of these monitoring will be available in the async event AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB.

Table 7.1: AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB conte	ents
---	------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C0

AWR1xxx Radar Interface Control Document Revision 0.98 - October 19, 2018

SBLKLEN	2	Value =	16
DIG_MONITOR-	4	1 – Enal	ble, 0 – Disabled
ING_ENABLES		Bit	Definition
		b0	RESERVED
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	RESERVED
		b5	RESERVED
		b6	CRC test
		b7	RAMPGEN memory ECC
		b8	DFE Parity test
		b9	DFE memory ECC
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test of diagnostic
		b12	RESERVED
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	FFT test
		b25	RTI test
		b26	PCR test
		b31:27	RESERVED
TEST_MODE	1	Value	Definition
		0	Production mode. Latent faults are tested and any failures are reported
		1	Characterization mode. Faults are injected and failures are reported which allows testing of the failure reporting path

Table 7.1 – continued from previous page

Table 7.1 – continued from previ	ous page
----------------------------------	----------

RESERVED	3	0x00000
RESERVED	4	0x0000000

7.1.2 Sub block 0x01C1 - AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB

This API SB contains the consolidated configuration of all periodic digital monitoring within radar sub-system. This is issued by the host to the AWR device.

The enabled monitoring functions are executed periodically and reports are sent based on reporting mode. Report of these monitoring will be available in the async event AWR_MONITOR_ RF_DIG_PERIODIC_REPORT_AE_SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C1
SBLKLEN	2	Value = 16
REPORTING	1	Value Definition
MODE		0 Report is sent every monitoring period
		1 Report is sent only on a failure
		2 RESERVED
RESERVED	3	0x00000
PERIODIC_DIG_	4	1 – Enable, 0 – Disable
MON_EN		Bit Monitoring type
		b0 PERIODIC_CONFG_REGISTER_READ_EN
		b1 ESM_MONITORING_EN
		b2 DFE_STC_EN
		b3 FRAME_TIMING_MONITORING_EN
		b31:4 RESERVED
RESERVED	4	0x0000000

Table 7.2: AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB contents

7.1.3 Sub block 0x01C2 – AWR_MONITOR_ANALOG_ENABLES_CONF_SB

This API SB contains the consolidated configuration of all analog monitoring. This is issued by the host to the AWR device.

The enabled monitoring functions are executed with a periodicity of CAL_MON_TIME_UNITS number of logical frames. The host should ensure that all the enabled monitors can be completed in the available inter-frame times, based on the monitoring durations (to be provided separately).

Table 7.3: AWR_MONITOR_ANALOG_ENABLES_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01C2	
SBLKLEN	2	Value =	12
	2	Value = If any bit enabled are desc Bit b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12	12 t in this field is set to 1, the associate monitors are . The configurations and reports of each monitors bed in respective sub sections. Definition TEMPERATURE_MONITOR RX_GAIN_PHASE_MONITOR RX_NOISE_FIGURE_MONITOR RX_IFSTAGE_MONITOR TX0_POWER_MONITOR TX1_POWER_MONITOR TX2_POWER_MONITOR TX1_BALLBREAK_MONITOR TX2_BALLBREAK_MONITOR TX2_BALLBREAK_MONITOR TX2_BALLBREAK_MONITOR TX2_BALLBREAK_MONITOR TX2_BALLBREAK_MONITOR TX1_BALLBREAK_MONITOR TX1_BPM_MONITOR TX1_BPM_MONITOR
		b13 b14	TX2_BPM_MONITOR SYNTH_FREQ_MONITOR
		b14	
		b16	INTERNAL_TX0_SIGNALS_MONITOR
		b17	INTERNAL_TX1_SIGNALS_MONITOR
		b18	INTERNAL_TX2_SIGNALS_MONITOR
		b19	INTERNAL_RX_SIGNALS_MONITOR
		b20	INTERNAL_PMCLKLO_SIGNALS_MONITOR
		b21	INTERNAL_GPADC_SIGNALS_MONITOR
		b22	PLL_CONTROL_VOLTAGE_MONITOR
		b23	DCC_CLOCK_FREQ_MONITOR
		b24	RX_SATURATION_DETECTOR_MONITOR
		b25	RX_SIG_IMG_BAND_MONITOR
		b26	RX_MIXER_INPUT_POWER_MONITOR
		b31:27	RESERVED

		• • • •	
LDO_SC_MONI- TORING_EN	4	If any bit in this field is set to 1, the association monitors are enabled. There are no report these monitors. If there is any fault, the event AWR_ANALOGFAULT_AE_SB will be Bit Description	ts for
		b0 APLL LDO short circuit monitoring enable 0 – disable, 1 – enable	
		b1 SYNTH VCO LDO short circuit monitoring e 0 – disable, 1 – enable	enable
		b2 PA LDO short circuit monitoring enable 0 – disable, 1 – enable	
		b31:3 RESERVED	

7.2 Temperature Monitor

This section contains API SBs that configure the on chip temperature monitors and report the soft results from the monitor. The corresponding monitors are collectively named TEMPERATURE_MONITOR. These monitors observe the temperature near various RF analog and digital modules using temperature sensors and GPADC and compare them against configurable thresholds. The report is sent as an async event AWR_MONITOR_TEMPERATURE_REPORT_AE_SB.

7.2.1 Sub block 0x01C3 – AWR_MONITOR_TEMPERATURE_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to temperature monitoring. Report of this monitoring will be available in the async event AWR_MONITOR_TEMPERATURE_REPORT_AE_SB.

Field Name	Number of bytes	Descrip	otion
SBLKID	2	Value =	0x01C3
SBLKLEN	2	Value =	24
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check

Table 7.4: AWR_MONITOR_TEMPERATURE_CONF_SB contents

		- continued nom previous page
RESERVED	1	0x00
ANA_TEMP_ THRESH_MIN	2	The temperatures read from near the sensors near the RF analog modules are compared against a minimum thresh- old. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
ANA_TEMP_ THRESH_MAX	2	The temperatures read from near the sensors near the RF analog modules are compared against a maximum thresh- old. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1° C, signed number Valid range: -99°C to 199°C
DIG_TEMP_ THRESH_MIN	2	The temperatures read from near the sensor near the dig- ital module are compared against a minimum threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1° C, signed number Valid range: -99° C to 199° C
DIG_TEMP_ THRESH_MAX	2	The temperatures read from near the sensor near the dig- ital module are compared against a maximum threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
TEMP_DIFF_ THRESH	2	The maximum difference across temperatures read from all the enabled sensors is compared against this thresh- old. The comparison result is part of the monitoring report message (Error bit is set if the measured difference ex- ceeds this field). 1 LSB = 1° C, unsigned number Valid range: 0° C to 100° C
RESERVED	4	0x0000000
RESERVED	4	0x0000000

7.3 RX Gain and Phase Monitor

This section contains API SBs that configure the monitors of receiver gain and phase. The corresponding monitors are collectively named RX_GAIN_PHASE_MONITOR. The report is sent

as an async event AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB.

7.3.1 Sub block 0x01C4 – AWR_MONITOR_RX_GAIN_PHASE_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to RX gain and phase monitoring.

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01C4		
SBLKLEN	2	Value = 72		
PROFILE_INDX	1	This field indicates the profile Index for which this monitor- ing configuration applies.		
RF_FREQ_BIT- MASK	1	This field indicates the RF frequencies inside the profile'sRF band at which to measure the required parameters.When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band.Bit numberRF frequencyBit numberRF frequencyBit numberRF frequency in pro- file's sweep bandwidth		
		b1	Center RF frequency in pro- file's sweep bandwidth	RF2
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth The RF name column is mentioned here to set the con- vention for the purpose of reporting and describing many monitoring packets.		
RESERVED	1	0x00		
TX_SEL	1	0 TX(gain 1 TX	inition) is used for generating loopback n measurement 1 is used for generating loopback n measurement	-

 Table 7.5:
 AWR_MONITOR_RX_GAIN_PHASE_CONF_SB contents

RX_GAIN_ ABS_ERROR_ THRESH	2	The magnitude of difference between the programmed and measured RX gain for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB)	
RX_GAIN_MIS- MATCH_THRESH	2	The magnitude of difference between measured RX gains across the enabled channels at each enabled RF fre- quency is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if the measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB)	
RX_GAIN_FLAT- NESS_ERROR_ THRESH	2	The magnitude of measured RX gain flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB) This flatness check is applicable only if multiple RF Fre- quencies are enabled, i.e., RF_FREQ_BITMASK has bit numbers 0,1,2 set.	

RX_PHASE_MIS- MATCH_THRESH	2	The magnitude of measured RX phase mismatch across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). Before the comparison, the measured phases for each RF and RX are adjusted by subtracting the offset given in the RX_PHASE_MISMATCH_OFFSET_VALUE field. 1 LSB = $360^{\circ}/2^{16}$.			
		Valid range: corresponding to 0° to 20° .			
RX_GAIN_MIS- MATCH_OFF- SET_VALUE	24	The offsets to be subtracted from the measured RX gain for each RX and RF before the relevant threshold compar- isons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3			
		RX0	1:0	9:8	17:16
		BX1	3:2	11:10	19:18
		RX2	5:4	13:12	21:20
		RX3	7:6	15:14	23:22
		1 LSB = Only the	0.1 dB, s entries	signed nur	mber d RF Frequencies and enabled
RX_PHASE_ MISMATCH_ OFFSET_VALUE	24	The offsets to be subtracted from the measured RX phase for each RX and RF before the relevant threshold compar- isons are given here.			
			RF1	RF2	RF3
		RX0	1:0	9:8	17:16
		RX1	3:2		19:18
		RX2	5:4	13:12	21:20
		RX3	7:6	15:14	23:22
		Only the	entries		ed number d RF Frequencies and enabled ed.
RESERVED	4	0x0000000			
RESERVED	4	0x00000	000		

7.4 RX Noise Monitor

This section contains API SBs that configure the monitor of receiver noise, and report the soft results from the monitor. The corresponding monitor is named RX_NOISE_FIGURE_MONITOR. The report is sent as an async event AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB.

