2.4.1. RT-linux 09.02.00 Performance Guide

Read This First

All performance numbers provided in this document are gathered using following Evaluation Modules unless otherwise specified.

Name

Description

AM64x EVM

AM64x Evaluation Module rev E1 with ARM running at 1GHz, DDR data rate 1600 MT/S

Table: Evaluation Modules

About This Manual

This document provides performance data for each of the device drivers which are part of the Processor SDK Linux package. This document should be used in conjunction with release notes and user guides provided with the Processor SDK Linux package for information on specific issues present with drivers included in a particular release.

If You Need Assistance

For further information or to report any problems, contact http://e2e.ti.com/ or http://support.ti.com/


2.4.1.1. System Benchmarks

2.4.1.1.1. LMBench

LMBench is a collection of microbenchmarks of which the memory bandwidth and latency related ones are typically used to estimate processor memory system performance. More information about lmbench at http://lmbench.sourceforge.net/whatis_lmbench.html and http://lmbench.sourceforge.net/man/lmbench.8.html

Latency: lat_mem_rd-stride128-szN, where N is equal to or smaller than the cache size at given level measures the cache miss penalty. N that is at least double the size of last level cache is the latency to external memory.

Bandwidth: bw_mem_bcopy-N, where N is equal to or smaller than the cache size at a given level measures the achievable memory bandwidth from software doing a memcpy() type operation. Typical use is for external memory bandwidth calculation. The bandwidth is calculated as byte read and written counts as 1 which should be roughly half of STREAM copy result.

Execute the LMBench with the following:

cd /opt/ltp
./runltp -P j721e-idk-gw -f ddt/lmbench -s LMBENCH_L_PERF_0001
Table 2.1 LMBench Benchmarks

Benchmarks

am64xx-hsevm: perf

af_unix_sock_stream_latency (microsec)

37.55

af_unix_socket_stream_bandwidth (MBs)

592.55

bw_file_rd-io-1mb (MB/s)

852.37

bw_file_rd-o2c-1mb (MB/s)

492.85

bw_mem-bcopy-16mb (MB/s)

839.45

bw_mem-bcopy-1mb (MB/s)

951.02

bw_mem-bcopy-2mb (MB/s)

930.38

bw_mem-bcopy-4mb (MB/s)

990.96

bw_mem-bcopy-8mb (MB/s)

1012.40

bw_mem-bzero-16mb (MB/s)

2118.08

bw_mem-bzero-1mb (MB/s)

1531.48 (min 951.02, max 2111.93)

bw_mem-bzero-2mb (MB/s)

1522.09 (min 930.38, max 2113.79)

bw_mem-bzero-4mb (MB/s)

1553.31 (min 990.96, max 2115.66)

bw_mem-bzero-8mb (MB/s)

1565.10 (min 1012.40, max 2117.80)

bw_mem-cp-16mb (MB/s)

515.38

bw_mem-cp-1mb (MB/s)

690.36 (min 528.63, max 852.08)

bw_mem-cp-2mb (MB/s)

683.10 (min 527.50, max 838.69)

bw_mem-cp-4mb (MB/s)

676.28 (min 524.32, max 828.24)

bw_mem-cp-8mb (MB/s)

713.71 (min 583.09, max 844.33)

bw_mem-fcp-16mb (MB/s)

903.65

bw_mem-fcp-1mb (MB/s)

1606.63 (min 1101.32, max 2111.93)

bw_mem-fcp-2mb (MB/s)

1578.73 (min 1043.66, max 2113.79)

bw_mem-fcp-4mb (MB/s)

1579.89 (min 1044.11, max 2115.66)

bw_mem-fcp-8mb (MB/s)

1611.62 (min 1105.43, max 2117.80)

bw_mem-frd-16mb (MB/s)

1298.60

bw_mem-frd-1mb (MB/s)

1193.81 (min 1101.32, max 1286.29)

bw_mem-frd-2mb (MB/s)

1171.61 (min 1043.66, max 1299.55)

bw_mem-frd-4mb (MB/s)

