2.5.1. RT-linux 11.01 Performance Guide

Read This First

All performance numbers provided in this document are gathered using following Evaluation Modules unless otherwise specified.

Name

Description

AM64x EVM

AM64x Evaluation Module rev E1 with ARM running at 1GHz, DDR data rate 1600 MT/S

Table: Evaluation Modules

About This Manual

This document provides performance data for each of the device drivers which are part of the Processor SDK Linux package. This document should be used in conjunction with release notes and user guides provided with the Processor SDK Linux package for information on specific issues present with drivers included in a particular release.

If You Need Assistance

For further information or to report any problems, contact https://e2e.ti.com/ or https://support.ti.com/


2.5.1.1. System Benchmarks

2.5.1.1.1. Stress-ng and Cyclic Test

stress-ng (next-generation) will stress test a embedded platform in various selectable ways. It was designed to exercise various physical subsystems as well as the various operating system kernel interfaces. stress-ng can also measure test throughput rates; this can be useful to observe performance changes across different operating system or types of hardware.

Cyclictest is most commonly used for benchmarking RT systems. It is one of the most frequently used tools for evaluating the relative performance of real-time systems. Some performance tests which use Cyclictest are System benchmarking, Latency debugging with tracing and approximating application performance.

Test commands used for running stress-ng and cyclictest together

stress-ng --cpu-method=all -c 4 &
cyclictest -m -Sp80 -D6h -h400 -i200 -M -q

The following summarizes the latencies observed using the yocto based default SDK image:

Note

A known issue in this SDK release is affecting this benchmark. Using OP-TEE’s PRNG drivers rather than the hardware accelerated TRNG drivers restores the context switch latencies to the values you see here.

More information on switching to the PRNG drivers can be found in the Foundational Components section, here Building OP-TEE with Pseudo RNG drivers

Latencies

CPU 0

CPU 1

Minimum (usec)

6

6

Average (usec)

10

9

Maximum (usec)

77

52

../../../_images/rt-cpu-method-all-latency-histogram.png

2.5.1.1.2. LMBench

LMBench is a collection of microbenchmarks of which the memory bandwidth and latency related ones are typically used to estimate processor memory system performance. More information about lmbench at http://lmbench.sourceforge.net/whatis_lmbench.html and http://lmbench.sourceforge.net/man/lmbench.8.html

Latency: lat_mem_rd-stride128-szN, where N is equal to or smaller than the cache size at given level measures the cache miss penalty. N that is at least double the size of last level cache is the latency to external memory.

Bandwidth: bw_mem_bcopy-N, where N is equal to or smaller than the cache size at a given level measures the achievable memory bandwidth from software doing a memcpy() type operation. Typical use is for external memory bandwidth calculation. The bandwidth is calculated as byte read and written counts as 1 which should be roughly half of STREAM copy result.

Execute the LMBench with the following:

cd /opt/ltp
./runltp -P j721e-idk-gw -f ddt/lmbench -s LMBENCH_L_PERF_0001
Table 2.2 LMBench Benchmarks

Benchmarks

am64xx-hsevm: perf

af_unix_sock_stream_latency (microsec)

43.92 (min 40.29, max 49.64)

af_unix_socket_stream_bandwidth (mbs)

534.11 (min 521.33, max 538.82)

bw_file_rd-io-1mb (mb/s)

848.55 (min 833.06, max 870.93)

bw_file_rd-o2c-1mb (mb/s)

484.02 (min 461.04, max 493.83)

bw_mem-bcopy-16mb (mb/s)

985.60 (min 970.29, max 999.00)

bw_mem-bcopy-1mb (mb/s)

948.66 (min 922.65, max 989.94)

bw_mem-bcopy-2mb (mb/s)

966.59 (min 936.48, max 1006.88)

bw_mem-bcopy-4mb (mb/s)

942.89 (min 904.98, max 972.41)

bw_mem-bcopy-8mb (mb/s)

967.26 (min 924.00, max 997.13)

bw_mem-bzero-16mb (mb/s)

2116.75 (min 2116.40, max 2116.96)

bw_mem-bzero-1mb (mb/s)

1531.23 (min 922.65, max 2117.90)

bw_mem-bzero-2mb (mb/s)

1540.94 (min 936.48, max 2118.27)

bw_mem-bzero-4mb (mb/s)

1526.44 (min 904.98, max 2113.05)

bw_mem-bzero-8mb (mb/s)

1541.80 (min 924.00, max 2118.36)

bw_mem-cp-16mb (mb/s)

568.31 (min 522.04, max 598.00)

bw_mem-cp-1mb (mb/s)

1609.38 (min 584.20, max 2690.24)

bw_mem-cp-2mb (mb/s)

1447.17 (min 534.47, max 2359.88)

bw_mem-cp-4mb (mb/s)

1374.97 (min 536.91, max 2217.70)

bw_mem-cp-8mb (mb/s)

1342.76 (min 529.07, max 2152.56)

bw_mem-fcp-16mb (mb/s)

1012.13 (min 983.47, max 1038.08)

bw_mem-fcp-1mb (mb/s)

1597.21 (min 1037.88, max 2117.90)

bw_mem-fcp-2mb (mb/s)

