

 1

TensorFlow Lite Heterogeneous Execution with TI Deep Learning Offload

Hongmei Gou and Pekka Varis

Abstract – TensorFlow Lite is the most popular open source

deep learning runtime to enable on-device inference for mobile

and embedded devices. It has been integrated in Processor SDK

Linux to run on Arm cores for all Sitara devices. TI Deep

Learning (TIDL) supports high performance computation for

core deep learning operators on Embedded Vision Engine (EVE)

subsystems, and C66x Digital Signal Processor (DSP) cores. It

allows execution of a TensorFlow Lite model only when all of its

operators are supported by TIDL. As TIDL supports 20

operators and TensorFlow Lite supports 120 operators, this

becomes a severe restriction for customers. This paper presents a

method to enable running all TensorFlow Lite models, with

operators supported by TIDL offloaded to EVE/DSP for

acceleration, and operators not supported by TIDL running on

Arm. This heterogeneous execution with TIDL offload is

demonstrated on Sitara AM5729 family of devices.

Keywords: Tensorflow Lite, TI Deep Learning, heterogeneous

execution, subgraph partitioning, computation offload

INTRODUCTION

As the most popular open source deep learning runtime for

mobile and embedded devices, TensorFlow Lite (called as

TFLite in short) is a lightweight solution of TensorFlow,

enabling on-device inference with low latency and a small

binary size [1]. TFLite currently supports a limited subset of
TensorFlow operators that have been optimized for on-device

use, narrowing thousands of operators in Tensorflow to around

120 operators in TFLite. In order to enable low latency

inference for deployment to edge devices, TFLite provides

pre-trained TFLite models [2] as a starting point. To further

reduce the latency, post-training quantization can be applied to

leverage faster fixed-point computation. For even lower

latency and without a compromise in accuracy,

quantization-aware training can be performed [3].

TI’s Sitara processors form a scalable portfolio integrating

Arm cores with flexible peripherals and application-specific

accelerators. With single to multicore Arm processors through
a unified software platform, Sitara processors provide optimal

SoC solutions for various end markets. For instance, AM5729

family of devices has two Arm cores, as well as two C66x DSP

cores and up to four EVE subsytems as hardware accelerators

for enhanced data processing power. Along with the Arm cores,

EVE/DSP accelerators can greatly boost the deep learning

inference performance of convolutional neural networks on

embedded devices.

TI's Processor SDK Linux provides the core foundation and

building blocks for developing embedded applications and

mainline Linux allows easy integration of various open source
packages and applications. As one example, the open source

TFLite has been integrated in Processor SDK Linux, and all

TFLite models can run on Arm cores for all Sitara devices.

This is shown in the dashed box on the left in Fig.1.

Fig. 1 Deep learning with TFLite for TI’s processors: Arm only, TIDL

only, and heterogeneous execution.

To utilize the processing power of EVE/DSP for
accelerating deep leaning inference on TI’s processors, TI

Deep Learning (TIDL) [4] is developed as an efficient building

block to process around 20 most computation heavy operators,

such as convolution, deconvolution, pooling, and element wise

operations. The operators supported by TIDL, along with any

constraints for the operators’ attributes, can be maintained as

an allowlist. An example of a constraint is the size of the input

tensor. For Sitara AM5729 devices, TIDL API [5] provides a

common abstraction for computation on EVE/DSP for deep

learning inference user space applications on the Arm. TIDL

import tool [6] is developed to convert a deep learning model

to TIDL format so that it can be dispatched to EVE/DSP. If all
the operators of a TFLite model are supported by TIDL, it can

be dispatched to EVE/DSP. This is shown in the dashed box on

the right in Fig.1.