7.4.1 Sub block 0x01C5 - AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to RX noise monitoring of a profile.

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x01C5			
SBLKLEN	2	Value = 16			
PROFILE_INDX	1	This field indicates the profile Index for which this monitor- ing configuration applies.			
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the pro- file's RF band at which to measure the required parame- ters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the pro- file's RF band. Bit number RF frequency RF name			
		b0 Lowest RF frequency in pro- RF1 file's sweep bandwidth			
		b1 Center RF frequency in pro- RF2 file's sweep bandwidth			
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth			
		The RF name column is mentioned here to set the con- vention for the purpose of reporting and describing many monitoring packets.			
RESERVED	2	0x0000			
	1	Value Definition			
MODE		0 Report is sent every monitoring period without threshold check			
		1 Report is send only upon a failure (after checking for thresholds)			
		2 Report is sent every monitoring period with threshold check			
RESERVED	1	0x00			

 Table 7.6:
 AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB contents

RX_NOISE_FIG- URE_THRESH- OLD	2	The measured RX input referred noise figure at the en- abled RF frequencies, for all channels, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any mea- surement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 300	
RESERVED	4	0x0000000	

NOTE:	The Rx gain and phase monitoring shall be enabled when enabling
	Rx noise figure Monitoring.

7.5 RX IF Stage Monitor

This section contains API SBs that configure the monitors of receiver IF filter attenuation, and report the soft results from the monitor. The corresponding monitor is named RX_IFSTAGE_MONITOR. The report is sent as an async event AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB.

7.5.1 Sub block 0x01C6 – AWR_MONITOR_RX_IFSTAGE_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX IF filter attenuation monitoring. The report is sent as as an async event AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01C6	
SBLKLEN	2	Value = 20	
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.	
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check

 Table 7.7:
 AWR_MONITOR_RX_IFSTAGE_CONF_SB contents

RESERVED	2	0x0000	
RESERVED	2	0x0000	
HPF_CUTOFF_ FREQ_ERROR_ THRESH	2	The absolute values of RX IF HPF cutoff percentage free quency errors are compared against the correspondin thresholds given in this field. The comparison results ar part of the monitoring report message (Error bit is set the absolute value of the errors exceeds respective thresh olds). 1 LSB = 1%, unsigned number Valid range: 1% to 99%	
LPF_CUTOFF_ FREQ_ERROR_ THRESH	2	The absolute values of RX IF LPF cutoff percentage fre- quency errors are compared against the corresponding thresholds given in this field. The comparison results are part of the monitoring report message (Error bit is set if the absolute value of the errors exceeds respective thresh- olds). 1 LSB = 1%, unsigned number Valid range: 1% to 99%	
IFA_GAIN_ER- ROR_THRESH	2	The absolute deviation of RX IFA Gain from the expected gain for each enabled RX channel is compared against the thresholds given in this field. The comparison result is part of the monitoring report message (Error bit is set if the absolute value of the errors exceeds respective thresholds). 1 LSB = 0.1 dB, unsigned number Valid range: 0 to 60 (0 to 6dB)	
RESERVED	4	0x0000000	

Table 7.7 – continued from previous page

7.6 TX Power Monitor

This section contains API SBs that configure the monitors of transmitter output power, and report the soft results from the monitor. The corresponding monitors are collectively named TXn_{-} POWER_MONITOR where n is the TX channel number.

7.6.1 Sub block 0x01C7 – AWR_MONITOR_TX0_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX0_POWER_ REPORT_AE_SB.

Table 7.8: AWR_MONITOR_TX0_POWER_CONF_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x01C7			
SBLKLEN	2	Value = 20			
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.			
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the pro- file's RF band at which to measure the required parame- ters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the pro- file's RF band.			
		Bit number RF	frequency	RF name	
			west RF frequency in pro- 's sweep bandwidth	RF1	
			enter RF frequency in pro- 's sweep bandwidth	RF2	
		b2 Highest RF frequency in pro- file's sweep bandwidth The RF Name column is mentioned here to set the c vention for the purpose of reporting and describing ma monitoring packets.		set the con-	
RESERVED	2	0x0000			
REPORTING	1	Value Definition			
MODE		0 Report is sent every monitoring period without threshold check			
		1 Report is for thres	s send only upon a failure (a holds)	fter checking	
		2 Report threshole	is sent every monitoring d check	period with	
RESERVED	1	0x00			
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dBm Valid range: 0 to 60 (0 to 6dB)			

		1 1 5
TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB) This flatness check is applicable only if multiple RF Fre- quencies are enabled.
RESERVED	2	0x0000
RESERVED	4	0x0000000

Table 7.8 – continued from previous page

7.6.2 Sub block 0x01C8 – AWR_MONITOR_TX1_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX1_POWER_ REPORT_AE_SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C8
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.

Table 7.9: AWR_MONITOR_TX1_POWER_CONF_SB contents

		•		
RF_FREQ_BIT- MASK	1	This field indicates the ex file's RF band at which t ters. When each bit in thi the corresponding RF fre file's RF band. Bit number RF freque	o measure the requir s field is set, the meas equency is enabled w. ncy	ed parame- surement at r.t. the pro- RF name
			⁻ frequency in pro- p bandwidth	RF1
			frequency in pro- p bandwidth	RF2
		file's swee The RF Name column is		
		vention for the purpose of monitoring packets.	or reporting and desci	noing many
RESERVED	2	0x0000		
REPORTING	1	Value Definition		
MODE		0 Report is sent threshold check	every monitoring per	riod without
		1 Report is send of for thresholds)	only upon a failure (af	ter checking
		2 Report is sen threshold check	t every monitoring	period with
RESERVED	1	0x00		
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dBm Valid range: 0 to 60 (0 to 6dB)		
TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB) This flatness check is applicable only if multiple RF Fre- quencies are enabled.		
RESERVED	2	0x0000		

Table 7.9 – continued from previous page

Table 7.9 – continued from	previous page
----------------------------	---------------

RESERVED 4 0x000	00000

7.6.3 Sub block 0x01C9 – AWR_MONITOR_TX2_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX2_POWER_REPORT_AE_SB.

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0	Value = 0x01C9		
SBLKLEN	2	Value = 2	20		
PROFILE_INDX	1		This field indicates the Profile Index for which this monitor- ing configuration applies.		
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement the corresponding RF frequency is enabled w.r.t. the profile's RF band.Bit numberRF frequency is enabled w.r.t. the profile's RF band.Bit numberRF frequencyBit numberRF frequency in pro-RF1file's sweep bandwidthb1Center RF frequency in pro-RF2file's sweep bandwidthb2Highest RF frequency in pro-RF3file's sweep bandwidthThe RF Name column is mentioned here to set the convention for the purpose of reporting and describing marmonitoring packets.			
RESERVED	2	0x0000			
REPORTING _	1	Value	Definition		
MODE		0	Report is sent every monitoring period without threshold check		
		1	Report is send only upon a failure (after checking for thresholds)		
		2	Report is sent every monitoring period with threshold check		
L	1	1	Continued on payt page		

Table 7.10: AWR_MONITOR_TX2_POWER_CONF_SB contents

RESERVED	1	0x00
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dBm Valid range: 0 to 60 (0 to 6dB)
TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB) This flatness check is applicable only if multiple RF Fre- quencies are enabled.
RESERVED	2	0x0000
RESERVED	4	0x0000000

Table 7.10 – continued from previous page

7.7 TX Ball Break Monitor

This section contains API SBs that configure the monitors of transmitter balls and impedance matching. The corresponding monitors are collectively named TXn_BALLBREAK_MONITOR where n is the TX channel number.

TX ball break detection is performed through measurement of TX reflection coefficient's magnitude. The breakage of a TX ball is detected by observing high reflection magnitude.

7.7.1 Sub block 0x01CA – AWR_MONITOR_TX0_BALLBREAK_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CA	
SBLKLEN	2	Value = 16	
REPORTING_ MODE	1	Value Definition 0 Report is sent every monitoring period without threshold check	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RESERVED	1	0x00	
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -90 to -250	
RESERVED	4	0x0000000	
RESERVED	4	0x0000000	

Table 7.11: AWR_MONITOR_TX0_BALLBREAK_CONF_SB contents

7.7.2 Sub block 0x01CB – AWR_MONITOR_TX1_BALLBREAK_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CB	
SBLKLEN	2	Value = 16	

Table 7.12: AWR_MONITOR_TX1_BALLBREAK_CONF_SB contents

REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	1	0x00	
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -90 to -250	
RESERVED	4	0x0000000	
RESERVED	4	0x00000	0000

Table 7.12 – continued from previous page

7.7.3 Sub block 0x01CC – AWR_MONITOR_TX2_BALLBREAK_CONF_SB

This API is a monitoring monfiguration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value =	0x01CC
SBLKLEN	2	Value =	16
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check

Table 7.13: AWR_MONITOR_TX2_BALLBREAK_CONF_SB contents

RESERVED	1	0x00
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report mes- sage (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -90 to -250
RESERVED	4	0x0000000
RESERVED	4	0x0000000

Table 7.13 – continued from previous page

7.8 TX Gain and Phase Mismatch Monitoring

This section contains API SBs that configure the monitors of transmitter gain and phase mismatches, and report the soft results from the monitor. The corresponding monitors are collectively named TX_GAIN_PHASE_MISMATCH_MONITOR.