1165.04 (min 1044.11, max 1285.97)

bw_mem-frd-8mb (MB/s)

1195.49 (min 1105.43, max 1285.55)

bw_mem-fwr-16mb (MB/s)

845.76

bw_mem-fwr-1mb (MB/s)

1069.19 (min 852.08, max 1286.29)

bw_mem-fwr-2mb (MB/s)

1069.12 (min 838.69, max 1299.55)

bw_mem-fwr-4mb (MB/s)

1057.11 (min 828.24, max 1285.97)

bw_mem-fwr-8mb (MB/s)

1064.94 (min 844.33, max 1285.55)

bw_mem-rd-16mb (MB/s)

1337.01

bw_mem-rd-1mb (MB/s)

1085.25 (min 825.63, max 1344.86)

bw_mem-rd-2mb (MB/s)

1093.12 (min 815.44, max 1370.80)

bw_mem-rd-4mb (MB/s)

1112.96 (min 868.15, max 1357.77)

bw_mem-rd-8mb (MB/s)

1121.04 (min 888.89, max 1353.18)

bw_mem-rdwr-16mb (MB/s)

869.05

bw_mem-rdwr-1mb (MB/s)

680.20 (min 528.63, max 831.77)

bw_mem-rdwr-2mb (MB/s)

671.97 (min 527.50, max 816.44)

bw_mem-rdwr-4mb (MB/s)

683.61 (min 524.32, max 842.90)

bw_mem-rdwr-8mb (MB/s)

719.22 (min 583.09, max 855.34)

bw_mem-wr-16mb (MB/s)

903.50

bw_mem-wr-1mb (MB/s)

828.70 (min 825.63, max 831.77)

bw_mem-wr-2mb (MB/s)

815.94 (min 815.44, max 816.44)

bw_mem-wr-4mb (MB/s)

855.53 (min 842.90, max 868.15)

bw_mem-wr-8mb (MB/s)

872.12 (min 855.34, max 888.89)

bw_mmap_rd-mo-1mb (MB/s)

1307.43

bw_mmap_rd-o2c-1mb (MB/s)

496.52

bw_pipe (MB/s)

524.94

bw_unix (MB/s)

592.55

lat_connect (us)

77.38

lat_ctx-2-128k (us)

5.12

lat_ctx-2-256k (us)

20.50

lat_ctx-4-128k (us)

7.30

lat_ctx-4-256k (us)

10.17

lat_fs-0k (num_files)

205.00

lat_fs-10k (num_files)

93.00

lat_fs-1k (num_files)

149.00

lat_fs-4k (num_files)

162.00

lat_mem_rd-stride128-sz1000k (ns)

48.11

lat_mem_rd-stride128-sz125k (ns)

7.81

lat_mem_rd-stride128-sz250k (ns)

9.64

lat_mem_rd-stride128-sz31k (ns)

5.89

lat_mem_rd-stride128-sz50 (ns)

3.01

lat_mem_rd-stride128-sz500k (ns)

43.32

lat_mem_rd-stride128-sz62k (ns)

7.35

lat_mmap-1m (us)

65.00

lat_ops-double-add (ns)

4.02

lat_ops-double-div (ns)

22.12

lat_ops-double-mul (ns)

4.02

lat_ops-float-add (ns)

4.02

lat_ops-float-div (ns)

13.06

lat_ops-float-mul (ns)

4.02

lat_ops-int-add (ns)

1.01

lat_ops-int-bit (ns)

0.67

lat_ops-int-div (ns)

6.03

lat_ops-int-mod (ns)

6.37

lat_ops-int-mul (ns)

4.34

lat_ops-int64-add (ns)

1.01

lat_ops-int64-bit (ns)

0.67

lat_ops-int64-div (ns)

9.55

lat_ops-int64-mod (ns)

7.37

lat_ops-int64-mul (ns)

4.99

lat_pagefault (us)

1.43

lat_pipe (us)

21.00

lat_proc-exec (us)