1576.33 (min 1004.02, max 2118.27)

bw_mem-fcp-4mb (mb/s)

1577.93 (min 985.71, max 2113.05)

bw_mem-fcp-8mb (mb/s)

1573.48 (min 969.93, max 2118.36)

bw_mem-frd-16mb (mb/s)

1302.42 (min 1283.39, max 1312.98)

bw_mem-frd-1mb (mb/s)

1176.71 (min 1037.88, max 1287.47)

bw_mem-frd-2mb (mb/s)

1173.57 (min 1004.02, max 1329.12)

bw_mem-frd-4mb (mb/s)

1164.97 (min 985.71, max 1321.22)

bw_mem-frd-8mb (mb/s)

1173.06 (min 969.93, max 1334.22)

bw_mem-fwr-16mb (mb/s)

2121.88 (min 2118.36, max 2125.96)

bw_mem-fwr-1mb (mb/s)

1951.85 (min 1252.46, max 2690.24)

bw_mem-fwr-2mb (mb/s)

1824.75 (min 1296.39, max 2359.88)

bw_mem-fwr-4mb (mb/s)

1742.03 (min 1258.06, max 2217.70)

bw_mem-fwr-8mb (mb/s)

1729.04 (min 1285.76, max 2152.56)

bw_mem-rd-16mb (mb/s)

1338.76 (min 1331.78, max 1342.62)

bw_mem-rd-1mb (mb/s)

1078.25 (min 788.52, max 1365.85)

bw_mem-rd-2mb (mb/s)

1079.56 (min 790.93, max 1355.01)

bw_mem-rd-4mb (mb/s)

1086.93 (min 810.62, max 1351.58)

bw_mem-rd-8mb (mb/s)

1111.91 (min 863.19, max 1350.44)

bw_mem-rdwr-16mb (mb/s)

860.25 (min 847.73, max 871.32)

bw_mem-rdwr-1mb (mb/s)

705.72 (min 584.20, max 847.17)

bw_mem-rdwr-2mb (mb/s)

687.14 (min 534.47, max 851.18)

bw_mem-rdwr-4mb (mb/s)

681.11 (min 536.91, max 839.72)

bw_mem-rdwr-8mb (mb/s)

695.52 (min 529.07, max 856.16)

bw_mem-wr-16mb (mb/s)

889.48 (min 888.15, max 890.47)

bw_mem-wr-1mb (mb/s)

818.14 (min 785.67, max 847.17)

bw_mem-wr-2mb (mb/s)

817.43 (min 773.69, max 851.18)

bw_mem-wr-4mb (mb/s)

821.37 (min 784.01, max 843.79)

bw_mem-wr-8mb (mb/s)

862.85 (min 844.24, max 885.54)

bw_mmap_rd-mo-1mb (mb/s)

1297.19 (min 1274.58, max 1315.05)

bw_mmap_rd-o2c-1mb (mb/s)

467.73 (min 455.72, max 477.86)

bw_pipe (mb/s)

550.83 (min 538.93, max 563.59)

bw_unix (mb/s)

534.11 (min 521.33, max 538.82)

lat_connect (us)

76.50 (min 75.69, max 77.20)

lat_ctx-2-128k (us)

10.52 (min 9.79, max 11.79)

lat_ctx-2-256k (us)

25.39 (min 15.41, max 30.59)

lat_ctx-4-128k (us)

11.98 (min 11.81, max 12.29)

lat_ctx-4-256k (us)

12.54 (min 6.99, max 15.42)

lat_fs-0k (num_files)

195.75 (min 188.00, max 202.00)

lat_fs-10k (num_files)

86.50 (min 83.00, max 90.00)

lat_fs-1k (num_files)

134.25 (min 129.00, max 139.00)

lat_fs-4k (num_files)

119.75 (min 112.00, max 128.00)

lat_mem_rd-stride128-sz1000k (ns)

48.27 (min 48.18, max 48.38)

lat_mem_rd-stride128-sz125k (ns)

7.83 (min 7.81, max 7.86)

lat_mem_rd-stride128-sz250k (ns)

12.79 (min 9.36, max 18.06)

lat_mem_rd-stride128-sz31k (ns)

5.68 (min 5.13, max 6.57)

lat_mem_rd-stride128-sz50 (ns)

3.02

lat_mem_rd-stride128-sz500k (ns)

43.72 (min 42.55, max 44.62)

lat_mem_rd-stride128-sz62k (ns)

7.41 (min 7.37, max 7.47)

lat_mmap-1m (us)

71.50 (min 65.00, max 79.00)

lat_ops-double-add (ns)

4.02 (min 4.02, max 4.03)

lat_ops-double-div (ns)

22.12 (min 22.12, max 22.13)

lat_ops-double-mul (ns)

4.02 (min 4.02, max 4.03)

lat_ops-float-add (ns)

4.02

lat_ops-float-div (ns)

13.07 (min 13.07, max 13.08)

lat_ops-float-mul (ns)

4.02

lat_ops-int-add (ns)

1.01

lat_ops-int-bit (ns)

0.67

lat_ops-int-div (ns)

6.04

lat_ops-int-mod (ns)

6.38 (min 6.37, max 6.39)

lat_ops-int-mul (ns)

