2.4.2. Linux Performance Guide¶
Read This First
All performance numbers provided in this document are gathered using following Evaluation Modules unless otherwise specified.
Name |
Description |
|---|---|
AM62x EVM |
AM62x Starter Kit rev E2 and E3 with ARM running at 1400 MHz, DDR4 data rate 1600 MT/S |
AM62x SK LP |
AM62x LP Starter Kit rev E1 with ARM running at 1250 MHz, LPDDR4 data rate 1600 MT/S |
AM62SIP SK |
AM62SIP Starter Kit rev E1 with ARM running at 1400 MHz, 512MB LPDDR4 data rate 1600 MT/S |
Table: Evaluation Modules
About This Manual
This document provides performance data for each of the device drivers which are part of the Process SDK Linux package. This document should be used in conjunction with release notes and user guides provided with the Process SDK Linux package for information on specific issues present with drivers included in a particular release.
If You Need Assistance
For further information or to report any problems, contact http://e2e.ti.com/ or http://support.ti.com/
2.4.2.1. System Benchmarks¶
2.4.2.1.1. LMBench¶
LMBench is a collection of microbenchmarks of which the memory bandwidth and latency related ones are typically used to estimate processor memory system performance. More information about lmbench at http://lmbench.sourceforge.net/whatis_lmbench.html and http://lmbench.sourceforge.net/man/lmbench.8.html
Latency: lat_mem_rd-stride128-szN, where N is equal to or smaller than the cache size at given level measures the cache miss penalty. N that is at least double the size of last level cache is the latency to external memory.
Bandwidth: bw_mem_bcopy-N, where N is equal to or smaller than the cache size at a given level measures the achievable memory bandwidth from software doing a memcpy() type operation. Typical use is for external memory bandwidth calculation. The bandwidth is calculated as byte read and written counts as 1 which should be roughly half of STREAM copy result.
Benchmarks |
am62xxsip_sk-fs: perf |
|---|---|
af_unix_sock_stream_latency (microsec) |
25.60 |
af_unix_socket_stream_bandwidth (MBs) |
738.75 |
bw_file_rd-io-1mb (MB/s) |
854.85 |
bw_file_rd-o2c-1mb (MB/s) |
511.42 |
bw_mem-bcopy-16mb (MB/s) |
749.38 |
bw_mem-bcopy-1mb (MB/s) |
763.21 |
bw_mem-bcopy-2mb (MB/s) |
728.73 |
bw_mem-bcopy-4mb (MB/s) |
715.18 |
bw_mem-bcopy-8mb (MB/s) |
744.53 |
bw_mem-bzero-16mb (MB/s) |
1735.55 |
bw_mem-bzero-1mb (MB/s) |
1245.17 (min 763.21, max 1727.12) |
bw_mem-bzero-2mb (MB/s) |
1227.03 (min 728.73, max 1725.33) |
bw_mem-bzero-4mb (MB/s) |
1220.65 (min 715.18, max 1726.12) |
bw_mem-bzero-8mb (MB/s) |
1246.68 (min 744.53, max 1748.83) |
bw_mem-cp-16mb (MB/s) |
429.81 |
bw_mem-cp-1mb (MB/s) |
542.54 (min 421.17, max 663.90) |
bw_mem-cp-2mb (MB/s) |
512.29 (min 432.43, max 592.15) |
