mmWave Radar Interface Control Document

Revision 2.7

February 06, 2020

Contents

							Pa	age
C	ontei	nts						хi
Li	st of	Figures						хi
Li	st of	Tables						xvii
Re	evisi	on Histo	ry					xix
1	Intr 1.1 1.2	•	Audience					1 1 2
2	Tl r 2.1 2.2 2.3	Commun Commun 2.2.1 2.2.2	Radar Sensor Communications Overview dication Link Description dication Link configuration SPI Mailbox essage Structure SYNC MSGHDR MSGDATA CRC	 	 	 		3 3 3 5 6 6 12 13
3	Me: 3.1 3.2	Commun	ocessing nication protocol	 	 	 		15 16 16 17 18 19
4	4.1		ace Messages Descriptions y of all messages and their associated sub-blocks					20 20

	4.3	AWR_NACK_MSG
	4.4	AWR_ERROR_MSG
	4.5	AWR_RF_STATIC_CONF_SET_MSG
	4.6	AWR_RF_STATIC_CONF_GET_MSG
	4.7	AWR_RF_INIT_MSG
	4.8	AWR_RF_DYNAMIC_CONF_SET_MSG
	4.9	AWR_RF_DYNAMIC_CONF_GET_MSG
	4.10	AWR_RF_FRAME_TRIG_MSG
	4.11	AWR_RF_ADVANCED_FEATURES_CONF_SET_MSG
	4.12	AWR_RF_MONITORING_CONF_SET_MSG
	4.13	AWR_RF_STATUS_GET_MSG
	4.14	AWR_RF_MONITORING_REPORT_GET_MSG
	4.15	AWR_RF_MISC_CONF_SET_MSG
	4.16	AWR_RF_MISC_CONF_GET_MSG
	4.17	AWR_RF_ASYNC_EVENT_MSG1
	4.18	AWR_RF_ASYNC_EVENT_MSG2
	4.19	AWR_DEV_RFPOWERUP_MSG
	4.20	AWR_DEV_CONF_SET_MSG
	4.21	AWR_DEV_CONF_GET_MSG
	4.22	AWR_DEV_FILE_DOWNLOAD_MSG
	4.23	AWR_DEV_FRAME_CONFIG_APPLY_MSG
	4.24	AWR_DEV_STATUS_GET_MSG
	4.25	AWR_DEV_ASYNC_EVENT_MSG
_		w Francisco el ADI.
5		rr Functional APIs Out black male and the ANND FERROR MOO
	5.1	Sub block related to AWR_ERROR_MSG
	- 0	5.1.1 Sub block 0x0000 – AWR_RESP_ERROR_SB
	5.2	Sub blocks related to AWR_RF_STATIC_CONF_SET_MSG
		5.2.1 Sub block 0x0080 – AWR_CHAN_CONF_SET_SB
		5.2.2 Sub block 0x0082 – AWR_ADCOUT_CONF_SET_SB
		5.2.3 Sub block 0x0083 – AWR_LOWPOWERMODE_CONF_SET_SB 50 5.2.4 Sub block 0x0084 – AWR DYNAMICPOWERSAVE CONF SET SB 50
		5.2.5 Sub block 0x0064 = AWR_DTNAMICFOWERSAVE_CONF_SET_SB 50
		5.2.6 Sub block 0x0086 – AWR_RF_DEVICE_CFG_SB
		5.2.7 Sub block 0x0087 – AWR_RF_RADAR_MISC_CTL_SB
		5.2.8 Sub block 0x0088 – AWR_HF_HADAH_INISC_CTL_SB
		5.2.9 Sub block 0x0089 – AWR_RF_INIT_CALIBRATION_CONF_SB 50
		5.2.10 Sub block 0x008A – AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_
		SB
		5.2.11 Sub block 0x008B – AWR CAL DATA RESTORE SB
		5.2.12 Sub block 0x008C – AWR_CAL_DAIA_RESTORE_SB
		SB
		5.2.13 Sub block 0x008D – AWR APLL SYNTH BW CONTROL SB 63
	5.3	Sub blocks related to AWR_RE_STATIC_CONF_GET_MSG 64

	5.3.1	Sub block 0x00A0 – 0x00AA – RESERVED	. 64
	5.3.2	Sub block 0x00AB – AWR_CAL_DATA_SAVE_SB	. 64
	5.3.3	Sub block 0x00AC - AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB	. 67
5.4	Sub bloc	cks related to AWR_RF_INIT_MSG	. 69
	5.4.1	Sub block 0x00C0 – AWR_RF_INIT_SB	. 69
5.5	Sub bloc	cks related to AWR_RF_DYNAMIC_CONF_SET_MSG	. 69
	5.5.1	Sub block 0x0100 – AWR_PROFILE_CONF_SET_SB	. 69
	5.5.2	Sub block 0x0101 – AWR_CHIRP_CONF_SET_SB	. 78
	5.5.3	Sub block 0x0102 – AWR_FRAME_CONF_SET_SB	. 79
	5.5.4	Sub block 0x0103 - AWR_CONT_STREAMING_MODE_CONF_SET_S	SB 83
	5.5.5	Sub block 0x0104 – AWR_CONT_STREAMING_MODE_EN_SB	. 86
	5.5.6	Sub block 0x0105 – AWR_ADVANCED_FRAME_CONF_SB	. 86
	5.5.7	Sub block 0x0106 – AWR_PERCHIRPPHASESHIFT_CONF_SB	. 98
	5.5.8	Sub block 0x0107 – AWR_PROG_FILT_COEFF_RAM_SET_SB	. 99
	5.5.9	Sub block 0x0108 – AWR_PROG_FILT_CONF_SET_SB	. 100
	5.5.10	Sub block 0x0109 – AWR_CALIB_MON_TIME_UNIT_CONF_SB	. 101
	5.5.11	Sub block 0x010A - AWR_RUN_TIME_CALIBRATION_CONF_AND_	_
		TRIGGER_SB	. 103
	5.5.12	Sub block 0x010B – AWR_DIGITAL_COMP_EST_CONTROL_SB	. 110
	5.5.13	Sub block 0x010C - AWR_RX_GAIN_TEMPLUT_SET_SB	. 113
	5.5.14	Sub block 0x010D – AWR_TX_GAIN_TEMPLUT_SET_SB	. 114
	5.5.15	Sub block 0x010E - AWR_LOOPBACK_BURST_CONF_SET_SB	. 117
	5.5.16	Sub block 0x010F – AWR_DYN_CHIRP_CONF_SET_SB	. 123
	5.5.17	Sub block 0x0110 - AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_	_
		SET_SB	
	5.5.18	Sub block 0x0111 - AWR_DYN_CHIRP_ENABLE_SB	
	5.5.19	Sub block 0x0112 – AWR_INTERCHIRP_BLOCKCONTROLS_SB	
	5.5.20	Sub block 0x0113 – AWR_SUBFRAME_START_CONF_SB	
	5.5.21	Sub block 0x0115 – AWR_ADVANCE_CHIRP_CONF_SB	
	5.5.22	Sub block 0x0116 - AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_	
		SB	
	5.5.23	Sub block 0x0117 – AWR_MONITOR_TYPE_TRIG_CONF_SB	
5.6	Sub bloc	cks related to AWR_RF_DYNAMIC_CONF_GET_SB	. 154
	5.6.1	Sub block 0x0120 – AWR_PROFILE_CONF_GET_SB	
	5.6.2	Sub block 0x0121 – AWR_CHIRP_CONF_GET_SB	. 155
	5.6.3	Sub block 0x0122 – AWR_FRAME_CONF_GET_SB	. 155
	5.6.4	Sub block 0x0123 – RESERVED	. 156
	5.6.5	Sub block 0x0124 – RESERVED	
	5.6.6	Sub block 0x0125 – AWR_ADV_FRAME_CONF_GET_SB	. 156
	5.6.7	Sub block 0x0126 – RESERVED	. 156
	5.6.8	Sub block 0x0127 – RESERVED	. 156
	5.6.9	Sub block 0x0128 – RESERVED	. 156
	5.6.10	Sub block 0x0129 – RESERVED	. 156
	5.6.11	Sub block 0x012A – RESERVED	. 156

	5.6.12	Sub block 0x012B – RESERVED	. 156
	5.6.13	Sub block 0x012C - AWR_RX_GAIN_TEMPLUT_GET_SB	. 156
	5.6.14	Sub block 0x012D - AWR_TX_GAIN_TEMPLUT_GET_SB	. 157
5.7	Sub bloc	ks related to AWR_FRAME_TRIG_MSG	. 157
	5.7.1	Sub block 0x0140 – AWR_FRAMESTARTSTOP_CONF_SB	. 157
5.8	Sub bloc	ks related to AWR_RF_ADVANCED_FEATURES_CONF_SET_MSG .	. 158
	5.8.1	Sub block 0x0180 - AWR_BPM_COMMON_CONF_SET_SB	. 158
	5.8.2	Sub block 0x0181 – AWR_BPM_CHIRP_CONF_SET_SB	. 159
5.9	Sub bloc	ks related to AWR_RF_STATUS_GET_MSG	. 160
	5.9.1	Sub block 0x0220 – AWR_RF_VERSION_GET_SB	. 160
	5.9.2	Sub block 0x0221 - AWR_RF_CPUFAULT_STATUS_GET_SB	. 162
	5.9.3	Sub block 0x0222 - AWR_RF_ESMFAULT_STATUS_GET_SB	. 163
	5.9.4	Sub block 0x0223 – AWR_RF_DIEID_GET_SB	. 166
	5.9.5	Sub block 0x0224 - AWR_RF_BOOTUPBIST_STATUS_GET_SB	. 167
5.10	Sub bloc	ks related to AWR_RF_MONITORING_REPORT_GET_MSG	. 169
	5.10.1	Sub block 0x0260 - AWR_RF_DFE_STATISTICS_REPORT_GET_SB	. 169
5.11	Sub bloc	ks related to AWR_RF_MISC_CONF_SET_MSG	. 177
	5.11.1	Sub block 0x02C0 – RESERVED	. 177
	5.11.2	Sub block 0x02C1 – RESERVED	. 177
	5.11.3	Sub block 0x02C2 - AWR_RF_TEST_SOURCE_CONFIG_SET_SB .	. 177
	5.11.4	Sub block 0x02C3 - AWR_RF_TEST_SOURCE_ENABLE_SET_SB .	. 180
	5.11.5	Sub block 0x02C4 – 0x02CB RESERVED	. 180
	5.11.6	Sub block 0x02CC - AWR_RF_LDO_BYPASS_SB	. 180
	5.11.7	Sub block 0x02CD - AWR_RF_PALOOPBACK_CFG_SB	. 182
	5.11.8	Sub block 0x02CE - AWR_RF_PSLOOPBACK_CFG_SB	. 183
	5.11.9	Sub block 0x02CF - AWR_RF_IFLOOPBACK_CFG_SB	. 184
	5.11.10	Sub block 0x02D0 - AWR_RF_GPADC_CFG_SET_SB	. 185
	5.11.11	Sub block 0x02D1 – RESERVED	
	5.11.12	Sub block 0x02D2 – RESERVED	. 188
	5.11.13	Sub block 0x02D3 – RESERVED	
5.12	Sub bloc	ks related to AWR_RF_MISC_CONF_GET_MSG	. 188
	5.12.1	Sub block 0x02E0 to 0x2E9 – RESERVED	. 188
	5.12.2	Sub block 0x02EA – AWR_RF_TEMPERATURE_GET_SB	
5.13	Sub bloc	ks related to AWR_RF_ASYNC_EVENT_MSG1	. 190
	5.13.1	Sub block 0x1000 – RESERVED	. 190
	5.13.2	Sub block 0x1001 – RESERVED	
	5.13.3	Sub block 0x1002 – AWR_AE_RF_CPUFAULT_SB	. 190
	5.13.4	Sub block 0x1003 – AWR_AE_RF_ESMFAULT_SB	. 192
	5.13.5	Sub block 0x1004 – AWR_AE_RF_INITCALIBSTATUS_SB	
	5.13.6	Sub block 0x1005 – RESERVED	
	5.13.7	Sub block 0x1006 – RESERVED	. 197
	5.13.8	Sub block 0x1007 – RESERVED	
	5.13.9	Sub block 0x1008 – RESERVED	. 197
	5 13 10	Sub block 0v1009 - RESERVED	197

SB 5.13.12 Sub block 0x100B – AWR_AE_RF_FRAME_TRIGGER_RDY_SB 5.13.13 Sub block 0x100C – AWR_AE_RF_GPADC_RESULT_DATA_SB 5.13.14 Sub block 0x100D – RESERVED 5.13.15 Sub block 0x100D – RESERVED 5.13.16 Sub block 0x100F – RESERVED 5.13.17 Sub block 0x100F – AWR_FRAME_END_AE_SB 5.13.18 Sub block 0x1010 – AWR_ANALOGFAULT_AE_SB 5.13.19 Sub block 0x1011 – AWR_CAL_MON_TIMING_FAIL_REPORT_AE_S 5.13.20 Sub block 0x1012 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB 5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB 5.13.22 Sub block 0x1014 – RESERVED 5.13.23 Sub block 0x1016 – AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 – AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.25 Sub block 0x1017 – AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.28 Sub block 0x1018 – AWR_MONITOR_RX_DOWER_REPORT_AE_SB 5.13.29 Sub block 0x1018 – AWR_MONITOR_RX_DOWER_REPORT_AE_SB 5.13.29 Sub block 0x1010 – AWR_MONITOR_RX_DOWER_REPORT_AE_SB 5.13.29 Sub block 0x1010 – AWR_MONITOR_TX_DOWER_REPORT_AE_S 5.13.29 Sub block 0x1010 – AWR_MONITOR_TX_DOWER_REPORT_AE_S 5.13.30 Sub block 0x1010 – AWR_MONITOR_TX_DOWER_REPORT_AE_S 5.13.31 Sub block 0x1010 – AWR_MONITOR_TX_DOWER_REPORT_AE_S 5.13.33 Sub block 0x1010 – AWR_MONITOR_TX_DOWER_REPORT_AE_SB 5.14.3 Sub block 0x1010 – AWR_MONITOR_TX_DALLBREAK_REPORT_AE_SB 5.14.4 Sub block 0x1011 – AWR_MONITOR_TX_BALLBREAK_REPORT_AE_SB 5.14.5 Sub block 0x1021 – AWR_MONITOR_TX_BALLBREAK_REPORT_AE_SB 5.14.6 Sub block 0x1022 – AWR_MONITOR_TX_DALLBREAK_REPORT_AE_SB 5.14.7 Sub block 0x1022 – AWR_MONITOR_TX_DALLBREAK_REPORT_AE_SB 5.14.8 Sub block 0x1023 – AWR_MONITOR_TX_DALLBREAK_REPORT_AE_SB 5.14.9 Sub block 0x1023 – AWR_MONITOR_TX_DALLBREAK_REPORT_AE_SB 5.14.1 Sub block 0x1023 – AWR_MONITOR_TX_DALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1023 – AWR_MONITOR_TX_DALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1023 – AWR_MONITOR_TX_DALLBREAK_SHIFTER_REPOALAE_SB	NE_
5.13.13 Sub block 0x100C - AWR_AE_RF_GPADC_RESULT_DATA_SB 5.13.14 Sub block 0x100D - RESERVED 5.13.15 Sub block 0x100D - RESERVED 5.13.16 Sub block 0x100D - RESERVED 5.13.17 Sub block 0x100F - AWR_FRAME_END_AE_SB 5.13.18 Sub block 0x100F - AWR_ANALOGFAULT_AE_SB 5.13.19 Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_S 5.13.20 Sub block 0x10112 - AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB 5.13.21 Sub block 0x1013 - AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB 5.13.22 Sub block 0x1014 - RESERVED 5.13.23 Sub block 0x1015 - AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 - AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.25 Sub block 0x1017 - AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.26 Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1019 - AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB 5.13.28 Sub block 0x101A - AWR_MONITOR_RX_ISTAGE_REPORT_AE_SB 5.13.29 Sub block 0x101B - AWR_MONITOR_RX_DOWER_REPORT_AE_SB 5.13.29 Sub block 0x101B - AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101D - AWR_MONITOR_TX1_POWER_REPORT_AE_SB 5.13.31 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_SB 5.13.33 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_SB 5.13.33 Sub block 0x101D - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.1 Sub block 0x1020 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1021 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1021 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.4 Sub block 0x1022 - AWR_MONITOR_TX1_PHASE_SHIFTER_REPOR_AE_SB 5.14.4 Sub block 0x1022 - AWR_MONITOR_TX1_PHASE_SHIFTER_REPOR_AE_SB 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX1_PHASE_SHIFTER_REPOR_AE_SB	
5.13.14 Sub block 0x100E - RESERVED 5.13.15 Sub block 0x100D - RESERVED 5.13.16 Sub block 0x100F - RESERVED 5.13.17 Sub block 0x100F - AWR_FRAME_END_AE_SB 5.13.18 Sub block 0x1010 - AWR_ANALOGFAULT_AE_SB 5.13.19 Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_S 5.13.20 Sub block 0x1012 - AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB 5.13.21 Sub block 0x1013 - AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB 5.13.22 Sub block 0x1014 - RESERVED 5.13.23 Sub block 0x1015 - AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 - AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.25 Sub block 0x1016 - AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB 5.13.26 Sub block 0x1017 - AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.27 Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.28 Sub block 0x1019 - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB 5.13.29 Sub block 0x1010 - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x1010 - AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.30 Sub block 0x1010 - AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x1010 - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x1011 - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x1016 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1021 - AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1021 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.4 Sub block 0x1022 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1022 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOARAE_SB 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOARAE_SB 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOARAE_SB 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOARAE_SB	198
5.13.15 Sub block 0x100D - RESERVED 5.13.16 Sub block 0x100E - RESERVED 5.13.17 Sub block 0x100F - AWR_FRAME_END_AE_SB 5.13.18 Sub block 0x1010 - AWR_ANALOGFAULT_AE_SB 5.13.19 Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_S 5.13.20 Sub block 0x1012 - AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB 5.13.21 Sub block 0x1013 - AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB 5.13.22 Sub block 0x1014 - RESERVED 5.13.23 Sub block 0x1015 - AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 - AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.25 Sub block 0x1017 - AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB 5.13.26 Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1018 - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB 5.13.28 Sub block 0x1018 - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB 5.13.29 Sub block 0x101B - AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101B - AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101E - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101E - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.1 Sub blocks related to AWR_RF_ASYNO_EVENT_MSG2 5.14.2 Sub block 0x1020 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1021 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.4 Sub block 0x1022 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB	198
5.13.16 Sub block 0x100E - RESERVED 5.13.17 Sub block 0x100F - AWR_FRAME_END_AE_SB 5.13.18 Sub block 0x1010 - AWR_ANALOGFAULT_AE_SB 5.13.19 Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_S 5.13.20 Sub block 0x1012 - AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB 5.13.21 Sub block 0x1013 - AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB 5.13.22 Sub block 0x1014 - RESERVED 5.13.23 Sub block 0x1015 - AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 - AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB 5.13.25 Sub block 0x1017 - AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.26 Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1019 - AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB 5.13.28 Sub block 0x1014 - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB 5.13.29 Sub block 0x1018 - AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x1010 - AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101E - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101E - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.14.1 Sub block 0x1020 - AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1021 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1021 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1022 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB 5.14.3 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB 5.14.3 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB 5.14.3 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB	200
5.13.17 Sub block 0x100F – AWR_FRAME_END_AE_SB 5.13.18 Sub block 0x1010 – AWR_ANALOGFAULT_AE_SB 5.13.19 Sub block 0x1011 – AWR_CAL_MON_TIMING_FAIL_REPORT_AE_S 5.13.20 Sub block 0x1012 – AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB 5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB 5.13.22 Sub block 0x1014 – RESERVED 5.13.23 Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB 5.13.28 Sub block 0x1014 – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB 5.13.29 Sub block 0x1016 – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x1016 – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_SB 5.13.33 Sub block 0x101E – AWR_MONITOR_TX2_POWER_REPORT_AE_SB 5.14.2 Sub block 0x1020 – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.4 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX3_BALLBREAK_REPORT_AE_SB 5.14.4 Sub block 0x1022 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB 5.14.4 Sub block 0x1022 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOR_AE_SB	200
5.13.18 Sub block 0x1010 – AWR_ANALOGFAULT_AE_SB 5.13.19 Sub block 0x1011 – AWR_CAL_MON_TIMING_FAIL_REPORT_AE_S 5.13.20 Sub block 0x1012 – AWR_RUN_TIME_CALIB_SUMMARY_REPORT AE_SB 5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB 5.13.22 Sub block 0x1014 – RESERVED 5.13.23 Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB 5.13.28 Sub block 0x1014 – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101D – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.32 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101F – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101F – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.4 Sub block 0x1022 – AWR_MONITOR_TX3_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOAE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOAE_SB	200
5.13.19 Sub block 0x1011 – AWR_CAL_MON_TIMING_FAIL_REPORT_AE_S 5.13.20 Sub block 0x1012 – AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB 5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB 5.13.22 Sub block 0x1014 – RESERVED 5.13.23 Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.28 Sub block 0x1019 – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101D – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.32 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101F – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14.4 Sub block 0x1021 – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14.5 Sub block 0x1021 – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14.6 Sub block 0x1022 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.7 Sub block 0x1022 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORE_SB 5.14.8 Sub block 0x1022 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORE_SB	200
5.13.20 Sub block 0x1012 – AWR_RUN_TIME_CALIB_SUMMARY_REPORT AE_SB. 5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT AE_SB. 5.13.22 Sub block 0x1014 – RESERVED. 5.13.23 Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB. 5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT AE_SB. 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB. 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT AE_SB. 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT AE_SB. 5.13.28 Sub block 0x1014 – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101B – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.32 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101D – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.1 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub blocks 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB. 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB. 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB.	200
AE_SB. 5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORE AE_SB. 5.13.22 Sub block 0x1014 – RESERVED. 5.13.23 Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB. 5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT AE_SB. 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB. 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT AE_SB. 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT AE_SB. 5.13.28 Sub block 0x1014 – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S. 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S. 5.13.30 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S. 5.13.31 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S. 5.13.32 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S. 5.13.33 Sub block 0x101D – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_S. 5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB. 5.14.1 Sub blocks 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.3 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.4 Sub block 0x1022 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB. 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB. 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB.	SB 201
5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORAE_SB 5.13.22 Sub block 0x1014 – RESERVED 5.13.23 Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB 5.13.28 Sub block 0x1014 – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101F – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_S 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_S 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_S 5.14.3 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_S 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOAE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOAE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOAE_SB	
5.13.22 Sub block 0x1014 – RESERVED 5.13.23 Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_INDISE_FIGURE_REPORT_AE_SB 5.13.28 Sub block 0x101A – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101F – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB 5.14.4 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPOAE_SB 5.14.5 Sub block 0x1022 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB 5.14.6 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB	ORT_
5.13.23 Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB 5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT AE_SB 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT AE_SB 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT AE_SB 5.13.28 Sub block 0x101A – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_S 5.14.1 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_S 5.14.2 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_S 5.14.3 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_S 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX3_BALLBREAK_REPORT_AE_S 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX3_BALLBREAK_REPORT_AE_SB 5.14.4 Sub block 0x1022 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOAE_SB 5.14.5 Sub block 0x1023 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOAE_SB 5.14.6 Sub block 0x1023 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPOAE_SB	
5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT AE_SB 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT AE_SB 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT AE_SB 5.13.28 Sub block 0x101A – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101F – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB 5.14.1 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPOAE_SB 5.14.4 Sub block 0x1022 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB	
AE_SB 5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB 5.13.28 Sub block 0x101A – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101F – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPO_AE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPO_AE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPO_AE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPO_AE_SB	
5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB 5.13.28 Sub block 0x101A – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB 5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPOAE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB	_
SB. 5.13.26 Sub block 0x1018 – AWR_MONITOR_RX_GAIN_PHASE_REPORT AE_SB. 5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT AE_SB. 5.13.28 Sub block 0x101A – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.33 Sub block 0x101E – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB. 5.14.1 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX3_PHASE_MISMATCH_REPORT_AE_SB. 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPO_AE_SB.	
5.13.26 Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT AE_SB. 5.13.27 Sub block 0x1019 - AWR_MONITOR_RX_NOISE_FIGURE_REPORT AE_SB. 5.13.28 Sub block 0x101A - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B - AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C - AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E - AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB. 5.13.33 Sub block 0x101F - AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB. 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.2 Sub block 0x1021 - AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB. 5.14.3 Sub block 0x1022 - AWR_MONITOR_TX0_PHASE_SHIFTER_REPO_AE_SB. 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX1_PHASE_SHIFTER_REPO_AE_SB.	
5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT AE_SB 5.13.28 Sub block 0x101A – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB 5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB	-
AE_SB. 5.13.28 Sub block 0x101A - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_S 5.13.29 Sub block 0x101B - AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C - AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E - AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB. 5.13.33 Sub block 0x101F - AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB. 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.2 Sub block 0x1021 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB. 5.14.3 Sub block 0x1022 - AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB. 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX0_PHASE_SHIFTER_REPORE_AE_SB. 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX1_PHASE_SHIFTER_REPORE_AE_SB.	
 5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_S 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_S 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB 5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB 5.14.1 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX2_GAIN_PHASE_MISMATCH_REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPORE_AE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORE_AE_SB 	_
 5.13.30 Sub block 0x101C – AWR_MONITOR_TX1_POWER_REPORT_AE_\$ 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_\$ 5.13.32 Sub block 0x101E – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_\$B 5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_\$B 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_\$B 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_\$B 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPOAE_\$B 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_\$B 	B 216
 5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_S 5.13.32 Sub block 0x101E – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB 5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_ASB 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_ASB 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPOAE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB 	SB 218
5.13.32 Sub block 0x101E - AWR_MONITOR_TX0_BALLBREAK_REPORT AE_SB. 5.13.33 Sub block 0x101F - AWR_MONITOR_TX1_BALLBREAK_REPORT_A SB. 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 - AWR_MONITOR_TX2_BALLBREAK_REPORT_A SB. 5.14.2 Sub block 0x1021 - AWR_MONITOR_TX_GAIN_PHASE_MISMATCH REPORT_AE_SB. 5.14.3 Sub block 0x1022 - AWR_MONITOR_TX0_PHASE_SHIFTER_REPOAE_SB. 5.14.4 Sub block 0x1023 - AWR_MONITOR_TX1_PHASE_SHIFTER_REPO	SB 220
AE_SB. 5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_ASB. 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2. 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_ASB. 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH REPORT_AE_SB. 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB. 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB.	SB 221
5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_ASB. 5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_ASB. 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH REPORT_AE_SB. 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPOAE_SB. 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPOAE_SB.	
SB	222
5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2 5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_ASB 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB	۱E_
5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_ASB. 5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH REPORT_AE_SB. 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPOAE_SB. 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPO	222
SB	223
5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH REPORT_AE_SB 5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPO AE_SB 5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPO	Æ_
REPORT_AE_SB	223
5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPO AE_SB	<u>_</u>
AE_SB	224
5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPO	RT_
	227
AE SB	RT_
5.14.5 Sub block 0x1024 – AWR MONITOR TX2 PHASE SHIFTER REPO	
AE_SB	

	5.14.6	Sub block 0x1025 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_	
		REPORT_AE_SB	
	5.14.7	Sub block 0x1026 - AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_	_
		REPORT_AE_SB	234
	5.14.8	Sub block 0x1027 - AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNA	ALS_
		REPORT_AE_SB	235
	5.14.9	Sub block 0x1028 – AWR MONITOR TX1 INTERNAL ANALOG SIGNA	ALS
		REPORT AE SB	236
	5.14.10	Sub block 0x1029 – AWR MONITOR TX2 INTERNAL ANALOG SIGNA	ALS
		REPORT AE SB	237
	5.14.11	Sub block 0x102A – AWR MONITOR RX INTERNAL ANALOG SIGNA	LS
		REPORT AE SB	
	5.14.12	Sub block 0x102B – AWR MONITOR PMCLKLO INTERNAL ANALOG	
		SIGNALS REPORT AE SB	
	5.14.13	Sub block 0x102C – AWR MONITOR GPADC INTERNAL ANALOG	
		SIGNALS REPORT AE SB	240
	5.14.14	Sub block 0x102D –AWR MONITOR PLL CONTROL VOLTAGE REPO	
		AE SB	
	5.14.15	Sub block 0x102E - AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_	
		AE SB	
	5.14.16	Sub block 0x1031 – AWR MONITOR RX MIXER IN POWER REPORT	
		AE SB	244
	5.14.17	Sub block 0x1033 – AWR MONITOR SYNTHESIZER FREQUENCY	
		NONLIVE_REPORT_AE_SB	245
5.15	Sub block	ks related to AWR_DEV_RFPOWERUP_MSG	247
	5.15.1	Sub block 0x4000 – AWR_DEV_RFPOWERUP_SB	247
5.16	Sub block	ks related to AWR_DEV_CONF_SET_MSG	248
	5.16.1	Sub block 0x4040 - AWR_DEV_MCUCLOCK_CONF_SET_SB	248
	5.16.2	Sub block 0x4041 - AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB .	249
	5.16.3	Sub block 0x4042 - AWR_DEV_RX_DATA_PATH_CONF_SET_SB	250
	5.16.4	Sub block 0x4043 - AWR DEV RX DATA PATH LANEEN SET SB	253
	5.16.5	Sub block 0x4044 – AWR DEV RX DATA PATH CLK SET SB	254
	5.16.6	Sub block 0x4045 – AWR DEV LVDS CFG SET SB	255
	5.16.7	Sub block 0x4046 - AWR_DEV_RX_CONTSTREAMING_MODE_CONF_	
		SET_SB	
	5.16.8	Sub block 0x4047 – AWR_DEV_CSI2_CFG_SET_SB	258
	5.16.9	Sub block 0x4048 – AWR_DEV_PMICCLOCK_CONF_SET_SB	260
	5.16.10	Sub block 0x4049 – AWR_MSS_PERIODICTESTS_CONF_SB	264
	5.16.11	Sub block 0x404A - AWR_MSS_LATENTFAULT_TEST_CONF_SB	265
	5.16.12	Sub block 0x404B – AWR_DEV_TESTPATTERN_GEN_SET_SB	267
	5.16.13	Sub block 0x404C - AWR_DEV_CONFIGURATION_SET_SB	270
	5.16.14	Sub block 0x404D - AWR_DEV_RF_DEBUG_SIG_SET_SB	271
	5.16.15	Sub block 0x404E - AWR_DEV_CSI2_DELAY_DUMMY_CFG_SET_SB	271
5.17	Sub block	ks related to AWR_DEV_CONF_GET_MSG	273

		5.17.1	Sub block 0x4060 – AWR_DEV_MCUCLOCK_GET_SB	. 273
		5.17.2	Sub block 0x4061 – AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB	. 273
		5.17.3	Sub block 0x4062 – AWR_DEV_RX_DATA_PATH_CONF_GET_SB	. 273
		5.17.4	Sub block 0x4063 – AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB	
		5.17.5	Sub block 0x4064 – AWR_DEV_RX_DATA_PATH_CLK_GET_SB	. 274
		5.17.6	Sub block 0x4065 – AWR_DEV_LVDS_CFG_GET_SB	. 274
		5.17.7	Sub block 0x4066 - AWR_DEV_RX_CONTSTREAMING_MODE_CONF	_
			GET_SB	
		5.17.8	Sub block 0x4067 – AWR_DEV_CSI2_CFG_GET_SB	
		5.17.9	Sub block 0x4068 – AWR_DEV_PMICCLOCK_CONF_GET_SB	
		5.17.10	Sub block 0x4069 – AWR_MSS_LATENTFAULT_TEST_CONF_GET_SI	
		5.17.11		
			Sub block 0x406B – AWR_DEV_TESTPATTERN_GEN_GET_SB	
	5.18	Sub bloc	ks related to AWR_DEV_FILE_DOWNLOAD_MSG	
		5.18.1	Sub block 0x4080 – AWR_DEV_FILE_DOWNLOAD_SB	
	5.19	Sub bloc	ks related to AWR_DEV_FRAME_CONFIG_APPLY_MSG	
		5.19.1	Sub block 0x40C0 – AWR_DEV_FRAME_CONFIG_APPLY_SB	
		5.19.2	Sub block 0x40C1 – AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB.	
	5.20	Sub bloc	ks related to AWR_DEV_STATUS_GET_MSG	
		5.20.1	Sub block 0x40E0 – AWR_MSSVERSION_GET_SB	
		5.20.2	Sub block 0x40E1 – AWR_MSSCPUFAULT_STATUS_GET_SB	
		5.20.3	Sub block 0x40E2 – AWR_MSSESMFAULT_STATUS_GET_SB	
	5.21		ks related to AWR_DEV_ASYNC_EVENT_MSG	
		5.21.1	Sub block 0x5000 – AWR_AE_DEV_MSSPOWERUPDONE_SB	
		5.21.2	Sub block 0x5001 – AWR_AE_DEV_RFPOWERUPDONE_SB	
		5.21.3	Sub block 0x5002 – AWR_AE_MSS_CPUFAULT_SB	
		5.21.4	Sub block 0x5003 – AWR_AE_MSS_ESMFAULT_STATUS_SB	
		5.21.5	Sub block 0x5004 – RESERVED	
		5.21.6	Sub block 0x5005 – AWR_AE_MSS_BOOTERRORSTATUS_SB	
		5.21.7	Sub block 0x5006 – AWR_AE_MSS_LATENTFAULT_TESTREPORT_SI	
		5.21.8	Sub block 0x5007 – AWR_AE_MSS_PERIODICTEST_STATUS_SB .	
		5.21.9	Sub block 0x5008 – AWR_AE_MSS_RFERROR_STATUS_SB	
			Sub block 0x5009 – RESERVED	
			Sub block 0x500A – RESERVED	
		5.21.12	Sub block 0x500B – RESERVED	. 301
6	API	Program	nming Sequence	302
	6.1	_	evice mode	
	6.2	•	ed device mode	
	6.3		ous streaming mode (in single device case)	
	6.4		ous streaming (CW) mode (in cascaded device case)	
7	۸DI	Error C	odes	310
1	7.4		des fan haat an ODI	310

8	Rad	lar Moni	toring APIs	324
	8.1	Common	n Configurations and Reports	324
		8.1.1	Sub block 0x01C0 - AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_	
			SB	324
		8.1.2	Sub block 0x01C1 - AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB.	326
		8.1.3	Sub block 0x01C2 – AWR_MONITOR_ANALOG_ENABLES_CONF_SB	327
	8.2	Tempera	ature Monitor	329
		8.2.1	Sub block 0x01C3 – AWR_MONITOR_TEMPERATURE_CONF_SB	329
	8.3	RX Gain	and Phase Monitor	331
		8.3.1	Sub block 0x01C4 – AWR_MONITOR_RX_GAIN_PHASE_CONF_SB .	331
	8.4	RX Nois	e Monitor	
		8.4.1	Sub block 0x01C5 – AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB	334
	8.5	RX IF St	tage Monitor	336
		8.5.1	Sub block 0x01C6 – AWR_MONITOR_RX_IFSTAGE_CONF_SB	
	8.6	TX Powe	er Monitor	337
		8.6.1	Sub block 0x01C7 – AWR_MONITOR_TX0_POWER_CONF_SB	337
		8.6.2	Sub block 0x01C8 – AWR_MONITOR_TX1_POWER_CONF_SB	339
		8.6.3	Sub block 0x01C9 – AWR_MONITOR_TX2_POWER_CONF_SB	341
	8.7	TX Ball I	Break Monitor	
		8.7.1	Sub block 0x01CA – AWR_MONITOR_TX0_BALLBREAK_CONF_SB .	
		8.7.2	Sub block 0x01CB – AWR_MONITOR_TX1_BALLBREAK_CONF_SB .	
		8.7.3	Sub block 0x01CC - AWR_MONITOR_TX2_BALLBREAK_CONF_SB .	
	8.8	TX Gain	and Phase Mismatch Monitoring	345
		8.8.1	Sub block 0x01CD - AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_	
			CONF_SB	
	8.9		se Shifter Monitor	348
		8.9.1	Sub block 0x01CE - AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_	
			SB	349
		8.9.2	Sub block 0x01CF - AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_	
			SB	352
		8.9.3	Sub block 0x01D0 – AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_	
			SB	
	8.10	•	izer Frequency Monitoring	358
		8.10.1	Sub block 0x01D1 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_	
			CONF_SB	
	8.11		Analog Signals Monitor	
		8.11.1	Sub block 0x01D2 – AWR_MONITORING_EXTERNAL_ANALOG_SIGNA	
	0.40		CONF_SB	
	8.12		Analog Signals Monitor	
		8.12.1	Sub block 0x01D3 – AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGN	_
		0.10.0	CONF_SB	
		8.12.2	CONF SB	
			CONF OD	. ათა

		8.12.3	Sub block 0x01D5 – AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNACONF_SB	_
		8.12.4	Sub block 0x01D6 – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNACONF_SB	LS_
		8.12.5	Sub block 0x01D7 – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS CONF SB	_
		8.12.6	Sub block 0x01D8 – AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_CONF_SB	
	g 13	PLI Con	trol Voltage Monitor	
	0.10	8.13.1	Sub block 0x01D9 – AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGN.	ALS
	8 14	Dual Clo	ck Comparator Based Clock Frequency Monitor	
	0.11	8.14.1	Sub block 0x01DA – AWR_MONITOR_DUAL_CLOCK_COMP_CONF_ SB	
	8 15	BX Satur	ration Detection Monitor	
	0.10	8.15.1	Sub block 0x01DB – AWR_MONITOR_RX_SATURATION_DETECTOR_ CONF_SB	
		8.15.2	Sub block 0x01DC – AWR MONITOR SIG IMG MONITOR CONF SB	
	8.16		r input power monitor	
		8.16.1	Sub block 0x01DD – AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB	
	8.17	Sub bloc	k 0x01DE – RESERVED	
	8.18	Analog F	Fault injection	378
		8.18.1	Sub block 0x01DF - AWR_ANALOG_FAULT_INJECTION_CONF_SB .	378
9	Uns			385
	9.1	Unsuppo	orted Features/APIs and Debug APIs	385
10	Chii	rp Paran	neters (CP) and Chirp Quality (CQ) data	386
	10.1	Chirp Pa	rameters data	386
	10.2	Chirp Qu	uality data	387
		10.2.1	CQ1	389
		10.2.2	CQ2	392
11	Chi	rp, Burst	t and Frame timings	395
	11.1	Chirp Cy	rcle Time	395
			n Inter Burst Time	
	11.3	Minimum	n Inter Sub-frame or Frame Time	397
12	2 Cali	bration	and monitoring durations	398
	12.1	Boot time	e calibration durations	398
	12.2	Run time	e calibration durations	398
			ng duration	
	12.4	Software	overheads	401

	12.4.1 Note on idle time for clearing the watchdog (WDT)	101
	2.5 Sample Application	i
Ap	endices	ii
A	AWR2243 API changes	iii

List of Figures

2.1	AWR12xx, AWR22xx Software Architecture	4
2.2	xWR16xx, xWR18xx and IWR68xx Software Architecture	5
2.3	Radar Message Structure	5
2.4	Message Header Format	6
2.5	OPCODE Format	7
2.6	MSGLEN Format	0
2.7	FLAGS Format	0
2.8	NSBC Format	1
2.9	Message Sub block structure	3
3.1	Flow Diagram (API)	7
3.2	Flow Diagram (Asynchronous Events)	
3.3	SPI Message Sequence	9
5.1	Frame trigger delay in case of external hardware trigger	3
5.2	Frame trigger delay in case of external hardware trigger	
5.3	Dynamic chirp configuration use case timing diagram	
5.4	Advance chirp parameter dither sources and program	
5.5	Lane formats and the order of receiving the data from the lanes	7
10.1	Chirp parameter information fields	6
10.2	Chirp parameter information from DSS registers	7
10.3	CQ data start address configuration in single chirp use case	8
	CQ data start address configuration in multi chirp use case	
	Time slices during RX signal and image band monitor and saturation monitor 39	
	CQ1 data format in memory in 16-bit mode	
	CQ1 data format in memory in 12-bit mode	
	CQ1 data format in memory in 14-bit mode	
	CQ2 data format in memory in 16-bit mode	
	OCQ2 data format in memory in 12-bit mode	
10.11	I CQ2 data format in memory in 14-bit mode	4
12.1	Watchdog idle time calculation	2

List of Tables

1.1	TI CMOS mmWave radar devices	2
2.1	Possible SYNC values and their usage	6
2.3	MSGLEN field descriptions	10
2.4	FLAGS field description	10
2.5	NSBC field description	12
2.6	Checksum computation example	12
2.7	CRC types and their polynomials	13
4.1	Summary of all Radar messages and their associated sub blocks	20
5.1	AWR_RESP_ERROR_SB contents	45
5.2	AWR_CHAN_CONF_SET_SB contents	46
5.3	AWR_ADCOUT_CONF_SB contents	49
5.4	AWR_LOWPOWERMODE_CONF_SET_SB contents	50
5.5	AWR_DYNAMICPOWERSAVE_CONF_SET_SB contents	
5.6	AWR_HIGHSPEEDINTFCLK_CONF_SET_SB contents	52
5.7	AWR_RF_DEVICE_CFG_SB contents	53
5.8	AWR_RF_MISC_CTL_SB contents	55
5.9	AWR_CAL_MON_FREQUENCY_LIMITS_SB contents	
	AWR_RF_INIT_CALIBRATION_CONF_SB contents	
	AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB contents	
	AWR_CAL_DATA_RESTORE_SB contents	
	AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB contents	
	Typical APLL and Synth BW settings	
	AWR_APLL_SYNTH_BW_CONTROL_SB contents	
	AWR_CAL_DATA_SAVE_SB contents	
	AWR_CAL_DATA_SAVE_SB response packet contents	
	AWR_CAL_DATA contents	
	AWR_CAL_DATA contents	
	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB contents	
	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB response packet contents	
	AWR_RF_INIT_SB contents	
	AWR_PROFILE_CONF_SB contents	
	Note on maximum sampling rate	
5.25	AWR_CHIRP_CONF_SET_SB contents	78

5.26	AWR_FRAME_CONF_SET_SB contents
5.27	AWR_CONT_STREAMING_MODE_CONF_SET_SB contents 83
5.28	AWR_CONT_STREAMING_MODE_EN_SB contents
5.29	AWR_ADVANCED_FRAME_CONF_SB contents
5.30	AWR_PERCHIRPPHASESHIFT_CONF_SB contents
5.31	Programmable filter DFE sampling rate and number of taps
5.32	AWR_PROG_FILT_COEFF_RAM_SET_SB contents
5.33	AWR_PROG_FILT_CONF_SET_SB contents
5.34	AWR_CALIB_MON_TIME_UNIT_CONF_SB contents
5.35	AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB contents 103
5.36	AWR_DIGITAL_COMP_EST_CONTROL_SB contents
5.37	AWR_RX_GAIN_TEMPLUT_SET_SB contents
5.38	AWR_TX_GAIN_TEMPLUT_SET_SB contents
5.39	AWR_LOOPBACK_BURST_CONF_SET_SB contents
5.40	AWR_DYN_CHIRP_CONF_SET_SB contents
5.41	AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB contents
5.42	AWR_DYN_CHIRP_ENABLE_SB contents
5.43	AWR_INTERCHIRP_BLOCKCONTROLS_SB contents
5.44	AWR_SUBFRAME_START_CONF_SB contents
5.45	AWR_ADVANCE_CHIRP_CONF_SB contents
5.46	ADV_CHIRP_FIXED_DELTA_PARAM description
	AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB contents
5.48	ADV_CHIRP_GENERIC_LUT_PARAM description
5.49	Types of Monitors
5.50	Monitor Categorization
5.51	AWR_MONITOR_TYPE_TRIG_CONF_SB contents
5.52	AWR_PROFILE_CONF_GET_SB contents
5.53	AWR_CHIRP_CONF_GET_SB contents
5.54	AWR_FRAME_CONF_GET_SB contents
5.55	AWR_ADV_FRAME_CONF_GET_SB contents
5.56	AWR_RX_GAIN_TEMPLUT_GET_SB contents
5.57	AWR_TX_GAIN_TEMPLUT_GET_SB contents
5.58	AWR_FRAMESTARTSTOP_CONF_SB contents
5.59	AWR_BPM_COMMON_CONF_SET_SB contents
5.60	AWR_BPM_CHIRP_CONF_SET_SB contents
5.61	AWR_RF_VERSION_GET_SB contents
5.62	AWR_RF_VERSION_SB response contents
5.63	AWR_RF_CPUFAULT_STATUS_GET_SB response contents
5.64	AWR_RF_CPUFAULT_STATUS_GET_SB response contents
5.65	AWR_RF_ESMFAULT_STATUS_GET_SB response contents
5.66	AWR_RF_ESMFAULT_STATUS_SB response contents
5.67	AWR_RF_DIEID_GET_SB response contents
	AWR_RF_DIEID_STATUS_SB response contents
	AWR RE BOOTI IPRIST STATI IS GET SR response contents 167

5.70 AWR_RF_BOOTUPBIST_STATUS_DATA_SB response contents	168
5.71 AWR_RF_DFE_STATISTICS_REPORT_GET_SB response contents	169
5.72 AWR_RF_DFE_STATISTICS_REPORT_SB response contents	169
5.73 AWR_RF_TEST_SOURCE_CONFIG_SET_SB contents	178
5.74 AWR_RF_TEST_SOURCE_ENABLE_SET_SB contents	180
5.75 AWR_RF_LDO_BYPASS_SB contents	181
5.76 AWR_RF_PALOOPBACK_CFG_SB contents	182
5.77 AWR_RF_PSLOOPBACK_CFG_SB contents	183
5.78 AWR_RF_IFLOOPBACK_CFG_SB contents	
5.79 AWR_RF_GPADC_CFG_SET_SB contents	185
5.80 AWR_RF_TEMPERATURE_GET_SB contents	
5.81 AWR_RF_TEMPERATURE_DATA_SB contents	189
5.82 AWR_AE_RF_CPUFAULT_SB response contents	
5.83 AWR_AE_RF_ESMFAULT_STATUS_SB response contents	193
5.84 AWR_AE_RF_INITCALIBSTATUS_SB response contents	
5.85 AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB response contents 1	197
5.86 AWR_AE_RF_FRAME_TRIGGER_RDY_SB response contents	
5.87 AWR_AE_RF_GPADC_RESULT_DATA_SB response contents	
5.88 AWR_FRAME_END_AE_SB response contents	
5.89 AWR_ANALOGFAULT_AE_SB response contents	200
5.90 AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB response contents 2	
5.91 AWR_RUN_TIME_CALIB_SYMMARY_REPORT_AE_SB response contents 2	
5.92 AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB response contents 2	
5.93 AWR_MONITORING_REPORT_HEADER_AE_SB response contents 2	
5.94 AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB contents	
5.95 AWR_MONITORING_TEMPERATURE_REPORT_AE_SB contents	
5.96 AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB contents	
5.97 AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB contents	
5.98 AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB contents	
5.99 AWR_MONITOR_TX0_POWER_REPORT_AE_SB contents	
5.100AWR_MONITOR_TX1_POWER_REPORT_AE_SB contents	
5.101AWR_MONITOR_TX2_POWER_REPORT_AE_SB contents	
5.102AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB contents	
5.103AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB contents	
5.104AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB contents	
5.105AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB contents	
5.106AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB contents	
5.107AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB contents	
5.108AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_SB contents	
5.109AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB contents	
5.110AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents . 2	<u> </u>
5.111AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB con-	205

5.112AWK_MONITOK_TXT_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB con-
tents
5.113AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB con-
tents
5.114AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents238
5.115AWR MONITOR PM CLK LO INTERNAL ANALOG SIGNALS REPORT AE
SB contents
5.116AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB con-
tents
5.117AWR MONITOR PLL CONTROL VOLTAGE REPORT AE SB contents 241
5.118AWR MONITOR DUAL CLOCK COMP REPORT AE SB contents
5.119AWR MONITOR RX MIXER IN POWER REPORT AE SB contents
5.120AWR MONITOR SYNTHESIZER FREQUENCY NONLIVE REPORT AE SB con-
tents
5.121AWR DEV POWERUP SB contents
5.122AWR_DEV_MCUCLOCK_CONF_SET_SB contents
5.123AWR_DEV_RX_DATA_FORMAT_CONF_SB contents
5.124AWR DEV RX DATA PATH CONF SB contents
5.125AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB contents
5.126AWR_DEV_RX_DATA_PATH_CLK_SET_SB contents
5.127AWR_DEV_LVDS_CFG_SET_SB contents
5.128AWR_DEV_RX_CONTSTREAMING_MODE_CFG_SET_SB contents
5.129AWR_DEV_CSI2_CFG_SET_SB contents
5.130AWR_DEV_PMICCLOCK_CONF_SET_SB contents
5.131PMIC clock frequency across chirps in chirp-to-chirp staircase mode in an exam-
ple when PMIC clock varies from 2 MHz to 2.5 MHz in 32 chirps
5.132AWR MSS PERIODICTESTS CONF SB contents
5.133AWR_MSS_LATENTFAULT_TEST_CONF_SB contents
5.134AWR DEV TESTPATTERN GEN SET SB contents
5.135AWR_DEV_CONFIGURATION_SET_SB contents
5.136AWR_DEV_RF_DEBUG_SIG_SET_SB contents
5.137AWR_DEV_CSI2_DELAY_DUMMY_CFG_SET_SB contents
5.138AWR_DEV_MCUCLOCK_GET_SB contents
5.139AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB contents
5.140AWR_DEV_RX_DATA_PATH_CONF_GET_SB contents
5.141AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB contents
5.142AWR_DEV_RX_DATA_PATH_CLK_GET_SB contents
5.143AWR_DEV_LVDS_CFG_GET_SB contents
5.144AWR_DEV_RX_CONTSTREAMING_CONF_GET_SB contents
5.145AWR_DEV_CSI2_CFG_GET_SB contents
5.146AWR_DEV_PMICCLOCK_CONF_GET_SB contents
5.147AWR_MSS_LATENTFAULT_CONF_GET_SB contents
5.148AWR_MSS_PERIODICTESTS_CONF_GET_SB contents
5.149AWR_DEV_TESTPATTERN_GEN_GET_SB contents

5.150	DAWR_DEV_FILE_DOWNLOAD_SB contents	277
5.151	I AWR_DEV_FRAME_CONFIG_APPLY_SB contents	277
5.152	2AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB contents	278
5.153	BAWR_MSSVERSION_GET_SB contents	280
5.154	4AWR_MSSVERSION_SB contents	281
5.155	5AWR_MSSVERSION_SB contents	282
	SAWR_MSSCPUFAULT_STATUS_SB contents	
5.157	7AWR_MSSESMFAULT_STATUS_GET_SB contents	284
5.158	BAWR_MSSESMFAULT_STATUS_SB contents	284
5.159	DAWR_AE_DEV_MSSPOWERUPDONE_SB contents	287
5.160	DAWR_AE_DEV_RFPOWERUPDONE_SB contents	289
5.161	AWR_AE_MSS_CPUFAULT_STATUS_SB contents	291
5.162	2AWR_AE_MSS_ESMFAULT_STATUS_SB contents	293
5.163	BAWR_AE_MSS_BOOTERRORSTATUS_SB contents	296
5.164	4AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB contents	298
5.165	5AWR_AE_MSS_PERIODICTEST_STATUS_SB contents	300
5.166	SAWR_AE_MSS_RFERROR_STATUS_SB contents	300
6.1	Sequence of APIs to be issued to master and slave devices in cascaded mode	
	configuration for FMCW mode measurements	304
6.2	Sequence of APIs to be issued to master and slave devices in cascaded mode for	007
	CW mode measurements	307
7.1	BSS API error codes	310
7.2	MSS API error codes (Applicable only in AWR1243/AWR2243)	
7.3	Bit field describing the error status during boot on SPI	
7.0	Dictional accombing the enter states during section enter the transfer to	0
8.1	AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB contents	325
8.2	AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB contents	326
8.3	AWR_MONITOR_ANALOG_ENABLES_CONF_SB contents	327
8.4	AWR_MONITOR_TEMPERATURE_CONF_SB contents	329
8.5	AWR_MONITOR_RX_GAIN_PHASE_CONF_SB contents	331
8.6	AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB contents	335
8.7	AWR_MONITOR_RX_IFSTAGE_CONF_SB contents	336
8.8	AWR_MONITOR_TX0_POWER_CONF_SB contents	338
8.9	AWR_MONITOR_TX1_POWER_CONF_SB contents	339
8.10	AWR_MONITOR_TX2_POWER_CONF_SB contents	341
8.11	AWR_MONITOR_TX0_BALLBREAK_CONF_SB contents	343
8.12	AWR_MONITOR_TX1_BALLBREAK_CONF_SB contents	343
8.13	AWR_MONITOR_TX2_BALLBREAK_CONF_SB contents	344
8.14	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB contents	345
8.15	AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB contents	349
8.16	AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB contents	353
8 17	AWR MONITOR TX2 PHASE SHIFTER CONE SR contents	355

8.18	AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB contents	58
8.19	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB contents 3	61
8.20	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB contents3	64
8.21	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB contents3	65
8.22	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB contents 3	66
8.23	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_SB contents 3	67
8.24	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	367
8.25	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_CONF_SB contents 3	68
8.26	AWR_MONITOR_PLL_CONTROL_VOLTAGE_CONF_SB contents	69
8.27	DCC Clock monitor pairs	71
8.28	AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB contents	71
8.29	AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB contents	73
8.30	AWR_MONITOR_RX_SIG_IMG_MONITOR_CONF_SB contents	75
8.31	AWR_MONITOR_MIXER_IN_POWER_CONF_SB contents	76
8.32	AWR_ANALOG_FAULT_INJECTION_CONF_SB contents	78
11.1	Minimum chirp cycle time	95
11.2	Minimum inter burst time	96
11.3	Minimum inter sub-frame/frame time	97
12.1	Duration of boot time calibrations for AWR2243 device	98
12.2	Duration of run time calibrations for AWR2243 devices	99
12.3	Duration of analog monitors for AWR2243 device	00
12.4	Duration of digital monitors for AWR2243 device	00
12.5	Software overheads every FTTI that should be accounted to program CALIB_	
	MON TIME LINIT and CALIBRATION PERIODICITY 4	.01

Revision History

Revision Date2.0 19.08.2019 (AWR2243)

- Base-lined from AWR1243 DFP 1.2.5 release (mmWave Radar Interface Control Document v1.7)
- 2. Added new parameter MISC_FUNC_CTRL to disable dither in test source configuration API at 177.
- 3. Added new parameter to enable VMON in analog monitor configuration API at 327.
- 4. Added new error code 160 in 310.
- 5. Added new TX Phase shifter DAC monitor settings and reports in TX internal analog signal monitors at 364 and 235.
- 6. updated RX gain temperature LUT RF gain code description at 113.
- 7. updated OSCCLKOUT_DIS description in channel config API 46.

Revision 2.1

Date 10.09.2019

- 1. Added a new device AWR2243 and its features in ICD.
- 2. Added new feature INTFRC_MASTER_EN bit in CASCAD-ING_PINOUTCFG field in channel config API in page 46.
- 3. Added a new API AWR_APLL_SYNTH_BW_CONTROL_SB in page 63.
- Added a new field LODIST_BIAS_CODE in API AWR_CAL_ DATA_SAVE_SB in page 64.
- 5. Updated AWR_PROFILE_CONF_SET_SB API to include AWR2243 features in page 69.
- Added a new feature MONITORING_MODE in AWR_CALIB_ MON_TIME_UNIT_CONF_SB in page 101.
- Added a new feature CAL_TEMP_INDEX_OVERRIDE_ ENABLE in AWR_RUN_TIME_CALIBRATION_CONF_AND_ TRIGGER_SB in page 103.
- 8. Added a new API AWR_ADVANCE_CHIRP_CONF_SB in page 132.
- 9. Added a new API AWR_MONITOR_TYPE_TRIG_CONF_SB in page 151.
- 10. Added a new bootup and latent fault DCC monitor feature in page 167, 289, 324.
- 11. Added a new feature MONITOR_CONFIG_MODE in AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB in page 358.
- 12. Added a new Async Event AWR_AE_RF_MONITOR_TYPE_ TRIGGER_DONE_SB in page 197.
- Added a new Async Event AWR_MONITOR_ SYNTHESIZER_FREQUENCY_NONLIVE_REPORT_AE_ SB in page 245.
- 14. Added a new parameter DIS_LINE_START_END in AWR_ DEV CSI2 CFG SET SB in page 258.
- 15. Added a new API AWR_DEV_RF_DEBUG_SIG_SET_SB in page 271.
- 16. Added a new API AWR_DEV_CSI2_DELAY_DUMMY_CFG_ SET_SB in page 271.

Revision	Date
2.2	23.09.2019

Description

- Added a new RX FE disable option in LOOPBACK_SEL in AWR_LOOPBACK_BURST_CONF_SET_SB API in page 117
- Updated LPF monitoring threshold and reporting values in AWR_MONITOR_RX_IFSTAGE_CONF_SB API and AWR_ MONITOR_RX_IFSTAGE_REPORT_AE_SB AE in page 336 and 216
- Changed name of AWR_INTER_RX_GAIN_PHASE_ CONTROL_SB to AWR_DIGITAL_COMP_EST_CONTROL_ SB API and updated the fields in page 110
- Removed AWR_AE_MSS_VMON_ERRORSTATUS_SB Subblock (0x5009)
- Removed VCO slope monitoring in AWR_MONITOR_PLL_ CONTROL_VOLTAGE_REPORT_AE_SB for all devices 241
- Added a new enable control SYNTH_FREQ_MONITOR_ NON_LIVE for non-live synth frequency monitor in AWR_ MONITOR ANALOG ENABLES CONF SB in page 327
- Updated calibration and monitoring duration for AWR2243 device in page 398
- The TXOFF BPM control bits made reserved in AWR_BPM_ CHIRP_CONF_SET_SB API in page 159

Revision Date

2.3

18.10.2019

- Updated Calibration structure definition for AWR2243 and IWR6843 devices in page 64 and 66
- 2. Updated few API descriptions and added new error codes for Synth frequency monitor.

Revision Date 2.4 27.11.2019

- Updated AWR_ADVANCE_CHIRP_CONF_SB API definition to support more flexible waveform generation in page 132
- Added new AWR_ADVANCE_CHIRP_GENERIC_LUT_ LOAD_SB API to load Advance chirp SW generic LUT data in page 144
- Added new Advance chirp enable flag in AWR_RF_RADAR_ MISC_CTL_SB API in page 55
- 4. Updated the definition of CHIRP_START_INDX, CHIRP_ END_INDX and NUM_LOOPS in AWR_FRAME_CONF_ SET_SB and AWR_ADVANCED_FRAME_CONF_SB APIs for new Advance chirp config API in page 79 and 86
- Added new noise power report fields in AWR_MONITOR_ TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB AE in page 224
- 6. Updated few API descriptions and added new error codes for new advanced chirp configuration APIs.
- 7. Added new frame stop features in AWR_ FRAMESTARTSTOP CONF SB API in page 157
- Added new notes in AWR_CAL_MON_FREQUENCY_ LIMITS_SB and AWR_CAL_MON_FREQUENCY_TX_ POWER LIMITS_SB APIs in page 59
- Added new LODIST calibration data variable in AWR2243
 Calibration structure in page 64
- 10. Added new notes related to minimum chirp cycle time in AWR_PROFILE_CONF_SET_SB API in page 69
- 11. Updated notes related to minimum burst time in AWR_ FRAME_CONF_SET_SB and AWR_ADVANCED_FRAME_ CONF_SB APIs in page 79 and 86
- 12. Added new error codes in AWR_AE_RF_CPUFAULT_SB API in page 190
- 13. Added dither feature in AWR_DEV_CSI2_DELAY_DUMMY_ CFG_SET_SB API in page 271
- 14. Updated API programming sequence section in page 302
- 15. Updated Table 5.14 in AWR_APLL_SYNTH_BW_ CONTROL_SB API.
- Updated RF gain settings and description in AWR_PROFILE_ CONF_SET_SB in page 69
- 17. Updated RF gain phase monitor report description in AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB in page 209
- 18. Added new fault types in AWR_AE_MSS_CPUFAULT_SB API in page 291

Revision	Date	Description
2.5	19.12.2019	

- Added new phase shifter monitoring APIs AWR_MONITOR_ TXn_PHASE_SHIFTER_CONF_SB for 3 TX in 349 which replaces legacy AWR_MONITOR_TXn_BPM_CONF_SB APIs and corresponding AE reports AWR_MONITOR_TXn_ PHASE_SHIFTER_REPORT_AE_SB updated in page 227
- Added new BSS_ANA_CTRL field in AWR_RF_DEVICE_ CFG_SB API to disable inter burst power save in page 52
- Added new field MON_CHIRP_SLOPE field in AWR_ MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB API in page 345
- 4. Added new section to provide details about Chirp, Burst and Frame timings of device in page 395
- Updated few API descriptions and added new error codes for phase shifter monitor.

Revision Date 2.6 02.01.2020

- Updated RX_GAIN_VALUE report description in AWR_ MONITOR_RX_GAIN_PHASE_REPORT_AE_SB AE in page 209
- 2. Added Max programmable VCO slop info in AWR_APLL_ SYNTH_BW_CONTROL_SB API in page 63
- 3. Updated the ICD based on review comments

Revision 2.7

Date 28.01.2020

- 1. Updated the ICD based on review comments
- Added recommended value for MONITOR_START_TIME in AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_ SB API in page 358
- Updated RX gain valid range in AWR_PROFILE_CONF_ SET SB in page 69
- Removed RAMPGEN_100M clock monitoring feature from AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB API in page 371 and in AE report AWR_MONITOR_DUAL_CLOCK_ COMP_REPORT_AE_SB in page 243
- Updated few status flags in AWR_AE_DEV_ MSSPOWERUPDONE SB API in page 287
- Updated few status flags in AWR_MSSCPUFAULT_STATUS_ GET_SB API in page 282
- Updated few status flags in AWR_AE_MSS_CPUFAULT_SB API in page 291
- 8. Updated few status flags in AWR_AE_MSS_ BOOTERRORSTATUS_SB API in page 296
- Updated few status flags in AWR_AE_MSS_ESMFAULT_ STATUS_SB API in page 292
- Updated few status flags in AWR_MSS_LATENTFAULT_ TEST_CONF_SB API in page 265
- Removed 900 Mbps (DDR only) data rate in AWR_DEV_RX_ DATA_PATH_CLK_SET_SB API in page 254
- 12. Added new file type in META_IMAGE TO SRAM in AWR_ DEV_FILE_DOWNLOAD_SB API in page 276
- 13. Updated Programmable filter description for AWR2243 in AWR_PROG_FILT_COEFF_RAM_SET_SB API in page 99

NOTE1:	Please refer latest mmWave device DFP release notes for all known issues and de-featured APIs
NOTE2:	All reserved bytes/bits in configuration API sub blocks shall be programmed with value zero. The functionality of radar device is not guaranteed if reserved bytes are not zero.
NOTE3:	All reserved bytes/bits in API message reports (ack or AE) sub blocks shall be masked off in application.

1 Introduction

1.1 Scope

The Scope of this document is to define interface control specifications for 2nd generation TI AWR2243 mmWave sensor device. AWR2243 is an enhanced version of AWR1243 device, all the features/APIs of AWR1243 are supported and applicable in AWR2243 (Backward Compatible), however very few of them are modified for enhancement.

The key differentiated new features in AWR2243 are:

- 1. 5GHz RF bandwidth support in VCO2
- 2. 20MHz Max IF Bandwidth and Max 45Msps sample rate support
- 3. API to configure APLL and SYNTH bandwidth and max slope support upto 500MHz/us
- 4. New programmable filter support
- 5. Improved analog RX front end noise figure and gain settings
- 6. Improved 20GHz cascade link budget and new APIs to support cascade system solution
- 7. New Advance flexible waveform generation API can support up-to 2048 unique chirps in a burst/frame
- 8. Various new API features are listed in Appendix A

The wide range of TI highly integrated 77GHz and 60GHz CMOS TI mmwave sensors are tabulated in table 1.1. The mmWave device integrates all RF and Analog functionalities including VCO, PLL, PA, LNA, Mixer and ADC for multiple TX/RX channels into a single chip with integrated cortex R4 for programmability. The AWR2243 is a RF transceiver front end device includes 4 receiver channels and 3 transmit channels in a single chip with inbuilt calibrations and monitoring capability, this device supports multi-chip cascading and supports various features which can be controlled over API through SPI interface.

The device includes a Radar Sub-System (RadarSS) also called Built-in Self-Test (BSS) processor, which is responsible to configure the RF/Analog and digital front-end in real-time, as well as to periodically schedule calibration and functional safety monitoring. This enables the mmWave front-end to be self-contained and capable of adapting itself to handle temperature and ageing effects, and to enable significant ease-of-use from an external host perspective.

This document contains the Interface Control Specification for communications on the serial interface (SPI) between the Radar device and the external host processor. The same protocol is used in all devices when the messages are sent to Radar Control subsystem (BIST subsystem)

from the MCU subsystem (Master subsystem) and DSP subsystems.

Refer Link http://www.ti.com/sensors/mmwave/overview.html for more informations.

Table 1.1: TI CMOS mmWave radar devices

Frequency Type	60GHz RF Frequency 77GHz I		RF Frequency	
	(57GHz to 64GHz)	(76GHz to 81G	Hz)	
TI Automotive Radar De-	NA	AWR1243,	AWR1642,	
vices		AWR1443,	AWR1843,	
		AWR2243		
TI Industrial Radar Devices	IWR6843	IWR1642, IWR	IWR1642, IWR1443, IWR1843	

1.2 Intended Audience

The intended audience for this document is firmware, host software, and validation engineers needing to understand the format and contents of all communications between the Radar AWR2243 device and the host processor.

2 TI mmWave Radar Sensor Communications Overview

2.1 Communication Link Description

The AWR2243 radar device communicates with the external host processor using the SPI interface. The radar device is configured and controlled from the external host processor by sending commands to AWR2243 device over SPI.

The xWR1642, xWR1843 and xWR6843 radar device is configured and controlled using the internal MCU (Master subsystem) and it communicates with an external ECU using the CAN interface

This document only talks about the communication protocol between radar device and external host processor using SPI in AWR2243. In xWR1642, xWR1843 and xWR6843 the same protocol is used to communicate between the BIST subsystem and Master subsystem.

2.2 Communication Link configuration

2.2.1 SPI

This interface is synchronous. The interface includes four signals (SPICCLK, SPICS, and Data In and Data Out) and supports clock rates up to 40 MHz. The AWR2243 radar device is always the SPI slave and the external host processor will be the SPI master.

2.2.2 Mailbox

This interface includes a SRAM and an interrupt line from Master subsystem to BIST subsystem. A reverse channel which includes a different SRAM and a different interrupt line from the BIST subsystem to Master subsystem is used for responses which originate from BIST subsystem.

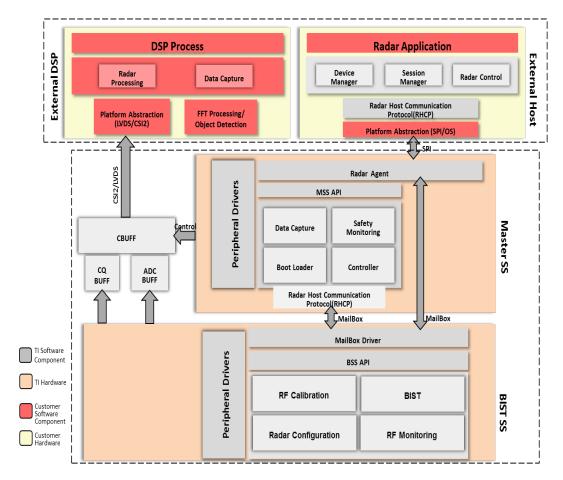


Figure 2.1: AWR12xx, AWR22xx Software Architecture

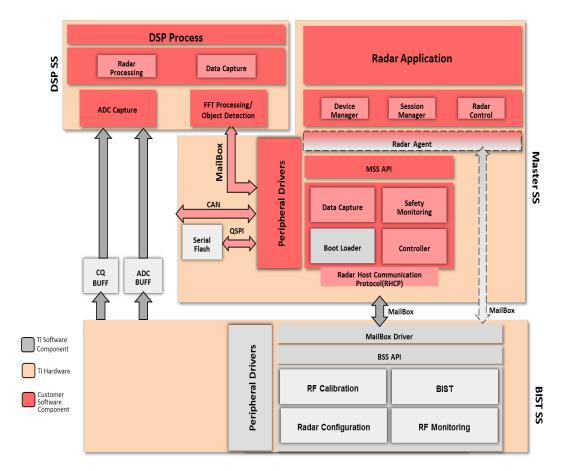


Figure 2.2: xWR16xx, xWR18xx and IWR68xx Software Architecture

2.3 Radar Message Structure

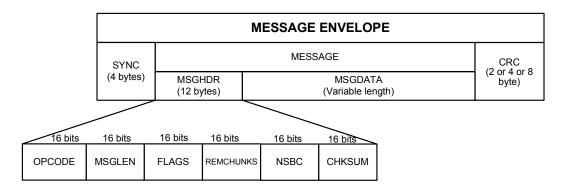


Figure 2.3: Radar Message Structure

Each message is sent in a message envelope, which starts with four special bytes called a sync pattern. Next, the message envelope contains the actual message and a CRC converted to a stream of bytes. Figure 2.3 defines the general form of radar messages. All communication messages between external host processor and the radar device will follow this message format. Each message consists of a 12-byte message header, variable length message data followed by a variable length CRC.

NOTE:	The CRC and all the fields in the message headers and message
	data that are larger than one byte are sent in little-endian byte order
	i.e. the least significant byte is sent first.

A message envelope contains only one message.

2.3.1 SYNC

SYNC is a unique 4 byte pattern which marks the start of the message. It can take one of the following 3 values, in memory all the bytes are stored in little endian format (least significant byte first).

Table 2.1: Possible SYNC values and their usage

SYNC word value	Description
0x43211234	Messages from master to slave indicating a new command
0x87655678	Messages from external host to device indicating the host is now ready to receive a message from the device This pattern is defined as CNYS in this document.
0xABCDDCBA	Messages from slave to master

2.3.2 MSGHDR

Figure 2.4 defines the content of the message header. Each radar message must begin with this 12 byte message header in little endian format.

OPCODE	LENGTH	FLAGS	REMCHUNKS	NSBC	CHKSUM
(16 bits)					

Figure 2.4: Message Header Format

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MSGID					MSG	TYPE		DIREC	CTION					

Figure 2.5: OPCODE Format

OPCODE

The OPCODE is unique for a given message type. Figure 2.5 defines the OPCODE format.