4.35 (min 4.32, max 4.40)

lat_ops-int64-add (ns)

1.01

lat_ops-int64-bit (ns)

0.67

lat_ops-int64-div (ns)

9.56 (min 9.55, max 9.56)

lat_ops-int64-mod (ns)

7.38 (min 7.37, max 7.38)

lat_ops-int64-mul (ns)

5.01 (min 4.99, max 5.06)

lat_pagefault (us)

1.83 (min 1.81, max 1.84)

lat_pipe (us)

26.04 (min 25.91, max 26.16)

lat_proc-exec (us)

1208.90 (min 1194.20, max 1221.80)

lat_proc-fork (us)

1035.45 (min 1016.67, max 1052.33)

lat_proc-proccall (us)

0.01

lat_select (us)

47.62 (min 46.19, max 49.96)

lat_sem (us)

3.47 (min 3.28, max 3.55)

lat_sig-catch (us)

5.64 (min 5.50, max 5.97)

lat_sig-install (us)

0.92 (min 0.90, max 0.94)

lat_sig-prot (us)

0.77 (min 0.49, max 0.88)

lat_syscall-fstat (us)

2.48 (min 2.33, max 2.69)

lat_syscall-null (us)

0.57 (min 0.57, max 0.58)

lat_syscall-open (us)

415.84 (min 400.86, max 439.75)

lat_syscall-read (us)

0.86 (min 0.82, max 0.93)

lat_syscall-stat (us)

6.86 (min 6.57, max 7.24)

lat_syscall-write (us)

0.80 (min 0.79, max 0.83)

lat_tcp (us)

1.10 (min 1.09, max 1.11)

lat_unix (us)

43.92 (min 40.29, max 49.64)

latency_for_0.50_mb_block_size (nanosec)

43.72 (min 42.55, max 44.62)

latency_for_1.00_mb_block_size (nanosec)

24.13 (min 0.00, max 48.38)

pipe_bandwidth (mbs)

550.83 (min 538.93, max 563.59)

pipe_latency (microsec)

26.04 (min 25.91, max 26.16)

procedure_call (microsec)

0.01

select_on_200_tcp_fds (microsec)

47.62 (min 46.19, max 49.96)

semaphore_latency (microsec)

3.47 (min 3.28, max 3.55)

signal_handler_latency (microsec)

0.92 (min 0.90, max 0.94)

signal_handler_overhead (microsec)

5.64 (min 5.50, max 5.97)

tcp_ip_connection_cost_to_localhost (microsec)

76.50 (min 75.69, max 77.20)

tcp_latency_using_localhost (microsec)

1.10 (min 1.09, max 1.11)

2.5.1.1.3. Dhrystone

Dhrystone is a core only benchmark that runs from warm L1 caches in all modern processors. It scales linearly with clock speed. For standard ARM cores the DMIPS/MHz score will be identical with the same compiler and flags.

Table 2.3 Dhrystone Benchmarks

Benchmarks

am64xx-hsevm: perf

cpu_clock (mhz)

1000.00

dhrystone_per_mhz (dmips/mhz)

2.88 (min 2.80, max 2.90)

dhrystone_per_second (dhrystonep)

5096153.75 (min 5000000.00, max 5128205.00)

2.5.1.1.4. Whetstone

Table 2.4 Whetstone Benchmarks

Benchmarks

am64xx-hsevm: perf

whetstone (mips)

5000.00

2.5.1.1.5. Linpack

Linpack measures peak double precision (64 bit) floating point performance in solving a dense linear system.

Table 2.5 Linpack Benchmarks

Benchmarks

am64xx-hsevm: perf

linpack (kflops)

409028.75 (min 408609.00, max 409559.00)

2.5.1.1.6. CoreMarkPro

CoreMark®-Pro is a comprehensive, advanced processor benchmark that works with and enhances the market-proven industry-standard EEMBC CoreMark® benchmark. While CoreMark stresses the CPU pipeline, CoreMark-Pro tests the entire processor, adding comprehensive support for multicore technology, a combination of integer and floating-point workloads, and data sets for utilizing larger memory subsystems.

Table 2.6 CoreMarkPro Benchmarks

Benchmarks

am64xx-hsevm: perf

cjpeg-rose7-preset (workloads/)

29.56 (min 29.50, max 29.67)

core (workloads/)

0.21

coremark-pro ()

587.32 (min 583.40, max 594.37)

linear_alg-mid-100x100-sp (workloads/)

10.41 (min 10.40, max 10.42)

loops-all-mid-10k-sp (workloads/)

0.48

nnet_test (workloads/)

0.77

parser-125k (workloads/)

5.50 (min 5.35, max 5.71)

radix2-big-64k (workloads/)

20.12 (min 19.27, max 21.25)

sha-test (workloads/)

57.80

zip-test (workloads/)

15.44 (min 15.38, max 15.63)

Table 2.7 CoreMarkProTwoCore Benchmarks

Benchmarks

am64xx-hsevm: perf

cjpeg-rose7-preset (workloads/)

58.15 (min 57.47, max 59.17)

core (workloads/)

0.43

coremark-pro ()

1047.54 (min 1043.17, max 1054.31)

linear_alg-mid-100x100-sp (workloads/)