This monitor needs the operation of at least one RX channel. It also needs to use the RX in complex mode. Therefore, if all channels are disabled as per AWR_CHAN_CONF_SET_SB, this monitor automatically enables one RX channel. Further, this monitor automatically uses both I and Q channels of the receiver, irrespective of the ADC settings given by AWR_ADCOUT_CONF_SET_SB.

7.8.1 Sub block 0x01CD – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX gain and phase mismatch monitoring. The report is sent as an async event AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CD	
SBLKLEN	2	Value = 56	
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.	

 Table 7.14:
 AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB contents

	 	nom providuo page	
RF_FREQ_BIT- 1 MASK	This field indicates the exact RF frequencies inside the pro- file's RF band at which to measure the required parame- ters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the pro- file's RF band.		
	Bit number	RF frequency	RF name
	b0	Lowest RF frequency in pro- file's sweep bandwidth	RF1
	b1	Center RF frequency in pro- file's sweep bandwidth	RF2
	b2	Highest RF frequency in pro- file's sweep bandwidth	RF3
		e column is mentioned here to e purpose of reporting and deso ckets.	
TX_EN 1	compared for responding b measurement Bit number b0 b1	TX Channel TX0 TX1	ting the cor-
RX_EN 1	abled for TX	TX2 icates the RX channels that sh to RX loopback measurement. g bit to 1 enables that channel fo RX Channel RX0 RX1 RX2 RX3	Setting the
RESERVED 1	0x00		
RESERVED 1	0x00		

Table 7.14 – continued from previous page

2	The magnitude of difference between measured TX pow- ers across the enabled channels at each enabled RF fre- quency is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if the measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the TX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB, unsigned number Valid range: 0 to 60 (0 to 6dB)
2	The magnitude of measured TX phase mismatch across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the TX_PHASE_MISMATCH_OFFSET_VALUE field. 1 LSB = $360^{\circ}/2^{16}$, unsigned number Valid range: corresponding to 0° to 20° .
18	The offsets to be subtracted from the measured TX gain for each TX and RF before the relevant threshold comparisons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3 TX0 1:0 7:6 13:12 TX1 3:2 9:8 15:14 TX2 5:4 11:10 17:16 Only the entries of enabled RF Frequencies and enabled TX channels are considered. RF Requencies and enabled
	2

Table 7.14 – continued from previous page

TX_PHASE_ MISMATCH_ OFFSET_VALUE	18	for each isons are Byte nun field are TX0 TX1 TX2 1 LSB = Only the	TX and l e given h nbers con here: RF1 1:0 3:2 5:4 360°/2 ¹ e entries	RF before ere. rrespondir RF2 7:6 9:8 11:10 ⁶ .	d from the measured TX phase the relevant threshold compar- ng to different RX and RF, in this RF3 13:12 15:14 17:16 d RF Frequencies and enabled d.
RESERVED	2	0x0000			
RESERVED	4	0x0000000			

Table 7.14 – continued from previous page

NOTE:	The TX3 has a fixed offset of -8dB gain and -8 degree phase with
	respect to TX1 and TX2 by design, user has to compensate these
	values in the gain and phase offset fields of this API for TX3.

7.9 TX BPM Phase Monitor

This section contains API SBs that configure the monitors of transmitter binary phase modulation, and report the soft results from the monitor, for various TX channels. The corresponding monitors are collectively named TX0_BPM_MONITOR, TX1_BPM_MONITOR and TX2_BPM_MONITOR for the respective TX channels.

7.9.1 Sub block 0x01CE - AWR_MONITOR_TX0_BPM_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 BPM monitoring.

The report is sent as an async event AWR_MONITOR_TX0_BPM_REPORT_AE_SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01CE
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.

Table 7.15: AWR_MONITOR_TX0_BPM_CONF_SB contents

PH_SHIFTER_	1	Bit	Definition
MON_CFG		b7	Phase shifter monitoring enabled
		b6	Phase shifter monitoring increment enabled
			Phase shifter monitoring increment value 1 LSB = 5.625°
PH_SHIFTER_ MON1	1	Phase1 o itored 1 LSB = 5	f the phase shifter of TX0 which needs to be mon- 5.625°
PH_SHIFTER_ MON2	1	Phase2 o itored 1 LSB = 5	f the phase shifter of TX0 which needs to be mon- 5.625°
REPORTING	1	Value	Definition
MODE			Report is sent every monitoring period without threshold check
			Report is send only upon a failure (after checking for thresholds)
			Report is sent every monitoring period with threshold check
RX_EN	1	This field indicates the RX channels that should be en- abled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for imbalance measurement. Bit number RX Channel	
		b0	BX0
		b1	BX1
		b2	RX2
		b3	RX3
TX_BPM_ PHASE_ERROR_ THRESH	2	the two E against th is part of if the mea units of b 1 LSB = 3	ation of the TX output phase difference between BPM settings from the ideal 180° is compared ne threshold given here. The comparison result the monitoring report message (Error bit is set asurement is higher than this threshold, with the oth quantities being the same). $360^{\circ}/2^{16}$. ge: corresponding to 0° to 20° .

Table 7.15 – continued from previous page

TX_BPM_AMPLI- TUDE_ERROR_ THRESH	2	The deviation of the TX output amplitude difference be- tween the two BPM settings is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measure- ment is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB)
PH_SHIFTER_ THRESH_MAX	2	Maximum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°
PH_SHIFTER_ THRESH_MIN	2	Minimum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°
RESERVED	2	0x0000

Table 7.15 – continued from previous page

7.9.2 Sub block 0x01CF - AWR_MONITOR_TX1_BPM_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 BPM monitoring. The report is sent as an async event AWR_MONITOR_ TX1_BPM_REPORT_AE_SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CF	
SBLKLEN	2	Value = 20	
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.	
PH_SHIFTER_	1	Bit Definition	
MON_CFG		b7 Phase shifter monitoring enabled	
		b6 Phase shifter monitoring increment enabled	
		b5:0 Phase shifter monitoring increment value 1 LSB = 5.625°	
PH_SHIFTER_ MON1	1	Phase1 of the phase shifter of TX1 which needs to be mon- itored	
MONT		1 LSB = 5.625°	
PH_SHIFTER_ MON2	1	Phase2 of the phase shifter of TX1 which needs to be monitored 1 LSB = 5.625°	

Table 7.16: AWR_MONITOR_TX1_BPM_CONF_SB contents

REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RX_EN	1	abled fo	
		b2	RX2
		b3	RX3
TX_BPM_ PHASE_ERROR_ THRESH	2	The deviation of the TX output phase difference between the two BPM settings from the ideal 180° is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = $360^{\circ}/2^{16}$. Valid range: corresponding to 0° to 20° .	
TX_BPM_AMPLI- TUDE_ERROR_ THRESH	2	The deviation of the TX output amplitude difference be- tween the two BPM settings is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measure- ment is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB)	
PH_SHIFTER_ THRESH_MAX	2	Maximum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°	
PH_SHIFTER_ THRESH_MIN	2	Minimum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°	
RESERVED	2	0x0000	

Table 7.16 – continued from previous page

7.9.3 Sub block 0x01D0 - AWR_MONITOR_TX2_BPM_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 BPM monitoring. The report is sent as an async event AWR_MONITOR_ TX2_BPM_REPORT_AE_SB.

Number of bytes	Description		
2	Value = 0x01D0		
2	Value = 20		
1	This field indicates the Profile Index for which this monitor- ing configuration applies.		
1	Bit Definition		
	b7 Phase shifter monitoring enabled		
	b6 Phase shifter monitoring increment enabled		
	b5:0 Phase shifter monitoring increment value 1 LSB = 5.625°		
1	Phase1 of the phase shifter of TX2 which needs to be mon- itored 1 LSB = 5.625°		
1	Phase2 of the phase shifter of TX2 which needs to be monitored 1 LSB = 5.625°		
1	Value Definition		
	0 Report is sent every monitoring period without threshold check		
	1 Report is send only upon a failure (after checking for thresholds)		
	2 Report is sent every monitoring period with threshold check		
1	This field indicates the RX channels that should be en- abled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for imbalance measurement. Bit number RX Channel		
	b0 RX0		
	bi BX1		
	b2 RX2		
	b3 RX3		
	of bytes 2 1 1 1 1 1 1 1 1 1		

Table 7.17: AWR_MONITOR_TX2_BPM_CONF_SB contents

TX_BPM_ PHASE_ERROR_ THRESH	2	The deviation of the TX output phase difference between the two BPM settings from the ideal 180° is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). $1 \text{ LSB} = 360^{\circ}/2^{16}$. Valid range: corresponding to 0° to 20° .		
TX_BPM_AMPLI- TUDE_ERROR_ THRESH	2	The deviation of the TX output amplitude difference be- tween the two BPM settings is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measure- ment is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB)		
PH_SHIFTER_ THRESH_MAX	2	Maximum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°		
PH_SHIFTER_ THRESH_MIN	2	Minimum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°		
RESERVED	2	0x0000		

Table 7.17 – continued from previous page

7.10 Synthesizer Frequency Monitoring

This section contains API SBs that configure the monitors of synthesizer chirp frequency, and report the soft results from the monitor. The corresponding monitor is named SYNTH_FREQ_MONITOR.

7.10.1 Sub block 0x01D1 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_ SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to synthesizer frequency monitoring during chirping. The report is sent as an async event AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB.