As TFLite supports around 120 operators while TIDL

supports around 20 and with constraints on some operators’

attributes, it is likely that there are many TFLite models which

cannot run with TIDL alone. To enable execution of any

TFLite models on TI’s processors while utilizing the

EVE/DSP hardware accelerators to boost the inference

performance, this paper presents a method of heterogeneous

execution of a TFLite model on the Arm and on the hardware
accelerators. A TFLite model is first compiled offline to be

compatible with the TIDL format, and then re-serialized as a

standard TFLite model. This compiled TFLite model can then

run through the TFLite runtime interface on the Arm,

offloading the operators supported by TIDL to EVE/DSP for

acceleration while executing the operators which are not

supported by TIDL on the Arm. For a user this looks like

TFLite on ARM that just runs faster. This is shown in the solid

box in the middle in Fig. 1, and implemented for Sitara

AM5729 family of devices.

 2

Prior art of this work is Edge TPU, Google’s purpose-built

ASIC designed to run deep leaning inference at the edge [7].

Edge TPU supports TFLite models that are 8-bit quantized and

use only the operations listed in [8]. A TFLite model is first

compiled by the Edge TPU Compiler. At the first point in the

model graph where an unsupported operation occurs, the

compiler partitions the graph into two parts. The first part of

the graph that contains only supported operations is compiled

into a custom operation, and everything else remains the same

[9]. After this offline step, inference is performed on a model

which has been compiled by the Edge TPU compiler. The
Edge TPU custom operation inside the compiled model is

registered with TFLite, and dispatched from TFLite runtime to

the Edge TPU [10]. The unsupported operations execute on the

host CPU.

APPROACH

A. Overview

To enable TIDL offload of a TFLite model to hardware

accelerators of TI’s processors, a two-stage approach similar to

Edge TPU is used, as shown in Fig. 2. The blocks on the left
illustrate the offline TIDL compilation for a TFLite model, by

enhancing the TIDL import tool with subgraph partitioning

and reserialization to create a TIDL compatible TFLite model.

The blocks on the right show the TFLite inference on the

compiled TFLite model. The TIDL subgraph is registered as a

custom operator of TFLite, and executed on EVE/DSP

hardware accelerators via TIDL API. The subsections below

describe details for both stages.

Fig. 2: Framework for TFLite heterogeneous execution with TIDL.

B. Offline TIDL compilation of TFLite model

At the first stage, as part of the software build process the

TIDL import tool is enhanced to compile a TFLite model. It

takes a TFLite model as the input, and generates a model

compatible with TIDL and still in the TFLite model format.

As shown in Fig.3, the TIDL import process starts from the
graph output, and retrieves its producer node. If this node is

supported by TIDL, it will be converted into the TIDL format,

and the search continues upward to find another producer node.

If there is a node which is not supported by TIDL, the old

import process just exits and reports the import failure. With

the target of heterogeneous execution which allows operators

not supported by TIDL, the import process continues but uses

the input of this unsupported node as the output of the updated

TIDL subgraph. The same process continues until no producer

node can be found. This completes the model conversion and

subgraph partitioning in a single-pass process. One TIDL

subgraph is identified and converted into the TIDL format,

described by a net description file and a parameter description

file. In the import process, the nodes which have been

evaluated and the nodes which are not supported by TIDL are

recorded to facilitate recreation of the TFLite model later.

Fig. 3: TIDL import execution flow with enhancement for subgraph
partitioning (marked in bold and in blue/green color).

The left side of Fig.4 shows the subgraph partitioning result

after applying the algorithm above to an example TFLite

model, Deeplab v3 pixel segmentation [11]. The tool Netron

[12] is used to generate the graphical representation of the

networks. This model has three nodes of the ResizeBilinear

operator (black box in the red explosion), which is not

supported by TIDL. It also has an AveragePool2D node (green

box in the red explosion) which has a kernel size of 33x33

while TIDL supports up to 9x9 kernels for pooling. The
algorithm traverses from the graph output to the

AveragePool2D node, and then does the partitioning right up

to this unsupported node. The partitioned TIDL subgraph is

shown with the larger gray outline box at the top left. The

compute heavy nodes such as Conv2D on larger tensors inside

the cloud are not drawn to limit the size of the figure. This

pattern can be repeated enabling multiple TIDL subgraphs to

be offloaded.

After the TIDL subgraph is partitioned and converted, the

next step is to create a TFLite model which represents the

TIDL subgraph as a single custom operator and keeps the

operators outside of the subgraph (if there are any) as in the
original model. The right side of Fig. 4 shows what a TIDL

compiled TFLite model looks like for the Deeplab v3 model.

 3

Fig. 4 Original and TIDL compiled Deeplab v3 TFLite model.

From the subgraph partitioning and the original TFLite

model, we have known the information listed below.

1) Nodes in the TIDL subgraph
2) Nodes outside the TIDL subgraph

3) Input and output of the TIDL subgraph

4) Input and output of the graph

To create the TIDL compiled TFLite model which is in the

FlatBuffers format [13], the network needs to be serialized. As

shown in Fig. 5, the major tasks here include exporting tensors,

buffers, and operators, as well as creating the opcode table. A

model is created after all these elements are established.

The tensor exporting loops through all the tensors in the

original model and writes a tensor in the output model only

when it connects to a node outside the offloaded TIDL
subgraph, or it is the input or output of the subgraph. Using this

process, the number of tensors can be greatly reduced, and the

tensors are re-indexed. When a written tensor has buffer data,

the buffer is also exported with a new buffer index assigned.

 The first exported operator is called tidl-am5-custom-op,

which encapsulates all the nodes in the TIDL subgraph. File

names for the two TIDL format files created from the import

process for the subgraph are written as custom options of this

custom operator. Rather than the file names, binary data of

these files can also be written as custom options inside this

operator to have the output TFLite model contain the complete

information needed by the runtime. Following the custom
operator are the rest of the nodes of the original network model

outside the TIDL subgraph, with built-in options copied from

the original model. Input and output tensors for each of these

operators (including tidl-am5-custom-op) are identified and

associated with the operator with the new tensor indices from

the tensor exporting above.

For the opcode table, “tidl-am5-custom-op” is added along

with BuiltinOperator_CUSTOM type for the TIDL custom

operator. For the nodes outside the TIDL subgraph, their

built-in codes (e.g., BuiltinOperator_CONV_2D) remain and

are added to the table.

Fig. 5 Serialization to create the output model in FlatBuffers format.

C. TFLite runtime inference with TIDL offload

Once the compilation has been completed offline the part

that is executed on the embedded device is running inference

with the TIDL compiled TFLite model. For typical vision

applications the input tensor is a frame or a cropped region in

the frame. In order to let the TFLite runtime recognize the

newly created custom operator (tidl-am5-custom-op), a

custom kernel [14] is created and registered with TFLite
runtime. As shown in Fig. 6, the kernel defines Init(), Free(),

Prepare(), and Eval() functions. The Init(), Free(), and Eval()

functions include calls to TIDL APIs to initialize, free, and run

the subgraph on EVE/DSP.

Fig. 6: Register tidl-am5-custom-op and interface it with TIDL APIs.

After the custom kernel for tidl-am5-custom-op is registered
with TFLite, it needs to be added to the model resolver (as

shown in Fig. 7) when building the TFLite interpreter. The

other operators in the TIDL compiled TFLite model are

built-in operators of TFLite, and can be interpreted natively on

at Arm core. Now the typical TFLite inference steps [15] can

be used to run the model as listed below:

1) load the model (initialization)

2) build the interpreter (initialization)

3) set the input tensor

4) invoke inference

5) read output tensor values

Steps 3 through 5 are run per each input tensor, e.g., frame in

 4

a sequence of images. Under the hood, the tidl-am5-custom-op

will be dispatched to EVE/DSP for acceleration, while the

other operators will be run on the Arm.

Fig. 7: Add tidl-am5-custom-op to the model resolver.