bw_mem-cp-4mb (MB/s) |
515.79 (min 397.46, max 634.12) |
bw_mem-cp-8mb (MB/s) |
525.37 (min 414.14, max 636.59) |
bw_mem-fcp-16mb (MB/s) |
796.85 |
bw_mem-fcp-1mb (MB/s) |
1274.54 (min 821.96, max 1727.12) |
bw_mem-fcp-2mb (MB/s) |
1243.33 (min 761.32, max 1725.33) |
bw_mem-fcp-4mb (MB/s) |
1237.59 (min 749.06, max 1726.12) |
bw_mem-fcp-8mb (MB/s) |
1278.34 (min 807.84, max 1748.83) |
bw_mem-frd-16mb (MB/s) |
1109.95 |
bw_mem-frd-1mb (MB/s) |
1037.21 (min 821.96, max 1252.46) |
bw_mem-frd-2mb (MB/s) |
928.11 (min 761.32, max 1094.89) |
bw_mem-frd-4mb (MB/s) |
926.03 (min 749.06, max 1102.99) |
bw_mem-frd-8mb (MB/s) |
956.94 (min 807.84, max 1106.04) |
bw_mem-fwr-16mb (MB/s) |
641.57 |
bw_mem-fwr-1mb (MB/s) |
958.18 (min 663.90, max 1252.46) |
bw_mem-fwr-2mb (MB/s) |
843.52 (min 592.15, max 1094.89) |
bw_mem-fwr-4mb (MB/s) |
868.56 (min 634.12, max 1102.99) |
bw_mem-fwr-8mb (MB/s) |
871.32 (min 636.59, max 1106.04) |
bw_mem-rd-16mb (MB/s) |
1119.35 |
bw_mem-rd-1mb (MB/s) |
951.36 (min 614.53, max 1288.19) |
bw_mem-rd-2mb (MB/s) |
842.72 (min 557.72, max 1127.71) |
bw_mem-rd-4mb (MB/s) |
836.64 (min 561.09, max 1112.19) |
bw_mem-rd-8mb (MB/s) |
844.63 (min 580.76, max 1108.49) |
bw_mem-rdwr-16mb (MB/s) |
593.98 |
bw_mem-rdwr-1mb (MB/s) |
513.21 (min 421.17, max 605.24) |
bw_mem-rdwr-2mb (MB/s) |
486.45 (min 432.43, max 540.47) |
bw_mem-rdwr-4mb (MB/s) |
481.42 (min 397.46, max 565.37) |
bw_mem-rdwr-8mb (MB/s) |
499.75 (min 414.14, max 585.35) |
bw_mem-wr-16mb (MB/s) |
591.69 |
bw_mem-wr-1mb (MB/s) |
609.89 (min 605.24, max 614.53) |
bw_mem-wr-2mb (MB/s) |
549.10 (min 540.47, max 557.72) |
bw_mem-wr-4mb (MB/s) |
563.23 (min 561.09, max 565.37) |
bw_mem-wr-8mb (MB/s) |
583.06 (min 580.76, max 585.35) |
bw_mmap_rd-mo-1mb (MB/s) |
1277.14 |
bw_mmap_rd-o2c-1mb (MB/s) |
470.15 |
bw_pipe (MB/s) |
536.36 |
bw_unix (MB/s) |
738.75 |
lat_connect (us) |
55.44 |
lat_ctx-2-128k (us) |
5.04 |
lat_ctx-2-256k (us) |
4.65 |
lat_ctx-4-128k (us) |
4.87 |
lat_ctx-4-256k (us) |
5.54 |
lat_fs-0k (num_files) |
283.00 |
lat_fs-10k (num_files) |
113.00 |
lat_fs-1k (num_files) |
142.00 |
lat_fs-4k (num_files) |
152.00 |
lat_mem_rd-stride128-sz1000k (ns) |
52.82 |
lat_mem_rd-stride128-sz125k (ns) |
5.54 |
lat_mem_rd-stride128-sz250k (ns) |
5.84 |
lat_mem_rd-stride128-sz31k (ns) |
3.65 |
lat_mem_rd-stride128-sz50 (ns) |
2.15 |
lat_mem_rd-stride128-sz500k (ns) |
14.16 |
lat_mem_rd-stride128-sz62k (ns) |
5.23 |
lat_mmap-1m (us) |
64.00 |
lat_ops-double-add (ns) |
2.86 |
lat_ops-double-div (ns) |
15.74 |
lat_ops-double-mul (ns) |
2.86 |
lat_ops-float-add (ns) |
2.86 |
lat_ops-float-div (ns) |
9.30 |
lat_ops-float-mul (ns) |
2.86 |
lat_ops-int-add (ns) |
0.72 |
lat_ops-int-bit (ns) |
0.48 |
lat_ops-int-div (ns) |
4.29 |
lat_ops-int-mod (ns) |
4.53 |
lat_ops-int-mul (ns) |