Table 7.18: AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01D1		
SBLKLEN	2	Value = 16		
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.		
REPORTING _	1	Value Definition		
MODE		0 Report is sent every monitoring period without threshold check		
		1 Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
FREQ_ERROR_ THRESH	2	During the chirp, the error of the measured instantaneous chirp frequency w.r.t. the desired value is continuously compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measurement is above this threshold, ever during the previous monitoring period). 1 LSB = 10 kHz Valid range: 0 to 10000		
MONITOR_ START_TIME	1	This field determines when the monitoring starts in each chirp relative to the start of the ramp. 1 LSB = 0.2 μ s, unsigned number Valid range: 0 to 25 μ s		
RESERVED	3	0x000000		
RESERVED	4	0x0000000		

7.11 External Analog Signals Monitor

This section contains API SBs that configure the monitors of external analog signals which are input to the device through pins ANALOGTEST1-4, ANAMUX and VSENSE (also called ADC1-6) and report the soft results from the monitor. The corresponding monitors are collectively named EXTERNAL_ANALOG_SIGNALS_MONITOR. These monitors observe various analog signals input on the pins ADC1-6 using a GPADC and compare them against internally fixed thresholds.

7.11.1 Sub block 0x01D2 – AWR_MONITORING_EXTERNAL_ANALOG_SIGNALS_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to external DC signals monitoring (available only in xWR1642 or xWR1843). The report is sent as an async event AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSREPORT_AE_SB.

Table 7.19 describes the content of this sub block.

Table 7.19: AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB contents Contents

Field Name	Number	Description		
	of bytes	Description		
SBLKID	2	Value = 0x01D2		
SBLKLEN	2	Value = 36		
REPORTING	1	Value Definition		
MODE		0 Report is sent every monitoring period without threshold check		
		1 Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
RESERVED	1	0x00		
SIGNAL_INPUT_ ENABLES	1	This field indicates the sets of externally fed DC signals which are to be monitored using GPADC. When each bit in this field is set, the corresponding signal is monitored. The monitored signals are compared against programmed limits. The comparison result is part of the monitoring report message.		
		Bit Location SIGNAL		
		b0 ANALOGTEST1		
		b1 ANALOGTEST2		
		b2 ANALOGTEST3		
		b3 ANALOGTEST4		
		b4 ANAMUX		
		b5 VSENSE		
		Others RESERVED		

Г	1			
SIGNAL_ BUFFER_EN- ABLES	1	This field indicates the sets of externally fed DC signals which are to be buffered before being fed to the GPADC. When each bit in this field is set, the corresponding signal is buffered before the GPADC. The monitored signals are compared against programmed limits. The comparison result is part of the monitoring report message.		
		Bit SIGNAL		
		b0 ANALOGTEST1		
		b1 ANALOGTEST2		
		b2 ANALOGTEST3		
		b3 ANALOGTEST4		
		b4 ANAMUX		
		Others RESERVED		
SIGNAL_SET- TLING_TIME	6	After connecting an external signal to the GPADC, the amount of time to wait for it to settle before taking GPADC samples is programmed in this field. For each signal, after that settling time, GPADC measurements take place for 6.4 μ s (averaging 4 samples of the GPADC output). The byte locations of the settling times for each signal are tabulated here:		
		Byte SIGNAL Loca- tion		
		0 ANALOGTEST1		
		1 ANALOGTEST2		
		2 ANALOGTEST3		
		3 ANALOGTEST4		
		4 ANAMUX		
		5 VSENSE 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s Valid programming condition: all the signals that are enabled should take a total of < 100 μ s, including the pro- grammed settling times and a fixed 6.4 μ s of measurement time per enabled signal.		

Table 7.19 – continued from previous page

SIGNAL_ THRESH	12	pared against the comparison The comparison message (Erro this (minimum,		
RESERVED	2	0x0000		
RESERVED	4	0x0000000		
RESERVED	4	0x0000000		

Table 7.19 – continued from previous page

7.12 Internal Analog Signals Monitor

This section contains API SBs that configure the monitors of internal analog signals in the RF analog modules and report the soft results from the monitor. The corresponding monitors are collectively named INTERNAL_ANALOG_SIGNALS_MONITOR. These monitors observe various analog nodes in the RF and analog modules using a GPADC and compare them against internally fixed thresholds.

The configuration API SBs are organized to address various analog circuits as follows:

- 1. TX0 Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_TX0_SIGNALS_MONITOR.
 - b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 2. TX1 Internal Analog Signals Monitoring

- a. This monitor is called INTERNAL_TX1_SIGNALS_MONITOR
- b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 3. TX2 Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_TX2_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 4. RX Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_RX_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_RX, PWRDET_RX, DCBIAS_RX)
- 5. PM CLK LO Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_PMCLKLO_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_PMCLKLO, PWRDET_PMCLKLO, DCBIAS_ PMCLKLO)
- 6. GPADC Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_GPADC_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (GPADC_REF1, GPADC_REF2)

The results are reported in the corresponding REPORT API SBs in this section.

7.12.1 Sub block 0x01D3 – AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.20: AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01D3	
SBLKLEN	2	Value = 12	
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).	

REPORTING_	1	Value	Definition
MODE		0	RESERVED
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	2	0x0000	
RESERVED	4	0x00000	0000

Table 7.20 – continued from previous page

7.12.2 Sub block 0x01D4 – AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.21: AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01D4	
SBLKLEN	2	Value = 12	
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).	
REPORTING_ MODE	1	 Value Definition 0 RESERVED 1 Report is send only upon a failure (after checking for thresholds) 2 Report is sent every monitoring period with threshold check 	
RESERVED	2	0x0000	
RESERVED	4	0x0000000	

7.12.3 Sub block 0x01D5 – AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

 Table 7.22:
 AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB

 contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01D5	
SBLKLEN	2	Value = 12	
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).	
REPORTING_	1	Value Definition	
MODE		0 RESERVED	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RESERVED	2	0x0000	
RESERVED	4	0x0000000	

7.12.4 Sub block 0x01D6 – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.23: AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01D6	
SBLKLEN	2	Value = 12	

PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).		
REPORTING_ MODE	1	Value 0	Definition RESERVED	
		1	Report is send only upon a failure (after checking for thresholds)	
		2	Report is sent every monitoring period with threshold check	
RESERVED	2	0x0000		
RESERVED	4	0x00000	000	

Table 7.23 – continued from previous page

7.12.5 Sub block 0x01D7 – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to Power Management, Clock generation and LO distribution circuits' Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.24: AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_ SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01D7	
SBLKLEN	2	Value = 12	
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).	
REPORTING_ MODE	1	Value Definition 0 RESERVED 1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	

		· · · · ·	
SYNC_20G_SIG_ SEL	1	This field is relevant only in cascade configuration and not applicable in single chip case	
		Value Definition	
		0x00 20 GHz SYNC monitoring disabled	
		0x01 SYNC_IN monitoring enabled	
		0x02 SYNC_OUT monitoring enabled	
		0x03 CLK_OUT monitoring enabled	
SYNC_20G_MIN_ THRESH	1	The minimum threshold value of monitoring, signed num- ber Unit: 1 LSB = 1 dBm	
SYNC_20G_MAX_ THRESH	1	The maximum threshold value of monitoring, signed num- ber Unit: 1 LSB = 1 dBm	
RESERVED	3	0x00000	

Table 7.24 – continued from previous page

7.12.6 Sub block 0x01D8 – AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to GPADC Internal Analog Signals monitoring. During this monitor, only the relevant circuits are ensured to be ON. The monitored signals are compared against internally chosen valid limits. The comparison result is part of the consolidated monitoring report message (Error bit for any signal set is set to 1 if any measurement in that signal set is beyond valid limits). The report is sent as an async event AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.25:	AWR_MONITOR	_GPADC_INTERNAL_	_ANALOG_SIGNALS_CONF_SB

contents

Field Name	Number of bytes	Descrip	tion
SBLKID	2	Value =	0x01D8
SBLKLEN	2	Value =	12
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check

Table 7.25 – continued from previous page

RESERVED	3	0x00000
RESERVED	4	0x0000000

7.13 PLL Control Voltage Monitor

This section contains API SBs that configure the monitors of APLL and Synthesizer VCO control voltages and report the soft results from the monitor. The corresponding monitors are collectively named PLL_CONTROL_VOLTAGE_MONITOR. These monitors observe the VCO control voltages under various conditions using the GPADC and compare them against internally fixed thresholds. The transmitters are kept in OFF state during these measurements to avoid external emission.

7.13.1 Sub block 0x01D9 – AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_ CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to APLL and Synthesizer's control voltage signals monitoring. The report is sent as an async event AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB.

Field Name	Number of bytes	Descrip	otion
SBLKID	2	Value =	0x01D9
SBLKLEN	2	Value =	12
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	1	0x00	

 Table 7.26:
 AWR_MONITOR_PLL_CONTROL_VOLTAGE_CONF_SB contents

SIGNAL_EN- ABLES	2	This field indicates the sets of signals which are to be mon- itored. When each bit in this field is set, the corresponding signal set is monitored using test chirps. Rest of the RF analog may not be ON during these test chirps. The APLL VCO control voltage can be monitored. The Synthesizer VCO control voltage for both VCO1 and VCO2 can be monitored, while operating at their respective minimum and maximum frequencies, and their respective VCO slope (Hz/V) can be monitored if both frequencies are en- abled for that VCO. The monitored signals are compared against internally chosen valid limits. The comparison results are part of the monitoring report message.
		BitLocation SIGNALb0APLL_VCTRLb1SYNTH_VCO1_VCTRLb2SYNTH_VCO2_VCTRLb15:3RESERVEDThe synthesizer VCO extreme frequencies are:Synthesizer VCO Frequency Limits (Min, Max)VCO1 (76GHz, 78GHz)VCO2 (77GHz, 81GHz)
		Synthesizer measurements are done with TX switched off to avoid emissions. For the failure reporting, the internally chosen valid limits are (tentative): for the measured control voltage levels: 0.15V to 1.25V; for the synthesizer VCO slope: $\pm 20\%$ of 1.1 GHz/V for VCO2 and 0.55GHz/V for VCO1.
RESERVED	4	0x0000000

Table 7.26 – continued from previous page

7.14 Dual Clock Comparator Based Clock Frequency Monitor

This section contains API SBs that configure the Dual Clock Comparator based monitors of clocks in the BSS digital modules and report the soft results from the monitor. The corresponding monitors are collectively named DCC_CLOCK_FREQ_MONITOR. These monitors observe the relative frequency of various clock pairs and compare the measured relative frequency errors against internally fixed thresholds.