20.80 (min 20.77, max 20.82)

loops-all-mid-10k-sp (workloads/)

0.87 (min 0.87, max 0.88)

nnet_test (workloads/)

1.54

parser-125k (workloads/)

5.84 (min 5.71, max 5.93)

radix2-big-64k (workloads/)

32.26 (min 30.87, max 33.46)

sha-test (workloads/)

115.28 (min 114.94, max 116.28)

zip-test (workloads/)

28.37 (min 28.17, max 28.57)

2.5.1.1.7. MultiBench

MultiBench™ is a suite of benchmarks that allows processor and system designers to analyze, test, and improve multicore processors. It uses three forms of concurrency: Data decomposition: multiple threads cooperating on achieving a unified goal and demonstrating a processor’s support for fine grain parallelism. Processing multiple data streams: uses common code running over multiple threads and demonstrating how well a processor scales over scalable data inputs. Multiple workload processing: shows the scalability of general-purpose processing, demonstrating concurrency over both code and data. MultiBench combines a wide variety of application-specific workloads with the EEMBC Multi-Instance-Test Harness (MITH), compatible and portable with most any multicore processors and operating systems. MITH uses a thread-based API (POSIX-compliant) to establish a common programming model that communicates with the benchmark through an abstraction layer and provides a flexible interface to allow a wide variety of thread-enabled workloads to be tested.

Table 2.8 Multibench Benchmarks

Benchmarks

am64xx-hsevm: perf

4m-check (workloads/)

281.56 (min 281.15, max 281.85)

4m-check-reassembly (workloads/)

61.33 (min 61.09, max 61.61)

4m-check-reassembly-tcp (workloads/)

36.25 (min 35.77, max 36.60)

4m-check-reassembly-tcp-cmykw2-rotatew2 (workloads/)

14.55 (min 14.38, max 14.71)

4m-check-reassembly-tcp-x264w2 (workloads/)

0.75 (min 0.74, max 0.76)

4m-cmykw2 (workloads/)

85.64 (min 84.64, max 86.24)

4m-cmykw2-rotatew2 (workloads/)

18.45 (min 17.29, max 19.80)

4m-reassembly (workloads/)

56.74 (min 56.63, max 56.88)

4m-rotatew2 (workloads/)

21.89 (min 20.05, max 23.13)

4m-tcp-mixed (workloads/)

85.56 (min 85.11, max 86.02)

4m-x264w2 (workloads/)

0.76 (min 0.76, max 0.77)

empty-wld (workloads/)

1.00

idct-4m (workloads/)

13.68 (min 13.68, max 13.69)

idct-4mw1 (workloads/)

13.68 (min 13.67, max 13.69)

ippktcheck-4m (workloads/)

281.33 (min 280.65, max 282.01)

ippktcheck-4mw1 (workloads/)

281.37 (min 280.87, max 281.85)

ipres-4m (workloads/)

72.63 (min 72.46, max 72.92)

ipres-4mw1 (workloads/)

71.88 (min 71.29, max 72.39)

md5-4m (workloads/)

19.75 (min 19.58, max 19.93)

md5-4mw1 (workloads/)

19.74 (min 19.45, max 20.00)

rgbcmyk-4m (workloads/)

44.70 (min 44.68, max 44.72)

rgbcmyk-4mw1 (workloads/)

44.69 (min 44.68, max 44.70)

rotate-4ms1 (workloads/)

16.57 (min 16.51, max 16.59)

rotate-4ms1w1 (workloads/)

16.60 (min 16.59, max 16.61)

rotate-4ms64 (workloads/)

16.79 (min 16.79, max 16.80)

rotate-4ms64w1 (workloads/)

16.79 (min 16.76, max 16.80)

x264-4mq (workloads/)

0.41

x264-4mqw1 (workloads/)

0.41

2.5.1.2. Boot-time Measurement

2.5.1.2.1. Boot media: MMCSD

Table 2.9 Linux boot time MMCSD

Boot Configuration

am64xx-hsevm: Boot time in seconds: avg(min,max)

Linux boot time from SD with default rootfs (20 boot cycles)

22.75 (min 20.01, max 29.10)

Boot time numbers [avg, min, max] are measured from “Starting kernel” to Linux prompt across 20 boot cycles.


2.5.1.3. Ethernet

Ethernet performance benchmarks were measured using Netperf 2.7.1 https://hewlettpackard.github.io/netperf/doc/netperf.html Test procedures were modeled after those defined in RFC-2544: https://tools.ietf.org/html/rfc2544, where the DUT is the TI device and the “tester” used was a Linux PC. To produce consistent results, it is recommended to carry out performance tests in a private network and to avoid running NFS on the same interface used in the test. In these results, CPU utilization was captured as the total percentage used across all cores on the device, while running the performance test over one external interface.

UDP Throughput (0% loss) was measured by the procedure defined in RFC-2544 section 26.1: Throughput. In this scenario, netperf options burst_size (-b) and wait_time (-w) are used to limit bandwidth during different trials of the test, with the goal of finding the highest rate at which no loss is seen. For example, to limit bandwidth to 500Mbits/sec with 1472B datagram:

burst_size = <bandwidth (bits/sec)> / 8 (bits -> bytes) / <UDP datagram size> / 100 (seconds -> 10 ms)
burst_size = 500000000 / 8 / 1472 / 100 = 425

wait_time = 10 milliseconds (minimum supported by Linux PC used for testing)

UDP Throughput (possible loss) was measured by capturing throughput and packet loss statistics when running the netperf test with no bandwidth limit (remove -b/-w options).