3.07 |
lat_ops-int64-add (ns) |
0.72 |
lat_ops-int64-bit (ns) |
0.48 |
lat_ops-int64-div (ns) |
6.80 |
lat_ops-int64-mod (ns) |
5.25 |
lat_ops-int64-mul (ns) |
3.60 |
lat_pagefault (us) |
1.53 |
lat_pipe (us) |
19.69 |
lat_proc-exec (us) |
1033.83 |
lat_proc-fork (us) |
751.14 |
lat_proc-proccall (us) |
0.01 |
lat_select (us) |
32.92 |
lat_sem (us) |
2.43 |
lat_sig-catch (us) |
5.45 |
lat_sig-install (us) |
0.64 |
lat_sig-prot (us) |
0.53 |
lat_syscall-fstat (us) |
2.46 |
lat_syscall-null (us) |
0.47 |
lat_syscall-open (us) |
166.64 |
lat_syscall-read (us) |
0.81 |
lat_syscall-stat (us) |
3.48 |
lat_syscall-write (us) |
0.65 |
lat_tcp (us) |
0.92 |
lat_unix (us) |
25.60 |
latency_for_0.50_mb_block_size (nanosec) |
14.16 |
latency_for_1.00_mb_block_size (nanosec) |
26.41 (min 0.00, max 52.82) |
pipe_bandwidth (MBs) |
536.36 |
pipe_latency (microsec) |
19.69 |
procedure_call (microsec) |
0.01 |
select_on_200_tcp_fds (microsec) |
32.92 |
semaphore_latency (microsec) |
2.43 |
signal_handler_latency (microsec) |
0.64 |
signal_handler_overhead (microsec) |
5.45 |
tcp_ip_connection_cost_to_localhost (microsec) |
55.44 |
tcp_latency_using_localhost (microsec) |
0.92 |
Table: LM Bench Metrics
2.4.2.1.2. Dhrystone¶
Dhrystone is a core only benchmark that runs from warm L1 caches in all modern processors. It scales linearly with clock speed. For standard ARM cores the DMIPS/MHz score will be identical with the same compiler and flags.
Execute the benchmark with the following:
runDhrystone
Benchmarks |
am62xxsip_sk-fs: perf |
|---|---|
cpu_clock (MHz) |
1400.00 |
dhrystone_per_mhz (DMIPS/MHz) |
2.90 |
dhrystone_per_second (DhrystoneP) |
7142857.00 |
Table: Dhrystone Benchmark
2.4.2.1.3. Whetstone¶
Whetstone is a benchmark primarily measuring floating-point arithmetic performance.
Execute the benchmark with the following:
runWhetstone
Benchmarks |
am62xxsip_sk-fs: perf |
|---|---|
whetstone (MIPS) |
5000.00 |
Table: Whetstone Benchmark
2.4.2.1.4. Linpack¶
Linpack measures peak double precision (64 bit) floating point performance in solving a dense linear system.
Benchmarks |
am62xxsip_sk-fs: perf |
|---|---|
linpack (Kflops) |
577808.00 |
Table: Linpack Benchmark
2.4.2.1.5. Stream¶
STREAM is a microbenchmark for measuring data memory system performance without any data reuse. It is designed to miss on caches and exercise data prefetcher and speculative accesses. It uses double precision floating point (64bit) but in most modern processors the memory access will be the bottleneck. The four individual scores are copy, scale as in multiply by constant, add two numbers, and triad for multiply accumulate. For bandwidth, a byte read counts as one and a byte written counts as one, resulting in a score that is double the bandwidth LMBench will show.