The various clock pairs that are monitored are defined here:

CLOCK PAIR	REFERENCE CLOCK	MEASURED CLOCK	ERROR THRESH- OLD (Tentative)
0	XTAL	BSS_600M	±0.25%
1	BSS_600M	BSS_200M	±0.25%
2	BSS_600M	BSS_100M	±0.25%
3	BSS_600M	GPADC_10M	±2.5%
4	BSS_600M	RCOSC_10M	±17.5%
5	BSS_600M	RAMPGEN_100M	±0.25%
RSVD	RSVD	RSVD	RSVD

The ideal frequencies of clocks involved in this monitor are given here:

CLOCK NAME	CLOCK FRE- QUENCY (MHz)	COMMENTS
XTAL	40	Crystal clock
BSS_600M	600	BSS root clock
BSS_200M	200	BSS processor clock
BSS₋100M	100	BSS internal clock
GPADC_10M	10	GPADC clock used in monitoring and calibrations
RCOSC_10M	10 (±10%)	RC Oscillator clock
RAMPGEN_100M	100	Clock for Ramp Generator (tim- ing engine) and Digital Front End.

Table 7.27: DCC Clock monitor pairs

7.14.1 Sub block 0x01DA - AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to the DCC based clock frequency monitoring. The report is sent as an async event AWR_MONITOR_DCC_DUAL_CLOCK_COMP_REPORT_AE_SB.

Table 7.28:	AWR_MONITOR	_DUAL_CLOCK	_COMP_CONF_SE	B contents
-------------	-------------	-------------	---------------	-------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DA

SBLKLEN	2	Value =	12
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	1	0x00	
DCC_PAIR_EN- ABLES	2	This field indicates which pairs of clocks to monitor. We a bit in the field is set to 1, the firmware monitors corresponding clock pair by deploying the hardware's D Clock Comparator in the corresponding DCC mode.	
		Bit	CLOCK PAIR
		b0	0
		b1	1
		b2	2
		b3	3
		b4	4
		b5	5
		message threshold	RESERVED parison results are part of the monitoring report e. The definition of the clock pairs and their error ds for failure reporting are given in the table below sage definition.
RESERVED	4	0x00000	000

Table 7.28 – continued from previous page

7.15 RX Saturation Detection Monitor

This section contains API SBs that configure the monitoring of RX analog saturation detectors, and report the results from the monitor. The corresponding monitors are collectively named RX_SATURATION_DETECTOR_MONITOR and RX_SIG_IMG_BAND_MONITOR. The report is available in CQ RAM.

7.15.1 Sub block 0x01DB – AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_ SB

This API is a monitoring configuration API which the host sends to the xWR device, containing information related to RX saturation detector monitoring. The report is available as CQ2 (part

of CQ) in CQ RAM every chirp. The application should transfer the report from CQ RAM every chirp.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01DB	
SBLKLEN	2	Value = 24	
PROFILE_INDX	1	This field indicates the profile index for which this monitor- ing configuration applies.	
SAT_MON_SE- LECT	1	01 – Enable only the ADC saturation monitor 11 – Enable both the ADC and IFA1 saturation monitors	
RESERVED	1	0x00	
RESERVED	1	0x00	
SAT_MON_PRI- MARY_TIME_ SLICE_DURA- TION	2	It specifies the duration of each (primary) time slice. 1 LSB = 0.16 μ s. Valid range: 4 to floor(ADC sampling time us/0.16 μ s) NOTES: The minimum allowed duration of each (pri- mary) time slice is 4 LSBs = 0.64 μ s. Also, the maximum number of (primary) time slices that will be monitored in a chirp is 64 so the recommendation is to set this value to correspond to (ADC sampling time / 64). If the slice is smaller, such that the ADC sampling time is longer than 64 primary slices, some regions of the valid duration of a chirp may go un-monitored.	
SAT_MON_NUM_ SLICES	2	Number of (primary + secondary) time slices to monitor. Valid range: 1 to 127 NOTE: Together with SAT_MON_PRIMARY_TIME_SLICE_ DURATION, this determines the full duration of the ADC valid time that gets covered by the monitor	
SAT_MON_RX_ CHANNEL_MASK	1	Masks RX channels used for monitoring. In every slice, saturation counts for all unmasked channels are added to- gether, and the total is capped to 127. The 8 bits are mapped (MSB->LSB) to: [RX3Q, RX2Q, RX1Q, RX0Q, RX3I, RX2I, RX1I, RX0I] 00000000 – All channels unmasked 11111111 – All channels masked	
RESERVED	1	0	
RESERVED	1	0	
RESERVED	1	0	

Table 7.29: AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB contents	Table 7.29: AW	R_MONITOR_R	RX_SATURATION.	DETECTOR	CONF_SB contents
---	-----------------------	-------------	----------------	----------	------------------

Table 7.29 – continued from previous page

RESERVED	4	0x0000000
RESERVED	4	0x0000000

7.15.2 Sub block 0x01DC - AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB

This API is a monitoring configuration API which the host sends to the xWR device, containing information related to signal and image band energy. The report is available as CQ1 (part of CQ) in CQ RAM. The application should transfer the report every chirp.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DC
SBLKLEN	2	Value = 16
PROFILE_INDX	1	This field indicates the profile index for which this monitor- ing configuration applies.
SIG_IMG_MON_ NUM_SLICES	1	Number of (primary + secondary) slices to monitor Valid range: 1 to 127
NUM_SAMPLES_ PER_PRIMARY_ TIME_SLICE	2	This field specifies the number of samples constituting each time slice. The minimum allowed value for this parameter is 4. Valid range: 4 to NUM_ADC_SAMPLES (see NOTE2 below)
		NOTE1: The maximum number of (primary) time slices that will be monitored in a chirp is 64, so our recommendation is that this value should at least equal (NUM_ADC_SAMPLES / 64). If the slice is smaller, such that the number of ADC samples per chirp is larger than 64 primary slices, some regions of the valid duration of a chirp may go un-monitored.
		NOTE2: In Complex1x mode, the minimum number of samples per slice is 4 and for other modes it is 8. Also note that number of samples should be an even number
RESERVED	4	0x0000000
RESERVED	4	0x0000000

Table 7.30: AWR_MONITOR_RX_SIG_IMG_MONITOR_CONF_SB contents

7.16 RX mixer input power monitor

7.16.1 Sub block 0x01DD - AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX mixer input power monitoring. The report is sent as an async event AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB.

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01DD		
SBLKLEN	2	Value = 16		
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring RX mixer input power using test chirps (static frequency, at the center of the profile's RF frequency band).		
REPORTING_	1	Value Definition		
MODE		0 Report is sent every monitoring period without threshold check		
		1 Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
TX_EN	1	This field indicates if and which TX channels should be enabled while measuring RX mixer input power. Setting a bit to 1 enables the corresponding TX channel. Enabling a TX channel may help find reflection power while disabling may help find interference power.		
		Bit number TX Channel		
		b0 TX0		
		b1 TX1		
		b2 TX2		
RESERVED	1	0x00		

 Table 7.31:
 AWR_MONITOR_MIXER_IN_POWER_CONF_SB contents

THRESHOLDS	2	The measured RX mixer input voltage swings during this monitoring is compared against the minimum and maxi- mum thresholds configured in this field. The comparison result is part of the monitoring report message (Status bit is cleared if any measurement is outside this (minimum, maximum) range).
		Byte number Threshold
		0 Minimum Threshold
		1 Maximum Threshold
		Only the RX channels enabled in the static configuration APIs are monitored.
		1 LSB = 1800 mV/256, unsigned number
		Valid range: 0 to 255, maximum threshold \geq minimum threshold
RESERVED	2	0x0000000
RESERVED	4	0x0000000

Table 7.31 – continued from previous page

7.17 Sub block 0x01DE – RESERVED

7.18 Analog Fault injection

7.18.1 Sub block 0x01DF - AWR_ANALOG_FAULT_INJECTION_CONF_SB

This API is a fault injection API which the host sends to the AWR device. It can be used to inject faults in the analog circuits to test the corresponding monitors. After the faults are injected, the regular monitors, when enabled will indicate the faults in their associated reports.

NOTE1:	This API should be issued when no frames are on-going.
NOTE2:	The fault injection should be tested by injecting one fault at a time.

Table 7.32: A	$\label{eq:awr_analog_fault_injection_conf_sb} \text{ contents }$		
Field Name	Number of bytes	Description	

	of bytes	
SBLKID	2	Value = 0x01DF
SBLKLEN	2	Value = 24
RESERVED	1	0x00

RX_GAIN_DROP	1	fault injected. If significantly. T gain change, in	RX Gain ates which RX RF sections should have the fault is enabled, the RX RF gain drops he fault can be used to cause significant ter-RX gain imbalance and an uncontrolled -RX phase imbalance.
		Bit number	RX Channel
		b0	RX0
		b1	RX1
		b2	RX2
		b3	RX3
		Others	RESERVED
		For each bit, fault	1 = inject fault, 0 = remove injected
RX_PHASE_INV	1	Primary Fault: RX Phase This field indicates which RX channels should have fault injected. If the fault is enabled, the RX phase gets inverted. The fault can be used to cause a controlled amount (1800) of inter-RX phase imbalance.	
		Bit number	RX Channel
		b0	RX0
		b1	RX1
		b2	RX2
		b3	RX3
		Others	RESERVED
		For each bit, fault	1 = inject fault, 0 = remove injected

Table 7.32 – continued from previous page

RX_HIGH_NOISE	1	Primary Fault: RX Noise This field indicates which RX channels should have fault injected. If the fault is enabled, the RX IFA square wave loopback paths are engaged to inject high noise at RX IFA input. The fault can be used to cause significant RX noise floor elevation.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
RX_IF_STAGES_ FAULT	1	Primary Fault: Cutoff frequencies of RX IFA HPF & LPF, IFA Gain. This field indicates which RX channels should have fault injected. If the fault is enabled, the RX IFA HPF cutoff frequency becomes very high (about 15MHz). The fault can be used to cause the measured inband IFA gain, HPF and LPF attenuations to vary from ideal expectations.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
		•	the execution of RX_IFSTAGE_MONITOR, IOISE faults are temporarily removed.	