Bits	Field	Descri	ption
[3:0]	DIRECTION		on of command
		0000	Invalid
		0001	Communication between Host to BSS
		0010	Communication between BSS to Host
		0011	Communication between Host to DSS
		0100	Communication between DSS to Host
		0101	Communication between Host to Master
		0110	Communication between Master to Host
		0111	Communication between BSS to Master
		1000	Communication between Master to BSS
		1001	Communication between BSS to DSS
		1010	Communication between DSS to BSS
		1011	Communication between Master to DSS
		1100	Communication between DSS to Master
		1101	RESERVED
		1110	RESERVED
		1111	RESERVED
[5:4]	MSGTYPE	Messag	ge type
		00	COMMAND
		01	RESPONSE (ACK or ERROR)
		10	NACK
		11	ASYNC
[15:6]	MSGID	Messag	ge ID
		0x00	AWR_ERROR_MSG
		0x01	RESERVED
		0x02	RESERVED
		0x03	RESERVED
		0x04	AWR_RF_STATIC_CONF_SET_MSG
		0x05	AWR_RF_STATIC_CONF_GET_MSG
		0x06	AWR_RF_INIT_MSG
		0x07	RESERVED
		0x08	AWR_RF_DYNAMIC_CONF_SET_MSG
		0x09	AWR_RF_DYNAMIC_CONF_GET_MSG
		0x0A	AWR_RF_FRAME_TRIG_MSG
		0x0B	RESERVED

0x0C AWR_RF_ADVANCED_FEATURES_CONF_ SET_MSG 0x0D RESERVED 0x0E AWR_RF_MONITORING_CONF_SET_MSG 0x0F RESERVED 0x10 RESERVED 0x11 AWR_RF_STATUS_GET_MSG 0x12 RESERVED 0x13 AWR_RF_MONITORING_REPORT_GET_ MSG 0x14 RESERVED 0x15 RESERVED 0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_GET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED			
0x0E AWR_RF_MONITORING_CONF_SET_MSG 0x0F RESERVED 0x10 RESERVED 0x11 AWR_RF_STATUS_GET_MSG 0x12 RESERVED 0x13 AWR_RF_MONITORING_REPORT_GET_ MSG 0x14 RESERVED 0x15 RESERVED 0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_CONF_GET_MSG 0x205 RESERVED 0x206 AWR_DEV_FILE_DOWNLOAD_MSG 0x207 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x208 RESERVED 0x209 RESERVED 0x208 RESERVED 0x209 RESERVED		0x0C	
0x0F RESERVED 0x10 RESERVED 0x11 AWR_RF_STATUS_GET_MSG 0x12 RESERVED 0x13 AWR_RF_MONITORING_REPORT_GET_ MSG 0x14 RESERVED 0x15 RESERVED 0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x208 RESERVED 0x209 RESERVED 0x200 RESERVED 0x200 RESERVED 0x201 RESERVED 0x202 RESERVED		0x0D	RESERVED
0x10 RESERVED 0x11 AWR_RF_STATUS_GET_MSG 0x12 RESERVED 0x13 AWR_RF_MONITORING_REPORT_GET_ MSG 0x14 RESERVED 0x15 RESERVED 0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x200 RESERVED 0x200 RESERVED 0x201 RESERVED 0x202 RESERVED 0x203 RESERVED		0x0E	AWR_RF_MONITORING_CONF_SET_MSG
0x11 AWR_RF_STATUS_GET_MSG 0x12 RESERVED 0x13 AWR_RF_MONITORING_REPORT_GET_ MSG 0x14 RESERVED 0x15 RESERVED 0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_GET_MSG 0x203 AWR_DEV_FILE_DOWNLOAD_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_STATUS_GET_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x200 RESERVED		0x0F	RESERVED
0x12 RESERVED 0x13 AWR_RF_MONITORING_REPORT_GET_ MSG 0x14 RESERVED 0x15 RESERVED 0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x200 RESERVED 0x200 RESERVED 0x201 RESERVED 0x202 RESERVED 0x203 RESERVED		0x10	RESERVED
0x13 AWR_RF_MONITORING_REPORT_GET_MSG 0x14 RESERVED 0x15 RESERVED 0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_GET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x208 RESERVED 0x209 RESERVED 0x200 RESERVED 0x200 RESERVED		0x11	AWR_RF_STATUS_GET_MSG
MSG 0x14 RESERVED 0x15 RESERVED 0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20A RESERVED		0x12	RESERVED
0x15 RESERVED 0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x200 RESERVED 0x200 RESERVED 0x200 RESERVED		0x13	
0x16 AWR_RF_MISC_CONF_SET_MSG 0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x200 RESERVED 0x200 RESERVED		0x14	RESERVED
0x17 AWR_RF_MISC_CONF_GET_MSG 0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x208 RESERVED 0x200 RESERVED 0x200 RESERVED		0x15	RESERVED
0x18 RESERVED 0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x200 RESERVED 0x200 RESERVED		0x16	AWR_RF_MISC_CONF_SET_MSG
0x19 RESERVED 0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x17	AWR_RF_MISC_CONF_GET_MSG
0x80 AWR_RF_ASYNC_EVENT_MSG1 0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x18	RESERVED
0x81 AWR_RF_ASYNC_EVENT_MSG2 0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x19	RESERVED
0x200 AWR_DEV_RFPOWERUP_MSG 0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x80	AWR_RF_ASYNC_EVENT_MSG1
0x201 RESERVED 0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x81	AWR_RF_ASYNC_EVENT_MSG2
0x202 AWR_DEV_CONF_SET_MSG 0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x200	AWR_DEV_RFPOWERUP_MSG
0x203 AWR_DEV_CONF_GET_MSG 0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x201	RESERVED
0x204 AWR_DEV_FILE_DOWNLOAD_MSG 0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x202	AWR_DEV_CONF_SET_MSG
0x205 RESERVED 0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x203	AWR_DEV_CONF_GET_MSG
0x206 AWR_DEV_FRAME_CONFIG_APPLY_MSG 0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x204	AWR_DEV_FILE_DOWNLOAD_MSG
0x207 AWR_DEV_STATUS_GET_MSG 0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x205	RESERVED
0x208 RESERVED 0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x206	AWR_DEV_FRAME_CONFIG_APPLY_MSG
0x209 RESERVED 0x20A RESERVED 0x20B RESERVED		0x207	AWR_DEV_STATUS_GET_MSG
0x20A RESERVED 0x20B RESERVED		0x208	RESERVED
0x20B RESERVED		0x209	RESERVED
		0x20A	RESERVED
0x20C RESERVED		0x20B	RESERVED
		0x20C	RESERVED
0x20D RESERVED		0x20D	RESERVED
0x280 AWR_DEV_ASYNC_EVENT_MSG		0x280	AWR_DEV_ASYNC_EVENT_MSG

LENGTH

The length field contains the length of the message in bytes including the message header, message data and CRC. Note that length field does not include the length of the sync field. The minimum length of the message is 12 bytes and maximum is 252 bytes. The message length minus CRC length must also be a multiple of 4 bytes.

15 14 13 12 11 10 9 8 7 6 5	4	3	2	1	0
RESERVED LEN					

Figure 2.6: MSGLEN Format

Table 2.3: MSGLEN field descriptions

Bits	Field	Description
[11:0]	LEN	Message length in bytes (It includes message header, message data and CRC)
[15:12]	RESERVED	Keep these bits as 0s

FLAGS

The FLAGS is used to control the communication between the radar device and external host

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEQ	NUM		CRC	LEN	CRC	REQ	PRO	TOCO	L VER	SION	ACQ	REQ	RE ⁻	ΓRY

Figure 2.7: FLAGS Format

Table 2.4: FLAGS field description

Bits	Field	Description				
[1:0]	RETRY	RETRY Value 00 New message				
		11 Retransmitted message				
		01 RESERVED				
		10 RESERVED				
[3:2]	ACKREQ	Acknowledgement Request type				
		00	Acknowledgement is requested for the current message			
		11 Acknowledgement is not r quested for the current message				
		01 RESERVED				
		10	RESERVED			

Continued on next page

[15:12]

[7:4]	PROTOCOL VERSION	Version number of the protocol that is used to communicate with the device (4 bits)					
[9:8]	CRCREQ	CRC request type 00 CRC is appended to the message					
		11 CRC sage	C is not appended to the mes-				
		01 RES	SERVED				
		10 RES	SERVED				
[11:10]	CRCLEN	00 16-b	C appended to the message bit CRC				

10

11

SEQNUM

64-bit CRC RESERVED

4 bit sequence number of the message. Sequence number is reset to 0 after a device boot and each new message has the incremented sequence number. Whenever the same message is retransmitted, the sequence number is not incremented.

Table 2.4 - continued from previous page

NOTE:	It is recommended to always append CRC to the message to pre-
	vent any message integrity issues

REMCHUNKS

If the message length is larger than 256 bytes, then it is split into multiple chunks of sizes less than 256 bytes. When this field is non-zero, this field indicates the number of remaining chunks that are to be expected.

NSBC

The message may contain several configuration sub blocks with structure as defined in Figure 2.3. The NSBC field indicates the total number sub blocks inside the message data.

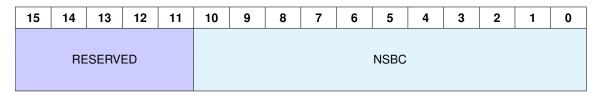


Figure 2.8: NSBC Format

Table 2.5: NSBC field description

Bits	Field	Description
[10:0]	NSBC	Number of sub blocks in the message
[15:11]	RESERVED	Keep these bits as 0s

CHKSUM

The message header is protected by a 16-bit checksum to enable the receiver to check the integrity of the message header. The checksum is computed on MSGHDR only (MSGID, MSGLEN, FLAGS, REMCHUNKS and NSBC fields). Note that SYNC field is not included in checksum calculation.

Checksum is 16-bit one's complement of the one's complement sum of all 16-bit words in the message header (Ref. https://tools.ietf.org/html/rfc1071).

For e.g., suppose the message header contents looks like this

Table 2.6: Checksum computation example

Field	Value	
OPCODE	0x0281	
MSGLEN	0x0800	
FLAGS	0x040C	
REMCHUNKS	0x0000	
NSBC	0x0001	
CHKSUM	0xF171	

The receiver will compute the checksum as follows 0x0281 + 0x0800 = 0x0A81.

Then, 0x0A81 + 0x040C = 0x0E8D.

Then, 0x0E8D + 0x0000 = 0x0E8D.

Then, 0x0E8D + 0x0001 = 0x0E8E.

The carry bits generated beyond 16 bits should be added back to result

Ones complement of 0x0E8E is 0xF171 which matches with the received checksum.

2.3.3 MSGDATA

The message data contains the actual message specific data for the message. The message data contains sub blocks with structure as defined in Figure 2.9. More than one sub block can be appended in the MSGDATA to reduce the overall communication latency. The total number of sub blocks in MSGDATA is indicated in the NSBC field in the MSGHDR.

All data fields are aligned so that their offset in message is a multiple of the field size in bytes. For e.g. a 32 bit field in the message will be aligned to a 4 byte boundary and a 16 bit field will

be aligned to a 2 byte boundary. This makes it possible to create a structure definition for the message for easy data access in most environments.

Any reserved (currently unused) fields in the messages should be always set as 0 when sent and ignored when received. This way those fields may be taken to use in later interface versions without modifying all old software.

All data structure in sub-blocks assumed to be in little endian format. For big endian Host system byte swap is required to match with defined protocol.

MSGDATA		
SBLKID	SBLKLEN	SBLKDATA
(16 bits)	(16 bits)	(Variable length)

Figure 2.9: Message Sub block structure

SBLKID Unique ID of the sub block

SBLKLEN Length of the sub block in bytes

SBLKDATA Data corresponding to the sub block

2.3.4 CRC

This is a CRC which is appended to the message data to protect the integrity of the message. The CRC is computed on all the bytes in the MSGHDR and MSGDATA. Note that SYNC is not included in CRC calculation.

3 different types of CRCs can be used – 16 bit, 32 bit or 64 bit. The choice of the CRC type is indicated in the FLAGS field in the MSGHDR.

The 32 bit CRC is recommended CRC to be used in SPI protocol.

The polynomials used for each type of CRC calculation are

Table 2.7: CRC types and their polynomials

CRC type	Polynomial	Remarks
16 bit	$x^{16} + x^{12} + x^5 + 1$	16-bit CRC-CCITT
32 bit	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$	CRC-32 (used in Ethernet)
64 bit	$x^{64} + x^4 + x^3 + x + 1$	CRC-64-ISO (HDLC)

NOTE:	Device SPI protocol Limitation: The CRC length of the message
	or Async-event shall be multiple of 4 bytes to enable reliable retry
	recovery mechanism in case of any checksum failure in a message.

3 Message Processing

3.1 Communication protocol

When requested by the message transmitter, all correctly formatted radar messages are acknowledged by the receiver. This request for an acknowledgement is specified in FLAGS field of the MSGHDR (message header) field (see Section 2.3.2). A correctly formatted message is one that is formatted properly with a SYNC, MSGHDR, MSGDATA and CRC and that passes the CRC test when received. If an incorrectly formatted message is received, the radar device responds with a NACK message (MSGTYPE field in the MSGHDR set to NACK response). If a correctly formatted message is received, and after processing the message no errors are encountered, the radar device responds with an ACK response. In case of errors on a correctly formatted message, the radar device responds with an ERROR response.

The ACK response is a radar message which contains SYNC, MSGHDR, MSGDATA and CRC. In case the MSGTYPE was COMMAND_GET the MSGDATA for ACK response will contain the parameter values read by the radar device.

The NACK response is a radar message with only SYNC, MSGHDR and CRC. It does not contain MSGDATA.

For most commands the radar device prepares the acknowledgments and response packets immediately on reception. In certain cases, higher priority events in the system delay the execution of external communication function. The response time to command is a function of:

- Speed of the selected communication channel
- Although typical radar command/response occurs within a few hundreds of microseconds, it is recommended that host software wait up to 1 millisecond for response or acknowledgment before timing out on nonresponse.

The radar communication protocol is defined as follows

- 1. The host sends a message to the radar device requesting an acknowledgement. Host sets a timeout period of 1 ms for a response from the radar device.
- The radar device checks the CHKSUM field for Message header validity and checks the MSGDATA field for correctness and also computes the CRC of the message and compares it with the received CRC.
 - If the computed CHKSUM does not match the received CHKSUM, the radar device does not send any response. The transmitter will timeout and eventually resend the command again with RETRY flag set

- If the CRC matches and all parameters are valid/correct, the radar device sends an ACK to the host
- If the CRC matches, but any parameter in the message is invalid/incorrect, then the radar device sends an ERROR response to the host
- If the CRC does not match, the radar device sends a NACK response to the host
- 3. On reception of the ACK, the host can send the next command to the radar device.
- 4. If the host receives a NACK from the radar device within the timeout period, it sends the message again without the RETRY flag set.
- 5. If the host does not receive any response from the radar device within the timeout period then it sends the same command with the RETRY flag set.

3.2 Communication Sequence

3.2.1 Command/Response Sequence (Host)

- 1. Host prepares the message as defined by protocol in Section 2.3
- 2. Host writes the message to the communication channel and starts Retry Timer (\sim 1 ms)
- 3. Host then waits for HOST IRQ high Interrupt
 - a. If IRQ is received, go to Step 4
 - b. If Retry Time expires, Enable Retry Flag and go to Step 2
- 4. Host writes CNYS (SYNC word = 0x5678 0x8765) and Dummy bytes (0xFFFF 0xFFFF 0xFFFF 0xFFFF) on communication channel
- 5. Host waits for low on Host IRQ line
 - a. If Host IRQ line is low, go to Step 6
 - b. If Retry Time expires, Flag Error
- 6. Host reads the header from communication channel
- 7. Host checks the validity of header (verify checksum)
 - a. If header is valid, parse the header and go to Step 8
 - b. If header is invalid, ignore the header and reports to error to Application
- 8. Host reads the payload from communication channel
- 9. Host checks the validity of the message (verify CRC)
 - a. If message is valid, process the message
 - b. If message is invalid, go to Step 2 with new sequence number

3.2.2 Flow Diagram (Host) - Command/Response

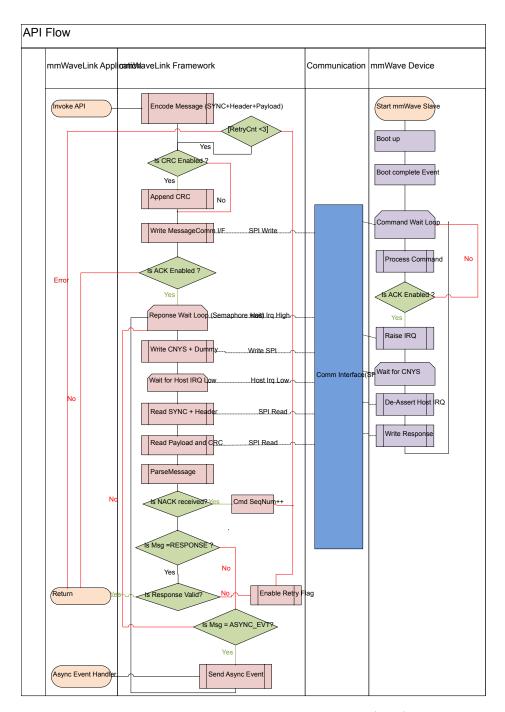


Figure 3.1: Flow Diagram (API)

3.2.3 Flow Diagram (Host) - Bootup/ Asynchronous Event

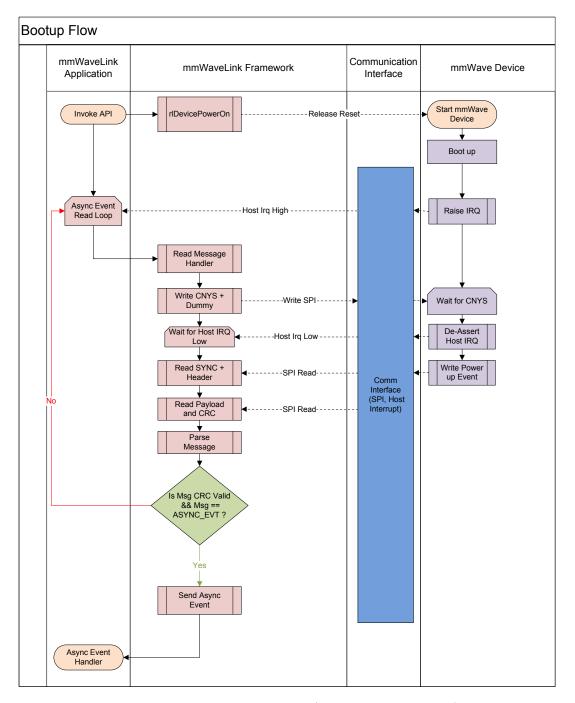


Figure 3.2: Flow Diagram (Asynchronous Events)

3.2.4 SPI Message Sequence – Command/Response

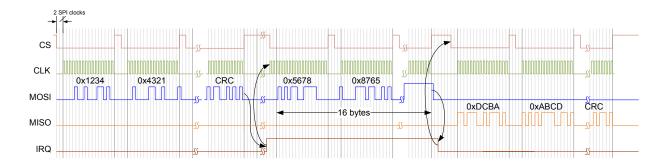


Figure 3.3: SPI Message Sequence

NOTE: 1.	Host should ensure that there is a delay of at least 2 SPI clocks between CS going low and start of SPI clock
2.	Host should ensure that CS is toggled for every 16 bits of transfer via SPI
3.	There should be a delay of at least 2 SPI Clocks between consecutive CS
4.	SPI needs to be operated at Mode 0 (Phase 1, Polarity 0)
5.	SPI word length should be 16 bit (Half word)

4 Radar Interface Messages Descriptions

This section describes all the radar interface messages that are used in communication with the radar transceiver.

4.1 Summary of all messages and their associated sub-blocks

Table 4.1: Summary of all Radar messages and their associated sub blocks

Radar Messages	Associated sub-blocks
AWR_ACK_MSG	NA
AWR_NACK_MSG	NA
AWR_ERROR_MSG	AWR_RESP_ERROR_SB
	AWR_CHAN_CONF_SET_SB
	AWR_ADCOUT_CONF_SET_SB
	AWR_LOWPOWERMODE_CONF_SET_SB
	AWR_DYNAMICPOWERSAVE_CONF_SET_SB
AND DE CTATIO COME CET	AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
AWR_RF_STATIC_CONF_SET_ MSG	AWR_RF_DEVICE_CFG_SB
	AWR_RF_RADAR_MISC_CTL_SB
	AWR_CAL_MON_FREQUENCY_LIMITS_SB
	AWR_RF_INIT_CALIBRATION_CONF_SB
	AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB
	AWR_CAL_DATA_RESTORE_SB
	AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB
	AWR_APLL_SYNTH_BW_CONTROL_SB
AWR_RF_STATIC_CONF_GET_ MSG	AWR_CAL_DATA_SAVE_SB
	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB
AWR_RF_INIT_MSG	AWR_RF_INIT_SB
AWR_RF_DYNAMIC_CONF_SET_ MSG	AWR_PROFILE_CONF_SET_SB
	AWR_CHIRP_CONF_SET_SB
	AWR_FRAME_CONF_SET_SB

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_CONT_STREAMING_MODE_CONF_SET_SB
	AWR_CONT_STREAMING_MODE_EN_SB
	AWR_ADVANCED_FRAME_CONF_SB
	AWR_PERCHIRPPHASESHIFT_CONF_SB
	AWR_PROG_FILT_COEFF_RAM_SET_SB
	AWR_PROG_FILT_CONF_SET_SB
	AWR_CALIB_MON_TIME_UNIT_CONF_SB
	AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB
	AWR_DIGITAL_COMP_EST_CONTROL_SB
	AWR_RX_GAIN_TEMPLUT_SET_SB
	AWR_TX_GAIN_TEMPLUT_SET_SB
	AWR_LOOPBACK_BURST_CONF_SET_SB
	AWR_DYN_CHIRP_CONF_SET_SB
	AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB
	AWR_DYN_CHIRP_ENABLE_SB
	AWR_INTERCHIRP_BLOCKCONTROLS_SB
	AWR_SUBFRAME_START_CONF_SB
	AWR_ADVANCE_CHIRP_CONF_SB
	AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB
	AWR_MONITOR_TYPE_TRIG_CONF_SB
AWR_RF_DYNAMIC_CONF_GET_ MSG	AWR_PROFILE_CONF_GET_SB
	AWR_CHIRP_CONF_GET_SB
	AWR_FRAME_CONF_GET_SB
	AWR_ADVANCED_FRAME_CONF_GET_SB
	AWR_RX_GAIN_TEMPLUT_GET_SB
	AWR_TX_GAIN_TEMPLUT_GET_SB
AWR_RF_FRAME_TRIG_MSG	AWR_FRAMESTARTSTOP_CONF_SB
AWR_RF_ADVANCED_	AWR_BPM_COMMON_CONF_SET_SB
FEATURES_CONF_SET_MSG	AWR_BPM_CHIRP_CONF_SET_SB
AWR_RF_MONITORING_CONF_ SET_MSG	AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB
	AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB
	AWR_MONITOR_ANALOG_ENABLES_CONF_SB
	AWR_MONITOR_TEMPERATURE_CONF_SB
	AWR_MONITOR_RX_GAIN_PHASE_CONF_SB

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
_	AWR MONITOR RX NOISE FIGURE CONF SB
	AWR_MONITOR_RX_IFSTAGE_CONF_SB
	AWR MONITOR TX0 POWER CONF SB
	AWR_MONITOR_TX1_POWER_CONF_SB
	AWR_MONITOR_TX2_POWER_CONF_SB
	AWR_MONITOR_TX0_BALLBREAK_CONF_SB
	AWR_MONITOR_TX1_BALLBREAK_CONF_SB
	AWR_MONITOR_TX2_BALLBREAK_CONF_SB
	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB
	AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB
	AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB
	AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB
	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_ SB
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_CONF_SB
	AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB
	AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB
	AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB
	AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB
	AWR_ANALOG_FAULT_INJECTION_CONF_SB
AWR_RF_MONITORING_RE- PORT_GET_MSG	AWR_RF_DFE_STATISTICS_REPORT_GET_SB
AWR_RF_STATUS_GET_MSG	AWR_RF_VERSION_GET_SB

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_RF_CPUFAULT_STATUS_GET_SB
	AWR_RF_ESMFAULT_STATUS_GET_SB
	AWR_RF_DIEID_GET_SB
	AWR_RF_BOOTUPBIST_STATUS_GET_SB
	AWR_RF_TEST_SOURCE_CONFIG_SET_SB
	AWR_RF_TEST_SOURCE_ENABLE_SET_SB
	AWR_RF_LDO_BYPASS_SB
AWR_RF_MISC_CONF_SET_MSG	AWR_RF_PALOOPBACK_CFG_SB
	AWR_RF_PSLOOPBACK_CFG_SB
	AWR_RF_IFLOOPBACK_CFG_SB
	AWR_RF_GPADC_CFG_SET_SB
AWR_RF_MISC_CONF_GET_ MSG	AWR_RF_TEMPERATURE_GET_SB
	AWR_AE_RF_CPUFAULT_SB
	AWR_AE_RF_ESMFAULT_SB
	AWR_AE_RF_INITCALIBSTATUS_SB
	AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB
	AWR_AE_RF_FRAME_TRIGGER_RDY_SB
	AWR_AE_RF_GPADC_RESULT_DATA_SB
	AWR_FRAME_END_AE_SB
	AWR_ANALOGFAULT_AE_SB
	AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB
AWR_RF_ASYNC_EVENT_MSG1	AWR_RUN_TIME_CALIBRATION_SUMMARY_REPORT_AE_SB
	AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB
	AWR_MONITOR_REPORT_HEADER_AE_SB
	AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB
	AWR_MONITOR_TEMPERATURE_REPORT_AE_SB
	AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB
	AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB
	AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB
	AWR_MONITOR_TX0_POWER_REPORT_AE_SB
	AWR_MONITOR_TX1_POWER_REPORT_AE_SB
	AWR_MONITOR_TX2_POWER_REPORT_AE_SB
	AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB
	AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB
	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_ AE_SB
	AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB
	AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB
	AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_REPORT_ AE_SB
AWR_RF_ASYNC_EVENT_MSG2	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSREPORT_ AE_SB
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_RE-PORT_AE_SB
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_ SB
	AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB
	AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_NONLIVE_ REPORT_AE_SB
AWR_DEV_RFPOWERUP_MSG	AWR_DEV_RFPOWERUP_SB
AWR_DEV_CONF_SET_MSG	AWR_DEV_MCUCLOCK_CONF_SET_SB
	AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
	AWR_DEV_RX_DATA_PATH_CONF_SET_SB
	AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB
	AWR_DEV_RX_DATA_PATH_CLK_SET_SB
	AWR_DEV_LVDS_CFG_SET_SB
	AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB
	AWR_DEV_CSI2_CFG_SET_SB

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_DEV_PMICCLOCK_CONF_SET_SB
	AWR_MSS_LATENTFAULT_TEST_CONF_SB
	AWR_MSS_PERIODICTESTS_CONF_SB
	AWR_DEV_TESTPATTERN_GEN_SET_SB
	AWR_DEV_CONFIGURATION_SET_SB
	AWR_DEV_RF_DEBUG_SIG_SET_SB
	AWR_DEV_CSI2_DELAY_DUMMY_CFG_SET_SB
AWR_DEV_CONF_GET_MSG	AWR_DEV_MCUCLOCK_GET_SB
	AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB
	AWR_DEV_RX_DATA_PATH_CONF_GET_SB
	AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB
	AWR_DEV_RX_DATA_PATH_CLK_GET_SB
	AWR_DEV_LVDS_CFG_GET_SB
	AWR_DEV_RX_CONTSTREAMING_MODE_CONF_GET_SB
	AWR_DEV_CSI2_CFG_GET_SB
	AWR_DEV_PMICCLOCK_CONF_GET_SB
	AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB
	AWR_MSS_PERIODICCONF_GET_SB
	AWR_DEV_TESTPATTERN_GEN_GET_SB
AWR_DEV_FILE_DOWNLOAD_ MSG	AWR_DEV_FILE_DOWNLOAD_SB
AWR_DEV_FRAME_CONFIG_	AWR_DEV_FRAME_CONFIG_APPLY_SB
APPLY_MSG	AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB
	AWR_MSSVERSION_GET_SB
AWR_DEV_STATUS_GET_MSG	AWR_MSSCPUFAULT_STATUS_GET_SB
	AWR_MSSESMFAULT_STATUS_GET_SB
	AWR_AE_DEV_MSSPOWERUPDONE_SB
	AWR_AE_DEV_RFPOWERUPDONE_SB
AWR_DEV_ASYNC_EVENT_MSG	AWR_AE_MSS_CPUFAULT_SB
	AWR_AE_MSS_ESMFAULT_SB
	AWR_AE_MSS_BOOTERRORSTATUS_SB
	AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB
	AWR_AE_MSS_PERIODICTEST_STATUS_SB
	AWR_AE_MSS_RFERROR_STATUS_SB

4.2 AWR_ACK_MSG

The AWR_ACK_MSG is sent by the radar transceiver on a successful reception of a command after its CRC check.

Field Name	Number of bytes	Description	
SYNC	4	Value = 0xABCDDCBA	
OPCODE	2	Bits Variable name	Value
		b3:0 DIRECTION	See Table 2.2
		b5:4 MSGTYPE	01
		b15:6 MSGID	Same as MSGID in the command
MSGLEN	2	Length of the message in length)	bytes (do not include sync
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contain	ned in the message
CHKSUM	2	See Section 2.3.2	
CRC	Variable	Based on CRCLEN field in F	LAGS

4.3 AWR_NACK_MSG

The AWR_NACK_MSG is sent by the radar transceiver if the CRC check of the command fails.

Field Name	Number of bytes	Description	
SYNC	4	Value = 0xABCDDCBA	
OPCODE	2	Bits Variable name Value	
		b3:0 DIRECTION See Table 2.2	
		b5:4 MSGTYPE 10	
		b15:6 MSGID Same as MSGID in the command	
MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	

CHKSUM	2	See Section 2.3.2
CRC	Variable	Based on CRCLEN field in FLAGS

4.4 AWR_ERROR_MSG

The AWR_RF_ERROR_MSG is sent by the radar transceiver on finding errors in the command send by host.

Field Name	Number of bytes	Description	
SYNC	4	Value = 0xABCDDCBA	
OPCODE	2	Bits Variable name Value	
		b3:0 DIRECTION See Table 2.2	
		b5:4 MSGTYPE 01	
		b15:6 MSGID 0x00	
MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_RESP_ERROR_SB	
CRC	Variable	Based on CRCLEN field in FLAGS	

4.5 AWR_RF_STATIC_CONF_SET_MSG

Field Name	Number of bytes	Descrip	otion	
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x04

MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_CHAN_CONF_SET_SB		
		AWR_ADCOUT_CONF_SET_SB		
		AWR_LOWPOWERMODE_CONF_SET_SB		
		AWR_DYNAMICPOWERSAVE_CONF_SET_SB		
		AWR_HIGHSPEEDINTFCLK_CONF_SET_SB		
		AWR_RF_DEVICE_CFG_SB		
		AWR_RF_RADAR_MISC_CTL_SB		
		AWR_CAL_MON_FREQUENCY_LIMITS_SB		
		AWR_RF_INIT_CALIBRATION_CONF_SB		
		AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_ SB		
		AWR_CAL_DATA_RESTORE_SB		
		AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB		
		AWR_APLL_SYNTH_BW_CONTROL_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.6 AWR_RF_STATIC_CONF_GET_MSG

Field Name	Number of bytes	Descri	ption	
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x05

MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_CAL_DATA_SAVE_SB
		AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.7 AWR_RF_INIT_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x06		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_INIT_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.8 AWR_RF_DYNAMIC_CONF_SET_MSG

Field Name	Number	Description
	of bytes	

SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x08
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_PROFILE_CONF_SET_SB
		AWR_CHIRP_CONF_SET_SB
		AWR_FRAME_CONF_SET_SB
		AWR_CONT_STREAMING_MODE_CONF_SET_SB
		AWR_CONT_STREAMING_MODE_EN_SB
		AWR_ADVANCED_FRAME_CONF_SB
		AWR_PERCHIRPPHASESHIFT_CONF_SB
		AWR_PROG_FILT_COEFF_RAM_SET_SB
		AWR_PROG_FILT_CONF_SET_SB
		AWR_CALIB_MON_TIME_UNIT_CONF_SB
		AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB
		AWR_DIGITAL_COMP_EST_CONTROL_SB
		AWR_RX_GAIN_TEMPLUT_SET_SB
		AWR_TX_GAIN_TEMPLUT_SET_SB
		AWR_LOOPBACK_BURST_CONF_SET_SB
		AWR_DYN_CHIRP_CONF_SET_SB
		AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB
		AWR_DYN_CHIRP_ENABLE_SB
		AWR_INTERCHIRP_BLOCKCONTROLS_SB
		AWR_SUBFRAME_START_CONF_SB
		AWR_ADVANCE_CHIRP_CONF_SB
		AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB
		AWR_MONITOR_TYPE_TRIG_CONF_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.9 AWR_RF_DYNAMIC_CONF_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x09		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_PROFILE_CONF_GET_SB		
		AWR_CHIRP_CONF_GET_SB		
		AWR_FRAME_CONF_GET_SB		
		AWR_ADVANCED_FRAME_CONF_GET_SB		
		AWR_RX_GAIN_TEMPLUT_GET_SB		
		AWR_TX_GAIN_TEMPLUT_GET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.10 AWR_RF_FRAME_TRIG_MSG

Field Name	Number of bytes	Descrip	otion	
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x0A

MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_FRAMESTARTSTOP_CONF_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.11 AWR_RF_ADVANCED_FEATURES_CONF_SET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x0C		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_BPM_COMMON_CONF_SET_SB		
		AWR_BPM_CHIRP_CONF_SET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.12 AWR_RF_MONITORING_CONF_SET_MSG

Field Name	Number	Description
	of bytes	

SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x0E
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB
		AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB
		AWR_MONITOR_ANALOG_ENABLES_CONF_SB
		AWR_MONITOR_TEMPERATURE_SONF_SB
		AWR_MONITOR_RX_GAIN_PHASE_CONF_SB
		AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB
		AWR_MONITOR_RX_IFSTAGE_CONF_SB
		AWR_MONITOR_TX0_POWER_CONF_SB
		AWR_MONITOR_TX1_POWER_CONF_SB
		AWR_MONITOR_TX2_POWER_CONF_SB
		AWR_MONITOR_TX0_BALLBREAK_CONF_SB
		AWR_MONITOR_TX1_BALLBREAK_CONF_SB
		AWR_MONITOR_TX2_BALLBREAK_CONF_SB
		AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_ CONF_SB
		AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB
		AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB
		AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB
		AWR_MONITOR_SYNTHESIZER_FREQUENCY_ CONF_SB
		AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB

		AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ CONF_SB
		AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_CONF_SB
		AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_CONF_SB
		AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB
		AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB
		AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB
		AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB
		AWR_ANALOG_FAULT_INJECTION_CONF_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.13 AWR_RF_STATUS_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x11		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_VERSION_GET_SB		
		AWR_RF_CPUFAULT_STATUS_GET_SB		
		AWR_RF_ESMFAULT_STATUS_GET_SB		
		AWR_RF_DIEID_GET_SB		

		AWR_RF_BOOTUPBIST_STATUS_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.14 AWR_RF_MONITORING_REPORT_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x13		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_DFE_STATISTICS_REPORT_GET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.15 AWR_RF_MISC_CONF_SET_MSG

Field Name	Number of bytes	Descrip	otion	
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x16

MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_RF_TEST_SOURCE_CONFIG_SET_SB	
		AWR_RF_TEST_SOURCE_ENABLE_SET_SB	
		AWR_RF_LDO_BYPASS_SB	
		AWR_RF_PALOOPBACK_CFG_SB	
		AWR_RF_PSLOOPBACK_CFG_SB	
		AWR_RF_IFLOOPBACK_CFG_SB	
		AWR_RF_GPADC_CFG_SET_SB	
CRC	Variable	Based on CRCLEN field in FLAGS	

4.16 AWR_RF_MISC_CONF_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x17		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_TEMPERATURE_GET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.17 AWR_RF_ASYNC_EVENT_MSG1

The AWR_RF_ASYNC_EVENT_MSG1 is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDBCA		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 11		
		b15:6 MSGID 0x80		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_AE_RF_CPUFAULT_SB		
		AWR_AE_RF_ESMFAULT_SB		
		AWR_AE_RF_INITCALIBSTATUS_SB		
		AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB		
		AWR_AE_RF_FRAME_TRIGGER_RDY_SB		
		AWR_AE_RF_GPADC_RESULT_DATA_SB		
		AWR_FRAME_END_AE_SB		
		AWR_ANALOGFAULT_AE_SB		
		AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB		
		AWR_RUN_TIME_CALIBRATION_SUMMARY_RE- PORT_AE_SB		
		AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_ AE_SB		
		AWR_MONITOR_REPORT_HEADER_AE_SB		
		AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB		
		AWR_MONITOR_TEMPERATURE_REPORT_AE_SB		
		AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB		
		AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_ SB		
		AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB		
		AWR_MONITOR_TX0_POWER_REPORT_AE_SB		
		AWR_MONITOR_TX1_POWER_REPORT_AE_SB		
		AWR_MONITOR_TX2_POWER_REPORT_AE_SB		

			AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB
			AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB
CRO)	Variable	Based on CRCLEN field in FLAGS

4.18 AWR_RF_ASYNC_EVENT_MSG2

The AWR_RF_ASYNC_EVENT_MSG2 is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDBCA		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 11		
		b15:6 MSGID 0x81		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB		
		AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_RE-PORT_AE_SB		
		AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_ AE_SB		
		AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_ AE_SB		
		AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_ AE_SB		
		AWR_MONITOR_SYNTHESIZER_FREQUENCY_RE-PORT_AE_SB		
		AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSRE-PORT_AE_SB		
		AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB		

CRC	Variable	Based on CRCLEN field in FLAGS
		AWR_MONITOR_SYNTHESIZER_FREQUENCY_ NONLIVE_REPORT_AE_SB
		AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_ AE_SB
		AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_ SB
		AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_ AE_SB
		AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB
		AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB
		AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
		AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
		AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

4.19 AWR_DEV_RFPOWERUP_MSG

The AWR_DEV_RFPOWERUP_MSG is sent by the host to the MSS. This message indicates that BSS can now be powered up.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDBCA		
OPCODE	2	Bits Variable name	Value	
		b3:0 DIRECTION	See Table 2.2	
		b5:4 MSGTYPE	00	
		b15:6 MSGID	0x200	
MSGLEN	2	Length of the message in length)	bytes (do not include sync	
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		

MSGDATA	Variable	Supported sub blocks	
		AWR_DEV_RFPOWERUP_SB	
CRC	Variable	Based on CRCLEN field in FLAGS	

4.20 AWR_DEV_CONF_SET_MSG

The AWR_DEV_CONF_SET_MSG is sent by the host to the radar transceiver. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x202		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_DEV_MCUCLOCK_CONF_SET_SB		
		AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB		
		AWR_DEV_RX_DATA_PATH_CONF_SET_SB		
		AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB		
		AWR_DEV_RX_DATA_PATH_CLK_SET_SB		
		AWR_DEV_LVDS_CFG_SET_SB		
		AWR_DEV_RX_CONTSTREAMING_MODE_CONF_ SET_SB		
		AWR_DEV_CSI2_CFG_SET_SB		
		AWR_DEV_PMICCLOCK_CONF_SET_SB		
		AWR_MSS_LATENTFAULT_TEST_CONF_SB		
		AWR_MSS_PERIODICTESTS_CONF_SB		
		AWR_DEV_TESTPATTERN_GEN_SET_SB		
		AWR_DEV_CONFIGURATION_SET_SB		

		AWR_DEV_RF_DEBUG_SIG_SET_SB
		AWR_DEV_CSI2_DELAY_DUMMY_CFG_SET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.21 AWR_DEV_CONF_GET_MSG

The AWR_DEV_CONF_GET_MSG is sent by the host to the radar transceiver to read back the configuration values.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x203		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_DEV_MCUCLOCK_GET_SB		
		AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB		
		AWR_DEV_RX_DATA_PATH_CONF_GET_SB		
		AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB		
		AWR_DEV_RX_DATA_PATH_CLK_GET_SB		
		AWR_DEV_LVDS_CFG_GET_SB		
		AWR_DEV_RX_CONTSTREAMING_MODE_CONF_ GET_SB		
		AWR_DEV_CSI2_CFG_GET_SB		
		AWR_DEV_PMICCLOCK_CONF_GET_SB		
		AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB		
		AWR_MSS_PERIODICCONF_GET_SB		
		AWR_DEV_TESTPATTERN_GEN_GET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.22 AWR_DEV_FILE_DOWNLOAD_MSG

The AWR_DEV_FILE_DOWNLOAD_MSG is sent by the host to MSS. This message sends a file to be written into the device.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x204		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_DEV_FILE_DOWNLOAD_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.23 AWR_DEV_FRAME_CONFIG_APPLY_MSG

The AWR_DEV_FRAME_CONFIG_APPLY_MSG is sent by the host to MSS. This message indicates to MSS to apply all the regular framing mode configurations related to ADC buffer and CBUFF.

Field Name	Number of bytes	Description		
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x206

MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_DEV_FRAME_CONFIG_APPLY_SB
		AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.24 AWR_DEV_STATUS_GET_MSG

The AWR_DEV_STATUS_GET_MSG is sent by the host to MSS to get some status information from the device.

Field Name	Number of bytes	Description			
SYNC	4	Value = 0x43211234			
OPCODE	2	Bits Variable name Value			
		b3:0 DIRECTION See Table 2.2			
		b5:4 MSGTYPE 00			
		b15:6 MSGID 0x207			
MSGLEN	2	Length of the message in bytes (do not include sync length)			
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
MSGDATA	Variable	Supported sub blocks			
		AWR_MSSVERSION_GET_SB			
		AWR_MSSCPUFAULT_STATUS_GET_SB AWR_MSSESMFAULT_STATUS_GET_SB			
CRC	Variable	Based on CRCLEN field in FLAGS			

4.25 AWR_DEV_ASYNC_EVENT_MSG

The AWR_DEV_ASYNC_EVENT_MSG is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 11		
		b15:6 MSGID 0x280		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_AE_DEV_MSSPOWERUPDONE_SB		
		AWR_AE_DEV_RFPOWERUPDONE_SB		
		AWR_AE_MSS_CPUFAULT_SB		
		AWR_AE_MSS_ESMFAULT_SB		
		AWR_AE_MSS_BOOTERRORSTATUS_SB		
		AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB		
		AWR_AE_MSS_PERIODICTEST_STATUS_SB		
		AWR_AE_MSS_RFERROR_STATUS_SB		
		AWR_AE_MSS_ADC_DATA_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

5 Radar Functional APIs

This section describes all the radar interface sub blocks that are used in messages for communicating with the radar transceiver. Some of the sub blocks are status responses from the radar device. All the API sub-blocks defined in this document are applicable to all mmWave Radar Sensors unless it is specified in the sub-block.

5.1 Sub block related to AWR_ERROR_MSG

5.1.1 Sub block 0x0000 - AWR_RESP_ERROR_SB

This sub block contains the error response for an API command. Table 5.1 describes the contents of this sub block.

Table 5.1: AWR_RESP_ERROR_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0000		
SBLKLEN	2	Value = 8		
API_RESP	2	0x0001 ERROR_CMD: Incorrect MSGID		
		0x0002 ERROR_CMD: No Sub block found in the MSG		
		0x0003 ERROR_CMD: Incorrect Sub block ID		
		0x0004 ERROR_CMD: Incorrect Sub block Length		
		0x0005 ERROR_CMD: Incorrect Sub block data		
		0x0006 ERROR_PROC: Error in processing the command		
		0x0007 ERROR_FILECRCMISMATCH: File CRC mismatched		
		0x0008 ERROR_FILETYPEMISMATCH: File type mismatched w.r.t. magic number		
		0x0009 See Section 7 for details on error codes from each - API		
		0xFFFF		

API_RESP_	2	0x0000 Sub-Block ID in which Error Occurred for sub
ERROR_SBC_ID		 block related errors
		0xFFFF

5.2 Sub blocks related to AWR_RF_STATIC_CONF_SET_MSG

5.2.1 Sub block 0x0080 - AWR_CHAN_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - how many RX and TX channels are needed for operation. It also defines static configurations related to whether the sensor uses a single mmWave or multiple chips to realize a larger antenna array (multiple is applicable only in AWR2243). Table 5.2 describes the contents of this sub block.

Table 5.2: AWR_CHAN_CONF_SET_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0080		
SBLKLEN	2	Value = 12		
RX_CHAN_EN	2	This field specifies which RX channels are to be enabled		
		Bit Description		
		b0	RX_C	HAN0_EN
			0	Disable RX Channel 0
			1	Enable RX Channel 0
		b1 RX_CHAN1_EN		HAN1_EN
			0	Disable RX Channel 1
			1	Enable RX Channel 1
		b2 RX_CHAN2_EN		HAN2_EN
			0	Disable RX Channel 2
			1	Enable RX Channel 2
		b3 RX_CHAN3_EN		HAN3_EN
			0	Disable RX Channel 3
			1	Enable RX Channel 3
		b15:4 RESERVED 0b0000000000000		RVED
				000000000

Table 5.2 – continued from previous page

TX_CHAN_EN	2	This field specifies which TX channels are to be enabled		
		Bit	Description	
		b0	TX_CHAN0_EN	
			0 Disable TX Channel 0	
			1 Enable TX Channel 0	
		b1	TX_CHAN1_EN	
			0 Disable TX Channel 1	
			1 Enable TX Channel 1	
		b2	TX_CHAN2_EN (3rd Tx is supported only on some of the devices, Please refer device data sheet)	
			0 Disable TX Channel 2	
			1 Enable TX Channel 2	
		b15:3	RESERVED	
			0b00000000000	
CASCADING_	2	This field specifies the cascading configuration.		
CFG		Value	Description	
		0x0000	SINGLECHIP: Single mmWave sensor application	
		0x0001	MULTICHIP_MASTER: Multiple cascade sensor application. This device is a master chip and generates LO and conveys to other slave sensors. This is applicable only for device which supports cascading.	
			MULTICHIP_SLAVE: Multiple cascade sensor application. This device is a slave chip and uses LO conveyed to it by the master sensor. This is applicable only for device which supports cascading. HIP_MASTER and MULTICHIP_SLAVE are in general to as MULTICHIP applications, where larger antenna	
		cases.	refer device data sheet for cascading capability and NC pins.	

Table 5.2 – continued from previous page

	Idole	Bit	Description	٦
		b0	Description FM_CW_CLKOUT_MASTER_DIS Applicable only in MUTICHIP_MASTER device. Default value is 0 0 Enable FM_CW_CLKOUT on master	
			1 Disable FM_CW_CLKOUT on master	
		b1	FM_CW_SYNCOUT_MASTER_DIS Applicable only in MULTICHIP_MASTER device. Default value is 0 0 Enable FM_CW_SYNCOUT on master	
			Disable FM CW SYNCOUT on master	
		b2	FM_CW_CLKOUT_SLAVE_EN Applicable only in MULTICHIP_SLAVE device. Default value is 0 0 Disable FM_CW_CLKOUT on slave	
			1 Enable FM_CW_CLKOUT on slave	
		b3	FM_CW_SYNCOUT_SLAVE_EN Applicable only in MULTICHIP_SLAVE device. Default value is 0 0 Disable FM_CW_SYNCOUT on slave	
			1 Enable FM_CW_SYNCOUT on slave	
CASCADING_ 2 PINOUTCFG	2	b4	INTLO_MASTER_EN Applicable only in MULTICHIP_MASTER device. Default value is 0 0 Use externally looped back LO	
			1 Use internal LO in master Note that the externally looped-back LO mode is useful when length-matching the 20 GHz path between master and slave devices.	
		b5	OSCCLKOUT_DIS By Default OSC CLK is enabled at device power up, that can be disabled using this option . Default value is 0 0 Enable OSCCLKOUT	
			1 Disable OSCCLKOUT Note: This feature is supported only on AWR2243 device. It is recommended to disable the OSC clock if it is not used in SINGLE_CHIP or SLAVE mode.	
		b6	INTFRC_MASTER_EN Applicable only in MULTICHIP_MASTER device. Default value is 0 0 Use externally looped back FRC SyncIn	
			Use internal FRC SyncIn in master Note that the externally looped-back FRC SyncIn mode is useful when length-matching the SyncIn path between master and slave devices.	
		b15:6	RESERVED	
	Copyrig	ht © 2020), Texas Instruments Incorporated	╛
			Continued on next page	

Table 5.2 – continued from previous page

5.2.2 Sub block 0x0082 - AWR_ADCOUT_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - regarding the data format of the ADC output (including the digital filtering).

Table 5.3 describes the contents of this sub block.

Table 5.3: AWR_ADCOUT_CONF_SB contents

Number of bytes	Description					
2	Value	= 0x008	32			
2	Value = 12					
1	Bit	Descri	ption			
	b1:0 Value Definition					
		00	12 bits			
	01 14 bits					
	10 16 bits					
	Other RESERVED					
	b7:2 RESERVED					
	0b000000					
1	Number of bits to reduce ADC full scale by Valid range: 0 to (16 — Number of ADC bits) For e.g. for 12 bit ADC output, this field can take values 0, 1, 2 or 3 For 14 bit ADC output, this field can take values 0, 1 or 2 For 16 bit ADC output, this field can take only value 0 Example: If the user desires 12 bit ADC output, then the digital front end (DFE) chain drops 4 LSBs before placing the data in ADC buffer (DFE output is 16 bits wide). If the user sets FULL_SCALE_REDUCTION_FACTOR as 1, then the DFE will drop only 3 LSBs but still restricting the					
	of bytes 2 2 1	2 Value 2 Value 1 Bit b1:0 b7:2 1 Numb Valid r For e.s 1, 2 or For 14 For 16 Exam digital the da the us then th data in	2			

Table 5.3	3 – cor	ntinued	trom	previous	page
	D::	,			

ADC_OUT_FMT	2	Bits	Description					
		b1:0	Value	Definition				
			00	Real				
			01	Complex 1x (image band filtered out)				
			10	Complex 2x (image band visible)				
			11	Pseudo Real				
		b15:2	RESE	RVED				
			0b000	0000000000				
RESERVED	2	0x0000	0					
RESERVED	2	0x000	0					

5.2.3 Sub block 0x0083 - AWR_LOWPOWERMODE_CONF_SET_SB

This sub block contains static device configurations (applicable for this power cycle) - Sigma Delta ADC root sampling clock rate (reducing rate to half to save power in small IF bandwidth applications).

Table 5.4 describes the contents of this sub block.

Table 5.4: AWR_LOWPOWERMODE_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0083
SBLKLEN	2	Value = 8
RESERVED	2	0x0000
LP_ADC_MODE	2	Value Definition
		0x00 Regular ADC mode
		0x01 Low power ADC mode

NOTE: Low power ADC mode is mandatory on a 5 MHz part variant (for e.g. xWR1642), Normally if IF BW <= 7.5MHz then low power mode setting is recommended.

5.2.4 Sub block 0x0084 - AWR_DYNAMICPOWERSAVE_CONF_SET_SB

This sub block defines static device configuration - whether to enable dynamic power saving during inter-chirp IDLE times by turning off various circuits e.g. TX, RX, LO Distribution blocks. If

Idle time + Tx start time < 10us or Idle time < 3.5us then inter-chirp dynamic power save option will be disabled, in that case, 15us of inter-burst idle time will be utilized to configure sequencer LO, TX and RX signal timings by firmware.

Table 5.4 describes the contents of this sub block.

Table 5.5: AWR_DYNAMICPOWERSAVE_CONF_SET_SB contents

Field Name	Number of bytes	Description						
SBLKID	2	Value = 0x0084						
SBLKLEN	2	Value = 8						
BLOCK_CFG	2	Bits Definition						
		b0 Enable power save by switching off TX during inter-chirp IDLE period 0 Disable 1 Enable Default value: 1 (power saving is enabled)						
		b1 Enable power save by switching off RX during inter-chirp IDLE period 0 Disable 1 Enable Default value: 1 (power saving is enabled)						
		b2 Enable power save by switching off LO Distribution blocks during inter-chirp IDLE period 0 Disable 1 Enable						
		Default value: 1 (power saving is enabled)						
		b15:3 RESERVED						
		0b000000000000						
RESERVED	2	0x0000						

NOTE:	All the 3 configuration bits (TX, RX and LO) should have same
	value, i.e. user should program value 0x7 to enable power save or
	0x0 to disable the power save in BLOCK_CFG.

5.2.5 Sub block 0x0085 - AWR_HIGHSPEEDINTFCLK_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - regarding high speed interface clock rates which are related to sending the ADC data from AWR device to the host in either LVDS or CSI2 format.

Table 5.6 describes the contents of this sub block.

 Table 5.6:
 AWR_HIGHSPEEDINTFCLK_CONF_SET_SB contents

Field Name	Number of bytes	Description									
SBLKID	2	Value = 0	Value = 0x0085								
SBLKLEN	2	Value = 8									
HSICLKRATE_ CODE	2	This field indicates the high speed interface input clock rate, needed by the LVDS or CSI2 module. It should be N times the final serial data rate, where N = 2 in DDR mode and N = 1 in SDR mode. Bit 15:5 = Reserved (all 0). Bit 3:0 are to be set based on desired rate as follows:									
			b1:0 00	b1:0 01	b1:0 10	b1:0 11					
		b3:2 00	Reserved	800 MHz	400 MHz	200 MHz					
		b3:2 01	Reserved	900 MHz	450 MHz	225 MHz					
		b3:2 10	Reserved	1200 MHz	600 MHz	300 MHz					
		b3:2	Reserved	1800 MHz	Reserved	Reserved					
		For example, for 900 Mbps output rate with DDR, choose Bit3:0=0b1101, and for 450 Mbps output rate with SDR, choose Bit3:0=0b0110.									
RESERVED	2	0x0000									

5.2.6 Sub block 0x0086 - AWR_RF_DEVICE_CFG_SB

This sub block configures the direction of async event from BSS. Typically async events are sent to MSS. With this API, the user can configure the destination of async event.

Table 5.7 describes the contents of this sub block.

 ${\bf Table~5.7:~AWR_RF_DEVICE_CFG_SB~contents}$

Field Name	Number of bytes	Descr	Description					
SBLKID	2	Value	Value = 0x0086					
SBLKLEN	2	Value	Value = 16					
RF_AE_DIREC-	4	Bits	Definit	ion				
TION		b1:0	ASYN	C_EVENT_DIR				
			00	BSS to MSS				
			01	BSS to HOST				
			10	BSS to DSS				
			11	RESERVED				
		The ASYNC_EVENT_DIR controls the direction fo following ASYNC_EVENTS						
		1. CPU_FAULT						
			2.	ESM_FAULT				
			3.	ANALOG_FAULT				
				er ASYNC_EVENTs are sent to the subsys- nich issues the API				
			Defaul	t value: 0b00				
		b3:2	MONI	TORING_ASYNC_EVENT_DIR				
			00	BSS to MSS				
			01	BSS to HOST				
			10	BSS to DSS				
			11	RESERVED				
		Default value: 0b00						
		b31:4	RESE	RVED				
			0x000	0000				

Table 5.7 – continued from previous page

1 = 001 = TOO:			ninaca nom previous page					
AE_CONTROL	1	Bits						
		b0	FRAME_START_ASYNC_EVENT_DIS					
			0 Frame Start async event enable					
			1 Frame Start async event disable					
			Default value: 0					
		b1	FRAME_STOP_ASYNC_EVENT_DIS					
			0 Frame Stop async event enable					
			1 Frame Stop async event disable					
			Default value: 0					
		b7:2	RESERVED					
			0b000000					
BSS_ANA_CTRL	1	Bits	Definition					
		b0	INTER_BURST_POWER_SAVE_DIS					
			0 Inter burst power save enable (default)					
			1 Inter burst power save disable					
		b7:1	Default value: 0 This allows to disable inter burst power save feature for individual bursts in a advance frame config API to reduce inter-burst idle time requirement. The power save is done always in inter sub-frame and frame boundaries irrespective of this control bit configuration. The inter burst power save needs 55us burst idle time, please refer Table 11.2 for more details on inter burst time. RESERVED 0b0000000					
RESERVED	1	0x000	0					

Table 5.7 – continued from previous page

BSS_DIG_CTRL	1	Bits Definition						
		b0	WDT_DISABLE					
			0 Keep watchdog disabled					
			1 Enable watchdog					
		b7:1	RESERVED					
			0b0000000					
		NOTE: The Windowed WDT can be enabled only in triggered framing Mode or in cascade mode where fram of all the devices synchronized with same clock source frames are triggered from Hw trigger pulse generated from the unsynchronized clock then WDT can not be enabled. Refer section 9.4 for more details on WDT timing programming window 401						
ASYNC_EVENT_	1	Value	Description					
CRC_CONFIG		0	16 bit CRC for BSS async events					
		1	32 bit CRC for BSS async events					
		2	64 bit CRC for BSS async events					
RESERVED	3	0x000	000					

5.2.7 Sub block 0x0087 - AWR_RF_RADAR_MISC_CTL_SB

This sub block controls miscellaneous global RF controls for e.g. per-chirp phase shifter global control.

NOTE:	Issue	this	API	first	in	the	sequence	if	AWR_	
	PERCH	HIRPPH	HASES	HIFT_C	CONF	_SB,	AWR_DYN_	PER	CHIRP_	
	PHASE	SHIFT	ER_CC	DNF_SI	ET_SI	B and	AWR_ADVAN	ICE_	CHIRP_	
	CONF_SB are issued down in the sequence.									

Table 5.8 describes the contents of this sub block.

Table 5.8: AWR_RF_MISC_CTL_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0087
SBLKLEN	2	Value = 12

Table 5.8 - continued from previous page

	1		
		Bits	Definition
		b0	PERCHIRP_PHASESHIFTER_EN
			0 Per chirp phase shifter is disabled
		b1	1 Per chirp phase shifter is enabled
	4		This control is applicable only in devices which support phase shifter (refer data sheet). For other devices, this is a RESERVED bit and should be set to 0.
RE MISC CTI			Default value: 0
RF_MISC_CTL			ADVANCE_CHIRP_CONFIG_EN 0 Advance chirp config mode is disabled
			1 Advance chirp config mode is enabled
			This feature enables advanced mode of configuring chirps to achieve very flexible waveform generation.
			Default value: 0
		b31:2	RESERVED
			0b000_0000_0000_0000_0000_0000_0000_00
RESERVED	4	0x0000	0000

5.2.8 Sub block 0x0088 - AWR_CAL_MON_FREQUENCY_LIMITS_SB

This sub block sets the limits for RF frequency transmission. This API is deprecated as a new API AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB is added to limit frequency for each TX channels in Table 5.11

Table 5.9 describes the contents of this sub block.

Table 5.9: AWR_CAL_MON_FREQUENCY_LIMITS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0088
SBLKLEN	2	Value = 16

Table 5.9 – continued from previous page

FREQ_LIMIT_ LOW	2	The sensor's lower frequency limit for calibrations and monitoring is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 100 MHz For 77GHz Devices(76GHz to 81Ghz): Valid range: 760 to 810 Default value: 760 (If this API is not issued) For 60GHz Devices(57GHz to 64Ghz): Valid range: 570 to 640 Default value: 570 (If this API is not issued)
FREQ_LIMIT_ HIGH	2	The sensor's higher frequency limit for calibrations and monitoring is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 100 MHz For 77GHz Devices (76GHz to 81Ghz): Valid range: 760 to 810 Default value: 810 (If this API is not issued) For 60GHz Devices(57GHz to 64Ghz): Valid range: 570 to 640 Default value: 640 (If this API is not issued) NOTE: FREQ_LIMIT_HIGH should be strictly greater than FREQ_LIMIT_LOW Examples: For an LRR device deployed in the US, one might typically configure FREQ_LIMIT_LOW to 760 and FREQ_LIMIT_HIGH to 770.
RESERVED	8	RESERVED 0x0000_0000_0000

NOTE1:	The minimum RF bandwidth shall be set to 200MHz, this is to per-
	form internal calibration and monitoring.
NOTE2:	The limit set in this API is not applicable for functional chirps and
	loop-back chirps used in advanced frame config API.
NOTE3:	The TX0 frequency limit is used by default in calibrations and mon-
	itors where TX is not relevant or enabled.
NOTE4:	The RF band used in functional chirp profiles shall be within the
	limit set in this API.

5.2.9 Sub block 0x0089 - AWR_RF_INIT_CALIBRATION_CONF_SB

This sub block configures device to perform boot time calibration. Table 5.10 describes the contents of this sub block.

 ${\bf Table~5.10:~AWR_RF_INIT_CALIBRATION_CONF_SB~contents}$

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0089	
SBLKLEN	2	Value = 16	
RF_INIT_CALIB_ ENABLE_MASK	4	Normally, upon receiving RF INIT message, the BSS performs all relevant initial calibrations. This step can be disabled by the host by setting the corresponding calibration bit in this field to 0x0. If disabled, the host needs to send the INJECT CALIB DATA message so that the BSS can operate using the calibration data thus injected.	
		Each of these calibrations can be selectively disabled by issuing this message before RF INIT message.	
		Bit Definition	
		b0 RESERVED	
		b1 RESERVED	
		b2 RESERVED	
		b3 RESERVED	
		b4 Enable LODIST calibration	
		b5 Enable RX ADC DC offset calibration	
		b6 Enable HPF cutoff calibration	
		b7 Enable LPF cutoff calibration	
		b8 Enable Peak detector calibration	
		b9 Enable TX power calibration	
		b10 Enable RX gain calibration	
		b11 Enable TX Phase calibration (Device dependent feature, please refer data sheet)	
		b12 Enable RX IQMM calibration	
		b31:13 RESERVED	
		0b000_0000_0000_0000	
		Default value: 0x1FF0 NOTE: If TX power calibration is disabled during factory calibration, then backoff other than 0 dB is not supported.	
RESERVED	4	0x00000000	
RESERVED	4	0x0000000	

NOTE1:	The APLL, SYNTH1 and SYNTH2 calibrations are always triggred
	by default on RF init command

5.2.10 Sub block 0x008A - AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_ SB

This sub block sets the limits for RF frequency transmission for each TX and also TX power limits.

Number	Description
of bytes	
2	Value = 0x008A
2	Value = 28
2	The sensor's lower frequency limit for calibrations and monitoring for TX0 is encoded in 2 bytes (16 bit unsigned number)
	1 LSB = 10 MHz
	For 77GHz Devices(76GHz to 81Ghz):
	Valid range: 7600 to 8100
	Default value: 7600 (If this API is not issued)
	For 60GHz Devices(57GHz to 64Ghz):
	Valid range: 5700 to 6400
	Default value: 5700 (If this API is not issued)
2	The sensor's lower frequency limit for calibrations and monitoring for TX1 is encoded in 2 bytes (16 bit unsigned number)
	1 LSB = 10 MHz
	For 77GHz Devices(76GHz to 81Ghz):
	Valid range: 7600 to 8100
	Default value: 7600 (If this API is not issued)
	For 60GHz Devices(57GHz to 64Ghz):
	Valid range: 5700 to 6400
	Default value: 5700 (If this API is not issued)
2	The sensor's lower frequency limit for calibrations and monitoring for TX2 is encoded in 2 bytes (16 bit unsigned number)
	1 LSB = 10 MHz
	For 77GHz Devices(76GHz to 81Ghz):
	Valid range: 7600 to 8100
	Default value: 7600 (If this API is not issued)
	For 60GHz Devices(57GHz to 64Ghz):
	Valid range: 5700 to 6400
	of bytes 2 2 2 2

Table 5.11 – continued from previous page

		· · · · · · · · · · · · · · · · · · ·
		Default value: 5700 (If this API is not issued)
FREQ_LIMIT_ HIGH_TX0	2	The sensor's higher frequency limit for calibrations and monitoring for TX0 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz For 77GHz Devices (76GHz to 81Ghz): Valid range: 7600 to 8100 Default value: 8100 (If this API is not issued) For 60GHz Devices (57GHz to 64Ghz): Valid range: 5700 to 6400 Default value: 6400 (If this API is not issued) NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
FREQ_LIMIT_ HIGH_TX1	2	The sensor's higher frequency limit for calibrations and monitoring for TX1 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz For 77GHz Devices (76GHz to 81Ghz): Valid range: 7600 to 8100 Default value: 8100 (If this API is not issued) For 60GHz Devices (57GHz to 64Ghz): Valid range: 5700 to 6400 Default value: 6400 (If this API is not issued) NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
FREQ_LIMIT_ HIGH_TX2	2	The sensor's higher frequency limit for calibrations and monitoring for TX2 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz For 77GHz Devices (76GHz to 81Ghz): Valid range: 7600 to 8100 Default value: 8100 (If this API is not issued) For 60GHz Devices (57GHz to 64Ghz): Valid range: 5700 to 6400 Default value: 6400 (If this API is not issued) NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
TX0_POWER_ BACKOFF	1	TX0 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
TX1_POWER_ BACKOFF	1	TX1 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0

Table 5.11 - continued from previous page

TX2_POWER_ BACKOFF	1	TX2 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
RESERVED	1	0x00
RESERVED	2	0x0000

NOTE1:	The minimum RF bandwidth 200MHz, this is to perform internal calibration and monitoring.
NOTE2:	The limit set in this API is not applicable for functional chirps and
	loop-back chirps used in advanced frame config API.
NOTE3:	The TX0 frequency limit is used by default in calibrations and mon-
	itors where TX is not relevant or enabled.
NOTE4:	The RF band used in functional chirp profiles shall be within the
	limit set in this API.

5.2.11 Sub block 0x008B - AWR_CAL_DATA_RESTORE_SB

This sub block restores the calibration data which was stored previously using the AWR_CAL_DATA_SAVE_SB command. The async event AWR_AE_RF_INITCALIBSTATUS_SB will be issued after this API, this indicates success of the calibration data restore. The calibration data contents are defined in page 64 in AWR_CAL_DATA table.

Table 5.12: AWR_CAL_DATA_RESTORE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008B
SBLKLEN	2	Value = 232
RESERVED	2	0x0000
CHUNK_ID	2	Index of the current chunk
CAL_DATA	224	Calibration data chunk which was stored in non-volatile memory

NOTE1: All 3 chunks of 224 bytes each shall be sent to radar device to complete the restore process and to generate AWR_AE_RF_INITCALIBSTATUS_SB AE.

NOTE2: Refer recommended API sequence and order in page 302 for more details on sequence of issuing this API.

5.2.12 Sub block 0x008C - AWR PHASE SHIFTER CAL DATA RESTORE SB

This sub block restores the calibration data which was stored previously using the AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB command. This is device specific feature, please refer data sheet.

Table 5.13: AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB contents

Field Name	Number of bytes	Description				
SBLKID	2	Value	Value = 0x008C			
SBLKLEN	2	Value	= 136			
TX_INDX	1		Index of the transmit channel for which the following data applies			
CAL_APPLY	1	mitters	Set this to 1 after applying calibration data from all transmitters. This bit will indicate to the firmware to start the correction process.			
OBS_PHSHIFT_ DATA	128	Observed phase shift corresponding to each desired phase shift. Index n corresponds to desired phase shift of $n \times 5.625^{\circ}$. For e.g.				
		n Desired phase shift Observed phase shift is injected in the following bytes				
		0	0.000°	byte[1], byte[0]		
		1	5.625°	byte[3], byte[2]		
		2	11.250°	byte[5], byte[4]		
		3	16.875°	byte[7], byte[6]		
		:	:			
		63	354.375°	byte[127], byte[126]		
		1 LSB	$B = 360^{\circ}/2^{10}$			
RESERVED	2	0x000	00			

5.2.13 Sub block 0x008D - AWR_APLL_SYNTH_BW_CONTROL_SB

This is a new feature addition in **AWR2243**. This sub block is used to control bandwidth of the APLL and Synthesizer. The typical recommended settings are as below.

Table 5.14: Typical APLL and Synth BW settings

			L	·		0		
SYNTH_ ICP_TRIM	SYNTH_ RZ_TRIM	APLL_ ICP_TRIM	APLL_ RZ_TRIM	VCO1_ BW	VCO2_ BW	APLL_ BW	Description	Max VCO Slope (MHz/us)
1	8	0x26	0x9	750K	1.5M	150K	Default settings (+/-0.2% Ferror at 2us ADC start)	266
3	8	0x26	0x9	375K	750K	150K	Optimum for 76- 77GHz VCO1 (1M, 10M PN)	100
0	8	0x26	0x9	1.3M	2.6M	150K	Synth High BW (+/-0.2% Ferror at 1us ADC start)	266
3	8	0x3F	0x9	375K	1.5M	300K	Optimum 100K PN	100

Table 5.15: AWR_APLL_SYNTH_BW_CONTROL_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008D
SBLKLEN	2	Value = 20
SYNTH_ICP_ TRIM	1	Synth ICP trim code
SYNTH_RZ_ TRIM	1	Synth RZ trim code
APLL_ICP_TRIM	1	APLL RZ trim code
APLL_RZ_TRIM	1	APLL RZ trim code
RESERVED	12	0x0000

NOTE:	Recommended to issue this AWR_APLL_SYNTH_BW_
	CONTROL_SB API before AWR_RF_INIT_SB API. The RF_
	INIT synthesizer boot calibration shall run after changing the APLL
	BW.

5.3 Sub blocks related to AWR_RF_STATIC_CONF_GET_MSG

5.3.1 Sub block 0x00A0 - 0x00AA - RESERVED

5.3.2 Sub block 0x00AB - AWR_CAL_DATA_SAVE_SB

This sub block reads the calibration data from the device which can be injected later using the AWR_CAL_DATA_RESTORE_SB command.

NOTE:	The total size of the calibration data is 672 bytes, this has been split
	into 3 chunks (NUM_CHUNKS) of 224 bytes each due to SPI limita-
	tion. The Host should receive all these 3 chunks from radar device,
	later host can store only relevant data in non volatile memory.

Table 5.16: AWR_CAL_DATA_SAVE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AB
SBLKLEN	2	Value = 8
RESERVED	2	0x0000
CHUNK_ID	2	Index of the requested chunk
		Valid values: 0 to NUM_CHUNKS - 1

Response to the above command will contain the calibration data which is formatted as shown below

Table 5.17: AWR_CAL_DATA_SAVE_SB response packet contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AB
SBLKLEN	2	Value = 232
NUM_CHUNKS	2	Total number of calibration data chunks
CHUNK_ID	2	Current chunk number
CAL_DATA	224	Calibration data, refer CAL_DATA contents below

AWR2243 calibration data structure:

Table 5.18: AWR_CAL_DATA contents

Field Name	Number of bytes	Description	
CAL_VALIDITY_ STATUS	4	This field indicates the status of each calibration (0 – FAIL, 1 – PASS). If a particular calibration was not enabled, then its corresponding field should be ignored. Bit Definition (0 – FAIL, 1 – PASS)	
		b0 RESERVED	
		b1 APLL tuning (Ignore while store restore)	
		b2 SYNTH VCO1 tuning (Ignore while store restore)	
		b3 SYNTH VCO2 tuning (Ignore while store restore)	
		b4 LODIST calibration (Ignore while store restore)	
		b5 RX ADC DC offset calibration	
		b6 HPF cutoff calibration	
		b7 LPF cutoff calibration	
		b8 Peak detector calibration (optional)	
		b9 TX Power calibration (optional)	
		b10 RX gain calibration	
		b11 TX Phase calibration (Ignore while store restore)	
		b12 RX IQMM calibration	
		b31:13 RESERVED	
		The recommended Validity status bits while restoring is 0x000014E0, assuming only RX_ADC_DC_CAL_DATA, HPF_CAL_DATA, LPF_CAL_DATA, RX_RF_GAIN_CAL_DATA and IQMM_CAL_DATA are stored and restored.	
CAL_VALIDITY_ STATUS_COPY	4	Redundant CAL_VALIDITY_STATUS value, this value should match with CAL_VALIDITY_STATUS	
RESERVED	8	RESERVED	
CAL_TEMPERA- TURE	2	Temperature at which boot calibration is done	
RESERVED	14	RESERVED	
RX_ADC_DC_ CAL_DATA	16	Rx chain ADC DC calibration data	
HPF1_CAL_DATA	1	HPF1 calibration data	
HPF2_CAL_DATA	1	HPF2 calibration data	
LODIST_BIAS_ CODE	1	LODIST calibration data	
LODIST_FREQ_ INDEX	1	LODIST calibration frequency index	

RESERVED	48	RESERVED
RX_RF_GAIN_ CAL_DATA	8	RX RF gain calibration data
IQMM_CAL_ DATA	104	RX IQMM calibration data
TX_POWER_ CAL_DATA	82	TX Power calibration data
POWER_DET_ CAL_DATA	326	Power detector calibration data
RESERVED	52	RESERVED

xWR6843 calibration data structure:

Table 5.19: AWR_CAL_DATA contents

Field Name	Number of bytes	Descrip	tion
CAL_VALIDITY_ STATUS	4	This field indicates the status of each calibration (0 – FAIL, 1 – PASS). If a particular calibration was not enabled, then its corresponding field should be ignored. Bit Definition (0 – FAIL, 1 – PASS) b0 RESERVED	
		b1	APLL tuning (Ignore while store restore)
		b2 b3	SYNTH VCO1 tuning (Ignore while store restore) SYNTH VCO2 tuning (Ignore while store restore)
		b4	LODIST calibration (Ignore while store restore)
		b5	RX ADC DC offset calibration
		b6	HPF cutoff calibration
		b7	LPF cutoff calibration
		b8	Peak detector calibration (optional)
		b9	TX Power calibration (optional)
		b10	RX gain calibration
		b11	TX Phase calibration (Ignore while store restore)
		b12	RX IQMM calibration
		b31:13	RESERVED
		0x00001 HPF_C	ommended Validity status bits while restoring is 4E0, assuming only RX_ADC_DC_CAL_DATA, AL_DATA, LPF_CAL_DATA, RX_RF_GAIN_CAL_IDATA are stored and restored.