Execute the benchmark with the following:
stream_c
Benchmarks |
am62xxsip_sk-fs: perf |
|---|---|
add (MB/s) |
1372.50 |
copy (MB/s) |
1517.20 |
scale (MB/s) |
1579.70 |
triad (MB/s) |
1358.90 |
Table: Stream
2.4.2.1.6. CoreMarkPro¶
CoreMark®-Pro is a comprehensive, advanced processor benchmark that works with and enhances the market-proven industry-standard EEMBC CoreMark® benchmark. While CoreMark stresses the CPU pipeline, CoreMark-Pro tests the entire processor, adding comprehensive support for multicore technology, a combination of integer and floating-point workloads, and data sets for utilizing larger memory subsystems.
Benchmarks |
am62xxsip_sk-fs: perf |
|---|---|
cjpeg-rose7-preset (workloads/) |
42.02 |
core (workloads/) |
0.30 |
coremark-pro () |
844.24 |
linear_alg-mid-100x100-sp (workloads/) |
14.68 |
loops-all-mid-10k-sp (workloads/) |
0.67 |
nnet_test (workloads/) |
1.09 |
parser-125k (workloads/) |
8.20 |
radix2-big-64k (workloads/) |
33.14 |
sha-test (workloads/) |
80.65 |
zip-test (workloads/) |
20.83 |
Table: CoreMarkPro
Benchmarks |
am62xxsip_sk-fs: perf |
|---|---|
cjpeg-rose7-preset (workloads/) |
82.64 |
core (workloads/) |
0.60 |
coremark-pro () |
1485.93 |
linear_alg-mid-100x100-sp (workloads/) |
29.36 |
loops-all-mid-10k-sp (workloads/) |
1.15 |
nnet_test (workloads/) |
2.18 |
parser-125k (workloads/) |
12.05 |
radix2-big-64k (workloads/) |
36.66 |
sha-test (workloads/) |
161.29 |
zip-test (workloads/) |
38.46 |
Table: CoreMarkPro for Two Cores
2.4.2.1.7. MultiBench¶
MultiBench™ is a suite of benchmarks that allows processor and system designers to analyze, test, and improve multicore processors. It uses three forms of concurrency: Data decomposition: multiple threads cooperating on achieving a unified goal and demonstrating a processor’s support for fine grain parallelism. Processing multiple data streams: uses common code running over multiple threads and demonstrating how well a processor scales over scalable data inputs. Multiple workload processing: shows the scalability of general-purpose processing, demonstrating concurrency over both code and data. MultiBench combines a wide variety of application-specific workloads with the EEMBC Multi-Instance-Test Harness (MITH), compatible and portable with most any multicore processors and operating systems. MITH uses a thread-based API (POSIX-compliant) to establish a common programming model that communicates with the benchmark through an abstraction layer and provides a flexible interface to allow a wide variety of thread-enabled workloads to be tested.