Table 7.32 – continued from previous page

Table 7.52 – continued from previous page							
RX_LO_AMP_ FAULT	1	Primary Fault: I	RX Mixer LO input swing reduction				
		fault injected. input swing is s expected to b	cates which RX channels should have If the fault is enabled, the RX mixer LO significantly reduced. The fault is primarily e detected by RX_INTERNAL_ANALOG_ IITOR (under PWRDET_RX category).				
		Bit number	RX Channel				
		b0	RX0				
		b1	RX1				
		b2	RX2				
		b3	RX3				
		Others	RESERVED				
		For each bit, fault	1 = inject fault, 0 = remove injected				
TX_LO_AMP_ FAULT	1	This field indica injected. If the f power amplifier primarily expec	TX PA input signal generator turning off. ates which TX channels should have fault fault is enabled, the amplifier generating TX 's LO input signal is turned off. The fault is ted to be detected by $TX < n > INTERNAL$ IALS_MONITOR (under DCBIAS category).				
		Bit number	Channel				
		b0	TX0 and TX1				
		b1	TX2 (applicable only if available in the device)				
		Others	RESERVED				
		For each bit, fault	1 = inject fault, 0 = remove injected				

Table 7.32 – continued from previous page

Continued on next page

TX_GAIN_DROP	1	This field indic fault injected. If significantly. T TX output powe	TX Gain (power) eates which TX RF sections should have f the fault is enabled, the TX RF gain drops the fault can be used to cause significant er change, inter-TX gain imbalance and an nount of inter-TX phase imbalance.					
		b0	TX0					
		b0 b1	TX1					
		b1 b2	TX2					
		02 Others	RESERVED					
			-					
		For each bit, fault	1 = inject fault, 0 = remove injected					
TX_PHASE_INV	1	injected, along fault is enabled constant value cause a control	TX Phase cates if TX channels should have fault with some further programmability. If the , the TX BPM polarity (phase) is forced to a as programmed. The fault can be used to lled amount (180 degree) of inter-TX phase vell as BPM functionality failure.					
		Bit number	TX Channel					
		b0	TX_FAULT (Common for all TX chan- nels)					
		b1	RESERVED					
		b2	RESERVED					
		b3	TX0_BPM_VALUE					
		b4	TX1_BPM_VALUE					
		b5	TX2_BPM_VALUE					
		Others	RESERVED					
		For each TXn_BPM_VALUE: Applicable only if TX_FAULT is enabled. Value = 0: force TX $<$ n $>$ BPM polarity to 0 Value = 1: force TX $<$ n $>$ BPM polarity to 1.						
		NOTE: The TXn_BPM_VALUE takes effect only whe TX_FAULT value is changed						

Table 7.32 – continued from previous page

Continued on next page

SYNTH_FAULT	1	This field indic injected. SYNTH_VCO_C synthesizer is control voltage of band emission just before the executed and re SYNTH_FREQ. synthesizer free waveform is for	Synthesizer Frequency cates which Synthesizer faults should be DPENLOOP: If the fault is enabled, the forced in open loop mode with the VCO forced to a constant. In order to avoid out ons in this faulty state, this fault is injected e PLL_CONTROL_VOLTAGE_MONITOR is eleased just after its completion. _MON_OFFSET: If the fault is enabled, the equency monitor's ideal frequency ramp preced to be offset from the actual ramp a constant, causing monitoring to detect
		Bit number	Enable Fault
		b0	SYNTH_VCO_OPENLOOP
		b1	SYNTH_FREQ_MON_OFFSET
		Others	RESERVED
		For each bit, fault	1 = inject fault, 0 = remove injected
SUPPLY_LDO_ FAULT	1		cates whether some LDO output voltage e injected or not.
		Bit number	Enable Fault
		b0	SUPPLY_LDO_RX_LODIST_FAULT
		Others	RESERVED
		LO distribution changed compa	RX_LODIST_FAULT: if enabled, the RX sub system's LDO output voltage is slightly ared to normal levels to cause INTERNAL_ iNALS_MONITOR to detect failure (under bry).
		fault	1 = inject fault, 0 = remove injected It injection is ineffective under LDO bypass

Continued on next page

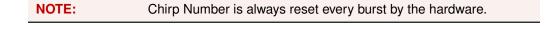

MISC_FAULT	1	This field indic should be injec	ates whether a few miscellaneous faults ted or not.				
		Bit number	Enable Fault				
		b0	GPADC_CLK_FREQ_FAULT				
		Others	RESERVED				
		GPADC_CLK_FREQ_FAULT: if enabled, the GPADC clock frequency is slightly increased compared to normal usage to cause BSS DCC_CLOCK_FREQ_MONITOR to detect failure. For each bit, 1 = inject fault, 0 = remove injected					
		fault					
MISC_THRESH_ FAULT	1	This field indicates whether faults should be forced in the threshold comparisons in the software layer of some monitors. If a fault is enabled, the logic in the min-max threshold comparisons used for failure detection is in- verted, causing a fault to be reported. During these faults, no hardware fault condition is injected in the device.					
		Bit number	Enable Fault				
		b0	GPADC_INTERNAL_SIGNALS_MONI- TOR				
		Others	RESERVED				
		For each bit, fault	1 = inject fault, 0 = remove injected				
RESERVED	3	0x000000					
RESERVED	4	0x00000000					

Table 7.32 – continued from previous page

8 Chirp Parameters (CP) and Chirp Quality (CQ) data

8.1 Chirp Parameters data

Chirp parameter information is always updated in the CP registers DSS_REG_VBUSM__CPREG[0-3] for single chirp use case.

			Chan	inel 0			Char	inel 1			Char	inel 2			Char	inel 3	
		Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14	Byte 15
	0	Channel Number			1:8]	Channel Number			1:8]	Channel Number			1:8]	Channel Number			1:8]
	1	Nur Che		5		Nur Nur		5		Nur Ch		5		Rur Ch		5	0.5
	2		-	er[7:	Chirp Number[1		5	er[7:	Chirp Number[1		5	er[7:	Chirp Number[1			er[7:	Chirg Number[
Bits	3	file	Reserved	Number[7:0]	ź	file	Reserved	Number[7:0]	ź	file	Reserved	Number[7:0]	ź	file	erved	Number[7:0]	ź
-	4	Profile	Res		- 71	Profile Number	Res			Profile Number	Res	l Ž d	- 71	Profile Number	Res		- 71
	5			Chirp	Reserved			Chirp	Reserved			Chirp	Reserved			Chirp	Reserved
	6	rved			Rest	rved			Rest	rved	1		Rest	rved	1		Rest
	7	Reser				Reserved				Reserved				Reserved			

Figure 8.1: Chirp parameter information fields

.

	31	23 16	15 8	7 0
DSS_REG_VBUSM. CH0CPREG0	Byte 3	Byte 2	Byte 1	Byte 0
DSS_REG_VBUSM. CH0CPREG1	Byte 7	Byte 6	Byte 5	Byte 4
DSS_REG_VBUSM. CH0CPREG2	Byte 11	Byte 10	Byte 9	Byte 8
DSS_REG_VBUSM. CH0CPREG3	Byte 15	Byte 14	Byte 13	Byte 12

.

Figure 8.2: Chirp parameter information from DSS registers

For multichip use case, the CP data is available for up to 8 chirps in DSS_REG_VBUSM.CH[0-7]CPREG[0-3].

8.2 Chirp Quality data

Chirp quality information is divided into 3 parts

- 1. CQ0 Wideband signal and image energy information (Reserved for future use)
- 2. CQ1 RX signal and image band energy statistics
- 3. CQ2 RX ADC and IF saturation information

CQ data will be available in CQ RAM which is a ping-pong memory when the CQ monitors are enabled. Currently supported CQ monitors are AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB for CQ2 and AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB for CQ1. CQ data will be refreshed every chirp by the hardware. User has to ensure that before the next chirp finishes, the current chirps' CQ data is either processed or transferred to a local memory for further processing.

NOTE:	CQ0 is not supported by firmware currently, but the CQ RAM will
	be updated for CQ0 data. Maximum size of CQ0 data is 256 bytes.
	Users should ignore the CQ RAM for CQ0.

The starting location (on 128 bit boundary) of each CQ data within the CQ memory can be configured by programming DSS_REG.CQCFG1[12:4] for CQ0, DSS_REG.CQCFG1[21:13] for CQ1 and DSS_REG.CQCFG1[30:22] for CQ2.

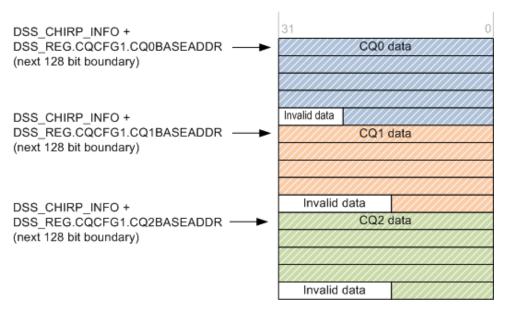


Figure 8.3: CQ data start address configuration in single chirp use case

For N-chirp use case, when user wishes to process N chirps simultaneously, then CQ0 for all N chirps will be concatenated together in memory. Similarly CQ1 and CQ2 for all N chirps will also be concatenated together.