In order to start a netperf client on one device, the other device must have netserver running. To start netserver:

netserver [-p <port_number>] [-4 (IPv4 addressing)] [-6 (IPv6 addressing)]

Running the following shell script from the DUT will trigger netperf clients to measure bidirectional TCP performance for 60 seconds and report CPU utilization. Parameter -k is used in client commands to summarize selected statistics on their own line and -j is used to gain additional timing measurements during the test.

#!/bin/bash
for i in 1
do
   netperf -H <tester ip> -j -c -l 60 -t TCP_STREAM --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &

   netperf -H <tester ip> -j -c -l 60 -t TCP_MAERTS --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &
done

Running the following commands will trigger netperf clients to measure UDP burst performance for 60 seconds at various burst/datagram sizes and report CPU utilization.

  • For UDP egress tests, run netperf client from DUT and start netserver on tester.

netperf -H <tester ip> -j -c -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE
  • For UDP ingress tests, run netperf client from tester and start netserver on DUT.

netperf -H <DUT ip> -j -C -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE

2.5.1.3.1. CPSW/CPSW2g/CPSW3g Ethernet Driver

  • CPSW3g: AM64x

TCP Bidirectional Throughput

Table 2.10 CPSW2g TCP Bidirectional Throughput

Command Used

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

1058.45 (min 964.24, max 1158.01)

88.12 (min 79.19, max 99.75)

TCP Bidirectional Throughput Interrupt Pacing

Table 2.11 CPSW2g TCP Bidirectional Throughput Interrupt Pacing

Command Used

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

1196.36

99.96

UDP Throughput

Table 2.12 CPSW2g UDP Egress Throughput 0 loss

UDP Datagram Size(bytes) (LOCAL_SEND_SIZE)

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: Packets Per Second (kPPS)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

64

40.58

80.00

79.03

128

79.43

78.00

77.99

256

154.99

62.00

77.67

1024

577.17

70.00

91.40

1472

589.21

49.00

85.92

Table 2.13 CPSW2g UDP Ingress Throughput 0 loss

UDP Datagram Size(bytes) (LOCAL_SEND_SIZE)

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: Packets Per Second (kPPS)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

64

2.92

6.00

0.18

128

6.96

7.00

7.83

256

15.56

8.00

1.2

1024

61.44

8.00

8.39

1472

88.32

8.00

8.17

2.5.1.3.2. ICSSG Ethernet Driver

TCP Bidirectional Throughput

Table 2.14 ICSSG TCP Bidirectional Throughput

Command Used

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.2.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.2.1 -j -c -C -l 60 -t TCP_MAERTS

1178

99.98

TCP Bidirectional Throughput Interrupt Pacing

Table 2.15 ICSSG TCP Bidirectional Throughput Interrupt Pacing

Command Used

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.2.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.2.1 -j -c -C -l 60 -t TCP_MAERTS

1198

99.41

UDP Egress Throughput

Table 2.16 ICSSG UDP Egress Throughput 0 loss

UDP Datagram Size(bytes)

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: Packets Per Second (kPPS)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

64

41.45

48.87

77.24

128

81.40

59.85

76.77

256

156.24

65.53

76.00

1024

592.23

69.44

74.74

1472

834.46

68.89

74.10

UDP Ingress Throughput

Table 2.17 ICSSG UDP Ingress Throughput 0 loss

UDP Datagram Size(bytes)

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: Packets Per Second (kPPS)

am64xx-hsevm: CPU Load %

64

1.54

3.00

0.10

128

4.81

5.00

0.23

256

10.24

5.00

7.35

1024

40.14

5.00

3.28

1472

374.79

32

49.37

Switch Mode

Table 2.18 ICSSG Switch Mode Forwarding

Mode

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (SENDER)

am64xx-hsevm: CPU Load % (FORWARDING)

am64xx-hsevm: CPU Load % (RECIEVER)

Switch with HW Offload

929

94.07

0

83.73

Switch with SW Offload

915

96.23

30

85.38

HSR Mode

Table 2.19 ICSSG HSR Mode Forwarding

Mode

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (SENDER)

am64xx-hsevm: CPU Load % (FORWARDING)

am64xx-hsevm: CPU Load % (RECIEVER)

HSR with HW Offload

466

62.01

0

69.11

HSR with SW Offload

387

65

29.96

70


2.5.1.4. OSPI Flash Driver

2.5.1.4.1. AM64XX-EVM

2.5.1.4.1.1. RAW

Table 2.20 OSPI Raw Flash Driver

File size (Mbytes)

am64xx-hsevm: Raw Read Throughput (Mbytes/sec)

50

142.86

2.5.1.5. EMMC Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

Table 2.21 EMMC EXT4 FIO 1G

Buffer size (bytes)

am64xx-hsevm: Write EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Write EXT4 CPU Load (%)

am64xx-hsevm: Read EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Read EXT4 CPU Load (%)