1175.00

lat_proc-fork (us)

937.83

lat_proc-proccall (us)

0.01

lat_select (us)

43.12

lat_sem (us)

2.50

lat_sig-catch (us)

6.17

lat_sig-install (us)

0.94

lat_sig-prot (us)

0.31

lat_syscall-fstat (us)

4.24

lat_syscall-null (us)

0.58

lat_syscall-open (us)

333.69

lat_syscall-read (us)

0.92

lat_syscall-stat (us)

5.79

lat_syscall-write (us)

0.78

lat_tcp (us)

1.14

lat_unix (us)

37.55

latency_for_0.50_mb_block_size (nanosec)

43.32

latency_for_1.00_mb_block_size (nanosec)

24.06 (min 0.00, max 48.11)

pipe_bandwidth (MBs)

524.94

pipe_latency (microsec)

21.00

procedure_call (microsec)

0.01

select_on_200_tcp_fds (microsec)

43.12

semaphore_latency (microsec)

2.50

signal_handler_latency (microsec)

0.94

signal_handler_overhead (microsec)

6.17

tcp_ip_connection_cost_to_localhost (microsec)

77.38

tcp_latency_using_localhost (microsec)

1.14

2.4.1.1.2. Dhrystone

Dhrystone is a core only benchmark that runs from warm L1 caches in all modern processors. It scales linearly with clock speed. For standard ARM cores the DMIPS/MHz score will be identical with the same compiler and flags.

Table 2.2 Dhrystone Benchmarks

Benchmarks

am64xx-hsevm: perf

cpu_clock (MHz)

1000.00

dhrystone_per_mhz (DMIPS/MHz)

3.00

dhrystone_per_second (DhrystoneP)

5263158.00

2.4.1.1.3. Whetstone

Table 2.3 Whetstone Benchmarks

Benchmarks

am64xx-hsevm: perf

whetstone (MIPS)

5000.00

2.4.1.1.4. Linpack

Linpack measures peak double precision (64 bit) floating point performance in solving a dense linear system.

Table 2.4 Linpack Benchmarks

Benchmarks

am64xx-hsevm: perf

linpack (Kflops)

409266.00

2.4.1.1.5. NBench

NBench which stands for Native Benchmark is used to measure macro benchmarks for commonly used operations such as sorting and analysis algorithms. More information about NBench at https://en.wikipedia.org/wiki/NBench and https://nbench.io/articles/index.html

Table 2.5 NBench Benchmarks

Benchmarks

am64xx-hsevm: perf

assignment (Iterations)

9.86

fourier (Iterations)

16087.00

fp_emulation (Iterations)

65.58

huffman (Iterations)

830.48

idea (Iterations)

2448.30

lu_decomposition (Iterations)

378.30

neural_net (Iterations)

6.23

numeric_sort (Iterations)

424.59

string_sort (Iterations)

110.37

2.4.1.1.6. Stream

STREAM is a microbenchmark for measuring data memory system performance without any data reuse. It is designed to miss on caches and exercise data prefetcher and speculative accesses. It uses double precision floating point (64bit) but in most modern processors the memory access will be the bottleneck. The four individual scores are copy, scale as in multiply by constant, add two numbers, and triad for multiply accumulate. For bandwidth, a byte read counts as one and a byte written counts as one, resulting in a score that is double the bandwidth LMBench will show.

Table 2.6 Stream Benchmarks

Benchmarks

am64xx-hsevm: perf

add (MB/s)

1629.00

copy (MB/s)

2097.80

scale (MB/s)

2263.70

triad (MB/s)

1619.20

2.4.1.1.7. CoreMarkPro

CoreMark®-Pro is a comprehensive, advanced processor benchmark that works with and enhances the market-proven industry-standard EEMBC CoreMark® benchmark. While CoreMark stresses the CPU pipeline, CoreMark-Pro tests the entire processor, adding comprehensive support for multicore technology, a combination of integer and floating-point workloads, and data sets for utilizing larger memory subsystems.