NOTE:	When CQ data is concatenated in N-chirp use case, the CQ data
	for new chirp starts on the next 128 bit boundary.

Interface Control Document Revision 0.98 - October 19, 2018

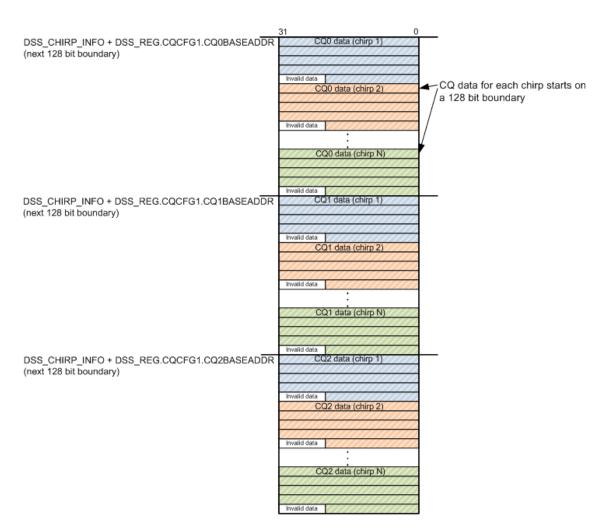


Figure 8.4: CQ data start address configuration in multi chirp use case

The CQDATAWIDTH parameter in DSS_REG.CQCFG1 defines the packing of the CQ data in the CQ memory in either 16-bit mode, 12-bit mode or in 14-bit mode.

8.2.1 CQ1

The signal band and image band are separated using a two-channel filter bank and the ADC sampling time duration is monitored in terms of primary and secondary time slices, as shown below.

ADC Sampling Time Time slices – Primary (P_n) and Secondary (S_n) P_1 P_2 P_3 ... $P_{(N+1)/2}$ S_1 S_2 ... $S_{(N-1)/2}$

Figure 8.5: Time slices during RX signal and image band monitor and saturation monitor

For each of the two bands (signal and image), for each time slice, the input-referred average power in the slice in negative dBm is recorded as an 8-bit unsigned number, with 1 LSB = -0.5 dBm

CQ1 data is stored in memory as shown below (in 16-bit mode)

31 24	23 16	15 8	7 0
Pi1	P _{s1}	0	Ν
P ₁₂	P_{s2}	Si1	S _{s1}
P _{i3}	P _{s3}	S _{i2}	S _{s2}
:	:	:	:
P _{(N+1)/2}	P _{8(N+1)/2}	S _{i(N-1)2}	S _{8(N-1)/2}

Figure 8.6: CQ1 data format in memory in 16-bit mode

N indicates the total number of primary and secondary slices which are monitored (maximum value of N is 127). P_{s,i_n} indicates the power of primary slice n for {signal, image} band and S_{s,i_n} indicates the power of secondary slice n for {signal, image} band. Each power is encoded in 8 bit unsigned number with each LSB representing -0.5 dBm.

Since maximum value of N is 127, the maximum size of CQ1 data in 16-bit mode is 256 bytes

NOTE:	In real output mode, since there is no image band visibility, only the
	signal band statistics will be meaningful.

Similarly, in 12-bit and 14-bit modes, the CQ1 data in CQ memory will be packed as shown below. Only the relevant bits in each 16 bits of memory (either 12 bits or 14 bits) are useful and other bits and not written by hardware.

63	56 55	48	47 40	39	32 31	24 23	16 15	8 7	0
	SI1	S _{s1} [7:4]	S _{s1} [3:0]	P _{I1}		P_{s1}	0	0	Ν
}		4 bits-,	r ,—4 bits—,	8 bits-		8 bits	+4 bits-+	, 4 bits _	
127	120 119	112	111 104	103	96 95	88 87	80 79	72 7	1 64
	P _{I3}	P _{s3} [7:4]	P _{s3} [3:0]	S ₁₂		S _{s2}	P ₁₂ [7:4]	P ₁₂ [3:0]	P _{s2}

Figure 8.7: CQ1 data format in memory in 12-bit mode

63	56 55	48 47	40 39	32 31	24 23	16 15	8 7	0
	P _{s2}	S ₁₁ [7:2]	S_{s1}	P ₁₁ [7:4] P ₁₁	3:0] P _{s1}	0	0	N
	—8 bits——,	6 bits 2 bits	8 bits	+4 bits + +4 I	oits 8 bits	2 bits, — /	6 bits	
1								
127	120 119	112 111	104 103	96 95	88 87	80 79	72 7	1 64
127	120 119 S ₁₃	112 111 S _{s3} [7:2]	104 103 P ₁₃	96 95 P _{s3} [7:4]		<u> </u>	72 7 S _{s2} [5:0]	1 64 P ₁₂

Figure 8.8: CQ1 data format in memory in 14-bit mode

8.2.2 CQ2

The analog to digital interface includes a 100 MHz bit stream indicating saturation events in the ADC/IF sections, for each channel. This one-bit indicator for each channel is monitored during the ADC sampling time duration in a time-sliced manner, as shown in Figure 8.5.

For each time slice, a saturation event count is recorded. This count is the sum of saturation event counts across all RX channels selected for monitoring, capped to a maximum count of 255 (8 bits). The saturation counts are stored in memory as shown below

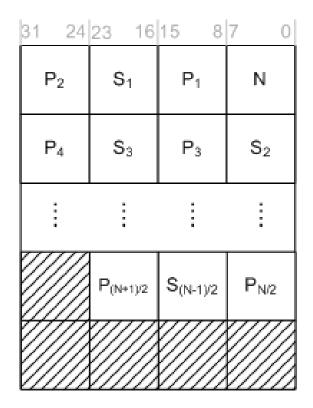


Figure 8.9: CQ2 data format in memory in 16-bit mode

N indicates the total number of primary and secondary slices which are monitored (maximum value of N is 127). P_n indicates the accumulated saturation count for all enabled RX channels in primary slice n, S_n indicates the accumulated saturation count for all enabled RX channels in secondary slice *n*.

Since maximum value of N is 127, the maximum size of CQ2 data in 16-bit mode is 128 bytes. Similarly, in 12-bit and 14-bit modes, the CQ2 data in CQ memory will be packed as shown below. Only the relevant bits in each 16 bits of memory (either 12 bits or 14 bits) are useful and other bits and not written by hardware.

63	56 55	48 47	40	39 3	32 31	24 23	16 15	8	7	0
	S ₂	P ₂ [7:4]	P ₂ [3:0]	S ₁		P ₁	0	0	Ν	
Ł	-8 bits	4 bits	, 4 bits →	8 bits-	-+ +	8 bits	4 bits	, 4 bits →	-8 bits-	\rightarrow
127	120 119	112 111	104	103 9	96 95	88 87	80 79	72	71	64
	S_5	P ₅ [7:4]	P ₅ [3:0]	S_4		P_4	S ₃ [7:4]	S ₃ [3:0]	P_3	
L.		4 bits	4 bits	8 bits	\rightarrow	8 bits	4 bits	, _4 bits_		$ \rightarrow $

Figure 8.10: CQ2 data format in memory in 12-bit mode

63	56 55	48 47	40 39	32 31	24 23	16 15	8	7 0
	P ₃	S ₂ [7:2]	I P.	S1[7:4] S1	[3:0] P ₁	0	0	Ν
Ł	8 bits,	—6 bits—	ts 8 bits	+4 bits + -4	bits 8 bits	2 bits	—6 bits—	8 bits
127	120 119	112 111	104 103	96 95	88 87	80 79	72	71 64
127	120 119 S ₆	112 111 P ₆ [7:2]	l s.		88 87 [3:0] S ₄	80 79	72 P ₄ [5:0]	71 64 S ₃

Figure 8.11: CQ2 data format in memory in 14-bit mode

9 Calibration and monitoring durations

9.1 Boot time calibration durations

SI. No.	Calibration	Duration (µs)
1	APLL	330
2	Synth VCO	1300
3	LO DIST	12
4	ADC DC	600
5	HPF cutoff	3500
6	LPF cut off	3200
7	Peak detector	4200
8	TX power (assumes 2 TX use-case)	6000
9	RX gain	2300
10	TX phase	40 000
11	RX IQMM	32 000

Table 9.1: Duration of boot time calibrations

9.2 Run time calibration durations

Table 9.2 lists the duration of all run time calibrations. Note that the firmware performs calibrations in small chunks of 250 μ s. User has to ensure that the total idle time in one CAL_MON_TIME_UNIT is sufficient to fit the enabled calibrations.