1m

60.85 (min 60.00, max 61.40)

3.92 (min 3.78, max 4.06)

175.00

7.36 (min 6.89, max 7.69)

4m

60.95 (min 60.10, max 61.60)

2.97 (min 2.80, max 3.07)

174.50 (min 174.00, max 175.00)

6.15 (min 5.69, max 6.48)

4k

49.05 (min 48.60, max 49.50)

55.20 (min 54.38, max 56.44)

56.08 (min 55.90, max 56.30)

48.50 (min 46.00, max 50.60)

256k

61.00 (min 60.50, max 61.40)

5.92 (min 5.70, max 6.06)

174.00

8.89 (min 8.66, max 9.25)

Table 2.22 EMMC EXT4

Buffer size (bytes)

am64xx-hsevm: Write EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Write EXT4 CPU Load (%)

am64xx-hsevm: Read EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Read EXT4 CPU Load (%)

102400

54.23 (min 49.95, max 56.05)

11.05 (min 9.63, max 15.65)

174.86 (min 168.13, max 177.19)

29.58 (min 27.83, max 30.56)

262144

53.37 (min 48.45, max 55.70)

10.88 (min 9.40, max 15.57)

180.84 (min 177.78, max 181.98)

33.37 (min 30.28, max 40.18)

524288

53.33 (min 49.35, max 55.13)

11.16 (min 9.74, max 14.88)

182.92 (min 182.86, max 183.01)

27.58 (min 27.03, max 27.93)

1048576

53.90 (min 49.57, max 56.36)

10.75 (min 9.38, max 14.46)

182.86 (min 182.82, max 182.90)

27.68 (min 26.79, max 28.57)

5242880

53.72 (min 49.33, max 55.38)

10.40 (min 9.11, max 14.18)

182.79 (min 182.63, max 182.88)

27.64 (min 27.03, max 28.57)

Table 2.23 EMMC EXT2

Buffer size (bytes)

am64xx-hsevm: Write EXT2 Throughput (Mbytes/sec)

am64xx-hsevm: Write EXT2 CPU Load (%)

am64xx-hsevm: Read EXT2 Throughput (Mbytes/sec)

am64xx-hsevm: Read EXT2 CPU Load (%)

102400

50.24 (min 41.49, max 52.87)

11.45 (min 9.39, max 18.33)

173.05 (min 172.80, max 173.40)

31.11 (min 30.28, max 32.14)

262144

51.48 (min 42.38, max 54.31)

11.49 (min 9.18, max 18.46)

176.38 (min 173.55, max 177.82)

32.51 (min 30.28, max 36.28)

524288

51.72 (min 42.47, max 54.95)

11.45 (min 9.44, max 18.60)

177.33 (min 174.83, max 178.79)

28.11 (min 27.19, max 28.70)

1048576

51.82 (min 42.51, max 54.93)

11.24 (min 9.23, max 18.05)

178.63 (min 178.27, max 178.86)

27.70 (min 27.43, max 27.83)

5242880

51.62 (min 41.99, max 54.77)

11.30 (min 9.32, max 18.16)

178.55 (min 178.35, max 178.84)

28.07 (min 27.68, max 28.70)

Table 2.24 EMMC VFAT

Buffer size (bytes)

am64xx-hsevm: Write VFAT Throughput (Mbytes/sec)

am64xx-hsevm: Write VFAT CPU Load (%)

am64xx-hsevm: Read VFAT Throughput (Mbytes/sec)

am64xx-hsevm: Read VFAT CPU Load (%)

102400

48.75 (min 39.83, max 52.16)

13.28 (min 11.30, max 19.92)

166.81 (min 166.61, max 167.05)

31.22 (min 30.70, max 32.17)

262144

50.50 (min 41.55, max 53.41)

13.72 (min 11.39, max 20.25)

168.89 (min 164.53, max 170.76)

34.76 (min 30.70, max 46.28)

524288

50.46 (min 41.61, max 53.75)

13.86 (min 11.72, max 19.63)

169.99 (min 169.68, max 170.18)

27.74 (min 27.50, max 28.10)

1048576

50.81 (min 41.99, max 54.38)

13.60 (min 11.53, max 20.17)

169.57 (min 169.41, max 169.83)

27.50

5242880

50.90 (min 41.73, max 54.15)

13.40 (min 11.56, max 19.68)

169.96 (min 169.64, max 170.06)

28.10 (min 27.50, max 28.69)

2.5.1.6. UBoot EMMC Driver

Table 2.25 UBOOT EMMC RAW

File size (bytes in hex)

am64xx-hsevm: Write Throughput (Kbytes/sec)

am64xx-hsevm: Read Throughput (Kbytes/sec)

2000000

60406.03 (min 60014.65, max 61248.60)

169126.01 (min 168907.22, max 169782.38)

4000000

61165.23 (min 60907.06, max 61826.42)

173032.57 (min 172918.21, max 173375.66)

2.5.1.7. MMCSD

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

Table 2.26 MMC EXT4 FIO 1G

Buffer size (bytes)

am64xx-hsevm: Write EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Write EXT4 CPU Load (%)

am64xx-hsevm: Read EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Read EXT4 CPU Load (%)