Table 2.7 CoreMarkPro Benchmarks

Benchmarks

am64xx-hsevm: perf

cjpeg-rose7-preset (workloads/)

29.76

core (workloads/)

0.21

coremark-pro ()

587.75

linear_alg-mid-100x100-sp (workloads/)

10.43

loops-all-mid-10k-sp (workloads/)

0.48

nnet_test (workloads/)

0.77

parser-125k (workloads/)

5.71

radix2-big-64k (workloads/)

19.27

sha-test (workloads/)

58.14

zip-test (workloads/)

15.38

2.4.1.1.8. Stress-ng and Cyclic Test

stress-ng (next-generation) will stress test a embedded platform in various selectable ways. It was designed to exercise various physical subsystems as well as the various operating system kernel interfaces. stress-ng can also measure test throughput rates; this can be useful to observe performance changes across different operating system or types of hardware.

Cyclictest is most commonly used for benchmarking RT systems. It is one of the most frequently used tools for evaluating the relative performance of real-time systems. Some performance tests which use Cyclictest are System benchmarking, Latency debugging with tracing and approximating application performance.

Test command for running stress-ng and cyclictest together

stress-ng --cpu-method=all -c 4 &

cyclictest -m -Sp98 -D6h -h400 -i200 -q

Latencies

am64xx-hsevm:per-core

Minimum (usec)

5,5

Average (usec)

7,8

Maximum (usec)

60,50


2.4.1.2. Ethernet

Ethernet performance benchmarks were measured using Netperf 2.7.1 https://hewlettpackard.github.io/netperf/doc/netperf.html Test procedures were modeled after those defined in RFC-2544: https://tools.ietf.org/html/rfc2544, where the DUT is the TI device and the “tester” used was a Linux PC. To produce consistent results, it is recommended to carry out performance tests in a private network and to avoid running NFS on the same interface used in the test. In these results, CPU utilization was captured as the total percentage used across all cores on the device, while running the performance test over one external interface.

UDP Throughput (0% loss) was measured by the procedure defined in RFC-2544 section 26.1: Throughput. In this scenario, netperf options burst_size (-b) and wait_time (-w) are used to limit bandwidth during different trials of the test, with the goal of finding the highest rate at which no loss is seen. For example, to limit bandwidth to 500Mbits/sec with 1472B datagram:

burst_size = <bandwidth (bits/sec)> / 8 (bits -> bytes) / <UDP datagram size> / 100 (seconds -> 10 ms)
burst_size = 500000000 / 8 / 1472 / 100 = 425

wait_time = 10 milliseconds (minimum supported by Linux PC used for testing)

UDP Throughput (possible loss) was measured by capturing throughput and packet loss statistics when running the netperf test with no bandwidth limit (remove -b/-w options).

In order to start a netperf client on one device, the other device must have netserver running. To start netserver:

netserver [-p <port_number>] [-4 (IPv4 addressing)] [-6 (IPv6 addressing)]

Running the following shell script from the DUT will trigger netperf clients to measure bidirectional TCP performance for 60 seconds and report CPU utilization. Parameter -k is used in client commands to summarize selected statistics on their own line and -j is used to gain additional timing measurements during the test.

#!/bin/bash
for i in 1
do
   netperf -H <tester ip> -j -c -l 60 -t TCP_STREAM --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &

   netperf -H <tester ip> -j -c -l 60 -t TCP_MAERTS --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &
done

Running the following commands will trigger netperf clients to measure UDP burst performance for 60 seconds at various burst/datagram sizes and report CPU utilization.

  • For UDP egress tests, run netperf client from DUT and start netserver on tester.

netperf -H <tester ip> -j -c -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE
  • For UDP ingress tests, run netperf client from tester and start netserver on DUT.

netperf -H <DUT ip> -j -C -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE

2.4.1.2.1. CPSW/CPSW2g/CPSW3g Ethernet Driver

  • CPSW3g: AM64x

TCP Bidirectional Throughput

Table 2.8 CPSW2g TCP Bidirectional Throughput

Command Used

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

956.48

72.91

TCP Bidirectional Throughput Interrupt Pacing

Table 2.9 CPSW2g TCP Bidirectional Throughput Interrupt Pacing

Command Used

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

195.02

25.61

UDP Throughput

Table 2.10 CPSW2g UDP Egress Throughput 0 loss

Frame Size(bytes)

am64xx-hsevm: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE)

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: Packets Per Second (kPPS)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

64

18.00

12.84

89.00

89.30

128

82.00

58.93

90.00

88.11

256

210.00

104.52

62.00

69.09

1024

978.00

612.26

78.00

92.33

1518

1472.00

484.25

41.00

51.18

Table 2.11 CPSW2g UDP Ingress Throughput 0 loss

Frame Size(bytes)

am64xx-hsevm: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE)

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: Packets Per Second (kPPS)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

64

18.00

1.20

8.00

8.13

128

82.00

5.18

8.00

6.35

256

210.00

12.94

8.00

6.52

1024

978.00

61.81

8.00

9.68

1518

1472.00

94.21

8.00

8.98

Table 2.12 CPSW2g UDP Ingress Throughput possible loss

Frame Size(bytes)

am64xx-hsevm: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE)

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: Packets Per Second (kPPS)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

am64xx-hsevm: Packet Loss %

64

18.00

19.22

133.00

76.55

77.05

128

82.00

83.04

127.00

79.34

75.89

256

210.00

207.48

124.00

79.63

69.44

1024

978.00

785.24

100.00

82.53

16.18

1518

1472.00

859.16

73.00

86.85

10.15

2.4.1.2.2. ICSSG Ethernet Driver

TCP Bidirectional Throughput

Table 2.13 ICSSG TCP Bidirectional Throughput

Command Used

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.2.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.2.1 -j -c -C -l 60 -t TCP_MAERTS

141.59

33.17

TCP Bidirectional Throughput Interrupt Pacing

Table 2.14 ICSSG TCP Bidirectional Throughput Interrupt Pacing

Command Used

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.2.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.2.1 -j -c -C -l 60 -t TCP_MAERTS

141.88

25.04

Table 2.15 ICSSG UDP Ingress Throughput 0 loss

Frame Size(bytes)

am64xx-hsevm: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE)

am64xx-hsevm: THROUGHPUT (Mbits/sec)

am64xx-hsevm: Packets Per Second (kPPS)

am64xx-hsevm: CPU Load %

64

18.00

3.31

23.00

17.84

128

82.00

14.43

22.00

17.31

1024

978.00

102.83

13.00

20.91

1518

1472.00

203.40

17.00

30.48


2.4.1.3. PCIe Driver

2.4.1.3.1. PCIe-ETH

Table 2.16 PCIe Ethernet performance

TCP Window Size(Kbytes)

am64xx-hsevm: Bandwidth (Mbits/sec)

8

0.00

16

0.00

32

333.60

64

521.60

128

635.20

256

760.80

2.4.1.3.2. PCIe-NVMe-SSD

2.4.1.3.2.1. AM64xx-EVM

Table 2.17 PCIE SSD EXT4 FIO 10G

Buffer size (bytes)

am64xx-hsevm: Write EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Write EXT4 CPU Load (%)

am64xx-hsevm: Read EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Read EXT4 CPU Load (%)

1m

373.00

16.35

398.00

10.85

4m

368.00

14.63

398.00

10.33

4k

72.50

50.99

90.10

47.27

256k

375.00

18.25

397.00

12.00

  • Filesize used is: 10G

  • FIO command options: –ioengine=libaio –iodepth=4 –numjobs=1 –direct=1 –runtime=60 –time_based

  • Platform: Speed 8GT/s, Width x1

  • SSD being used: Lite-On Technology Corporation M8Pe Series NVMe SSD [14a4:22f1] (rev 01)


2.4.1.4. EMMC Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

2.4.1.4.1. AM64XX-EVM

Table 2.18 EMMC EXT4 FIO 1G

Buffer size (bytes)

am64xx-hsevm: Write EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Write EXT4 CPU Load (%)

am64xx-hsevm: Read EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Read EXT4 CPU Load (%)

1m

60.90

3.30

175.00

5.78

4m

61.40

2.56

175.00

4.46

4k

48.10

52.04

55.50

54.39

256k

61.00

5.17

174.00

7.38


2.4.1.5. MMC/SD Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

2.4.1.5.1. AM64XX-EVM

Table 2.19 MMC EXT4 FIO 1G

Buffer size (bytes)

am64xx-hsevm: Write EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Write EXT4 CPU Load (%)

am64xx-hsevm: Read EXT4 Throughput (Mbytes/sec)

am64xx-hsevm: Read EXT4 CPU Load (%)

1m

18.70

1.44

86.80

3.48

4m

19.00

1.25

86.70

2.67

4k

4.97

8.93

16.20

17.12

256k

18.20

2.12

84.10

5.15

The performance numbers were captured using the following:

  • SanDisk 8GB MicroSDHC Class 10 Memory Card

  • Partition was mounted with async option


2.4.1.6. CRYPTO Driver

2.4.1.6.1. OpenSSL Performance

Table: OpenSSL Performance

Table 2.20 OpenSSL Performance

Algorithm

Buffer Size (in bytes)

am64xx-hsevm: throughput (KBytes/Sec)

aes-128-cbc

1024

23724.03

aes-128-cbc

16

413.09

aes-128-cbc

16384

142710.10

aes-128-cbc

256

6472.70

aes-128-cbc

64

1647.77

aes-128-cbc

8192

104966.83

aes-128-ecb

1024

23443.46

aes-128-ecb

16

414.90

aes-128-ecb

16384

147707.22

aes-128-ecb

256

6678.19

aes-128-ecb

64

1662.38

aes-128-ecb

8192

107252.39

aes-192-cbc

1024

21836.12

aes-192-cbc

16

410.06

aes-192-cbc

16384

132928.85

aes-192-cbc

256

6497.88

aes-192-cbc

64

1639.40

aes-192-cbc

8192

99292.50

aes-192-ecb

1024

24174.25

aes-192-ecb

16

411.21

aes-192-ecb

16384

137887.74

aes-192-ecb

256

6575.70

aes-192-ecb

64

1629.18

aes-192-ecb

8192

102342.66

aes-256-cbc

1024

22263.81

aes-256-cbc

16

377.12

aes-256-cbc

16384

125719.89

aes-256-cbc

256

6525.53

aes-256-cbc

64

1503.64

aes-256-cbc

8192

94806.02

aes-256-ecb

1024

24240.47

aes-256-ecb

16

404.67

aes-256-ecb

16384

129957.89

aes-256-ecb

256

6635.18

aes-256-ecb

64

1656.53

aes-256-ecb

8192

97949.01

sha256

1024

24987.65

sha256

16

419.15

sha256

16384

196034.56

sha256

256

6539.35

sha256

64

1657.39

sha256

8192

134018.39

sha512

1024

17459.20

sha512

16

406.13

sha512

16384

46972.93

sha512

256

5782.36

sha512

64

1624.45

sha512

8192

42142.38

Table 2.21 OpenSSL CPU Load

Algorithm

am64xx-hsevm: CPU Load

aes-128-cbc

45.00

aes-128-ecb

46.00

aes-192-cbc

45.00

aes-192-ecb

46.00

aes-256-cbc

44.00

aes-256-ecb

45.00

sha256

97.00

sha512

97.00

Listed for each algorithm are the code snippets used to run each benchmark test.

time -v openssl speed -elapsed -evp aes-128-cbc

2.4.1.6.2. IPSec Software Performance

Table 2.22 IPSec Software Performance

Algorithm

am64xx-hsevm: Throughput (Mbps)

am64xx-hsevm: Packets/Sec

am64xx-hsevm: CPU Load

3des

52.90

4.00

52.45

aes128

0.40

0.00

95.16