To configure CALIB_MON_TIME_UNIT, user has to calculate the total available IDLE time in the frame and subtract 100 μ s for every frame to allow for preparation of frame. The duration for all the enabled calibrations should be included and following software overheads should be added to that number

SI. No.	Calibration	Duration (μ s)
1	APLL	150
2	Synth VCO	350
3	LO DIST	30
4	Peak detector	500
5	TX power (assumes 1 TX, 1 profile)	800
6	RX gain	30
7	Application of calibration to hardware (This needs to be included always)	150

Table 9.2:	Duration	of run	time	calibrations
------------	----------	--------	------	--------------

9.3 Monitoring duration

Table 9.3 lists the duration of all analog monitors and Table 9.4 lists the duration of all digital monitors

SI. No.	Monitors	Duration (μ s)
1	RX gain phase (assumes 1 RF frequency)	1250
2	RX noise figure (assumes 1 RF frequency)	250
3	RX IF stage (assumes 1 RF frequency)	1000
4	TX power (assumes 1 TX, 1 RF frequency)	200
5	TX ballbreak (assumes 1 TX)	250
6	TX gain phase mismatch (assumes 1 TX, 1 RF frequency)	400
7	TX BPM (assumes 1 TX)	575
	- TX phase shifter (assumes 1 TX)	525
8	Synthesizer frequency	0
9	External analog signals (all 6 GPADC channels enabled)	150
10	TX Internal analog signals (assumes 1 TX)	200
11	RX internal analog signals	1700
12	PMCLKLO internal analog signals	400
13	GPADC internal signals	50
14	PLL control voltage	210
15	Dual clock comparator (assumes 6 clock compara- tors)	110
16	RX saturation detector	0
17	RX signal and image band monitor	0
18	RX mixer input power	350

Table 9.3: Duration of analog monitors

Table 9.4: Duration of digital monitors	Table 9.4:	Duration	of digital	monitors
---	------------	----------	------------	----------

SI. No.	Monitors	Duration (μ s)
1	Periodic configuration register readback	100
2	ESM monitoring	50
3	DFE LBIST monitoring	1000
4	Frame timing monitoring	10

9.4 Software overheads

When the calibrations or monitorings are enabled, the software needs certain time for reading the temperature sensors, reading the DFE statistics, preparing the calibration or monitoring reports and to clear the watch dog. All these time durations should also be accounted when computing the CALIB_MON_TIME_UNIT. The details of the software overheards are given in the Table 9.5

Table 9.5:	Software overheads every FTTI that should be accounted to program
	CALIB_MON_TIME_UNIT and CALIBRATION_PERIODICITY

SI. No.	Software overhead	Duration (μ s)
1	Periodic monitoring of stack usage	20
2	Minimum monitoring duration (report formation, digital energy monitor at the end of FTTI, temper- ature read every FTTI)	1000
3	Minimum calibration duration (report formation, temperature read every CAL_MON_TIME_UNIT)+	500
4	Idle time needed per FTTI for windowed watchdog	$\begin{array}{llllllllllllllllllllllllllllllllllll$

9.4.1 Note on idle time for clearing the watchdog

The clearing window of the watch dog is 12.5% of total FTTI as shown in the figure below. One FTTI can have multiple frames in legacy frame configuration or in advanced frame configuration - each frame can have multiple sub-frames and each sub-frame can have multiple bursts.

The required idle time for clearing watch dog is absolute 12.5% of the overall FTTI interval, this 12.5% clearing window can have multiple frames or subframes or bursts. The granularity of the required watchdog idle time calculation is limited to sub-frame period.

Example

A user has enabled advanced frame configuration where each frame consists of 3 sub-frames and each sub-frame is of 5 ms duration. FTTI is configured as 25 frames. Each sub-frame contains 100 chirps, each chirp consisting of 4 μ s idle time and 21 μ s ramp time. i.e. duty cycle is 50%. The watchdog clearing window and time for calibration and monitoring is calculated as follows

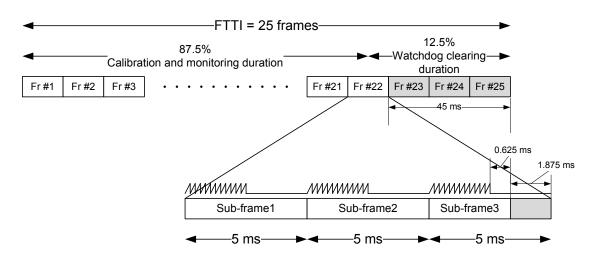


Figure 9.1: Watchdog idle time calculation

Frame duty cycle	=	50	%
Idle time per frame (50% of 15 ms)	=	7.5	ms
FTTI (15 ms $ imes$ 25 frames)	=	375	ms
Available idle time per FTTI (50% of 375 ms)	=	187.5	ms
Ideal watchdog clearing window (12.5% of 375 ms)	=	46.875	ms
The calculated watchdog clearing window in firmware is as follows			
Duration of complete frames which can be fit in watchdog		45	
clearing window $(\lceil 46.875/15 \rceil \times 15)$	=	45	ms
Fractional watchdog clearing time (which will be fit in the		1.075	
sub-frame idle time) $(46.875 - (15 \times 3))$	=	1.875	ms
Time available for calibration/monitoring per FTTI	_	163.125	ms
$(21 \text{ frames} \times 7.5 \text{ ms}) + (2 \text{ sub-frames} \times 2.5 \text{ ms}) + 0.625 \text{ ms}) \int$	_	100.120	1115

The following examples show how the user can budget for calibration and monitoring time and configure the FTTI correctly.

A user has enabled 2 TX, uses only 1 profile, frame configuration consists of 64 chirps, each chirp is of duration is 66 μ s (56 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 10 ms. User has enabled all run time calibrations. None of the analog monitoring is enabled.

Frame duty cycle	=	42.24%
Idle time per frame (57.76% of 10 ms)	=	5.776 ms
Idle time available for calibration/monitoring per frame $\Big \}$	_	5.676 ms
(100 μ s is for frame preparation)		0.0701113
Time needed for all run time calibrations	_	2760 μ s
$150 + 300 + 30 + 500 + (800 \times 2) + 30 + 150$	_	
Minimum time for software overheads	=	2770 μ s
$20 + 1000 + 500 + (10000 \times 1/8)$		
Total time needed per frame for calibration \int	=	5530 μ s
2760 μs + 2770 μs		

Total time needed per frame for calibration is 5.530 μ s which is less than the frame idle time (5.676 ms) and hence this configuration will be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 1 and CALIBRATION_PERIODICITY as 100. With this setting calibrations are triggered once every 100 frames (i.e. once every 1 s)

Consider another example where the frame configuration remains the same as in example 1, but frame periodicity is reduced to 8 ms.

Frame duty cycle Idle time per frame (47.20% of 8 ms)	=	52.80% 3.776 ms
Idle time available for calibration/monitoring per frame $(100 \ \mu s \text{ is for frame preparation})$	=	3.676 ms
Time needed for all run time calibrations	=	2760 μ s
Minimum time for software overheads $20 + 1000 + 500 + (8000 \times 1/8)$	=	2520 μ s
Total time needed per frame for calibration $\left(\begin{array}{c} \\ \\ \end{array} \right)$ 2760 μ s + 2520 μ s $\left(\begin{array}{c} \\ \end{array} \right)$	=	5280 μ s

Total time needed per frame for calibration is 5.280 μ s which is more than the frame idle time (3.676 ms) and hence this configuration will **not** be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 2 and CALIBRATION_PERIODICITY as 63. With this setting calibrations are triggered once every 126 frames (i.e. once every 1.008 s)

A user has enabled 2 TX, uses 2 profiles, frame configuration consists of 32 chirps, each chirp is of duration is 90 μ s (80 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 6 ms. User has enabled all run time calibrations. None of the analog monitoring is enabled.

Frame duty cycle	=	48.00%
Idle time per frame (52.00% of 6 ms)	=	3.120 ms
Idle time available for calibration/monitoring per frame $\Big ($	_	3.020 ms
(100 μ s is for frame preparation) \int	_	
Time needed for all run time calibrations \int	_	4360 μ s
$150 + 300 + 30 + 500 + (800 \times 2 \times 2) + 30 + 150$	_	
Minimum time for software overheads	=	2270 μ s
$20 + 1000 + 500 + (6000 \times 1/8)$	_	
Total time needed per frame for calibration \int	=	6630 μ s
4360 μs + 2270 μs (

Total time needed per frame for calibration is 6.630 μ s which is more than the frame idle time (3.020 ms) and hence this configuration will **not** be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 3 and CALIBRATION_PERIODICITY as 56. With this setting, minimum required time is 8.13 ms and available idle time for calibration/monitoring is 9.06 ms and calibrations are triggered once every 168 frames (i.e. once every 1.008 s)

A user has enabled 2 TX, uses 2 profiles, frame configuration consists of 32 chirps, each chirp is of duration is 90 μ s (80 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 6 ms. User has enabled all run time calibrations. Analog monitorings which are enabled are (a) TX output power monitor for TX0 and TX1 (b) TX BPM monitor for TX0 and TX1 (c) RX gain phase monitor and (d) RX noise figure monitor. Each of the monitors are configured to be run for 1 profile and 3 RF frequencies (low, mid and high) as defined by the profile.

Frame duty cycle	=	48.00%
Idle time per frame (52.00% of 6 ms)	=	3.120 ms
Idle time available for calibration/monitoring per frame $\Big)$	=	3.020 ms
(100 μ s is for frame preparation) \int		
Time needed for all run time calibrations	=	4360 μ s
$150 + 300 + 30 + 500 + (800 \times 2 \times 2) + 30 + 150$		
Time needed for all monitoring	_	6950
$(1250 \times 3) + (250 \times 3) + (200 \times 3 \times 2) + (575 \times 2)$	=	6850 μ s
Minimum time for software overheads		0070
$20 + 1000 + 500 + (6000 \times 1/8)$	=	2270 μ s
Total time needed per frame for calibration and monitoring		10400
4360 μ s + 6850 μ s + 2270 μ s	=	13480 μ s

Total time needed per frame for calibration is 13.480 μ s which is more than the frame idle time (3.020 ms) and hence this configuration will **not** be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 6 and CALIBRATION_PERIODICITY as 28. With this setting, minimum required time for calibration and monitoring is 16.48 ms and available idle time for calibration/monitoring is 18.72 ms. Monitoring is triggered once in 6 frames and calibration is triggered once in 168 frames (i.e. once every 1.008 s)

9.5 Sample Application

For sample application please refer DFP (device firmware package) user guide document.

IMPORTANT NOTICE

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated