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Abstract – TensorFlow Lite is the most popular open source 

deep learning runtime to enable on-device inference for mobile 

and embedded devices. It has been integrated in Processor SDK 

Linux to run on Arm cores for all Sitara devices. TI Deep 

Learning (TIDL) supports high performance computation for 

core deep learning operators on Embedded Vision Engine (EVE) 

subsystems, and C66x Digital Signal Processor (DSP) cores. It 

allows execution of a TensorFlow Lite model only when all of its 

operators are supported by TIDL. As TIDL supports 20 

operators and TensorFlow Lite supports 120 operators, this 

becomes a severe restriction for customers. This paper presents a 

method to enable running all TensorFlow Lite models, with 

operators supported by TIDL offloaded to EVE/DSP for 

acceleration, and operators not supported by TIDL running on 

Arm. This heterogeneous execution with TIDL offload is 

demonstrated on Sitara AM5729 family of devices. 

Keywords: Tensorflow Lite, TI Deep Learning, heterogeneous 

execution, subgraph partitioning, computation offload 

 

INTRODUCTION 

     

As the most popular open source deep learning runtime for 

mobile and embedded devices, TensorFlow Lite (called as 

TFLite in short) is a lightweight solution of TensorFlow, 

enabling on-device inference with low latency and a small 

binary size [1]. TFLite currently supports a limited subset of 
TensorFlow operators that have been optimized for on-device 

use, narrowing thousands of operators in Tensorflow to around 

120 operators in TFLite. In order to enable low latency 

inference for deployment to edge devices, TFLite provides 

pre-trained TFLite models [2] as a starting point. To further 

reduce the latency, post-training quantization can be applied to 

leverage faster fixed-point computation. For even lower 

latency and without a compromise in accuracy, 

quantization-aware training can be performed [3]. 

TI’s Sitara processors form a scalable portfolio integrating 

Arm cores with flexible peripherals and application-specific 

accelerators. With single to multicore Arm processors through 
a unified software platform, Sitara processors provide optimal 

SoC solutions for various end markets. For instance, AM5729 

family of devices has two Arm cores, as well as two C66x DSP 

cores and up to four EVE subsytems as hardware accelerators 

for enhanced data processing power. Along with the Arm cores, 

EVE/DSP accelerators can greatly boost the deep learning 

inference performance of convolutional neural networks on 

embedded devices. 

TI's Processor SDK Linux provides the core foundation and 

building blocks for developing embedded applications and 

mainline Linux allows easy integration of various open source 
packages and applications. As one example, the open source 

TFLite has been integrated in Processor SDK Linux, and all 

TFLite models can run on Arm cores for all Sitara devices. 

This is shown in the dashed box on the left in Fig.1. 

 
Fig. 1 Deep learning with TFLite for TI’s processors: Arm only, TIDL 

only, and heterogeneous execution. 

 

To utilize the processing power of EVE/DSP for 
accelerating deep leaning inference on TI’s processors, TI 

Deep Learning (TIDL) [4] is developed as an efficient building 

block to process around 20 most computation heavy operators, 

such as convolution, deconvolution, pooling, and element wise 

operations. The operators supported by TIDL, along with any 

constraints for the operators’ attributes, can be maintained as 

an allowlist. An example of a constraint is the size of the input 

tensor. For Sitara AM5729 devices, TIDL API [5] provides a 

common abstraction for computation on EVE/DSP for deep 

learning inference user space applications on the Arm. TIDL 

import tool [6] is developed to convert a deep learning model 

to TIDL format so that it can be dispatched to EVE/DSP. If all 
the operators of a TFLite model are supported by TIDL, it can 

be dispatched to EVE/DSP. This is shown in the dashed box on 

the right in Fig.1. 

As TFLite supports around 120 operators while TIDL 

supports around 20 and with constraints on some operators’ 

attributes, it is likely that there are many TFLite models which 

cannot run with TIDL alone. To enable execution of any 

TFLite models on TI’s processors while utilizing the 

EVE/DSP hardware accelerators to boost the inference 

performance, this paper presents a method of heterogeneous 

execution of a TFLite model on the Arm and on the hardware 
accelerators. A TFLite model is first compiled offline to be 

compatible with the TIDL format, and then re-serialized as a 

standard TFLite model. This compiled TFLite model can then 

run through the TFLite runtime interface on the Arm, 

offloading the operators supported by TIDL to EVE/DSP for 

acceleration while executing the operators which are not 

supported by TIDL on the Arm. For a user this looks like 

TFLite on ARM that just runs faster. This is shown in the solid 

box in the middle in Fig. 1, and implemented for Sitara 

AM5729 family of devices. 
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Prior art of this work is Edge TPU, Google’s purpose-built 

ASIC designed to run deep leaning inference at the edge [7]. 

Edge TPU supports TFLite models that are 8-bit quantized and 

use only the operations listed in [8]. A TFLite model is first 

compiled by the Edge TPU Compiler. At the first point in the 

model graph where an unsupported operation occurs, the 

compiler partitions the graph into two parts. The first part of 

the graph that contains only supported operations is compiled 

into a custom operation, and everything else remains the same 

[9]. After this offline step, inference is performed on a model 

which has been compiled by the Edge TPU compiler. The 
Edge TPU custom operation inside the compiled model is 

registered with TFLite, and dispatched from TFLite runtime to 

the Edge TPU [10]. The unsupported operations execute on the 

host CPU. 

 

APPROACH 

A. Overview 

 

To enable TIDL offload of a TFLite model to hardware 

accelerators of TI’s processors, a two-stage approach similar to 

Edge TPU is used, as shown in Fig. 2. The blocks on the left 
illustrate the offline TIDL compilation for a TFLite model, by 

enhancing the TIDL import tool with subgraph partitioning 

and reserialization to create a TIDL compatible TFLite model. 

The blocks on the right show the TFLite inference on the 

compiled TFLite model. The TIDL subgraph is registered as a 

custom operator of TFLite, and executed on EVE/DSP 

hardware accelerators via TIDL API. The subsections below 

describe details for both stages. 

 
Fig. 2: Framework for TFLite heterogeneous execution with TIDL.  

 

B. Offline TIDL compilation of TFLite model 

 

At the first stage, as part of the software build process the 

TIDL import tool is enhanced to compile a TFLite model. It 

takes a TFLite model as the input, and generates a model 

compatible with TIDL and still in the TFLite model format. 

As shown in Fig.3, the TIDL import process starts from the 
graph output, and retrieves its producer node. If this node is 

supported by TIDL, it will be converted into the TIDL format, 

and the search continues upward to find another producer node. 

If there is a node which is not supported by TIDL, the old 

import process just exits and reports the import failure. With 

the target of heterogeneous execution which allows operators 

not supported by TIDL, the import process continues but uses 

the input of this unsupported node as the output of the updated 

TIDL subgraph. The same process continues until no producer 

node can be found. This completes the model conversion and 

subgraph partitioning in a single-pass process. One TIDL 

subgraph is identified and converted into the TIDL format, 

described by a net description file and a parameter description 

file. In the import process, the nodes which have been 

evaluated and the nodes which are not supported by TIDL are 

recorded to facilitate recreation of the TFLite model later. 

 
Fig. 3: TIDL import execution flow with enhancement for subgraph 
partitioning (marked in bold and in blue/green color). 

 

The left side of Fig.4 shows the subgraph partitioning result 

after applying the algorithm above to an example TFLite 

model, Deeplab v3 pixel segmentation [11]. The tool Netron 

[12] is used to generate the graphical representation of the 

networks. This model has three nodes of the ResizeBilinear 

operator (black box in the red explosion), which is not 

supported by TIDL. It also has an AveragePool2D node (green 

box in the red explosion) which has a kernel size of 33x33 

while TIDL supports up to 9x9 kernels for pooling. The 
algorithm traverses from the graph output to the 

AveragePool2D node, and then does the partitioning right up 

to this unsupported node. The partitioned TIDL subgraph is 

shown with the larger gray outline box at the top left. The 

compute heavy nodes such as Conv2D on larger tensors inside 

the cloud are not drawn to limit the size of the figure. This 

pattern can be repeated enabling multiple TIDL subgraphs to 

be offloaded. 

After the TIDL subgraph is partitioned and converted, the 

next step is to create a TFLite model which represents the 

TIDL subgraph as a single custom operator and keeps the 

operators outside of the subgraph (if there are any) as in the 
original model. The right side of Fig. 4 shows what a TIDL 

compiled TFLite model looks like for the Deeplab v3 model. 
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Fig. 4 Original and TIDL compiled Deeplab v3 TFLite model. 

 

From the subgraph partitioning and the original TFLite 

model, we have known the information listed below. 

1) Nodes in the TIDL subgraph 
2) Nodes outside the TIDL subgraph 

3) Input and output of the TIDL subgraph 

4) Input and output of the graph 

To create the TIDL compiled TFLite model which is in the 

FlatBuffers format [13], the network needs to be serialized. As 

shown in Fig. 5, the major tasks here include exporting tensors, 

buffers, and operators, as well as creating the opcode table. A 

model is created after all these elements are established. 

The tensor exporting loops through all the tensors in the 

original model and writes a tensor in the output model only 

when it connects to a node outside the offloaded TIDL 
subgraph, or it is the input or output of the subgraph. Using this 

process, the number of tensors can be greatly reduced, and the 

tensors are re-indexed. When a written tensor has buffer data, 

the buffer is also exported with a new buffer index assigned. 

 The first exported operator is called tidl-am5-custom-op, 

which encapsulates all the nodes in the TIDL subgraph. File 

names for the two TIDL format files created from the import 

process for the subgraph are written as custom options of this 

custom operator. Rather than the file names, binary data of 

these files can also be written as custom options inside this 

operator to have the output TFLite model contain the complete 

information needed by the runtime. Following the custom 
operator are the rest of the nodes of the original network model 

outside the TIDL subgraph, with built-in options copied from 

the original model. Input and output tensors for each of these 

operators (including tidl-am5-custom-op) are identified and 

associated with the operator with the new tensor indices from 

the tensor exporting above. 

For the opcode table, “tidl-am5-custom-op” is added along 

with BuiltinOperator_CUSTOM type for the TIDL custom 

operator. For the nodes outside the TIDL subgraph, their 

built-in codes (e.g., BuiltinOperator_CONV_2D) remain and 

are added to the table.  

          
Fig. 5 Serialization to create the output model in FlatBuffers format. 

 

C. TFLite runtime inference with TIDL offload 

 

Once the compilation has been completed offline the part 

that is executed on the embedded device is running inference 

with the TIDL compiled TFLite model. For typical vision 

applications the input tensor is a frame or a cropped region in 

the frame. In order to let the TFLite runtime recognize the 

newly created custom operator (tidl-am5-custom-op), a 

custom kernel [14] is created and registered with TFLite 
runtime. As shown in Fig. 6, the kernel defines Init(), Free(), 

Prepare(), and Eval() functions. The Init(), Free(), and Eval() 

functions include calls to TIDL APIs to initialize, free, and run 

the subgraph on EVE/DSP. 

 
Fig. 6: Register tidl-am5-custom-op and interface it with TIDL APIs. 
 

After the custom kernel for tidl-am5-custom-op is registered 
with TFLite, it needs to be added to the model resolver (as 

shown in Fig. 7) when building the TFLite interpreter. The 

other operators in the TIDL compiled TFLite model are 

built-in operators of TFLite, and can be interpreted natively on 

at Arm core. Now the typical TFLite inference steps [15] can 

be used to run the model as listed below: 

1) load the model (initialization) 

2) build the interpreter (initialization) 

3) set the input tensor 

4) invoke inference 

5) read output tensor values 

Steps 3 through 5 are run per each input tensor, e.g., frame in 
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a sequence of images. Under the hood, the tidl-am5-custom-op 

will be dispatched to EVE/DSP for acceleration, while the 

other operators will be run on the Arm. 

 
Fig. 7: Add tidl-am5-custom-op to the model resolver. 

 

DEMO 

 

To demonstrate the proposed method, the mobilenet v1 

model (mobilenet_v1_1.0_224.tflite) is chosen as it has been 

validated with the TIDL library. Although all operators of this 

model are supported by TIDL, to test partitioning a specific 
tensor can be passed to the TIDL import tool from the 

command line to determine the cutoff for a subgraph. Fig. 8 

shows the example command and the output TFLite model for 

creating a subgraph of all nodes before the tensor called 

MobilenetV1/MobilenetV1/Conv2d_13_pointwise/Relu6. 

 

 
Fig. 8: Compile mobilenet v1 model for heterogeneous execution. 

 

Along with the output model, the compilation creates two 

TIDL format files for the subgraph:  

 tidl_net_tflite_mobilenet_v1_1.0_224.bin 

 tidl_param_tflite_mobilenet_v1_1.0_224.bin 

The TIDL API subgraph handling requires supplying a TIDL 

specific subgraph0.cfg file which specifies the two TIDL 

format files above, as well as the boundary conversion 

parameters related to model quantization for the TIDL 

subgraph. Top of Fig. 9 shows the example subgraph0.cfg. 

To evaluate the performance of heterogeneous execution 
with TIDL offload, we have built a classification demo using 

TFLite runtime with the tidl-am5-custom-op kernel added to 

the interpreter as discussed before. Bottom of Fig. 9 shows the 

example command to run classification using the compiled 

mobilenet v1 model (mobilenet_v1_1.0_224_tidl_am5.tflite), 

with subgraph0.cfg above consumed by the TIDL API. The 

original mobilenet v1 model can also be supplied to the 

classification demo to obtain the Arm only performance for 

comparison. As shown in Table 1, the inference time using 

heterogeneous execution is 32% from the Arm only execution, 

with slight accuracy loss of 0.03. This demonstrates the 
performance advantage of our method for enabling an arbitrary 

TFLite model on AM5729 while leveraging TIDL offload. 

  

 
Fig. 9: Example subgraph0.cfg and command to run classification. 

 
TABLE I 

PERFORMANCE COMPARSION 
 

 Accuracy Inference Time (ms) 

Arm only  0.86 308.14 

Heterogeneous 0.83 98.89 

 

CONCLUSION 

 

In this paper, we have provided a solution to run any TFLite 

models with TIDL offload to hardware accelerators, through 

the TFLite runtime interface. By enhancing the TIDL import 
tool and leveraging TIDL API, we have demonstrated that the 

TIDL offload can be inserted in TFLite nearly seamlessly in a 

development flow analogous to Google’s Edge TPU. 
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