CAL_VALIDITY_ STATUS_COPY	4	Redundant CAL_VALIDITY_STATUS value, this value should match with CAL_VALIDITY_STATUS
RESERVED	8	RESERVED
CAL_TEMPERA- TURE	2	Temperature at which boot calibration is done
RESERVED	14	RESERVED
RX_ADC_DC_ CAL_DATA	16	Rx chain ADC DC calibration data
HPF1_CAL_DATA	1	HPF1 calibration data
HPF2_CAL_DATA	1	HPF2 calibration data
LODIST_BIAS_ CODE	1	LODIST calibration data
RESERVED	1	RESERVED
RX_RF_GAIN_ CAL_DATA	8	RX RF gain calibration data
IQMM_CAL_ DATA	104	RX IQMM calibration data
TX_POWER_ CAL_DATA	122	TX Power calibration data
POWER_DET_ CAL_DATA	344	Power detector calibration data
RESERVED	42	RESERVED

NOTE1:	Before storing the calibration data in non volatile memory, the host shall make sure validity status of all enabled calibrations are SET to value 1 including APLL, VCO1, VCO2 and LODIST calibration validity in RF_INIT of radar device.
NOTE2:	Host can store only relevant calibration data in non volatile memory and corresponding validity bits shall be set to 1 in AWR_CAL_DATA_RESTORE_SB and rest of the validity bits should be clear to 0 before restoring the data to radar device.
NOTE3:	Host shall ignore APLL, VCO1, VCO2 and LODIST calibration validity bits while restoring, these calibrations will be done in each device power-up.

5.3.3 Sub block 0x00AC - AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB

This sub block reads the phase shifter calibration data from the device which can be injected later using the AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB command. This is device specific feature, please refer data sheet.

Table 5.20: AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AC
SBLKLEN	2	Value = 8
TX_INDX	1	Index of the transmitter channel for which the phase shift is desired
RESERVED	3	0x000000

Response to the above command will contain the phase shifter calibration data which is formatted as shown below

Table 5.21: AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB response packet contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x00AC		
SBLKLEN	2	Value	= 136	
TX_INDX	1		of the transmitter charshift values applies	nnel for which the following
RESERVED	1	0x00		
OBS_PHSHIFT_ DATA	128	Observed phase shift corresponding to each desired phase shift. Index n corresponds to desired phase shift of $n \times 5.625^\circ$. For e.g. Desired phase shift Observed phase shift is read in the following bytes		
		0	0.000°	byte[1], byte[0]
		1	5.625°	byte[3], byte[2]
		2	11.250°	byte[5], byte[4]
		3	16.875°	byte[7], byte[6]
		:	÷	
		63	354.375°	byte[127], byte[126]
		1 LSB	$=360^{\circ}/2^{10}$	
RESERVED	2	0x000	0	

5.4 Sub blocks related to AWR_RF_INIT_MSG

5.4.1 Sub block 0x00C0 - AWR_RF_INIT_SB

This sub block, needed to be initially issued, triggers one time calibrations such as those related to APLL and synthesizer. The BSS processor is woken up upon receiving this sub block, the RF analog and digital baseband sections are initialized.

Table 5.22 describes the content of this sub block.

Table 5.22: AWR_RF_INIT_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00C0
SBLKLEN	2	Value = 4

NOTE1:	This sub block will be acknowledged immediately but an async event AWR_AE_RF_INITCALIBSTATUS_SB from BSS will indicate that the RF initialization is complete. No commands shall be sent to BSS till the async event is received. It is not recommended to issue this API in runtime multiple times. This API shall be issued only once after power cycle with or without calibration data restore operation.
NOTE2:	The following boot-time calibrations are susceptible to corruption by interference. The calibrations may result in false configuration of the RF analog sections due to corruption by interference during the calibration measurements. a. RX gain calibration (susceptible to interference) b. RX IQMM calibration (susceptible to interference) c. TX Phase calibration (susceptible to interference) It is recommended to perform factory calibration and store the calibration data in non volatile memory using AWR_CAL_DATA_ SAVE_SB API. This data can be restored to radar device using AWR_CAL_DATA_RESTORE_SB API. More info related to save restore provided in page 64

5.5 Sub blocks related to AWR_RF_DYNAMIC_CONF_SET_MSG

5.5.1 Sub block 0x0100 - AWR_PROFILE_CONF_SET_SB

This sub block contains FMCW radar chirp profiles or properties (FMCW slope, chirp duration, TX power etc.). Since the device supports multiple profiles, each profile is defined in this sub

block. Internal RF and analog calibrations may be triggered upon receiving this sub block and ASYNC_EVENT response sent once completed.

NOTE:

This API can be issued dynamically to change profile parameters.
Few parameters which cannot be changed are

1. PF_NUM_ADC_SAMPLES
2. PF_DIGITAL_OUTPUT_SAMPLING_RATE
3. Programmable filter coefficients

Table 5.23 describes the contents of this sub block.

Table 5.23: AWR_PROFILE_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0100
SBLKLEN	2	Value = 48
PF_INDX	2	The profile index for which the rest of the fields are applicable for

Table 5.23 – continued from previous page

PF VCO SE-	1	Bit	Description
LECT		'	
2201		b0	FORCE_VCO_SEL
			0 Use internal VCO selection
			1 Forced external VCO selection
		b1	VCO_SEL
			0 VCO1 (77G: 76–78GHz, 60G: 57-61GHz)
			1 VCO2 (77G: 77–81GHz, 60G: 60–64GHz)
			NOTE:
			1. xWR1xxx devices: There is an overlap region of 77-78 GHz in which any of the VCOs can be used, for other regions use only the VCO which can work in that region. For e.g. for 76-78 GHz use only VCO1 and for 77-81GHz use only VCO2, for 77-78 GHz, any VCO can be used. Also note that users can inter-mix chirps from different VCOs within the same frame. 2. xWR6843 device: There is an overlap region of 60-61 GHz in which any of the VCOs can be used. 3. AWR2243 device: VCO2 range is 76 - 81GHz (5GHz RF Bandwidth). There is an overlap region of 76-78 GHz in which any of the VCOs can be used.
		b7:2	RESERVED
			0ь000000
PF_CALLUT_	1	Bit	Description
UPDATE		b0	RETAIN_TXCAL_LUT
			0 Update TX calibration LUT
			1 Do not update TX calibration LUT
		b1	RETAIN_RXCAL_LUT
			Update RX calibration LUT and update RX IQMM correction
			1 Do not update RX calibration LUT
		b7:2	RESERVED (set it to 0b000000)
		set RI RX_G	TX_OUTPUT_POWER_BACKOFF is changed then ETAIN_TXCAL_LUT to 0, else set it to 1 and if PF_AIN or if sweep bandwidth is changed, then set RE-RXCAL_LUT to 0 else set them to 1

Table 5.23 – continued from previous page

PF_FREQ_ START_CONST	4	Start frequency for this profile For 77GHz Devices (76GHz to 81Ghz): $1 \text{ LSB} = 3.6e9/2^{26} \text{ Hz} \approx 53.644 \text{ Hz}$ Valid range: 0x5471C71B to 0x5A000000 For 60GHz Devices (57GHz to 64Ghz): $1 \text{ LSB} = 2.7e9/2^{26} \text{ Hz} \approx 40.233 \text{ Hz}$ Valid range: 0x5471C71C to 0x5ED097B4		
PF_IDLE_TIME_ CONST	4	Idle time for each profile 1 LSB = 10 ns Valid range: 0 to 524287		
PF_ADC_ START_TIME_ CONST	4	Time of starting of ADC capture relative to the knee of the ramp 1 LSB = 10 ns Valid range: 0 to 4095		
PF_RAMP_END_ TIME	4	End of ramp time relative to the knee of the ramp 1 LSB = 10 ns Valid range: 0 to 500000 Ensure that the total frequency sweep is either within these ranges: 77G: 76-78 GHz or 77-81 GHz 60G: 57-61GHz or 60-64GHz		
PF_TX_OUT- PUT_POWER_ BACKOFF	4	Bits Description b7:0 TX0 output power back off b15:8 TX1 output power back off b23:16 TX2 output power back off b31:24 RESERVED (set it to 0x00) This field defines how much the transmit power should be reduced from the maximum. 1 LSB = 1 dB Valid Range: 0 to 20 If Tx power boot time calibration is disabled then only 0dB back off is supported. OdB back-off corresponds to typically 13dBm power level in AWR2243 device.		

Table 5.23 – continued from previous page

PF_TX_PHASE_	4	Bits	Description
SHIFTER		b1:0	RESERVED (set it to 0b00)
		b7:2	TX0 phase shift value
			1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$
		b9:8	RESERVED (set it to 0b00)
		b15:10	TX1 phase shift value
			1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$
		b17:16	RESERVED (set it to 0b00)
		b23:18	TX2 phase shift value
			1 LSB = $360^\circ/2^6 \approx 5.625^\circ$
		b31:24	RESERVED
			0x00
		duced o	d defines the additional phase shift to be intro- n each transmitter output. This option is supported selected device variants, Please refer data sheet.
			Chirps corresponding to different profiles are not eed to have phase coherency.
PF_FREQ_ SLOPE_CONST	2	Frequency slope for each profile is encoded in 2 bytes (16 bit signed number) For 77GHz Devices (76GHz to 81Ghz): $1 \text{ LSB} = 3.6e9 \times 900/2^{26} \text{ Hz} \approx 48.279 \text{ kHz}/\mu\text{s}$ Valid range: $\text{xWR1xxx devices: -2072 to 2072}$ $\text{AWR2243 device: -5510 to 5510 (Max 266MHz/}\mu\text{s})$	
		F=# 000	III- Davissa (FZCIII- to C4Ch-).
			Hz Devices (57GHz to 64Ghz): $2.7e9 \times 900/2^{26}$ Hz ≈ 36.21 kHz/ μ s
			nge: -6905 to 6905 (250MHz/µs)
			Refer AWR_APLL_SYNTH_BW_CONTROL_control API for constraints on max slope.
PF_TX_START_ TIME	2	Time of	start of transmitter relative to the knee of the ramp
		1 LSB =	10 ns
		Valid rar	nge: -4096 to 4095
			numbers refer to start of TX after knee of the ramp ative numbers refer to start of TX before the knee amp

Table 5.23 – continued from previous page

	Tubic Ciz		ioni previous pag		
PF_NUM_ADC_ SAMPLES	2	Number of ADC samples to capture in a chirp for each RX			
		Valid range: 2 to MAX_NUM_SAMPLES, where MAX_NUM_SAMPLES is such that all the enabled RX channels' data fits into 16 kB memory in AWR1243/xWR1443/AWR2243 or 32 kB memory in xWR1642/xWR6843/xWR1843, with each sample consuming 2 bytes for real ADC output case and 4 bytes for complex 1x and complex 2x ADC output cases. For example in AWR1243/xWR1443/AWR2243 when the ADC buffer size is 16 kB			
		Number of RX chains	ADC format	MAX_NUM_ SAMPLES	
		4	Complex	1024	
		4	Real	2048	
		2	Complex	2048	
		2	Real	4096	
PF_DIGITAL_ OUTPUT_SAM- PLING_RATE	2	bit unsigned nu 1 LSB = 1 ksps Valid range: xWR1xxx and 15MHz IF band	imber) : IWR6843 device: dwidth)	is encoded in 2 bytes (16 s: 2000 to 37500 (Max 0 (Max 20MHz IF band-	
PF_HPF1_COR- NER_FREQ	1	HPF1 corner f byte	requency for each	n profile is encoded in 1	
		Value HPF1 co	rner frequency de	finition	
		0x00 175 kHz	Z		
		0x01 235 kHz	Z		
		0x02 350 kHz	Z		
		0x03 700 kHz			
PF_HPF2_COR- NER_FREQ	1	HPF2 corner f byte	requency for each	n profile is encoded in 1	
		Value HPF2 co	rner frequency de	finition	
		0x00 350 kHz	Z		
		0x01 700 kHz	Z		
		0x02 1.4 MH			
		0x03 2.8 MH	Z		

Table 5.23 – continued from previous page

TX_CAL_EN_ CFG	2	Number of transmitters to turn on during TX power calibration. During actual operation, if more than 1 TXs are enabled during the chirp, then enabling the same TXs during calibration will have better TX output power accuracy Bit Definition	
		b2:0	TX enabled during TX0 calibration b0 - TX0, b1 - TX1, b2 - TX2
		b5:3	TX enabled during TX1 calibration b3 - TX0, b4 - TX1, b5 - TX2
		b8:6	TX enabled during TX2 calibration b6 - TX0, b7 - TX1, b8 - TX2
		b14:9	RESERVED
		b15	Enable multi TX enable during TX power calibration
			If this bit is not set, only 1 TX is enabled during the TX power calibration. For e.g. during TX0 calibration, only TX0 will be enabled; during TX1 calibration, only TX1 will be enabled and so on
PF_RX_GAIN	2	Bit	Definition
		b5:0	RX_GAIN
			This field defines RX gain for each channel.
			1 LSB = 1 dB
			Valid values: All even values from 32 to 52
		b7:6	RF_GAIN_TARGET
			The RF gain target for AWR2243 device: Value RF gain target
			00 30 dB
			01 33 dB
			10 36 dB (Recommended)
			11 RESERVED
			The RF gain target for xWR6843 ES2.0 device:
			Value RF gain target
			00 30 dB
			01 34 dB
			10 36 dB
		1.45.0	11 RESERVED
			RESERVED (set it to 0x00)
		Recom	nmended RF_GAIN_TARGET is 36dB.

Table 5.23 – continued from previous page

		The total RX gain is achieved as a sum of RF gain and IF amplifiers gain. The RF Gain Target (30 dB, 33 dB and 36 dB) allows the user to control the RF gain independently from the total RX gain, thus giving flexibility to the user to trade-off linearity vs. noise figure. Out of multiple gain settings for the RF stages, the firmware calibration algorithm uses the one that makes the RF gain as close as possible to the user programmed RF Gain Target. At high temperatures, the RF Gain Targets provide trade-off of approximately 4 dB in RF P1dB point vs 2 dB in noise figure. For the lowest RF Gain Target setting 30 dB, the RF gain varies linearly from 38 dB at -40C to 30 dB at 140C for nominal process corner. Since the minimum IF gain is -6 dB, The minimum achievable RX Gain varies from 32 dB at -40C to 24 dB at 140C. The maximum RX gain setting is recommended to be limited to 48dB, which can be achieved at all temperatures and RF gain target conditions. Increasing RX gain beyond 48 dB may result in degradation of in-band P1dB without improvement in noise figure.
RESERVED	2	0x0000

NOTE1:	Please refer Table 11.1 for details on minimum chirp duration.
NOTE2:	The max TX output power back-off only up to 20dB is supported.
NOTE3:	The RF band used in functional chirp profiles shall be within
	the limit set in AWR_CAL_MON_FREQUENCY_TX_POWER_
	LIMITS_SB API.
NOTE4:	This API takes around 700us to execute in RadarSS sub System.

Table 5.24: Note on maximum sampling rate

NOTE:

The maximum sampling rate supported is limited based on the information in the table below

When device supports 15 MHz IF bandwidth (refer device data sheet)

	Real/Pseudo Real	Complex1x	Complex2x
Regular ADC mode	37.5 Msps	18.75 Msps	37.5 Msps
Low power ADC mode	18.75 Msps	9.375 Msps	18.75 Msps

When device supports 10 MHz IF bandwidth (refer device data sheet)

	Real/Pseudo Real	Complex1x	Complex2x	
Regular ADC mode	25 Msps	12.5 Msps	25 Msps	
Low power ADC mode	18.75 Msps	9.375 Msps	18.75 Msps	

When device supports 5 MHz IF bandwidth (refer device data sheet)

	Real/Pseudo Real	Complex1x	Complex2x
Regular ADC mode	12.5 Msps	6.25 Msps	12.5 Msps
Low power ADC mode	12.5 Msps	6.25 Msps	12.5 Msps

- The IF bandwidth here refers to the IF frequency of the farthest reflection desired to be detected
- Typically, the IF frequency range preserved well in the receiver baseband is 0.9 × Sampling Rate in Complex 1x and 0.45 × Sampling Rate in Complex 2x and Real/Pseudo Real.
- The maximum sampling rates are also subject to restrictions from LVDS/CSI2 interface rate and ADC bits configurations.
 Typically in Complex2x mode, the maximum sampling rate would be 25 Msps

5.5.2 Sub block 0x0101 - AWR_CHIRP_CONF_SET_SB

This sub block contains chirp to chirp variations on top of the chirp profiles defined in the AWR_ PROFILE_CONF_SET_SB. E.g. which profile is to be used for each chirp in a frame, and small dithers in FMCW start frequency and idle time for each chirp are possible to be defined here. The dithers used in this configuration sub block are only additive on top of programmed parameters in AWR_PROFILE_CONF_SET_SB.

Table 5.25 describes the contents of this sub block.

Table 5.25: AWR_CHIRP_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0101
SBLKLEN	2	Value = 24
CHIRP_START_ INDX	2	Valid range 0 to 511
CHIRP_END_ INDX	2	Valid range CHIRP_START_INDX to 511
PROFILE_INDX	2	Valid range 0 to 3
RESERVED	2	0x0000
CHIRP_FREQ_ START_VAR	4	For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9/2^{26} \approx 53.644$ Hz Valid range: 0 to 8388607 (450MHz) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9/2^{26} \approx 40.23$ Hz Valid range: 0 to 8388607 (337.5MHz)
CHIRP_FREQ_ SLOPE_VAR	2	For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9 \times 900/2^{26} \approx 48.279$ kHz Valid range: 0 to 63 (3MHz/us) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26} \approx 36.21$ Hz Valid range: 0 to 63 (2.3MHz/us)
CHIRP_IDLE_ TIME_VAR	2	Idle time of each chirp is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 ns Valid range: 0 to 4095
CHIRP_ADC_ START_TIME_ VAR	2	ADC start time of each chirp is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 ns Valid range: 0 to 4095

Table 5.25 – continued from previous page

CHIRP_TX_EN	2		ble selection Definition
		b0	TX0 Enable
		b1	TX1 Enable
		b2	TX2 Enable
		b15:3	RESERVED
			0b0_0000_0000_0000
			Maximum number of TXs that can be turned on in depends on the device data sheet specification

5.5.3 Sub block 0x0102 - AWR_FRAME_CONF_SET_SB

This sub block defines a frame, i.e. a sequence of chirps to be transmitted subsequently, the no. of frames to be transmitted, frame periodicity and how to trigger them.

Table 5.26 describes the contents of this sub block.

Table 5.26: AWR_FRAME_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0102
SBLKLEN	2	Value = 28
RESERVED	2	May use to indicate Frame mode or Continuous chirping mode of operation.
CHIRP_START_ INDX	2	Valid range 0 to 511 NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
CHIRP_END_ INDX	2	Valid range CHIRP_START_INDX to 511 NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.

Table 5.26 – continued from previous page

NUM_LOOPS	2	Number of times to repeat from CHIRP_START_INDX to CHIRP_END_INDX in each frame Valid range 1 to 255
		NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified.
		ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a frame L. This should be programmed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp config API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768
NUM_FRAMES	2	Number of frames to transmit 16 bit unsigned number Valid range: 0 to 65535 (0 for infinite frames)
RESERVED	2	0x0000
FRAME_PERI-ODICITY	4	PERIOD \geq Sum total time of all chirps + InterFrameBlank-Time, where, Sum total time of all chirps = Num Loops * Num chirps * Chirp Period. InterFrameBlankTime is primarily for sensor calibration/monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next frame, re triggering of next frame. InterFrameBlankTime \geq 300 μ s typical, refer a NOTE end of this API for more info. Add 150 μ s to InterFrameBlankTime if data-path reconfiguration needed in frame boundary due to change in profile. 1 LSB = 5 ns Valid range 300 μ s to 1.342 s

Table 5.26 – continued from previous page

TRIGGER_SE-	2	Value	Definition
LECT		0x0001	SWTRIGGER (Software API based triggering): Frame is triggered upon receiving AWR_FRAMESTARTSTOP_CONF_SB. There could be several tens of micro seconds uncertainty in triggering. This mode is not applicable if this device is configured as MULTICHIP_SLAVE in AWR_CHAN_CONF_SB.
		0x0002	HWTRIGGER (Hardware SYNC_IN based triggering): Each frame is triggered by rising edge of pulse in SYNC_IN pin, after receiving AWR_FRAMESTARTSTOP_CONF_SB (this is to prevent spurious transmission). W.r.t. the SYNC_IN pulse, the actual transmission has 160ns delay and 5ns uncertainty in SINGLECHIP and only a 300 ps uncertainty (due to tight inter-chip synchronization needed) in MULTICHIP sensor applications as defined in AWR_CHAN_CONF_SB. For more details please refer to device datasheet.
RESERVED	1	0x00	
RESERVED	1	0x00	
FRAME_TRIG- GER_DELAY	4	Optional time delay from the SYNC_IN trigger to the occurrence of frame chirps. Applicable only in SINGLECHIP sensor applications, as defined in AWR_CHAN_CONF_SB. It is recommended only for staggering the transmission of multiple radar sensors around the car for interference avoidance, if needed. Typical range is 0 to 100 micro seconds. Units: 1 LSB = 5 ns	

NOTE1: If hardware triggered mode is used, the SYNC IN pulse width

should be less than the ON time of the frame (in case of legacy frame config mode) or the ON time of the burst (in case of advanced frame config mode). Also, the minimum pulse width of SYNC_IN

should be 25 ns.

NOTE2: If frame trigger delay is used with hardware triggered mode, then

external SYNC_IN pulse periodicity should take care of the configured frame trigger delay and frame periodicity. The external pulse should be issued only after the sum total of frame trigger delay and

frame periodicity. See figure below

NOTE3: If dummy chirp is used then programmer should make sure the idle

time of dummy chirp >= 4us + DFE spill over time of previous chirp (calculate from rampgen calculator). The first chirp of frame can

not be a dummy chirp.

NOTE4: In Hw triggered mode, the Hw pulse should be issued or periodicity

of pulse is configured such that, the pulse is generated only 150us after the completion of previous frame/burst (The pulse should not be issued before end of previous frame/burst). The time delta between end of previous frame/burst and raising edge of Hw pulse

recommended to be < 300us.

NOTE5: The PF_NUM_ADC_SAMPLES parameter should be identical

across chirps in a frame, when multiple profiles are used in a frame.

NOTE6: The PF_DIGITAL_OUTPUT_SAMPLING_RATE impacts the LVD-

S/CSI2 data rate in a frame, so it is recommended to analyze timing impact if different sample rate is used across chirps in a frame.

NOTE7: Please refer Table 11.3 for details on minimum inter-frame blank

time requirements.

NOTE8: If advance chirp configuration is enabled then this API takes around

1.8ms to execute in RadarSS sub System for 128 chirps. The error checks for each parameters of advance chirp is done in frame

configuration API.

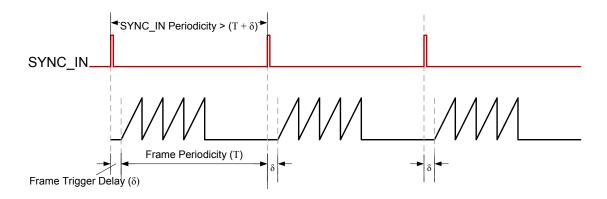


Figure 5.1: Frame trigger delay in case of external hardware trigger

5.5.4 Sub block 0x0103 - AWR_CONT_STREAMING_MODE_CONF_SET_SB

This sub block contains configuration needed to enable continuous streaming mode from the device.

NOTE:	The continuous streaming mode configuration APIs are supported
	only for debug purpose. Please refer latest DFP release note for
	more info.

Table 5.27 describes the contents of this sub block.

Table 5.27: AWR_CONT_STREAMING_MODE_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0103
SBLKLEN	2	Value = 24
PF_FREQ_ START_CONST	4	Frequency start for each profile is encoded in 4 bytes (32 bit unsigned number) For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9/2^{26}$ Hz ≈ 53.644 Hz Valid range: 0 to 0x7FFFFFFF For 60GHz Devices (57GHz to 64GHz): 1 LSB = $2.7e9/2^{26}$ Hz ≈ 40.23 Hz Valid range: 0 to 0x7FFFFFFF

PF_TX_OUT- PUT_POWER_ BACKOFF 4 Bits Description b7:0 TX0 output power back off b15:8 TX1 output power back off b23:16 TX2 output power back off b31:24 RESERVED (set it to 0x00) This field defines how much the transmit power should be reduced from the maximum. 1 LSB = 1 dB PF_TX_PHASE_ SHIFTER 4 Bits Description b1:0 RESERVED (set it to 0b00) b7:2 TX0 phase shift value 1 LSB = 360°/26° ≈ 5.625° b9:8 RESERVED (set it to 0b00) b15:10 TX1 phase shift value 1 LSB = 360°/26° ≈ 5.625° b17:16 RESERVED (set it to 0b00) b23:18 TX2 phase shift value 1 LSB = 360°/26° ≈ 5.625° b31:24 RESERVED 0x00 This field defines the additional phase shift to be introduced on each transmitter output. PF_DIGITAL_ OUTPUT_SAM- PLING_RATE 2 ADC Sampling rate for each profile is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 1 ksps Valid range 2000 to 37500 PF_HPF1_COR- NER_FREQ 1 HPF1 corner frequency for each profile is encoded in 1 byte Value HPF1 corner frequency definition 0x00 175 kHz 0x01 235 kHz 0x02 350 kHz 0x02 350 kHz 0x03 700 kHz		1		
BACKOFF b15:8 TX1 output power back off b23:16 TX2 output power back off b23:16 TX2 output power back off b31:24 RESERVED (set it to 0x00) This field defines how much the transmit power should be reduced from the maximum. $1 \text{LSB} = 1 \text{dB}$ Bits Description b1:0 RESERVED (set it to 0b00) b7:2 TX0 phase shift value $1 \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ}$ b9:8 RESERVED (set it to 0b00) b15:10 TX1 phase shift value $1 \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ}$ b17:16 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it to 0b00) b23:18 TX2 phase shift value $1 \text{LSB} = 1860^{\circ}/2^{6} \approx 5.625^{\circ}$ b31:24 RESERVED (set it t	PF_TX_OUT-	4	Bits	Description
$\begin{array}{c} \text{b15:8} & \text{TX1} \text{ output power back off} \\ \text{b23:16} & \text{TX2} \text{ output power back off} \\ \text{b31:24} & \text{RESERVED (set it to 0x00)} \\ \text{This field defines how much the transmit power should be reduced from the maximum.} \\ 1 \text{LSB} = 1 \text{dB} \\ \\ \text{PF_TX_PHASE_} & \text{Bits} & \text{Description} \\ \text{b1:0} & \text{RESERVED (set it to 0b00)} \\ \text{b7:2} & \text{TX0 phase shift value} \\ \text{1 LSB} = 360^\circ/2^6 \approx 5.625^\circ \\ \text{b9:8} & \text{RESERVED (set it to 0b00)} \\ \text{b15:10} & \text{TX1 phase shift value} \\ \text{1 LSB} = 360^\circ/2^6 \approx 5.625^\circ \\ \text{b17:16} & \text{RESERVED (set it to 0b00)} \\ \text{b23:18} & \text{TX2 phase shift value} \\ \text{1 LSB} = 360^\circ/2^6 \approx 5.625^\circ \\ \text{b31:24} & \text{RESERVED} \\ \text{0x00} & \text{This field defines the additional phase shift to be introduced on each transmitter output.} \\ \\ \text{PF_DIGITAL_} & \text{QUTPUT_SAM-PLING_RATE} & \text{ADC Sampling rate for each profile is encoded in 2 bytes} \\ \text{(16 bit unsigned number)} \\ \text{1 LSB} = 1 \text{ksps} \\ \text{Valid range 2000 to 37500} \\ \\ \text{PF_HPF1_COR-NER_FREQ} & \text{1} & \text{HPF1 corner frequency for each profile is encoded in 1} \\ \text{byte} \\ \text{Value} & \text{HPF1 corner frequency definition} \\ \text{0x00} & 175 \text{kHz} \\ \text{0x01} & 235 \text{kHz} \\ \text{0x02} & 350 \text{kHz} \\ \\ \end{array}$			b7:0	TX0 output power back off
$\begin{array}{c} \text{b31:24} \text{RESERVED} \ (\text{set it to 0x00}) \\ \text{This field defines how much the transmit power should be reduced from the maximum.} \\ 1 \ \text{LSB} = 1 \ \text{dB} \\ \\ \text{PF_TX_PHASE_} \\ \text{SHIFTER} \\ \end{array} \begin{array}{c} \text{4} \qquad \qquad \text{Bits} \qquad \text{Description} \\ \text{b1:0} \qquad \text{RESERVED} \ (\text{set it to 0b00}) \\ \text{b7:2} \qquad \text{TX0 phase shift value} \\ 1 \ \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ \text{b9:8} \qquad \text{RESERVED} \ (\text{set it to 0b00}) \\ \text{b15:10} \qquad \text{TX1 phase shift value} \\ 1 \ \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ \text{b17:16} \qquad \text{RESERVED} \ (\text{set it to 0b00}) \\ \text{b23:18} \qquad \text{TX2 phase shift value} \\ 1 \ \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ \text{b31:24} \qquad \text{RESERVED} \\ \text{0x00} \\ \text{This field defines the additional phase shift to be introduced on each transmitter output.} \\ \\ \text{PF_DIGITAL_} \\ \text{OUTPUT_SAM-PLING_RATE} \\ \\ \text{PPE_HPF1_COR-NER_FREQ} \\ \\ \text{1} \qquad \text{HPF1 corner frequency for each profile is encoded in 1} \\ \text{byte} \\ \text{Value} \qquad \text{HPF1 corner frequency definition} \\ \text{0x00} \qquad 175 \ \text{kHz} \\ \text{0x01} \qquad 235 \ \text{kHz} \\ \text{0x02} \qquad 350 \ \text{kHz} \\ \end{array} $	BACKOTT		b15:8	TX1 output power back off
This field defines how much the transmit power should be reduced from the maximum.			b23:16	TX2 output power back off
$ \begin{array}{c} \text{reduced from the maximum.} \\ 1 \text{LSB} = 1 \text{dB} \\ \\ \end{array} \\ \begin{array}{c} \text{PF_TX_PHASE_} \\ \text{SHIFTER} \\ \end{array} \begin{array}{c} \text{4} \\ \text{Bits} \\ \text{Description} \\ \text{b1:0} \\ \text{RESERVED} (\text{set it to 0b00}) \\ \text{b7:2} \\ \text{TX0 phase shift value} \\ 1 \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ \text{b9:8} \\ \text{RESERVED} (\text{set it to 0b00}) \\ \text{b15:10} \\ \text{TX1 phase shift value} \\ 1 \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ \text{b17:16} \\ \text{RESERVED} (\text{set it to 0b00}) \\ \text{b23:18} \\ \text{TX2 phase shift value} \\ 1 \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ \text{b31:24} \\ \text{RESERVED} \\ 0 \text{x00} \\ \text{This field defines the additional phase shift to be introduced on each transmitter output.} \\ \\ \text{PF_DIGITAL_} \\ \text{OUTPUT_SAM-PLING_RATE} \\ \text{2} \\ \text{OUTPUT_SAM-PLING_RATE} \\ \end{array} \begin{array}{c} \text{2} \\ \text{ADC Sampling rate for each profile is encoded in 2 bytes} \\ \text{(16 bit unsigned number)} \\ 1 \text{LSB} = 1 \text{ksps}} \\ \text{valid range 2000 to 37500} \\ \\ \text{PF_HPF1_COR-NER_FREQ} \\ \end{array} \begin{array}{c} \text{1} \\ \text{HPF1 corner frequency for each profile is encoded in 1 byte} \\ \text{value} \\ \text{HPF1 corner frequency definition} \\ \text{0x00} 175 \text{kHz} \\ \text{0x01} 235 \text{kHz} \\ \text{0x02} 350 \text{kHz} \\ \end{array}$				· · · · · · · · · · · · · · · · · · ·
$PF_TX_PHASE_SHIFTER \begin{tabular}{ll} Bits & Description \\ b1:0 & RESERVED (set it to 0b00) \\ b7:2 & TX0 phase shift value \\ 1 & LSB = 360^\circ/2^6 \approx 5.625^\circ \\ b9:8 & RESERVED (set it to 0b00) \\ b15:10 & TX1 phase shift value \\ 1 & LSB = 360^\circ/2^6 \approx 5.625^\circ \\ b17:16 & RESERVED (set it to 0b00) \\ b23:18 & TX2 phase shift value \\ 1 & LSB = 360^\circ/2^6 \approx 5.625^\circ \\ b31:24 & RESERVED \\ 0x00 & This field defines the additional phase shift to be introduced on each transmitter output. \\ \end{tabular}$ $PF_DIGITAL_OUTPUT_SAM_PLING_RATE \begin{tabular}{ll} ADC Sampling rate for each profile is encoded in 2 bytes (16 bit unsigned number) \\ 1 & LSB = 1 ksps \\ Valid range 2000 to 37500 \\ \end{tabular}$ $PF_HPF1_COR_NER_FREQ \begin{tabular}{ll} 1 & HPF1 corner frequency for each profile is encoded in 1 byte \\ Value & HPF1 corner frequency definition \\ 0x00 & 175 \ kHz \\ 0x01 & 235 \ kHz \\ 0x02 & 350 \ kHz \\ \end{tabular}$				•
$\begin{array}{c} PF_TX_PHASE_\\ SHIFTER \end{array} \begin{array}{c} 4 \\ Bits \\ Description \\ b1:0 \\ RESERVED (set it to 0b00) \\ b7:2 \\ TX0 phase shift value \\ 1 LSB = 360^\circ/2^6 \approx 5.625^\circ \\ b9:8 \\ RESERVED (set it to 0b00) \\ b15:10 \\ TX1 phase shift value \\ 1 LSB = 360^\circ/2^6 \approx 5.625^\circ \\ b17:16 \\ RESERVED (set it to 0b00) \\ b23:18 \\ TX2 phase shift value \\ 1 LSB = 360^\circ/2^6 \approx 5.625^\circ \\ b31:24 \\ RESERVED \\ 0x00 \\ This field defines the additional phase shift to be introduced on each transmitter output. \\ \\ PF_DIGITAL_ \\ OUTPUT_SAM-PLING_RATE \\ PLING_RATE \\ \\ PF_HPF1_COR-NER_ATE \\ 1 \\ DYE \\ Value \\ HPF1 corner frequency for each profile is encoded in 1 byte \\ Value \\ HPF1 corner frequency definition \\ 0x00 $				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			I LOD =	Tub
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	Bits	Description
$\label{eq:bishes} \text{PF}_{-} \text{DIGITAL}_{-} \\ \text{OUTPUT_SAM-PLING_RATE} \\ \text{PF}_{-} \text{PF}_{-} \text{COR-} \\ \text{NER}_{-} \text{FREQ} \\ \text{Ox00} \\ \text{1} \\ \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ \text{b9:8} \\ \text{RESERVED} \\ \text{(set it to 0b00)} \\ \text{b15:10} \\ \text{TX1 phase shift value} \\ 1 \\ \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ \text{b17:16} \\ \text{RESERVED} \\ \text{(set it to 0b00)} \\ \text{b23:18} \\ \text{TX2 phase shift value} \\ 1 \\ \text{LSB} = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ \text{b31:24} \\ \text{RESERVED} \\ \text{0x00} \\ \text{This field defines the additional phase shift to be introduced on each transmitter output.} \\ \text{PF}_{-} \text{DIGITAL}_{-} \\ \text{OUTPUT_SAM-PLING_RATE} \\ \text{1} \\ \text{LSB} = 1 \\ \text{ksps} \\ \text{Valid range 2000 to 37500} \\ \text{PF}_{-} \text{HPF1_COR-} \\ \text{NER_FREQ} \\ \text{1} \\ \text{HPF1 corner frequency for each profile is encoded in 1} \\ \text{byte} \\ \text{Value} \\ \text{HPF1 corner frequency definition} \\ \text{0x00} \\ \text{175 kHz} \\ \text{0x01} \\ \text{235 kHz} \\ \text{0x02} \\ \text{350 kHz} \\ \\ \\ \text{0x02} \\ \text{350 kHz} \\ \\ \\ \\ \text{CM2} \\ \text{CM3} \\ \text{CM3} \\ \text{CM4} \\ \text{CM4} \\ \text{CM5} \\ \text{CM5} \\ \text{CM6} \\ \text{CM7} \\ \text{CM7} \\ \text{CM8} \\ \text{CM8} \\ \text{CM8} \\ \text{CM9} $	SHIFTER		b1:0	RESERVED (set it to 0b00)
			b7:2	
				,
$ \begin{tabular}{lll} & 1 LSB = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ & b17:16 & RESERVED (set it to 0b00) \\ & b23:18 & TX2 phase shift value \\ & 1 LSB = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ & b31:24 & RESERVED \\ & 0x00 \\ & This field defines the additional phase shift to be introduced on each transmitter output. \\ \end{tabular} $			b9:8	,
$b23:18 TX2 \text{ phase shift value} \\ 1 LSB = 360^{\circ}/2^{6} \approx 5.625^{\circ} \\ b31:24 RESERVED \\ 0x00 \\ This field defines the additional phase shift to be introduced on each transmitter output. \\ \\ PF_DIGITAL_\\ OUTPUT_SAM-\\ PLING_RATE \\ 2 ADC Sampling rate for each profile is encoded in 2 bytes (16 bit unsigned number) \\ 1 LSB = 1 ksps \\ Valid range 2000 to 37500 \\ \\ PF_HPF1_COR-\\ NER_FREQ \\ 1 HPF1 corner frequency for each profile is encoded in 1 byte \\ Value HPF1 corner frequency definition \\ 0x00 175 kHz \\ 0x01 235 kHz \\ 0x02 350 kHz \\ \\ \\ \end{aligned}$			b15:10	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			b17:16	RESERVED (set it to 0b00)
DX00 This field defines the additional phase shift to be introduced on each transmitter output. PF_DIGITAL_ OUTPUT_SAM- PLING_RATE 2 ADC Sampling rate for each profile is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 1 ksps Valid range 2000 to 37500 PF_HPF1_COR- NER_FREQ 1 HPF1 corner frequency for each profile is encoded in 1 byte Value HPF1 corner frequency definition 0x00 175 kHz 0x01 235 kHz 0x02 350 kHz			b23:18	•
This field defines the additional phase shift to be introduced on each transmitter output. PF_DIGITAL_ OUTPUT_SAM- PLING_RATE 2			b31:24	RESERVED
DF_DIGITAL_ OUTPUT_SAM- PLING_RATE 2				
OUTPUT_SAM- PLING_RATE (16 bit unsigned number) 1 LSB = 1 ksps Valid range 2000 to 37500 PF_HPF1_COR- NER_FREQ 1 HPF1 corner frequency for each profile is encoded in 1 byte Value HPF1 corner frequency definition 0x00 175 kHz 0x01 235 kHz 0x02 350 kHz				•
OUTPUT_SAM- PLING_RATE (16 bit unsigned number) 1 LSB = 1 ksps Valid range 2000 to 37500 PF_HPF1_COR- NER_FREQ 1 HPF1 corner frequency for each profile is encoded in 1 byte Value HPF1 corner frequency definition 0x00 175 kHz 0x01 235 kHz 0x02 350 kHz				
PLING_RATE 1 LSB = 1 ksps Valid range 2000 to 37500 PF_HPF1_COR- NER_FREQ 1 HPF1 corner frequency for each profile is encoded in 1 byte Value HPF1 corner frequency definition 0x00 175 kHz 0x01 235 kHz 0x02 350 kHz	PF_DIGITAL_	2	ADC Sa	mpling rate for each profile is encoded in 2 bytes
Valid range 2000 to 37500 PF_HPF1_COR- NER_FREQ HPF1 corner frequency for each profile is encoded in 1 byte Value HPF1 corner frequency definition 0x00 175 kHz 0x01 235 kHz 0x02 350 kHz	_			
PF_HPF1_COR- NER_FREQ HPF1 corner frequency for each profile is encoded in 1 byte Value HPF1 corner frequency definition 0x00 175 kHz 0x01 235 kHz 0x02 350 kHz	PLING_RAIE			•
NER_FREQ byte Value HPF1 corner frequency definition 0x00 175 kHz 0x01 235 kHz 0x02 350 kHz	PE HPE1 COR-	1		
Value HPF1 corner frequency definition 0x00 175 kHz 0x01 235 kHz 0x02 350 kHz				orner inequesticy for each profile is choused in i
0x01 235 kHz 0x02 350 kHz			-	HPF1 corner frequency definition
0x02 350 kHz			0x00	175 kHz
			0x01	235 kHz
0x03 700 kHz			0x02	350 kHz
			0x03	700 kHz

PF_HPF2_COR-	1		corner frequency for each profile is encoded in 1
NER_FREQ		byte	11000
		Value	' '
		0x00	350 kHz
		0x01	700 kHz
		0x02	1.4 MHz
		0x03	2.8 MHz
PF_RX_GAIN	1	This fie	ield defines RX gain for continuous streaming mode. Definition
		5:0	RX GAIN
			This field defines RX gain for each profile. 1 LSB = 1 dB
			Valid values: all even values from 32 to 52
		7:6	RF_GAIN_TARGET
			RF gain setting for AWR2243:
			Value RF gain target
			00 30 dB
			01 33 dB
			10 36 dB
			11 RESERVED
			RF gain setting for xWR6843 ES2.0:
			Value RF gain target
			00 30 dB
			01 34 dB
			10 36 dB
			11 RESERVED
		Refer I	Profile configuration API for more info.
VCO_SELECT	1	Bit	Description
		b0	FORCE_VCO_SEL
			0 Use internal VCO selection
			1 Forced external VCO selection
		b1	VCO_SEL 0 VCO1 (77G: 76 – 78 GHz, 60G: 57 - 61GHz)
			1 VCO2 (77G: 77 – 81 GHz, 60G: 60 – 64GHz)
		b7:2	RESERVED 0b00_0000
RESERVED	2	0x0000	

NOTE:	Continuous streaming (CW) mode is useful for RF lab characteri-
	zation and debug. In this mode, the device is configured to transmit
	a single continuous wave (CW - 0 slope) tone at a specific RF fre-
	quency continuously.

5.5.5 Sub block 0x0104 - AWR_CONT_STREAMING_MODE_EN_SB

This sub block contains configuration needed to enable continuous streaming mode from the device.

Table 5.28 describes the contents of this sub block.

Table 5.28: AWR_CONT_STREAMING_MODE_EN_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0104
SBLKLEN	2	Value = 8
CONT_STREAM- ING_EN	2	Value Definition 0x0000 Disable continuous streaming mode 0x0001 Enable continuous streaming mode
RESERVED	2	0x0000

5.5.6 Sub block 0x0105 - AWR_ADVANCED_FRAME_CONF_SB

This sub block contains advanced frame configuration options.

Table 5.29 describes the contents of this sub block.

Table 5.29: AWR_ADVANCED_FRAME_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0105
SBLKLEN	2	Value = 152
NUM_SUB- FRAMES	1	Number of sub frames enabled in this frame Valid range: 1 to 4

FORCE SIN-	1	Value	Definition
GLE_PROFILE	'	0x0	The profile index set in Chirp Config API message governs which profile is used when that chirp is transmitted
		0x1	The profile index indicated in Chirp Config message is ignored and all the chirps in each subframe use a single profile as indicated by that subframe's profile index set in this message. NOTE: This Field is not used/applicable for loopback sub-frame.
LOOPBACK_	1	Bit	Definition
CFG		b0	LOOPBACK_CFG_EN 0 Disable
			1 Enable
		b2:1	SUB_FRAME_ID Sub frame ID for which the loop-back configuration applies
		b7:3	RESERVED
SUB_ FRAMETRIG- GER	1	0	Disabled (default mode, i.e no trigger is required in SW triggered mode and a pulse trigger is required every burst start)
		1	Enabled (Need to trigger each sub-frame either by SW in software triggered mode or HW in hard- ware triggered mode)
SF1_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3 Not applicable for loop-back sub-frame	
SF1_CHIRP_ START_INDX	2	Start index of the first chirp for the first burst in sub frame 1 Valid range: 0 to 511 This filed is Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.	
SF1_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512 This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.	

SF1_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255 NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified. ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a burst L. This should be programmed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp config API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768
SF1_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST \times (Sum total of all unique chirp times per burst) + InterBurstBlank-Time, where InterBurstBlankTime is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 110 μ s typical, refer a NOTE end of this API for more info. NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns Valid range: 55 μ s to 1.342 s
SF1_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET × BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF1_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Valid range: 1 to 16 for loop-back sub-frame

SF1_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 This filed is Not applicable for loop-back sub-frame
RESERVED	2	0x0000
SF1_PERIOD	4	PERIOD \geq Sum total time of all bursts + InterSubFrame-BlankTime, where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. InterSubFrameBlankTime is primarily for sensor calibration/monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. InterSubFrameBlankTime \geq 300 μ s typical, refer a NOTE end of this API for more info. Add 150 μ s to InterSubFrameBlankTime if data-path re-configuration needed in sub-frame boundary due to change in profile. 1 LSB = 5 ns Valid range 300 μ s to 1.342 s
RESERVED	4	0x00000000
RESERVED	4	0x00000000
SF2_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3
SF2_CHIRP_ START_INDX	2	Start index of the first chirp for the first burst in sub frame 2 Valid range: 0 to 511 This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF2_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512 This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.

SF2_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255 NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified. ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a burst L. This should be programmed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp config API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768
SF2_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST)*(Sum total of all unique chirp times per burst) + InterBurstBlank-Time, where InterBurstBlankTime is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 110 μ s typical, refer a NOTE end of this API for more info. NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns Valid range: 55 μ s to 1.342 s
SF2_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF2_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Valid range: 1 to 16 for loop-back sub-frame

SF2_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 This filed is Not applicable for loop-back sub-frame
RESERVED	2	0x0000
SF2_PERIOD	4	PERIOD \geq Sum total time of all bursts + InterSubFrame-BlankTime, Where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. InterSubFrameBlankTime is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. InterSubFrameBlankTime \geq 300 μ s typical, refer a NOTE end of this API for more info. Add 150 μ s to InterSubFrameBlankTime if data-path re-configuration needed in sub-frame boundary due to change in profile. 1 LSB = 5 ns Valid range: 300 μ s to 1.342 s
RESERVED	4	0x00000000
RESERVED	4	0x00000000
SF3_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3
SF3_CHIRP_ START_INDX	2	Start index of the first chirp in this sub frame Valid range: 0 to 511 This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF3_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512 This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.

	1	
SF3_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255 NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified. ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a burst L. This should be programmed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp config API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768
SF3_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST)*(Sum total of all unique chirp times per burst) + InterBurstBlank-Time, where InterBurstBlankTime is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 110 μ s typical, refer a NOTE end of this API for more info. NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns Valid range: 55 μ s to 1.342 s
SF3_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF3_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Valid range: 1 to 16 for loop-back sub-frame

SF3_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 This filed is Not applicable for loop-back sub-frame
RESERVED	2	0x0000
SF3_PERIOD	4	PERIOD \geq Sum total time of all bursts + InterSubFrame-BlankTime, Where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. InterSubFrameBlankTime is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. InterSubFrameBlankTime \geq 300 μ s typical, refer a NOTE end of this API for more info. Add 150 μ s to InterSubFrameBlankTime if data-path re-configuration needed in sub-frame boundary due to change in profile. 1 LSB = 5 ns Valid range: 300 μ s to 1.342 s
RESERVED	4	0x00000000
RESERVED	4	0x00000000
SF4_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3
SF4_CHIRP_ START_INDX	2	Start index of the first chirp in this sub frame Valid range: 0 to 511 This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF4_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512 This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.

SF4_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255 NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified. ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a burst L. This should be programmed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp config API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768
SF4_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST)*(Sum total of all unique chirp times per burst) + InterBurstBlank-Time, where InterBurstBlankTime is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 110 μ s typical, refer a NOTE end of this API for more info. NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns Valid range: 55 μ s to 1.342 s
SF4_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). This field Not applicable for loop-back sub-frame NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF4_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Valid range: 1 to 16 for loop-back sub-frame

SF4_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 This filed is Not applicable for loop-back sub-frame	
RESERVED	2	0x0000	
SF4_PERIOD	4	SF_PERIOD \geq Sum total time of all bursts + <i>InterSub-FrameBlankTime</i> , where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. <i>InterSubFrameBlankTime</i> is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. InterSubFrameBlankTime \geq 300 μ s typical, refer a NOTE end of this API for more info. Add 150 μ s to <i>InterSubFrameBlankTime</i> if data-path re-configuration needed in sub-frame boundary due to change in profile. 1 LSB = 5 ns Valid range: 300 μ s to 1.342 s	
RESERVED	4	0x00000000	
RESERVED	4	0x0000000	
NUM_FRAMES	2	Number of frames to transmit (1 frame = all enabled sub frames). If set to 0, frames are transmitted endlessly till Frame Stop message is received. Valid range: 0 to 65535	
TRIGGER_SE- LECT	2	 0x0001 SWTRIGGER (Software API based triggering): Frame is triggered upon receiving AWR_FRAMESTARTSTOP_CONF_SB. There could be several tens of micro seconds uncertainty in triggering. This mode is not applicable if this device is configured as MULTICHIP_SLAVE in AWR_CHAN_CONF_SB. 0x0002 HWTRIGGER (Hardware SYNC_IN based triggering): Each frame is triggered by rising edge of pulse in SYNC_IN pin, after receiving AWR_FRAMESTARTSTOP_CONF_SB (this is to prevent spurious transmission). w.r.t. the SYNC_IN pulse, the actual transmission has 5ns uncertainty in SINGLECHIP and only a 300 ps uncertainty (due to tight inter-chip synchronization needed) in MULTICHIP sensor applications as defined in AWR_CHAN_CONF_SB. 	

FRAME_TRIG- GER_DELAY	4	Optional time delay from the SYNC_IN trigger to the occurrence of frame chirps. Applicable only in SINGLECHIP sensor applications, as defined in AWR_CHAN_CONF_SB. It is recommended only for staggering the transmission of multiple radar sensors around the car for interference avoidance, if needed. Typical range is 0 to few tens of micro seconds. Units: 1 LSB = 5 ns
RESERVED	4	0x00000000
RESERVED	4	0x00000000

NOTE1: If hardware trigger mode is used with SUBFRAMETRIGGER =

0, then the trigger should be issued for each burst. If SUB-FRAMETRIGGER = 1, then the trigger needs to be issued for each

sub-frame.

NOTE2: If hardware triggered mode is used, the SYNC IN pulse width

should be less than the ON time of the frame (in case of legacy frame config mode) or the ON time of the burst (in case of advanced frame config mode). Also, the minimum pulse width of SYNC IN

should be 25 ns.

NOTE3: If frame trigger delay is used with hardware triggered mode, then

external SYNC_IN pulse periodicity should take care of the configured frame trigger delay and frame periodicity. The external pulse should be issued only after the sum total of frame trigger delay and

frame periodicity. See figure below

NOTE4: In Hw triggered mode, the Hw pulse should be issued or periodicity

of pulse is configured such that, the pulse is generated only 150us after the completion of previous frame/burst (The pulse should not be issued before end of previous frame/burst). The time delta between end of previous frame/burst and raising edge of Hw pulse

recommended to be < 300us.

NOTE5: The PF_NUM_ADC_SAMPLES parameter should be identical

across chirps in a sub-frame, when multiple profiles are used in

a sub-frame.

NOTE6: The PF DIGITAL OUTPUT SAMPLING RATE impacts the LVD-

S/CSI2 data rate in a sub-frame, so it is recommended to analyze timing impact if different sample rate is used across chirps in a sub-

frame.

NOTE7: Please refer Table 11.2 and Table 11.3 for details on minimum inter-

burst and inter sub-frame/frame blank time requirements.

NOTE8: If advance chirp configuration is enabled then this API takes around

1.8ms to execute in RadarSS sub System for 128 chirps. The error checks for each parameters of advance chirp is done in frame

configuration API.

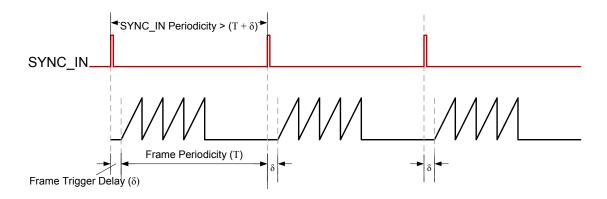


Figure 5.2: Frame trigger delay in case of external hardware trigger

5.5.7 Sub block 0x0106 - AWR_PERCHIRPPHASESHIFT_CONF_SB

This sub block defines static phase shift configurations per chirp in each of the TXs. The API is applicable only in certain devices (Please refer data sheet). This API will be honored after enabling PERCHIRP_PHASESHIFTER_EN in AWR_RF_RADAR_MISC_CTL_SB. Table 5.30 describes the contents of this sub block.

Table 5.30: AWR_PERCHIRPPHASESHIFT_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0106
SBLKLEN	2	Value = 12
CHIRP_START_ INDX	2	Start index of the chirp for configuring the phase shifter Valid range 0 to 511
CHIRP_END_ INDX	2	End index of the chirp for configuring the phase shifter Valid range 0 to 511
TX0_PHASE_ SHIFTER	1	TX0 phase shift value Bits TX0 phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 TX0 phase shift value 1 LSB = $360^{\circ}/2^6 = 5.625^{\circ}$ Valid range: 0 to 63

Table 5.30 - continued from previous page

TX1_PHASE_ SHIFTER	1	TX1 pha Bits	se shift value TX1 phase shift definition
		b1:0	RESERVED (set it to 0b00)
		b7:2	TX1 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63
TX2_PHASE_	1	TX2 pha	se shift value
SHIFTER		Bits	TX2 phase shift definition
		b1:0	RESERVED (set it to 0b00)
		b7:2	TX2 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63
RESERVED	1	0x00	

NOTE1: Phase shifters are applied in advance at -5us or at -(idle time-1.5us) from knee of the ramp whichever is small.

5.5.8 Sub block 0x0107 - AWR_PROG_FILT_COEFF_RAM_SET_SB

This sub block can be used to program the coefficients for the external programmable filter. This is a new feature added in **AWR2243**.

The programmable filter allow for a trade-off between digital filter chain settling time and close-in anti-alias attenuation. The Maximum DFE outout sampling rate in real mode is 25Msps and in complex mode is 22.5Msps.

A real-coefficient FIR with up to 63 taps (16-bit coefficients) is supported in both Complex and real output mode.

Table 5.31: Programmable filter DFE sampling rate and number of taps

DFE sampling rate Fs (Msps)	Number of taps in Real Mode	Number of taps in Complex
		Mode
>=25	42	NA
>=12.5, <25	42	21
>=6.25, <12.5	63	45
else	63	63

NOTE: This API should be issued before AWR_PROFILE_CONF_SET_SB.

Table 5.32 describes the contents of this sub block.

Table 5.32: AWR_PROG_FILT_COEFF_RAM_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0107
SBLKLEN	2	Value = 212
COEFF_ARRAY	208	The array of coefficients for the programmable filter, across all profiles, to be stored in the coefficient RAMS. Each tap is a 16-bit signed <1.15, s> number. The exact set of taps to be used for a given profile can be specified through AWR_PROG_FILT_CONF_SB NOTE: All the filter taps across profiles are to be provided in one shot. There is a HW constraint that each profile's filter taps should start at four 32-bit word aligned address (i.e., the coefficients corresponding to any profile should start at array index which is a multiple of 8). Unused coefficients shall be initialized to zero.

5.5.9 Sub block 0x0108 - AWR_PROG_FILT_CONF_SET_SB

This sub block can be used to configure the coefficients for the external programmable filter and associate them to a certain profile. The API is applicable only in xWR1642/IWR6843/xWR1843/AWR2243. This API should be issued before AWR_PROFILE_CONF_SET_SB.

Table 5.33 describes the contents of this sub block.

Table 5.33: AWR_PROG_FILT_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0108
SBLKLEN	2	Value = 8
PROFILE_INDX	1	This field indicates the profile Index for which this configuration applies.
PROG_FILT_ COEFF_START_ INDEX	1	The index of the first coefficient of the programmable filter taps corresponding to this profile in the coefficient RAM programmed using AWR_PROG_FILT_COEFF_SET_SB NOTE: The profile's filter tap start index shall be 8 tap aligned (four 32-bit word aligned address).

PROG_FILT_ LENGTH	1	The length (number of taps) of the filter corresponding to this profile. Together with the previous field, this determines the set of coefficients picked up from the coefficient RAM to form the filter taps for this profile. NOTE: This has to be an even number. For odd-length filters, a 0 (zero) tap needs to be appended at the end to make the length even. This is a HW constraint.
PROG_FILT_ FREQ_SHIFT_ FACTOR	1	Relevant only for the Complex output mode with the programmable filter. Determines the magnitude of the frequency shift do be done before filtering using the real-coefficient programmable filter. 1 LSB = 0.01 × Fs shift, where Fs is the output sampling rate, specified as PF_DIGITAL_OUTPUT_SAMPLING_RATE in AWR_PROFILE_CONF_SET_SB

NOTE1:	PROG_FILT_COEFF_START_INDEX should be 8 tap aligned (four 32-bit word aligned address)		
NOTE2:	Programmable filter APIs (AWR_PROG_FILT_COEFF_RAM_SET_SB and AWR_PROG_FILT_CONF_SET_SB) should not be issued when frames are ongoing.		

5.5.10 Sub block 0x0109 - AWR_CALIB_MON_TIME_UNIT_CONF_SB

This API sub block is used to set calibration and monitoring time unit.

Table 5.34: AWR_CALIB_MON_TIME_UNIT_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0109
SBLKLEN	2	Value = 12

CALIR MON	2	Defines the basic time unit in terms of which calibration
CALIB_MON_ TIME_UNIT	2	Defines the basic time unit, in terms of which calibration and/or monitoring periodicities are to be defined.
		If any monitoring functions are desired and enabled, the monitoring infrastructure automatically inherits this time unit as the period over which the various monitors are cyclically executed; so this should be set to the desired FTTI.
		For calibrations, a separate CALIB_PERIODICITY can be specified, as a multiple of this time unit, in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB NOTE: Even though calibrations many not be desired every time unit, every time unit shall be made long enough to include active chirping time, time required for all enabled calibrations and monitoring functions.
		1 LSB = Duration of one frame Recommendation: See examples in Section 12 Default value in Device: 100 Valid range: 40ms to 250ms (Derive actual count value from programmed frame period)
NUM_OF_CAS- CADED_DEV	1	The num of cascaded AWR2243 devices in a system if MONITORING_MODE is 0. In non-cascaded mode set this to 1. If MONITORING_MODE is 1 (API based trigger), then even in cascade mode this value can be 1 (Host controls the sequence of monitoring triggers). This control helps the device to schedule autonomous monitors in round robin fashion to avoid inter device interference. Default value: 1
DEVICE_ID	1	Applicable only in cascaded mode, Typically Master device is set to 0 and slave devices are set to 1, 2, and 3 respectively in 4 chip cascade system if MONITORING_MODE = 0. In non-cascaded mode and if MONITORING_MODE = 1 then set this to 0 Default value: 0
MONITORING_ MODE	1	Mostly applicable for cascade devices to control execution of monitoring types, refer AWR_MONITOR_TYPE_TRIG_CONF_SB for more details . 0 Autonomous monitoring trigger (default)
		API based monitoring trigger Note: This feature is supported only on AWR2243 device.
RESERVED	3	0x00_0000

NOTE:	The Minimum total blank time in a CAL_MON_TIME_UNIT shall be 1ms to run internal APLL and SYNTH calibrations + ~12.5% of CAL_MON_TIME_UNIT for WDT clearing time if WDT is enabled. Refer to Table 12.3, Table 12.4 for the duration of run time monitors
	and Table 12.5 for software overheads.

5.5.11 Sub block 0x010A - AWR_RUN_TIME_CALIBRATION_CONF_AND_ TRIGGER_SB

This API is used to trigger one time calibrations instantaneously or schedule periodic run time calibrations, which will be scheduled while framing in inter-burst idle time (Min available idle time of 250 μ s is required).

Table 5.35: AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010A
SBLKLEN	2	Value = 24

ONE_TIME_ CALIB_ENABLE_ MASK	4	Upon receiving this trigger message, one time calibration of various RF/analog aspects are triggered if the corresponding bits in this field are set to 1. The response is in the form of an asynchronous event sent to the host. The calibrations, if enabled, are performed after the completion of any ongoing calibration cycle, and the calibration results take effect from the frame that begins after the asynchronous event response is sent from the BSS. APLL and SYNTH calibrations are done always internally irrespective of bits are enabled or not, the time required for these calibrations must be allocated.	
		Bit	Definition
		b0	RESERVED
		b1 RESERVED	
		b2 RESERVED	
		b3 RESERVED	
		b4	LODIST_CALIBRATION_EN
		b5 RESERVED	
		b6 RESERVED	
		b7 RESERVED	
		b8 PD_CALIBRATION_EN	
		b9 TX_POWER_CALIBRATION_EN	
		b10	RX_GAIN_CALIBRATION_EN
		b11	RESERVED
		b12	RESERVED
		b31:13	RESERVED 0b0000_0000_0000_0000
		Default v	alue: 0

PERIODIC_	4	Automati	c periodic triggering of calibrations of various	
CALIB_ENABLE_		RF/analog aspects can be set up by the host issuing this		
MASK		message	with corresponding bits in this field set to 1.	
		Bit	Definition	
		b0	RESERVED	
		b1	RESERVED	
		b2	RESERVED	
		b3	RESERVED	
		b4	LODIST_CALIBRATION_EN	
		b5	RESERVED	
		b6	RESERVED	
		b7	RESERVED	
		b8	PD_CALIBRATION_EN	
		b9	TX_POWER_CALIBRATION_EN	
		b10	RX_GAIN_CALIBRATION_EN	
		b11	RESERVED	
		b12	RESERVED	
		b31:13	RESERVED	
		APLL an	d SYNTH calibrations are done always internally	
			eriodicity of 1 second) irrespective of bits are	
			or not, the time required for these calibrations	
			allocated. Refer to Table 12.2 for the duration of	
			calibrations	
		Default v	alue: U	

CALIBRATION_ PERIODICITY	4	This field is applicable only for those calibrations which are enabled to be done periodically in the PERIODIC_CALIB_ENABLE_MASK field. This field indicates the desired periodicity of calibrations. If this field is set to N, the results of the first calibration (based on ONE_TIME_CALIB_ENABLE_MASK) are applicable for the first N CALIB_MON_TIME_UNITs. The results of the next calibration are applicable for the next N CALIB_MON_TIME_UNITs, and so on. Recommendation: Set CALIBRATION_PERIODIC-ITY such that frequency of calibrations is greater than or equal to 1 second. 1 LSB = 1 CALIB_MON_TIME_UNIT, as specified in AWR_CALIB_MON_TIME_UNIT_CONF_SB. If the user does not wish to receive calibration reports when periodic calibrations are not enabled, then the user should set CALIBRATION_PERIODICITY to 0 Default value: 0 Valid Range: 0 (Disable), 4 to 100 (value 1 is not a valid value, this will cause internal APLL and SYNTH calibrations to stop)
ENABLE_CAL_ REPORT	1	Bit Definition b0 ENABLE_SUMMARY_REPORT 0 Summary reports are disabled 1 Summary reports are enabled Default value: 0 b7:1 RESERVED NOTE1: If calibration reports are enabled, the reports will be sent every 1 second whenever internal calibrations (APLL and SYNTH) are triggered and at every CALIBRA- TION_PERIODICITY when the user enabled calibrations are triggered. NOTE2: If user has not enabled any one time calibrations, but if calibration report is enabled, then after issuing this API, the firmware will attempt to run the APLL and SYNTH calibrations and the calibration report will be immediately sent out.
RESERVED	1	0x00

Table 5.35 – continued from previous page

TX POWER	1	Bit Definition
CAL MODE	'	
07.1202.2		b0 TX_POWER_CAL_MODE 0 Update TX gain setting from LUT and do
		a closed loop calibration (OLPC + CLPC)
		1 Update TX gain settings from LUT only (OLPC only) OLPC: Open Loop Power Control. In this mode the TX stage codes are set based on a coarse measurement and a LUT generated for every temperature and the stage codes are picked from the LUT CLPC: Closed Loop Power Control. In this
		mode the TX stage codes are picked from the coarse LUT as generated in OLPC step. Later the TX power is measured and the TX stage codes are corrected to achieve the desired TX power accuracy. Default value: 0
		b7:1 RESERVED
CAL_TEMP_ INDEX_OVER- RIDE_ENABLE	1	This field enables the Host to override the use of device's internal temperature readings for choosing front end calibration settings (e.g. bias current, Rx Gain and Tx Gain LUT). Bit Definition
		b0 TX_TEMP_INDEX_OVERRIDE_EN
		b1 RX_TEMP_INDEX_OVERRIDE_EN
		b2 LODIST_TEMP_INDEX_OVERRIDE_EN
		b7:3 RESERVED
		Value Definition
		0 Override disable
		1 Override enable
		Default value: 0 (Override disable, use device temperature)
		Note: This feature is supported only on AWR2243 device.

Table 5.35 – continued from previous page

CAL_TEMP_	1		temperature index is used to calibrate Tx
INDEX_TX		front end. Index Value	Definition
		0	Index for temperature [< -30] degC
		1	Index for to temperature [-30, -20] degC
		2	Index for to temperature [-20, -10] degC
		3	Index for to temperature [-10, 0] degC
		4	Index for to temperature [0, 10] degC
		5	Index for to temperature [10, 20] degC
		6	Index for to temperature [20, 30] degC
		7	Index for to temperature [30, 40] degC
		8	Index for to temperature [40, 50] degC
		9	Index for to temperature [50, 60] degC
		10	Index for to temperature [60, 70] degC
		11	Index for to temperature [70, 80] degC
		12	Index for to temperature [80, 90] degC
		13	Index for to temperature [90, 100] degC
		14	Index for to temperature [100, 110] degC
		15	Index for to temperature [110, 120] degC
		16	Index for to temperature [120, 130] degC
		17	Index for to temperature [130, 140] degC
		18	Index for to temperature [> 140] degC

Table 5.35 – continued from previous page

CAL_TEMP_ INDEX_RX	1	This override front end.	temperature index is used to calibrate Rx
		Index Value	Definition
		0	Index for temperature [< -30] degC
		1	Index for to temperature [-30, -20] degC
		2	Index for to temperature [-20, -10] degC
		3	Index for to temperature [-10, 0] degC
		4	Index for to temperature [0, 10] degC
		5	Index for to temperature [10, 20] degC
		6	Index for to temperature [20, 30] degC
		7	Index for to temperature [30, 40] degC
		8	Index for to temperature [40, 50] degC
		9	Index for to temperature [50, 60] degC
		10	Index for to temperature [60, 70] degC
		11	Index for to temperature [70, 80] degC
		12	Index for to temperature [80, 90] degC
		13	Index for to temperature [90, 100] degC
		14	Index for to temperature [100, 110] degC
		15	Index for to temperature [110, 120] degC
		16	Index for to temperature [120, 130] degC
		17	Index for to temperature [130, 140] degC
		18	Index for to temperature [> 140] degC
		I	

Table 5.35 – continued from previous page

CAL_TEMP_ INDEX_LODIST	1	This override distribution of Index Value	temperature index is used to calibrate LO front end. Definition
		0	Index for temperature [< -30] degC
		1	Index for to temperature [-30, -20] degC
		2	Index for to temperature [-20, -10] degC
		3	Index for to temperature [-10, 0] degC
		4	Index for to temperature [0, 10] degC
		5	Index for to temperature [10, 20] degC
		6	Index for to temperature [20, 30] degC
		7	Index for to temperature [30, 40] degC
		8	Index for to temperature [40, 50] degC
		9	Index for to temperature [50, 60] degC
		10	Index for to temperature [60, 70] degC
		11	Index for to temperature [70, 80] degC
		12	Index for to temperature [80, 90] degC
		13	Index for to temperature [90, 100] degC
		14	Index for to temperature [100, 110] degC
		15	Index for to temperature [110, 120] degC
		16	Index for to temperature [120, 130] degC
		17	Index for to temperature [130, 140] degC
		18	Index for to temperature [> 140] degC
RESERVED	1	0x00	

NOTE1:	The API AWR_RUN_TIME_CALIBRATION_CONF_AND_ TRIGGER_SB can be issued when the device is framing, the calibration periodicity update or one time calibrations can be done
	while frames are running.
NOTE2:	The CAL_TEMP_INDEX_OVERRIDE_ENABLE is supported only for one time calibrations enabled using ONE_TIME_CALIB_ENABLE_MASK, the periodic run time calibrations are recommended to be disabled using PERIODIC_CALIB_ENABLE_MASK.

5.5.12 Sub block 0x010B - AWR_DIGITAL_COMP_EST_CONTROL_SB

This API can be used to compensate various RX and gain/phase offsets and same API can be used to estimation the same using TX frequency shift.

NOTE1: This API is supported only on AWR2243 device. Please refer latest

DFP release note for more info.

NOTE2: Issue this API first in the sequence before AWR_PROFILE_CONF_

SET_SB API.

NOTE3: The Digital TX frequency shift enable mode in below API is for de-

bug purpose only, the functional phase shifter will not be operational when this mode is used. It is recommended to re-issue profile config API after disabling this mode before running functional

frames.

Table 5.36: AWR_DIGITAL_COMP_EST_CONTROL_SB contents

Field Name	Number of bytes	Description	
CDI KID	-	V I 0 040D	
SBLKID	2	Value = 0x010B	
SBLKLEN	2	Value = 72	
PROFILE_INDX	1	This field indicates the profile Index for which this configuration applies.	
DIGITAL_COMP_ EN	1	This field can be used to enable or disable different digital compensation provided in this API.	
		Bits Assignment	
		b0 Digital RX gain compensation enable	
		b1 Digital RX phase compensation enable	
		b2 Digital RX delay compensation enable	
		b3 Digital RX frequency shift enable	
		b4 Digital TX frequency shift enable (For debug purpose only)	
		b31:5 RESERVED	
		Value 0: Disable	
		Value 1: Enable	
RESERVED	2	0x0000	
DIGITAL_RX_ GAIN_COMP	4	The digital gain compensation for each RX channels One byte per RX (8-bit signed number)	
		Bits Assignment	
		b7:0 RX0 digital gain	
		b15:8 RX1 digital gain	
		b23:16 RX2 digital gain	
		b31:24 RX3 digital gain	
		1 LSB = 0.1 dB	
		Valid Range: -120 to 119	

Table 5.36 – continued from previous page

DIGITAL_RX_ PHASE_SHIFT_	8	The digital phase shift compensation for each RX channels Two bytes per RX
COMP		Bits Assignment
		b15:0 RX0 digital phase shift
		b31:16 RX1 digital phase shift
		b47:32 RX2 digital phase shift
		b63:48 RX3 digital phase shift
		1 LSB = $360^{\circ}/2^{16} \approx 0.0055^{\circ}$
		Valid Range: 0 to 65535
		NOTE: This field is NOT applicable when ADC_OUT_FMT is 00 (real output)
DIGITAL_RX_ DELAY_COMP	4	The digital delay compensation for each RX channels One byte per RX (8-bit unsigned number)
_		Bits Assignment
		b7:0 RX0 digital delay
		b15:8 RX1 digital delay
		b23:16 RX2 digital delay
		b31:24 RX3 digital delay
		1 LSB = $556ps/16$, $unigned$
		Valid Range: 0 to 255
		The RX ADC output is delayed by this amount. The LSB becomes twice of the above if ADC low power mode is
		enabled.
RESERVED	16	0x00000000
DIGITAL_RX_	8	The digital frequency shift compensation for each RX
FREQ_SHIFT		channels
		Two bytes per RX
		Bits Assignment
		b15:0 RX0 digital frequency shift
		b31:16 RX1 digital frequency shift
		b47:32 RX2 digital frequency shift
		b63:48 RX3 digital frequency shift
		1 LSB = $100MHz/2^{16}$, $signed$ Valid Range: 0 to 65535
		The frequency range of interest in RX digital output is
		shifted by this amount. As an example, this may be used
		to view the spectrum beyond the conventional [0 to Output
		Sampling Rate] range in Complex 1X mode, say [FREQ_ SHIFT to Output Sampling Rate + FREQ_SHIFT].
		1 1 0 1

Table 5.36 – continued from previous page

DIGITAL_TX_ FREQ_SHIFT	8	The digital frequency shift compensation for each TX channels, this is supported only for TX0 and TX1. Two bytes per TX		
		Bits Assignment		
		b15:0 TX0 digital frequency shift		
		b31:16 TX1 digital frequency shift		
		b47:32 RESERVED		
		b63:48 RESERVED		
		1 LSB = $100MHz/2^{16}$, $signed$		
		Valid Range: 0 to 65535		
		The frequency of the TX output may be shifted wrt the RX mixer LO frequency by this amount. If such functionality is not desired, this register should be set to 0. This register cannot be used in conjunction with TX phase shifter.		
		This may be useful in factory calibration of IF frequency dependent effects. As an example, in cascaded applications, the IF frequency at which a corner reflector's beat frequency appears at the RX mixer output can be varied using this and cascade RX IF imbalances can be measured.		
RESERVED	16	0x00000000		

5.5.13 Sub block 0x010C - AWR_RX_GAIN_TEMPLUT_SET_SB

This API can be used to overwrite the RX gain temperature LUT used in firmware. This API should be issued after profile configuration API.

Table 5.37: AWR_RX_GAIN_TEMPLUT_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010C
SBLKLEN	2	Value = 28
PROFILE_INDX	1	This field indicates the profile Index for which this configuration applies.
RESERVED	1	0x00

Table 5.37 – continued from previous page

RX_GAIN_CODE	19	Byte0:	RX gain code for temperature $<$ -30 $^{\circ}$ C
		Byte1:	RX gain code for temperature [-30, -20) °C
		Byte2:	RX gain code for temperature [-20, -10) °C
		Byte3:	RX gain code for temperature [-10, 0) °C
		Byte4:	RX gain code for temperature [0, 10) °C
		Byte5:	RX gain code for temperature [10, 20) °C
		Byte6:	RX gain code for temperature [20, 30) °C
		Byte7:	RX gain code for temperature [30, 40) °C
		Byte8:	RX gain code for temperature [40, 50) °C
		Byte9:	RX gain code for temperature [50, 60) °C
		Byte10:	RX gain code for temperature [60, 70) °C
		Byte11:	RX gain code for temperature [70, 80) °C
		Byte12:	RX gain code for temperature [80, 90) °C
		Byte13:	RX gain code for temperature [90, 100) °C
		Byte14:	RX gain code for temperature [100, 110) °C
		Byte15:	RX gain code for temperature [110, 120) °C
		Byte16:	RX gain code for temperature [120, 130) °C
		Byte17:	RX gain code for temperature [130, 140) °C
		Byte18: Each byte	RX gain code for temperature ≥140 °C e is encoded as follows
		Bits	Definition
		b4:0	IF_GAIN_CODE
			IF gain is IF_GAIN_CODE $\times 2-6$ dB Valid values: 0 to 17 1 LSB = 2 dB
		b7:5	RF_GAIN_CODE
			AWR2243 device:
			Value RF Gain
			0 Maximum RF gain
			1 Maximum RF gain — 2.5 dB
DECEDVED.	4	000	2 Maximum RF gain — 5 dB
RESERVED	1	0x00	
RESERVED	2	0x0000	

5.5.14 Sub block 0x010D - AWR_TX_GAIN_TEMPLUT_SET_SB

This API can be used to overwrite the TX gain temperature LUT used in firmware. This API should be issued after profile configuration API.

Table 5.38: AWR_TX_GAIN_TEMPLUT_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x010D	
SBLKLEN	2	Value = 6	68
PROFILE_INDX	1	This field ration ap	indicates the profile Index for which this configu- plies
RESERVED	1	0x00	
TX0_GAIN_	19	Byte0:	TX0 gain code for temperature $<$ -30 $^{\circ}$ C
CODE		Byte1:	TX0 gain code for temperature [-30, -20) °C
		Byte2:	TX0 gain code for temperature [-20, -10) °C
		Byte3:	TX0 gain code for temperature [-10, 0) °C
		Byte4:	TX0 gain code for temperature [0, 10) °C
		Byte5:	TX0 gain code for temperature [10, 20) °C
		Byte6:	TX0 gain code for temperature [20, 30) °C
		Byte7:	TX0 gain code for temperature [30, 40) °C
		Byte8:	TX0 gain code for temperature [40, 50) °C
		Byte9:	TX0 gain code for temperature [50, 60) °C
		Byte10:	TX0 gain code for temperature [60, 70) °C
		Byte11:	TX0 gain code for temperature [70, 80) °C
		Byte12:	TX0 gain code for temperature [80, 90) °C
		Byte13:	TX0 gain code for temperature [90, 100) °C
		Byte14:	TX0 gain code for temperature [100, 110) °C
		Byte15:	TX0 gain code for temperature [110, 120) °C
		Byte16:	TX0 gain code for temperature [120, 130) °C
		Byte17:	TX0 gain code for temperature [130, 140) °C
		Byte18: Each byte	TX0 gain code for temperature \geq 140 $^{\circ}$ C e is encoded as follows
		Bits	Definition
		b5:0	STG_CODE Higher values for higher gain
		b7:6	RESERVED
RESERVED	1	0x00	

TX1_GAIN_	19	Byte0:	TX1 gain code for temperature $<$ -30 $^{\circ}$ C
CODE		Byte1:	TX1 gain code for temperature [-30, -20) °C
		Byte2:	TX1 gain code for temperature [-20, -10) °C
		Byte3:	TX1 gain code for temperature [-10, 0) °C
		Byte4:	TX1 gain code for temperature [0, 10) °C
		Byte5:	TX1 gain code for temperature [10, 20) °C
		Byte6:	TX1 gain code for temperature [20, 30) °C
		Byte7:	TX1 gain code for temperature [30, 40) °C
		Byte8:	TX1 gain code for temperature [40, 50) °C
		Byte9:	TX1 gain code for temperature [50, 60) °C
		Byte10:	TX1 gain code for temperature [60, 70) °C
		Byte11:	TX1 gain code for temperature [70, 80) °C
		Byte12:	TX1 gain code for temperature [80, 90) °C
		Byte13:	TX1 gain code for temperature [90, 100) °C
		Byte14:	TX1 gain code for temperature [100, 110) °C
		Byte15:	TX1 gain code for temperature [110, 120) °C
		Byte16:	TX1 gain code for temperature [120, 130) °C
		Byte17:	TX1 gain code for temperature [130, 140) °C
		Byte18:	TX1 gain code for temperature \geq 140 $^{\circ}$ C
		Each byt	e is encoded as follows
		Bits	Definition
		b5:0	STG_CODE
			Higher values for higher gain
		b7:6	RESERVED
RESERVED	1	0x00	

Table 5.38 - continued from previous page

TX2_GAIN_ CODE 19 Byte0: TX2 gain code for temperature <-30 °C Byte1: TX2 gain code for temperature [-30, -20) °C Byte2: TX2 gain code for temperature [-10, 0) °C Byte3: TX2 gain code for temperature [-10, 0) °C Byte4: TX2 gain code for temperature [0, 10) °C Byte5: TX2 gain code for temperature [10, 20) °C Byte6: TX2 gain code for temperature [20, 30) °C Byte6: TX2 gain code for temperature [30, 40) °C Byte7: TX2 gain code for temperature [40, 50) °C Byte9: TX2 gain code for temperature [50, 60) °C Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [70, 80) °C Byte11: TX2 gain code for temperature [80, 90) °C Byte12: TX2 gain code for temperature [90, 100) °C Byte13: TX2 gain code for temperature [100, 110) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [120, 130) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte18: TX2 gain code for temperature ≥140 °C Byte18: TX2 gain code for temperature ≥140 °C Byte18: TX2 gain code for temperature ≥140 °C Byte18: TX2 gain code for temperature ≥140 °C Byte18: TX2 gain code for temperature ≥140 °C Byte19: TX2 gain code for temperature ≥140 °C Byte18: TX2 gain code for temperature ≥140 °C Byte10: TX2 gain code for temperature ≥140 °C Byte10: TX2 gain code for temperature ≥140 °C				
Byte1: TX2 gain code for temperature [-30, -20) °C Byte3: TX2 gain code for temperature [-20, -10) °C Byte4: TX2 gain code for temperature [-10, 0) °C Byte5: TX2 gain code for temperature [0, 10) °C Byte6: TX2 gain code for temperature [10, 20) °C Byte6: TX2 gain code for temperature [20, 30) °C Byte7: TX2 gain code for temperature [30, 40) °C Byte8: TX2 gain code for temperature [40, 50) °C Byte9: TX2 gain code for temperature [50, 60) °C Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [70, 80) °C Byte12: TX2 gain code for temperature [70, 80) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 110) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED		19	Byte0:	TX2 gain code for temperature $<$ -30 $^{\circ}\text{C}$
Byte3: TX2 gain code for temperature [-10, 0) °C Byte4: TX2 gain code for temperature [0, 10) °C Byte5: TX2 gain code for temperature [10, 20) °C Byte6: TX2 gain code for temperature [20, 30) °C Byte7: TX2 gain code for temperature [30, 40) °C Byte8: TX2 gain code for temperature [40, 50) °C Byte9: TX2 gain code for temperature [50, 60) °C Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [70, 80) °C Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED	CODE		Byte1:	TX2 gain code for temperature [-30, -20) $^{\circ}\text{C}$
Byte4: TX2 gain code for temperature [0, 10) °C Byte5: TX2 gain code for temperature [10, 20) °C Byte6: TX2 gain code for temperature [20, 30) °C Byte7: TX2 gain code for temperature [30, 40) °C Byte8: TX2 gain code for temperature [40, 50) °C Byte9: TX2 gain code for temperature [50, 60) °C Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [70, 80) °C Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED			Byte2:	TX2 gain code for temperature [-20, -10) $^{\circ}$ C
Byte5: TX2 gain code for temperature [10, 20) °C Byte6: TX2 gain code for temperature [20, 30) °C Byte7: TX2 gain code for temperature [30, 40) °C Byte8: TX2 gain code for temperature [40, 50) °C Byte9: TX2 gain code for temperature [50, 60) °C Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [70, 80) °C Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [80, 90) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [110, 120) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED			Byte3:	TX2 gain code for temperature [-10, 0) $^{\circ}$ C
Byte6: TX2 gain code for temperature [20, 30) °C Byte7: TX2 gain code for temperature [30, 40) °C Byte8: TX2 gain code for temperature [40, 50) °C Byte9: TX2 gain code for temperature [50, 60) °C Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [60, 70) °C Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED			Byte4:	TX2 gain code for temperature [0, 10) °C
Byte7: TX2 gain code for temperature [30, 40) °C Byte8: TX2 gain code for temperature [40, 50) °C Byte9: TX2 gain code for temperature [50, 60) °C Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [70, 80) °C Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED			Byte5:	TX2 gain code for temperature [10, 20) °C
Byte8: TX2 gain code for temperature [40, 50) °C Byte9: TX2 gain code for temperature [50, 60) °C Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [70, 80) °C Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED			Byte6:	TX2 gain code for temperature [20, 30) °C
Byte9: TX2 gain code for temperature [50, 60) °C Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [70, 80) °C Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED			Byte7:	TX2 gain code for temperature [30, 40) °C
Byte10: TX2 gain code for temperature [60, 70) °C Byte11: TX2 gain code for temperature [70, 80) °C Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte8:	TX2 gain code for temperature [40, 50) °C
Byte11: TX2 gain code for temperature [70, 80) °C Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED			Byte9:	TX2 gain code for temperature [50, 60) °C
Byte12: TX2 gain code for temperature [80, 90) °C Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte10:	TX2 gain code for temperature [60, 70) °C
Byte13: TX2 gain code for temperature [90, 100) °C Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte11:	TX2 gain code for temperature [70, 80) °C
Byte14: TX2 gain code for temperature [100, 110) °C Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte12:	TX2 gain code for temperature [80, 90) °C
Byte15: TX2 gain code for temperature [110, 120) °C Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte13:	TX2 gain code for temperature [90, 100) °C
Byte16: TX2 gain code for temperature [120, 130) °C Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte14:	TX2 gain code for temperature [100, 110) °C
Byte17: TX2 gain code for temperature [130, 140) °C Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte15:	TX2 gain code for temperature [110, 120) °C
Byte18: TX2 gain code for temperature ≥140 °C Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte16:	TX2 gain code for temperature [120, 130) °C
Each byte is encoded as follows Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte17:	TX2 gain code for temperature [130, 140) $^{\circ}$ C
Bits Definition b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Byte18:	TX2 gain code for temperature \geq 140 $^{\circ}$ C
b5:0 STG_CODE Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Each byt	e is encoded as follows
Higher values for higher gain b7:6 RESERVED RESERVED 1 0x00			Bits	Definition
b7:6 RESERVED RESERVED 1 0x00			b5:0	STG_CODE
RESERVED 1 0x00				Higher values for higher gain
			b7:6	RESERVED
RESERVED 2 0x0000	RESERVED	1	0x00	
	RESERVED	2	0x0000	

5.5.15 Sub block 0x010E - AWR_LOOPBACK_BURST_CONF_SET_SB

This API can be used to introduce loopback chirps within the functional frames. This loopback chirps will be introduced only if advanced frame configuration is used where user can define which sub-frame contains loopback chirps. The following loopback configuration will apply to one burst and user can program up to 16 different loopback configurations in 16 different bursts of a given sub-frame. User has to ensure that the corresponding sub-frame is defined in AWR_ ADVANCED_FRAME_CONF_SB and sufficient time is given to allow the loopback bursts to be transmitted.

NOTE1: If user desires to enable loopback chirps within functional frames, then this API should be issued after AWR_PROFILE_CONF_SET_SB

NOTE2: Only profile based phase shifter is supported in loopback configuration. Per-chirp phase shifter if enabled will not be reflected in loopback chirps.

NOTE3: For the sub-frame in which loopback is desired, user should set SFx_NUM_UNIQUE_CHIRPS_PER_BURST as 1 and can use SFx_NUM_LOOPS_PER_BURST for multiple chirps in the burst.

Table 5.39: AWR_LOOPBACK_BURST_CONF_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x010E	
SBLKLEN	2	Value = 48	
LOOPBACK_SEL	1	Value Definition	
		0 No loopback	
		1 IF loopback	
		2 PS loopback	
		3 PA loopback	
		4 Rx FE disabled (Mixer and LNA disabled in RX front end and no loopback)	
		Others RESERVED	
BASE_PRO- FILE_INDX	1	Base profile used for loopback chirps Valid values 0 to 3	
BURST_INDX	1	Indicates the index of the burst in the loopback sub-frame for which this configuration applies Valid values 0 to 15	
RESERVED	1	0x00	
FREQ_CONST	4	Start frequency for loopback. The start frequency configured here should be within profile's sweep bandwidth. For 77GHz Devices (76GHz to 81GHz): $1 \text{ LSB} = 3.6e9/2^{26} \text{ Hz} \approx 53.644 \text{ Hz}$ Valid range: 0x5471C71B to 0x5A000000 For 60GHz Devices (57GHz to 64GHz): $1 \text{ LSB} = 2.7e9/2^{26} \text{ Hz} \approx 40.233 \text{ Hz}$ Valid range: 0x5471C71C to 0x5ED097B4	

		5.05 - continued from previous page			
SLOPE_CONST	2	Frequency slope for loopback burst (32 bit signed number) For 77GHz Devices (76GHz to 81GHz): $ \begin{array}{l} \text{1 LSB =} 3.6e9 \times 900/2^{26} \approx 48.279 \text{ kHz/}\mu\text{s} \\ \text{Valid range: -2072 to 2072} \\ \text{For 60GHz Devices (57GHz to 64GHz):} \\ \text{1 LSB =} 2.7e9 \times 900/2^{26} \approx 36.21 \text{ kHz/}\mu\text{s} \\ \text{Valid range: -6905 to 6905} \end{array} $			
RESERVED	2	0x0000			
TX_BACKOFF	4	Bits	Definition		
		b7:0	TX0 back off 1 LSB = 1 dB		
		b15:8	TX1 back off 1 LSB = 1 dB		
		b23:16	TX2 back off 1 LSB = 1 dB		
		b31:24 This set	RESERVED tting is applicable only in PA loop-back mode.		
RX_GAIN	2	Bits	Definition		
		b5:0	RX_GAIN This field defines RX gain for each profile 1 LSB = 1 dB Valid values: all even values from 32 to 52 This setting is applicable in all loop-back modes.		
		b7:6	RF_GAIN_TARGET RF gain settings for AWR2243:		
			Value RF gain target		
			00 30 dB		
			01 33 dB		
			10 36 dB		
			11 RESERVED		
			RF gain settings for xWR6843 ES2.0:		
			Value RF gain target		
			00 30 dB		
			01 34 dB 10 36 dB		
			11 RESERVED Refer profile configuration API for more info. This setting is applicable only in PA and PS loop-back modes.		
		b15:8	RESERVED		

TX_ENABLE	1	Bits	Definition
		b0	TX0 Enable
		b1	TX1 Enable
		b2	TX2 Enable (PS LB not supported for TX2)
		b7:3	RESERVED
		This set	ting is applicable in all loop-back modes.
RESERVED	1	0x00	
BPM_CONFIG	2	Bit	Definition
		b0	RESERVED
		b1	CONST_BPM_VAL_TX0_ON Value of Binary Phase Shift value for TX0, during chirp
		b2	RESERVED
		b3	CONST_BPM_VAL_TX1_ON For TX1
		b4	RESERVED
		b5	CONST_BPM_VAL_TX2_ON For TX2
		b15:6	RESERVED
		This se modes.	tting is applicable only in PA and PS loop-back
DIGITAL_COR-	2	Bits	Digital corrections
RECTION_ DISABLE		b0	IQMM correction disable (only for PS and PA loopback, for IF loopback IQMM is disabled by firmware) 0 - Enable, 1 - Disable
		b1	Inter-RX Gain and Phase correction disable 0 - Enable, 1 - Disable This setting is applicable in all loop-back modes.
		b15:2	RESERVED

Table 3.39 – Continued from previous page					
IF_LOOPBACK_ FREQ	1	Value	IF Loopback frequency	Value	IF Loopback frequency
		0	180 kHz	8	4.02 MHz
		1	240 kHz	9	5 MHz
		2	360 kHz	10	6 MHz
		3	720 kHz	11	8.03 MHz
		4		12	
			1 MHz		9 MHz
		5	2 MHz	13	10 MHz
		6	2.5 MHz	255-14	RESERVED
		7	3 MHz		
IF_LOOPBACK_ MAG	1	1 LSB = Valid rar	10 mV nge: 1 to 63		
PS1_PGA_	1	PGA ga	in for TX0		
GAIN_INDEX		Value	PGA gain value	Value	PGA gain value
		0	PGA is OFF	15	-3 dB
		1	-22 dB	16	-2 dB
		2	-16 dB	17	-1 dB
		3	-15 dB	18	0 dB
		4	-14 dB	19	1 dB
		5	-13 dB	20	2 dB
		6	-12 dB	21	3 dB
		7	-11 dB	22	4 dB
		8	-10 dB	23	5 dB
		9	-9 dB	24	6 dB
		10	-8 dB	25	7 dB
		11	-7 dB	26	8 dB
		12	-6 dB	27	9 dB
		13	-5 dB	255-28	RESERVED
		14	-4 dB		

Table 5.39 – continued from previous page

PS2 PGA	1		in for TX1			
GAIN_INDEX	1	Value	PGA value	gain	Value	PGA gain value
		0	PGA is C)FF	15	-3 dB
		1	-22 dB		16	-2 dB
		2	-16 dB		17	-1 dB
		3	-15 dB		18	0 dB
		4	-14 dB		19	1 dB
		5	-13 dB		20	2 dB
		6	-12 dB		21	3 dB
		7	-11 dB		22	4 dB
		8	-10 dB		23	5 dB
		9	-9 dB		24	6 dB
		10	-8 dB		25	7 dB
		11	-7 dB		26	8 dB
		12	-6 dB		27	9 dB
		13	-5 dB		255-28	RESERVED
		14	-4 dB			
PS_LOOPBACK_ FREQ	4	Phase s 1 LSB = Bits	•	back freque	ency in kH	z
		b15:0	TX0 Loo	oback Frequ	ency	
		[b31:16]	TX1 Loo	oback Frequ	ency	
RESERVED	4	RESER	VED			
PA_LOOPBACK_ FREQ	2	This value is a 100 MHz divider which sets the loopback frequency For e.g. for a 1 MHz frequency, set this to 100 For a 2 MHz frequency, set this to 50 NOTE: To ensure no leakage of signal power, user has to ensure that 100MHz/LOOPBACK_FREQ is an integer multiple of bin width For e.g. if user choses 25Msps sampling rate and 2048 samples/chirp, then LOOPBACK_FREQ of 64 (=1.5625 MHz) will ensure no leakage				
RESERVED	2	0x0000				
RESERVED	2	0x0000				
RESERVED	2	0x0000				

5.5.16 Sub block 0x010F - AWR_DYN_CHIRP_CONF_SET_SB

This API can be used to dynamically change the chirp configuration while frames are on-going. The configuration will be stored in software and the new configuration will be applied after receiving the AWR_DYN_CHIRP_ENABLE_SB API.

Table 5.40: AWR_DYN_CHIRP_CONF_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x010F	
SBLKLEN	2	Value = 200	
CHIRP_ROW_ SELECT	1	Bits Description b3:0 RESERVED b7:4 If user does not wish to reconfigure all 3 chirp rows, then the following mode can be used to configure only one row per chirp which enables the user to configure 48 chirps in one API, effectively saving on the reconfiguration time. If CHIRP_ROW_SE-LECT[7:4] is non-zero, then the API parameters CHIRPx_R1, CHIRPx_R2 and CHIRPx_R3 for 1 ≤ x ≤ 16 in this API would mean CHIRP(3x - 2)_Ry, CHIRP(3x - 1)_Ry and CHIRP(3x)_Ry where y is as per the below table Value Definition 0b0000 Enables all 3 chirp rows to be reconfigured (default) 0b0010 Enables only chirp row 1 to be reconfigured 0b0011 Enables only chirp row 2 to be reconfigured Ob0011 Enables only chirp row 3 to be reconfigured Others RESERVED	
CHIRP_SEG- MENT_SELECT	1	Valid range 0 to 31. Indicates the segment of the chirp RAM that the 16 chirp definitions in this sub block map to	

PROGRAM	2	Bits	Descript	tion
MODE		b0	Value	Definition
			0	Program the new configuration when AWR_DYN_CHIRP_ENABLE API is issued
			1	Program the new configuration immediately NOTE: User has to ensure that the chirps which are being reconfigured are not the ones which are currently in use for chirping
		b15:1	RESER	VED
CHIRP1_R1	4	Bits	Definitio	on
		b3:0	PROFILE_INDX Valid range 0 to 3	
		b7:4	RESERVED	
		b13:8	FREQ_SLOPE_VAR For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9 \times 900/2^{26} \approx$ 48.279 kHz Valid range: 0 to 63 For 60GHz Devices (57GHz to 64GHz): 1 LSB = $2.7e9 \times 900/2^{26} \approx$ 36.21 kHz Valid range: 0 to 63	
		b15:14	RESER'	VED
		b18:16	TX_ENA Bit	ABLE Definition
			b0	TX0 Enable
			b1	TX1 Enable
			b2	TX2 Enable
			RESER'	
			RESER'	
		b31:30	RESER'	VED

Table 5.40 - continued from previous page

CHIRP1_R2	4	Bits	Definition	
		b22:0 b31:23	FREQ_START_VAR For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9/2^{26} \approx 53.644$ Hz Valid range: 0 to 8388607 For 60GHz Devices (57GHz to 64GHz): 1 LSB = $2.7e9/2^{26} \approx 40.233$ Hz Valid range: 0 to 8388607 RESERVED	
CHIRP1_R3	4	Bits	Definition	
		b11:0	IDLE_TIME_VAR 1 LSB = 10 ns Valid range: 0 to 4095	
		b15:12	RESERVED	
		b27:16	ADC_START_TIME_VAR 1 LSB = 10 ns Valid range: 0 to 4095	
		b31:28	RESERVED	
CHIRP2_R1	4	See des	scription for CHIRP1_R1	
CHIRP2_R2	4	See description for CHIRP1_R2		
CHIRP2_R3	4	See description for CHIRP1_R3		
CHIRP16_R1	4	See description for CHIRP1_R1		
CHIRP16_R2	4	See description for CHIRP1_R2		
CHIRP16_R3	4	See des	scription for CHIRP1_R3	

NOTE:	If user wants to update the chirp ram rows using dynamic chirp
	config API in runtime then it is must to use same dynamic chirp
	config API (instead of legacy chirp config API) to configure all chirp
	parameters during sensor initialization.

5.5.17 Sub block 0x0110 - AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SET_ SB

This API can be used to dynamically change the per-chirp phase shifter configuration (applicable only in certain devices) while frames are on-going. The configuration will be stored in software and the new configuration will be applied after receiving the AWR_DYN_CHIRP_ENABLE_SB API.

 ${\bf Table~5.41:~AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB~contents}$

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0110		
SBLKLEN	2	Value = 56		
RESERVED	1	0x00		
CHIRP_SEG- MENT_SELECT	1	Indicates the segment of the chirp RAM that the 16 chirp definitions in this sub block map to. Valid range 0 to 31		
CHIRP1_ TX0_PHASE_ SHIFTER	1	TX0 phase shift value Bits TX0 phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 TX0 phase shift value 1 LSB = $360^{\circ}/2^6 = 5.625^{\circ}$ Valid range: 0 to 63		
CHIRP1_ TX1_PHASE_ SHIFTER	1	TX1 phase shift value Bits TX1 phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 TX1 phase shift value 1 LSB = $360^{\circ}/2^6 = 5.625^{\circ}$ Valid range: 0 to 63		
CHIRP1_ TX2_PHASE_ SHIFTER	1	TX2 phase shift value Bits TX1 phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 TX1 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63		
CHIRP2_ TX0_PHASE_ SHIFTER	1	See description for CHIRP1_TX0_PHASE_SHIFTER		
CHIRP2_ TX1_PHASE_ SHIFTER	1	See description for CHIRP2_TX1_PHASE_SHIFTER		
CHIRP2_ TX2_PHASE_ SHIFTER	1	See description for CHIRP3_TX2_PHASE_SHIFTER		
CHIRP16_ TX0_PHASE_ SHIFTER	1	See description for CHIRP1_TX0_PHASE_SHIFTER		

Table 5.41 – continued from previous page

CHIRP16_ TX1_PHASE_ SHIFTER	1	See description for CHIRP2_TX1_PHASE_SHIFTER		
CHIRP16_ TX2_PHASE_ SHIFTER	1	See description for CHIRP3_TX2_PHASE_SHIFTER		
PROGRAM_	2	Bits	Descrip	tion
MODE		b0	Value	Definition
			0	Program the new configuration when AWR_DYN_CHIRP_ENABLE API is issued
			1	Program the new configuration immediately NOTE: User has to ensure that the chirps which are being reconfigured are not the ones which are currently in use for chirping
		b15:1	RESER	VED

5.5.18 Sub block 0x0111 - AWR_DYN_CHIRP_ENABLE_SB

This API can be used to trigger the copy of chirp configuration from software to hardware. The copy will be performed at the end of the ongoing frame active window (start of the frame idle time).

Table 5.42: AWR_DYN_CHIRP_ENABLE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0111
SBLKLEN	2	Value = 8
RESERVED	4	0x00000000

NOTE:	HW reconfiguration time (as shown in the figure below) is around 500 μ s. User has to ensure that AWR_DYN_CHIRP_ENABLE_SB API is issued at least 500 μ s before the end of the ongoing frame active window (start of the frame idle time) to apply configurations
	for next frame onwards.

Figure 5.3: Dynamic chirp configuration use case timing diagram

5.5.19 Sub block 0x0112 - AWR_INTERCHIRP_BLOCKCONTROLS_SB

This API can be used to program the inter-chip turn on and turn off times or various RF blocks.

NOTE: The inter-chirp timing control configuration API is supported in this release. Please refer latest DFP release note for more info.

Table 5.43: AWR_INTERCHIRP_BLOCKCONTROLS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0112
SBLKLEN	2	Value = 44
RX02_RF_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX0 and RX2 RF stages. 1 LSB = 10 ns Valid range: -1024 to 1023
RX13_RF_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX1 and RX3 RF stages. 1 LSB = 10 ns Valid range: -1024 to 1023
RX02_BB_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX0 and RX2 baseband stages. 1 LSB = 10 ns Valid range: -1024 to 1023

RX13_BB_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX1 and RX3 baseband stages. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX02_RF_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX0 and RX2 RF stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX13_RF_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX1 and RX3 RF stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX02_BB_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX1 and RX3 baseband stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX13_BB_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX2 and RX4 baseband stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX02_RF_ TURN_ON_ TIME	2	Time before TX Start Time when RX1 and RX3 RF stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX13_RF_ TURN_ON_ TIME	2	Time before TX Start Time when RX2 and RX4 RF stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX02_BB_ TURN_ON_ TIME	2	Time before TX Start Time when RX1 and RX3 baseband stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX13_BB_ TURN_ON_ TIME	2	Time before TX Start Time when RX2 and RX4 baseband stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX_LO_CHAIN_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX LO chain. 1 LSB = 10 ns Valid range: -1024 to 1023	
TX_LO_CHAIN_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off TX LO chain. 1 LSB = 10 ns Valid range: -1024 to 1023	

RX_LO_CHAIN_ TURN_ON_TIME	2	Time before TX Start Time when the RX LO chain is to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
TX_LO_CHAIN_ TURN_ON_TIME	2	Time before TX Start Time when the TX LO chain is to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RESERVED	4	0x00000000
RESERVED	4	0x00000000

NOTE:	The minimum inter-chirp time should be greater than maximum of the following
	 abs(RX02_RF_TURN_OFF_TIME) + max(abs(RX02_RF_ PRE_ENABLE_TIME), abs(RX02_RF_TURN_ON_TIME))
	 abs(RX13_RF_TURN_OFF_TIME) + max(abs(RX13_RF_ PRE_ENABLE_TIME), abs(RX13_RF_TURN_ON_TIME))
	3. abs(RX02_BB_TURN_OFF_TIME) + max(abs(RX02_BB_PRE_ENABLE_TIME), abs(RX02_BB_TURN_ON_TIME))
	4. abs(RX13_BB_TURN_OFF_TIME) + max(abs(RX13_BB_PRE_ENABLE_TIME), abs(RX13_BB_TURN_ON_TIME)
	5. abs(RX_LO_TURN_OFF_TIME) + abs(RX_LO_TURN_ON_TIME)
	abs(TX_LO_TURN_OFF_TIME) + abs(TX_LO_TURN_ON_ TIME)

5.5.20 Sub block 0x0113 - AWR_SUBFRAME_START_CONF_SB

This API can be used to trigger each sub-frame individually in software triggered mode. This API takes effect only when the advanced frame configuration indicates that each sub-frame needs to be individually triggered by the user.

 ${\bf Table~5.44:~AWR_SUBFRAME_START_CONF_SB~contents}$

Field Name	Number of bytes	Descrip	tion	
SBLKID	2	Value = 0x0113		
SBLKLEN	2	Value = 8	8	
START_CMD	2	Bits	Definitio	n
		b15:0	Value	Definition
			0x0000	No effect
			0x0001	Trigger next sub-frame in software triggered sub-frame mode
RESERVED	2	0x0000		

NOTE1:	If the user wishes to trigger each sub-frame independently, then after advanced frame config, the FRAME START command should be issued once using AWR_FRAMESTARTSTOP_CONF_SB. This does not start any sub-frames but it will prepare the hardware for sub-frame trigger. Next any subsequent sub-frame trigger will start the sub-frames
NOTE2:	If the user wishes to use sub-frame trigger, he has to ensure that sub-frame trigger command is issued $k \cdot N$ times where k is the number of sub-frames in each frame and N is the number of frames. If the user wishes to stop frames in between, then he has to issue the FRAME STOP command (using AWR_FRAMESTARTSTOP_CONF_SB) only after $k \cdot M$ triggers of sub-frame trigger command (where M is an integer). i.e. FRAME STOP command can be issued only at frame boundaries
NOTE3:	If software based sub-frame trigger mode is chosen by the user, watchdog feature will not be available. User has to ensure that the watchdog is disabled before enabling the software based sub-frame trigger mode.
NOTE4:	If sub-frame trigger or hardware trigger mode is used to trigger the frames/sub-frames and if frames need to be stopped before the specified number of frames, then the the FRAME_STOP command using AWR_FRAMESTARTSTOP_CONF_SB API should be issued while the frame is on-going. If the frames are stopped while the device is idle, it can lead to errors.

5.5.21 Sub block 0x0115 - AWR_ADVANCE_CHIRP_CONF_SB

This API sub-block defines the programming of advanced chirp configurations for each chirp parameters to generate a waveform pattern in a frame/burst. This API provides ability to program fixed delta increment (Delta dither) for certain chirp parameters (eg. chirp start frequency, idle time, phase shifter, etc.), on top of unique dithers selected from configurable look-up-table (LUT Dither). The configurable look-up-table is an array of values loaded into a pre-configured "Generic SW Chirp Parameter LUT" The size of the generic LUT is 12kB and user has the flexibility to program any number of unique dithers for each chirp parameters. Thus the user can achieve fixed increment, or LUT based dither, or a combination of both.

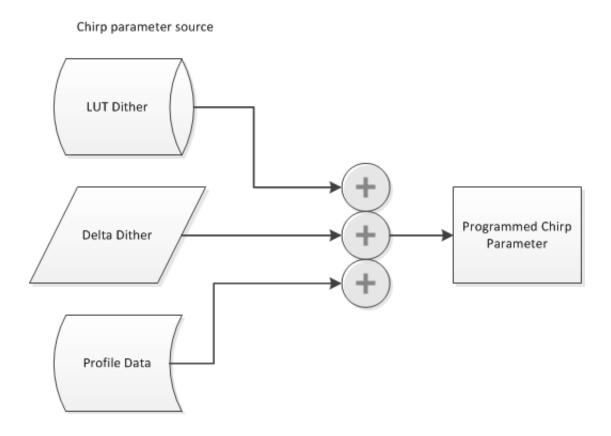


Figure 5.4: Advance chirp parameter dither sources and program

Using this API, four types of control can be achieved on each parameters of a chirp.

1. Fixed value for all chirps: To generate sequence of chirps which never changes, then only

one value can be programmed in LUT (LUT Dither), i.e NUM_OF_PATTERNS (P) = 1 and LUT_PARAM_UPDATE_PERIOD (K) = 0

- 2. Unique chirps: Index every LUT_PARAM_UPDATE_PERIOD (K) chirps in LUT to generate unique sequence of chirps.
- Delta increment every DELTA_PARAM_UPDATE_PERIOD (N) chirps: On top of sequence
 of unique chirps from LUT, the fixed delta increment (Delta dither) can be done every N
 chirps.
- 4. The set of chirp parameters across bursts and sub-frames can be different by setting offset to LUT in BURST LUT INDEX OFFSET and SF LUT INDEX OFFSET.

When using the Advanced Chirp Config API, there are some implications to frame config and advanced frame config APIs. Specifically, the CHIRP_START_INDX and CHIRP_END_INDX fields are no longer applicable, and the NUM_LOOPS field has a different meaning in the sense that this field now denotes the total number of chirps in the frame/burst. Please refer AWR_FRAME_CONF_SET_SB and AWR_ADVANCED_FRAME_CONF_SB APIs with the updated field descriptions as below.

The total number of chirps L in a burst should be programmed as per below calculation in frame configuration API (using the NUM LOOPS field).

L = X * Y, where X is 1 to 512 (supported HW CHIRP RAM) and Y is 1 to 128 (supported HW CHIRP LOOPS) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, ... 32768 (max). The FW needs to prepare and update HW CHIRP RAM dynamically in advance chirp config API, this puts some restriction on minimum number of chirps in a burst/frame.

NOTE1:	The Legacy AWR_CHIRP_CONF_SET_SB, AWR_DYN_CHIRP_CONF_SET_SB, AWR_PERCHIRPPHASESHIFT_CONF_SB, AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SET_SB and AWR_BPM_CHIRP_CONF_SET_SB APIs are not supported if device is configured with Advanced Chirp Config API enabled in AWR_RF_RADAR_MISC_CTL_SB or vice versa.
NOTE2:	The per chirp phase shifter and BPM configurations are part of this API.
NOTE3:	The parameters in this API are not applicable to loop-back sub-frames AWR_LOOPBACK_BURST_CONF_SET_SB. If loop-back sub-frames are needed, it is recommended to be configured in the last sub-frame (SF) of AWR_ADVANCED_FRAME_CONF_SB API.
NOTE4:	The dynamic update of this API is allowed at frame boundary along with the Generic SW Chirp Parameters, as long as the LUT addresses modified differ from the addresses used in the current ongoing frame. The dynamic chirp enable API AWR_DYN_CHIRP_ENABLE_SB shall be issued at least 500us before end of current active window of frame (500us before start of idle time of the frame) to apply the dynamic configurations in immediate next frame.
NOTE5:	The RF frequency used for measurement in monitors are derived only from profile settings (start frequency and slope) and not from the advance chirp configuration API, if fixed delta increment is used to change the start frequency every chirp, it is recommended to have a separate profile for monitors which covers full RF bandwidth of interest.

Table 5.45 describes the contents of this sub block. All the fields in this API are specific to selected CHIRP_PARAM_INDEX in this API, this API needs to be programmed ten times for each of the chirp parameters defined in CHIRP_PARAM_INDEX field in below API.

The Delta Dither is optional and can be disabled by setting DELTA_PARAM_UPDATE_PERIOD (N) = 0 and SFn_CHIRP_PARAM_DELTA = 0.

The LUT Dither is mandatory and at least one dither parameter value (it can be value zero) shall be programmed for all chirp parameters in generic LUT, same dither value can be programmed to all chirps in a burst/frame by setting LUT_PARAM_UPDATE_PERIOD (K) = 0.

Table 5.45: AWR_ADVANCE_CHIRP_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0115	
SBLKLEN	2	Value = 60	

Table 5.45 – continued from previous page

			·		
CHIRP_PARAM_ INDEX	1	This field indicates the chirp parameter that the current AP configures. The mapping and availability of dither modes are as below:			
			Parameter	Delta Dither	LUT Dither
		0	CHIRP_PROFILE_SELECT	No	Yes
		1	CHIRP_FREQ_START_VAR	Yes	Yes
		2	CHIRP_FREQ_SLOPE_VAR	Yes	Yes
		3	CHIRP_IDLE_TIME_VAR	Yes	Yes
		4	CHIRP_ADC_START_TIME_ VAR	Yes	Yes
		5	CHIRP_TX_EN	No	Yes
		6	CHIRP_BPM_VAL	No	Yes
		7	TX0_PHASE_SHIFTER	Yes	Yes
		8	TX1_PHASE_SHIFTER	Yes	Yes
		9	TX2_PHASE_SHIFTER	Yes	Yes
		with th	Reserved arameters referred to here are the name referred to in AWR_CI d in AWR_PERCHIRPPHASESH	HIRP_CO	NF_SET_
GLOBAL_RE- SET_MODE	1	This field indicates the reset mode of the programmed pattern. It indicates when the fixed delta accumulation (Delta Dither) or the programmed dither pattern from LUT (LUT Dither) resets back to its initial value. This is a global reset occurs for all the chirp parameters. This value should be same for all chirp parameter. Mode Definition Reset at the end of Frame Reset at the end of Sub-Frame Reset at the end of Burst Reserved			
RESERVED	2	0x000			
RESERVED	4				
HESERVED	4	0x000	U		

DELTA_RESET_ PERIOD (M)	2	Reset the delta increment (Delta Dither) sequence every M chirps	
		Valid range: 0 – 3	2768
		-	finition
		0 Re	set only as per RESET MODE option
		1 De	Ita increment is disabled
			set every M chirps in addition to RESET
		The reset period PARAM_UPDATE	should be integer multiple of DELTA_ PERIOD (N)
DELTA_PARAM_ UPDATE_PE- RIOD (N)	2		eter will be incremented by SFn_CHIRP_ Delta Dither) every N chirps.
THOD (N)		Valid range: 0 – 1	6384
		_	finition
		0 De	Ita increment is disabled
			e fixed delta value will be incremented ce after every N chirps.
SF0_CHIRP_ PARAM_DELTA	4	This field indicates the delta increment (Delta Dither) value for sub-frame 0 (Also applicable for legacy frame config API) that should be accumulated and added to each chirp based on update period N. This accumulated fixed dither value which increments every N chirps is added to LUT dither value derived for same chirp, The sum of accumulated dither and LUT dither derived for each chirp is added to profile setting of same chirp parameter in HW.	
		Bytes in this field sign extension.	d should be populated with appropriate
		Table 5.46 for the eter is selected.	Delta Chirp Parameter LUT description definition of this field when each param- This feature is enabled only for certain ypes as defined in this table.

SF1_CHIRP_ PARAM_DELTA	4	This field indicates the delta increment (Delta Dither) value for sub-frame 1 (Not applicable for legacy frame config API) that should be accumulated and added to each chirp based on update period N. This accumulated fixed dither value which increments every N chirps is added to LUT dither value derived for same chirp, The sum of accumulated dither and LUT dither derived for each chirp is added to profile setting of same chirp parameter in HW. As some parameters may need signed values, all the Bytes in this field should be populated with appropriate sign extension.
		Refer to the Fixed Delta Chirp Parameter LUT description Table 5.46 for the definition of this field when each parameter is selected. This feature is enabled only for certain chirp parameter types as defined in this table.
SF2_CHIRP_ PARAM_DELTA	4	This field indicates the delta increment (Delta Dither) value for sub-frame 2 (Not applicable for legacy frame config API) that should be accumulated and added to each chirp based on update period N. This accumulated fixed dither value which increments every N chirps is added to LUT dither value derived for same chirp, The sum of accumulated dither and LUT dither derived for each chirp is added to profile setting of same chirp parameter in HW. As some parameters may need signed values, all the Bytes in this field should be populated with appropriate sign extension. Refer to the Fixed Delta Chirp Parameter LUT description table Table 5.46 for the definition of this field when each parameter is selected. This feature is enabled only for certain
		chirp parameter types as defined in this table.

SF3_CHIRP_ PARAM_DELTA	4	This field indicates the delta increment (Delta Dither) value for sub-frame 3 (Not applicable for legacy frame config API) that should be accumulated and added to each chirp based on update period N. This accumulated fixed dither value which increments every N chirps is added to LUT dither value derived for same chirp, The sum of accumulated dither and LUT dither derived for each chirp is added to profile setting of same chirp parameter in HW. As some parameters may need signed values, all the Bytes in this field should be populated with appropriate sign extension. Refer to the Fixed Delta Chirp Parameter LUT description Table 5.46 for the definition of this field when each parameter is selected. This feature is enabled only for certain chirp parameter types as defined in this table.		
RESERVED	4	RESERVED		
LUT_RESET_ PERIOD (J)	2	Reset the LUT sequence (LUT Dither) every J chirps		
		Valid range: 0		
		Value	Definition	
		0	Reset only as per RESET MODE option	
		1	Fixed 0th indexed LUT value programmed for all chirps	
		32768-2	Reset every J chirps in addition to RESET MODE option	
		The reset period should be integer multiple of LU PARAM_UPDATE_PERIOD (K)		
LUT_PARAM_ UPDATE_PE- RIOD (K)	2	The chirp parameter (LUT Dither) will be updated with new value from LUT every K chirps.		
		Valid range: 0	0 – 16384	
		Value	Definition	
		0	Fixed 0th indexed LUT value programmed for all chirps	
		16384-1	Index to LUT will be incremented once after every K chirps and corresponding LUT value is used.	

2	This field provides the start address offset within the Generic SW Chirp Parameter LUT which holds dither parameters (LUT Dither) for this CHIRP_PARAM_INDEX. The first chirp of the burst/frame picks the dither from 0th index to LUT with this address offset and dithers for next chirps will be derived based on pattern configuration defined in this API. Address offset has to be multiple 4 bytes (word boundary) The Generic SW chirp parameters are described in Table 5.48 and it can be loaded in to LUT using AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB API.
2	This field provides the number of unique dither parameters present in LUT (LUT Dither). Valid range: 1 to 8192 0 is not a valid number
	This information is used to perform array out of bound error check on index to LUT in FW.
2	Only relevant when using Advanced Frame Config API. Provides flexibility to have an offset in index to LUT (LUT Dither) from one burst to the next burst. This field provides the LUT index start offset for subsequent bursts in advanced frame config API. The chirp LUT start index for each burst is determined as the chirp LUT start index of the previous burst plus BURST_LUT_INDEX_OFFSET. This feature helps to loop set of different chirps in subsequent bursts in a sub-frame.
	Valid Range: 0 to P 0 – No offset (default) 1 to P – LUT index start offset for each burst.
	NOTE1: The first burst in second or higher sub-frame is always indexing to SF_LUT_INDEX_OFFSET parameter in LUT. NOTE2: The LUT_RESET_PERIOD can not be more than number of chirps in a burst if this feature is used.
	2

SF_LUT_INDEX_ OFFSET	2	Only relevant when using Advanced Frame Config API. Provides flexibility to have an offset in index to LUT (LUT Dither) from one subframe to the next subframe. This field provides the LUT index start offset for subsequent sub-frames in advanced frame config. The chirp LUT start index for first burst in each SF is determined as the chirp LUT start index of the previous SF plus SF_LUT_INDEX_OFFSET. This feature helps to loop set of different chirps in subsequent sub-frames.			
		Valid Range: 0 to P 0 - No offset (default) 1 to P - LUT index start offset	for each s	sub-frame	e) (SF).
		NOTE1: The first SF in advance frame is always indexing to 0th parameter in LUT. NOTE2: The LUT_RESET_PERIOD can not be more than number of chirps in a sub-frame if this feature is used.			
LUT_CHIRP_ PARAM_SIZE	1	This field is applicable only for LUT chirp parameters (LUT Dither) of type CHIRP_FREQ_START_VAR, CHIRP_IDLE_TIME_VAR and CHIRP_ADC_START_TIME_VAR. This feature can be used to reduce the size of the parameter in LUT if dynamic range of the parameter is small.			
		Valid Range: 0 to 2			
		CHIRP_PARAM_INDEX type	value 0	value 1	value 2
		CHIRP_FREQ_START_VAR	4 bytes	2 bytes	1 byte
		CHIRP_IDLE_TIME_VAR	2 bytes	1 byte	-
		CHIRP_ADC_START_ TIME_VAR Default Value: 0 (default size)	2 bytes	1 byte	-

Table 5.45 - continued from previous page

LUT_CHIRP_ PARAM_SCALE	1	This field is applicable only for LUT chirp parameters (LUT Dither) of type CHIRP_FREQ_START_VAR, CHIRP_IDLE_TIME_VAR and CHIRP_ADC_START_TIME_VAR. This feature can be used to reduce the size of the parameter in LUT if granularity of the resolution can be increased.
MAX_TX_ PHASE_ SHIFTER_ INTERNAL_ DITHER	2	This field is applicable only if SFn_CHIRP_PARAM_DELTA increment (Delta Dither) is enabled for TXn_PHASE_SHIFTER parameter. It controls the TX phase quantization process. The device's internal TX phase shifters are 6 bit. For deriving the internal 6 bit phase, the 16 bit SFn_CHIRP_PARAM_DELTA is accumulated in the firmware every chirp. The accumulator's output is added with a random number from 0 to this field's value. The 6 MSBs of the adder's output are used as the internal 6 bit phase for that chirp. Valid Range: 0 to 1023 Default Value: 0 (no dither)
RESERVED	8	RESERVED

Fixed Delta Chirp Parameter description table:

Here is the description of SFn_CHIRP_PARAM_DELTA for each relevant parameter in Advanced Chirp Config API. This fixed delta is being incremented every N chirps as per update period defined in this API and the start value of the accumulator is 0 for first chirp. The accumulated delta is being added to LUT dither value and to the profile config setting in HW. This fixed delta increment feature helps to reduce the need of dedicated chirp RAM for each chirp if pattern can be generated in fixed increment fashion for each chirp.

 ${\bf Table~5.46:~ADV_CHIRP_FIXED_DELTA_PARAM~description}$

Parameter	LSB definition	Description
CHIRP_FREQ_ START_VAR	1 LSB = $3.6e9/2^{26}$ Hz \approx 53.644 Hz Signed Valid Range: -0x058E38E3 to 0x058E38E3 +/-5GHz range (Depending on max range of VCO)	The start frequency dither fixed delta increment value. This field is signed and has higher dynamic range compared to legacy chirp configuration API. Limitations: If accumulated delta dither + LUT dither value for a chirp is negative or >= 450MHz then Fw internally has to update the start freq of the profile of corresponding chirp dynamically in HW and this leads to limitation as mentioned below. If accumulated delta dither + LUT dither value is negative or >= +/-450MHz for 2nd chirp in a burst then due to Hw limitation the both first and 2nd chirps will be programmed with same start frequency i.e accumulated delta + LUT dither belongs to 2nd chirp. The chirps beyond 1st chirp will have proper start frequency programmed as expected, the 1st chirp start frequency would be bad, so it is recommended to discard the first chirp. NOTE: The Profile start freq + Accumulated delta dither + LUT dither for a chirp should not exceed the VCO range. NOTE: If GLOBAL_RESET_MODE is set to 0 (end of frame) or 1 (end of subframe) then above limitation is applicable at start of each burst of a sub-frame.

CHIRP_FREQ_ SLOPE_VAR	1 LSB = $3.6e9 \times 900/2^{26} \approx$ 48.279 kHz Signed Valid Range: -63 to 63 +/-3MHz/us range	The slope dither fixed delta increment value. This field is signed Limitations: If accumulated delta dither + LUT dither value for a chirp is negative or >= 3MHz/us then Fw internally has to update the slope of the profile of corresponding chirp dynamically in HW and this leads to limitation as mentioned below.
		If accumulated delta dither + LUT dither value is negative or >= +/-3MHz for 2nd chirp in a burst then due to Hw limitation the both first and 2nd chirps will be programmed with same slope i.e accumulated delta dither + LUT dither belongs to 2nd chirp. The chirps beyond 1st chirp will have proper slope programmed as expected, the 1st chirp slope would be bad, so it is recommended to discard the first chirp.
		NOTE: The Profile slope + Accumulated delta dither + LUT dither for a chirp should not exceed the max slope range of VCO. NOTE: If GLOBAL_RESET_MODE is set to 0 (end of frame) or 1 (end of subframe) then above limitation is applicable at start of each burst of a sub-frame.
CHIRP_IDLE_ TIME_VAR	1 LSB = 10 ns, unsigned Valid range: 0 to 4095 0 to 40.95us range	The idle time dither fixed delta increment value. This field is unsigned. NOTE: The Accumulated delta dither + LUT dither for a chirp should not exceed the max idle time dither value 40.95us (4095 value).

CHIRP_ADC_ START_TIME_ VAR	1 LSB = 10 ns, unsigned Valid range: 0 to 4095 0 to 40.95us range	The ADC start time dither fixed delta increment value. This field is unsigned. NOTE: The Accumulated delta dither + LUT dither for a chirp should not exceed the max ADC start time dither value 40.95us (4095 value).
TX0_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{16}$ = 0.005493° , unsigned Valid range: 0 to 65535 $0to360^{\circ}$ range	The per chirp TX0 phase shifter fixed delta increment value. This field is unsigned and has finer resolution compared to LUT per chirp dither value.
TX1_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{16}$ = 0.005493° , unsigned Valid range: 0 to 65535 $0to360^{\circ}$ range	The per chirp TX1 phase shifter fixed delta increment value. This field is unsigned and has finer resolution compared to LUT per chirp dither value.
TX2_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{16}$ = 0.005493° , unsigned Valid range: 0 to 65535 $0to360^{\circ}$ range	The per chirp TX2 phase shifter fixed delta increment value. This field is unsigned and has finer resolution compared to LUT per chirp dither value.

NOTE1:	If fixed delta dither is used to generate the pattern then it is recommended to program same start frequency in profile config API for each chirps in a frame. Each chirp can have different profiles associated with it except start frequency.
NOTE2:	The number of chirps programmed in a burst/frame shall be multiple of 4. Exception: a single chirp can be programmed in a burst.

5.5.22 Sub block 0x0115 - AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB

This API sub-block loads the unique dither values for each chirp on Generic SW Chirp Parameter LUT at offset address defined in AWR_ADVANCE_CHIRP_CONF_SB API. This LUT can be used to pre-load dither patterns for each chirp parameters and provides the flexibility to program any number of unique dithers for each chirp parameters.

NOTE1:	The Generic SW Chirp Parameter LUT can be modified by the host dynamically, as long as the LUT addresses modified differ from the addresses used in the current frame.
NOTE2:	The dynamic update of this API is effective immediately and does not depend on AWR_DYN_CHIRP_ENABLE_SB API. This might impact the ongoing chirps if timing of the update is not handled properly as if ongoing chirps use same fields/addresses in LUT. It is recommended to perform proper timing analysis before updating the LUT dynamically considering SPI communication delays.
NOTE3:	The total size of Generic SW Chirp Parameter LUT is 12kB.
NOTE4:	The start address offset of all chirp parameter in LUT shall be multiple of 4 bytes (word boundary), that means minimum 4 bytes in LUT shall be allocated to each chirp parameter.
NOTE5:	At least one dither parameter value shall be programmed for each chirp parameter type (10 types) in generic LUT, same value can be programmed to all chirps in a burst/frame using Advance chirp config API, LUT_PARAM_UPDATE_PERIOD (K) = 0 configuration.

Table 5.47 describes the contents of this sub block.

Table 5.47: AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0116
SBLKLEN	2	Value = 232
RESERVED	12	0x0000
LUT_ADDRESS_ OFFSET	2	Start address offset in LUT at which to populate the bytes of patterns. Address offset has to be multiple 4 bytes (word boundary)
NUM_OF_ BYTES	2	Number of valid bytes to load in LUT Valid range: 4 to 212 bytes, must be multiple of 4 bytes.
DATA_BYTES	212	Byte array to load in to the Generic SW Chirp Parameter LUT. The description and size of the chirp parameters defined in Table 5.48 below.
		NOTE : The size of this sub-block is fixed to total 232 bytes, hence it is recommended to group multiple chirp parameters and send in chunks.

Generic SW Chirp Parameter LUT parameters description table:

Here is the description of chirp parameter dithers which are programmed at LUT_PATTERN_ ADDRESS_OFFSET address in Generic LUT defined in Advanced Chirp Config API. The index

to this LUT is being incremented every K chirps as per update period defined in Advanced Chirp Config API and the index to LUT is 0 (at offset address) for first chirp. This LUT dither is being added to accumulated delta value and to the profile config setting in HW. This generic LUT helps to program unique dithers in device chirp RAM only for certain chirp parameters based on waveform generation need, there is no need to program the dithers for chirp parameters which are not required to be dithered unlike legacy AWR_CHIRP_CONF_SET_SB API.

Table 5.48: ADV_CHIRP_GENERIC_LUT_PARAM description

Parameter	LSB definition and Size	Description
CHIRP_PRO- FILE_SELECT	Valid Range: 0 to 3 Size: 4 bits for each parameter Min Size in LUT: 4 Bytes (Up to 8 parameters)	Each byte can hold profile index parameter for 2 chirps in LUT. Index 0 and 1 refer to the first and second parameters in LUT. Bit Parameter Field b3:0 0th Profile index parameter in LUT (Mandatory field) b7:4 1st Profile index parameter in LUT (optional - in case 0th fixed profile wants to be used for all chirps in a burst/frame)

CHIRP_FREQ_ START_VAR	1 LSB = $3.6e9/2^{26}*2^{SCALE}$ Hz \approx Signed Valid Range: -0x058E38E3 to 0x058E38E3 +/-5GHz range (Depending on max range of VCO)	The start frequency dither value for each chirp to be added to the profile's start frequency. This value is signed and has higher dynamic range compared to legacy chirp configuration API.
	Size: 1 or 2 or 4 Bytes Configurable based on LUT_ CHIRP_PARAM_SIZE defined in Advanced chirp config API. Min Size in LUT: 4 Bytes (Up to 4 parameters in case size is 1 byte)	Limitations: If accumulated delta + LUT dither value for a chirp is -ve or >= 450MHz then Fw internally has to update the start freq of the profile of corresponding chirp dynamically in HW and this leads to limitation as mentioned below.
	Scale: 0 to 16 Configurable based on LUT_ CHIRP_PARAM_SCAL de- fined in Advanced chirp config API.	If accumulated delta + LUT dither value is -ve or >= +/-450MHz for 2nd chirp in a burst then due to Hw limitation the both first and 2nd chirps will be programmed with same start frequency i.e accumulated delta + LUT dither belongs to 2nd chirp. The chirps beyond 1st chirp will have proper start frequency as expected, so it is recommended to discard the first chirp in this case. NOTE: The Profile start freq + Accumulated delta + LUT dither for a chirp should not exceed the VCO range.

Table 5.48 – continued from previous page

CHIRP_FREQ_ SLOPE_VAR	1 LSB = $3.6e9 \times 900/2^{26} \approx 48.279$ kHz Signed Valid Range: -63 to 63 +/-3MHz/us range Size: 1 byte Min Size in LUT: 4 Bytes (Up to 4 parameters)	The slope dither value. This value is signed Limitations: If accumulated delta + LUT dither value for a chirp is -ve or >= 3MHz/us then Fw internally has to update the slope of the profile of corresponding chirp dynamically in HW and this leads to limitation as mentioned below. If accumulated delta + LUT dither value is -ve or >= +/-3MHz for 2nd chirp in a burst then due to Hw limitation the both first and 2nd chirps will be programmed with same slope i.e accumulated delta + LUT dither belongs to 2nd chirp. The chirps beyond 1st chirp will have proper slope as expected, so it is recommended to discard the first chirp in this case. NOTE: The Profile slope + Accumulated delta + LUT dither for a chirp should not exceed the max slope range of VCO.
CHIRP_IDLE_ TIME_VAR	1 LSB = $10ns * 2^{SCALE}$, unsigned Valid range: 0 to 4095 0 to 40.95us range Size: 1 or 2 Bytes Configurable based on LUT_ CHIRP_PARAM_SIZE defined in Advanced chirp config API. Min Size in LUT: 4 Bytes (Up to 4 parameters in case size is 1 byte) Scale: 0 to 8 Configurable based on LUT_ CHIRP_PARAM_SCAL defined in Advanced chirp config API.	The idle time dither value. This value is unsigned. NOTE: The Accumulated delta dither + LUT dither for a chirp should not exceed the max idle time dither value 40.95us (4095 value).

Table 5.48 – continued from previous page

CHIRP_ADC_ START_TIME_ VAR	1 LSB = 10ns * 2 ^{SCALE} , unsigned Valid range: 0 to 4095 0 to 40.95us range Size: 1 or 2 Bytes Configurable based on LUT_ CHIRP_PARAM_SIZE defined in Advanced chirp config API. Min Size in LUT: 4 Bytes (Up to 4 parameters in case size is 1 byte) Scale: 0 to 8 Configurable based on LUT_ CHIRP_PARAM_SCAL defined in Advanced chirp config API.	The ADC start time dither value. This value is unsigned. NOTE: The Accumulated delta dither + LUT dither for a chirp should not exceed the max ADC start time dither value 40.95us (4095 value).
CHIRP_TX_EN	Valid Range: 0 to 7 Size: 4 bits for each parameter Min Size in LUT: 4 Bytes (Up to 8 parameters)	Each byte can hold TX enable mask parameter for 2 chirps in LUT. Index 0 and 1 refer to the first and second parameters in LUT. Bit Parameter Field b0 TX0 enable mask for 0th parameter in LUT (Mandatory field) b1 TX1 enable mask for 0th parameter in LUT (Mandatory field) b2 TX2 enable mask for 0th parameter in LUT (Mandatory field) b3 RESERVED b4 TX0 enable mask for 1st parameter in LUT (optional) b5 TX1 enable mask for 1st parameter in LUT (optional) b6 TX2 enable mask for 1st parameter in LUT (optional) b7 RESERVED

Table 5.48 – continued from previous page

Table 5.46 – Continued Irom previous page					
CHIRP_BPM_	Valid Range: 0 to 7		te can hold TX BPM value		
VAL		er for 2 chirps in LUT. Index			
	Size: 4 bits for each parameter	0 and 1 refer to the first and second parameters in LUT.			
	Min Size in LUT: 4 Bytes (Up	Bit	Parameter		
	to 8 parameters)	Field	. a.aetc.		
		b0	TX0 BPM value for 0th parameter in LUT (Mandatory field)		
		b1	TX1 BPM value for 0th parameter in LUT (Mandatory field)		
		b2	TX2 BPM value for 0th parameter in LUT (Mandatory field)		
		b3	RESERVED		
		b4	TX0 BPM value for 1st parameter in LUT (optional)		
		b5	TX1 BPM value for 1st parameter in LUT (optional)		
		b6	TX2 BPM value for 1st parameter in LUT (optional)		
		b7	RESERVED		
TX0_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$, unsigned		chirp TX0 phase shifter value. ue is unsigned		
	Valid range: 0 to 63	Bits	TX0 phase shift definition		
	$0to360^\circ$ range	b1:0	RESERVED (set it to 0b00)		
	Size: 1 byte	b7:2	TX0 phase shift value		
	Min Size in LUT: 4 Bytes (Up to 4 parameters)	07.2	TAO priase stillt value		
TX1_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{6}$ = 5.625° , unsigned Valid range: 0 to 63 $0to360^{\circ}$ range Size: 1 byte		chirp TX1 phase shifter value.		
SHIFTER		Bits	ue is unsigned		
			TX1 phase shift definition		
		b1:0	RESERVED (set it to 0b00)		
	Min Size in LUT: 4 Bytes (Up to 4 parameters)	b7:2	TX1 phase shift value		

Table 5.48 – continued	l from	previous	page
------------------------	--------	----------	------

TX2_PHASE_	1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$,	The per	chirp TX2 phase shifter value.
SHIFTER	unsigned	This val	ue is unsigned
	Valid range: 0 to 63	Bits	TX2 phase shift definition
	$0to360^{\circ}$ range Size: 1 byte	b1:0	RESERVED (set it to 0b00)
	Min Size in LUT: 4 Bytes (Up to	b7:2	TX2 phase shift value
	4 parameters)		

Limitations:

Limitation 1:

The first chirp in a burst (AFC) or in a legacy frame shall be discarded due to Hw limitation in below cases:

- If start frequency dither is negative for 2nd chirp of a burst/frame (either due to delta increment or due to LUT value).
 Workaround: program a small negative dither for 1st chirp in LUT.
- If start frequency dither is >= +/-450MHz for 2nd chirp of a burst/frame (either due to delta increment or due to LUT value).
 Workaround: Discard 1st chirp data.
- If slope dither is negative for 2nd chirp of a burst/frame (either due to delta increment or due to LUT value). Workaround: program a small negative dither for 1st chirp in LUT.
- If slope dither is >= +/-3MHz/us for 2nd chirp of a burst/frame (either due to delta increment or due to LUT value). Workaround: Discard 1st chirp data.

Limitation 2:

The minimum chirp duration or cycle time shall be 25us if advance chirp feature is used (vs 13us in case of legacy chirp config API is used).

5.5.23 Sub block 0x0117 - AWR MONITOR TYPE TRIG CONF SB

This is a new feature addition in **AWR2243**. This API helps to maintain monitoring timing synchronization in cascaded devices to avoid mutual interference of monitors running in different devices in the cascade sensor. The host must trigger the monitor of types below to avoid interference if MONITORING_MODE is set to '1' in AWR_CALIB_MON_TIME_UNIT_CONF_SB. The monitors can be categorized into 3 types. The AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB AE will be sent once monitor type is executed.

Table 5.49: Types of Monitors

Monitor Types	Description
Type 0	Non-transmitting monitor, The execution of non-transmitting moni-
	tors does not cause RF interference to monitors executing on other
	devices. Therefore, they can be executed in parallel across all de-
	vices in the cascade. These include monitors which receive a test
	signal through RX LNA and digital monitors.
Type 1	Transmitting but not receiving (test signal), The monitors that trans-
	mit but don't receive any test signal through RX LNA are not sus-
	ceptible to interference. Therefore, they can be executed in parallel
	across all devices in the cascade, but not when monitors that receive
	test signals through RX LNA are executing.
Type 2	Transmitting and receiving (test signal), The monitors that transmit
	and also receive test signal through RX LNA are susceptible to in-
	terference. They can be executed sequentially so as to create time
	separation between monitoring chirps of different devices.

Table 5.50: Monitor Categorization

	Table 5.50: Monitor Categorization
Monitor Type	Monitors
Туре 0	The run time digital monitors in AWR_MONITOR_RF_DIG_ PERIODIC_CONF_SB Bit Definition b0 PERIODIC_CONFG_REGISTER_READ_EN b2 DFE_STC_EN b3 FRAME_TIMING_MONITORING_EN
	The analog monitors in AWR_MONITOR_ANALOG_ENABLES_CONF_SB Bit Definition b0 TEMPERATURE_MONITOR b1 RX_GAIN_PHASE_MONITOR b2 RX_NOISE_FIGURE_MONITOR b3 RX_IFSTAGE_MONITOR b14 SYNTH_FREQ_MONITOR b15 EXTERNAL_ANALOG_SIGNALS_MONITOR b19 INTERNAL_RX_SIGNALS_MONITOR b20 INTERNAL_PMCLKLO_SIGNALS_MONITOR b21 INTERNAL_GPADC_SIGNALS_MONITOR b22 PLL_CONTROL_VOLTAGE_MONITOR b23 DCC_CLOCK_FREQ_MONITOR b24 RX_SATURATION_DETECTOR_MONITOR b25 RX_SIG_IMG_BAND_MONITOR
Type 1	The analog monitors in AWR_MONITOR_ANALOG_ENABLES_CONF_SB Bit Definition b4 TX0_POWER_MONITOR b5 TX1_POWER_MONITOR b6 TX2_POWER_MONITOR b7 TX0_BALLBREAK_MONITOR b8 TX1_BALLBREAK_MONITOR b9 TX2_BALLBREAK_MONITOR b16 INTERNAL_TX0_SIGNALS_MONITOR b17 INTERNAL_TX1_SIGNALS_MONITOR b18 INTERNAL_TX2_SIGNALS_MONITOR
Type 2	The analog monitors in AWR_MONITOR_ANALOG_ENABLES_CONF_SB Bit Definition b10 TX_GAIN_PHASE_MISMATCH_MONITOR b11 TX0_PHASE_SHIFTER_MONITOR b12 TX1_PHASE_SHIFTER_MONITOR b13 TX2_PHASE_SHIFTER_MONITOR b26 RX_MIXER_INPUT_POWER_MONITOR

Table 5.51: AWR_MONITOR_TYPE_TRIG_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0117
SBLKLEN	2	Value = 12
MON_TRIG_ TYPE_ENABLE	1	The bit mask for monitor trigger type to control sequence of execution of monitors. Bit Definition b0 Trigger Type 0 monitors b1 Trigger Type 1 monitors b2 Trigger Type 2 monitors b31:3 RESERVED 0: Disable 1: Enable
RESERVED	7	0x0

NOTE1:	The Host can trigger all 3 types of monitor at same time or can trigger each type one after other based on system requirement, in case host is triggering monitor types one after other, then it is recommended to follow order type 0, type 1 and type 2 respectively.
NOTE2:	The Host must wait for AWR_AE_RF_MONITOR_TYPE_ TRIGGER_DONE_SB AE before issuing trigger for next mon- itor type.
NOTE3:	The Host must ensure all types of monitors are executed within defined device FTTI interval, otherwise device can not finish all the monitors within FTTI and will report failure AE AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB

5.6 Sub blocks related to AWR_RF_DYNAMIC_CONF_GET_SB

5.6.1 Sub block 0x0120 - AWR_PROFILE_CONF_GET_SB

This sub block reads the parameters of a given profile. The profile details are available as part of the acknowledgment. The structure is same as AWR_PROFILE_CONF_SET_SB Table 5.52 describes the contents of this sub block.

Table 5.52: AWR_PROFILE_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0120
SBLKLEN	2	Value = 8
PROFILE_INDX	2	Valid range 0 to 3 Index of the profile which is to be read
RESERVED	2	0x0000

5.6.2 Sub block 0x0121 - AWR_CHIRP_CONF_GET_SB

This sub block reads the parameters of a given chirp. The profile details are available as part of the acknowledgement. The structure is same as AWR_CHIRP_CONF_SET_SB Table 5.53 describes the contents of this sub block.

Table 5.53: AWR_CHIRP_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0121
SBLKLEN	2	Value = 8
CHIRP_START_ INDX	2	Valid range 0 to 511 Starting index of the chirp which is to be read
CHIRP_END_ INDX	2	Valid range 0 to 511 Ending index of the chirp which is to be read

5.6.3 Sub block 0x0122 - AWR_FRAME_CONF_GET_SB

This sub block reads the parameters of the configured frame. The profile details are available as part of the acknowledgement. The structure is same as AWR_FRAME_CONF_SET_SB Table 5.54 describes the contents of this sub block.

Table 5.54: AWR_FRAME_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0122
SBLKLEN	2	Value = 4

- 5.6.4 Sub block 0x0123 RESERVED
- 5.6.5 Sub block 0x0124 RESERVED
- 5.6.6 Sub block 0x0125 AWR_ADV_FRAME_CONF_GET_SB

This sub block reads the parameters of the configured frame. The profile details are available as part of the acknowledgement. The structure is same as AWR_ADVANCED_FRAME_CONF_SET_SB

Table 5.55 describes the contents of this sub block.

Table 5.55: AWR_ADV_FRAME_CONF_GET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0125	
SBLKLEN	2	Value = 4	

- 5.6.7 Sub block 0x0126 RESERVED
- 5.6.8 Sub block 0x0127 RESERVED
- 5.6.9 Sub block 0x0128 RESERVED
- 5.6.10 Sub block 0x0129 RESERVED
- 5.6.11 Sub block 0x012A RESERVED
- 5.6.12 Sub block 0x012B RESERVED
- 5.6.13 Sub block 0x012C AWR_RX_GAIN_TEMPLUT_GET_SB

This API is issued to read the temperature based RX gain LUT used by the firmware. This API should be issued after the profile configuration API. The acknowledgement packet sent in response to this API will contain the LUT. The structure is same as AWR_RX_GAIN_LUT_SET_SB.

Table 5.56: AWR RX GAIN TEMPLUT GET SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x012C
SBLKLEN	2	Value = 8
PROFILE_INDX	1	Profile index for which the RX gain LUT is desired
RESERVED	3	0x000000

5.6.14 Sub block 0x012D - AWR_TX_GAIN_TEMPLUT_GET_SB

This API is issued to read the temperature based TX gain LUT used by the firmware. This API should be issued after the profile configuration API. The acknowledgement packet sent in response to this API will contain the LUT. The structure is same as AWR_TX_GAIN_LUT_SET_SB.

Table 5.57: AWR_TX_GAIN_TEMPLUT_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x012D
SBLKLEN	2	Value = 8
PROFILE_INDX	1	Profile index for which the TX gain LUT is desired
RESERVED	3	0x000000

5.7 Sub blocks related to AWR_FRAME_TRIG_MSG

5.7.1 Sub block 0x0140 - AWR_FRAMESTARTSTOP_CONF_SB

This sub block starts or stops transmission of frames.

Table 5.58 describes the contents of this sub block.

Table 5.58: AWR_FRAMESTARTSTOP_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0140
SBLKLEN	2	Value = 8

Table 5.58 – continued from previous page

START_STOP_	2	Value	Definition
CMD		0x0000	Stop the transmission of frames after the current frame is over at frame boundary
		0x0001	Trigger a frame in software triggered mode. In hardware SYNC_IN triggered mode, this command allows subsequent SYNC_IN trigger to be honored
		0x0002	Stop the transmission of frames after the current sub-frame is over at sub-frame boundary
		0x0003	Stop the transmission of frames after the current burst is over at burst boundary
		0x0004	Stop the transmission of frames immediately which are waiting for HW trigger or sub-frame trigger (applicable only for HW/sub-frame triggered mode when active frames are not running)
RESERVED	2	0x0000	

NOTE1:	When Frame Stop command with 'option-0' is sent to RadarSS, the frame will be stopped after completing all the chirps of a Frame/Advance frame.
NOTE2:	In non periodic Hw triggered mode or in sub-frame triggered mode, if frame needs to be stopped immediately then frame stop command with 'option-4' can be used. The 'option-4' can not be used when active frames are running.
NOTE3:	Recommended to re-issue frame configuration API if frame is not stopped at sub-frame boundary, this is to re-config CSI2 or LVDS data path configuration in MSS.

5.8 Sub blocks related to AWR_RF_ADVANCED_FEATURES_ CONF_SET_MSG

5.8.1 Sub block 0x0180 - AWR_BPM_COMMON_CONF_SET_SB

This API sub block defines static configurations related to BPM (Binary Phase Modulation) feature in each of the TXs. E.g. the source of the BPM pattern (one constant value for each chirp as defined, or intra-chirp pseudo random BPM pattern as found by a programmable LFSR or a programmable sequence inside each chirp), are defined here.

Table 5.59 describes the contents of this sub block.

Table 5.59: AWR_BPM_COMMON_CONF_SET_SB contents

Field Name	Number of bytes	Descrip	tion	
SBLKID	2	Value =	0x0180	
SBLKLEN	2	Value =	20	
BPM_MODE_	2	Bits	Descrip	otion
CFG		b1:0	BPM_S	RC_SEL (select source of BPM pattern)
			Value	Definition
			00	CHIRP_CONFIG_BPM (refer to AWR_BPM_CHIRP_CONF_SB)
			01	RESERVED
			10	RESERVED
			11	RESERVED
		b15:2	RESER	VED
RESERVED	2	0x0000		
RESERVED	2	0x0000		
RESERVED	2	0x0000		
RESERVED	4	0x00000	0000	
RESERVED	4	0x00000	0000	

5.8.2 Sub block 0x0181 - AWR_BPM_CHIRP_CONF_SET_SB

This sub block defines static configurations related to BPM (Binary Phase Modulation) feature in each of the TXs.

Table 5.60 describes the contents of this sub block.

Table 5.60: AWR_BPM_CHIRP_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0181
SBLKLEN	2	Value = 12
CHIRP_START_ INDX	2	Start index of the chirp for configuring the constant BPM Valid range 0 to 511
CHIRP_END_ INDX	2	End index of the chirp for configuring the constant BPM Valid range 0 to 511

Table 5.60 - continued from previous page

CONST_BPM_	2	Bit	Definition
VAL		b0	RESERVED
		b1	CONST_BPM_VAL_TX0_TXON Value of Binary Phase Shift value for TX0, during chirp
		b2	RESERVED
		b3	CONST_BPM_VAL_TX1_TXON Value of Binary Phase Shift value for TX1, during chirp
		b4	RESERVED
		b5	CONST_BPM_VAL_TX2_TXON Value of Binary Phase Shift value for TX2, during chirp
		b15:6	RESERVED
RESERVED	2	0x0000	

NOTE1: BPM values are configured using TX phase shifter and applied at TX_START_TIME.

5.9 Sub blocks related to AWR_RF_STATUS_GET_MSG

5.9.1 Sub block 0x0220 - AWR_RF_VERSION_GET_SB

This sub block reads RF HW and FW versions. The information returned by the device will be in the format as given in AWR RFVERSION SB.

Table 5.61 describes the contents of the request sub block

Table 5.61: AWR_RF_VERSION_GET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0220	
SBLKLEN	2	Value = 4	

Response to AWR_RFVERSION_GET_SB

AWR_RFVERSION_SB sub block is sent by the radar device in response to AWR_RFVERSION_GET_SB. Note that SBLKID for both AWR_RFVERSION_GET_SB and AWR_RFVERSION_SB are same.

Table 5.62 describes the contents of the response sub block.

 ${\bf Table~5.62:~AWR_RF_VERSION_SB~response~contents}$

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0220	
SBLKLEN	2	Value = 20	
HW_VARIANT	1	HW variant number	
HW_VERSION_ MAJOR	1	HW version major number	
HW_VERSION_ MINOR	1	HW version minor number	
BSS_FW_VER- SION_MAJOR	1	BSS FW version major number	
BSS_FW_VER- SION_MINOR	1	BSS FW version minor number	
BSS_FW_VER- SION_BUILD	1	BSS FW version build number	
BSS_FW_VER- SION_DEBUG	1	BSS FW version debug number	
BSS_FW_VER- SION_YEAR	1	Year of BSS FW version release	
BSS_FW_VER- SION_MONTH	1	Month of BSS FW version release	
BSS_FW_VER- SION_DAY	1	Day of BSS FW version release	
BSS_FW_VER- SION_PATCH_ MAJOR	1	BSS FW version patch major number	
BSS_FW_VER- SION_PATCH_ MINOR	1	BSS FW version patch minor number	
BSS_FW_VER- SION_PATCH_ YEAR	1	Year of BSS FW patch release	
BSS_FW_VER- SION_PATCH_ MONTH	1	Month of BSS FW patch release	
BSS_FW_VER- SION_PATCH_ DAY	1	Day of BSS FW patch release	

Table 5.62 – continued	l from	previous	page
------------------------	--------	----------	------

BSS_FW_	1	Bit	Definition
PATCH_BUILD_		b3:0	DEBUG version number
DEBUG_VER- SION		b7:4	BUILD version number

5.9.2 Sub block 0x0221 - AWR_RF_CPUFAULT_STATUS_GET_SB

This sub block provides the RF BSS CPU fault information.

Table 5.63 describes the content of this sub block.

Table 5.63: AWR_RF_CPUFAULT_STATUS_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0221
SBLKLEN	2	Value = 4

AWR_RF_CPUFAULT_STATUS_SB is sent in response to AWR_RF_CPUFAULT_STATUS_GET_SB

Table 5.64 describes the content of AWR_RF_CPUFAULT_STATUS_SB

Table 5.64: AWR_RF_CPUFAULT_STATUS_GET_SB response contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x02	21
SBLKLEN	2	Value = 36	
FAULT_TYPE	1	Value	Definition
		0	RF Processor Undefined Instruction Abort
		1	RF Processor Instruction pre-fetch Abort
		2	RF Processor Data Access Abort
		3	RF Processor Firmware Fatal Error
		0x4 - 0xFE	RESERVED
		0xFF	No fault
RESERVED	1	0x00	
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.	
FAULT_LR	4	The instruction PC address at which Fault occurred	

FAULT PREV	4	The return address of the function from which fault function	
LR		has been called (Call stack LR)	
FAULT_SPSR	4	The CPSR register value at which fault occurred	
FAULT_SP	4	The SP register value at which fault occurred	
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)	
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type – valid only for fault type 0x0 to 0x2)	
		0x000 BACKGROUND_ERR	
		0x001 ALIGNMENT_ERR	
		0x002 DEBUG_EVENT	
		0x00D PERMISSION_ERR	
		0x008 SYNCH_EXTER_ERR	
		0x406 ASYNCH_EXTER_ERR	
		0x409 SYNCH_ECC_ERR	
		0x408 ASYNCH_ECC_ERR	
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)	
		0x0 ERR_SOURCE_AXI_MASTER	
		0x1 ERR_SOURCE_ATCM	
		0x2 ERR_SOURCE_BTCM	
FAULT_AXI_ ERROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)	
		0x0 AXI_DECOD_ERR	
		0x1 AXI_SLAVE_ERR	
FAULT_AC- CESS TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2)	
		0x0 READ_ERR	
		0x1 WRITE_ERR	
FAULT_RECOV- ERY TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)	
		0x0 UNRECOVERY	
		0x1 RECOVERY	
RESERVED	2	0x0000	

5.9.3 Sub block 0x0222 - AWR_RF_ESMFAULT_STATUS_GET_SB

This sub block provides the information regarding additional RF sub system faults. Table 5.65 describes the content of this sub block.

 ${\bf Table~5.65:~AWR_RF_ESMFAULT_STATUS_GET_SB~response~contents} \\$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0222
SBLKLEN	2	Value = 4

The response to above request is given in the AWR_RF_ESMFAULT_STATUS_SB. Table 5.66 describes the contents of AWR_RF_ESMFAULT_STATUS_SB.

Table 5.66: AWR_RF_ESMFAULT_STATUS_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0222
SBLKLEN	2	Value = 12

Table 5.66 – continued from previous page

ESM_GROUP1_	4	Bit	Error Information
ERRORS		b0	RAMPGEN_SB_ERROR
		b1	RESERVED
		b2	GPADC_RAM_SB_ERROR
		b3	VIM_RAM_SB_ERROR
		b4	DFE_SELFTEST_ERROR
		b5	VIM_SELFTEST_ERRROR
		b6	B0TCM_SB_ERROR
		b7	B1TCM_SB_ERROR
		b8	CCMR4_SELFTEST_ERROR
		b9	ATCM_SB_ERROR
		b10	RAMPGEN_SELFTEST_ERROR
		b11	RAMPGEN_PAR_SELFTST_ERROR
		b12	SEQ_EXT_SELFTEST_ERROR
		b13	SEQ_EXT_SB_ERROR
		b14	RESERVED
		b15	AGC_RAM_SB_ERROR
		b16	B1TCM_PAR_CHK_ERROR
		b17	B0TCM_PAR_CHK_ERROR
		b18	ATCM_PAR_CHK_ERROR
		b19	MB_MSS2BSS_SB_ERROR
		b20	MB_BSS2MSS_SB_ERROR
		b31:21	RESERVED

Table 5.66 – continued from previous page

ESM GROUP?	4	Bit	Error Information
ESM_GROUP2_ ERRORS	-	b0	DFE STC ERROR
		b1	CR4_STC_ERROR
		b2	CCMR4_COMP_ERROR
		b3	BOTCM_DB_ERROR
		b4	B1TCM_DB_ERROR
		b5	ATCM_DB_ERROR
		b6	DCC_ERROR
		b7	SEQ_EXT_ERROR
		b8	SYNT_FREQ_MON_ERROR
		b9	DFE_PARITY_ERROR
		b10	RAMPGEN_DB_ERROR
		b11	BUBBLE_CORRECTION_FAIL
		b12	RAMPGEN_LOCSTEP_ERROR
		b13	RTI_RESET_ERROR
		b14	GPADC_RAM_DB_ERROR
		b15	VIM_COMP_ERROR
		b16	CR4_LIVE_LOCK_ERROR
		b17	WDT_NMI_ERROR
		b18	VIM_RAM_DB_ERROR
		b19	RAMPGEN_PAR_ERROR
		b20	SEQ_EXT_DB_ERROR
		b21	DMA_MPU_ERROR
		b22	AGC_RAM_DB_ERROR
		b23	CRC_COMP_ERROR
		b24	WAKEUP_STS_ERROR
		b25	SHORT_CIRCUIT_ERROR
		b26	B1TCM_PAR_ERROR
		b27	B0TCM_PAR_ERROR
		b28	ATCM_PAR_ERROR
		b29	MB_MSS2BSS_DB_ERROR
		b30	MB_BSS2MSS_DB_ERROR
		b31	CCC_ERROR

5.9.4 Sub block 0x0223 - AWR_RF_DIEID_GET_SB

This sub block provides the information regarding the Die ID of the device.

Table 5.67: AWR_RF_DIEID_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0223
SBLKLEN	2	Value = 4

The response to above request is given in the AWR_RF_DIEID_STATUS_SB. Table 5.68 describes the contents of AWR_RF_DIEID_STATUS_SB.

 Table 5.68:
 AWR_RF_DIEID_STATUS_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0223
SBLKLEN	2	Value = 36
LOT_NO	4	Lot number
WAFER_NO	4	Wafer number
DEV_X	4	X cordinate of the die in the wafer
DEV_Y	4	Y cordinate of the die in the wafer
RESERVED	4	0x00000000

5.9.5 Sub block 0x0224 – AWR_RF_BOOTUPBIST_STATUS_GET_SB

This sub block provides the information regarding boot up self-test status. Table 5.69 describes the content of this sub block.

 Table 5.69:
 AWR_RF_BOOTUPBIST_STATUS_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0224
SBLKLEN	2	Value = 4

The response of this sub block will be AWR_RF_BOOTUPBIST_STATUS_DATA_SB with content

as shown in Table 5.70

Table 5.70: AWR_RF_BOOTUPBIST_STATUS_DATA_SB response contents

Field Name	Number of bytes	Descrip	tion
SBLKID	2	Value =	0x0224
SBLKLEN	2	Value =	20
RF_POWERUP_	4	1 - PAS	S, 0 - FAIL
BIST_STATUS_		Bit	Status Information
FLAGS		b0	ROM CRC check
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	STC test of diagnostic
		b5	CR4 STC
		b6	CRC test
		b7	RAMPGEN memory ECC test
		b8	DFE Parity test
		b9	DFE memory ECC
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test
		b12	DFE memory PBIST
		b13	RAMPGEN memory PBIST
		b14	PBIST test
		b15	WDT test
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	DCC test (Supported only on AWR2243 device)
		b22	RESERVED
		b23	RESERVED
		b24	FFT test
		b25	RTI test
		b26	PCR test
		b31:27	RESERVED

Table 5.70 – continued from previous page

POWERUP_ TIME	4	RF BIST SS power up time 1 LSB = 5 ns
RESERVED	4	0x00000000
RESERVED	4	0x00000000

NOTE: Bootup digital monitoring status are not applicable for QM devices

5.10 Sub blocks related to AWR_RF_MONITORING_REPORT_GET_ MSG

5.10.1 Sub block 0x0260 - AWR_RF_DFE_STATISTICS_REPORT_GET_SB

Table 5.71 describes the content of this sub block.

Table 5.71: AWR_RF_DFE_STATISTICS_REPORT_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0260
SBLKLEN	2	Value = 4

The response of this sub block will be AWR_RF_DFE_STATISTICS_REPORT_SB with content as shown in Table 5.72

Table 5.72: AWR_RF_DFE_STATISTICS_REPORT_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0260
SBLKLEN	2	Value = 196
PF0_RX0_ICH	2	Residual DC value in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \ \text{LSB} = 1 \text{V}/2^{15} \ \text{referred to ADC input}$
PF0_RX0_QCH	2	Residual DC value in Q chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX0_ISQ	2	RMS power in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input

PF0_RX0_QSQ	2	RMS power in Q chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF0_RX1_ICH	2	Residual DC value in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX1_QCH	2	Residual DC value in Q chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX1_ISQ	2	RMS power in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX1_QSQ	2	RMS power in Q chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ LSB = 1V^2/2^{30} \ referred to \ ADC \ input$
PF0_RX2_ICH	2	Residual DC value in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX2_QCH	2	Residual DC value in Q chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1\ LSB = 1\ V/2^{15}\ referred to\ ADC\ input$
PF0_RX2_ISQ	2	RMS power in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input

PF0_RX2_QSQ	2	RMS power in Q chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1 \text{V}^2/2^{30}$ referred to ADC input
PF0_RX3_ICH	2	Residual DC value in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1 \text{V}/2^{15}$ referred to ADC input
PF0_RX3_QCH	2	Residual DC value in Q chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \ \text{LSB} = 1 \text{V}/2^{15} \ \text{referred to ADC input}$
PF0_RX3_ISQ	2	RMS power in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX3_QSQ	2	RMS power in Q chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2 / 2^{15} \text{ referred to ADC input}$
PF0_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF1_RX0_ICH	2	Residual DC value in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1 \text{V}/2^{15}$ referred to ADC input
PF1_RX0_QCH	2	Residual DC value in Q chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = 1V/2 ¹⁵ referred to ADC input
PF1_RX0_ISQ	2	RMS power in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input

-		
PF1_RX0_QSQ	2	RMS power in Q chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF1_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF1_RX1_ICH	2	Residual DC value in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF1_RX1_QCH	2	Residual DC value in Q chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF1_RX1_ISQ	2	RMS power in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX1_QSQ	2	RMS power in Q chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF1_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ LSB = 1V^2/2^{30} \ referred to \ ADC input$
PF1_RX2_ICH	2	Residual DC value in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF1_RX2_QCH	2	Residual DC value in Q chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX2_ISQ	2	RMS power in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input

-		2 continued from provious page
PF1_RX2_QSQ	2	RMS power in Q chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF1_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ LSB = 1V^2/2^{30} \ referred to \ ADC \ input$
PF1_RX3_ICH	2	Residual DC value in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF1_RX3_QCH	2	Residual DC value in Q chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF1_RX3_ISQ	2	RMS power in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX3_QSQ	2	RMS power in Q chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF1_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1\ LSB = 1V^2/2^{30}\ referred to\ ADC\ input$
PF2_RX0_ICH	2	Residual DC value in I chain for profile 2 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF2_RX0_QCH	2	Residual DC value in Q chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF2_RX0_ISQ	2	RMS power in I chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input

		2 continued from provious page
PF2_RX0_QSQ	2	RMS power in Q chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF2_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF2_RX1_ICH	2	Residual DC value in I chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF2_RX1_QCH	2	Residual DC value in Q chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF2_RX1_ISQ	2	RMS power in I chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF2_RX1_QSQ	2	RMS power in Q chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF2_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ LSB = 1V^2/2^{30} \ referred to \ ADC \ input$
PF2_RX2_ICH	2	Residual DC value in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF2_RX2_QCH	2	Residual DC value in Q chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF2_RX2_ISQ	2	RMS power in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input

PF2_RX2_QSQ	2	RMS power in Q chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF2_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ LSB = 1V^2/2^{30} \ referred to \ ADC \ input$
PF2_RX3_ICH	2	Residual DC value in I chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF2_RX3_QCH	2	Residual DC value in Q chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF2_RX3_ISQ	2	RMS power in I chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX3_QSQ	2	RMS power in Q chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF2_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ LSB = 1V^2/2^{30} \ referred to \ ADC \ input$
PF3_RX0_ICH	2	Residual DC value in I chain for profile 3 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF3_RX0_QCH	2	Residual DC value in Q chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX0_ISQ	2	RMS power in I chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input

		2 continued from provious page
PF3_RX0_QSQ	2	RMS power in Q chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF3_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF3_RX1_ICH	2	Residual DC value in I chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF3_RX1_QCH	2	Residual DC value in Q chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF3_RX1_ISQ	2	RMS power in I chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF3_RX1_QSQ	2	RMS power in Q chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \ \text{LSB} = 1 \ \text{V}^2/2^{15} \ \text{referred to ADC input}$
PF3_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1\; LSB = 1V^2/2^{30} \; referred \; to \; ADC \; input$
PF3_RX2_ICH	2	Residual DC value in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF3_RX2_QCH	2	Residual DC value in Q chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF3_RX2_ISQ	2	RMS power in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input

DEC DVC OCC		DMO : O I : (CIL O DV I I : C / :
PF3_RX2_QSQ	2	RMS power in Q chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2 / 2^{15} \text{ referred to ADC input}$
PF3_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ \text{LSB} = 1 \ \text{V}^2 / 2^{30} \ \text{referred to ADC input}$
PF3_RX3_ICH	2	Residual DC value in I chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1 \text{V}/2^{15}$ referred to ADC input
PF3_RX3_QCH	2	Residual DC value in Q chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF3_RX3_ISQ	2	RMS power in I chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF3_RX3_QSQ	2	RMS power in Q chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15} \text{ referred to ADC input}$
PF3_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input

5.11 Sub blocks related to AWR_RF_MISC_CONF_SET_MSG

- 5.11.1 Sub block 0x02C0 RESERVED
- 5.11.2 Sub block 0x02C1 RESERVED
- 5.11.3 Sub block 0x02C2 AWR_RF_TEST_SOURCE_CONFIG_SET_SB

This sub block is used to configure the test source of BSS

NOTE1: The test source configuration APIs are supported only for debug

purpose. Please refer latest DFP release note for more info.

NOTE2: After test source usage, it is recommend to disable the test source

and issue profile configuration API again for normal functionality of

radar.

Table 5.73 describes the content of this sub block.

Table 5.73: AWR_RF_TEST_SOURCE_CONFIG_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x02C2	
SBLKLEN	2	Value = 72	
POSITION_VEC1	[2+2+2]	Relative position in Cartesian coordinate from radar to objects, [x, y, z] (all signed, though for y, only unsigned makes sense if forward looking: our radar is on y=0 plane). Object 0 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ± 32767 cm	
VELOCITY_ VEC1	[2+2+2]	Relative velocity in Cartesian coordinate, similar to position vector (all signed) Object 0 1 LSB = 1 cm/s Valid Range = +/- 5000 (i.e. +/-180 kmph)	
SIG_LEV_VEC1	[2]	Reflecting objects' signal level at ADC output, relative to ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enable/disable each object by programming appropriate levels.	
BOUNDARY_ MIN_VEC1	[2+2+2]	Boundary minimum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cm	
BOUNDARY_ MAX_VEC1	[2+2+2]	Boundary maximum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cm	

	Tubic 5.7	
POSITION_VEC2	[2+2+2]	Relative position in Cartesian coordinate from radar to objects, [x, y, z] (all signed, though for y, only unsigned makes sense if forward looking: our radar is on y=0 plane). Object 1 [x,y,z] $1 \text{ LSB} = 1 \text{ cm}$ Valid Range: y: 0 to 32767 cm, x & z: $\pm 32767 \text{ cm}$
VELOCITY_ VEC2	[2+2+2]	Relative velocity in Cartesian coordinate, similar to position vector (all signed) Object 1 1 LSB = 1 cm/s Valid Range = +/- 5000 (i.e. +/-180 kmph)
SIG_LEV_VEC2	[2]	Reflecting objects' signal level at ADC output, relative to ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enable/disable each object by programming appropriate levels.
BOUNDARY_ MIN_VEC2	[2+2+2]	Boundary minimum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cm
BOUNDARY_ MAX_VEC2	[2+2+2]	Boundary maximum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cm
RX_ANT_POS_ XZ	8	Receiver Antenna positions to be modeled. The radar is on y=0 plane. Only x and z coordinates to be provided. 1 LSB = Wavelength/8 Valid range = ±15 wave lengths Byte 0: RX0 X coordinate (may be 0 as reference) Byte 1: RX0 Z (may be 0 as reference) Byte 2: RX1 X Byte 3: RX1 Z Byte 4: RX2 X Byte 5: RX2 Z Byte 6: RX3 X Byte 7: RX3 Z
RESERVED	6	RESERVED

MISC FUNC	1	Bits	Descript	ion
CTRL	'	Dito	•	
CIRL		b0	DIS_DIT	THER
			Value	Definition
			0	DITHER is enabled in test source data
			1	DITHER is disabled in test source data
			Note: Th	nis feature is supported only on AWR2243
			device.	
		b7:1	RESER	VED
RESERVED	1	Reserve	ed for 4 by	rtes alignment

5.11.4 Sub block 0x02C3 - AWR_RF_TEST_SOURCE_ENABLE_SET_SB

This sub block is used to enable test source of BSS Table 5.74 describes the content of this sub block.

Table 5.74: AWR_RF_TEST_SOURCE_ENABLE_SET_SB contents

Field Name	Number of bytes	Descrip	tion	
SBLKID	2	Value =	0x02	C3
SBLKLEN	2	Value =	8	
TS_EN	2	Bit	Defi	nition
		b0	0	Disable (revert to normal functionality)
			1	Enable (enter test source functionality)
		b15:1	RES	SERVED
RESERVED	2	0x0000		

5.11.5 Sub block 0x02C4 - 0x02CB RESERVED

5.11.6 Sub block 0x02CC - AWR_RF_LDO_BYPASS_SB

This sub block enables LDO bypass option within BSS.

CAUTION:	Do not enable RF LDO bypass option when the PMIC is config-
	ured to supply 1.3V to VIN_13RF1 and VIN_13RF2 analog and RF
	power supply inputs. This may damage the device. Typically in TI
	EVMs, PMIC is configured to supply 1.3V to the RF supplies.

Table 5.75 describes the content of this sub block.

Table 5.75: AWR_RF_LDO_BYPASS_SB contents

Field Name	Number	Description				
	of bytes					
SBLKID	2	Value =	0x02CC			
SBLKLEN	2	Value =	8			
RFLDO_BY-	2	Bit	Descrip	tion		
PASS_EN		b0	Value	Description		
			0	RF LDO no	t bypassed	
			1	RF LDO by	passed	
		b1	Value	Description		
			0	PA LDO en	abled	
			1	PA LDO dis		
			packag to VOL	e reliability is:	sues, VIN_13	e used, to avoid RF2 is shorted the PA LDO
		b15:2	RESER	VED		
		The usa	ige of the	se configurati	•	the table below
		USECA	SE		LDO_ BYPASS	PA_LDO_ DISABLE
			N_13RF1 supplies	and VIN_	0	0
			N_13RF1 supplies	and VIN_	1	0
		13RF2	supplies	and VIN_ and VIN_ to VOUT_	1	1
SUPPLY_MONI- TOR_IRDROP	1	device in perce	pin. The entage u lds for me Descrip	e user should nits which wi easuring the e tion	d program the	coutput to the evoltage drop adjusting the ies.
		1	IR drop			
			IR drop			
		2	IR drop			
		3	IR drop	or 9%		

Table 5.75 – continued from previous page

IO_SUPPLY_	1	IO supp	ly indicator for correct monitoring of IO supply	
INDICATOR		Value Description		
		0	3.3 V IO supply	
		1	1.8 V IO supply	

5.11.7 Sub block 0x02CD - AWR_RF_PALOOPBACK_CFG_SB

This sub block enables/disables PA loopback for all enabled profiles. This is used to debug both the TX and RX chains are working correctly.

NOTE:	The PA loop-back configuration API is supported only for debug
	purpose. Please refer latest DFP release note for more info.

Table 5.76 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock 0x02CD, 0x02CE, 0x02CF), then loopback will not work after
	montoring is complete. To use loopback with monitoring, use AWR_ADVANCED_FRAME_CONF_SB with AWR_LOOPBACK_BURST_CONF_SB.

Table 5.76: AWR_RF_PALOOPBACK_CFG_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02CD
SBLKLEN	2	Value = 8
PA_LOOPBACK_ FREQ	2	This value is a 100 MHz divider which sets the loopback frequency For e.g. for a 1 MHz frequency, set this to 100 For a 2 MHz frequency, set this to 50 NOTE: To ensure no leakage of signal power, user has to ensure that 100 MHz/LOOPBACK_FREQ is an integer multiple of bin width For e.g. if user choses 25 Msps sampling rate and 2048 samples/chirp, then LOOPBACK_FREQ of 64 (=1.5625 MHz) will ensure no leakage
PA_LOOPBACK_	1	Value Description
EN		0 PA loopback is not enabled
		1 PA loopback is enabled
RESERVED	1	0x00

5.11.8 Sub block 0x02CE – AWR_RF_PSLOOPBACK_CFG_SB

This sub block enables/disables PS (phase shifter) loopback for all enabled profiles. This is used to debug the TX (before the PA) and RX chains.

NOTE:	The PS loop-back configuration API is supported only for debug
	purpose. Please refer latest DFP release note for more info.

Table 5.77 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock 0x02CD, 0x02CE, 0x02CF), then loopback will not work after
	montoring is complete. To use loopback with monitoring, use AWR_ADVANCED_FRAME_CONF_SB with AWR_LOOPBACK_BURST_CONF_SB.

Table 5.77: AWR_RF_PSLOOPBACK_CFG_SB contents

Field Name	Number of bytes	Descript	ion
SBLKID	2	Value = 0	0x02CE
SBLKLEN	2	Value = 1	2
PS_LOOPBACK_ FREQ	2	Loop back frequency in kHz 1 LSB = 1 kHz	
RESERVED	2	0x0000	
PS_LOOPBACK_	1	Value	Definition
EN		0	PS loopback is not enabled
		1	PS loopback is enabled
PS_LOOPBACK_	1	Bit	Definition
TXID		b0	TX0 is used for loopback
		b1	TX1 is used for loopback
		b7:2	RESERVED

Table 5.77 - continued from previous page

PGA_GAIN_	1				_
INDEX		Value	PGA gain value	Value	PGA gain value
		0	PGA is OFF	15	-3 dB
		1	-22 dB	16	-2 dB
		2	-16 dB	17	-1 dB
		3	-15 dB	18	0 dB
		4	-14 dB	19	1 dB
		5	-13 dB	20	2 dB
		6	-12 dB	21	3 dB
		7	-11 dB	22	4 dB
		8	-10 dB	23	5 dB
		9	-9 dB	24	6 dB
		10	-8 dB	25	7 dB
		11	-7 dB	26	8 dB
		12	-6 dB	27	9 dB
		13	-5 dB	255-28	RESERVED
		14	-4 dB		
RESERVED	1	0x00			

5.11.9 Sub block 0x02CF - AWR_RF_IFLOOPBACK_CFG_SB

This sub block enables/disables IF loopback for all enabled profiles. This is used to debug the RX IF chain.

NOTE:	The IF loop-back configuration API is supported only for debug pur-
	pose. Please refer latest DFP release note for more info.

Table 5.78 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock
	0x02CD, 0x02CE, 0x02CF), then loopback will not work after
	montoring is complete. To use loopback with monitoring, use
	AWR_ADVANCED_FRAME_CONF_SB with AWR_LOOPBACK_
	BURST_CONF_SB.

Table 5.78: AWR_RF_IFLOOPBACK_CFG_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x02CF		
SBLKLEN	2	Value =	8	
IF_LOOPBACK_	2	Value	IF Loopback frequency value	
FREQ		0	180 kHz	
		1	240 kHz	
		2	360 kHz	
		3	720 kHz	
		4	1 MHz	
		5	2 MHz	
		6	2.5 MHz	
		7	3 MHz	
		8	4.017857 MHz	
		9	5 MHz	
		10	6 MHz	
		11	8.035714 MHz	
		12	9 MHz	
		13	10 MHz	
		65535- 14	RESERVED	
IF_LOOPBACK_	1	Value	Definition	
EN		0	IF loopback is not enabled	
		1	IF loopback is enabled	
RESERVED	1	0x00		

5.11.10 Sub block 0x02D0 - AWR_RF_GPADC_CFG_SET_SB

This sub block enables the GPADC reads for external inputs (available only in xWR1642/xWR1843/xWR6843). Table 5.79 describes the content of this sub block.

 ${\bf Table~5.79:~AWR_RF_GPADC_CFG_SET_SB~contents}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02D0

Table 5.79 – continued from previous page

SBLKLEN	2	Value = 32
SIGNAL_INPUT_ ENABLES	1	This field indicates the sets of externally fed DC signals which are to be monitored using GPADC. When each bit in this field is set, the corresponding signal is monitored. Bit Definition O ANALOGTEST1 1 ANALOGTEST2 2 ANALOGTEST3 3 ANALOGTEST4 4 ANAMUX 5 VSENSE Others RESERVED
SIGNAL_ BUFFER_EN- ABLES	1	This field indicates the sets of externally fed DC signals which are to be buffered before being fed to the GPADC. When each bit in this field is set, the corresponding signal is buffered before the GPADC. Bit SIGNAL 0 ANALOGTEST1 1 ANALOGTEST2 2 ANALOGTEST3 3 ANALOGTEST4 4 ANAMUX Others RESERVED
ANATEST1_CFG	2	Bit Definition b7:0 Number of samples to collect 1 sample takes 1.6 μ s b15:8 Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s Valid programming condition: all the signals that are enabled should take a total of < 100 μ s including the programmed settling times and measurement time per enabled signal.

ANATEST2_CFG	2	Bit Definition
_		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time $1 \text{ LSB} = 0.8 \ \mu\text{s}$ $\text{Valid range: 0 to 12 } \mu\text{s}$ $\text{Valid programming condition: all the signals that are enabled should take a total of < 100 } \mu\text{s}$ including the programmed settling times and measurement time per enabled signal.
ANATEST3_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time $ 1 \text{ LSB} = 0.8 \ \mu \text{s} $ Valid range: 0 to 12 μs Valid programming condition: all the signals that are enabled should take a total of $<$ 100 μs including the programmed settling times and measurement time per enabled signal.
ANATEST4_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time $1 \text{ LSB} = 0.8 \ \mu\text{s}$ $\text{Valid range: 0 to 12 } \mu\text{s}$ $\text{Valid programming condition: all the signals that are enabled should take a total of < 100 } \mu\text{s}$ including the programmed settling times and measurement time per enabled signal.
ANAMUX_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time $1 \text{ LSB} = 0.8 \ \mu\text{s}$ $\text{Valid range: 0 to 12 } \mu\text{s}$ $\text{Valid programming condition: all the signals that are enabled should take a total of < 100 } \mu\text{s}$ including the programmed settling times and measurement time per enabled signal.

VSENSE_CFG	2	Bit	Definition
		b7:0	Number of samples to collect 1 sample takes 1.6 μ s
		abled s	Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s ogramming condition: all the signals that are enhould take a total of < 100 μ s including the amed settling times and measurement time per signal.
RESERVED	2	0x0000	
RESERVED	4	0x00000	0000
RESERVED	4	0x00000	0000
RESERVED	4	0x00000	0000

The response to the AWR_RF_GPADC_CFG_SET_SB is an async event AWR_AE_RF_GPADC_RESULT_DATA_SB which contains the measured values for each of the enabled channels.

NOTE:	The actual measurement of these GPADC signal are done in inter-
	burst or frame idle time and the result AE sub block will be sent only
	after completing all the measurements.

- 5.11.11 Sub block 0x02D1 RESERVED
- 5.11.12 Sub block 0x02D2 RESERVED
- 5.11.13 Sub block 0x02D3 RESERVED
- 5.12 Sub blocks related to AWR_RF_MISC_CONF_GET_MSG
- 5.12.1 Sub block 0x02E0 to 0x2E9 RESERVED
- 5.12.2 Sub block 0x02EA AWR_RF_TEMPERATURE_GET_SB

This sub block provides the device temperature sensor information.

Table 5.80 describes the content of this sub block.

Table 5.80: AWR_RF_TEMPERATURE_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02EA
SBLKLEN	2	Value = 4

AWR_RF_TEMPERATURE_DATA_SB sub block is sent by the radar device in response to AWR_RF_TEMPERATURE_GET_SB.

Table 5.81: AWR_RF_TEMPERATURE_DATA_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02EA
SBLKLEN	2	Value = 28
TIME	4	BSS local Time from device power up 1 LSB = 1 ms
TEMP_RX0_ SENS	2	RX0 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_RX1_ SENS	2	RX1 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_RX2_ SENS	2	RX2 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_RX3_ SENS	2	RX3 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_TX0_ SENS	2	TX0 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_TX1_ SENS	2	TX1 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_TX2_ SENS	2	TX2 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_PM_ SENS	2	PM temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_DIG1_ SENS	2	Digital temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_DIG2_ SENS	2	Digital temperature sensor reading (signed value) [Applicable only in xWR1642/xWR6843/xWR1843] 1 LSB = 1°C

5.13 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG1

NOTE1:	All the Monitoring Async events will be sent out periodically at CAL_MON_TIME_UNIT frame rate (FTTI). The RadarSS/BSS has a queue to hold max 8 transmit API messages (AEs or Responses), the host shall service all the AEs before start of the next FTTI epoch to avoid RadarSS Queue full CPU fault fatal error.
NOTE2:	In reporting mode 1 (Quiet mode) if any failure in RadarSS analog or digital monitors the AWR2243 device will send AWR_AE_MSS_RFERROR_STATUS_SB AE with error code 0x7 along with failure monitoring report.

5.13.1 Sub block 0x1000 - RESERVED

5.13.2 Sub block 0x1001 - RESERVED

5.13.3 Sub block 0x1002 - AWR_AE_RF_CPUFAULT_SB

This sub block indicates CPU fault status of BIST SS. Table 5.82 describes the content of this sub block.

Table 5.82: AWR_AE_RF_CPUFAULT_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1002
SBLKLEN	2	Value = 36
FAULT_TYPE	1	Value Definition
		0 RF Processor Undefined Instruction Abort
		1 RF Processor Instruction pre-fetch Abort
		2 RF Processor Data Access Abort
		3 RF Processor Firmware Fatal Error
		0x4 - RESERVED 0xFE
		0xFF No fault

ERROR_CODE	1	The error code for the fault occurred. The error code is defined only for few fatal errors generated either due to wrong configuration of the device or HW limitation. Error Definition Code
		0 Undefined error code
		Rampgen is not triggered from FRC or Hw pulse (FRC is running)
		2 Burst start and end counts are not matching in rampgen
		3 Chirp start and end counts are not matching in rampgen
		4 Calibration/Monitoring chirps not finished at pre burst
		5 RadarSS TX mailbox queue full
		6 Sequencer extension copy error for a chirp
		7 Temperature sensor data is invalid
		8 Test source configuration time failure
		9 - RESERVED
		0xFF
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.
FAULT_LR	4	The instruction PC address at which Fault occurred
FAULT_PREV_ LR	4	The return address of the function from which fault function has been called (Call stack LR)
FAULT_SPSR	4	The CPSR register value at which fault occurred
FAULT_SP	4	The SP register value at which fault occurred
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)

Table 5.82 – continued from previous page

FAULT_ERROR_ 2 The status of Error (Error Cause type – valid only for type 0x0 to 0x2) 0x000 BACKGROUND_ERR 0x001 ALIGNMENT_ERR 0x002 DEBUG_EVENT	fault
0x000 BACKGROUND_ERR 0x001 ALIGNMENT_ERR 0x002 DEBUG_EVENT	
0x002 DEBUG_EVENT	
0x00D PERMISSION_ERR	
0x008 SYNCH_EXTER_ERR	
0x406 ASYNCH_EXTER_ERR	
0x409 SYNCH_ECC_ERR	
0x408 ASYNCH_ECC_ERR	
FAULT_ERROR_ 1 The Source of the Error (Error Source type - valid on fault type 0x0 to 0x2)	ly for
0x0 ERR_SOURCE_AXI_MASTER	
0x1 ERR_SOURCE_ATCM	
0x2 ERR_SOURCE_BTCM	
FAULT_AXI_ 1 The AXI Error type (Error Source type - valid only for type 0x0 to 0x2)	fault
0x0 AXI_DECOD_ERR	
0x1 AXI_SLAVE_ERR	
FAULT_AC- CESS_TYPE 1 The Error Access type (Error Access type - valid on fault type 0x0 to 0x2) 0x0 READ_ERR	ly for
0x1 WRITE_ERR	
FAULT_RECOV- 1 The Error Recovery type (Error Recovery type - Valid for fault type 0x0 to 0x2)	only
0x0 UNRECOVERY	
0x1 RECOVERY	
RESERVED 2 0x0000	

5.13.4 Sub block 0x1003 - AWR_AE_RF_ESMFAULT_SB

This sub block indicates the status of any other faults in the BIST SS. Table 5.83 describes the content of this sub block.

 ${\bf Table~5.83:~AWR_AE_RF_ESMFAULT_STATUS_SB~response~contents} \\$

Field Name	Number of bytes	Description				
SBLKID	2	Value =	Value = 0x1003			
SBLKLEN	2	Value = 12				
ESM_GROUP1_	4	Bit	Error Information			
ERRORS		b0	RAMPGEN_SB_ERROR			
		b1	RESERVED			
		b2	GPADC_RAM_SB_ERROR			
		b3	VIM_RAM_SB_ERROR			
		b4	DFE_SELFTEST_ERROR			
		b5	VIM_SELFTEST_ERRROR			
		b6	B0TCM_SB_ERROR			
		b7	B1TCM_SB_ERROR			
		b8	CCMR4_SELFTEST_ERROR			
		b9	ATCM_SB_ERROR			
		b10	RAMPGEN_SELFTEST_ERROR			
		b11	RAMPGEN_PAR_SELFTST_ERROR			
		b12	SEQ_EXT_SELFTEST_ERROR			
		b13	SEQ_EXT_SB_ERROR			
		b14	PROG_FILT_FATAL_PARITY_ERROR			
		b15	AGC_RAM_SB_ERROR			
		b16	B1TCM_PAR_CHK_ERROR			
		b17	B0TCM_PAR_CHK_ERROR			
		b18	ATCM_PAR_CHK_ERROR			
		b19	MB_MSS2BSS_SB_ERROR			
		b20	MB_BSS2MSS_SB_ERROR			
		b24:21	RESERVED			
		b25	PROG_FILT_FATAL_DB_ECC_ERROR			
		b31:26	RESERVED			

ESM GROUP2 4 Bit Error Information				
ESM_GROUP2_ ERRORS	-		Error Information DFE STC ERROR	
		b0		
		b1	CR4_STC_ERROR	
		b2	CCMR4_COMP_ERROR	
		b3	B0TCM_DB_ERROR	
		b4	B1TCM_DB_ERROR	
		b5	ATCM_DB_ERROR	
		b6	DCC_ERROR	
		b7	SEQ_EXT_ERROR	
		b8	SYNT_FREQ_MON_ERROR	
		b9	DFE_PARITY_ERROR	
		b10	RAMPGEN_DB_ERROR	
		b11	BUBBLE_CORRECTION_FAIL	
		b12	RAMPGEN_LOCSTEP_ERROR	
		b13	RTI_RESET_ERROR	
		b14	GPADC_RAM_DB_ERROR	
		b15	VIM_COMP_ERROR	
		b16	CR4_LIVE_LOCK_ERROR	
		b17	WDT_NMI_ERROR	
		b18	VIM_RAM_DB_ERROR	
		b19	RAMPGEN_PAR_ERROR	
		b20	SEQ_EXT_DB_ERROR	
		b21	DMA_MPU_ERROR	
		b22	AGC_RAM_DB_ERROR	
		b23	CRC_COMP_ERROR	
		b24	WAKEUP_STS_ERROR	
		b25	SHORT_CIRCUIT_ERROR	
		b26	B1TCM PAR ERROR	
		b27	BOTCM PAR ERROR	
		b28	ATCM_PAR_ERROR	
		b29	MB_MSS2BSS_DB_ERROR	
		b30	MB BSS2MSS DB ERROR	
		b31	CCC ERROR	
		501	000_EIIIIOII	

NOTE:	The Programmable filter Parity error and double bit ECC fatal er-
	rors are connected to ESM Group 1 lines, these fatal errors must
	be handled in Host (MSS or DSS in xWR1642, xWR1843 and
	xWR6843 devices)

5.13.5 Sub block 0x1004 - AWR_AE_RF_INITCALIBSTATUS_SB

This sub block indicates the initial calibrations of RF BIST SS are complete. Table 5.84 describes the content of this sub block.

 ${\bf Table~5.84:~AWR_AE_RF_INITCALIBSTATUS_SB~response~contents}$

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0	0x1004	
SBLKLEN	2	Value = 2	24	
CALIBRATION_ STATUS	4	Value = 0x1004 Value = 24 This field indicates the status of each calibration (0 – FAIL, 1 – PASS). If a particular calibration was enabled, then its corresponding field should be ignore Bit Definition (0 – FAIL, 1 – PASS) b0 RESERVED b1 APLL tuning b2 SYNTH VCO1 tuning b3 SYNTH VCO2 tuning b4 LODIST calibration b5 RX ADC DC offset calibration b6 HPF cutoff calibration b7 LPF cutoff calibration b8 Peak detector calibration b9 TX Power calibration b10 RX gain calibration b11 TX Phase calibration b12 RX IQMM calibration b31:13 RESERVED		

CALIBRATION_ UPDATE	4	This field indicates if a particular calibration data has been updated in hardware. (0 – no update, 1 – updated)
		Bit Definition
		b0 RESERVED
		b1 APLL tuning
		b2 SYNTH VCO1 tuning
		b3 SYNTH VCO2 tuning
		b4 LODIST calibration
		b5 RX ADC DC offset calibration
		b6 HPF cutoff calibration
		b7 LPF cutoff calibration
		b8 Peak detector calibration
		b9 TX Power calibration
		b10 RX gain calibration
		b11 TX Phase calibration
		b12 RX IQMM calibration
		b31:13 RESERVED
TEMPERATURE	2	Measured temperature, based on average of temperature sensors near all enabled TX and RX channels at the time of calibration. 1 LSB = 1°C
RESERVED	2	0x0000
TIME_STAMP	4	This field indicates time stamp at the time of performing calibration updates. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)
RESERVED	4	0x00000000

5.13.6 Sub block 0x1005 - RESERVED

5.13.7 Sub block 0x1006 - RESERVED

5.13.8 Sub block 0x1007 - RESERVED

5.13.9 Sub block 0x1008 - RESERVED

5.13.10 Sub block 0x1009 - RESERVED

5.13.11 Sub block 0x100A - AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB

This sub block indicates that, the triggered monitor types are done with execution and Host can use this signal to trigger next type of monitor.

Table 5.85 describes the content of this sub block.

Table 5.85: AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB response contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x100A		
SBLKLEN	2	Value = 16		
MON_TRIG_ TYPE_DONE	1	The bit mask to indicate execution status of monitor triggered type. Bit Definition b0 Done Status of Type 0 monitor trigger b1 Done Status of Type 1 monitor trigger b2 Done Status of Type 2 monitor trigger b31:3 RESERVED		
RESERVED	3	0x0		
TIME_STMP	4	The device time stamp at which this AE is sent out 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		
RESERVED	4	0x0		

NOTE1:	The Done status for each type is cleared only once in end of FTTI interval, example the AE report for type 2 will contains done status bit set for all types.
NOTE2:	If Trigger is done with all 3 bits set (Triggering all 3 types in one go), then still this AE will be sent 3 times for 3 types irrespective of number of trigger.

5.13.12 Sub block 0x100B - AWR_AE_RF_FRAME_TRIGGER_RDY_SB

This sub block indicates that the slave device is now ready to receive the external sync in for frame triggers, this does not indicate physical trigger of frames in Hw triggered mode. In SW triggered mode, this async event indicates that frame is triggered by Sw.

Table 5.86 describes the content of this sub block.

Table 5.86: AWR_AE_RF_FRAME_TRIGGER_RDY_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100B
SBLKLEN	2	Value = 4

5.13.13 Sub block 0x100C - AWR_AE_RF_GPADC_RESULT_DATA_SB

This sub block indicates that GPADC measurement is complete and it also contains the measured data of each of the enabled channels. The data for channels which are not enabled can be ignored.

Table 5.87 describes the content of this sub block.

 Table 5.87:
 AWR_AE_RF_GPADC_RESULT_DATA_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100C
SBLKLEN	2	Value = 76
ANATEST1_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024
ANATEST1_ MAX_DATA	2	Maximum GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024
ANATEST1_ AVG_DATA	2	Average GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024
ANATEST2_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024
ANATEST2_ MAX_DATA	2	Maximum GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024

Т	1 1 1 1 1 1	- 1 1- 9-		
ANATEST2_ 2 AVG_DATA	2	Average GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024		
ANATEST3_MIN_ 2 DATA	2	Minimum GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024		
ANATEST3_ Z MAX_DATA	2	Maximum GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024		
ANATEST3_ 2 AVG_DATA	2	Average GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024		
ANATEST4_MIN_ 2 DATA	2	Minimum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024		
ANATEST4_ Z MAX_DATA	2	Maximum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024		
ANATEST4_ 2 AVG_DATA	2	Average GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024		
ANAMUX_MIN_ 2 DATA	2	Minimum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024		
ANAMUX_MAX_ 2 DATA	2	Maximum GPADC reading across the captured samples for ANAMUX input $1 \text{ LSB} = 1.8 \text{V}/1024$		
ANAMUX_AVG_ 2 DATA	2	Average GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024		
VSENSE_MIN_ 2 DATA	2	Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024		
VSENSE_MAX_ Z DATA	2	Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024		
VSENSE_AVG_ 2 DATA	2	Average GPADC reading across the captured samples for VSENSE input		
		1 LSB = 1.8V/1024		
RESERVED 2	2	•		
	2	1 LSB = 1.8V/1024		

TILL - 0-				
Table 5.87	 continued 	trom	previous	page

RESERVED	2	0x0000
RESERVED	4	0x00000000

5.13.14 Sub block 0x100E - RESERVED

5.13.15 Sub block 0x100D - RESERVED

5.13.16 Sub block 0x100E - RESERVED

5.13.17 Sub block 0x100F - AWR_FRAME_END_AE_SB

This sub block indicates end of the frames.

Table 5.88 describes the content of this sub block.

Table 5.88: AWR_FRAME_END_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100F
SBLKLEN	2	Value = 4

5.13.18 Sub block 0x1010 - AWR_ANALOGFAULT_AE_SB

This sub block indicates fault in analog supplies or LDO short circuit condition. Once a fault is detected the functionality cannot be resumed from then on and the sensor needs to be re-started.

Table 5.89: AWR_ANALOGFAULT_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1010
SBLKLEN	2	Value = 16

Table 5.89 - continued from previous page

FAULT_TYPE	1	Value	Definition
		0	NO FAULT
		1	ANALOG_SUPPLY_FAULT
		Others	RESERVED
RESERVED	1	0x00	
RESERVED	2	0x0000	
FAULT_SIG	4	Bit	Definition
		b0	1.8V BB ANA supply fault detected
		b1	13V/1.0V RF supply fault detected
		b2	Synth VCO LDO short circuit detected
		b3	PA LDO short circuit detected
		b31:4	RESERVED
RESERVED	4	0x00000	0000

5.13.19 Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB

This sub block indicates any timing failure related to calibration or monitoring. Table 5.90 describes the content of this sub block.

Table 5.90: AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1011
SBLKLEN	2	Value = 8

Table 5.90 – continued from previous page

TIMING_FAIL-	IMING_FAIL- 2	Bit	Defi	nition
URE_CODE		b0	RES	SERVED
		b1	0	No Failure
			1	Total monitoring and calibration time do not fit in one CALIB_MON_TIME_UNIT in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER when ONE_TIME_CALIB is enabled
		b2	0	No Failure
			1	Total monitoring and calibration time do not fit in one CALIB_MON_TIME_UNIT in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER when PERIODIC_CALIB is enabled
		b3	0	No Failure
			1	Runtime timing violation: Monitoring functions or calibrations could not be completed in one CALIB_MON_TIME_UNIT
		b15:4	RES	SERVED
RESERVED	2	0x0000		

NOTE:	In QM devices (non safety), Periodic Digital and Analog Monitoring
	are not supported.

5.13.20 Sub block 0x1012 - AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_ SB

This sub block indicates the calibration status (one time or run time) if the calibration reports are enabled in the AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB.

NOTE:	The calibration report is sent if the calibrations are triggered due to
	temperature change or whenever the internal calibratons are trig-
	gered i.e. every 1 s

Table 5.91: AWR_RUN_TIME_CALIB_SYMMARY_REPORT_AE_SB response contents

Field Name	Number of bytes	Description		
SBLKID	2	Value =	0x1012	
SBLKLEN	2	Value =	24	
CALIBRATION_ ERROR_FLAG	4	This field indicates the status of each calibration. 1 - calibration is passed, 0 - calibration is failed or not enabled/performed at least once. Bit Definition		
		b0	RESERVED	
		b1	APLL tuning	
		b2 SYNTH VCO1 tuning		
		b3 SYNTH VCO2 tuning		
		b4	LODIST calibration	
		b5	RESERVED	
		b6	RESERVED	
		b7 RESERVED		
		b8 PD calibration		
		b9	TX power calibration	
		b10	RX gain calibration	
		b11	RESERVED	
		b12	RESERVED	
		b31:13	RESERVED	

CALIBRATION_ UPDATE_STA- TUS	4	Each bit corresponding to a calibration indicates if each calibration resulted in a reconfiguration of RF is indicated by a value of 1 in the respective bit in this field. 0 – Analog/RF is not updated 1 – Analog/RF is updated after a respective calibration		
		Bit Definition		
		b0 RESERVED		
		b1 APLL tuning		
		b2 SYNTH VCO1 tuning		
		b3 SYNTH VCO2 tuning		
		b4 LODIST calibration		
		b5 RESERVED		
		b6 RESERVED		
		b7 RESERVED		
		b8 PD calibration		
		b9 TX power calibration		
		b10 RX gain calibration		
		b11 RESERVED		
		b12 RESERVED		
		b31:13 RESERVED		
TEMPERATURE	2	Measured temperature, based on average of temperature sensors near all enabled TX and RX channels at the time of calibration. 1 LSB = 1°C		
RESERVED	2	RESERVED		
TIME_STAMP	4	This field indicates time stamp at the time of performing calibration updates. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		
RESERVED	4	0x0000000		

NOTE:	None of the Periodic Monitoring are supported in QM devices				
	(IWR6843 QM, xWR1443, IWR1642 and IWR1843), The Async				
	Event sub-blocks defined below from ID 0x1015 to 0x1031 are not				
	valid in QM devices.				

5.13.21 Sub block 0x1013 - AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_ AE_SB

This async event contains the status of digital monitoring for latent faults.

Table 5.92: AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1013
SBLKLEN	2	Value = 8

Table 5.92 – continued from previous page

DIG_MON_LA-	4		S, 0 – FAIL
TENT_FAULT_		Bit	Definition
STATUS		b0	RESERVED
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	RESERVED
		b5	RESERVED
		b6	CRC test
		b7	RAMPGEN memory ECC test
		b8	DFE Parity test
		b9	DFE memory ECC test
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test
		b12	RESERVED
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	DCC test (Supported only on AWR2243 device)
		b22	RESERVED
		b23	RESERVED
		b24	FFT test
		b25	RTI test
		b26	RESERVED
		b31:27	RESERVED

5.13.22 Sub block 0x1014 - RESERVED

5.13.23 Sub block 0x1015 - AWR_MONITOR_REPORT_HEADER_AE_SB

The report header includes common information across all enabled monitors like current FTTI number and current temperature.

Table 5.93: AWR_MONITORING_REPORT_HEADER_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1015
SBLKLEN	2	Value = 12
FTTI_COUNT	4	FTTI free running counter value, incremented every CAL_MON_TIME_UNIT
AVG_TEMPERA- TURE	2	Average temperature at which was monitoring performed
RESERVED	2	0x0000

5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_ SB

This async event is sent periodically to indicate the status of periodic digital monitoring tests.

Table 5.94: AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1016
SBLKLEN	2	Value = 12
RF_DIG_MON_ PERIODIC_	4	1 - PASS, 0 - FAIL Bit Monitoring type
STATUS		b0 PERIODIC_CONFG_REGISTER_READ b1 RESERVED
		b2 DFE_STC b3 FRAME_TIMING_MONITORING b31:4 RESERVED
TIMESTAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.13.25 Sub block 0x1017 - AWR_MONITOR_TEMPERATURE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured temperature near various RF analog and digital modules. The AWR device sends this

to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.95: AWR_MONITORING_TEMPERATURE_REPORT_AE_SB contents

Field Name	Number	Description		
CDI KID	of bytes	Value = 0x1017		
SBLKID	_			
SBLKLEN	2	Value = 36		
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_ANA_TEMP_MIN		
		b1 STATUS_ANA_TEMP_MAX		
		b2 STATUS_DIG_TEMP_MIN		
		b3 STATUS_DIG_TEMP_MAX		
		b4 STATUS_TEMP_DIFF_THRESH		
		b15:5 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
TEMP_VALUES	20	The measured onchip temperature is reported here. Byte numbers corresponding to different temperature sensors reported in this field are here: Bytes Temperature sensor 1:0 TEMP_RX0 3:2 TEMP_RX1 5:4 TEMP_RX2 7:6 TEMP_RX3 9:8 TEMP_TX0 11:10 TEMP_TX1 13:12 TEMP_TX1 13:12 TEMP_DIG1 19:18 TEMP_DIG2 (Applicable only in xWR1642/xWR6843/xWR1843)		
		1 LSB = 1°C, signed number		
RESERVED	4	0x00000000		

TIME_STAMP	4	This field indicates when the last monitoring in the enabled
		set was performed.
		1 LSB = 1 millisecond (time stamp rolls over upon exceed-
		ing allotted bit width)

5.13.26 Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB

This sub block is a monitoring report which the AWR device sends to the host, containing the measured RX Gain and Phase values, Loopback Power and Noise Power. Noise Power can be used by the Host to detect the presence of interference. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.96: AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1018
SBLKLEN	2	Value = 72
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_RX_GAIN_ABS
		b1 STATUS_RX_GAIN_MISMATCH
		b2 STATUS_RX_GAIN_FLATNESS
		b3 STATUS_RX_PHASE_MISMATCH
		b15:4 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies.

LOOPBACK_ POWER	3	The measured average loop-back power across RX channels at each enabled RF frequency (i.e., lowest, center and highest with 60MHz dither in the profile's RF band) at LNA input is reported here.				
		Byte numbers corresponding to different RF, in this field are here:				
		RF1 RF2 RF3				
		(Byte 0) (Byte 1) (Byte 2) b4:b0 b4:b0 b4:b0				
		b7-b5 : RESERVED in each bytes 1 LSB = -2 dBm				
		Valid Range = -62dBm to 0dBm Only the entries of enabled RF Frequencies are valid. The LB power might be bad/corrupted under interference conditions.				

DV OAIN	0.4	The management DV main from each complete dish.
RX_GAIN_ VALUE	24	The measured RX gain for each enabled channel, at each enabled RF frequency (i.e., lowest, center and highest in the profile's RF band) is reported here.
		Byte numbers corresponding to different RX and RF, in this field are here:
		RF1 RF2 RF3
		RX0 1:0 9:8 17:16
		RX1 3:2 11:10 19:18
		RX2 5:4 13:12 21:20
		RX3 7:6 15:14 23:22
		1 LSB = 0.1 dB Only the entries of enabled RF Frequencies and enabled RX channels are valid.
		NOTE: The RX_GAIN_VALUE is measured using only ADC power and under assumption of fixed LB power of -39dBm for all RF1, RF2 and RF3 frequencies (this is irrespective of LB power measured using power detectors at LNA input, which can potentially be interference-affected). Due to such assumptions, RX_GAIN_VALUE will be approximate and can have 7 dB deviation from programmed RX gain across temperature.
		In interference-free condition, one may calculate the actual Rx gain of the device in dB as RX = RX GAIN VALUE(Rf freq, Rx) + (-39dBm) - LOOPBACK_POWER_TEMP_dBm(Temp[C])
		Where LOOPBACK_POWER_TEMP_dBm (Temp[C]) = $-0.05*$ Temp[C] - 37, is the nominal loopback signal strength for nominal process corner. It may deviate by up to 5 dB due to process variation.

RX_PHASE_ VALUE	24	The measured RX phase for each enabled channel, each enabled RF frequency is reported here.				at		
		,	numbers s field are	•	nding to	different	RX and R	₹F,
			RF1	RF2	RF3			
		RX0	1:0	9:8	17:16			
		RX1	3:2	11:10	19:18			
		RX2	5:4	13:12	21:20			
		RX3	7:6	15:14	23:22			
		1 LSI	B = 360°/2	16				
		Only	the entries	s of enable	ed RF Fre	equencies	and enable	ed
		RX c	hannels ar	e valid.				
			E: These լ RX chann		lude an ı	unknown I	bias commo	on

RX_NOISE_ POWER1	4	The measured RX noise for each enabled channel, at each enabled RF frequency is reported here.
		Bit fields corresponding to different RX in RF1 and RF2 (partial in this word) are defined in this field:
		RF1 RF2 RF3
		RX0 b4:b0 b24:b20 -
		RX1 b9:b5 b29:b25 -
		RX2 b14:b10
		RX3 b19:b15 b31-b30 : RESERVED 1 LSB = -2dBm Valid Range: -62dbm to 0dBm Only the entries of enabled RF Frequencies and enabled RX channels are valid.
		NOTE: Noise Power is nominally around -56 dBm, in interference-free condition. This field can enable the host in detecting if the corresponding gain/phase measurement was potentially corrupted by interference or not.
		For example, if the reported noise power exceeds significantly from typical values (e.g. based on median of the reported values in the past few 100 mili-seconds), it can indicate that the gain/phase measurement is potentially corrupted by interference. Such gain/phase measurement reports may be discarded and the results from the next monitoring interval or from other RF frequencies may be used instead.

Table 5.96 – continued from previous page

RX_NOISE_ POWER2	4	The measured RX noise for each enabled channel each enabled RF frequency is reported here.			
					o different RX in RF2 (pare defined in this field: RF3
		RX0	-	-	b14:b10
		RX1	-	-	b19:b15
		RX2	-	b4:b0	b24:b20
		BX3 b31-b30: 1 LSB = -2 Valid Rang Only the e RX chann	2dBm ge: -62db entries of	om to 0dB f enabled	b29:b25 im RF Frequencies and enabled
		interferend in detection	ce-free c	ondition. correspond	minally around -56 dBm, in This field can enable the host ding gain/phase measurement interference or not.
		icantly fro reported v dicate tha rupted by ports may	m typica alues in t t the gair interfered be disca	I values (the past fon h/phase mance. Such arded and	d noise power exceeds signif- e.g. based on median of the ew 100 mili-seconds), it can in- leasurement is potentially cor- leasurement re- the results from the next mon- RF frequencies may be used
TIME_STAMP	4	set was pe	erformed milliseco	ond (time	last monitoring in the enabled stamp rolls over upon exceed-

5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX noise figure values corresponding to the full IF band of a profile. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.97: AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x1019			
SBLKLEN	2	Value = 52			
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.			
		Bit STATUS_FLAG for monitor			
		b0 STATUS_RX_NOISE_FIGURE			
		b15:1 RESERVED			
		0 – FAIL or check wasn't done 1 – PASS			
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
PROFILE_INDX	1	Profile Index for which this monitoring report applies.			
RESERVED	3	0x000000			
RX_NOISE_ FIGURE_VALUE	24	The measured RX input referred for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different RX and RF, in this field are here:			
		RF1 RF2 RF3			
		RX0 1:0 9:8 17:16			
		RX1 3:2 11:10 19:18			
		RX2 5:4 13:12 21:20			
		RX3 7:6 15:14 23:22 1 LSB = 0.1 dB, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.			
RESERVED	4	0x00000000			
RESERVED	4	0x00000000			
RESERVED	4	0x00000000			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)			

NOTE:	The noise monitor reports the real baseband receivers' noise fig-
	ure with LNA disabled (to suppress external interference's influ-
	ence). In complex receiver modes (i.e., complex 1x, complex 2x
	and pseudo real), the system noise figure is 3dB lower (better) than
	the reported number.

5.13.28 Sub block 0x101A - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX IF filter attenuation values at the given IF frequencies. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.98: AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101A
SBLKLEN	2	Value = 48
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_RX_HPF_ERROR
		b1 STATUS_RX_LPF_ERROR
		b2 STATUS_RX_IFA_GAIN_ERROR
		b15:3 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies.
RESERVED	1	0x00

_		
LPF_CUTOFF_ BANDEDGE_ DROOP_VALUE_ RX0	2	The RX IFA LPF cutoff band edge droop at analog LPFs intended band edge wrt in band for RX 0, I and Q channels are reported here.
		Byte numbers corresponding to measured band edge droop on different RX channels, in this field are here: I channel Q channel
		RX0 0 1
		1 LSB = 0.2dB, signed number
		Applicable only for the enabled channels.
HPF_CUTOFF_ FREQ_ERROR_ VALUE	8	The deviations of RX IFA HPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here.
		HPF_CUTOFF_FREQ_ERROR = 100*(Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the HPF region.
		Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here:
		I channel Q channel
		RX0 0 4
		RX1 1 5
		RX2 2 6
		RX3 3 7
		1 LSB = 1%, signed number
		Applicable only for the enabled channels.
LPF_CUTOFF_	8	The RX IFA LPF stop band attenuation at 2x analog LPF's
STOPBAND_		band edge wrt analog LPF's band edge for all the enabled
ATTEN_VALUE		RX channels are reported here.
		Byte numbers corresponding to measured stop band attenuation on different RX I and Q channels, in this field are here: I channel Q channel
		RX0 0 4
		RX1 1 5
		RX2 2 6
		RX3 3 7
		1 LSB = 0.2dB, signed number Applicable only for the enabled channels.
	I .	

Table 5.98 – continued from previous page

RX_IFA_GAIN_ ERROR_VALUE	8	The deviations of RX IFA Gain from the ideally expected values for all the enabled RX channels are reported here.
		Byte numbers corresponding to measured cutoff frequency error on different RX channels and HPF/LPF, in this field are here:
		BX0 0 4
		RX1 1 5
		RX2 2 6
		RX3 3 7
		1 LSB = 0.1 dB, signed number
		Applicable only for the enabled channels.
IFA_GAIN_EXP	1	Expected IFA gain 1 LSB = 1 dB
RESERVED	1	0x00
LPF_CUTOFF_ BANDEDGE_ DROOP_VALUE_ RX	6	The RX IFA LPF cutoff band edge droop at analog LPFs intended band edge wrt in band for RX 1 to 3, I and Q channels are reported here.
		Byte numbers corresponding to measured stop band edge droop on different RX channels, in this field are here: I channel Q channel
		RX1 0 1
		RX2 2 3
		RX3 4 5
		1 LSB = 0.2dB, signed number Applicable only for the enabled channels.
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.13.29 Sub block 0x101B - AWR_MONITOR_TX0_POWER_REPORT_AE_SB

NOTE1:	The TX[0:2] power monitoring accuracy degrades at high TX back-
	offs and is unreliable for backoffs higher than 20dB.
NOTE2:	The 0dB back-off corresponds to typically 13dBm power level in AWR2243 device.

This API is a Monitoring Report API which the AWR device sends to the host, containing the

measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.99: AWR_MONITOR_TX0_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101B
SBLKLEN	2	Value = 24
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_ABS_ERR
		b1 STATUS_FLATNESS_ERR
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3 TX0 1:0 3:2 5:4 (other bytes are reserved) 1 LSB = 0.1 dBm, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.
RESERVED	2	0x0000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.13.30 Sub block 0x101C - AWR_MONITOR_TX1_POWER_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.100: AWR_MONITOR_TX1_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101C
SBLKLEN	2	Value = 24
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_ABS_ERR
		b1 STATUS_FLATNESS_ERR
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3 TX1 1:0 3:2 5:4 (other bytes are reserved) 1 LSB = 0.1 dBm, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.
RESERVED	2	0x0000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.13.31 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.101: AWR_MONITOR_TX2_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101D
SBLKLEN	2	Value = 24
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_ABS_ERR
		b1 STATUS_FLATNESS_ERR
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3 TX2 1:0 3:2 5:4 (other bytes are reserved) 1 LSB = 0.1 dBm, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.
RESERVED	2	0x0000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.13.32 Sub block 0x101E - AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.102: AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101E
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO- EFF_VALUE	2	The TX reflection coefficient's magnitude for this channel
EFF_VALUE		is reported here. 1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.13.33 Sub block 0x101F - AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.103: AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101F
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO-	2	The TX reflection coefficient's magnitude for this channel
EFF_VALUE		is reported here.
DECEDVED.	0	1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2

5.14.1 Sub block 0x1020 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.104: AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1020
SBLKLEN	2	Value = 20

Table 5.104 - continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO- EFF_VALUE	2	The TX reflection coefficient's magnitude for this channel is reported here. 1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX gain and phase mismatch values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.105: AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1021
SBLKLEN	2	Value = 60

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX_GAIN_MISMATCH
		b1 STATUS_TX_PHASE_MISMATCH
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RF1_TX_NOISE_ POWER	3	The measured wide band noise power at RF1 frequency for each enabled TX channel is reported here. Bit fields Description
		b7:0 TX0 wide band noise power at RF1 frequency
		b15:8 TX1 wide band noise power at RF1 frequency
		b23:16 TX2 wide band noise power at RF1 frequency
TX_GAIN_ VALUE	18	The measured TX PA loopback tone power at the RX ADC input, for each enabled TX channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3
		TX0 1:0 7:6 13:12
		TX1 3:2 9:8 15:14
		TX2 5:4 11:10 17:16
		1 LSB = 0.1dBm, signed number Only the entries of enabled RF Frequencies and enabled TX channels are valid.

TX_PHASE_	18	The measured TX phase for each enabled channel, at
VALUE		each enabled RF frequency is reported here.
		Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3
		TX0 1:0 7:6 13:12
		TX1 3:2 9:8 15:14
		TX2 5:4 11:10 17:16
		1 LSB = $360^{\circ}/2^{16}$ Only the entries of enabled RF Frequencies and enabled TX channels are valid. NOTE: these phases include an unknown bias common to all TX channels.
RF2_TX_NOISE_ POWER	3	The measured wide band noise power at RF2 frequency for each enabled TX channel is reported here.
		Bit fields Description
		b7:0 TX0 wide band noise power at RF2 frequency
		b15:8 TX1 wide band noise power at RF2 frequency
		b23:16 TX2 wide band noise power at RF2 frequency
RF3_TX_NOISE_ POWER	3	The measured wide band noise power at RF3 frequency for each enabled TX channel is reported here. Bit fields Description
		b7:0 TX0 wide band noise power at RF3 frequency
		b15:8 TX1 wide band noise power at RF3 frequency
		b23:16 TX2 wide band noise power at RF3 frequency
RESERVED	2	0x0000
TIMESTAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX0 phase values, amplitude values and noise power. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1022
SBLKLEN	2	Value = 44
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_PHASE_SHIFTER_PHASE
		b1 STATUS_TX0_PHASE_SHIFTER_AMPLITUDE
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	RESERVED
PH_SHIFTER_ MON_VAL1	2	The measured phase of TX0 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON1. 1 LSB = $360^\circ/2^{16}$
PH_SHIFTER_ MON_VAL2	2	The measured phase of TX0 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON2. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL3	2	The measured phase of TX0 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON3. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL4	2	The measured phase of TX0 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = $360^\circ/2^{16}$

Table 5.106 – continued from previous page

TX_PS_AMPLI- TUDE_VAL1	2	The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL2	2	The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL3	2	The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL4	2	The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = 0.1 dB, signed number
TX_PS_NOISE_ VAL1	1	The maximum measured wideband power across the enabled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL2	1	The maximum measured wideband power across the enabled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL3	1	The maximum measured wideband power across the enabled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL4	1	The maximum measured wideband power across the enabled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)
RESERVED	8	RESERVED

5.14.4 Sub block 0x1022 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX1 phase values, amplitude values and noise power. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1023
SBLKLEN	2	Value = 44
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX1_PHASE_SHIFTER_PHASE
		b1 STATUS_TX1_PHASE_SHIFTER_AMPLITUDE
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	RESERVED
PH_SHIFTER_ MON_VAL1	2	The measured phase of TX1 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON1. 1 LSB = $360^\circ/2^{16}$
PH_SHIFTER_ MON_VAL2	2	The measured phase of TX1 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON2. 1 LSB = $360^\circ/2^{16}$
PH_SHIFTER_ MON_VAL3	2	The measured phase of TX1 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON3. 1 LSB = $360^\circ/2^{16}$
PH_SHIFTER_ MON_VAL4	2	The measured phase of TX1 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON4. 1 LSB = $360^\circ/2^{16}$

Table 5.107 – continued from previous page

TX_PS_AMPLI- TUDE_VAL1	2	The measured amplitude of TX1 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL2	2	The measured amplitude of TX1 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL3	2	The measured amplitude of TX1 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL4	2	The measured amplitude of TX1 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = 0.1 dB, signed number
TX_PS_NOISE_ VAL1	1	The maximum measured wideband power across the enabled RXs of TX1 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL2	1	The maximum measured wideband power across the enabled RXs of TX1 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL3	1	The maximum measured wideband power across the enabled RXs of TX1 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL4	1	The maximum measured wideband power across the enabled RXs of TX1 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)
RESERVED	8	RESERVED

5.14.5 Sub block 0x1022 – AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX2 phase values, amplitude values and noise power. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1024
SBLKLEN	2	Value = 44
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX2_PHASE_SHIFTER_PHASE
		b1 STATUS_TX2_PHASE_SHIFTER_AMPLITUDE
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	RESERVED
PH_SHIFTER_ MON_VAL1	2	The measured phase of TX2 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON1. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL2	2	The measured phase of TX2 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON2. 1 LSB = $360^\circ/2^{16}$
PH_SHIFTER_ MON_VAL3	2	The measured phase of TX2 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON3. 1 LSB = $360^\circ/2^{16}$
PH_SHIFTER_ MON_VAL4	2	The measured phase of TX2 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON4. 1 LSB = $360^{\circ}/2^{16}$

Table 5.108 – continued from previous page

TX_PS_AMPLI- TUDE_VAL1	2	The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL2	2	The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL3	2	The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL4	2	The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = 0.1 dB, signed number
TX_PS_NOISE_ VAL1	1	The maximum measured wideband power across the enabled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL2	1	The maximum measured wideband power across the enabled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL3	1	The maximum measured wideband power across the enabled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL4	1	The maximum measured wideband power across the enabled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)
RESERVED	8	RESERVED

5.14.6 Sub block 0x1025 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information related to measured frequency error during the chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.109: AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1025
SBLKLEN	2	Value = 32
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SYNTH_FREQ_ERR
		b15:1 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
MAX_FRE- QUENCY_ER- ROR_VALUE	4	This field indicates the maximum instantaneous frequency error measured during the chirps for which frequency monitoring has been enabled in the previous monitoring period. Bits Parameter
		b31:0 Maximum frequency error value, signed number. 1 LSB = 1 kHz.
FREQUENCY_ FAILURE_ COUNT	4	This field indicates the number of times during chirping in the previous monitoring period in which the measured frequency error violated the allowed threshold. Frequency error threshold violation is counted every 10 ns.
		Bits Parameter
		b31:19 RESERVED
		b18:0 Failure count, unsigned number
RESERVED	4	0x00000000
RESERVED	4	0x00000000

Table 5.109 - continued from previous page

TIME_STAMP	4	This field indicates when the last monitoring in the enabled
		set was performed.
		1 LSB = 1 millisecond (time stamp rolls over upon exceed-
		ing allotted bit width)

5.14.7 Sub block 0x1026 – AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the external signal voltage values measured using the GPADC. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.110: AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_REPORT_ AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1026
SBLKLEN	2	Value = 28
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit Definition
		b0 STATUS_ANALOGTEST1
		b1 STATUS_ANALOGTEST2
		b2 STATUS_ANALOGTEST3
		b3 STATUS_ANALOGTEST4
		b4 STATUS_ANAMUX
		b5 STATUS_VSENSE
		b15:6 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error

Table 5.110 - continued from previous page

EXTERNAL_ ANALOG SIG-	12	MEASURED_VALUE
NAL_VALUES		Bytes SIGNAL
		1:0 ANALOGTEST1
		3:2 ANALOGTEST2
		5:4 ANALOGTEST3
		7:6 ANALOGTEST4
		9:8 ANAMUX
		11:10 VSENSE
		1 LSB = 1.8V/1024
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.8 Sub block 0x1027 – AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX0 internal analog signals including Tx Phase shifter DAC monitor report. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.111: AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1027
SBLKLEN	2	Value = 16

Table 5.111 - continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SUPPLY_TX0
		b1 STATUS_DCBIAS_TX0
		b2 STATUS_PS_DAC_TX0
		b15:3 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring
		Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	1	0x00
PS_DAC_ IDELTA_MIN	1	Phase shifter DAC I arm delta min value across different DAC settings Unit: 1 LSB = 1.8V/1024
PS_DAC_ QDELTA_MIN	1	Phase shifter DAC Q arm delta min value across different DAC settings Unit: 1 LSB = 1.8V/1024
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.9 Sub block 0x1028 – AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX1 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.112: AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1028
SBLKLEN	2	Value = 16

Table 5.112 - continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_SUPPLY_TX1		
		b1 STATUS_DCBIAS_TX1		
		b2 STATUS_PS_DAC_TX1		
		b15:3 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring		
		Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	1	0x00		
PS_DAC_ IDELTA_MIN	1	Phase shifter DAC I arm delta min value across different DAC settings Unit: 1 LSB = 1.8V/1024		
PS_DAC_	1	Phase shifter DAC Q arm delta min value across different		
QDELTA_MIN		DAC settings Unit: 1 LSB = 1.8V/1024		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled		
		set was performed.		
		1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.14.10 Sub block 0x1029 - AWR_MONITOR_TX2_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX2 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.113: AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT AE SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1029
SBLKLEN	2	Value = 16

Table 5.113 - continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_SUPPLY_TX2		
		b1 STATUS_DCBIAS_TX2		
		b2 STATUS_PS_DAC_TX2		
		b15:3 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring		
		Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	1	0x00		
PS_DAC_ IDELTA_MIN	1	Phase shifter DAC I arm delta min value across different DAC settings Unit: 1 LSB = 1.8V/1024		
PS_DAC_ QDELTA_MIN	1	Phase shifter DAC Q arm delta min value across different DAC settings Unit: 1 LSB = 1.8V/1024		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.14.11 Sub block 0x102A - AWR_MONITOR_RX_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal RX internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.114: AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x102A
SBLKLEN	2	Value = 16

Table 5.114 - continued from previous page

STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit ST	ATUS_FLAG for monitor	
		b0 ST/	ATUS_SUPPLY_RX0	
		b1 ST/	ATUS_SUPPLY_RX1	
		b2 ST/	ATUS_SUPPLY_RX2	
		b3 ST/	ATUS_SUPPLY_RX3	
		b4 ST/	ATUS_DCBIAS_RX0	
		b5 ST/	ATUS_DCBIAS_RX1	
		b6 ST/	ATUS_DCBIAS_RX2	
		b7 ST/	ATUS_DCBIAS_RX3	
			SERVED	
		0 – FAIL or o	check wasn't done	
ERROR CODE	2		v error reported during monitoring	
ETHION_OODE	_	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.14.12 Sub block 0x102B - AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal PM, CLK and LO subsystems' internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.115: AWR_MONITOR_PM_CLK_LO_INTERNAL_ANALOG_ $SIGNALS_REPORT_AE_SB$ contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x102B
SBLKLEN	2	Value = 16

Table 5.115 - continued from previous page

	1			
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_SUPPLY_PMCLKLO		
		b1 STATUS_DCBIAS_PMCLKLO		
		b2 STATUS_LVDS_PMCLKLO (Use this status bit only if LVDS is used, else ignore this)		
		b3 STATUS_SYNC_20G (Use this field only in cascade configuration)		
		b15:4 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
SYNC_20G_ POWER	1	Monitored 20 GHz signal power, signed number Unit: 1 LSB = 0.5 dBm The 20GHz SYNC monitor is done at 77GHz RF frequency.		
RESERVED	2	0x000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.14.13 Sub block 0x102C - AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about the measured value of the GPADC input DC signals whose measurements were enabled. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.116: AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x102C

Table 5.116 - continued from previous page

SBLKLEN	2	Value = 20		
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_GPADC_REF1		
		b1 STATUS_GPADC_REF2		
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
GPADC_REF1_ VALUE	2	The measured GPADC outputs corresponding to internal DC signal (GPADC_REF1, expected level 0.45V) is reported here. 1 LSB = 1.8V/1024		
GPADC_REF2_ VALUE	2	The measured GPADC outputs corresponding to internal DC signal (GPADC_REF2, expected level 1.2V) is reported here. 1 LSB = 1.8V/1024		
RESERVED	4	0x00000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.14.14 Sub block 0x102D - AWR_MONITOR_PLL_CONTROL_VOLTAGE_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured PLL control voltage values during explicit monitoring chirps. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.117: AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x102D
SBLKLEN	2	Value = 32

Table 5.117 – continued from previous page

			1 1 9	
STATUS_FLAGS	2		flags indicating pass fail resul various threshold checks unde	
		Bit	STATUS_FLAG for monitor	
		b0	STATUS_APLL_VCTRL	
		b1	STATUS_SYNTH_VCO1_VCTRL	_MAX_FREQ
		b2	STATUS_SYNTH_VCO1_VCTRL	_MIN_FREQ
		b3	RESERVED	
		b4	STATUS_SYNTH_VCO2_VCTRL	_MAX_FREQ
		b5	STATUS_SYNTH_VCO2_VCTRL	_MIN_FREQ
		b6	RESERVED	
		b15:7		
		0 – FAIL 1 – PAS	or check wasn't done	
ERROR_CODE	2	Indicates any error reported during monitoring		
		Value of 0 indicates no error		
PLL_CONTROL_ VOLTAGE_VAL- UES	16	The measured values of PLL control voltage levels and Synthesizer VCO slopes are reported here.		
323		Byte numbers corresponding to different control voltage values reported in this field are here:		
		Bytes	SIGNAL	1 LSB
		1:0	APLL_VCTRL	1 mV
		3:2	SYNTH_VCO1_VCTRL_MAX_ FREQ	1 mV
		5:4	SYNTH_VCO1_VCTRL_MIN_ FREQ	1 mV
		7:6	SYNTH_VCO1_SLOPE	1 MHz/V
		9:8	SYNTH_VCO2_VCTRL_MAX_ FREQ	1 mV
		11:10	SYNTH_VCO2_VCTRL_MIN_ FREQ	1 mV
		13:12	SYNTH_VCO2_SLOPE	1 MHz/V
		15:14	RESERVED	RESERVED

		Only the fields corresponding to the enabled monitors are valid. The failure thresholds are based on the following: Valid VCTRL values are [140 to 1400] mV. Valid VCO1_SLOPE values are [1760 to 2640] MHz/V. Valid VCO2_SLOPE values are [3520 to 5280] MHz/V. NOTE: The VCOx_SLOPE should be ignored when synth fault is injected.
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.15 Sub block 0x102E - AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_ AE_SB

This API is a monitoring report API which the AWR device sends to the host, containing information about the relative frequency measurements. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.118: AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x102E	
SBLKLEN	2	Value = 32	
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_CLK_PAIR0	
		b1 STATUS_CLK_PAIR1	
		b2 STATUS_CLK_PAIR2	
		b3 STATUS_CLK_PAIR3	
		b4 STATUS_CLK_PAIR4	
		b15:5 RESERVED	
		0 – FAIL or check wasn't done 1 – PASS	

Table 5.118 - continued from previous page

ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error				
FREQ_MEAS_ VALUES	16	The measured clock frequencies from the enabled clock pair measurements are reported here.				
		Byte numbers corresponding to different frequency measurement values reported in this field are here:				
		Bytes CLOCK PAIR MEASURED CLOCK FREQUENCY				
		1:0 0 BSS_600M				
		3:2 1 BSS_200M				
		5:4 2 BSS_100M				
		7:6	3	GPADC_10M		
		9:8	4	RCOSC_10M		
		15:10 1 LSB =	RESERVED 0.1 MHz, unsigne	RESERVED d number		
RESERVED	4	0x00000000				
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)				

5.14.16 Sub block 0x1031 - AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_ AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX mixer input voltage swing values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.119: AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1031	
SBLKLEN	2	Value = 24	

Table 5.119 - continued from previous page

STATUS_FLAGS	2	Bit	STATUS_FLAG for monitor	
		b0	STATUS_MIXER_IN_POWER_RX0	
		b1	STATUS_MIXER_IN_POWER_RX1	
		b2	STATUS_MIXER_IN_POWER_RX2	
		b3	STATUS_MIXER_IN_POWER_RX3	
		b15:4 0 – FAIL 1 – PAS	RESERVED L or check wasn't done SS	
ERROR_CODE	2	Value =	sanity check violations are reported here. 0: No error alues: Error (see error code definition matrix)	
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		
RX_MIXER_ IN_VOLTAGE_ VALUE	4	The measured RX mixer input voltage swing values are reported here. The byte location of the value for each receivers is tabulated here: Receiver Byte Location		
		RX0	0	
		RX1	1	
		RX2	2	
		RX3	3	
			: 1800 mV/256, unsigned number e entries of enabled RX channels are valid.	
RESERVED	4	0x00000	0000	
TIME_STAMP	4	When this monitoring began is indicated here. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.14.17 Sub block 0x1033 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_ NONLIVE_REPORT_AE_SB

This is a new feature addition in AWR2243 device. This API is a Non live Monitoring Report SB, which device sends to the host, containing information related to measured frequency error during the monitoring chirp for two profiles configurations. The device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.120: AWR_MONITOR_SYNTHESIZER_FREQUENCY_NONLIVE_REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x1033		
SBLKLEN	2	Value = 52		
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 VCO1_SYNTH_FREQ_ERR_STATUS		
		b1 VCO2_SYNTH_FREQ_ERR_STATUS		
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX_ 0	1	VCO1 Profile index for which this monitoring report applies		
RESERVED	3	0x000000		
MAX_FRE- QUENCY_ER- ROR_VALUE_ 0	4	This field indicates the maximum instantaneous frequency error measured during the monitoring chirp for which frequency monitoring has been enabled in the previous monitoring period for VCO1 profile. Bits Parameter		
		b31:0 Maximum frequency error value, signed number. 1 LSB = 1 kHz.		
FREQUENCY_ FAILURE_ COUNT_0	4	This field indicates the number of times during chirping in the previous monitoring period in which the measured frequency error violated the allowed threshold for VCO1 profile. Frequency error threshold violation is counted every 10 ns. Bits Parameter		
		b31:19 RESERVED		
		b18:0 Failure count, unsigned number		
MAX_FREQ_ FAILURE_TIME_ 0	4	This field indicates the time at which error occurred for VCO1 profile w.r.t. knee of the ramp. 1LSB = 10ns		
RESERVED	4	0x00000000		
PROFILE_INDX_ 1	1	VCO2 Profile index for which this monitoring report applies		

Table 5.120 - continued from previous page

RESERVED	3	0x000000		
MAX_FRE- QUENCY_ER- ROR_VALUE_ 1	4	This field indicates the maximum instantaneous frequency error measured during the monitoring chirp for which frequency monitoring has been enabled in the previous monitoring period for VCO2 profile. Bits Parameter		
		b31:0 Maximum frequency error value, signed number. 1 LSB = 1 kHz.		
FREQUENCY_ FAILURE_ COUNT_1	4	This field indicates the number of times during chirping in the previous monitoring period in which the measured frequency error violated the allowed threshold for VCO2 profile. Frequency error threshold violation is counted every 10 ns. Bits Parameter b31:19 RESERVED b18:0 Failure count, unsigned number		
MAX_FREQ_ FAILURE_TIME_ 1	4	This field indicates the time at which error occurred for VCO2 profile w.r.t. knee of the ramp. 1LSB = 10ns		
RESERVED	4	0x00000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.15 Sub blocks related to AWR_DEV_RFPOWERUP_MSG

NOTE:	All device config APIs having sub block ID >= 0x4000 are appli-
	cable only for MSS in AWR2243 RF front end devices, for other
	xWR1443, xWR1642 and xWR1843 devices, these APIs are for
	reference only.

5.15.1 Sub block 0x4000 - AWR_DEV_RFPOWERUP_SB

This sub block is a command to power up the BSS 5.121 describes the content of this sub block.

Table 5.121: AWR_DEV_POWERUP_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4000	
SBLKLEN	2	Value = 4	

5.16 Sub blocks related to AWR_DEV_CONF_SET_MSG

5.16.1 Sub block 0x4040 - AWR_DEV_MCUCLOCK_CONF_SET_SB

This sub block contains the configurations to setup the desired frequency of the MCU Clock that is output from the device.

Table 5.122 describes the contents of this sub block.

Table 5.122: AWR_DEV_MCUCLOCK_CONF_SET_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x4040		
SBLKLEN	2	Value = 8		
MCUCLOCK_ CTRL	1	This field controls the enable-disable of the MCU clock. Value Description		
		0x0 Disable MCU clock		
		0x1 Enable MCU clock		
MCUCLOCK_ SRC	1	This field specifies the source of the MCU clock. Applicable only in case of MCU clock enable. Else ignored. Value Description		
		0x0 XTAL (as connected to the device)		
		0x2 600MHz PLL divided clock		
SRCCLOCK_DIV	1	This field specifies the division factor to be applied to source clock. Applicable only in case of MCU clock enable. Else ignored.		
		Value Description		
		0x0 Divide by 1		
		0x1 Divide by 2		
		0xFF Divide by 256		
RESERVED	1	0x00		

5.16.2 Sub block 0x4041 - AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB

This sub block contains the configuration of the data format of the samples received over the receive chain to be transferred out to an external host over the configured data path (LVDS or CSI2).

Table 5.123 describes the content of this sub block.

Table 5.123: AWR_DEV_RX_DATA_FORMAT_CONF_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value =	Value = 0x4041		
SBLKLEN	2	Value =	16		
RX_CHAN_EN	2	Bits Def		HAN0_EN Disable RX Channel 0 Enable RX Channel 0	
		b1	RX_CH 0 1	HAN0_EN Disable RX Channel 1 Enable RX Channel 1	
		b2	-	HANO_EN Disable RX Channel 2 Enable RX Channel 2	
		b3	RX_CH 0	HAN0_EN Disable RX Channel 3 Enable RX Channel 3	
		b15:4	RESEF		
NUM_ADC_BITS	2	Bits	Definiti		
		b1:0	00	12 bits	
			01		
			10	16 bits	
			Other		
		b15:2			
ADC_OUT_FMT	2	Bits	Definiti		
		b1:0	00	Real	
			01	Complex	
			Other	Reserved	
		b15:2	RESEF	RVED	

Table 5.123 – continued from previous page

IQ_SWAP_SEL	1	Bits	Definition
		b1:0	To swap the IQ samples (if complex format)
			00 Sample interleave mode – I first
			01 Sample interleave mode – Q first
			Other Reserved
		b7:2	RESERVED
CHAN_INTER-	1	Bits	Definition
LEAVE		b1:0	Channel interleaving of the samples stored in the ADC buffer to be transferred out on the data path. On Interleaved mode of storage
			01 Non-interleaved mode of storage
			Other Reserved
		b7:2	RESERVED
RESERVED	4	0x00000	00000

5.16.3 Sub block 0x4042 - AWR_DEV_RX_DATA_PATH_CONF_SET_SB

This sub block contains the configurations of the data path to transfer the captured ADC samples received over the receive chain to be transferred out to an external host.

Table 5.124 describes the content of this sub block.

Table 5.124: AWR_DEV_RX_DATA_PATH_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4042
SBLKLEN	2	Value = 12
DATA_INTF_SEL	1	This field specifies the data path selected to transfer the Radar info. Value Description 0x0 CSI2 interface select 0x1 LVDS interface select

Table 5.124 – continued from previous page

DATA_TRANS_	1	Bits	Descript	ion
FMT_PKT0	b5:0	Packet 0	content selection	
			Value	Definition
			000001	ADC
			000110	CP_ADC (See note at the bottom of this table)
			001001	ADC_CP
			110110	CP_ADC_CQ (See note at the bottom of this table)
		b7:6	Packet (o virtual channel number (valid only for
			Value	Definition
			00	Virtual channel number 0 (Default)
			01	Virtual channel number 1
			10	Virtual channel number 2
			11	Virtual channel number 3
DATA_TRANS_	1	Bits	Descript	ion
FMT_PKT1		b5:0	Packet 1 Value	content selection Definition
			000000	Suppress packet 1 transmission
			001110	CP_CQ (See note at the bottom of this table)
			001011	CQ_CP (See note at the bottom of this table)
		b7:6	Packet	1 virtual channel num-
			ber	(valid only for CSI2)
			Value	Definition
			00	Virtual channel number 0 (Default)
			01	Virtual channel number 1
			10	Virtual channel number 2
			11	Virtual channel number 3

Table 5.124 – continued from previous page

CQ_CONFIG	1	This specifies the data size of CQ samples on the lanes
		Bits Description b1:0 Value Definition
		00 12 bit
		01 14 bit
		10 16 bit
		11 RESERVED
		b7:2 RESERVED NOTE: The CQ size can be configured only if CQ and ADC data is sent in separate packets. When ADC and CQ is sent in the same packet, then CQ size will be same as ADC data size.
CQ0_TRANS_ SIZE	1	Number of samples (in 16 bit halfwords) of CQ0 data to be transferred. Valid range [32 halfwords to 128 halfwords] Value 0 = Disabled. NOTE: Ensure that the number of halfwords specified are a multiple of the number of lanes selected.
CQ1_TRANS_ SIZE	1	Number of samples (in 16 bit halfwords) of CQ1 data to be transferred. Valid range [32 halfwords to 128 halfwords] Value 0 = Disabled. NOTE: Ensure that the number of halfwords specified are a multiple of the number of lanes selected.
CQ2_TRANS_ SIZE	1	Number of samples (in 16 bit halfwords) of CQ2 data to be transferred. Valid range [32 halfwords to 128 halfwords] Value 0 = Disabled. NOTE: Ensure that the number of halfwords specified are a multiple of the number of lanes selected.
RESERVED	1	0x00

NOTE1:	CP is C	irp Parameter information which is defined for each RX as			
	follows				
	Bit	Description			
	b11:0	Chirp number			
		In legacy frame configuration, chirp number			
		for starts from 1 and increments for each			
		chirp within the frame and resets to 0 for the			
		next frame.			
		In advanced frame configuration chirp num-			
		ber starts from 1 and increments for each			
		chirp within the burst and resets to 0 for the			
		next burst.			
		RESERVED			
	b17:16	Channel number			
		The receive channel number which is en-			
		coded as			
		00 RX0			
		01 RX1			
		10 RX2			
		11 RX3			
	b21:18	Profile number			
		The profile number to which the chirp belongs			
	b31:22	RESERVED			
NOTE2:	CQ is C	hirp Quality information which is defined in Section 10			

5.16.4 Sub block 0x4043 - AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB

This sub block contains the configurations to enables the lanes of the LVDS/CSI2 path to transfer Radar information to an external host.

Table 5.125 describes the content of this sub block.

Table 5.125: AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4043
SBLKLEN	2	Value = 8

Table 5.125 - continued from previous page

LANE_EN	2	Bits	Description
		b0	LANE0_EN 0 Disable lane 0
			0 Disable lane 0
			1 Enable lane 0
		b1	LANE1_EN 0 Disable lane 1
			1 Enable lane 1
		L O	
		b2	LANE2_EN
			0 Disable lane 2
			1 Enable lane 2
		b3	LANE3 EN
			0 Disable lane 3
			1 Enable lane 3
		b15:4	RESERVED
RESERVED	2	0x0000	

5.16.5 Sub block 0x4044 - AWR_DEV_RX_DATA_PATH_CLK_SET_SB

This sub block contains the clock configurations for data transfer on the LVDS/CSI2 lanes. Table 5.126 describes the content of this sub block.

Table 5.126: AWR_DEV_RX_DATA_PATH_CLK_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	alue = 0x4044	
SBLKLEN	2	alue = 8	
LANE_CLK_CFG (Selection valid only for LVDS. For CSI2, DDR is used always)	1	lits Description BIT_CLK_SEL SDR clock DDR clock (Only valid va RESERVED	lue for CSI2)

Table 5.126 – continued from previous page

DATA_RATE	1	Data rate selection Value Description	
		0001b	600 Mbps (DDR only)
		0010b	450 Mbps (SDR, DDR)
		0011b	400 Mbps (DDR only)
		0100b	300 Mbps (SDR, DDR)
		0101b	225 Mbps (DDR only)
		0110b	150 Mbps (DDR only)
		Others	RESERVED
RESERVED	2	0x0000	

5.16.6 Sub block 0x4045 - AWR_DEV_LVDS_CFG_SET_SB

This sub block contains the configurations of the LVDS lanes.

Table 5.127 describes the content of this sub block.

Table 5.127: AWR_DEV_LVDS_CFG_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4045
SBLKLEN	2	Value = 8
LANE_FMT_MAP	2	LANE0 Format Map. The mapping of the data on the lanes is depicted in the figure below 0x0000 Format map 0 0x0001 Format map 1

Table 5.127 – continued from previous page

LANE PARAM	2	Bit	Descripti	on
CFG	_	b0	MSB FIF	
		50	_	Disable (LSB First)
				Enable (MSB First)
		b1		nd Pulse Enable
				Disable
			1	Enable
		b2	CRC Ena	able
			0	Disable
			1	Enable
		b7:3	RESERV	/ED
		b8	Configure	es LSB/MSB first for CRC
				CRC value swapped wrt to MSB_ FIRST setting
				CRC value follows MSB_FIRST set- ting
		b9	Frame cl	ock state during idle
			0	Frame clock is held low
			1	Frame clock is held high
		b10	Frame cl	ock period for CRC(when CRC enabled
				32-bit CRC is trasmitted as single sample with frame clock set to 16high, 16low configuration
				32-bit CRC is trasmitted as single sample with frame clock set to 8high, 8low configuration
		b11	Bit clock	state during idle
				Bit clock toggles during idle when there are no transmission
				Bit clock doesn't toggle during idle when there are no transmission, the value of bit clock is held low
		b12	CRC inve	ersion control(when CRC enabled - b2)
				The calcualted value of 32-bit ether- net polynomial CRC is inverted and sent out
			1	The calcualted value of 32-bit ethernet polynomial CRC is sent without inversion
		b15:13	RESERV	/ED

Table 5.127 - continued from previous page

The mapping of the 8 sample (8*16 = 128 bit) information onto the serial interface lanes is determined by the LANE_FMT_MAP parameter. The choice of format map translating to the transfer of data on the lanes is depicted in the image below (the x axis represents time – hence the samples are as available on the lanes in time and the receiver will receive the samples in the reverse order as depicted below).

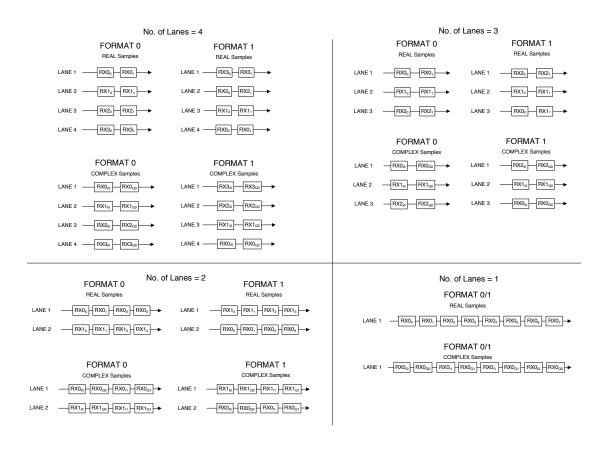


Figure 5.5: Lane formats and the order of receiving the data from the lanes

5.16.7 Sub block 0x4046 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_ SET_SB

This sub block contains the configurations of the data path to transfer the captured ADC samples continuously without any break to an external host.

Table 5.128 describes the content of this sub block.

Table 5.128: AWR_DEV_RX_CONTSTREAMING_MODE_CFG_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4046
SBLKLEN	2	Value = 8
CONT_STREAM-ING_MODE	2	Continuous streaming mode enable Value Description 0x0 Continuous streaming mode data transfer disable 0x1 Continuous streaming mode data transfer enable
RESERVED	2	0x0000

5.16.8 Sub block 0x4047 - AWR_DEV_CSI2_CFG_SET_SB

This sub block contains the various configurations of the parameters of the CSI2 module. Table 5.129 describes the content of this sub block.

Table 5.129: AWR_DEV_CSI2_CFG_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4047
SBLKLEN	2	Value = 12

Table 5.129 – continued from previous page

LANE POS	4	Bits	Bits Definition	
POL_SEL		b2:0	DATA_LANE0_POS Valid values (Should be a unique position if lane 0 is enabled, ignored if lane 0 is not enabled): 000b - Unused, 001b - Position 1 (default), 010b - Position 2, 011b - Position 3, 100b - Position 4, 101b - Position 5	
		b3	DATA_LANE0_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order	
		b6:4	DATA_LANE1_POS Valid values (Should be a unique position if lane 1 is enabled, ignored if lane 1 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2 (default), 011b - Position 3, 100b - Position 4, 101b - Position 5	
		b7	DATA_LANE1_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order	
		b10:8	DATA_LANE2_POS Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4 (default), 101b - Position 5	
		b11	DATA_LANE2_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order	
		b14:12	DATA_LANE3_POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4, 101b - Position 5 (default)	
		b15	DATA_LANE3_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order	
		b18:16	CLOCK_POS Valid values (Should be a unique position): 0000b - Unused, 001b - Unused, 010b - Position 2, 011b - Position 3 (default), 100b - Position 4	
		b19	CLOCK_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order	
		b31:20	RESERVED	

Table 5.129 – continued from previous page

DIS_LINE_	1	0 - Line Start/End Enabled
START_END		1 – Line Start/End Disabled
RESERVED	3	0x00000000

5.16.9 Sub block 0x4048 - AWR_DEV_PMICCLOCK_CONF_SET_SB

This sub block contains the configurations to setup the desired frequency of the PMIC Clock that is output from the device. The configurations also allow setting up the dither values for the clock. Table 5.130 describes the contents of this sub block.

Table 5.130: AWR_DEV_PMICCLOCK_CONF_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4048	
SBLKLEN	2	Value = 16	
PMICCLOCK_ CTRL	1	This field controls the enable-disable of the PMIC clock. Value Description	
		0x0 Disable PMIC clock	
		0x1 Enable PMIC clock	
PMICCLOCK_ SRC	1	This field specifies the source of the PMIC clock. Applicable only in case of PMIC clock enable. Else ignored. Value Description 0x0 XTAL (as connected to the device)	
		0x2 600 MHz PLL divided clock	
SRCCLOCK_DIV	1	This field specifies the division factor to be applied to source clock. Applicable only in case of PMIC clock enable. Else ignored.	
		Value Description	
		0x0 Divide by 1 (Not supported)	
		0x1 Divide by 2	
		0xFF Divide by 256	

Table 5.130 – continued from previous page

	Ι.		
MODE_SELECT	1	This field specifies the mode of operation for the PMIC clock generation. Applicable only in case of PMIC clock enable. Else ignored.	
		Value Description	
		0x0 Continuous mode (free running mode where the frequency change/jump is triggered based on configured number of PMIC clock ticks)	
		0x1 Chirp-to-Chirp staircase mode (frequency change/jump is triggered at every chirp boundary)	
FREQ_SLOPE	4	Applicable only in case of PMIC clock enable. Else ignored. Bit Description	
		b25:0 Frequency slope value to be applied in [7.18] unsigned format 1 LSB = $1/2^{18}$	
		b31:26 RESERVED In continuous mode this value is accumulated every PMIC clock tick with the seed as MIN_NDIV_VAL till MAX_NDIV_VAL is reached In the stair case mode this value is accumulated every chirp with the seed as MIN_NDIV_VAL till MAX_NDIV_VAL is reached	
MIN_NDIV_VAL	1	Applicable only in case of PMIC clock enable. Else ignored. Minimum allowed divider value (depends upon the highest desired clock frequency)	
MAX_NDIV_VAL	1	Applicable only in case of PMIC clock enable. Else ignored. Maximum allowed divider value (depends upon the lowest desired clock frequency)	
CLK_DITHER_ EN	1	Applicable only in case of PMIC clock enable and frequency slope is non-zero. Else ignored. This field controls the enable-disable of the clock dithering. Adds a pseudo random real number (0 or 1) to the accumulated divide value. Hence it brings a random dithering of 1 LSB. Value Description	
		0x0 Clock dithering disabled	
		0x1 Clock dithering enabled	
RESERVED	1	0x00	

Example 1. PMIC clock with no slope in continuous mode

Objective: To configure the PMIC clock at frequency of 2 MHz with no slope. Configurations:

- 1. PMICCLK SRC = 0x2 (600 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 29, Reference clock = 600 MHz/(29 + 1) = 20 MHz
- 3. MIN_NDIV_VAL = MAX_NDIV_VAL = 10 (Computed as 20 MHz/2.0 MHz)
- 4. FREQ SLOPE = 0

With the above configuration, the PMIC clock frequency would be PMIC clock = (20 MHz / 10) = 2 MHz

Example 2. Dithered PMIC clock with slope in chirp-to-chirp staircase mode

Objective: To configure a dithered PMIC clock at frequencies ranging from 2 MHz to 2.5 MHz over 32 chirps.

Configurations:

- 1. PMICCLK SRC = 0x2 (600 MHz PLL divided clock)
- 2. SRCCLOCK DIV = 2, Reference clock = 600 MHz /(2 + 1) = 200 MHz
- 3. MODE SELECT = 1
- 4. FREQ_SLOPE = 169125 (Computed as $(MAX_NDIV_VAL MIN_NDIV_VAL) \times 2^{18}/31)$
- 5. MIN_NDIV_VAL = 80 (Computed as 200 MHz/2.5 MHz)
- 6. MAX_NDIV_VAL = 100 (Computed as 200 MHz/2.0 MHz)
- 7. CLK_DITHER_EN = 1

With the above configuration, the PMIC clock frequency would be vary between (200 MHz / 80) and (200 MHz / 100) in steps of $(200 \text{ MHz}/|(80 + (N \times \text{FREQ} \text{ SLOPE}/2^{18} + X))|)$ where

- N = Chirp number
- X = random fractional value in the range (0, 1) that adds the dither

The PMIC clock frequency is determined by the clock divider value which starts with a value of 100, providing a PMIC clock of 2 MHz for the $1^{\rm st}$ chirp, decrementing the divider by FREQ_SLOPE/ 2^{18} = 0.64516 every chirp and finally reaching a value of 20 for the $32^{\rm nd}$ chirp providing a PMIC clock of 2.5 MHz.

Table 5.131: PMIC clock frequency across chirps in chirp-to-chirp staircase mode in an example when PMIC clock varies from 2 MHz to 2.5 MHz in 32 chirps

Chirp Number	PMIC Clock Frequency (MHz)	Calculation
1	2.50000	$200/(80 + 0 \times 169125/2^{18})$
2	2.48000	$200/(80+1\times169125/2^{18})$
3	2.46032	$200/(80 + 2 \times 169125/2^{18})$
4	2.44094	$200/(80 + 3 \times 169125/2^{18})$
5	2.42188	$200/(80 + 4 \times 169125/2^{18})$
6	2.40310	$200/(80 + 5 \times 169125/2^{18})$
7	2.38462	$200/(80+6\times169125/2^{18})$
8	2.36641	$200/(80 + 7 \times 169125/2^{18})$
9	2.34848	$200/(80 + 8 \times 169125/2^{18})$
10	2.33083	$200/(80 + 9 \times 169125/2^{18})$
11	2.31343	$200/(80 + 10 \times 169125/2^{18})$
12	2.29630	$200/(80 + 11 \times 169125/2^{18})$
13	2.27941	$200/(80 + 12 \times 169125/2^{18})$
14	2.26277	$200/(80 + 13 \times 169125/2^{18})$
15	2.24638	$200/(80 + 14 \times 169125/2^{18})$
16	2.23022	$200/(80 + 15 \times 169125/2^{18})$
17	2.21429	$200/(80 + 16 \times 169125/2^{18})$
18	2.19858	$200/(80 + 17 \times 169125/2^{18})$
19	2.18310	$200/(80 + 18 \times 169125/2^{18})$
20	2.16783	$200/(80 + 19 \times 169125/2^{18})$
21	2.15278	$200/(80 + 20 \times 169125/2^{18})$
22	2.13793	$200/(80 + 21 \times 169125/2^{18})$
23	2.12329	$200/(80 + 22 \times 169125/2^{18})$
24	2.10884	$200/(80 + 23 \times 169125/2^{18})$
25	2.09459	$200/(80 + 24 \times 169125/2^{18})$
26	2.08054	$200/(80 + 25 \times 169125/2^{18})$
27	2.06667	$200/(80 + 26 \times 169125/2^{18})$
28	2.05298	$200/(80 + 27 \times 169125/2^{18})$
29	2.03947	$200/(80 + 28 \times 169125/2^{18})$
30	2.02614	$200/(80 + 29 \times 169125/2^{18})$
31	2.01299	$200/(80 + 30 \times 169125/2^{18})$
32	2.00000	$200/(80 + 31 \times 169125/2^{18})$

Example 3. Dithered PMIC clock with slope in continuous mode

Objective: To configure a dithered PMIC clock at frequencies ranging from 2 MHz to 2.5 MHz over 100 μ s.

Configurations:

- 1. PMICCLK SRC = 0x2 (600 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 2, Reference clock = 600 MHz /(2 + 1) = 200 MHz
- 3. MODE SELECT = 0
- 4. FREQ_SLOPE = 23302 (Computed as (MAX_NDIV_VAL MIN_NDIV_VAL) \cdot $2^{18}/(100~\mu s\cdot(2.5~\mathrm{MHz}+2~\mathrm{MHz})/2))$
- 5. MIN_NDIV_VAL = 80 (Computed as 200 MHz/2.5 MHz)
- 6. MAX_NDIV_VAL = 100 (Computed as 200 MHz/2.0 MHz)
- 7. CLK_DITHER_EN = 1

With the above configuration, the PMIC clock frequency would be PMIC clock would vary between = (200 MHz / 80) to (200 MHz / 100) in steps of $(200~\mathrm{MHz}/\lfloor(80+(N\times23302/2^{18}+X))\rfloor$ where

- N = Iteration count that ticks every PMIC clock. The average value of PMIC clock here is \sim 2.25 MHz. Hence the iteration count ticks every (1/2.25 MHz) \sim 0.444 μ s.
- X = random fractional value in the range (0, 1) that adds the dither

The PMIC clock frequency is determined by the clock divider which starts with a value of 100, on the 1st PMIC clock period, providing a PMIC clock of 2 MHz, decrementing the divider value by $23303/2^{18}$ = 0.08889 every PMIC clock period of 1/2.25 MHz $\sim 0.444~\mu s$, finally reaching a value of 80 on 225th PMIC clock period, providing a PMIC clock of 2.5 MHz. Hence, the frequency varies from [2 MHz, 2.5 MHz] over 225 PMIC clock periods or $225 \times 0.444~\mu s$ or $\sim 100~\mu s$.

5.16.10 Sub block 0x4049 - AWR MSS PERIODICTESTS CONF SB

This sub block is used to trigger the periodic tests in MSS.

Table 5.132 describes the content of this sub block.

Table 5.132: AWR MSS PERIODICTESTS CONF SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4049	
SBLKLEN	2	Value = 16	

Table 5.132 – continued from previous page

PERIODICITY	4	Periodicity at which tests need to be run 1 LSB = 1 ms Minimum value is 40 ms Maximum value is 150ms NOTE: MSS Windowed WDT period is set to this periodicity and WDT can not support period more than 150ms.	
TEST_EN	4	1 - Enable, 0 - Disable Bit Monitoring type b0 PERIODIC_CONFG_REGISTER_READ_EN b1 ESM_MONITORING_EN b31:2 RESERVED	
REPORTING_ MODE	1	Controls when the AWR device sends the report corresponding to the periodic tests to the host. A report generically refers to both success/failure status flags. Value Definition 0 Report is sent every monitoring period 1 Report is sent only on a failure	
RESERVED	3	0x000000	

NOTE:	The MSS periodic monitor test run and latent tests are not recom-
	mended to run in parallel as latent tests are destructive tests which
	would cause periodic tests to fail.

5.16.11 Sub block 0x404A - AWR_MSS_LATENTFAULT_TEST_CONF_SB

This sub block is used to trigger the periodic latent fault tests in MSS, this API should not be issued when functional frames are running, these are destructive tests.

Table 5.133 describes the content of this sub block.

Table 5.133: AWR_MSS_LATENTFAULT_TEST_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x404A	
SBLKLEN	2	Value = 16	

Table 5.133 – continued from previous page

TEST_EN_1	4	Bits	Definition
		b0	RESERVED
		b1	DMA self-test
		b2	RESERVED
		b3	RTI self-test
		b4	RESERVED
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	RESERVED
		b9	Mailbox self-test
		b10	RESERVED
		b11	RESERVED
		b12	Generating NERROR
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error
		b16	TCMA RAM single bit errors (Not supported, refer latest release note)
		b17	TCMB RAM single bit errors (Not supported, refer latest release note)
		b18	TCMA RAM double bit errors (Not supported, refer latest release note)
		b19	TCMB RAM double bit errors (Not supported, refer latest release note)
		b20	TCMA RAM parity errors (Not supported, refer latest release note)
		b21	TCMB RAM parity errors (Not supported, refer latest release note)
		b22	RESERVED
		b23	RESERVED
		b24	DMA MPU Region tests
		b25	MSS Mailbox single bit errors
		b26	MSS Mailbox double bit errors
		b27	BSS Mailbox single bit errors
		b28	BSS Mailbox double bit errors
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	CSI2 parity test

Table 5.133 - continued from previous page

TEST_EN_2	4	Bits	Definition
		b0	RESERVED
		b1	RESERVED
		b2	RESERVED
		b3	VIM RAM parity test
		b4	SCI boot time test
		b31:5	RESERVED
REPORTING_	1	Value	Definition
MODE		0	Report is sent after test completion
		1	Report is send only upon a failure
TEST_MODE	1	Value	Definition
		0	Production mode. Latent faults are tested and any failures are reported
		1	Characterization mode. Faults are injected and failures are reported which allows testing of the failure reporting
RESERVED	2	0x0000	

NOTE1:	The MSS latent self tests are destructive tests, which would cause corruption in ongoing SPI/mailbox transactions and may generate N-Error signals while performing ESM G2 error checks. It is recommended not to run these self tests in functional mode of operation.
NOTE2:	It is recommended to wait for the latent fault test report asynchronous event after issuing this API. The MSS latent self tests cannot be issued back to back without waiting for the test report event.

5.16.12 Sub block 0x404B - AWR_DEV_TESTPATTERN_GEN_SET_SB

This sub block contains the configurations to setup the test pattern to be generated and transferred over the selected high speed interface (LVDS/CSI2). This command has to be issued after the data path configurations commands are issued. This can be used to perform a sanity test of the high speed interface connectivity and correct reception.

Table 5.134 describes the contents of this sub block.

 ${\bf Table~5.134:~AWR_DEV_TESTPATTERN_GEN_SET_SB~contents}$

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x404B		
SBLKLEN	2	Value = 48		
TESTPATTERN_ GEN_CTRL	1	This field controls the enable-disable of the generation of the test pattern. Value Description 0x0 Disable test pattern generation 0x1 Enable test pattern generation		
TESTPATTERN_ GEN_TIMING	1	Number of system clocks (200 MHz) between successive samples for the test pattern gen. Applicable only in case of Test pattern enable. Else ignored.		
TESTPATTERN_ PKT_SIZE	2	Number of ADC samples to capture for each RX Valid range: 64 to MAX_NUM_SAMPLES, Where MAX_NUM_SAMPLES is such that all the enabled RX channels' data fits into 16 kB memory, with each sample consuming 2 bytes for real ADC output case and 4 bytes for complex 1x and complex 2x ADC output cases. For example in AWR2243/AWR1243/xWR1443 when the ADC buffer size is 16 kB		
		Number of ADC format MAX_NUM_ RX chains SAMPLES		
		4 Complex 1024		
		4 Real 2048		
		2 Complex 2048		
		2 Real 4096		
NUM_TESTPAT- TERN_PKTS	4	Number of test pattern packets to send For infinite packets set it to 0		
TESTPATTERN_ RX0_ICFG	4	This field specifies the values for Rx0, I channel. Applicable only in case of test pattern enable. Else ignored. Bits Description b15:0 Start offset value to be used for the first sample		
		for the test pattern data b31:16 Value to be added for each successive sample for the test pattern data		

Table 5.134 – continued from previous page

TESTPATTERN_ RX0_QCFG	4	This field specifies the values for Rx0, Q channel. Applicable only in case of test pattern enable. Else ignored. Bits Description	
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX1_ICFG	4	1	d specifies the values for Rx1, I channel. ble only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX1_QCFG	4	Application ignored.	
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX2_ICFG	4	1	d specifies the values for Rx2, I channel. ole only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX2_QCFG	4		d specifies the values for Rx2, Q channel. ole only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data

Table 5.134 – continued from previous page

TESTPATTERN_ RX3_ICFG	4	This field specifies the values for Rx3, I channel. Applicable only in case of test pattern enable. Else ignored. Bits Description		
		b15:0 Start offset value to be used for the first sample for the test pattern data		
		b31:16 Value to be added for each successive sample for the test pattern data		
TESTPATTERN_ RX3_QCFG	4	This field specifies the values for Rx3, Q channel. Applicable only in case of test pattern enable. Else ignored. Bits Description		
		b15:0 Start offset value to be used for the first sample for the test pattern data		
		b31:16 Value to be added for each successive sample for the test pattern data		
RESERVED	4	0x00000000		

NOTE: This test pattern can be used only in LVDS testing and bring-up

5.16.13 Sub block 0x404C - AWR_DEV_CONFIGURATION_SET_SB

This API is used to configure the CRC type for the async events from MSS. The default is 16 bit CRC if this API is not issued. The first async event after MSS powerup will have a 16 bit CRC.

Table 5.135: AWR_DEV_CONFIGURATION_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x404C	
SBLKLEN	2	Value = 16	
ASYNC_EVENT_	1	Value Description	
CRC_CFG		0 16 bit CRC for MSS async events	
		1 32 bit CRC for MSS async events	
		2 64 bit CRC for MSS async events	
RESERVED1	1	0x00	
RESERVED2	2	0x0000	
RESERVED3	4	0x00000000	
RESERVED4	4	0x00000000	

5.16.14 Sub block 0x404D - AWR_DEV_RF_DEBUG_SIG_SET_SB

This sub-block contains the information to enable the pin-mux to bring out debug signals for the chirp cycle.

CLK_OUT signal will be output on OSC_CLKOUT pin and ADC_SIG_OUT will be output on GPIO_0 pin.

Table 5.136: AWR_DEV_RF_DEBUG_SIG_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value =	0x404D
SBLKLEN	2	Value =	20
CLK_OUT	2	Value	Description
		0	NO_CLK_OUT, Disable clock out signal
		1	REF_CLK_OUT, Reference clock out enable
		2	APLL_CLK_OUT, APLL clock out enable
		3	2P5G_SYNTH_CLK_OUT, 2.5GHz Synth clock out enable
		4	5G_SYNTH_CLK_OUT, 5GHz Synth clock out enable
ADC_SIG_OUT	2	Bit	Description
		b0	ADC_VALID, ADC valid signal enabled in GPIO_
		b31:1	RESERVED
		0: Disab	- · ·
		1: Enab	
RESERVED	4	0x00000	0000
RESERVED	4	0x0000000	
RESERVED	4	0x00000000	

5.16.15 Sub block 0x404E - AWR_DEV_CSI2_DELAY_DUMMY_CFG_SET_SB

This API can be used to increase the time between the availability of chirp data and the transfer of chirp data over CSI2 interface. It can also be used to add configurable amount of dummy data per chirp at the end of actual chirp data.

NOTE1: The user should configure the delay (and the dummy count) such that the chirp data transmission is completed before the start of next chirp's data transmission. Excessive delay or dummy count may lead to fault which will be reported by MSS NOTE2: The change in Delay value configuration will reflect immediately. But any change in Dummy value configuration will reflect only after frame configuration. NOTE3: There is some delay T0 (even without enabling this API) between the chirp data availability to data transmission. The delay added by this API is in addition to this T0. T0 depends on ADC Sampling rate, CSI Data rate and whether the CSI Line-Start-Line-End is enabled or not. The programmer needs to account for this delay while selecting the configuration values for this API.

Table 5.137: AWR_DEV_CSI2_DELAY_DUMMY_CFG_SET_SB contents

Field Name	Number of bytes	Descrip	tion
SBLKID	2	Value =	0x404E
SBLKLEN	2	Value =	20
ENBALE_MODE	1	This field or disabl Mode	d decides if the Delay or Dummy option is enabled led Definition
		0	No Delay or Dummy Data (Disabled)
		1	CSI2 Data will have an additional configurable de- lay after ADC VALID and Configurable Dummy data after chirp data
		2	Similar to configuration 0x1 but the device varies the delay in each chirp
		3 - 0xFF	RESERVED
RESERVED	3	0x0000	
DELAY_VAL	2	Delay Co	ount value
		Mode	DELAY_VAL Definition
		0	NA
		1	1 LSB = 20 ns delay Delay Added = (DELAY_VAL*20ns) + 1.2us
		2	Delay Added = Vary from chirp to chirp within MIN_DELAY to MAX_DELAY. MIN_DELAY = 1.1us MAX_DELAY = 1.2us + (DELAY_VAL * 20ns)

Table 5.137	- continued from	previous page

RESERVED	2	0x0000
DUMMY_VAL	2	Dummy Count value Number of dummy bytes added per chirp For 12-bit ADC data, 12 * Dummy Value For 14-bit ADC data, 14 * Dummy Value For 16-bit ADC data, 16 * Dummy Value
RESERVED	2	0x0000
RESERVED	4	0x00000000

5.17 Sub blocks related to AWR_DEV_CONF_GET_MSG

5.17.1 Sub block 0x4060 - AWR_DEV_MCUCLOCK_GET_SB

This API is used to read the MCU clock configuration. Response packet structure will be same as AWR_DEV_MCUCLOCK_SET_SB

Table 5.138: AWR_DEV_MCUCLOCK_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4060
SBLKLEN	2	Value = 4

5.17.2 Sub block 0x4061 - AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB

This API is used to read the RX data format configuration. Response packet structure will be same as AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB

Table 5.139: AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4061
SBLKLEN	2	Value = 4

5.17.3 Sub block 0x4062 - AWR_DEV_RX_DATA_PATH_CONF_GET_SB

This API is used to read the RX data path configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_CONF_SET_SB

Table 5.140: AWR_DEV_RX_DATA_PATH_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4062
SBLKLEN	2	Value = 4

5.17.4 Sub block 0x4063 - AWR DEV RX DATA PATH LANEEN GET SB

This API is used to read the RX data path lane enable configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB

Table 5.141: AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4063
SBLKLEN	2	Value = 4

5.17.5 Sub block 0x4064 - AWR_DEV_RX_DATA_PATH_CLK_GET_SB

This API is used to read the RX data path clock configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_CLK_SET_SB

Table 5.142: AWR DEV RX DATA PATH CLK GET SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4064
SBLKLEN	2	Value = 4

5.17.6 Sub block 0x4065 - AWR_DEV_LVDS_CFG_GET_SB

This API is used to read the LVDS configuration. Response packet structure will be same as AWR_DEV_LVDS_CFG_SET_SB

Table 5.143: AWR_DEV_LVDS_CFG_GET_SB contents

of bytes	Field Name		Description
----------	------------	--	-------------

SBLKID	2	Value = 0x4065
SBLKLEN	2	Value = 4

5.17.7 Sub block 0x4066 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_ GET_SB

This API is used to read the continuous streaming mode configuration. Response packet structure will be same as AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB

Table 5.144: AWR_DEV_RX_CONTSTREAMING_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4066
SBLKLEN	2	Value = 4

5.17.8 Sub block 0x4067 - AWR_DEV_CSI2_CFG_GET_SB

This API is used to read the CSI2 configuration. Response packet structure will be same as AWR_DEV_CSI2_CFG_SET_SB

Table 5.145: AWR_DEV_CSI2_CFG_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4067
SBLKLEN	2	Value = 4

5.17.9 Sub block 0x4068 - AWR_DEV_PMICCLOCK_CONF_GET_SB

This API is used to read the PMIC clock configuration. Response packet structure will be same as AWR DEV PMICCLOCK CONF SET SB

Table 5.146: AWR_DEV_PMICCLOCK_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4068
SBLKLEN	2	Value = 4

5.17.10 Sub block 0x4069 - AWR MSS LATENTFAULT TEST CONF GET SB

This API is used to read the MSS latent fault test configuration. Response packet structure will be same as AWR_MSS_LATENTFAULT_TEST_CONF_SET_SB

Table 5.147: AWR_MSS_LATENTFAULT_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4069
SBLKLEN	2	Value = 4

5.17.11 Sub block 0x406A - AWR MSS PERIODICTESTS CONF GET SB

This API is used to read the MSS periodic tests configuration. Response packet structure will be same as AWR_MSS_PERIODICTESTS_CONF_SET_SB

Table 5.148: AWR_MSS_PERIODICTESTS_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x406A
SBLKLEN	2	Value = 4

5.17.12 Sub block 0x406B - AWR_DEV_TESTPATTERN_GEN_GET_SB

This API is used to read the test pattern generation configuration. Response packet structure will be same as AWR_DEV_TESTPATTERN_GEN_SET_SB

Table 5.149: AWR DEV TESTPATTERN GEN GET SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x406B
SBLKLEN	2	Value = 4

5.18 Sub blocks related to AWR_DEV_FILE_DOWNLOAD_MSG

5.18.1 Sub block 0x4080 - AWR_DEV_FILE_DOWNLOAD_SB

This sub block is used to send the file in chunks/parts for download into RAM. Table 5.150 describes the content of this sub block.

Table 5.150: AWR_DEV_FILE_DOWNLOAD_SB contents

Field Name	Number of bytes	Descript	tion
SBLKID	2	Value = 0	0x4080
SBLKLEN	2	Value = \	Variable
FILE_TYPE	4	Value	Description
		0x0	META_IMAGE TO SRAM
		0x1	RESERVED
		0x2	RESERVED
		0x3	RESERVED
		0x4	META_IMAGE1 TO SFLASH
		0x5	META_IMAGE2 TO SFLASH
		0x6	META_IMAGE3 TO SFLASH
		0x7	META_IMAGE4 TO SFLASH
FILE_LENGTH	4	Length o	f File
FILE_CONTENT	Variable	Content	of File, may split into multiple chunks.

NOTE:	In the first chunk of file, FILE_TYPE and FILE_LENGTH is available
	and then first chunk onward these two fields will not be part of SB
	content

5.19 Sub blocks related to AWR_DEV_FRAME_CONFIG_APPLY_ MSG

5.19.1 Sub block 0x40C0 - AWR_DEV_FRAME_CONFIG_APPLY_SB

This sub block is used to indicate to MSS to apply all the device configurations in the hardware. This API should be used when lagacy frame config is used.

Table 5.151 describes the content of this sub block.

Table 5.151: AWR_DEV_FRAME_CONFIG_APPLY_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40C0
SBLKLEN	2	Value = 12
NUM_CHIRPS	4	Number of chirps per frame

Table 5.151 - continued from previous page

HALF_WORDS_ PER_CHIRP	2	Number of half words in ADC buffer per chirp Example 1: In real mode, if number of ADC samples per chirp is 256 then this value will be 256 Example 2: In complex1x or complex2x modes, if number of ADC samples per chirp is 256 then this value will be 512
RESERVED	2	0x0000

5.19.2 Sub block 0x40C1 - AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB

This sub block is used to indicate to MSS to apply all the advanced frame configuration settings in the hardware. This API should be used when advance frame config is used. Table 5.152 describes the content of this sub block.

Table 5.152: AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40C1
SBLKLEN	2	Value = 40
NUM_SUB- FRAMES	1	Number of sub frames enabled in this frame Valid range: 1 to 4
RESERVED	3	0x00
SF1_TOT_NUM_ CHIRPS	4	Number of chirps in sub frame 1

Table 5.152 – continued from previous page

SF1_NUM_ADC_ SAMPLES_PER_ DATA_PKT SF1_PROC_ NUM_CHIRPS_	1	Number of half words (16 bits) of ADC samples per data packet in sub-frame 1 Example 1: In real mode, if number of ADC samples per chirp in subframe1 is 256 then this value will be 256 Example 2: In complex1x or complex2x modes, if number of ADC samples per chirp in subframe1 is 256 then this value will be 512 In AWR2243/AWR1243/xWR1443: Program this as the same as number of ADC samples in each chirp of this sub frame (required to be the same) Exception: Can do #chirps based ping-pong as in xWR1642 (see below), if CP/CQ are not needed. Useful for chirp stitching use case. In xWR1642/xWR1843 (For reference Only): The ADC samples corresponding to one or more chirps can be grouped and sent to the DSP as a single packet. Program this as the number of half words of ADC samples per packet. Ensure that in one sub frame, there is integer number of such packets. Maximum size of a data packet: (16384 - 1) half words. Number of chirps per data packet to process at a time in sub-frame 1.
PER_DATA_PKT		sub-frame 1. In AWR2243/AWR1243/xWR1443: Program this as 1. Exception: Can be > 1 as in 1642 if CP/CQ is not needed. Useful for chirp stitching use case. In xWR1642/xWR1843 (For reference Only): The ADC samples corresponding to one or more chirps can be grouped and sent to the DSP as a single packet. Program this as the corresponding number of chirps per packet. Maximum value = 8. Note on maximum size: 8 chirps for CP and BPM.
RESERVED	1	0x00
SF2_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame 2
SF2_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC Samples per data packet in sub-frame 2 Same conditions apply as in sub-frame 1.
SF2_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 2 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00
SF3_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame3

Table 5.152 - continued from previous page

SF3_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC samples per data packet in sub-frame 3 Same conditions apply as in sub-frame 1.
SF3_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 3 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00
SF4_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame4
SF4_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC samples per data packet in sub-frame 4 Same conditions apply as in sub-frame 1.
SF4_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 4 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00

5.20 Sub blocks related to AWR_DEV_STATUS_GET_MSG

5.20.1 Sub block 0x40E0 - AWR_MSSVERSION_GET_SB

This sub block reads MSS FW version. The information returned by the device will be in the format as given in AWR_MSSVERSION_SB.

Table 5.153 describes the contents of the request sub block

Table 5.153: AWR_MSSVERSION_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E0
SBLKLEN	2	Value = 4

Response to AWR_MSSVERSION_GET_SB

AWR_MSSVERSION_SB sub block is sent by the radar device in response to AWR_MSSVERSION_GET_SB. Note that SBLKID for both AWR_MSSVERSION_GET_SB and AWR_MSSVERSION_SB are same.

Table 5.154 describes the contents of the response sub block.

Table 5.154: AWR_MSSVERSION_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40E0	
SBLKLEN	2	Value = 20	
HW_VARIANT	1	HW variant number	
HW_VERSION_ MAJOR	1	HW version major number	
HW_VERSION_ MINOR	1	HW version minor number	
MSS_FW_VER- SION_MAJOR	1	MSS FW version major number	
MSS_FW_VER- SION_MINOR	1	MSS FW version minor number	
MSS_FW_VER- SION_BUILD	1	MSS FW version build number	
MSS_FW_VER- SION_DEBUG	1	MSS FW version debug number	
MSS_FW_VER- SION_YEAR	1	Year of MSS FW version release	
MSS_FW_VER- SION_MONTH	1	Month of MSS FW version release	
MSS_FW_VER- SION_DAY	1	Day of MSS FW version release	
MSS_FW_VER- SION_PATCH_ MAJOR	1	MSS FW version patch major number	
MSS_FW_VER- SION_PATCH_ MINOR	1	MSS FW version patch minor number	
MSS_FW_VER- SION_PATCH_ YEAR	1	Year of MSS FW patch release	
MSS_FW_VER- SION_PATCH_ MONTH	1	Month of MSS FW patch release	
MSS_FW_VER- SION_PATCH_ DAY	1	Day of MSS FW patch release	

Table 5.154 - continued from previous page

MSS_FW_	1	Bit	Definition
PATCH_BUILD_		b3:0	DEBUG version number
DEBUG_VER- SION		b7:4	BUILD version number

5.20.2 Sub block 0x40E1 - AWR_MSSCPUFAULT_STATUS_GET_SB

This sub block provides the MSS CPU fault information.

Table 5.155 describes the content of this sub block.

Table 5.155: AWR_MSSVERSION_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40E1	
SBLKLEN	2	Value = 4	

Response to AWR_MSSCPUFAULT_STATUS_GET_SB

AWR_MSSCPUFAULT_STATUS_SB is sent in response to AWR_MSSCPUFAULT_STATUS_GET_
SB

Table 5.156 describes the content of AWR_MSSCPUFAULT_STATUS_SB

 ${\bf Table~5.156:~AWR_MSSCPUFAULT_STATUS_SB~contents}$

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40	E1
SBLKLEN	2	Value = 36	
FAULT_TYPE	1	Value	Definition
		0	MSS Processor Undefined Instruction Abort
		1	MSS Processor Instruction pre-fetch Abort
		2	MSS Processor Data Access Abort
		3	MSS Processor Firmware Fatal Error
		4	MSS Processor Chirp Errors
		5	MSS Processor Register read-back errors
		0x6-0xFF	Reserved
RESERVED	1	0x00	

Table 5.156 – continued from previous page

LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.		
FAULT_LR	4	The instruction PC address at which Fault occurred in case of FAULT type is 0x0 - 0x3 The register address incase of failure for Fault type 0x5		
FAULT_PREV_ LR	4	The return address of the function from which fault function has been called (Call stack LR) in case of FAULT type is 0x0-0x3 The register read-back value in case of FAULT type 0x5		
FAULT_SPSR	4	The CPSR register value at which fault occurred in case of FAULT type is 0x0-0x3 The regsiter write value in case of FAULT type is 0x5		
FAULT_SP	4	The SP register value at which fault occurred		
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)		
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2) 0x000 BACKGROUND_ERR 0x001 ALIGNMENT_ERR 0x002 DEBUG_EVENT 0x00D PERMISSION_ERR 0x008 SYNCH_EXTER_ERR 0x406 ASYNCH_EXTER_ERR 0x409 SYNCH_ECC_ERR 0x408 ASYNCH_ECC_ERR		
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2) 0x0		
FAULT_AXI_ ERROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2) 0x0		
FAULT_AC- CESS_TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR 0x1 WRITE_ERR		

Table 5.156 - continued from previous page

FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)	
		0x0 UNRECOVERY	
		0x1 RECOVERY	
RESERVED	2	0x0000	

5.20.3 Sub block 0x40E2 - AWR_MSSESMFAULT_STATUS_GET_SB

This sub block provides the information regarding additional Master sub system faults. Table 5.157 describes the content of this sub block.

Table 5.157: AWR_MSSESMFAULT_STATUS_GET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40E2	
SBLKLEN	2	Value = 4	

The Response to above request is given in the AWR_MSSESMFAULT_STATUS_SB. Table 5.158 describes the contents of AWR_MSSESMFAULT_STATUS_SB.

Table 5.158: AWR_MSSESMFAULT_STATUS_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40E2	
SBLKLEN	2	Value = 20	

Table 5.158 – continued from previous page

ESM_GROUP1_	4	Bits	Definition
ERRORS		b0	NERROR in sync
		b1	RESERVED
		b2	DMA MPU Region tests
		b3	DMA Parity error
		b4	RESERVED
		b5	RESERVED
		b6	DSS CSI parity Error
		b7	TPCC parity error
		b8	CBUF ECC single bit error
		b9	CBUF ECC double bit error
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	Error response from the Peripheral when a DMA transfer is done
		b14	RESERVED
		b15	VIM RAM double bit errors
		b16	RESERVED
		b17	MibSPI double bit error test
		b18	DSS TPTC0 read MPU error
		b19	RESERVED
		b20	VIM RAM single bit errors
		b21	RESERVED
		b22	FRC Lock Step Error
		b23	RESERVED
		b24	RESERVED
		b25	MibSPI single bit error test
		b26	TCMB0 RAM single bit errors
		b27	STC error
		b28	TCMB1 RAM single bit errors
		b29	DSS TPTC0 write MPU error
		b30	DCC compare error
		b31	CR4F self-test error.(test of error path by error forcing)

Table 5.158 – continued from previous page

ESM_GROUP2_	4	Bits	Definition
ERRORS	'	b0	TCMA RAM single bit errors
		b1	RESERVED
		b2	RESERVED
		b3	DSS TPTC1 read MPU error
		b4	DSS TPTC1 write MPU error
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	VIM Self-Test Error
			RESERVED
		b8	
		b9	RESERVED
		b10	RESERVED RESERVED
		b11	
		b12	RESERVED
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	RESERVED
		b17	RESERVED
		b18	RESERVED
		b19	RESERVED
		b20	RESERVED
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	BSS to MSS ESM G2 Trigger
		b26	BSS Mailbox single bit errors
		b27	BSS Mailbox double bit errors
		b28	MSS Mailbox single bit errors
		b29	MSS Mailbox double bit errors
		b30	RESERVED
		b31	RESERVED
RESERVED	4	0x00000	0000
RESERVED	4	0x00000000	

5.21 Sub blocks related to AWR_DEV_ASYNC_EVENT_MSG

5.21.1 Sub block 0x5000 - AWR_AE_DEV_MSSPOWERUPDONE_SB

This sub block indicates that Master SS power up is now complete. It also indicates the status of boot up tests done by Master SS. This async event is sent when host IRQ is enabled. Table 5.159 describes the contents of this sub block

Table 5.159: AWR_AE_DEV_MSSPOWERUPDONE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5000
SBLKLEN	2	Value = 24
MSS_ POWERUP_ TIME	4	Master SS power up time 1 LSB = 5 ns
MSS_ POWERUP_ STATUS	8	Refer to Table 7.3 for bit map details

Table 5.159 – continued from previous page

DOOTTEST			o 4 54
BOOTTEST_ STATUS	8		S, 1 – FAIL
GIAIUG		Bit	Definition MihCRI and the act
		b0	MibSPI self-test
		b1	DMA self-test
		b2	RESERVED
		b3	RTI self-test
		b4	ESM self-test
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	MPU self-test
		b9	Mailbox self-test
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error test
		b16	RESERVED
		b17	RESERVED
		b18	RESERVED
		b19	RESERVED
		b20	RESERVED
		b21	RESERVED
		b22	VIM lockstep test
		b23	CCM R4 lockstep test
		b24	DMA MPU region test
		b25	MSS Mailbox single bit error test
		b26	MSS Mailbox double bit error test
		b27	BSS Mailbox single bit error test
		b28	BSS Mailbox double bit error test
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	RESERVED
		b32	RESERVED
		b33	RESERVED
		b34	PCR test
		b35	VIM RAM parity test
		b36	SCI boot time test
		b63:37	RESERVED

Table 5.159 - continued from previous page

NOTE:	The functional APIs shall be sent to radar device only after receiv-
	ing AWR_AE_DEV_MSSPOWERUPDONE_SB Async-event after
	power cycle.

5.21.2 Sub block 0x5001 - AWR_AE_DEV_RFPOWERUPDONE_SB

This sub block indicates that BIST SS power up is now complete. Table 5.160 describes the contents of this sub block

Table 5.160: AWR_AE_DEV_RFPOWERUPDONE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5001
SBLKLEN	2	Value = 20

Table 5.160 – continued from previous page

BSS	4	1 – PAS	S, 0 – FAIL	
POWERUP_		Bit	Status Information	
BIST_STATUS_		b0	ROM CRC check	
FLAGS		b1	CR4 and VIM lockstep test	
		b2	RESERVED	
		b3	VIM test	
		b4	STC test of diagnostic	
		b5	CR4 STC	
		b6	CRC test	
		b7	RAMPGEN memory ECC test	
		b8	DFE Parity test	
		b9	DFE memory ECC	
		b10	RAMPGEN lockstep test	
		b11	FRC lockstep test	
		b12	DFE memory PBIST	
		b13	RAMPGEN memory PBIST	
		b14	PBIST test	
		b15	WDT test	
		b16	ESM test	
		b17	DFE STC	
		b18	RESERVED	
		b19	ATCM, BTCM ECC test	
		b20	ATCM, BTCM parity test	
		b21	DCC test (Supported only on AWR2243 device)	
		b22	RESERVED	
		b23	RESERVED	
		b24	FFT test	
		b25	RTI test	
		b26	PCR test	
		b31:27	RESERVED	
POWERUP_	4		SS Power up time	
TIME		1 LSB =		
RESERVED	4	0x00000000		
RESERVED	4	0x00000000		

5.21.3 Sub block 0x5002 - AWR_AE_MSS_CPUFAULT_SB

This sub block indicates CPU fault status of Master SS. Table 5.161 describes the content of this sub block.

Table 5.161: AWR_AE_MSS_CPUFAULT_STATUS_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5002	
SBLKLEN	2	Value = 36	
FAULT_TYPE	1	0 MSS Processor Undefined Instruction Abort	
		1 MSS Processor Instruction pre-fetch Abort	
		2 MSS Processor Data Access Abort	
		3 MSS Processor Firmware Fatal Error	
		4 MSS Processor Chirp Errors	
		5 MSS Processor Register read-back errors	
		0x6- Reserved 0xFF	
RESERVED	1	0x00	
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.	
FAULT_LR	4	The instruction PC address at which Fault occurred in case of FAULT type is 0x0 - 0x3	
		The register address incase of failure for Fault type 0x5	
FAULT_PREV_ LR	4	The return address of the function from which fault function has been called (Call stack LR) in case of FAULT type is 0x0-0x3 The register read-back value in case of FAULT type 0x5	
FAULT SPSR	4	The CPSR register value at which fault occurred in case of	
	·	FAULT type is 0x0-0x3 The regsiter write value in case of FAULT type is 0x5	
FAULT_SP	4	The SP register value at which fault occurred	
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)	

Table 5.161 - continued from previous page

		· · · · · · · · · · · · · · · · · · ·
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)
		0x000 BACKGROUND ERR
		0x001 ALIGNMENT ERR
		0x002 DEBUG EVENT
		0x00D PERMISSION ERR
		0x008 SYNCH EXTER ERR
		0x406 ASYNCH EXTER ERR
		0x409 SYNCH ECC ERR
		0x408 ASYNCH ECC ERR
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2) 0x0 ERR_SOURCE_AXI_MASTER
		0x1 ERR SOURCE ATCM
		0x2 ERR_SOURCE_BTCM
FAULT_AXI_ ERROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)
		0x0 AXI_DECOD_ERR
		0x1 AXI_SLAVE_ERR
FAULT_AC- CESS_TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2)
		0x0 READ_ERR
		0x1 WRITE_ERR
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)
		0x0 UNRECOVERY
		0x1 RECOVERY
RESERVED	2	0x0000

5.21.4 Sub block 0x5003 - AWR_AE_MSS_ESMFAULT_STATUS_SB

This sub block indicates any other faults inside the MSS.

Table 5.162 describes the content of this sub block.

${\bf Table~5.162:~AWR_AE_MSS_ESMFAULT_STATUS_SB~contents}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5003
SBLKLEN	2	Value = 20

Table 5.162 – continued from previous page

ESM_GROUP1_	4	Bits	Definition
ERRORS		b0	NERROR in sync
		b1	RESERVED
		b2	DMA MPU Region tests
		b3	DMA Parity error
		b4	RESERVED
		b5	RESERVED
		b6	DSS CSI parity Error
		b7	TPCC parity error
		b8	CBUF ECC single bit error
		b9	CBUF ECC double bit error
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	Error response from the Peripheral when a DMA transfer is done
		b14	RESERVED
		b15	VIM RAM double bit errors
		b16	RESERVED
		b17	MibSPI double bit error test
		b18	DSS TPTC0 read MPU error
		b19	RESERVED
		b20	VIM RAM single bit errors
		b21	RESERVED
		b22	FRC Lock Step Error
		b23	RESERVED
		b24	RESERVED
		b25	MibSPI single bit error test
		b26	TCMB0 RAM single bit errors
		b27	STC error
		b28	TCMB1 RAM single bit errors
		b29	DSS TPTC0 write MPU error
		b30	DCC compare error
		b31	CR4F self-test error.(test of error path by error forcing)

Table 5.162 – continued from previous page

ESM_GROUP2_	4	Bits	Definition
ERRORS		b0	TCMA RAM single bit errors
		b1	RESERVED
		b2	RESERVED
		b3	DSS TPTC1 read MPU error
		b4	DSS TPTC1 write MPU error
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	VIM Self-Test Error
		b8	RESERVED
		b9	RESERVED
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	RESERVED
		b17	RESERVED
		b18	RESERVED
		b19	RESERVED
		b20	RESERVED
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	BSS to MSS ESM G2 Trigger
		b26	BSS Mailbox single bit errors
		b27	BSS Mailbox double bit errors
		b28	MSS Mailbox single bit errors
		b29	MSS Mailbox double bit errors
		b30	RESERVED
		b31	RESERVED
RESERVED	4	0x00000	0000
RESERVED	4	0x00000000	

NOTE:	The FRC lockstep fatal error is connected to MSS ESM Group 1
	lines, This fatal error must be handled in Host in AWR2243 device
	(MSS or DSS in xWR1642, xWR1843 and xWR6843 devices)

5.21.5 Sub block 0x5004 - RESERVED

5.21.6 Sub block 0x5005 - AWR_AE_MSS_BOOTERRORSTATUS_SB

This sub block indicates error status of MSS when booted over SPI. This async event is sent after the bootup over SPI is complete.