Benchmarks |
am62xxsip_sk-fs: perf |
|---|---|
4m-check (workloads/) |
300.95 |
4m-check-reassembly (workloads/) |
64.52 |
4m-check-reassembly-tcp (workloads/) |
42.23 |
4m-check-reassembly-tcp-cmykw2-rotatew2 (workloads/) |
24.30 |
4m-check-reassembly-tcp-x264w2 (workloads/) |
1.80 |
4m-cmykw2 (workloads/) |
199.40 |
4m-cmykw2-rotatew2 (workloads/) |
38.99 |
4m-reassembly (workloads/) |
51.23 |
4m-rotatew2 (workloads/) |
46.00 |
4m-tcp-mixed (workloads/) |
103.90 |
4m-x264w2 (workloads/) |
1.86 |
idct-4m (workloads/) |
18.60 |
idct-4mw1 (workloads/) |
18.59 |
ippktcheck-4m (workloads/) |
302.37 |
ippktcheck-4mw1 (workloads/) |
302.44 |
ipres-4m (workloads/) |
62.89 |
ipres-4mw1 (workloads/) |
63.03 |
md5-4m (workloads/) |
26.32 |
md5-4mw1 (workloads/) |
26.16 |
rgbcmyk-4m (workloads/) |
63.57 |
rgbcmyk-4mw1 (workloads/) |
63.59 |
rotate-4ms1 (workloads/) |
18.44 |
rotate-4ms1w1 (workloads/) |
18.38 |
rotate-4ms64 (workloads/) |
18.45 |
rotate-4ms64w1 (workloads/) |
18.55 |
x264-4mq (workloads/) |
0.56 |
x264-4mqw1 (workloads/) |
0.56 |
Table: Multibench
2.4.2.2. Graphics SGX/RGX Driver¶
2.4.2.2.1. Glmark2¶
Run Glmark2 and capture performance reported (Score). All display outputs (HDMI, Displayport and/or LCD) are connected when running these tests
Benchmark |
am62xxsip_sk-fs: Score |
|---|---|
Glmark2-DRM |
38.00 |
Glmark2-Wayland |
230.00 |
Table: Glmark2
2.4.2.3. Ethernet¶
Ethernet performance benchmarks were measured using Netperf 2.7.1 https://hewlettpackard.github.io/netperf/doc/netperf.html Test procedures were modeled after those defined in RFC-2544: https://tools.ietf.org/html/rfc2544, where the DUT is the TI device and the “tester” used was a Linux PC. To produce consistent results, it is recommended to carry out performance tests in a private network and to avoid running NFS on the same interface used in the test. In these results, CPU utilization was captured as the total percentage used across all cores on the device, while running the performance test over one external interface.
UDP Throughput (0% loss) was measured by the procedure defined in RFC-2544 section 26.1: Throughput. In this scenario, netperf options burst_size (-b) and wait_time (-w) are used to limit bandwidth during different trials of the test, with the goal of finding the highest rate at which no loss is seen. For example, to limit bandwidth to 500Mbits/sec with 1472B datagram:
burst_size = <bandwidth (bits/sec)> / 8 (bits -> bytes) / <UDP datagram size> / 100 (seconds -> 10 ms)
burst_size = 500000000 / 8 / 1472 / 100 = 425
wait_time = 10 milliseconds (minimum supported by Linux PC used for testing)
UDP Throughput (possible loss) was measured by capturing throughput and packet loss statistics when running the netperf test with no bandwidth limit (remove -b/-w options).
In order to start a netperf client on one device, the other device must have netserver running. To start netserver:
netserver [-p <port_number>] [-4 (IPv4 addressing)] [-6 (IPv6 addressing)]
Running the following shell script from the DUT will trigger netperf clients to measure bidirectional TCP performance for 60 seconds and report CPU utilization. Parameter -k is used in client commands to summarize selected statistics on their own line and -j is used to gain additional timing measurements during the test.
#!/bin/bash
for i in 1
do
netperf -H <tester ip> -j -c -l 60 -t TCP_STREAM --
-k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &
netperf -H <tester ip> -j -c -l 60 -t TCP_MAERTS --
-k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &
done
Running the following commands will trigger netperf clients to measure UDP burst performance for 60 seconds at various burst/datagram sizes and report CPU utilization.
For UDP egress tests, run netperf client from DUT and start netserver on tester.
netperf -H <tester ip> -j -c -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
-k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE
For UDP ingress tests, run netperf client from tester and start netserver on DUT.
netperf -H <DUT ip> -j -C -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
-k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE
2.4.2.3.1. CPSW/CPSW2g/CPSW3g Ethernet Driver¶
TCP Bidirectional Throughput
Command Used |
am62xxsip_sk-fs: THROUGHPUT (Mbits/sec) |
am62xxsip_sk-fs: CPU Load % (LOCAL_CPU_UTIL) |
|---|---|---|
netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS |
1794.39 |
65.04 |
Table: CPSW TCP Bidirectional Throughput
UDP Throughput
Frame Size(bytes) |
am62xxsip_sk-fs: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE) |
am62xxsip_sk-fs: THROUGHPUT (Mbits/sec) |
am62xxsip_sk-fs: Packets Per Second (kPPS) |
am62xxsip_sk-fs: CPU Load % (LOCAL_CPU_UTIL) |
|---|---|---|---|---|
64 |
18.00 |
18.91 |
131.00 |
41.22 |
128 |
82.00 |
83.07 |
127.00 |
40.68 |
256 |
210.00 |
209.96 |
125.00 |
40.57 |
1024 |
978.00 |
936.49 |
120.00 |
46.34 |
1518 |
1472.00 |
956.21 |
81.00 |
33.74 |
Table: CPSW UDP Egress Throughput
Frame Size(bytes) |
am62xxsip_sk-fs: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE) |
am62xxsip_sk-fs: THROUGHPUT (Mbits/sec) |
am62xxsip_sk-fs: Packets Per Second (kPPS) |
am62xxsip_sk-fs: CPU Load % (LOCAL_CPU_UTIL) |
|---|---|---|---|---|
64 |
18.00 |
8.55 |
59.00 |
32.30 |
128 |
82.00 |
40.87 |
62.00 |
29.43 |
256 |
210.00 |
18.14 |
11.00 |
13.50 |
1024 |
978.00 |
936.81 |
120.00 |
41.79 |
1518 |
1472.00 |
957.14 |
81.00 |
39.41 |
Table: CPSW UDP Ingress Throughput (0% loss)
Frame Size(bytes) |
am62xxsip_sk-fs: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE) |
am62xxsip_sk-fs: THROUGHPUT (Mbits/sec) |
am62xxsip_sk-fs: Packets Per Second (kPPS) |
am62xxsip_sk-fs: CPU Load % (LOCAL_CPU_UTIL) |
am62xxsip_sk-fs: Packet Loss % |
|---|---|---|---|---|---|
64 |
18.00 |
27.36 |
190.00 |
37.49 |
66.96 |
128 |
82.00 |
124.60 |
190.00 |
39.44 |
63.76 |
256 |
210.00 |
310.14 |
185.00 |
40.51 |
57.70 |
1024 |
978.00 |
936.76 |
120.00 |
41.89 |
0.01 |
1518 |
1472.00 |
957.14 |
81.00 |
39.41 |
0.00 |
Table: CPSW UDP Ingress Throughput (possible loss)
2.4.2.4. CRYPTO Driver¶
2.4.2.4.1. OpenSSL Performance¶
Algorithm |
Buffer Size (in bytes) |
am62xxsip_sk-fs: throughput (KBytes/Sec) |
|---|---|---|
aes-128-cbc |
1024 |
24668.50 |
aes-128-cbc |
16 |
471.19 |
aes-128-cbc |
16384 |
130078.04 |
aes-128-cbc |
256 |
7159.13 |
aes-128-cbc |
64 |
1865.47 |
aes-128-cbc |
8192 |
98467.84 |
aes-128-ecb |
1024 |
24683.52 |
aes-128-ecb |
16 |
486.99 |
aes-128-ecb |
16384 |
131284.99 |
aes-128-ecb |
256 |
7433.05 |
aes-128-ecb |
64 |
1946.86 |
aes-128-ecb |
8192 |
98686.29 |
aes-192-cbc |
1024 |
24667.14 |
aes-192-cbc |
16 |
469.14 |
aes-192-cbc |
16384 |
120640.85 |
aes-192-cbc |
256 |
7081.13 |
aes-192-cbc |
64 |
1862.02 |
aes-192-cbc |
8192 |
97673.22 |
aes-192-ecb |
1024 |
24701.61 |
aes-192-ecb |
16 |
488.36 |
aes-192-ecb |
16384 |
127309.14 |
aes-192-ecb |
256 |
7367.85 |
aes-192-ecb |
64 |
1936.38 |
aes-192-ecb |
8192 |
98418.69 |
aes-256-cbc |
1024 |
24620.37 |
aes-256-cbc |
16 |
469.25 |
aes-256-cbc |
16384 |
111842.65 |
aes-256-cbc |
256 |
6967.55 |
aes-256-cbc |
64 |
1852.03 |
aes-256-cbc |
8192 |
90614.44 |
aes-256-ecb |
1024 |
24692.05 |
aes-256-ecb |
16 |
490.10 |
aes-256-ecb |
16384 |
118024.87 |
aes-256-ecb |
256 |
7289.51 |
aes-256-ecb |
64 |
1932.80 |
aes-256-ecb |
8192 |
98058.24 |
des3 |
1024 |
9054.21 |
des3 |
16 |
8366.59 |
des3 |
16384 |
9060.35 |
des3 |
256 |
9018.37 |
des3 |
64 |
8873.77 |
des3 |
8192 |
9063.08 |
md5 |
1024 |
140703.40 |
md5 |
16 |
8000.85 |
md5 |
16384 |
189754.03 |
md5 |
256 |
76994.39 |
md5 |
64 |
27382.12 |
md5 |
8192 |
185516.03 |
sha1 |
1024 |
302073.17 |
sha1 |
16 |
8696.27 |
sha1 |
16384 |
608234.15 |
sha1 |
256 |
115893.33 |
sha1 |
64 |
33391.32 |
sha1 |
8192 |
572470.61 |
sha224 |
1024 |
302984.53 |
sha224 |
16 |
9231.09 |
sha224 |
16384 |
580752.73 |
sha224 |
256 |
119728.30 |
sha224 |
64 |
35194.18 |
sha224 |
8192 |
548604.59 |
sha256 |
1024 |
32763.22 |
sha256 |
16 |
561.18 |
sha256 |
16384 |
271226.20 |
sha256 |
256 |
8509.87 |
sha256 |
64 |
2183.10 |
sha256 |
8192 |
190207.32 |
sha384 |
1024 |
105389.40 |
sha384 |
16 |
6124.09 |
sha384 |
16384 |
141208.23 |
sha384 |
256 |
58098.26 |
sha384 |
64 |
24396.03 |
sha384 |
8192 |
138283.69 |
sha512 |
1024 |
24550.06 |
sha512 |
16 |
543.16 |
sha512 |
16384 |
68168.36 |
sha512 |
256 |
7660.97 |
sha512 |
64 |
2190.04 |
sha512 |
8192 |
60582.57 |
Algorithm |
am62xxsip_sk-fs: CPU Load |
|---|---|
aes-128-cbc |
37.00 |
aes-128-ecb |
39.00 |
aes-192-cbc |
37.00 |
aes-192-ecb |
37.00 |
aes-256-cbc |
36.00 |
aes-256-ecb |
36.00 |
des3 |
98.00 |
md5 |
98.00 |
sha1 |
98.00 |
sha224 |
98.00 |
sha256 |
98.00 |
sha384 |
98.00 |
sha512 |
98.00 |
Listed for each algorithm are the code snippets used to run each benchmark test.
time -v openssl speed -elapsed -evp aes-128-cbc
2.4.2.4.2. IPSec Software Performance¶
Algorithm |
am62xxsip_sk-fs: Throughput (Mbps) |
am62xxsip_sk-fs: Packets/Sec |
am62xxsip_sk-fs: CPU Load |
|---|---|---|---|
3des |
70.50 |
6.00 |
25.14 |
aes128 |
279.10 |
24.00 |
47.18 |
aes192 |
282.70 |
25.00 |
47.37 |
aes256 |
281.90 |
25.00 |
47.42 |