DEMO

To demonstrate the proposed method, the mobilenet v1

model (mobilenet_v1_1.0_224.tflite) is chosen as it has been

validated with the TIDL library. Although all operators of this

model are supported by TIDL, to test partitioning a specific
tensor can be passed to the TIDL import tool from the

command line to determine the cutoff for a subgraph. Fig. 8

shows the example command and the output TFLite model for

creating a subgraph of all nodes before the tensor called

MobilenetV1/MobilenetV1/Conv2d_13_pointwise/Relu6.

Fig. 8: Compile mobilenet v1 model for heterogeneous execution.

Along with the output model, the compilation creates two

TIDL format files for the subgraph:

 tidl_net_tflite_mobilenet_v1_1.0_224.bin

 tidl_param_tflite_mobilenet_v1_1.0_224.bin

The TIDL API subgraph handling requires supplying a TIDL

specific subgraph0.cfg file which specifies the two TIDL

format files above, as well as the boundary conversion

parameters related to model quantization for the TIDL

subgraph. Top of Fig. 9 shows the example subgraph0.cfg.

To evaluate the performance of heterogeneous execution
with TIDL offload, we have built a classification demo using

TFLite runtime with the tidl-am5-custom-op kernel added to

the interpreter as discussed before. Bottom of Fig. 9 shows the

example command to run classification using the compiled

mobilenet v1 model (mobilenet_v1_1.0_224_tidl_am5.tflite),

with subgraph0.cfg above consumed by the TIDL API. The

original mobilenet v1 model can also be supplied to the

classification demo to obtain the Arm only performance for

comparison. As shown in Table 1, the inference time using

heterogeneous execution is 32% from the Arm only execution,

with slight accuracy loss of 0.03. This demonstrates the
performance advantage of our method for enabling an arbitrary

TFLite model on AM5729 while leveraging TIDL offload.

Fig. 9: Example subgraph0.cfg and command to run classification.

TABLE I

PERFORMANCE COMPARSION

 Accuracy Inference Time (ms)

Arm only 0.86 308.14

Heterogeneous 0.83 98.89

CONCLUSION

In this paper, we have provided a solution to run any TFLite

models with TIDL offload to hardware accelerators, through

the TFLite runtime interface. By enhancing the TIDL import
tool and leveraging TIDL API, we have demonstrated that the

TIDL offload can be inserted in TFLite nearly seamlessly in a

development flow analogous to Google’s Edge TPU.

REFERENCES

[1] TFLite guide, http://www.tensorflow.org/lite/guide

[2] TFLite hosted models

[3] TFLite model optimization

[4] Deep Learning Inference For Embedded Applications

[5] TIDL API

[6] TIDL import tool

[7] Edge TPU, https://cloud.google.com/edge-tpu

[8] Edge TPU supported operations

[9] Edge TPU Compiler, https://coral.ai/docs/edgetpu/compiler/

[10] Edge TPU inference, https://coral.ai/docs/edgetpu/inference/

[11] TFLite segmentation model

[12] Netron tool, https://github.com/lutzroeder/netron

[13] FlatBuffers, https://google.github.io/flatbuffers/

[14] TFLite custom operators

[15] TFLite inference

http://www.tensorflow.org/lite/guide
http://www.tensorflow.org/lite/guide/hosted_models
http://www.tensorflow.org/lite/performance/model_optimization
http://www.ti.com/lit/pdf/tidueb6
https://downloads.ti.com/mctools/esd/docs/tidl-api/intro.html
https://git.ti.com/cgit/tidl/tidl-utils/tree/src/importTool
https://cloud.google.com/edge-tpu
https://coral.withgoogle.com/docs/edgetpu/models-intro/#ops-table
https://coral.ai/docs/edgetpu/compiler/
https://coral.ai/docs/edgetpu/inference/
https://www.tensorflow.org/lite/models/segmentation/overview
https://github.com/lutzroeder/netron
https://google.github.io/flatbuffers/
https://www.tensorflow.org/lite/guide/ops_custom
https://www.tensorflow.org/lite/guide/inference