Table 5.163 describes the content of this sub block.

Table 5.163: AWR_AE_MSS_BOOTERRORSTATUS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5005
SBLKLEN	2	Value = 24
MSS_ POWERUP_ TIME	4	Master SS power up time 1 LSB = 5 ns
MSS_ POWERUP_ STATUS	8	Refer to Table 7.3 for bit map details

Table 5.163 – continued from previous page

Table 5.163 – continued from previous page				
BOOTTEST_	8		S, 1 – FAIL	
STATUS		Bit	Definition	
		b0	MibSPI self-test	
		b1	DMA self-test	
		b2	RESERVED	
		b3	RTI self-test	
		b4	ESM self-test	
		b5	EDMA self-test	
		b6	CRC self-test	
		b7	VIM self-test	
		b8	MPU self-test	
		b9	Mailbox self-test	
		b10	RESERVED	
		b11	RESERVED	
		b12	RESERVED	
		b13	MibSPI single bit error test	
		b14	MibSPI double bit error test	
		b15	DMA Parity error test	
		b16	RESERVED	
		b17	RESERVED	
		b18	RESERVED	
		b19	RESERVED	
		b20	RESERVED	
		b21	RESERVED	
		b22	VIM lockstep test	
		b23	CCM R4 lockstep test	
		b24	DMA MPU region test	
		b25	MSS Mailbox single bit error test	
		b26	MSS Mailbox double bit error test	
		b27	BSS Mailbox single bit error test	
		b28	BSS Mailbox double bit error test	
		b29	EDMA MPU test	
		b30	EDMA parity test	
		b31	RESERVED	
		b32	RESERVED	
		b33	RESERVED	
		b34	PCR test	
		b35	VIM RAM parity test	
		b36	SCI boot time test	
		b63:37	RESERVED	

NOTE:

Table 5.163 – continued from previous pag	e
The functional APIs shall be sent to radar d	evice only after receiv-
ing AWR_AE_MSS_BOOTERRORSTATUS	_SB Async-event after

5.21.7 Sub block 0x5006 - AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB

This sub block indicates the test status report of the latent fault tests. Table 5.164 describes the content of this sub block.

power-cycle.

Table 5.164: AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5006	
SBLKLEN	2	Value = 16	

Table 5.164 – continued from previous page

TEST_STATUS_ 4 1 – PASS, 0 - FAIL				
FLAG1		Bits	Definition	
		b0	RESERVED	
		b1	DMA self-test	
		b2	RESERVED	
		b3	RTI self-test	
		b4	RESERVED	
		b5	EDMA self-test	
		b6	CRC self-test	
		b7	VIM self-test	
		b8	RESERVED	
		b9	Mailbox self-test	
		b10	RESERVED	
		b11	RESERVED	
		b12	Generating NERROR	
		b13	MibSPI single bit error test	
		b14	MibSPI double bit error test	
		b15	DMA Parity error	
		b16	TCMA RAM single bit errors (Not supported, refer latest release note)	
		b17	TCMB RAM single bit errors (Not supported, refer latest release note)	
		b18	TCMA RAM double bit errors (Not supported, refer latest release note)	
		b19	TCMB RAM double bit errors (Not supported, refer latest release note)	
		b20	TCMA RAM parity errors (Not supported, refer latest release note)	
		b21	TCMB RAM parity errors (Not supported, refer latest release note)	
		b22	RESERVED	
		b23	RESERVED	
		b24	DMA MPU Region tests	
		b25	MSS Mailbox single bit errors	
		b26	MSS Mailbox double bit errors	
		b27	BSS Mailbox single bit errors	
		b28	BSS Mailbox double bit errors	
		b29	EDMA MPU test	
		b30	EDMA parity test	
		b31	CSI2 parity test	

Table 5.164	 – continued from 	previous page
Table 3.104	- continued nom	previous page

TEST_STATUS_	4	Bits	Definition
FLAG2		b0	RESERVED
		b1	RESERVED
		b2	RESERVED
		b3	VIM RAM parity test
		b4	SCI boot time test
		b31:5	RESERVED
RESERVED	4	0x00000000	

5.21.8 Sub block 0x5007 - AWR_AE_MSS_PERIODICTEST_STATUS_SB

This sub block indicates test status of the periodic tests.

Table 5.165 describes the content of this sub block.

Table 5.165: AWR_AE_MSS_PERIODICTEST_STATUS_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5007	
SBLKLEN	2	Value = 12	
TEST_STATUS_ FLAG	4	1 – PASS, 0 – FAIL Bits Definition b0 Periodic read back of static registers b1 ESM self-test b31:2 RESERVED	
RESERVED	4	0x00000000	

5.21.9 Sub block 0x5008 - AWR_AE_MSS_RFERROR_STATUS_SB

This sub block indicates the RF error status.

Table 5.166 describes the content of this sub block.

Table 5.166: AWR_AE_MSS_RFERROR_STATUS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5008

Table 5.166 - continued from previous page

SBLKLEN	2	Value = 12	
ERROR_STA-	4	Value	Definition
TUS_FLAG		0	No fault
		1	BSS FW assert
		2	BSS FW abort
		3	BSS ESM GROUP1 ERROR
		4	BSS ESM GROUP2 ERROR
		6-5	RESERVED
		7	BSS monitoring failure in Mode 1(Quiet mode)
		Others	RESERVED
RESERVED	4	0x00000	0000

- 5.21.10 Sub block 0x5009 RESERVED
- 5.21.11 Sub block 0x500A RESERVED
- 5.21.12 Sub block 0x500B RESERVED

6 API Programming Sequence

6.1 Single device mode

This section briefly describes in which order to issue the various API SBs defined in this document for a single device.

- 1. Power up the device
- 2. Wait for AWR_AE_MSSPOWERUPDONE_SB
- 3. AWR_DEV_CONFIGURATION_SET_SB
- 4. AWR_DEV_RFPOWERUP_SB
- 5. Wait for AWR_AE_RFPOWERUPDONE_SB
- 6. AWR RF STATIC CONF SET MSG
 - a. AWR_RF_DEVICE_CFG_SB
 - b. AWR_CHAN_CONF_SET_SB
 - c. AWR_ADCOUT_CONF_SET_SB
 - d. AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN set to 1 if RF supply is 1.0 V
 - e. AWR_LOWPOWERMODE_CONF_SET_SB
 - f. AWR_DYNAMICPOWERSAVE_CONF_SET_SB
 - g. AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB
 - h. AWR_RF_RADAR_MISC_CTL_SB if per chirp phase shifter and Advance chirp configuration needs to be enabled.
 - i. AWR_APLL_SYNTH_BW_CONTROL_SB
- 7. Data path configurations
 - a. AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
 - b. AWR_DEV_RX_DATA_PATH_CONF_SET_SB
 - c. AWR_DEV_RX_DATA_PATH_LANE_EN_SB
 - d. AWR_DEV_RX_DATA_PATH_CLK_SET_SB
 - e. AWR HIGHSPEEDINTFCLK CONF SET SB
 - f. AWR_DEV_LVDS_CFG_SET_SB / AWR_DEV_CSI2_CFG_SET_SB

8. AWR RF INIT MSG

- a. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX0), keep CAL_APPLY = 0
- b. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX1), keep CAL_APPLY = 0
- c. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX2), keep CAL_APPLY = 1
- d. AWR_CAL_DATA_RESTORE_SB (To restore factory calibration data to avoid on field RF interference during calibration)
- e. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
- f. AWR_RF_INIT_CALIBRATION_CONF_SB (Enable only required calibration to run)
- g. AWR_RFINIT_SB: This triggers very basic calibrations and RF initializations
- h. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
- 9. AWR_RF_DYNAMIC_CONF_SET_MSG
 - a. AWR_PROG_FILT_COEFF_RAM_SET_SB (Applicable only in xWR1642/IWR6843/xWR1843)
 - b. AWR PROG FILT CONF SET SB (Applicable only in xWR1642/IWR6843/xWR1843)
 - c. AWR_PROFILE_CONF_SET_SB
 - d. Chirp configuration API
 - a. AWR_CHIRP_CONF_SET_SB or
 - b. AWR_ADVANCE_CHIRP_CONF_SB and
 - c. AWR ADVANCE CHIRP GENERIC LUT LOAD SB
 - e. AWR_LOOPBACK_BURST_CONF_SET_SB (if using loopback burst in advance frame config API)
 - f. AWR_FRAME_CONF_SET_SB or AWR_ADVANCED_FRAME_CONF_SB with SW or HW triggered mode.
 - g. AWR_CALIB_MON_TIME_UNIT_CONF_SB with CALIB_MON_TIME_UNIT value set to a value such that the total frame idle time across multiple CALIB_MON_TIME_ UNITs is sufficient for all calibrations and monitoring. See Section 12 for details on calibration and monitoring durations. If any error AWR_CAL_MON_TIMING_FAIL_ REPORT_AE_SB AE will be generated when frame is triggered. The calibrations and monitors will not run properly if this error is generated.
 - h. AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB (set all ONE_TIME_ CALIB_ENABLE_MASK and set ENABLE_CAL_REPORT = 1)
 - i. Wait for AWR RUN TIME CALIBRATION SUMMARY REPORT AE SB
 - j. AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB (set all RUN_TIME_ CALIB_ENABLE_MASK and set ENABLE_CAL_REPORT = 0 to avoid receiving periodic async events)

k. AWR_DEV_FRAME_CONFIG_APPLY_SB or AWR_DEV_ADV_FRAME_CONFIG_ APPLY_SB

10. MONITOR CONFIGURATIONS

- a. AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB : Wait for AWR_MONITOR_ RF_DIG_LATENTFAULT_REPORT_AE_SB AE. This API should not be issue when frames are running.
- b. AWR_MSS_LATENTFAULT_TEST_CONF_SB: Wait for AWR_AE_MSS_LATENTFAULT_ TESTREPORT_SB AE.
- c. AWR_MSS_PERIODICTESTS_CONF_SB: Enable periodic digital monitors, the monitor starts immediately after enabling this API.
- d. AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB: Enable periodic digital monitors
- e. AWR_MONITOR_ANALOG_ENABLES_CONF_SB: Enable periodic analog monitors, The corresponding monitoring configuration APIs should be issued after issuing this API. Refer latest release note for all supported monitors.

11. AWR_RF_FRAME_TRIG_MSG

a. AWR_FRAMESTARTSTOP_CONF_SB in Start mode (1): after this, frames get transmitted, wait for AWR_AE_RF_FRAME_TRIGGER_RDY_SB AE.

12. AWR_RF_FRAME_TRIG_MSG

a. AWR_FRAMESTARTSTOP_CONF_SB in Stop mode (0): after this, frames are stopped. Wait for AWR_FRAME_END_AE_SB AE. The AWR_RF_FRAME_TRIG_MSG may be issued multiple times for multiple sets of frames. Refer AWR_FRAMESTARTSTOP_ CONF_SB for more frame stop options.

6.2 Cascaded device mode

This section briefly describes in which order to issue the various API SBs defined in this document for master and slave devices in a cascaded configuration.

When using cascaded devices, the reference clock is provided by master to slave. So unless master is powered-up and clock is available from master to slave, the slave device cannot be powered up.

Table 6.1: Sequence of APIs to be issued to master and slave devices in cascaded mode configuration for FMCW mode measurements

SI. No	Master device sequence	Slave device sequence
1	Power up master device	
2	Wait for AWR_AE_DEV_MSSPOWERUP- DONE_SB	

Table 6.1 – continued from previous page

3	AWR_DEV_RFPOWERUP_SB	
4	Wait for AWR_AE_DEV_RFPOWERUP-DONE_SB	
5	AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0001. This will en- able the reference clock for slave device (In AWR2243 this is enabled by default)	
6		Power on slave device
7		Wait for AWR_AE_DEV_MSSPOWERUP-DONE_SB
8		AWR_DEV_RFPOWERUP_SB
9		Wait for AWR_AE_DEV_RFPOWERUP-DONE_SB
10		AWR_CHAN_CONF_SET_SB with CAS-CADING_CFG = 0x0002.
11	AWR_ADCOUT_CONF_SET_SB	AWR_ADCOUT_CONF_SET_SB
12	AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V	AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V
13	AWR_LOWPOWERMODE_CONF_SET_ SB	AWR_LOWPOWERMODE_CONF_SET_ SB
14	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB
15	AWR_RF_INIT_SB	AWR_RF_INIT_SB
16	Wait for AWR_AE_RF_INITALIBSTATUS_ SB	Wait for AWR_AE_RF_INITALIBSTATUS_ SB
17	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB
18	AWR_DEV_RX_DATA_PATH_CONF_ SET_SB	AWR_DEV_RX_DATA_PATH_CONF_ SET_SB
19	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB
20	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB
21	AWR_DEV_RX_DATA_PATH_CLK_SET_ SB	AWR_DEV_RX_DATA_PATH_CLK_SET_ SB
22	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB
23	AWR_PROFILE_CONF_SET_SB	AWR_PROFILE_CONF_SET_SB
24	AWR_CHIRP_CONF_SET_SB	AWR_CHIRP_CONF_SET_SB

Table 6.1 – continued from previous	page
-------------------------------------	------

25	AWR_FRAME_CONF_SET_SB with TRIGGER_SELECT = 0x0001	AWR_FRAME_CONF_SET_SB with TRIGGER_SELECT = 0x0002
26	AWR_DEV_FRAME_CONFIG_APPLY_ MSG	AWR_DEV_FRAME_CONFIG_APPLY_ MSG
27		AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0001
28		Wait for AWR_AE_RF_FRAME_TRIG- GER_RDY_SB
29	AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0001	
30	Wait for AWR_AE_RF_FRAME_TRIGGER_RDY_SB	

6.3 Continuous streaming mode (in single device case)

This section briefly describes in which order to issue the various API SBs defined in this document to enable continuous streaming mode on a single device

- 1. Power up the device
- 2. Wait for AWR_AE_MSSPOWERUPDONE_SB
- 3. AWR_DEV_RFPOWERUP_SB
- 4. Wait for AWR_AE_RFPOWERUPDONE SB
- 5. AWR_RF_MISC_CONF_SET_MSG
- 6. AWR RF STATIC CONF SET MSG
 - a. AWR_CHAN_CONF_SET_SB
 - b. AWR_ADCOUT_CONF_SET_SB
 - c. AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN set to 1 if RF supply is 1.0V
 - d. AWR_LOWPOWERMODE_CONF_SET_SB
 - e. AWR_DYNAMICPOWERSAVE_CONF_SET_SB
- 7. AWR_RF_STATIC_CONF_SET_MSG
- 8. Data path configurations
 - a. AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
 - b. AWR_DEV_RX_DATA_PATH_CONF_SET_SB
 - c. AWR_DEV_RX_DATA_PATH_LANE_EN_SB

- d. AWR_DEV_RX_DATA_PATH_CLK_SET_SB
- e. AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
- f. AWR DEV LVDS CFG SET SB / AWR DEV CSI2 CFG SET SB
- 9. AWR_RF_INIT_MSG
 - a. AWR_RFINIT_SB: This triggers very basic calibrations and RF initializations
 - b. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
- 10. AWR_CONT_STREAMING_MODE_CONF_SET_SB
- 11. AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB
- 12. AWR_CONT_STREAMING_MODE_EN_SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming
- 13. AWR_CONT_STREAMING_MODE_EN_SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming
- 14. Repeat steps 9-11 for a different configuration

6.4 Continuous streaming (CW) mode (in cascaded device case)

Table 6.2: Sequence of APIs to be issued to master and slave devices in cascaded mode for CW mode measurements

SI. No	Master device sequence	Slave device sequence
1	Power up master device	
2	Wait for AWR_AE_DEV_MSSPOWERUP-DONE_SB	
3	AWR_DEV_RFPOWERUP_SB	
4	Wait for AWR_AE_DEV_RFPOWERUP-DONE_SB	
5	AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0001. This will enable the reference clock for slave device	
6		Power on slave device
7		Wait for AWR_AE_DEV_MSSPOWERUP-DONE_SB
8		AWR_DEV_RFPOWERUP_SB
9		Wait for AWR_AE_DEV_RFPOWERUP-DONE_SB

Table 6.2 – continued from previous page

	Table 6.2 — continued from	h
10		AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V
11		AWR_CHAN_CONF_SET_SB with CAS-CADING_CFG = 0x0002.
12	AWR_ADCOUT_CONF_SET_SB	AWR_ADCOUT_CONF_SET_SB
13	AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V	
14	AWR_LOWPOWERMODE_CONF_SET_ SB	AWR_LOWPOWERMODE_CONF_SET_ SB
15	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB
16	AWR_RF_INIT_SB	AWR_RF_INIT_SB
17	Wait for AWR_AE_RF_INITALIBSTATUS_ SB	Wait for AWR_AE_RF_INITALIBSTATUS_ SB
18	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB
19	AWR_DEV_RX_DATA_PATH_CONF_ SET_SB	AWR_DEV_RX_DATA_PATH_CONF_ SET_SB
20	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB
21	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB
22	AWR_DEV_RX_DATA_PATH_CLK_SET_ SB	AWR_DEV_RX_DATA_PATH_CLK_SET_ SB
23	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB
24	AWR_CONT_STREAMING_MODE_ CONF_SET_SB	
25	AWR_CONT_STREAMING_MODE_ EN_SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming	
26		AWR_CONT_STREAMING_MODE_ CONF_SET_SB with the same RF frequency configuration as in master device
27		AWR_CONT_STREAMING_MODE_ EN_SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming

Table 6.2 – continued from previous page

28		AWR_CONT_STREAMING_MODE_ EN_SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming
29	AWR_CONT_STREAMING_MODE_ EN_SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming	
30	Repeat steps 24-29 for a different CW mode configuration	

7 API Error Codes

Table 7.1: BSS API error codes

1	Incorrect API MSGID
2	Sub block not found in the MSG
3	Incorrect Sub block ID
4	Incorrect Sub block length
5	Incorrect Sub block data
6	Error in processing the command
7	Binary file CRC mismatch error
8	Binary file type mismatch w.r.t. magic number
20	Frames are already started when the FRAME_START command was issued
21	Frames are already stopped when the FRAME_STOP command was issued
22	No valid frame configuration API was issued and frames are started
23	START_STOP_CMD parameter is out of range
129	The frame stop option-4 can not be used in Sw triggered mode
24	RX_CHAN_EN parameter is out of range (Max range may vary based on device variant)
25	TX_CHAN_EN parameter is out of range (Max range may vary based on device variant)
26	CASCADING_CFG parameter is out of range [0, 2]
282	Device variant does not allow cascading but API is issued to enable cascading mode
27	NUM_ADC_BITS parameter is out of range [0, 2]
28	ADC_OUT_FMT parameter is out of range [0, 3]
127	FULL_SCALE_REDUCTION_FACTOR is $>$ 0 for 16 bit ADC, or $>$ 2 for 14 bit ADC mode or $>$ 4 for 12 bit ADC mode
29	LP_ADC_MODE parameter is out of range [0, 1]
156	Regular ADC mode is used on a 5 MHz part variant device
	2 3 4 5 6 7 8 20 21 22 23 129 24 25 26 282 27 28 127

Table 7.1 – continued from previous page

AWR_DYNAMICPOW- ERSAVE_CONF_SET_ SB	30	BLOCK_CFG parameter is out of range [0, 7]
	31	HSICLKRATECODE[1:0] is 0
AWR_	32	RESERVED
HIGHSPEEDINTFCLK_ CONF_SET_SB	33	HSICLKRATECODE[3:2] is 3 and HSICLKRATECODE[1:0] is 2
	34	HSICLKRATECODE[3:2] is 3 and HSICLKRATECODE[1:0] is 2
	35	PF_INDX is ≥ 4
	36	PF_FREQ_START_CONST is not within [76, 81] GHz
	37	PF_IDLE_TIME_CONST > 5.24 ms
	38	Maximum DFE spill time (refer rampgen calculator in mmWave Studio for more details)> PF_IDLE_TIME_ CONST
	39	PF_ADC_START_TIME_CONST > 4095
	40	PF_RAMP_END_TIME > 524287
	41	PF_RAMP_END_TIME < PF_ADC_START_TIME_CONST + ADC_SAMPLING_TIME (ADC_SAMPLING_TIME is time taken to sample NUM_ADC_SAMPLES)
AWR PROFILE CONF	42	PF_TX_OUTPUT_POWER_BACKOFF for TX0 > 30
SET_SB	43	PF_TX_OUTPUT_POWER_BACKOFF for TX1 > 30
	44	PF_TX_OUTPUT_POWER_BACKOFF for TX2 > 30
	45	RESERVED
	46	Ramp end frequency is not within [76, 81] GHz
	47	Absolute value of TX_START_TIME is $>$ 38.45 μ s
	48	Number of ADC samples is not within [2, 8192]
	49	Output sampling rate is not within [2, MaxSamplingRate] Msps. See Table 5.24 for the MaxSamplingRate.
	50	HPF1 corner frequency is > 700 kHz
	51	HPF2 corner frequency is > 2.8 MHz
	52	PF_RX_GAIN is not within [24, 52] dB or PF_RX_GAIN is an odd number
	53	RESERVED
	54	RESERVED
	55	RESERVED
	56	RESERVED
	57	RESERVED

Table 7.1 – continued from previous page

	58	RESERVED
AWR_CHIRP_CONF_ SET_SB	59	CHIRP_START_INDX ≥ 512
	60	CHIRP_END_INDX ≥ 512
	61	CHIRP_START_INDX > CHIRP_END_INDX
	62	PROFILE_INDX ≥ 4
	63	If the profile corresponding to PROFILE_INDX is not defined
	64	CHIRP_FREQ_START_VAR > 8388607
	65	CHIRP_FREQ_SLOPE_VAR > 63
	66	Chirp start frequency is outside [76, 78] GHz if the selected VCO is VCO1 or Chirp start frequency is outside [77, 81] GHz if the selected VCO is VCO2 or
		Chirp end frequency is outside [76, 78] GHz if the selected VCO is VCO1 or
		Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp bandwidth is greater than maximum allowed as per
		device data sheet or
		Maximum chirp frequency is greater than maximum allowed as per device data sheet
	67	CHIRP_IDLE_TIME_VAR > 4095
	68	CHIRP_ADC_START_TIME_VAR > 4095
	69	RAMP_END_TIME < ADC_START_TIME + ADC_SAM- PLING_TIME
	70	CHIRP_TX_EN > maximum simultaneous TX allowed as per device data sheet
	71	CHIRP_TX_EN indicates to enable a TX which is not enabled in AWR_CHAN_CONF_SET_SB
	72	CHIRP_START_INDX ≥ 512
	73	CHIRP_END_INDX ≥ 512
	74	CHIRP_START_INDX > CHIRP_END_INDX
AWR_FRAME_CONF_ SET_SB	75	Chirp used in the frame is not configured by AWR_CHIRP_CONF_SET_SB
	76	One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB
	77	NUM_LOOPS is outside [1, 255]
	78	RESERVED
	79	FRAME_PERIODICITY is outside [100 μ s, 1.342 s]
	80	FRAME ON TIME > FRAME PERIODICITY

Table 7.1 – continued from previous page

	1	
	81	TRIGGER_SELECT is outside [1, 2]
	82	FRAME_TRIGGER_DELAY $>$ 100 μ s
	83	API is issued when frames are ongoing
	160	The Dummy chirps at end of frame is not supported
AWR_ADVANCED_ FRAME_CONF_SET_ SB	84	NUM_SUBFRAMES is outside [1, 4]
	85	FORCE_SINGLE_PROFILE is outside [0, 1]
	86	FORCE_SINGLE_PROFILE ≥ 4
	87	Profile defined by FORCE_SINGLE_PROFILE is not defined
	88	SFx_CHIRP_START_INDX ≥ 512
	89	SFx_NUM_UNIQUE_CHIRPS_PER_BURST is outside the range [1, 512]
	90	Chirp used in the frame is not configured by AWR_CHIRP_CONF_SET_SB
	91	One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB
	92	SFx_NUM_LOOPS_PER_BURST is outside the range [1, 255]
	93	SFx_BURST_PERIOD is outside the range [100 μ s, 1.342 s]
	94	Burst ON time is > BURST_PERIOD
	95	SFx_CHIRP_START_INDX_OFFSET \geq 512
	96	$ \begin{array}{l} {\sf SFx_CHIRP_START_INDX} \geq 512 \ {\sf or} \ {\sf SFx_CHIRP_START_INDX} + {\sf SFx_NUM_UNIQUE_CHIRPS_PER_BURST} - 1 \ {\sf is} \\ \geq 512 \end{array} $
	97	SFx_NUM_BURSTS is outside the range [1, 512]
	98	SFx_NUM_OUTER_LOOPS is outside the range [1, 64]
	99	SFx_PERIOD is outside the range [100 μ s, 1.342 s]
	100	Subframe on time $>$ SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is $<$ 150 $\mu \rm{s}$
	101	RESERVED
	102	TRIGGER_SELECT is outside the range [1, 2]
	103	FRAME_TRIGGER_DELAY is $>$ 100 μ s
	104	API is issued when frames are on going
AWR_RF_TEST_ SOURCE_CONFIG_ SET_SB	105	POSITION_VECx[y] < 0
_	106	RESERVED
	I	I and the second

Table 7.1 – continued from previous page

		Johnnaca Irom previous page
	107	VELOCITY_VECx[x] > 5000 or VELOCITY_VECx[y] > 5000 or VELOCITY_VECx[z] > 5000
	108	SIG_LEV_VECx > 950
	109	RX_ANT_POS_XZ[Bytex] > 120
	110	RESERVED
AWR_PROG_FILT_ CONF_SET_SB	111	PROG_FILT_COEFF_START_INDEX is an odd number
	112	PROFILE_INDX ≥ 4
	126	DFE mode is pseudo real
AWR_PROG_FILT_CO- EFF_RAM_SET_SB	113	API is issued for a non xWR1642/xWR1843 device
	126	DFE mode is pseudo real
AWR_RF_RADAR_MISC_ CTL_SB	114	API is issued for an unsupported device
AWR_	115	CHIRP_START_INDX ≥ 512
PERCHIRPPHASESHIFT_	116	CHIRP_END_INDX ≥ 512
CONF_SB	117	CHIRP_START_INDX > CHIRP_END_INDX
AWR_RUN_TIME_CALI- BRATION_CONF_AND_ TRIGGER_SB	118	Boot time calibrations are not done so cannot run runtime calibrations
	286	The forced temperature bin index is invalid
AWR_CAL_MON_FRE- QUENCY_LIMITS_SB	119	FREQ_LIMIT_HIGH < 76 GHz or FREQ_LIMIT_HIGH > 81 GHz or FREQ_LIMIT_LOW > FREQ_LIMIT_HIGH
	130	The minimum RF frequency band is < 200MHz
AWR_CALIB_MON_ TIME_UNIT_CONF_SB	120	CALIB_MON_TIME_UNIT ≤ 0
	128	NUM_OF_CASCADED_DEV ≤ 0
	121	CALIBRATION_PERIODICITY = 0
AWR_RUN_TIME_	122	API is issued when continuous streaming mode is on
CALIBRATION_CONF_ AND_TRIGGER_SB	123	RX gain run time calibration was requested but boot time calibration was not performed
	124	LO distribution run time calibration was requested but boot time calibration was not performed
	125	TX power run time calibration was requested but boot time calibration was not performed
AWD LOOPPACK	132	LOOPBACK_SEL is > 3
AWR_LOOPBACK_ BURST CONF SET SB	133	BURST_INDX ≥ 16
		Continued on port page

Table 7.1 – continued from previous page

	1	
	134	Burst is not valid but loopback is enabled for this burst
AWR_DYN_CHIRP_ CONF_SET_SB	135	CHIRP_SEGMENT_SELECT > 31 if CHIRP_ROW_SE- LECT = 0 or CHIRP_SEGMENT_SELECT > 11 if CHIRP_ROW_SE- LECT != 0
	159	CHIRP_ROW_SELECT > 3
AWR_DYN_PER_CHIRP_ PHASESHIFTER_CONF_ SB	136	CHIRP_SEGMENT_SELECT > 31
AWR_CAL_DATA_RE- STORE_SB	137	CHUNK_ID ≥ NUM_CHUNKS
	138	CAL_DATA is invalid
AWR_INTERCHIRP_ BLOCKCONTROLS_SB	139	RX02_RF_TURN_OFF_TIME is not within the range [-1024, 1023]
	140	RX13_RF_TURN_OFF_TIME is not within the range [-1024, 1023]
	141	RX02_BB_TURN_OFF_TIME is not within the range [-1024, 1023]
	142	RX13_BB_TURN_OFF_TIME is not within the range [-1024, 1023]
	143	RX02_RF_PREENABLE_TIME is not within the range [-1024, 1023]
	144	RX13_RF_PREENABLE_TIME is not within the range [-1024, 1023]
	145	RX02_BB_PREENABLE_TIME is not within the range [-1024, 1023]
	146	RX13_BB_PREENABLE_TIME is not within the range [-1024, 1023]
	147	RX02_RF_TURN_ON_TIME is not within the range [-1024, 1023]
	148	RX13_RF_TURN_ON_TIME is not within the range [-1024, 1023]
	149	RX02_BB_TURN_ON_TIME is not within the range [-1024, 1023]
	150	RX13_BB_TURN_ON_TIME is not within the range [-1024, 1023]
	151	RX_LO_TURN_OFF_TIME is not within the range [-1024, 1023]
	152	TX_LO_TURN_OFF_TIME is not within the range [-1024, 1023]

Table 7.1 – continued from previous page

153	RX_LO_TURN_ON_TIME is not within the range [-1024, 1023]
154	TX_LO_TURN_ON_TIME is not within the range [-1024, 1023]
155	Sub-frame start command is issued but the frame is not configured for sub frame trigger mode
300	Invalid CHIRP_PARAM_INDEX
301	Invalid GLOBAL_RESET_MODE
302	Reserved
303	Invalid update period DELTA_PARAM_UPDATE_PERIOD or LUT_PARAM_UPDATE_PERIOD
304	Invalid fixed delta parameter SFn_CHIRP_PARAM_DELTA
305	Invalid reset period DELTA_RESET_PERIOD or LUT_RE-SET_PERIOD
306	Invalid LUT address LUT_PATTERN_ADDRESS_OFFSET
307	Invalid number of patterns in LUT NUM_OF_PATTERNS
308	Invalid LUT index offset value BURST_LUT_INDEX_OFF- SET or SF_LUT_INDEX_OFFSET
309	Invalid LUT_CHIRP_PARAM_SIZE and LUT_CHIRP_PARAM_SCALE
310	Invalid legacy APIs are issued when advance chirp config API is enabled
311	All chirp parameters are not defined in advance chirp API
312	Invalid TX phase shifter dither value MAX_TX_PHASE_ SHIFTER_INTERNAL_DITHER
313	Insufficient number of NUM_OF_PATTERNS programmed compared to actual programmed chirps (array out of bound error)
315	Invalid num of chirps programmed in frame config API
314	Invalid num of bytes NUM_OF_BYTES
250	Device type is not ASILB
251	Fault injection API or Digital latent fault API is issued when frames are ongoing
252	Invalid reporting mode
253	Configured profile ID is not within [0, 3]
254	Monitoring profile ID is not configured yet
260	Invalid RF bit mask
	154 155 300 301 302 303 304 305 306 307 308 309 310 311 312 313 315 314 250 251 252 253 254

Table 7.1 – continued from previous page

	281	Analog monitoring is not supported
	290	Monitoring chirp error
AWR_MONITOR_RF_ DIG_LATENTFAULT_ CONF_SB	251	API is issued when frames are on-going
AWR_MONITORING_ EXTERNAL_ANALOG_ SIGNALS_CONF_SB	255	Settling time is configured is more than 12 μ s
AWR_MONITOR_RX_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	256	None of the RXs are enabled
AWR_MONITOR_TX0_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	257	TX0 is not enabled
AWR_MONITOR_TX1_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	258	TX1 is not enabled
AWR_MONITOR_TX2_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	259	TX2 is not enabled
-	261	RESERVED
-	262	RESERVED
AWR_MONITOR_TXn_ BALLBREAK_CONF_SB	263	Monitored TX channel is not enabled
AWR_MONITOR_RX_ GAIN_PHASE_CONF_SB	264	Monitored RX channel is not enabled
AWR_MONITOR_RX_ NOISE_FIGURE_CONF_ SB		
AWR_MONITOR_RX_	265	TX selected for RX gain phase monitor is TX2 (Only TX0 or TX1 is allowed)
GAIN_PHASE_CONF_SB	291	PD power level is less than -40dBm (Used for RX Gain Monitor)
	295	PGA Gain used for monitoring is incorrect
AWR_MONITOR_RX_ SATURATION_ DETECTOR CONF SB	266	SAT_MON_SEL is not in [0, 3]
	267	SAT_MON_PRIMARY_TIME_SLICE_DURATION is less than 0.64 μ s or greater than ADC sampling time
DETECTOR_OOM _OD	268	SAT_MON_NUM_SLICES is 0 or greater than 127
	283	RX saturation monitor is not supported
AWR MONITOR SIG	269	SIG IMG MON NUM SLICES is 0 or greater than 127

IMG_MONITOR_CONF_ SB

Table 7.1 – continued from previous page

	270	NUM_SAMPLES_PER_PRIMARY_TIME_SLICE is odd, or less than 4 in Complex1x mode or less than 8 in non-Complex1x modes or greater than NUM_ADC_SAMPLES
	280	Signal and image band monitor is not supported
AWR_ANALOG_FAULT_ INJECTION_CONF_SB	279	LDO fault inject is requested but LDOs are bypassed
AWR_MONITOR_TXn_ POWER_CONF_SB	294	PD Reading incorrect (RF OFF reading higher than RF ON reading)
AWR_MONITOR_TXn_ BALLLBREAK_CONF_SB		
AWR_MONITOR_RX_ INTERNAL_ANALOG_ SIGNALS_CONF_SB		
AWR_MONITOR_RX_ GAIN_PHASE_CONF_SB	292	ADC power level higher than +7 dBm or lower than -9.5 dBm
AWR_MONITOR_TX_ GAIN_PHASE_CONF_SB		
AWR_MONITOR_TXn_ PHASE_SHIFTER_ CONF_SB		
AWR_MONITOR_RX_ NOISE_FIGURE_CONF_ SB	293	Low RX noise figure (Noise Figure is less than 0 dB)
AWR_MONITOR_PM- CLKLO_INTERNAL_ ANALOG_SIGNALS_ CONF_SB	296	The 20G monitor is not supported in single chip configuration
AWR_MONITOR_	274	MONITOR_START_TIME is outside the specified range.
SYNTHESIZER_	297	MONITOR_CONFIG_MODE is invalid.
FREQUENCY_CONF_SB	298	The both Live and Non-live synth frequency monitors are cannot be enabled together.
AWR_MONITOR_TX_ GAIN_PHASE_CONF_SB	317	Invalid RX mask or the RX mask is not enabled in channel configuration API
AWR_MONITOR_TXn_ PHASE_SHIFTER_ CONF_SB		
AWR_MONITOR_TXn_ PHASE_SHIFTER_ CONF_SB	316	Invalid phase mask or at least one of the phase should be enabled for monitoring
AWR_MONITOR_TYPE_ TRIG_CONF_SB	284	RL_API_NRESP_ANA_MON_MODE_NOT_API_BASED (Monitoring trigger API is not supported in autonomous mode of operation)

Table 7.1 – continued from previous page

285	RL_API_NRESP_ANA_MON_TRIG_TYPE_INVALID (Moni-
	toring trigger bit masks are all zeros in AWR_MONITOR_
	TYPE_TRIG_CONF_SB)

Table 7.2: MSS API error codes (Applicable only in AWR1243/AWR2243)

	1	Incorrect API MSGID
	2	Sub block not found in the MSG
	3	Incorrect Sub block ID
Applicable to all API sub	4	Incorrect Sub block length
blocks	5	Incorrect Sub block data
	6	Error in processing the command
	7	Binary file CRC mismatch error
	8	Binary file type mismatch w.r.t. magic number
AWR_DEV_RX_DATA_ FORMAT_CONF_SET_SB	1001	RX_CHAN_EN > 0xF
	1002	NUM_ADC_BITS > 2
	1003	ADC_OUT_FMT > 1
	1004	IQ_SWAP_SEL > 1
	1005	CHAN_INTERLEAVE > 1
AWR_DEV_RX_DATA_ PATH_CONF_SET_SB	1006	DATA_INTF_SEL > 1
	1007	DATA_TRANS_FMT_PKT0 [5:0] not a valid value. Valid set {0x1, 0x6, 0x9, 0x36}
	1008	DATA_TRANS_FMT_PKT1 [5:0] not a valid value. Valid set {0x0, 0xD, 0xB}
	1050	CQ_CONFIG is out of range
AWR_DEV_RX_DATA_ PATH_LANEEN_SET_SB	1009	LANE_EN > 0xF
	1010	Reserved
AWR_DEV_RX_DATA_ PATH_CLK_SET_SB	1011	LANE_CLK_CFG > 1
	1012	LANE_CLK_CFG != 1 for CSI2
	1013	DATA_RATE - Invalid combination of data rate and DDR or SDR operation
AWR_DEV_LVDS_CFG_ SET_SB	1014	LANE_FMT_MAP > 1
	1015	LANE_PARAM_CFG > 7

Table 7.2 – continued from previous page

		continued from previous page
AWR_DEV_RX_CON- TSTREAMING_MODE_ CONF_SET_SB	1016	CONT_STREAMING_MODE > 1
	1017	CONT_STREAMING_MODE already in requested mode
AWR_DEV_CSI2_CFG_ SET_SB	1018	LANE_POS_POL_SEL [DATA_LANE0_POS] >5
	1019	LANE_POS_POL_SEL [DATA_LANE1_POS] >5
	1020	LANE_POS_POL_SEL [DATA_LANE2_POS] >5
	1021	LANE_POS_POL_SEL [DATA_LANE3_POS] >5
	1022	LANE_POS_POL_SEL [CLOCK_POS] is outside the range [2,4]
AWR_DEV_FRAME_ CONFIG_APPLY_SB	1023	HALF_WORDS_PER_CHIRP is outside the range [64, 8192]
AWR_DEV_ADV_ FRAME_CONFIG_AP- PLY_SB	1024	NUM_SUBFRAMES is outside the range [1,4]
	1025	SF1_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF]
	1026	SF1_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192]
	1027	SF1_PROC_NUM_CHIRPS_PER_DATA_PKT != 1
	1028	SF2_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF], if NUM_SUBFRAMES \geq 2
	1029	SF2_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES \geq 2
	1030	SF2_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_ SUBFRAMES \geq 2
	1031	SF3_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF], if NUM_SUBFRAMES ≥3
	1032	SF3_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES \geq 3
	1033	SF3_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_ SUBFRAMES \geq 3
	1034	SF4_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF], if NUM_SUBFRAMES == 4
	1035	SF4_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES == 4
	1036	SF4_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_ SUBFRAMES == 4
	1052	Invoking AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB message without configuring data path

Table 7.2 – continued from previous page

AWR_DEV_MCUCLOCK_ CONF_SET_SB	1040	MCUCLOCK_CTRL is out of range
	1041	MCUCLOCK_SRC is out of range
AWR_DEV_PMICCLOCK_ CONF_SET_SB	1042	PMICCLOCK_CTRL is out of range
	1043	PMICCLOCK_SRC is out of range
	1044	MODE_SELECT is out of range
	1045	FREQ_SLOPE is out of range
	1046	CLK_DITHER_EN is out of range
AWR_DEV_TESTPAT- TERN_GEN_SET_SB	1047	TESTPATTERN_GEN_CTRL is out of range
	1048	DATA_INTF_SEL (Data interface selected in AWR_DEV_ RX_DATA_PATH_CONF_SET_SB) is SPI
AWR_MSS_LATENT- FAULT_TEST_CONF_ SB	1051	RL_API_NRESP_LFAULTTEST_UNSUPPORTED_OOR (Unsupported Latent Fault test selected in AWR_MSS_ LATENTFAULT_TEST_CONF_SB)

7.1 Error codes for boot on SPI

Table 7.3: Bit field describing the error status during boot on SPI

Error description	Error code	Error code bit position
CERT_PARSER_FAILURE	0x0000000000000002	BIT1
RPRC_IMG1_AUTH_FAILURE	0x000000000000004	BIT2
RPRC_IMG2_AUTH_FAILURE	0x000000000000008	BIT3
RPRC_IMG3_AUTH_FAILURE	0x00000000000010	BIT4
RPRC_HDR_NOT_FOUND	0x000000000000000000000000000000000000	BIT5
CERT_AUTH_FAILURE	0x00000000000001	BIT0
METAHEADER_NOT_FOUND	0x000000000000040	BIT6
SW_ANTIROLLBACK_CHK_FAILURE	0x00000000000000000	BIT7
EFUSE_INTEGRITY_FAILURE	0x00000000000100	BIT8
CERT_FIELD_VALIDITY_FAILURE	0x000000000000200	BIT9
CERT_FIELD_INVALID_AUTH_KEY_INDEX	0x000000000000400	BIT10
CERT_FIELD_INVALID_HASH_TYPE	0x000000000000800	BIT11
CERT_FIELD_INVALID_SUBSYSTEM	0x0000000001000	BIT12

Table 7.3 – continued from previous page

CERT_FIELD_INVALID_DECRYPT_KEY_ INDEX	0x000000000002000	BIT13
CERT FIELD CEK EFUSE MISMATCH	0x000000000004000	BIT14
CERT FIELD CEK1 EFUSE MISMATCH	0x00000000000000000	BIT15
CERT FIELD CEK2 EFUSE MISMATCH	0x00000000010000	BIT16
CERT_FIELD_INVALID_SUBSYSTEM_ BANK_ALLOCATION	0x000000000020000	BIT17
CERT_FIELD_INVALID_TOTAL_BANKS_ ALLOCATION	0x000000000040000	BIT18
RPRC_PARSER_FILE_LENGTH_MIS- MATCH	0x00000000080000	BIT19
RPRC_PARSER_MSS_FILE_OFFSET_ MISMATCH	0x00000000100000	BIT20
RPRC_PARSER_BSS_FILE_OFFSET_ MISMATCH	0x000000000200000	BIT21
RPRC_PARSER_DSS_FILE_OFFSET_ MISMATCH	0x000000000400000	BIT22
CERT_FIELD_INVALID_DECRYPT_KEY	0x000000000800000	BIT23
CERT_FIELD_INVALID_AUTH_KEY	0x00000001000000	BIT24
HS_DEVICE_CERT_NOT_PRESENT	0x000000002000000	BIT25
ERROR_IN_2K_IMAGE	0x000000004000000	BIT26
SHARED_MEM_ALLOC_FAILED	0x000000008000000	BIT27
MSSIMAGE_NOT_FOUND	0x00000010000000	BIT28
METAHEADER_NUMFILES_ERROR	0x000000020000000	BIT29
METAHEADER_CRC_FAILURE	0x000000040000000	BIT30
RPRC_IMG4_AUTH_FAILURE	0x00000080000000	BIT31
RPRC_PARSER_CONFIG_FILE_OFFSET_ MISMATCH	0x000000100000000	BIT32
BOOT_EXTS_EXTRACTION_FAILURE	0x000000200000000	BIT33
DEVICE_UID_BAD_SIZE	0x000000400000000	BIT34
KEY_DERIVE_FUNC_BAD_SIZE	0x00000800000000	BIT35
HMAC_BAD_SIZE	0x000001000000000	BIT36
AES_INIT_VECTOR_BAD_SIZE	0x000002000000000	BIT37
SECDEV_TI_KEY_ERASE_FAILED	0x000004000000000	BIT38
SOP5_SFLASH_NOT_FOUND	0x00000800000000	BIT39
XTAL_CLK_DETECTION_FAILED	0x001000000000000	BIT48
CONTINUE_BOOTUP_ON_XTAL	0x002000000000000	BIT49

Table 7.3 – continued from previous page

DSP_POWERUP_TIMEOUT_ERR	0x004000000000000	BIT50
MSS_LBIST_FAILED	0x00800000000000	BIT51
DSP_LBIST_PBIST_FAILED	0x010000000000000	BIT52
PBIST_SINGLE_PORT_MEM_FAILED	0x020000000000000	BIT53
PBIST_TWO_PORT_MEM_FAILED	0x040000000000000	BIT54
MEMORY_INIT_FAILED	0x080000000000000	BIT55
MSSROM_PBIST_CRC_COMPUTATION_ FAILED	0x1000000000000000	BIT56
VMON_ERROR_DETECTED	0x200000000000000	BIT57
ESM_NERROR_DETECTED	0x800000000000000	BIT63

8 Radar Monitoring APIs

sec:RadarMonApis

AWR monitoring can be configured through a set of API sub blocks defined in this section. Note that these APIs cover the RF/Analog related monitoring mechanisms. There are separate monitoring mechanisms for the digital logic (including the processor, memory, etc.) which are internal to the device and not explicitly enabled through these APIs.

The monitoring APIs are structured as follows. There are common configuration APIs that control the overall periodicity of monitoring, as well as, enable/disable control for each monitoring mechanism. Then, for each monitoring mechanism there is an individual API to allow the customer to set an appropriate threshold for declaring failure from that monitoring. Also, for each monitoring mechanism, there is an individual API to report soft (raw) values from that monitoring.

NOTE1:	Each monitor can perform monitoring on only one profile at a time. Though it is possible that different monitors can monitor different profiles simultaneously.
NOTE2:	None of the Safety Monitoring supported in QM devices except Rx saturation and signal image monitor defined in page 372, The monitoring configurations defined below from sub-block ID 0x01C0 to 0x01DF are not valid in QM devices.
NOTE3:	All Monitoring configurations and enable control APIs shall be issues before triggering the frames. The run time programming or configuration update for monitors are not supported while frames are running.

8.1 Common Configurations and Reports

This section covers the APIs corresponding to the common configurations and reports.

8.1.1 Sub block 0x01C0 - AWR MONITOR RF DIG LATENTFAULT CONF SB

This API SB contains the consolidated configuration of all digital monitoring. This is issued by the host to the AWR device.

The enabled monitoring functions are executed when the API is issued, this API should be issued only when frames are not running, these are destructive tests. The scheduling of these monitoring should be handled in the external application. Report of these monitoring will be available in the async event AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB.

Table 8.1: AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB contents

Field Name	Number of bytes	Descrip	otion	
SBLKID	2	Value =	0x01C0	
SBLKLEN	2	Value =	16	
DIG_MONITOR-	4	1 – Ena	ble, 0 – Disabled	
ING_ENABLES		Bit	Definition	
		b0	RESERVED	
		b1	CR4 and VIM lockstep test	
		b2	RESERVED	
		b3	VIM test	
		b4	RESERVED	
		b5	RESERVED	
		b6	CRC test	
		b7	RAMPGEN memory ECC	
		b8	DFE Parity test	
		b9	DFE memory ECC	
		b10	RAMPGEN lockstep test	
		b11	FRC lockstep test of diagno	stic
		b12	RESERVED	
		b13	RESERVED	
		b14	RESERVED	
		b15	RESERVED	
		b16	ESM test	
		b17	DFE STC	
		b18	RESERVED	
		b19	ATCM, BTCM ECC test	
		b20	ATCM, BTCM parity test	
		b21	DCC test (Supported only o	n AWR2243 device)
		b22	RESERVED	
		b23	RESERVED	
		b24	FFT test	
		b25	RTI test	
		b26	RESERVED	
		b31:27	RESERVED	

Table 8.1 –	continued	from	previous	page

TEST_MODE	1	Value	Definition
		0	Production mode. Latent faults are tested and any failures are reported
		1	Characterization mode. Faults are injected and failures are reported which allows testing of the failure reporting path
RESERVED	3	0x00000	00
RESERVED	4	0x00000	0000

NOTE: The Characterization TEST_MODE is supported only for debug, in production or run time this test mode is not supported. The device reset is required after entering this mode.

8.1.2 Sub block 0x01C1 - AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB

This API SB contains the consolidated configuration of all periodic digital monitoring within radar sub-system. This is issued by the host to the AWR device.

The enabled monitoring functions are executed periodically and reports are sent based on reporting mode. Report of these monitoring will be available in the async event AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB.

Table 8.2: AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB contents

Field Name	Number of bytes	Descrip	otion
SBLKID	2	Value =	0x01C1
SBLKLEN	2	Value =	16
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period
		1	Report is sent only on a failure
		2	RESERVED
RESERVED	3	0x000000	
PERIODIC_DIG_	4	1 - Enable, 0 - Disable	
MON_EN		Bit	Monitoring type
		b0	PERIODIC_CONFG_REGISTER_READ_EN
		b1	RESERVED
		b2	DFE_STC_EN
		b3	FRAME_TIMING_MONITORING_EN
		b31:4	RESERVED

Table 8.2 – continued from previous pa	age
--	-----

RESERVED	4	0x00000000
----------	---	------------

8.1.3 Sub block 0x01C2 - AWR_MONITOR_ANALOG_ENABLES_CONF_SB

This API SB contains the consolidated configuration of all analog monitoring. This is issued by the host to the AWR device.

The enabled monitoring functions are executed with a periodicity of CAL_MON_TIME_UNITS number of logical frames. The host should ensure that all the enabled monitors can be completed in the available inter-frame times, based on the monitoring durations (to be provided separately).

Table 8.3: AWR_MONITOR_ANALOG_ENABLES_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C2
SBLKLEN	2	Value = 12

Table 8.3 – continued from previous page

ANA_MONITOR-ING_ENABLES	4	If any bit in this field is set to 1, the associate monitors are enabled. The configurations and reports of each monitors are described in respective sub sections.		
		Bit	Definition	
		b0	TEMPERATURE_MONITOR	
		b1	RX_GAIN_PHASE_MONITOR	
		b2	RX_NOISE_FIGURE_MONITOR	
		b3	RX_IFSTAGE_MONITOR	
		b4	TX0_POWER_MONITOR	
		b5	TX1_POWER_MONITOR	
		b6	TX2_POWER_MONITOR	
		b7	TX0_BALLBREAK_MONITOR	
		b8	TX1_BALLBREAK_MONITOR	
		b9	TX2_BALLBREAK_MONITOR	
		b10	TX_GAIN_PHASE_MISMATCH_MONITOR	
		b11	TX0_PHASE_SHIFTER_MONITOR	
		b12	TX1_PHASE_SHIFTER_MONITOR	
		b13	TX2_PHASE_SHIFTER_MONITOR	
		b14	SYNTH_FREQ_MONITOR_LIVE (For debug only)	
		b15	EXTERNAL_ANALOG_SIGNALS_MONITOR	
		b16	INTERNAL_TX0_SIGNALS_MONITOR	
		b17	INTERNAL_TX1_SIGNALS_MONITOR	
		b18	INTERNAL_TX2_SIGNALS_MONITOR	
		b19	INTERNAL_RX_SIGNALS_MONITOR	
		b20	INTERNAL_PMCLKLO_SIGNALS_MONITOR	
		b21	INTERNAL_GPADC_SIGNALS_MONITOR	
		b22	PLL_CONTROL_VOLTAGE_MONITOR	
		b23	DCC_CLOCK_FREQ_MONITOR	
		b24	RX_SATURATION_DETECTOR_MONITOR	
		b25	RX_SIG_IMG_BAND_MONITOR	
		b26	RX_MIXER_INPUT_POWER_MONITOR	
		b27	RESERVED	
		b28	SYNTH_FREQ_MONITOR_NON_LIVE	
		b31:29	RESERVED	

LDO_VMON_ SC_MONITOR-ING EN

	4	If any bit in this field is set to 1, the associated
-		monitors are enabled. There are no reports for
		these monitors. If there is any fault, the async
		event AWR_ANALOGFAULT_AE_SB will be sent.
		Bit Description
		b0 APLL LDO short circuit monitoring enable
		0 - disable, 1 - enable
		b1 SYNTH VCO LDO short circuit monitoring enable

0 - disable, 1 - enable

0 - disable, 1 - enable

0 - disable, 1 - enable

RESERVED

AWR2243 device.

Note:

PA LDO short circuit monitoring enable

This feature is supported only on

VMON circuit monitoring enable

Table 8.3 – continued from previous page

8.2 Temperature Monitor

This section contains API SBs that configure the on chip temperature monitors and report the soft results from the monitor. The corresponding monitors are collectively named TEMPERATURE_MONITOR. These monitors observe the temperature near various RF analog and digital modules using temperature sensors and GPADC and compare them against configurable thresholds. The report is sent as an async event AWR_MONITOR_TEMPERATURE_REPORT_AE_SB.

8.2.1 Sub block 0x01C3 – AWR_MONITOR_TEMPERATURE_CONF_SB

b2

b3

b31:4

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to temperature monitoring. Report of this monitoring will be available in the async event AWR_MONITOR_TEMPERATURE_REPORT_AE_SB.

Table 8.4: AWR MONITOR TEMPERATURE CONF SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C3
SBLKLEN	2	Value = 24

Table 8.4 – continued from previous page

		- continued from previous page
REPORTING_	1	Value Definition
MODE		O Report is sent every monitoring period without threshold check
		Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
ANA_TEMP_ THRESH_MIN	2	The temperatures read from near the sensors near the RF analog modules are compared against a minimum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
ANA_TEMP_ THRESH_MAX	2	The temperatures read from near the sensors near the RF analog modules are compared against a maximum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
DIG_TEMP_ THRESH_MIN	2	The temperatures read from near the sensor near the digital module are compared against a minimum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
DIG_TEMP_ THRESH_MAX	2	The temperatures read from near the sensor near the digital module are compared against a maximum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
TEMP_DIFF_ THRESH	2	The maximum difference across temperatures read from all the enabled sensors is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measured difference exceeds this field). 1 LSB = 1°C, unsigned number Valid range: 0°C to 100°C

Table 8.4 – continued from previous page

RESERVED	4	0x00000000
RESERVED	4	0x00000000

8.3 RX Gain and Phase Monitor

This section contains API SBs that configure the monitors of receiver gain and phase. The corresponding monitors are collectively named RX_GAIN_PHASE_MONITOR. The report is sent as an async event AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB.

NOTE:	It is recommended for the user to configure this monitor in verbose mode (Mode 0), so that Host can compute actual RX gain through temperature compensation and detect presence of interference using Noise Power.
	In quiet mode, the user may consider programming broad thresholds for Absolute Gain Error, taking into account the temperature variation of reported RX_GAIN_VALUE.

8.3.1 Sub block 0x01C4 - AWR_MONITOR_RX_GAIN_PHASE_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to RX gain and phase monitoring.

Table 8.5: AWR_MONITOR_RX_GAIN_PHASE_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C4
SBLKLEN	2	Value = 72
PROFILE_INDX	1	This field indicates the profile Index for which this monitoring configuration applies.

Table 8.5 – continued from previous page

RF_FREQ_BIT- MASK	1	This field indicates the RF frequencies inside the prof RF band at which to measure the required paramet When each bit in this field is set, the measurement at corresponding RF frequency is enabled w.r.t. the prof RF band.		
		Bit number	RF frequency	RF name
		b0	Lowest RF frequency in pro- file's sweep bandwidth	RF1
		b1	Center RF frequency in pro- file's sweep bandwidth	RF2
		b2	Highest RF frequency in pro- file's sweep bandwidth	RF3
			e column is mentioned here to e purpose of reporting and desc ackets.	
REPORTING_	1	Value Defi	nition	
MODE			ort is sent every monitoring pe shold check	eriod without
		ing f quie gain	ort is send only upon a failure for thresholds). It is recommended to mode, as Host has to compute and need to monitor Noise powerce of interference.	ed not to use e actual RX
		1	ort is sent every monitoring shold check	period with
TX_SEL	1	Value Defi	nition	
			is used for generating loopback measurement	signal for RX
			is used for generating loopback measurement	signal for RX
RX_GAIN_ ABS_ERROR_ THRESH	2	measured RX abled RF freq The comparis sage (Error by threshold). Before the country and RX are a RX_GAIN_MI 1 LSB = 0.1 co	le of difference between the programment (gain for each enabled channel quency, is compared against this con result is part of the monitoring bit is set if any measurement is emparison, the measured gains djusted by subtracting the offset ISMATCH_OFFSET_VALUE field IB 10 to 65535 (0 to 6553dB)	at each en- threshold. report mes- s above this for each RF given in the

Table 8.5 – continued from previous page

RX_GAIN_ MISMATCH_ THRESH	2	The magnitude of difference between measured RX gains across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)
RX_GAIN_FLAT- NESS_ERROR_ THRESH	2	The magnitude of measured RX gain flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Frequencies are enabled, i.e., RF_FREQ_BITMASK has bit numbers 0,1,2 set.
RX_PHASE_ MISMATCH_ THRESH	2	The magnitude of measured RX phase mismatch across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). Before the comparison, the measured phases for each RF and RX are adjusted by subtracting the offset given in the RX_PHASE_MISMATCH_OFFSET_VALUE field. 1 LSB = $360^{\circ}/2^{16}$. Valid range: corresponding to 0° to 359.9° .

Table 8.5 - continued from previous page

RX_GAIN_MIS- MATCH_OFF- SET_VALUE	24	The offsets to be subtracted from the measured RX gain for each RX and RF before the relevant threshold comparisons are given here. Byte numbers corresponding to different RX and RF, in this			
		field are I		RF2	
		RX0	1:0	9:8	17:16
		RX1	3:2	11:10	19:18
		RX2	5:4	13:12	21:20
		RX3	7:6	15:14	23:22
		1 LSB = 0		•	
		-			d RF Frequencies and enabled
		RX chani	nels are	considere	ed.
RX_PHASE_ MISMATCH_ OFFSET VALUE	24	The offsets to be subtracted from the measured RX phase for each RX and RF before the relevant threshold comparisons are given here.			
_			RF1	RF2	RF3
		RX0	1:0	9:8	17:16
		RX1	3:2	11:10	19:18
		RX2	5:4	13:12	21:20
		RX3	7:6	15:14	23:22
		1 LSB = 3	$360^{\circ}/2^{16}$	$^{5},$ unsigne	ed number
		Only the RX chan			d RF Frequencies and enabled ed.
RESERVED	4	0x000000	000		
RESERVED	4	0x000000	000		

8.4 RX Noise Monitor

This section contains API SBs that configure the monitor of receiver noise, and report the soft results from the monitor. The corresponding monitor is named RX_NOISE_FIGURE_MONITOR. The report is sent as an async event AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB.

8.4.1 Sub block 0x01C5 - AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to RX noise monitoring of a profile.

NOTE:	The RX Noise figure monitor API is not supported in production, it
	can be used only for debug. Please refer latest DFP release note
	for more info.

Table 8.6: AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x01C5			
SBLKLEN	2	Value = 16			
PROFILE_INDX	1	This field indicates the profile Index for which this monitoring configuration applies.			
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band.			
		Bit number RF frequency RF name			
		b0 Lowest RF frequency in pro-RF1 file's sweep bandwidth			
		b1 Center RF frequency in pro- RF2 file's sweep bandwidth			
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth The RF name column is mentioned here to set the convention for the purpose of reporting and describing many monitoring packets.			
RESERVED	2	0x0000			
REPORTING_	1	Value Definition			
MODE		O Report is sent every monitoring period without threshold check			
		1 Report is send only upon a failure (after checking for thresholds)			
		2 Report is sent every monitoring period with threshold check			
RESERVED	1	0x00			
RX_NOISE_FIG- URE_THRESH- OLD	2	The measured RX input referred noise figure at the enabled RF frequencies, for all channels, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)			
RESERVED	4	0x00000000			

NOTE:	The Rx gain and phase monitoring shall be enabled when enabling
	Rx noise figure Monitoring. This monitors only baseband noise figure.

8.5 RX IF Stage Monitor

This section contains API SBs that configure the monitors of receiver IF filter attenuation, and report the soft results from the monitor. The corresponding monitor is named RX_IFSTAGE_ MONITOR. The report is sent as an async event AWR_MONITOR_RX_IFSTAGE_REPORT_ AE_SB.

8.5.1 Sub block 0x01C6 - AWR_MONITOR_RX_IFSTAGE_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX IF filter attenuation monitoring. The report is sent as as an async event AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB.

Table 8.7: AWR MONITOR RX IFSTAGE CONF SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C6
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.
REPORTING_	1	Value Definition
MODE		O Report is sent every monitoring period without threshold check
		Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	2	0x0000
RESERVED	2	0x0000
HPF_CUTOFF_ FREQ_ERROR_ THRESH	2	The absolute values of RX IF HPF cutoff percentage frequency errors are compared against the corresponding thresholds given in this field. The comparison results are part of the monitoring report message (Error bit is set if the absolute value of the errors exceeds respective thresholds). 1 LSB = 1%, unsigned number Valid range: 1% to 128%

Table 8.7 - continued from previous page

LPF_CUT- OFF_BAND- EDGE_DROOP_ THRESH	1	The LPF band edge droop of RX channels are compared against the corresponding thresholds given in this field (max-limit check). The comparison results are part of the monitoring report message (Error bit is set if the band edge droops exceeds respective threshold). 1 LSB = 0.2dB, unsigned number Valid range: 0 to 50dB Note: This feature is supported only on AWR2243 device.
LPF_CUTOFF_ STOPBAND_ ATTEN_THRESH	1	The LPF stop band attenuation at 2x analog LPF's band edge with respect to the analog LPF's band edge of RX channels are compared against the corresponding thresholds given in this field (min-limit check). The comparison results are part of the monitoring report message (Error bit is set if the stop band attenuation less than respective threshold). 1 LSB = 0.2dB, unsigned number Valid range: 0 to 50dB Note: This feature is supported only on AWR2243 device.
IFA_GAIN_ER- ROR_THRESH	2	The absolute deviation of RX IFA Gain from the expected gain for each enabled RX channel is compared against the thresholds given in this field. The comparison result is part of the monitoring report message (Error bit is set if the absolute value of the errors exceeds respective thresholds). 1 LSB = 0.1 dB, unsigned number Valid range: 0 to 65535 (0 to 6553dB)
RESERVED	4	0x00000000

8.6 TX Power Monitor

This section contains API SBs that configure the monitors of transmitter output power, and report the soft results from the monitor. The corresponding monitors are collectively named TXn_POWER_MONITOR where n is the TX channel number.

8.6.1 Sub block 0x01C7 - AWR_MONITOR_TX0_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX0_POWER_REPORT_AE_SB.

Table 8.8: AWR_MONITOR_TX0_POWER_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C7
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band. Bit number RF frequency RF name
		b0 Lowest RF frequency in pro- RF1 file's sweep bandwidth
		b1 Center RF frequency in pro- RF2 file's sweep bandwidth
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth The RF Name column is mentioned here to set the convention for the purpose of reporting and describing many monitoring packets.
RESERVED	2	0x0000
REPORTING_	1	Value Definition
MODE		O Report is sent every monitoring period without threshold check
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)

Table 8.8 – continued from previous page

TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Frequencies are enabled.
RESERVED	2	0x0000
RESERVED	4	0x00000000

8.6.2 Sub block 0x01C8 - AWR_MONITOR_TX1_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX1_POWER_REPORT_AE_SB.

Table 8.9: AWR_MONITOR_TX1_POWER_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C8
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.

Table 8.9 – continued from previous page

RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band. Bit number RF frequency RF name b0 Lowest RF frequency in pro-RF1 file's sweep bandwidth
		b1 Center RF frequency in pro- file's sweep bandwidth
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth The RF Name column is mentioned here to set the convention for the purpose of reporting and describing many monitoring packets.
RESERVED	2	0x0000
REPORTING_	1	Value Definition
MODE		Report is sent every monitoring period without threshold check
		Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)
TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range:0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Frequencies are enabled.
RESERVED	2	0x0000
	1	

Table 8.9 – continued from previous page

RESERVED	4	0x00000000
----------	---	------------

8.6.3 Sub block 0x01C9 - AWR_MONITOR_TX2_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX2_POWER_REPORT_AE_SB.

Table 8.10: AWR_MONITOR_TX2_POWER_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C9
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band. Bit number RF frequency RF name
		b0 Lowest RF frequency in pro- RF1 file's sweep bandwidth
		b1 Center RF frequency in pro- RF2 file's sweep bandwidth
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth The RF Name column is mentioned here to set the convention for the purpose of reporting and describing many monitoring packets.
RESERVED	2	0x0000
REPORTING_ MODE	1	Value Definition O Report is sent every monitoring period without threshold check 1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check

Table 0.10 Continued from provided page			
RESERVED	1	0x00	
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)	
TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Frequencies are enabled.	
RESERVED	2	0x0000	

Table 8.10 - continued from previous page

8.7 TX Ball Break Monitor

RESERVED

This section contains API SBs that configure the monitors of transmitter balls and impedance matching. The corresponding monitors are collectively named TXn_BALLBREAK_MONITOR where n is the TX channel number.

TX ball break detection is performed through measurement of TX reflection coefficient's magnitude. The breakage of a TX ball is detected by observing high reflection magnitude.

8.7.1 Sub block 0x01CA - AWR_MONITOR_TX0_BALLBREAK_CONF_SB

0x00000000

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX0_BALLBREAK_ REPORT_AE_SB.

Table 8.11: AWR_MONITOR_TX0_BALLBREAK_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01CA
SBLKLEN	2	Value = 16
REPORTING_ MODE	1	Value Definition O Report is sent every monitoring period without threshold check 1 Report is send only upon a failure (after checking for thresholds) 2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -32767 to +32767 (-3276dB to +3276dB)
RESERVED	4	0x00000000
RESERVED	4	0x00000000

8.7.2 Sub block 0x01CB - AWR_MONITOR_TX1_BALLBREAK_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB.

Table 8.12: AWR_MONITOR_TX1_BALLBREAK_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01CB
SBLKLEN	2	Value = 16

Table 8.12 - continued from previous page

REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	1	0x00	
TX_REFL_CO- EFF_THRESH	2	channel compari sage (E threshol 1 LSB =	reflection coefficient's magnitude for each enabled is compared against the threshold given here. The ison result is part of the monitoring report mestror bit is set if the measurement is higher than this id, with the units of both quantities being the same). • 0.1 dB, signed number nge: -32767 to +32767 (-3276dB to +3276dB)
RESERVED	4	0x00000	0000
RESERVED	4	0x00000	0000

8.7.3 Sub block 0x01CC - AWR_MONITOR_TX2_BALLBREAK_CONF_SB

This API is a monitoring monfiguration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB.

Table 8.13: AWR_MONITOR_TX2_BALLBREAK_CONF_SB contents

Field Name	Number of bytes	Descrip	otion
SBLKID	2	Value =	0x01CC
SBLKLEN	2	Value = 16	
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check

Table 6.13 – continued from previous page					
RESERVED	1	0x00			
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher or equal to this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -32767 to +32767 (-3276dB to +3276dB)			
RESERVED	4	0x00000000			
RESERVED	4	0x0000000			

Table 8 13 - continued from previous page

8.8 TX Gain and Phase Mismatch Monitoring

This section contains API SBs that configure the monitors of transmitter gain and phase mismatches, and report the soft results from the monitor. The corresponding monitors are collectively named TX GAIN PHASE MISMATCH MONITOR.

This monitor needs the operation of at least one RX channel. It also needs to use the RX in complex mode. Therefore, if all channels are disabled as per AWR CHAN CONF SET SB, this monitor automatically enables one RX channel. Further, this monitor automatically uses both I and Q channels of the receiver, irrespective of the ADC settings given by AWR ADCOUT CONF_SET_SB.

8.8.1 Sub block 0x01CD – AWR MONITOR TX GAIN PHASE MISMATCH CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX gain and phase mismatch monitoring. The report is sent as an async event AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB.

Table 8.14: AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01CD
SBLKLEN	2	Value = 56
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.

Table 8.14 – continued from previous page

RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band. Bit number RF frequency RF name			
		b0 Lowest RF frequency in pro- RF1 file's sweep bandwidth			
		b1 Center RF frequency in pro- RF2 file's sweep bandwidth			
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth			
		The RF Name column is mentioned here to set the convention for the purpose of reporting and describing many monitoring packets.			
TX_EN	1	This field indicates the TX channels that should be compared for gain and phase balance. Setting the corresponding bit to 1 enables that channel for imbalance measurement. Bit number TX Channel			
		b0 TX0			
		b1 TX1			
		b2 TX2			
RX_EN	1	This field indicates the RX channels that should be enabled for TX to RX loopback measurement. Setting the			
		corresponding bit to 1 enables that channel for imbalance			
		measurement.			
		Bit number RX Channel			
		b0 RX0			
		b1 RX1			
		b2 RX2			
		b3 RX3			
REPORTING_	1	Value Definition			
MODE		O Report is sent every monitoring period without threshold check			
		Report is send only upon a failure (after checking for thresholds)			
		2 Report is sent every monitoring period with threshold check			

Table 8.14 – continued from previous page

MON_CHIRP_ SLOPE	1	Frequency slope for each monitoring chirp is encoded in 1 bytes (8 bit signed number) $1 \text{ LSB} = 3.6e9 \times 900/2^{26} \text{ Hz} \approx 48.279 \text{ kHz/}\mu\text{s} $ Valid range: -128 to +127 (Max 6.13 MHz/ μ s) $ NOTE: Monitoring Chirp Slope can be programmed based on the emission specifications. The device transmits on air during the execution of these monitors. The host can control the monitoring emission power spectral density (dB-m/Hz) by programming this slope parameter. Each monitoring chirp is about 45us in duration. Therefore the overall RF sweep bandwidth for the monitoring chirp is given by Monitoring Chirp Slope* 45 us. Normally, low values of Monitoring Chirp Slope are recommended, as with nonzero slope in FMCW radar, any actual target reflections can potentially be interpreted as noise power and/or corrupt the loopback signal based gain/phase measurement.$
TX_GAIN_ MISMATCH_ THRESH	2	The magnitude of difference between measured TX powers across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the TX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB, unsigned number Valid range: 0 to 65535 (0 to 6553dB)
TX_PHASE_ MISMATCH_ THRESH	2	The magnitude of measured TX phase mismatch across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the TX_PHASE_MISMATCH_OFFSET_VALUE field. 1 LSB = $360^{\circ}/2^{16}$, unsigned number Valid range: corresponding to 0° to 359.9° .

Table 8.14 – continued from previous page

TX_GAIN_MIS- MATCH_OFF- SET_VALUE	18	The offsets to be subtracted from the measured TX gain for each TX and RF before the relevant threshold comparisons are given here. Byte numbers corresponding to different RX and RF, in this field are here:			
		noia aro i	RF1	RF2	RF3
		TX0	1:0	7:6	13:12
		TX1	3:2	9:8	15:14
			entries	_	d RF Frequencies and enabled
TX_PHASE_ MISMATCH_ OFFSET_VALUE	18	The offsets to be subtracted from the measured TX phase for each TX and RF before the relevant threshold comparisons are given here. Byte numbers corresponding to different RX and RF, in this field are here:			
			RF1	RF2	RF3
		TX0	1:0	7:6	13:12
		TX1	3:2	9:8	15:14
		TX2	5:4	11:10	17:16
		1 LSB = 3	,		
		_		of enable considere	d RF Frequencies and enabled d.
RESERVED	2	0x0000			
RESERVED	4	0x000000	000		

NOTE:	Even when the TXs are matched, TX3 loopback path has gain and phase offsets wrt TX1 (and TX2), which get reported as mismatches in this API. These deterministic offsets can be compensated either through the OFFSET_VALUE fields (quiet mode) or through post processing by the host (verbose mode). Nominally, when the TXs are matched, TX3 - TX1 gain (i.e. loopback amplitude) is reported as -8dB. Nominally, when the TXs are matched, the reported TX3 - TX1 phase difference varies linearly with RF and it is reported as -5degree (76GHz) and 15degree (81GHz).