4m

42.15 (min 41.50, max 43.00)

2.62 (min 2.56, max 2.71)

86.95 (min 86.80, max 87.10)

3.73 (min 3.60, max 3.92)

1m

41.95 (min 41.10, max 42.30)

3.52 (min 3.34, max 3.70)

86.95 (min 86.90, max 87.10)

5.01 (min 4.85, max 5.31)

4k

2.76 (min 2.71, max 2.82)

7.73 (min 7.65, max 7.76)

12.70 (min 12.50, max 12.80)

15.07 (min 14.49, max 15.69)

256k

36.50 (min 35.50, max 37.30)

4.48 (min 4.17, max 4.66)

83.10 (min 83.00, max 83.20)

6.78 (min 5.99, max 7.20)

Table 2.27 MMC EXT4

Buffer size (bytes)

am64xx-hsevm: Write Raw Throughput (Mbytes/sec)

am64xx-hsevm: Write Raw CPU Load (%)

am64xx-hsevm: Read Raw Throughput (Mbytes/sec)

am64xx-hsevm: Read Raw CPU Load (%)

102400

35.51 (min 33.07, max 37.45)

7.64 (min 6.31, max 11.15)

73.92 (min 70.24, max 78.38)

13.81 (min 12.28, max 15.00)

262144

35.56 (min 34.43, max 37.31)

7.63 (min 6.38, max 11.15)

79.33 (min 76.51, max 82.53)

13.86 (min 13.06, max 14.92)

524288

36.53 (min 35.02, max 37.89)

7.53 (min 6.06, max 11.27)

90.56 (min 90.39, max 90.83)

13.27 (min 12.78, max 13.60)

1048576

36.79 (min 35.77, max 38.36)

7.50 (min 6.21, max 11.07)

89.75 (min 88.59, max 90.86)

12.83 (min 12.45, max 13.16)

5242880

36.94 (min 36.11, max 38.11)

7.24 (min 6.02, max 11.13)

90.18 (min 88.74, max 90.76)

13.42 (min 13.16, max 13.60)

Table 2.28 MMC EXT3

Buffer size (bytes)

am64xx-hsevm: Write Raw Throughput (Mbytes/sec)

am64xx-hsevm: Write Raw CPU Load (%)

am64xx-hsevm: Read Raw Throughput (Mbytes/sec)

am64xx-hsevm: Read Raw CPU Load (%)

102400

35.60 (min 29.10, max 38.72)

9.59 (min 7.56, max 16.54)

75.63 (min 73.59, max 77.51)

14.68 (min 13.67, max 15.38)

262144

34.94 (min 29.45, max 38.84)

8.94 (min 7.00, max 15.25)

85.00 (min 84.90, max 85.05)

14.19 (min 12.77, max 15.06)

524288

35.04 (min 29.43, max 40.16)

8.87 (min 6.99, max 15.13)

89.16 (min 88.79, max 89.60)

13.62 (min 13.36, max 14.29)

1048576

34.48 (min 29.87, max 36.97)

8.60 (min 6.82, max 14.08)

88.16 (min 84.43, max 89.47)

13.86 (min 13.42, max 14.22)

5242880

36.10 (min 29.24, max 40.71)

8.85 (min 6.89, max 15.43)

85.76 (min 84.45, max 89.52)

14.01 (min 13.58, max 14.69)

Table 2.29 MMC EXT2

Buffer size (bytes)

am64xx-hsevm: Write Raw Throughput (Mbytes/sec)

am64xx-hsevm: Write Raw CPU Load (%)

am64xx-hsevm: Read Raw Throughput (Mbytes/sec)

am64xx-hsevm: Read Raw CPU Load (%)

102400

37.83 (min 32.12, max 39.96)

8.88 (min 7.14, max 14.78)

77.57 (min 77.14, max 77.81)

14.41 (min 13.90, max 15.06)

262144

35.82 (min 31.13, max 38.76)

8.27 (min 6.17, max 13.51)

84.06 (min 80.46, max 85.35)

13.15 (min 12.12, max 14.51)

524288

37.30 (min 31.09, max 41.07)

8.11 (min 6.16, max 14.38)

87.09 (min 84.25, max 89.67)

13.89 (min 13.52, max 14.29)

1048576

35.75 (min 29.84, max 39.26)

7.80 (min 6.20, max 13.56)

89.35 (min 88.93, max 89.64)

13.62 (min 13.36, max 13.85)

5242880

36.21 (min 30.33, max 40.10)

7.78 (min 6.06, max 14.01)

88.34 (min 84.79, max 89.80)

14.20 (min 13.85, max 14.69)

The performance numbers were captured using the following:

  • SanDisk Max Endurance SD card (SDSQQVR-032G-GN6IA)

  • Partition was mounted with async option


2.5.1.8. CRYPTO Driver

2.5.1.8.1. OpenSSL Performance

Table 2.30 OpenSSL Performance

Algorithm

Buffer Size (in bytes)

am64xx-hsevm: throughput (KBytes/Sec)

aes-128-cbc

1024

20959.06 (min 19965.27, max 21320.36)

aes-128-cbc

16

314.21 (min 306.05, max 318.36)

aes-128-cbc

16384

133997.91 (min 131858.43, max 135550.29)

aes-128-cbc

256

5437.10 (min 5301.33, max 5531.31)

aes-128-cbc

64

1338.92 (min 1300.12, max 1358.95)

aes-128-cbc

8192

97014.44 (min 95608.83, max 97957.21)

aes-128-ecb

1024

20929.19 (min 19151.87, max 21648.38)

aes-128-ecb

16

316.54 (min 312.22, max 321.90)

aes-128-ecb

16384

138835.29 (min 138067.97, max 139225.77)

aes-128-ecb

256

5569.86 (min 5543.42, max 5597.95)

aes-128-ecb

64

1381.94 (min 1351.47, max 1404.52)

aes-128-ecb

8192

98376.36 (min 97315.50, max 99846.83)

aes-192-cbc

1024

20155.73 (min 18997.25, max 21175.98)

aes-192-cbc

16

301.27 (min 292.46, max 316.99)

aes-192-cbc

16384

126993.75 (min 126528.17, max 127391.06)

aes-192-cbc

256

5340.86 (min 5230.76, max 5599.91)

aes-192-cbc

64

1325.11 (min 1298.11, max 1391.21)

aes-192-cbc

8192

93233.83 (min 92883.63, max 93566.29)

aes-192-ecb

1024

21606.31 (min 21497.86, max 21739.18)

aes-192-ecb

16

308.54 (min 297.98, max 319.48)

aes-192-ecb

16384

130969.60 (min 130804.39, max 131055.62)

aes-192-ecb

256

5439.27 (min 5317.21, max 5579.35)

aes-192-ecb

64

1347.27 (min 1306.52, max 1391.27)

aes-192-ecb

8192

95673.69 (min 95341.23, max 96144.04)

aes-256-cbc

1024

20149.93 (min 18618.71, max 21155.16)

aes-256-cbc

16

305.02 (min 291.87, max 317.27)

aes-256-cbc

16384

119682.39 (min 119177.22, max 120083.80)

aes-256-cbc

256

5467.90 (min 5210.97, max 5604.61)

aes-256-cbc

64

1361.79 (min 1306.24, max 1398.59)

aes-256-cbc

8192

89436.84 (min 89022.46, max 89754.28)

aes-256-ecb

1024

21332.99 (min 20724.05, max 21572.27)

aes-256-ecb

16

309.47 (min 297.86, max 319.90)

aes-256-ecb

16384

123528.53 (min 122836.31, max 124245.33)

aes-256-ecb

256

5514.73 (min 5286.66, max 5620.48)

aes-256-ecb

64

1361.30 (min 1325.67, max 1396.20)

aes-256-ecb

8192

91379.71 (min 90923.01, max 92198.23)

sha256

1024

26057.22 (min 25825.96, max 26321.58)

sha256

16

433.83 (min 431.97, max 435.66)

sha256

16384

209231.87 (min 208125.95, max 210031.96)

sha256

256

6812.05 (min 6772.82, max 6881.45)

sha256

64

1721.55 (min 1711.42, max 1737.02)

sha256

8192

141288.79 (min 140610.22, max 141890.90)

sha512

1024

18045.35 (min 18011.14, max 18106.71)

sha512

16

420.20 (min 419.00, max 421.30)

sha512

16384

48089.77 (min 48016.04, max 48147.11)

sha512

256

5989.50 (min 5978.62, max 6010.03)

sha512

64

1682.55 (min 1675.90, max 1690.75)

sha512

8192

43149.99 (min 43092.65, max 43242.84)

Table 2.31 OpenSSL CPU Load

Algorithm

am64xx-hsevm: CPU Load

aes-128-cbc

43.25 (min 43.00, max 44.00)

aes-128-ecb

45.00 (min 44.00, max 46.00)

aes-192-cbc

42.75 (min 42.00, max 44.00)

aes-192-ecb

44.25 (min 44.00, max 45.00)

aes-256-cbc

42.75 (min 42.00, max 44.00)

aes-256-ecb

43.75 (min 43.00, max 44.00)

sha256

93.00

sha512

93.00

Listed for each algorithm are the code snippets used to run each benchmark test.

time -v openssl speed -elapsed -evp aes-128-cbc

2.5.1.9. RP Message Inter-Processor Communication (IPC) Latency

2.5.1.9.1. RP Message latency Performance

RP Message latency is the delay measured from sending a round trip echo message from a Linux application to a remote processor and back. The following measurements use a RP message length of 1 byte and 490 bytes for comparison.

The Linux user space application rpmsg_char_benchmark captures these latency values.

Test commands used for running IPC latency tests:

rpmsg_char_benchmark -r 2 -n 100000 -m 1 & chrt -f -p 80 $!

Latencies reported:

Remote Processor

Message Size (in bytes)

Average round trip (usecs)

Max round trip (usecs)

R5F0_0

1

32

205

R5F0_0

490

162

272

M4F

1

41

186

M4F

490

301

446

../../../_images/R5_0_0_m1_ipc_latency.png ../../../_images/R5_0_0_m490_ipc_latency.png ../../../_images/m4_0_m1_ipc_latency.png ../../../_images/m4_0_m490_ipc_latency.png