8.9 TX Phase Shifter Monitor

This section contains API SBs that configure the monitors of transmitter phase shifter and report the soft results from the monitor for various TX channels using TX loop-back. The corresponding monitors are collectively named TX0_PHASE_SHIFTER_MONITOR, TX1_PHASE_SHIFTER_

MONITOR and TX2_PHASE_SHIFTER_MONITOR for the respective TX channels.

The phase shifter monitor will report the measured phase values in order to enable calibration of phase shifter codes at HOST. It will report tone power amplitude to provide check for amplitude stability across phase shifter codes. It will also report noise power in order to detect the chirps affected by interference.

The maximum four phases can be monitored at a time in one FTTI interval for each TX, there is an option to increment the phase by PH_SHIFTER_INC_VAL to cover all 360° phase over the time.

NOTE:	The absolute gain/phase values reported by PHASE_SHIFTER_MON can exhibit smooth drifts across monitoring intervals due to slow temperature drifts. The absolute phase/gain can also exhibit abrupt jumps across temperature calibration boundaries. One way to mitigate the effects of such jumps across monitoring intervals is to rely on relative gain/phase values within the same monitoring report (e.g. assign one of the 4 phase settings in the monitoring configuration as a reference phase setting).
-------	--

8.9.1 Sub block 0x01CE - AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 TX loop back based phase shifter monitoring.

The report is sent as an async event AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB.

Table 8.15: AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB contents

Field Name	Number of bytes	Descrip	otion
SBLKID	2	Value = 0x01CE	
SBLKLEN	2	Value =	32
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.	
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check

Table 8.15 – continued from previous page

RESERVED	2	RESERVED
PH SHIFTER	1	Bit Definition
MON_CFG		b0 Phase shifter phase1 monitor enable bit
		b1 Phase shifter phase2 monitor enable bit
		b2 Phase shifter phase3 monitor enable bit
		b3 Phase shifter phase4 monitor enable bit
		b7:4 RESERVED
		Enable at least two phase settings to measure phase error
		and to apply threshold in reporting mode 1 and 2.
RX_EN	1	This field indicates the RX channels that should be enabled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for measurement and the average measured value is reported out. Bit number RX Channel
		b0 RX0
		b1 RX1
		b2 RX2
		b3 RX3
MON_CHIRP_ SLOPE	1	Frequency slope for each monitoring chirp is encoded in 1 bytes (8 bit signed number) $1 \text{ LSB} = 3.6e9 \times 900/2^{26} \text{ Hz} \approx 48.279 \text{ kHz/}\mu\text{s} \\ \text{Valid range: -128 to +127 (Max 6.13 MHz/}\mu\text{s}) \\ NOTE: Monitoring Chirp Slope can be programmed based on the emission specifications. The device transmits on air during the execution of these monitors. The host can control the monitoring emission power spectral density (dB-m/Hz) by programming this slope parameter. Each monitoring chirp is about 45us in duration. Therefore the overall RF sweep bandwidth for the monitoring chirp is given by Monitoring Chirp Slope* 45 us. Normally, low values of Monitoring Chirp Slope are recommended, as with nonzero slope in FMCW radar, any actual target reflections can potentially be interpreted as noise power and/or corrupt the loopback signal based gain/phase measurement.$
RESERVED	1	RESERVED

Table 8.15 – continued from previous page

PH_SHIFTER_ INC_VAL1	1	Phase shifter monitoring increment value for phase1, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 1 $1 LSB = 5.625^{\circ}$
PH_SHIFTER_ INC_VAL2	1	Phase shifter monitoring increment value for phase2, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 2 1 LSB = 5.625°
PH_SHIFTER_ INC_VAL3	1	Phase shifter monitoring increment value for phase3, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 3 1 LSB = 5.625°
PH_SHIFTER_ INC_VAL4	1	Phase shifter monitoring increment value for phase4, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 4 $1 \text{ LSB} = 5.625^{\circ}$
PH_SHIFTER_ MON1	1	TX 0 Phase shifter phase1 monitor value Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift monitor value 1 1 LSB = 5.625°
PH_SHIFTER_ MON2	1	TX 0 Phase shifter phase2 monitor value Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift monitor value 2 1 LSB = 5.625°

Table 8.15 – continued from previous page

PH_SHIFTER_	1	TX 0 Phase shifter phase3 monitor value
MON3		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 3
		1 LSB = 5.625°
PH_SHIFTER_	1	TX 0 Phase shifter phase4 monitor value
MON4		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 4
		1 LSB = 5.625°
TX_PHASE_ER- ROR_THRESH	2	The threshold for deviation of the TX output phase difference between the measured phase values and configured phases for each enabled phase settings. The max error is compared against the threshold given here. The measured phase is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). $1 \text{ LSB} = 360^\circ/2^{16}.$ Valid range: corresponding to 0° to $359.9^\circ.$
TX_AMPLI- TUDE_ERROR_ THRESH	2	The threshold for deviation of the TX output amplitude difference between all enabled phase settings. The max error is compared against the threshold given here. The measured output amplitude is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)
RESERVED	8	0x0000

8.9.2 Sub block 0x01CE - AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 TX loop back based phase shifter monitoring.

The report is sent as an async event AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB.

 $\textbf{Table 8.16:} \ \, \text{AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB contents} \\$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01CF
SBLKLEN	2	Value = 32
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.
REPORTING_	1	Value Definition
MODE		O Report is sent every monitoring period without threshold check
		Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	2	RESERVED
PH_SHIFTER_	1	Bit Definition
MON_CFG		b0 Phase shifter phase1 monitor enable bit
		b1 Phase shifter phase2 monitor enable bit
		b2 Phase shifter phase3 monitor enable bit
		b3 Phase shifter phase4 monitor enable bit
		b7:4 RESERVED
		Enable at least two phase settings to measure phase error and to apply threshold in reporting mode 1 and 2.
RX_EN	1	This field indicates the RX channels that should be enabled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for measurement and the average measured value is reported out. Bit number RX Channel
		b0 RX0
		b1 RX1
		b2 RX2
		b3 RX3

Table 8.16 – continued from previous page

		o continuou nom provious page
MON_CHIRP_ SLOPE		Frequency slope for each monitoring chirp is encoded in 1 bytes (8 bit signed number) $ 1 \ LSB = 3.6e9 \times 900/2^{26} \ Hz \approx 48.279 \ kHz/\mu s $ Valid range: -128 to +127 (Max 6.13 MHz/ μ s) $ NOTE : Monitoring \ Chirp \ Slope \ can \ be \ programmed \ based $ on the emission specifications. The device transmits on air during the execution of these monitors. The host can control the monitoring emission power spectral density (dB-m/Hz) by programming this slope parameter. Each monitoring chirp is about 45us in duration. Therefore the overall RF sweep bandwidth for the monitoring chirp is given by Monitoring Chirp Slope* 45 us. Normally, low values of Monitoring Chirp Slope are recommended, as with nonzero slope in FMCW radar, any actual target reflections can potentially be interpreted as noise power and/or corrupt the loopback signal based gain/phase measurement.
RESERVED	1	RESERVED
PH_SHIFTER_ INC_VAL1	1	Phase shifter monitoring increment value for phase1, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 1 $1 LSB = 5.625^{\circ}$
PH_SHIFTER_ INC_VAL2	1	Phase shifter monitoring increment value for phase2, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 2 1 LSB = 5.625°
PH_SHIFTER_ INC_VAL3	1	Phase shifter monitoring increment value for phase3, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 3 1 LSB = 5.625°

Table 8.16 – continued from previous page

PH_SHIFTER_ INC_VAL4	1	Phase shifter monitoring increment value for phase4, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 4 1 LSB = 5.625°
PH_SHIFTER_ MON1	1	TX 1 Phase shifter phase1 monitor value
IVIONT		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 1 1 LSB = 5.625°
PH_SHIFTER_	1	TX 1 Phase shifter phase2 monitor value
MON2		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 2 1 LSB = 5.625°
PH_SHIFTER_	1	TX 1 Phase shifter phase3 monitor value
MON3		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 3 1 LSB = 5.625°
PH_SHIFTER_	1	TX 1 Phase shifter phase4 monitor value
MON4		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 4 1 LSB = 5.625°
TX_PHASE_ER- ROR_THRESH	2	The threshold for deviation of the TX output phase difference between the measured phase values and configured phases for each enabled phase settings. The max error is compared against the threshold given here. The measured phase is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). $1 \text{ LSB} = 360^\circ/2^{16}.$ Valid range: corresponding to 0° to 359.9°.

Table 8.16 – continued from previous page

TX_AMPLI- TUDE_ERROR_ THRESH	2	The threshold for deviation of the TX output amplitude difference between all enabled phase settings. The max error is compared against the threshold given here. The measured output amplitude is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)
RESERVED	8	0x0000

8.9.3 Sub block 0x01CE - AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 TX loop back based phase shifter monitoring.

The report is sent as an async event AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_SB.

Table 8.17: AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D0
SBLKLEN	2	Value = 32
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.
REPORTING_	1	Value Definition
MODE		O Report is sent every monitoring period without threshold check
		Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	2	RESERVED

Table 8.17 – continued from previous page

PH_SHIFTER_	1	Bit Definition
MON_CFG		b0 Phase shifter phase1 monitor enable bit
		b1 Phase shifter phase2 monitor enable bit
		b2 Phase shifter phase3 monitor enable bit
		b3 Phase shifter phase4 monitor enable bit
		b7:4 RESERVED
		Enable at least two phase settings to measure phase error and to apply threshold in reporting mode 1 and 2.
RX_EN	1	This field indicates the RX channels that should be enabled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for measurement and the average measured value is reported out. Bit number RX Channel
		b0 RX0
		b1 RX1
		b2 RX2
		b3 RX3
MON_CHIRP_ SLOPE	1	Frequency slope for each monitoring chirp is encoded in 1 bytes (8 bit signed number) $ \text{1 LSB} = 3.6e9 \times 900/2^{26} \text{ Hz} \approx 48.279 \text{ kHz}/\mu\text{s} $ Valid range: -128 to +127 (Max 6.13 MHz/ μ s)
		NOTE: Monitoring Chirp Slope can be programmed based on the emission specifications. The device transmits on air during the execution of these monitors. The host can control the monitoring emission power spectral density (dB-m/Hz) by programming this slope parameter. Each monitoring chirp is about 45us in duration. Therefore the overall RF sweep bandwidth for the monitoring chirp is given by Monitoring Chirp Slope* 45 us. Normally, low values of Monitoring Chirp Slope are recommended, as with nonzero slope in FMCW radar, any actual target reflections can potentially be interpreted as noise power and/or corrupt the loopback signal based gain/phase measurement.
RESERVED	1	RESERVED

Table 8.17 – continued from previous page

PH_SHIFTER_ INC_VAL1	1	Phase shifter monitoring increment value for phase1, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 1 $1 LSB = 5.625^{\circ}$
PH_SHIFTER_ INC_VAL2	1	Phase shifter monitoring increment value for phase2, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 2
PH_SHIFTER_ INC_VAL3	1	1 LSB = 5.625° Phase shifter monitoring increment value for phase3, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 3 1 LSB = 5.625°
PH_SHIFTER_ INC_VAL4	1	Phase shifter monitoring increment value for phase4, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 4 $1 \text{ LSB} = 5.625^{\circ}$
PH_SHIFTER_ MON1	1	TX 2 Phase shifter phase1 monitor value Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift monitor value 1 1 LSB = 5.625°
PH_SHIFTER_ MON2	1	TX 2 Phase shifter phase2 monitor value Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift monitor value 2 1 LSB = 5.625°

Table 8.17 - continued from previous page

PH_SHIFTER_ MON3	1	TX 2 Phase shifter phase3 monitor value Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift monitor value 3
		1 LSB = 5.625°
PH_SHIFTER_ MON4	1	TX 2 Phase shifter phase4 monitor value Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 4 1 LSB = 5.625°
TX_PHASE_ER- ROR_THRESH	2	The threshold for deviation of the TX output phase difference between the measured phase values and configured phases for each enabled phase settings. The max error is compared against the threshold given here. The measured phase is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). $1 \text{ LSB} = 360^\circ/2^{16}.$ Valid range: corresponding to 0° to $359.9^\circ.$
TX_AMPLI- TUDE_ERROR_ THRESH	2	The threshold for deviation of the TX output amplitude difference between all enabled phase settings. The max error is compared against the threshold given here. The measured output amplitude is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)
RESERVED	8	0x0000

8.10 Synthesizer Frequency Monitoring

This section contains API SBs that configure the monitors of synthesizer chirp frequency, and report the soft results from the monitor. The corresponding monitor is named SYNTH_FREQ_ MONITOR.

8.10.1 Sub block 0x01D1 - AWR_MONITOR_SYNTHESIZER_FREQUENCY_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to synthesizer frequency monitoring during non functional chirps (non-live), the

Revision 2.7 - February 06, 2020

live monitor during functional chirps can be used only for debug (only in master/single-chip mode). The report is sent as an async event AWR MONITOR SYNTH FREQUENCY REPORT AE SB for live monitor and AWR_MONITOR_SYNTHESIZER_FREQUENCY_NONLIVE_REPORT_ AE_SB for nonlive monitor.

NOTE:

The synth non-live mode monitor internally generates a test chirp based on the profile associated with it. In order to limit its execution time, if the profile's ramp time exceeds 60us, the test chirp's ramp time is limited to 60us and the chirp slope is scaled to cover the profile's intended RF bandwidth.

Table 8.18: AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D1
SBLKLEN	2	Value = 16
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.
REPORTING_	1	Value Definition
MODE		O Report is sent every monitoring period without threshold check
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
FREQ_ERROR_ THRESH	2	During the chirp, the error of the measured instantaneous chirp frequency w.r.t. the desired value is continuously compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measurement is above this threshold, ever during the previous monitoring period). 1 LSB = 10 kHz Valid range: 0 to 65535 (0 to 655MHz)
MONITOR_ START_TIME	1	This field determines when the monitoring starts in each chirp relative to the start of the ramp. 1 LSB = 0.2 μ s, signed number Valid range: -25 to 25 μ s Recommended value: 6 μ s or above

Table 8.18 – continued from previous page

MONITOR_CON- FIG_MODE	1	This field configures whether this monitor should be done for functional active chirps (mode 0) or non live monitor chirps. In case of non live monitor, the configuration needs to be sent twice for two VCOs (use mode 1 and 2). Value Definition
		0 LIVE_CONFIG (Debug Mode), The profile config- uration for live mode is picked from this API, sup- ported only in master/single-chip mode.
		1 VCO1_CONFIG, The profile configuration for Non-live mode is picked from this API for VCO1 monitor profile, supported in all modes (master, slave and single-chip).
		2 VCO2_CONFIG, The profile configuration for Non-live mode is picked from this API for VCO2 monitor profile, supported in all modes (master, slave and single-chip). Note: This feature is supported only on AWR2243 device.
VCO_MON_EN	1	This bit mask can be used to enable/disable the monitoring of non-live VCO profiles, this helps to control monitoring of only single VCO if needed. This setting should be same in both VCO settings. bits Definition
		b0 Enable VCO1 non-live monitor
		b1 Enable VCO2 non-live monitor
		b31:2 RESERVED
RESERVED	1	0x000000
RESERVED	4	0x00000000

NOTE1: (Live mode) It is recommended to re-issue this configuration API

each time before enabling this monitor and frame trigger. The right sequence is as below:

1. Issue Synth frequency monitor configuration API.

2. Enable Synth frequency monitor.

3. Frame start.

4. Frame stop.

5. Frame start. (Optional in case of multiple frames)

6. Frame stop. (Optional in case of multiple frames)

7. Disable Synth frequency monitor (in case disabled for some

reason)

8. Issue Synth frequency monitor configuration API.

9. Enable Synth frequency monitor.

10. Frame start.

NOTE2: In non live mode, this API can be issued twice with MONITOR_

> CONFIG_MODE value set to 1 and 2 respectively for two different VCOs configured in two different profiles. The consolidated report for two VCOs in non-live mode is sent in a separate AE AWR_MONITOR_SYNTHESIZER_FREQUENCY_NONLIVE_

REPORT_AE_SB

NOTE3: In non live mode, the reporting mode and VCO MON EN for two

VCO configurations should be same.

8.11 External Analog Signals Monitor

This section contains API SBs that configure the monitors of external analog signals which are input to the device through pins ANALOGTEST1-4, ANAMUX and VSENSE (also called ADC1-6) and report the soft results from the monitor. The corresponding monitors are collectively named EXTERNAL ANALOG SIGNALS MONITOR. These monitors observe various analog signals input on the pins ADC1-6 using a GPADC and compare them against internally fixed thresholds.

8.11.1 Sub block 0x01D2 – AWR MONITORING EXTERNAL ANALOG SIGNALS CONF SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to external DC signals monitoring (available only in xWR1642/xWR6843/xWR1843). The report is sent as an async event AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSREPORT_ AE SB.

Table 8.19 describes the content of this sub block.

Table 8.19: AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D2
SBLKLEN	2	Value = 36
REPORTING_	1	Value Definition
MODE		0 Report is sent every monitoring period without threshold check
		Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
SIGNAL_INPUT_ ENABLES	1	This field indicates the sets of externally fed DC signals which are to be monitored using GPADC. When each bit in this field is set, the corresponding signal is monitored. The monitored signals are compared against programmed limits. The comparison result is part of the monitoring report message.
		Bit Location SIGNAL
		b0 ANALOGTEST1
		b1 ANALOGTEST2
		b2 ANALOGTEST3
		b3 ANALOGTEST4
		b4 ANAMUX
		b5 VSENSE
		Others RESERVED

Table 8.19 – continued from previous page

	1	
SIGNAL_ BUFFER_EN- ABLES	1	This field indicates the sets of externally fed DC signals which are to be buffered before being fed to the GPADC. When each bit in this field is set, the corresponding signal is buffered before the GPADC. The monitored signals are compared against programmed limits. The comparison result is part of the monitoring report message.
		Bit SIGNAL
		b0 ANALOGTEST1
		b1 ANALOGTEST2
		b2 ANALOGTEST3
		b3 ANALOGTEST4
		b4 ANAMUX
		Others RESERVED
SIGNAL_SET- TLING_TIME	6	After connecting an external signal to the GPADC, the amount of time to wait for it to settle before taking GPADC samples is programmed in this field. For each signal, after that settling time, GPADC measurements take place for 6.4 μs (averaging 4 samples of the GPADC output). The byte locations of the settling times for each signal are tabulated here:
		Byte SIGNAL Loca- tion
		0 ANALOGTEST1
		1 ANALOGTEST2
		2 ANALOGTEST3
		3 ANALOGTEST4
		4 ANAMUX
		5 VSENSE 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s Valid programming condition: all the signals that are enabled should take a total of < 100 μ s, including the programmed settling times and a fixed 6.4 μ s of measurement time per enabled signal.

Table 8.19 – continued from previous page

SIGNAL_ THRESH	12	The external DC signals measured on GPADC are compared against these minimum and maximum thresholds. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range).		
		Byte Location	Threshold SIGNAL	
		0	Minimum ANALOGTEST1	
		1	Minimum ANALOGTEST2	
		2	Minimum ANALOGTEST3	
		3	Minimum ANALOGTEST4	
		4	Minimum ANAMUX	
		5	Minimum VSENSE	
		6	Maximum ANALOGTEST1	
		7	Maximum ANALOGTEST2	
		8	Maximum ANALOGTEST3	
		9	Maximum ANALOGTEST4	
		10	Maximum ANAMUX	
		11	Maximum VSENSE	
		1 LSB = 1.8V/2	• •	
		Valid range: 0 t	0 255	
RESERVED	2	0x0000		
RESERVED	4	0x0000000		
RESERVED	4	0x00000000		

8.12 Internal Analog Signals Monitor

This section contains API SBs that configure the monitors of internal analog signals in the RF analog modules and report the soft results from the monitor. The corresponding monitors are collectively named INTERNAL_ANALOG_SIGNALS_MONITOR. These monitors observe various analog nodes in the RF and analog modules using a GPADC and compare them against internally fixed thresholds.

The configuration API SBs are organized to address various analog circuits as follows:

- 1. TX0 Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_TX0_SIGNALS_MONITOR.
 - b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 2. TX1 Internal Analog Signals Monitoring

- a. This monitor is called INTERNAL TX1 SIGNALS MONITOR
- b. Signal sets that are monitored: (SUPPLY TX, PWRDET TX)
- 3. TX2 Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_TX2_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 4. RX Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_RX_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_RX, PWRDET_RX, DCBIAS_RX)
- 5. PM CLK LO Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL PMCLKLO SIGNALS MONITOR
 - b. Signal sets that are monitored: (SUPPLY_PMCLKLO, PWRDET_PMCLKLO, DCBIAS_PMCLKLO)
- 6. GPADC Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_GPADC_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (GPADC_REF1, GPADC_REF2)

The results are reported in the corresponding REPORT API SBs in this section.

8.12.1 Sub block 0x01D3 – AWR_MONITOR_TX0_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 Internal Analog Signals monitoring including Tx Phase shifter DAC monitor. The report is sent as an async event AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 8.20: AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_ SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D3
SBLKLEN	2	Value = 12
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).

Table 8.20 – continued	l from	previous	page
------------------------	--------	----------	------

REPORTING_	1	Value	Definition
MODE		0	RESERVED
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
TX_PS_DAC_ MON_THRESH	2		phase shifter DAC monitor delta threshold LSB = 1.8V/1024
RESERVED	4	0x00000000	

8.12.2 Sub block 0x01D4 – AWR_MONITOR_TX1_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 Internal Analog Signals monitoring including Tx Phase shifter DAC monitor. The report is sent as an async event AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 8.21: AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D4
SBLKLEN	2	Value = 12
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).
REPORTING_	1	Value Definition
MODE		0 RESERVED
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
TX_PS_DAC_ MON_THRESH	2	The TX phase shifter DAC monitor delta threshold Unit: 1 LSB = 1.8V/1024
RESERVED	4	0x00000000

8.12.3 Sub block 0x01D5 – AWR_MONITOR_TX2_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 Internal Analog Signals monitoring including Tx Phase shifter DAC monitor. The report is sent as an async event AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 8.22: AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_ SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D5
SBLKLEN	2	Value = 12
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).
REPORTING_	1	Value Definition
MODE		0 RESERVED
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
TX_PS_DAC_ MON_THRESH	2	The TX phase shifter DAC monitor delta threshold Unit: 1 LSB = 1.8V/1024
RESERVED	4	0x00000000

8.12.4 Sub block 0x01D6 – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX Internal Analog Signals monitoring. The report is sent as an async event AWR MONITOR RX INTERNAL ANALOG SIGNALS REPORT AE SB.

Table 8.23: AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_ SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D6
SBLKLEN	2	Value = 12
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).
REPORTING_	1	Value Definition
MODE		0 RESERVED
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	2	0x0000
RESERVED	4	0x00000000

8.12.5 Sub block 0x01D7 – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to Power Management, Clock generation and LO distribution circuits' Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_PMCLKLO_INTERNAL ANALOG SIGNALS REPORT AE SB.

Table 8.24: AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D7
SBLKLEN	2	Value = 12
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).

Table 8.2	24 – continue	d from previous page	
			_

REPORTING_	1	Value	Definition
MODE		0	RESERVED
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
SYNC_20G_ SIG_SEL	1		d is relevant only in cascade configuration and not le in single chip case Definition
		0x00	20GHz SYNC monitoring disabled
		0x01	FMCW_SYNC_IN monitoring enabled
		0x02	FMCW_SYNC_OUT monitoring enabled
		0x03 The 20G	FMCW_CLK_OUT monitoring enabled iHz SYNC monitor is done at 77GHz RF frequency.
SYNC_20G_ MIN_THRESH	1	ber	imum threshold value of monitoring, signed num- .SB = 1 dBm
SYNC 20G	1	The max	kimum threshold value of monitoring, signed num-
MAX_THRESH		ber	3, 3
		Unit: 1 L	SB = 1 dBm
RESERVED	3	0x00000	00

8.12.6 Sub block 0x01D8 – AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to GPADC Internal Analog Signals monitoring. During this monitor, only the relevant circuits are ensured to be ON. The monitored signals are compared against internally chosen valid limits. The comparison result is part of the consolidated monitoring report message (Error bit for any signal set is set to 1 if any measurement in that signal set is beyond valid limits). The report is sent as an async event AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 8.25: AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D8
SBLKLEN	2	Value = 12

Table 8.2	5 – continued	from pre	∕ious page

REPORTING_	1	Value	Definition
MODE		0	RESERVED
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	3	0x000000	
RESERVED	4	0x00000000	

8.13 PLL Control Voltage Monitor

This section contains API SBs that configure the monitors of APLL and Synthesizer VCO control voltages and report the soft results from the monitor. The corresponding monitors are collectively named PLL_CONTROL_VOLTAGE_MONITOR. These monitors observe the VCO control voltages under various conditions using the GPADC and compare them against internally fixed thresholds. The transmitters are kept in OFF state during these measurements to avoid external emission.

8.13.1 Sub block 0x01D9 – AWR_MONITOR_PLL_CONTROL_VOLTAGE_ SIGNALS_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to APLL and Synthesizer's control voltage signals monitoring. The report is sent as an async event AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB.

Table 8.26: AWR_MONITOR_PLL_CONTROL_VOLTAGE_CONF_SB contents

Field Name	Number of bytes	Descrip	otion
SBLKID	2	Value = 0x01D9	
SBLKLEN	2	Value = 12	
REPORTING_	1	Value	Definition
MODE		0	Reserved
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	1	0x00	

Table 8.26 - continued from previous page

SIGNAL_EN- ABLES	2	This field indicates the sets of signals which are to be monitored. When each bit in this field is set, the corresponding signal set is monitored using test chirps. Rest of the RF analog may not be ON during these test chirps. The APLL VCO control voltage can be monitored. The Synthesizer VCO control voltage for both VCO1 and VCO2 can be monitored, while operating at their respective minimum and maximum frequencies, and their respective VCO slope (Hz/V) can be monitored if both frequencies are enabled for that VCO. The monitored signals are compared against internally chosen valid limits. The comparison results are part of the monitoring report message.
		Bit Location SIGNAL b0 APLL VCTRL
		b0 APLL_VCTRL b1 SYNTH_VCO1_VCTRL
		b2 SYNTH VCO2 VCTRL
		b15:3 RESERVED The synthesizer VCO extreme frequencies are: Synthesizer VCO Frequency Limits (Min, Max) VCO1 (76GHz, 78GHz) VCO2 (77GHz, 81GHz) Synthesizer measurements are done with TX switched off to avoid emissions.
RESERVED	4	0x00000000

8.14 Dual Clock Comparator Based Clock Frequency Monitor

This section contains API SBs that configure the Dual Clock Comparator based monitors of clocks in the BSS digital modules and report the soft results from the monitor. The corresponding monitors are collectively named DCC_CLOCK_FREQ_MONITOR. These monitors observe the relative frequency of various clock pairs and compare the measured relative frequency errors against internally fixed thresholds.

The various clock pairs that are monitored are defined here:

CLOCK PAIR	REFERENCE	MEASURED CLOCK	ERROR	THRESH-
	CLOCK		OLD (Tent	ative)

0	XTAL	BSS_600M	±1.0%
1	BSS_600M	BSS_200M	±1.0%
2	BSS_600M	BSS_100M	±1.0%
3	BSS_600M	GPADC_10M	±2.5%
4	BSS_600M	RCOSC_10M	±30.0%

The ideal frequencies of clocks involved in this monitor are given here:

Table 8.27: DCC Clock monitor pairs

CLOCK NAME	CLOCK FRE- QUENCY (MHz)	COMMENTS
XTAL	40	Crystal clock
BSS_600M	600	BSS root clock
BSS_200M	200	BSS processor clock
BSS_100M	100	BSS internal clock
GPADC_10M	10	GPADC clock used in monitoring and calibrations
RCOSC_10M	10 (±10%)	RC Oscillator clock

8.14.1 Sub block 0x01DA - AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to the DCC based clock frequency monitoring. The report is sent as an async event AWR_MONITOR_DCC_DUAL_CLOCK_COMP_REPORT_AE_SB.

Table 8.28: AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01DA	
SBLKLEN	2	Value = 12	
REPORTING_ MODE	1	Value Definition 0 RESERVED check 1 Report is send only upon a failure (after check for thresholds) 2 Report is sent every monitoring period threshold check	king with
RESERVED	1	0x00	

Table 8.28 - continued from previous page

DCC_PAIR_ ENABLES	2	a bit in corresp	the field i onding cloc	which pairs of clocks to monitor. When s set to 1, the firmware monitors the k pair by deploying the hardware's Dual in the corresponding DCC mode.
		Bit	CLOCK PAIR	
		b0	0	BSS_600M
		b1	1	BSS_200M
		b2	2	BSS_100M
		b3	3	GPADC_10M
		b4	4	RCOSC_10M
		b15:5	RESERV	ED
		messag thresho	e. The def	esults are part of the monitoring report inition of the clock pairs and their error re reporting are given in the table below ition.
RESERVED	4	0x0000	0000	

8.15 RX Saturation Detection Monitor

This section contains API SBs that configure the monitoring of RX analog saturation detectors, and report the results from the monitor. The corresponding monitors are collectively named RX_SATURATION_DETECTOR_MONITOR and RX_SIG_IMG_BAND_MONITOR. The report is available in CQ RAM.

8.15.1 Sub block 0x01DB - AWR_MONITOR_RX_SATURATION_DETECTOR_ CONF_SB

This API is a monitoring configuration API which the host sends to the mmWave device, containing information related to RX saturation detector monitoring. The report is available as CQ2 (part of CQ) in CQ RAM every chirp. The application should transfer the report from CQ RAM every chirp.

Table 8.29: AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DB
SBLKLEN	2	Value = 24
PROFILE_INDX	1	This field indicates the profile index for which this monitoring configuration applies.
SAT_MON_SE- LECT	1	01 – Enable only the ADC saturation monitor 11 – Enable both the ADC and IFA1 saturation monitors
RESERVED	1	0x00
RESERVED	1	0x00
SAT_MON_PRI- MARY_TIME_ SLICE_DURA- TION	2	It specifies the duration of each (primary) time slice. 1 LSB = 0.16 μ s. Valid range: 4 to floor(ADC sampling time us/0.16 μ s) NOTES: The minimum allowed duration of each (primary) time slice is 4 LSBs = 0.64 μ s. Also, the maximum number of (primary) time slices that will be monitored in
		a chirp is 64 so the recommendation is to set this value to correspond to (ADC sampling time / 64). If the slice is smaller, such that the ADC sampling time is longer than 64 primary slices, some regions of the valid duration of a chirp may go un-monitored.

Table 8.29 – continued from previous page

SAT_MON_ NUM_SLICES (N)	2	Number of (primary + secondary) time slices to monitor. Valid range: 1 to 127
		NOTE1: Together with SAT_MON_PRIMARY_TIME_ SLICE_DURATION, this determines the full duration of the ADC valid time that gets covered by the monitor. Primary slices = (N+1) / 2 Secondary slices = Primary slices - 1
		NOTE2:The total monitoring duration is recommended to be programmed slightly smaller than ADC sampling time to avoid last primary slice miss in the CQ data. If this recommendation is not followed and if ADC sampling time is less than total requested monitoring duration then no error is generated but the total number of slices reported back in CQ buffer would be a different value M, which is less than user requested value of N. In such cases, there will be (M+1)/2 primary slices and (M-1)/2 secondary slices. However, if ADC sampling time is such that Secondary (M-1)/2 can be measured and not Primary (M+1)/2, then primary slice (M+1)/2 will not be present in the CQ buffer. In such scenario, CQ buffer will have the total number of slices reported back as M-1 instead of M.
SAT_MON_RX_ CHANNEL_ MASK	1	Masks RX channels used for monitoring. In every slice, saturation counts for all unmasked channels are added together, and the total is capped to 127. The 8 bits are mapped (MSB->LSB) to: [RX3Q, RX2Q, RX1Q, RX0Q, RX3I, RX2I, RX1I, RX0I] 00000000 – All channels unmasked 111111111 – All channels masked
RESERVED	1	0
RESERVED	1	0
RESERVED	1	0
RESERVED	4	0x00000000
RESERVED	4	0x00000000

8.15.2 Sub block 0x01DC - AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB

This API is a monitoring configuration API which the host sends to the mmWave device, containing information related to signal and image band energy. The report is available as CQ1 (part of CQ) in CQ RAM. The application should transfer the report every chirp.

 $\textbf{Table 8.30:} \ \, \text{AWR_MONITOR_RX_SIG_IMG_MONITOR_CONF_SB contents} \\$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DC
SBLKLEN	2	Value = 16
PROFILE_INDX	1	This field indicates the profile index for which this monitoring configuration applies.
SIG_IMG_MON_ NUM_SLICES	1	Number of (primary + secondary) slices to monitor Valid range: 1 to 127
NUM_SAM- PLES_PER_ PRIMARY_TIME_ SLICE	2	This field specifies the number of samples constituting each time slice. The minimum allowed value for this parameter is 4. Valid range: 4 to NUM_ADC_SAMPLES (see NOTE2 below)
		NOTE1: The maximum number of (primary) time slices that will be monitored in a chirp is 64, so our recommendation is that this value should at least equal (NUM_ADC_SAMPLES / 64). If the slice is smaller, such that the number of ADC samples per chirp is larger than 64 primary slices, some regions of the valid duration of a chirp may go un-monitored.
		NOTE2: In Complex1x mode, the minimum number of samples per slice is 4 and for other modes it is 8. Also note that number of samples should be an even number. NOTE3:The total monitoring duration is recommended to
DECEDI(ED	4	program slightly smaller than ADC sampling time
RESERVED	4	0x00000000
RESERVED	4	0x0000000

NOTE:

It is recommended to re-issue these rx saturation and/or signal image monitor configuration APIs each time before enabling these monitor and frame trigger. The right sequence is as below:

- 1. Issue rx saturation and/or signal image monitor configuration API.
- 2. Enable rx saturation and/or signal image monitor.
- 3. Frame start.
- 4. Frame stop.
- 5. Frame start. (Optional in case of multiple frames)
- 6. Frame stop. (Optional in case of multiple frames)
- 7. Disable rx saturation and/or signal image monitor (in case disabled for some reason)
- 8. Issue rx saturation and/or signal image monitor configuration API.
- 9. Enable rx saturation and/or signal image monitor.
- 10. Frame start.

8.16 RX mixer input power monitor

8.16.1 Sub block 0x01DD - AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX mixer input power monitoring. The report is sent as an async event AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB.

NOTE:	The RX input power monitor API is debug only API. Please refer
	latest DFP release note for more info.

Table 8.31: AWR MONITOR MIXER IN POWER CONF SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DD
SBLKLEN	2	Value = 16
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring RX mixer input power using test chirps (static frequency, at the center of the profile's RF frequency band).

Table 8.31 – continued from previous page

	T	
REPORTING_	1	Value Definition
MODE		O Report is sent every monitoring period without threshold check
		Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
TX_EN	1	This field indicates if and which TX channels should be enabled while measuring RX mixer input power. Setting a bit to 1 enables the corresponding TX channel. Enabling a TX channel may help find reflection power while disabling may help find interference power.
		Bit number TX Channel
		b0 TX0
		b1 TX1
		b2 TX2
RESERVED	1	0x00
THRESHOLDS	2	The measured RX mixer input voltage swings during this monitoring is compared against the minimum and maximum thresholds configured in this field. The comparison result is part of the monitoring report message (Status bit is cleared if any measurement is outside this (minimum, maximum) range).
		Byte number Threshold
		0 Minimum Threshold
		1 Maximum Threshold
		Only the RX channels enabled in the static configuration APIs are monitored.
		1 LSB = 1800 mV/256, unsigned number Valid range: 0 to 255, maximum threshold \geq minimum threshold
RESERVED	2	0x00000000
RESERVED	4	0x00000000

8.17 Sub block 0x01DE - RESERVED

8.18 Analog Fault injection

8.18.1 Sub block 0x01DF - AWR_ANALOG_FAULT_INJECTION_CONF_SB

This API is a fault injection API which the host sends to the AWR device. It can be used to inject faults in the analog circuits to test the corresponding monitors. After the faults are injected, the regular enabled monitors will indicate the faults in their associated reports.

NOTE1:	This API should be issued when no frames are on-going.
NOTE2:	The fault injection should be tested by injecting one fault at a time and corresponding analog monitor should be observed, other monitors might show failure depending on type of fault, it can be discarded.
NOTE3:	It is recommended to perform device reset after enabling fault injection before moving to functional mode.
NOTE4:	Some of the fault injection options are de-featured, please refer latest DFP release note for more details.
NOTE5:	Disable all runtime calibrations while Fault is injected.

Table 8.32: AWR_ANALOG_FAULT_INJECTION_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DF
SBLKLEN	2	Value = 24
RESERVED	1	0x00

Table 8.32 – continued from previous page

DV 04111 DE 5-	Ι.	- · ·		
RX_GAIN_DROP	1	Primary Fault: RX Gain This field indicates which RX RF sections should have fault injected. If the fault is enabled, the RX RF gain drops significantly. The fault can be used to cause significant gain change, inter-RX gain imbalance and an uncontrolled amount of inter-RX phase imbalance.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
RX_PHASE_INV	1	Primary Fault: RX Phase This field indicates which RX channels should have fault injected. If the fault is enabled, the RX phase gets inverted. The fault can be used to cause a controlled amount (1800) of inter-RX phase imbalance.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	

Table 8.32 – continued from previous page

RX_HIGH_ NOISE	1	Primary Fault: RX Noise This field indicates which RX channels should have fault injected. If the fault is enabled, the RX IFA square wave loopback paths are engaged to inject high noise at RX IFA input. The fault can be used to cause significant RX noise floor elevation.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
RX_IF_STAGES_ FAULT	1	Primary Fault: Cutoff frequencies of RX IFA HPF & LPF, IFA Gain. This field indicates which RX channels should have fault injected. If the fault is enabled, the RX IFA HPF cutoff frequency becomes very high (about 15MHz). The fault can be used to cause the measured inband IFA gain, HPF and LPF attenuations to vary from ideal expectations.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
			the execution of RX_IFSTAGE_MONITOR, NOISE faults are temporarily removed.	

Table 8.32 – continued from previous page

RX_LO_AMP_	1	Primary Fault: F	RX Mixer LO input swing reduction	
FAULT				
		This field indicates which RX channels should have fault injected. If the fault is enabled, the RX mixer LO input swing is significantly reduced. The fault is primarily expected to be detected by RX_INTERNAL_ANALOG_SIGNALS_MONITOR (under PWRDET_RX category).		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, 1 = inject fault, 0 = remove injected fault NOTE: This option is de-featured, please refer latest release note.		
TX_LO_AMP_ FAULT	1	Primary Fault: TX PA input signal generator turning off. This field indicates which TX channels should have fault injected. If the fault is enabled, the amplifier generating TX power amplifier's LO input signal is turned off. The fault is primarily expected to be detected by TX <n>_INTER-NAL_ANALOG_SIGNALS_MONITOR (under DCBIAS category).</n>		
		Bit number	Channel	
		b0	TX0 and TX1	
		b1	TX2 (applicable only if available in the device)	
		Others	RESERVED	
		fault	1 = inject fault, 0 = remove injected ption is de-featured, please refer latest	
		TOTOGOG TIOLO.		

Table 8.32 – continued from previous page

TV OAIN DEGE	1.	D. E	T) (0 : ()	
TX_GAIN_DROP	1	Primary Fault: TX Gain (power) This field indicates which TX RF sections should have fault injected. If the fault is enabled, the TX RF gain drops significantly. The fault can be used to cause significant TX output power change, inter-TX gain imbalance and an uncontrolled amount of inter-TX phase imbalance.		
		Bit number	Channel	
		b0	TX0	
		b1	TX1	
		b2	TX2	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
TX_PHASE_INV	1	Primary Fault: TX Phase This field indicates if TX channels should have fault injected, along with some further programmability. If the fault is enabled, the TX BPM polarity (phase) is forced to a constant value as programmed. The fault can be used to cause a controlled amount (180 degree) of inter-TX phase imbalance as well as BPM functionality failure.		
		Bit number	TX Channel	
		b0	TX_FAULT (Common for all TX channels)	
		b1	RESERVED	
		b2	RESERVED	
		b3	TX0_BPM_VALUE	
		b4	TX1_BPM_VALUE	
		b5	TX2_BPM_VALUE	
		Others	RESERVED	
		For each TXn_BPM_VALUE: Applicable only if TX_FAULT is enabled. Value = 0: force TX <n> BPM polarity to 0 Value = 1: force TX<n> BPM polarity to 1.</n></n>		
		NOTE: The TXI FAULT value is	n_BPM_VALUE takes effect only when TX_ changed	

Table 8.32 – continued from previous page

	1	I	1
SYNTH_FAULT		Primary Fault: Synthesizer Frequency This field indicates which Synthesizer faults should be injected. SYNTH_VCO_OPENLOOP: If the fault is enabled, the synthesizer is forced in open loop mode with the VCO control voltage forced to a constant. In order to avoid out of band emissions in this faulty state, this fault is injected just before the PLL_CONTROL_VOLTAGE_MONITOR is executed and released just after its completion. SYNTH_FREQ_MON_OFFSET: If the fault is enabled, the synthesizer frequency monitor's ideal frequency ramp waveform is forced to be offset from the actual ramp waveform by a constant, causing monitoring to detect failures.	
		Bit number	Enable Fault
		b0	SYNTH_VCO_OPENLOOP
		b1	SYNTH FREQ MON OFFSET
		Others	RESERVED
		For each bit, fault	1 = inject fault, 0 = remove injected
SUPPLY_LDO_ FAULT	1		cates whether some LDO output voltage e injected or not.
		Bit number	Enable Fault
		b0	SUPPLY_LDO_RX_LODIST_FAULT
		Others	RESERVED
		RX LO distribution slightly change INTERNAL_PM	RX_LODIST_FAULT: if enabled, the ution sub system's LDO output voltage is ed compared to normal levels to cause MCLKLO_SIGNALS_MONITOR to detect UPPLY category).
		fault	1 = inject fault, 0 = remove injected Ilt injection is ineffective under LDO bypass

Table 8.32 – continued from previous page

MISC_FAULT	1	This field indicates whether a few miscellaneous faults should be injected or not.		
		Bit number	Enable Fault	
		b0	GPADC_CLK_FREQ_FAULT	
		Others	RESERVED	
		GPADC_CLK_FREQ_FAULT: if enabled, the GPADC clock frequency is slightly increased compared to normal usage to cause BSS DCC_CLOCK_FREQ_MONITOR to detect failure.		
		fault	1 = inject fault, 0 = remove injected	
MISC_THRESH_ FAULT	1	This field indicates whether faults should be forced in the threshold comparisons in the software layer of some monitors. If a fault is enabled, the logic in the min-max threshold comparisons used for failure detection is inverted, causing a fault to be reported. During these faults, no hardware fault condition is injected in the device.		
		Bit number	Enable Fault	
		b0	GPADC_INTERNAL_SIGNALS_MONITOR	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
RESERVED	3	0x000000		
RESERVED	4	0x00000000		

9 Unsupported Features/APIs and Debug APIs

9.1 Unsupported Features/APIs and Debug APIs

The list of unsupported features, APIs and debug APIs are highlighted in latest DFP release note. Please refer latest AWR2243 DFP release note.

10 Chirp Parameters (CP) and Chirp Quality (CQ) data

10.1 Chirp Parameters data

Chirp parameter information is always updated in the CP registers DSS_REG_VBUSM__CPREG[0-3] for single chirp use case.

NOTE: Chirp Number is always reset every burst by the hardware.

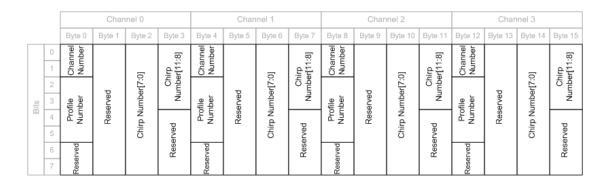


Figure 10.1: Chirp parameter information fields

	31	23 16	15 8	7 0
DSS_REG_VBUSM. CH0CPREG0	Byte 3	Byte 2	Byte 1	Byte 0
DSS_REG_VBUSM. CH0CPREG1	Byte 7	Byte 6	Byte 5	Byte 4
DSS_REG_VBUSM. CH0CPREG2	Byte 11	Byte 10	Byte 9	Byte 8
DSS_REG_VBUSM. CH0CPREG3	Byte 15	Byte 14	Byte 13	Byte 12

Figure 10.2: Chirp parameter information from DSS registers

For multichip use case, the CP data is available for up to 8 chirps in DSS_REG_VBUSM.CH[0-7]CPREG[0-3].

10.2 Chirp Quality data

Chirp quality information is divided into 3 parts

- 1. CQ0 Wideband signal and image energy information (Reserved for future use)
- 2. CQ1 RX signal and image band energy statistics
- 3. CQ2 RX ADC and IF saturation information

CQ data will be available in CQ RAM which is a ping-pong memory when the CQ monitors are enabled. Currently supported CQ monitors are AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB for CQ2 and AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB for CQ1. CQ data will be refreshed every chirp by the hardware. User has to ensure that before the next chirp finishes, the current chirps' CQ data is either processed or transferred to a local memory for further processing.

NOTE:	CQ0 is not supported by firmware currently, but the CQ RAM will
	be updated for CQ0 data. Maximum size of CQ0 data is 256 bytes.
	Users should ignore the CQ RAM for CQ0.

The starting location (on 128 bit boundary) of each CQ data within the CQ memory can be configured by programming DSS_REG.CQCFG1[12:4] for CQ0, DSS_REG.CQCFG1[21:13] for CQ1 and DSS_REG.CQCFG1[30:22] for CQ2.

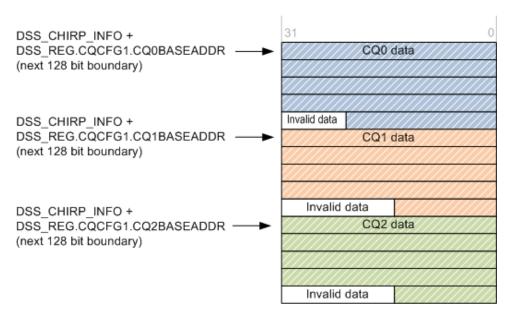


Figure 10.3: CQ data start address configuration in single chirp use case

For N-chirp use case, when user wishes to process N chirps simultaneously, then CQ0 for all N chirps will be concatenated together in memory. Similarly CQ1 and CQ2 for all N chirps will also be concatenated together.

NOTE: When CQ data is concatenated in N-chirp use case, the CQ data for new chirp starts on the next 128 bit boundary.

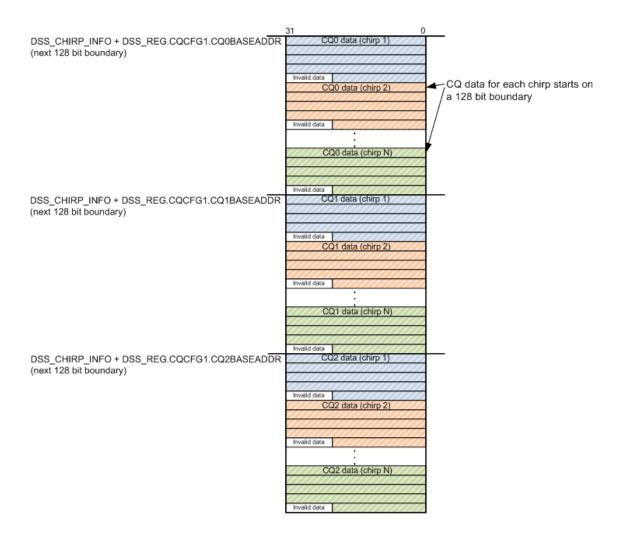


Figure 10.4: CQ data start address configuration in multi chirp use case

The CQDATAWIDTH parameter in DSS_REG.CQCFG1 defines the packing of the CQ data in the CQ memory in either 16-bit mode, 12-bit mode or in 14-bit mode.

10.2.1 CQ1

The signal band and image band are separated using a two-channel filter bank and the ADC sampling time duration is monitored in terms of primary and secondary time slices, as shown below.

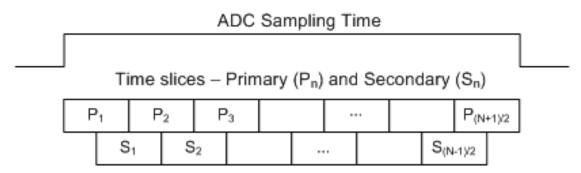


Figure 10.5: Time slices during RX signal and image band monitor and saturation monitor

For each of the two bands (signal and image), for each time slice, the input-referred average power in the slice in negative dBm is recorded as an 8-bit unsigned number, with 1 LSB = -0.5 dBm

CQ1 data is stored in memory as shown below (in 16-bit mode)

31 24	23 16	15 8	7 0
P _{i1}	P _{s1}	0	Ν
P _{i2}	P _{s2}	Si1	S _{s1}
P _{i3}	P _{s3}	S _{i2}	S _{s2}
			:
P _{i(N+1)/2}	P _{s(N+1)/2}	S _{i(N-1)/2}	S _{8(N-1)/2}

Figure 10.6: CQ1 data format in memory in 16-bit mode

N indicates the total number of primary and secondary slices which are monitored (maximum value of N is 127). P_{s,i_n} indicates the power of primary slice n for {signal, image} band and S_{s,i_n} indicates the power of secondary slice n for {signal, image} band. Each power is encoded in 8 bit unsigned number with each LSB representing -0.5 dBm.

Since maximum value of N is 127, the maximum size of CQ1 data in 16-bit mode is 256 bytes

NOTE: In real output mode, since there is no image band visibility, only the signal band statistics will be meaningful.

Similarly, in 12-bit and 14-bit modes, the CQ1 data in CQ memory will be packed as shown below. Only the relevant bits in each 16 bits of memory (either 12 bits or 14 bits) are useful and other bits and not written by hardware.

INSTRUMENTS Revision 2.7 - February 06, 2020

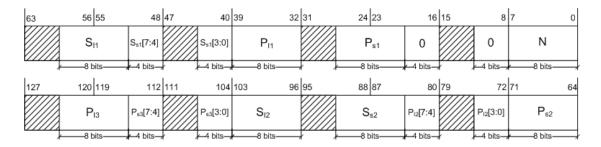


Figure 10.7: CQ1 data format in memory in 12-bit mode

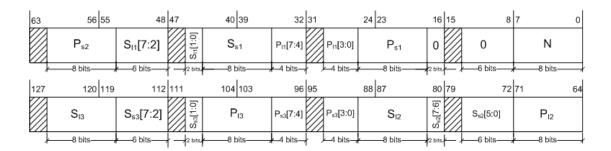


Figure 10.8: CQ1 data format in memory in 14-bit mode

10.2.2 CQ2

The analog to digital interface includes a 100 MHz bit stream indicating saturation events in the ADC/IF sections, for each channel. This one-bit indicator for each channel is monitored during the ADC sampling time duration in a time-sliced manner, as shown in Figure 10.5.

For each time slice, a saturation event count is recorded. This count is the sum of saturation event counts across all RX channels selected for monitoring, capped to a maximum count of 255 (8 bits). The saturation counts are stored in memory as shown below

31 24	23 16	15 8	7 0
P ₂	S ₁	P ₁	N
P ₄	S₃	P ₃	S ₂
i	:	:	
	P _{(N+1)/2}	S _{(N-1)/2}	P _{N/2}

Figure 10.9: CQ2 data format in memory in 16-bit mode

N indicates the total number of primary and secondary slices which are monitored (maximum value of N is 127). P_n indicates the accumulated saturation count for all enabled RX channels in primary slice n, S_n indicates the accumulated saturation count for all enabled RX channels in secondary slice n.

Since maximum value of N is 127, the maximum size of CQ2 data in 16-bit mode is 128 bytes. Similarly, in 12-bit and 14-bit modes, the CQ2 data in CQ memory will be packed as shown below. Only the relevant bits in each 16 bits of memory (either 12 bits or 14 bits) are useful and other bits and not written by hardware.

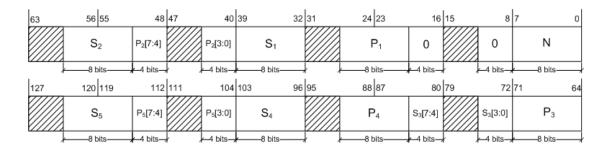


Figure 10.10: CQ2 data format in memory in 12-bit mode

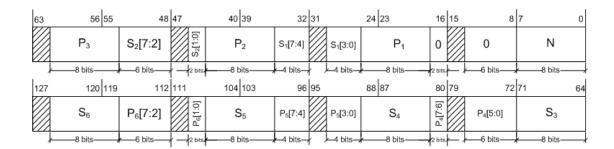


Figure 10.11: CQ2 data format in memory in 14-bit mode

11 Chirp, Burst and Frame timings

AWR2243 and xWR6843 device minimum chirp cycle time, inter-burst time, inter sub-frame/frame time requirements are documented in this section.

11.1 Chirp Cycle Time

Table 11.1: Minimum chirp cycle time

Use case	Min Chirp cycle time (μs)	Description
Typical chirps	13	The normal chirps used in a burst or a frame using legacy chirp configuration API
Advance chirps	25	The advance chirps used in a burst or a frame using advanced chirp configuration API
Advance chirp (Continuous framing mode)	30	A single advance chirp used in a burst using advanced chirp configuration API. Continuous framing mode is a mode in which a single chirp is programmed in a burst using advanced frame configuration API.

11.2 Minimum Inter Burst Time

Table 11.2: Minimum inter burst time

Min inter burst time	Time (μ s)	Description
Typical inter burst time	55	The minimum inter burst idle time required in normal bursts with legacy chirps configured in a advanced frame configuration API with inter burst power save disabled.
Inter burst power save time	55	Add inter burst power save time to minimum inter burst time if it is enabled. By default inter-burst power save is enabled, it can be disabled using AWR_RF_DEVICE_CFG_SB API
Inter chirp power save override time (power save disable)	15	Add inter chirp power save override time to minimum inter burst time if chirp idle time < 10us in a burst or can be controlled using AWR_DYNAMICPOWERSAVE_CONF_SET_SB API
Advance chirp configuration time	45	Add advance chirp configuration time to minimum inter burst time if advance chirp configuration is enabled in AWR_RF_RADAR_MISC_CTL_SB API
Advance chirp configuration time (Continuous framing mode)	20	Add Continuous framing mode advance chirp configuration time to minimum inter burst time if advance chirp configuration is enabled in AWR_RF_RADAR_MISC_CTL_SB API. Continuous framing mode is a mode in which a single chirp is programmed in a burst using advanced frame configuration API.
Calibration or Monitoring chirp time	145	Add calibration or Monitoring chirp time to minimum inter burst time if calibration or monitors intended to be run in inter burst idle time. The calibration and monitoring chirps can run only in inter sub-frame or inter-frame interval if this time is not allocated in inter-burst time. Add calibration or Monitoring duration to minimum inter burst or sub-frame/frame time based on Table 12.2 and Table 12.4

11.3 Minimum Inter Sub-frame or Frame Time

Table 11.3: Minimum inter sub-frame/frame time

Min inter sub- frame/frame time	Time (μ s)	Description
Typical inter sub- frame/frame time	300	The minimum inter sub-frame/frame idle time required in normal sub-frames with legacy chirps configured in a advanced frame configuration API or in a legacy frame config API. This time includes time required for minimum inter-burst idle time, inter burst power save, inter chirp power save override and single calibration/monitoring chirp time.
Advance chirp configuration time	45	Add advance chirp configuration time to minimum inter sub-frame/frame time if advance chirp configuration is enabled in AWR_RF_RADAR_MISC_CTL_SB API
Calibration or Monitoring duration	Table 12.2 and Table 12.4	Add calibration or Monitoring duration to minimum inter sub-frame/frame time based on Table 12.2 and Table 12.4
Loop-back burst configuration time	300	Add Loop-back burst configuration time to minimum inter sub-frame time for loop back sub-frames if it is enabled in advance frame config API.
Dynamic legacy chirp configuration time (for 16 chirps)	20	Add dynamic legacy chirp configuration time to minimum inter frame time if dynamic chirp/phase-shifter APIs are issued in runtime.
Dynamic advance chirp configuration time (without LUT)	20	Add dynamic advance chirp configuration time to minimum inter frame time if dynamic advance chirp API is issued in runtime. The dynamic update of advance chirp generic LUT is done immediately when the API is received at BSS and there is no impact to inter frame time, however user has to take care of timing of the LUT update as it should not corrupt the ongoing chirp configuration.
Dynamic profile configuration time (for 1 profile)	700	Add dynamic profile configuration time to minimum inter frame time if dynamic profile API is issued in runtime.

12 Calibration and monitoring durations

12.1 Boot time calibration durations

AWR2243 device boot time calibration duration is as below:

Table 12.1: Duration of boot time calibrations for AWR2243 device

SI. No.	Calibration	Duration (μ s)
1	APLL	330
2	Synth VCO	1400
3	LO DIST	800
4	ADC DC	600
5	HPF cutoff	3500
6	LPF cut off	200
7	Peak detector	7000
8	TX power (for each TX)	2000
9	RX gain	1500
10	TX phase (for each TX)	12 000
11	RX IQMM	42 000

12.2 Run time calibration durations

AWR2243 run time calibration durations captured in Table 12.2. Note that the firmware performs calibrations in small chunks of 145 μ s. User has to ensure that the total idle time in one CAL_MON_TIME_UNIT is sufficient to fit the enabled calibrations.

Table 12.2: Duration of run time calibrations for AWR2243 devices

SI. No.	Calibration	Duration (μ s)
1	APLL	150
2	Synth VCO	350
3	LO DIST	30
4	Peak detector	600
5	TX power CLPC (for each TX and for 1 profile)	800
6	TX power OLPC (In case CLPC is disabled)	30
6	RX gain	30
7	Application of calibration to hardware (This needs to be included always)	100

To configure CALIB_MON_TIME_UNIT, user has to calculate the total available IDLE time in the frame and please refer Table 11.2 for the same. The duration for all the enabled calibrations should be included and following software overheads should be added to that number

12.3 Monitoring duration

Table 12.3 lists the duration of all analog monitors and Table 12.4 lists the duration of all digital monitors

Table 12.3: Duration of analog monitors for AWR2243 device

SI. No.	Monitors	Duration (μ s)
1	RX gain phase (assumes 1 RF frequency)	1250
2	RX noise figure (assumes 1 RF frequency)	300
3	RX IF stage (assumes 1 RF frequency)	1400
4	TX power (assumes 1 TX, 1 RF frequency)	250
5	TX ballbreak (assumes 1 TX)	300
6	TX gain phase mismatch (assumes 1 TX, 1 RF frequency)	400
7	TX phase shifter (assumes 1 TX and 1 phase)	300
8	Synthesizer frequency Live	100
9	External analog signals (all 6 GPADC channels enabled)	150
10	TX Internal analog signals and PS DAC (assumes 1 TX)	2400
11	RX internal analog signals	1800
12	PMCLKLO internal analog signals and 20G Sync	550
13	GPADC internal signals	50
14	PLL control voltage	300
15	Dual clock comparator (assumes 6 clock comparators)	110
16	RX saturation detector	100
17	RX signal and image band monitor	100
18	RX mixer input power	700
19	Temperature monitor	200
20	Synthesizer frequency Non-live monitor	500

Table 12.4: Duration of digital monitors for AWR2243 device

SI. No.	Monitors	Duration (μ s)
1	Periodic configuration register readback	70
2	DFE LBIST monitoring	1000
3	Frame timing monitoring	10

12.4 Software overheads

When the calibrations or monitorings are enabled, the software needs certain time for reading the temperature sensors, reading the DFE statistics, preparing the calibration or monitoring reports and to clear the watchdog (WDT). All these time durations should also be accounted when computing the CALIB_MON_TIME_UNIT. The details of the software overheards are given in the Table 12.5

Table 12.5: Software overheads every FTTI that should be accounted to program CALIB_MON_TIME_UNIT and CALIBRATION_PERIODICITY

SI. No.	Software overhead	Duration (μs)
1	Periodic monitoring of stack usage	20
2	Minimum monitoring duration (report formation, digital energy monitor at the end of FTTI, temperature read every FTTI)	1000
3	Minimum calibration duration (report formation, temperature read every CAL_MON_TIME_UNIT)+	500
4	Idle time needed per FTTI for windowed watchdog (WDT)	Frame period × CALIB_MON_ TIME_UNIT/8 i.e.~12.5% of Frame period × CALIB_MON_TIME_UNIT is re- served for watchdog clearing time

12.4.1 Note on idle time for clearing the watchdog (WDT)

The clearing window of the watchdog is 12.5% of total FTTI as shown in the figure below. One FTTI can have multiple frames in legacy frame configuration or in advanced frame configuration - each frame can have multiple sub-frames and each sub-frame can have multiple bursts. The required idle time for clearing watchdog is absolute 12.5% of the overall FTTI interval, this 12.5% clearing window can have multiple frames or subframes or bursts. The granularity of the required watchdog idle time calculation is limited to sub-frame period.

Example

A user has enabled advanced frame configuration where each frame consists of 3 sub-frames and each sub-frame is of 5 ms duration. FTTI is configured as 25 frames. Each sub-frame contains 100 chirps, each chirp consisting of 4 μ s idle time and 21 μ s ramp time. i.e. duty cycle is 50%. The watchdog clearing window and time for calibration and monitoring is calculated as follows

Figure 12.1: Watchdog idle time calculation

Frame duty cycle	=	50	%
Idle time per frame (50% of 15 ms)	=	7.5	ms
FTTI (15 ms $ imes$ 25 frames)	=	375	ms
Available idle time per FTTI (50% of 375 ms)	=	187.5	ms
Ideal watchdog clearing window (12.5% of 375 ms)	=	46.875	ms
The calculated watchdog clearing window in firmware is as follows			
Duration of complete frames which can be fit in watchdog		15	m.a
clearing window $(\lceil 46.875/15 \rceil \times 15)$	=	45	ms
Fractional watchdog clearing time (which will be fit in the		1 075	
sub-frame idle time) $(46.875 - (15 \times 3))$	=	1.875	ms
Time available for calibration/monitoring per FTTI		100 105	
$(21 \text{ frames} \times 7.5 \text{ ms}) + (2 \text{ sub-frames} \times 2.5 \text{ ms}) + 0.625 \text{ ms})$	=	163.125	ms

The following examples show how the user can budget for calibration and monitoring time and configure the FTTI correctly.

A user has enabled 2 TX, uses only 1 profile, frame configuration consists of 64 chirps, each chirp is of duration is 66 μ s (56 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 10 ms. User has enabled all run time calibrations. None of the analog monitoring is enabled.

Frame duty cycle	=	42.24%
Idle time per frame (57.76% of 10 ms)	=	5.776 ms
Idle time available for calibration/monitoring per frame	=	5.676 ms
(100 μ s is for frame preparation) \int		0.07 0 1110
Time needed for all run time calibrations	_	2760 μs
$150 + 300 + 30 + 500 + (800 \times 2) + 30 + 150$	_	2100 μ5
Minimum time for software overheads	_	2770 μs
$20 + 1000 + 500 + (10000 \times 1/8)$	_	$2110 \mu s$
Total time needed per frame for calibration		EE00
2760 μ s + 2770 μ s $\}$	=	5530 μ s

Total time needed per frame for calibration is 5.530 μ s which is less than the frame idle time (5.676 ms) and hence this configuration will be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 1 and CALIBRATION_PERIODICITY as 100. With this setting calibrations are triggered once every 100 frames (i.e. once every 1 s)

Consider another example where the frame configuration remains the same as in example 1, but frame periodicity is reduced to 8 ms.

Total time needed per frame for calibration is 5.280 μ s which is more than the frame idle time (3.676 ms) and hence this configuration will **not** be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 2 and CALIBRATION_PERIODICITY as 63. With this setting calibrations are triggered once every 126 frames (i.e. once every 1.008 s)

A user has enabled 2 TX, uses 2 profiles, frame configuration consists of 32 chirps, each chirp is of duration is 90 μ s (80 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 6 ms. User has enabled all run time calibrations. None of the analog monitoring is enabled.

Frame duty cycle	=	48.00%
Idle time per frame (52.00% of 6 ms)	=	3.120 ms
Idle time available for calibration/monitoring per frame		2 020 ma
(100 μ s is for frame preparation)	=	3.020 ms
Time needed for all run time calibrations		1000
$150 + 300 + 30 + 500 + (800 \times 2 \times 2) + 30 + 150$	=	4360 μ s
Minimum time for software overheads		0070
$20 + 1000 + 500 + (6000 \times 1/8)$	=	2270 μ s
Total time needed per frame for calibration		0000 -
4360 μ s + 2270 μ s	=	6630 μ s
· · · · · · · · · · · · · · · · · · ·		

Total time needed per frame for calibration is 6.630 μ s which is more than the frame idle time (3.020 ms) and hence this configuration will **not** be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 3 and CALIBRATION_PERIODICITY as 56. With this setting, minimum required time is 8.13 ms and available idle time for calibration/monitoring is 9.06 ms and calibrations are triggered once every 168 frames (i.e. once every 1.008 s)

A user has enabled 2 TX, uses 2 profiles, frame configuration consists of 32 chirps, each chirp is of duration is 90 μ s (80 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 6 ms. User has enabled all run time calibrations. Analog monitorings which are enabled are (a) TX output power monitor for TX0 and TX1 (b) TX BPM monitor for TX0 and TX1 (c) RX gain phase monitor and (d) RX noise figure monitor. Each of the monitors are configured to be run for 1 profile and 3 RF frequencies (low, mid and high) as defined by the profile.

Frame duty cycle	=	48.00%
Idle time per frame (52.00% of 6 ms)	=	3.120 ms
Idle time available for calibration/monitoring per frame		3.020 ms
(100 μ s is for frame preparation)	=	3.020 HIS
Time needed for all run time calibrations		4000 -
$150 + 300 + 30 + 500 + (800 \times 2 \times 2) + 30 + 150$	=	4360 μ s
Time needed for all monitoring		0050
$(1250 \times 3) + (250 \times 3) + (200 \times 3 \times 2) + (575 \times 2)$	=	6850 μ s
Minimum time for software overheads)		0070
$20 + 1000 + 500 + (6000 \times 1/8)$	=	2270 μ s
Total time needed per frame for calibration and monitoring		10100
4360 μ s + 6850 μ s + 2270 μ s	=	13480 μ s
, , , , , , , , , , , , , , , , , , , ,		

Total time needed per frame for calibration is 13.480 μ s which is more than the frame idle time (3.020 ms) and hence this configuration will **not** be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 6 and CALIBRATION_PERIODICITY as 28. With this setting, minimum required time for calibration and monitoring is 16.48 ms and available idle time for calibration/monitoring is 18.72 ms. Monitoring is triggered once in 6 frames and calibration is triggered once in 168 frames (i.e. once every 1.008 s)

12.5 Sample Application

For sample application please refer DFP (device firmware package) user guide document. 2243CHANGES

Appendices

A AWR2243 API changes

The Scope of this section is to highlight the new APIs and changes to existing APIs w.r.t. AWR1243 device APIs, all the features/APIs of AWR1243 are supported and applicable to AWR2243 (Backward Compatible) in addition to new APIs unless otherwise it is explicitly captured below. Please refer mmWaveLink driver migration guide document for more info for API migration. Refer revision history for more details in page xix.

The following are the absolute new APIs added in AWR2243 device DFP.

- 1. AWR APLL SYNTH BW CONTROL SB
- 2. AWR_MONITOR_TYPE_TRIG_CONF_SB
- 3. AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB
- 4. AWR_MONITOR_SYNTHESIZER_FREQUENCY_NONLIVE_REPORT_AE_SB
- 5. AWR_DEV_RF_DEBUG_SIG_SET_SB
- 6. AWR DEV CSI2 DELAY DUMMY CFG SET SB
- 7. AWR_ADVANCE_CHIRP_CONF_SB
- 8. AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB
- 9. New timing information added in page 395

The following are the changes to existing APIs, backward compatibility is impacted due to these changes; however these APIs are unsupported in AWR1243 device.

- 1. AWR MONITOR RX IFSTAGE CONF SB
- 2. AWR MONITOR RX IFSTAGE REPORT AE SB
- 3. AWR_DIGITAL_COMP_EST_CONTROL_SB (previously called AWR_INTER_RX_GAIN_ PHASE CONTROL_SB)
- 4. AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB (previously called AWR_MONITOR_TX0_BPM_CONF_SB)
- AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB (previously called AWR_MONITOR_ TX1_BPM_CONF_SB)
- AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB (previously called AWR_MONITOR_ TX2_BPM_CONF_SB)
- AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB (previously called AWR_MONITOR_ TX0_BPM_REPORT_AE_SB)
- 8. AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB (previously called AWR_MONITOR_TX1_BPM_REPORT_AE_SB)
- 9. AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_SB (previously called AWR_MONITOR_TX2_BPM_REPORT_AE_SB)

The following are the updates to existing APIs in 'reserved' fields, backward compatibility is not impacted due to these changes.

- Updated MISC_FUNC_CTRL in AWR_RF_TEST_SOURCE_CONFIG_SET_SB
- Updated ANA_MONITORING_ENABLES and LDO_VMON_SC_MONITORING_EN in AWR_ MONITOR ANALOG ENABLES CONF SB
- 3. Added new fields in AWR MONITOR TX0 INTERNAL ANALOG SIGNALS CONF SB
- 4. Added new fields in AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB
- 5. Added new fields in AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB
- Added new fields in AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_ AE SB
- Added new fields in AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_ AE SB
- 8. Added new fields in AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_ AE SB
- 9. Updates to AWR_CHAN_CONF_SET_SB
- 10. Updates to API AWR_CAL_DATA_SAVE_SB
- Updates to AWR_PROFILE_CONF_SET_SB
- 12. Added new fields in AWR CALIB MON TIME UNIT CONF SB
- 13. Added new fields in AWR RUN TIME CALIBRATION CONF AND TRIGGER SB
- 14. Updates to AWR_RF_BOOTUPBIST_STATUS_GET_SB
- 15. Updates to AWR_AE_DEV_RFPOWERUPDONE
- 16. Updates to AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB
- 17. Added new fields in AWR MONITOR SYNTHESIZER FREQUENCY CONF SB
- 18. Added new fields in AWR_DEV_CSI2_CFG_SET_SB
- 19. Updates to AWR LOOPBACK BURST CONF SET SB
- 20. Updates to AWR MONITOR PLL CONTROL VOLTAGE REPORT AE SB
- 21. Updates to AWR_BPM_CHIRP_CONF_SET_SB
- 22. Updates to AWR_RF_RADAR_MISC_CTL_SB
- 23. Updates to AWR ADVANCED FRAME CONF SB
- 24. Updates to AWR FRAME CONF SET SB
- 25. Added new fields in AWR MONITOR TX GAIN PHASE MISMATCH REPORT AE SB
- 26. Added new fields in AWR_FRAMESTARTSTOP_CONF_SB
- 27. Added new fields in AWR_AE_RF_CPUFAULT_SB
- 28. Updates to AWR MONITOR RX GAIN PHASE REPORT AE SB
- 29. Updates to AWR AE MSS CPUFAULT SB
- 30. Updates to AWR_RF_DEVICE_CFG_SB
- 31. Updates to AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB
- 32. Updates to AWR MONITOR DUAL CLOCK COMP CONF SB
- 33. Updates to AWR MONITOR DUAL CLOCK COMP REPORT AE SB
- 34. Updates to AWR_MSS_LATENTFAULT_TEST_CONF_SB
- 35. Updates to AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB
- 36. Updates to AWR AE DEV MSSPOWERUPDONE SB
- 37. Updates to AWR MSSCPUFAULT STATUS GET SB

- 38. Updates to AWR_AE_MSS_BOOTERRORSTATUS_SB
- 39. Updates to AWR_AE_MSS_ESMFAULT_STATUS_SB
- 40. Updates to AWR_DEV_RX_DATA_PATH_CLK_SET_SB
- 41. Updates to AWR_DEV_FILE_DOWNLOAD_SB
- 42. Updates to timings in page 398

IMPORTANT NOTICE

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated