2.4.2. Linux Performance Guide

Read This First

All performance numbers provided in this document are gathered using following Evaluation Modules unless otherwise specified.

Name Description
AM62x EVM AM62x Evaluation Module rev E2 with ARM running at 1200 MHz, DDR data rate 1600 MT/S

Table: Evaluation Modules


About This Manual

This document provides performance data for each of the device drivers which are part of the Process SDK Linux package. This document should be used in conjunction with release notes and user guides provided with the Process SDK Linux package for information on specific issues present with drivers included in a particular release.

If You Need Assistance

For further information or to report any problems, contact http://e2e.ti.com/ or http://support.ti.com/

2.4.2.1. System Benchmarks

2.4.2.1.1. LMBench

LMBench is a collection of microbenchmarks of which the memory bandwidth and latency related ones are typically used to estimate processor memory system performance.

Latency: lat_mem_rd-stride128-szN, where N is equal to or smaller than the cache size at given level measures the cache miss penalty. N that is at least double the size of last level cache is the latency to external memory.

Bandwidth: bw_mem_bcopy-N, where N is is equal to or smaller than the cache size at a given level measures the achivable memory bandwidth from software doing a memcpy() type operation. Typical use is for external memory bandwidth calculation. The bandwidth is calculated as byte read and written counts as 1 which should be roughly half of STREAM copy result.

Benchmarks am62xx-evm: perf
af_unix_sock_stream_latency (microsec) 39.23
af_unix_socket_stream_bandwidth (MBs) 1223.54
bw_file_rd-io-1mb (MB/s) 819.94
bw_file_rd-o2c-1mb (MB/s) 447.96
bw_mem-bcopy-16mb (MB/s) 801.64
bw_mem-bcopy-1mb (MB/s) 905.63
bw_mem-bcopy-2mb (MB/s) 796.81
bw_mem-bcopy-4mb (MB/s) 858.92
bw_mem-bcopy-8mb (MB/s) 879.70
bw_mem-bzero-16mb (MB/s) 1836.97
bw_mem-bzero-1mb (MB/s) 1370.71 (min 905.63, max 1835.78)
bw_mem-bzero-2mb (MB/s) 1302.08 (min 796.81, max 1807.34)
bw_mem-bzero-4mb (MB/s) 1346.89 (min 858.92, max 1834.86)
bw_mem-bzero-8mb (MB/s) 1358.02 (min 879.70, max 1836.34)
bw_mem-cp-16mb (MB/s) 466.38
bw_mem-cp-1mb (MB/s) 1224.11 (min 459.35, max 1988.86)
bw_mem-cp-2mb (MB/s) 1183.27 (min 455.58, max 1910.95)
bw_mem-cp-4mb (MB/s) 1189.98 (min 495.54, max 1884.42)
bw_mem-cp-8mb (MB/s) 1195.48 (min 521.14, max 1869.81)
bw_mem-fcp-16mb (MB/s) 709.66
bw_mem-fcp-1mb (MB/s) 1355.34 (min 874.89, max 1835.78)
bw_mem-fcp-2mb (MB/s) 1302.34 (min 797.34, max 1807.34)
bw_mem-fcp-4mb (MB/s) 1327.39 (min 819.92, max 1834.86)
bw_mem-fcp-8mb (MB/s) 1337.20 (min 838.05, max 1836.34)
bw_mem-frd-16mb (MB/s) 1158.66
bw_mem-frd-1mb (MB/s) 1075.90 (min 874.89, max 1276.91)
bw_mem-frd-2mb (MB/s) 977.04 (min 797.34, max 1156.74)
bw_mem-frd-4mb (MB/s) 984.35 (min 819.92, max 1148.77)
bw_mem-frd-8mb (MB/s) 999.24 (min 838.05, max 1160.43)
bw_mem-fwr-16mb (MB/s) 1853.14
bw_mem-fwr-1mb (MB/s) 1632.89 (min 1276.91, max 1988.86)
bw_mem-fwr-2mb (MB/s) 1533.85 (min 1156.74, max 1910.95)
bw_mem-fwr-4mb (MB/s) 1516.60 (min 1148.77, max 1884.42)
bw_mem-fwr-8mb (MB/s) 1515.12 (min 1160.43, max 1869.81)
bw_mem-rd-16mb (MB/s) 1180.46
bw_mem-rd-1mb (MB/s) 1044.77 (min 727.14, max 1362.40)
bw_mem-rd-2mb (MB/s) 919.05 (min 663.35, max 1174.74)
bw_mem-rd-4mb (MB/s) 964.38 (min 761.90, max 1166.86)
bw_mem-rd-8mb (MB/s) 996.02 (min 818.50, max 1173.54)
bw_mem-rdwr-16mb (MB/s) 831.13
bw_mem-rdwr-1mb (MB/s) 594.85 (min 459.35, max 730.35)
bw_mem-rdwr-2mb (MB/s) 566.43 (min 455.58, max 677.28)
bw_mem-rdwr-4mb (MB/s) 627.57 (min 495.54, max 759.59)
bw_mem-rdwr-8mb (MB/s) 673.97 (min 521.14, max 826.79)
bw_mem-wr-16mb (MB/s) 887.02
bw_mem-wr-1mb (MB/s) 728.75 (min 727.14, max 730.35)
bw_mem-wr-2mb (MB/s) 670.32 (min 663.35, max 677.28)
bw_mem-wr-4mb (MB/s) 760.75 (min 759.59, max 761.90)
bw_mem-wr-8mb (MB/s) 822.65 (min 818.50, max 826.79)
bw_mmap_rd-mo-1mb (MB/s) 1327.27
bw_mmap_rd-o2c-1mb (MB/s) 447.09
bw_pipe (MB/s) 492.24
bw_unix (MB/s) 1223.54
lat_connect (us) 55.35
lat_ctx-2-128k (us) 5.39
lat_ctx-2-256k (us) 3.25
lat_ctx-4-128k (us) 4.01
lat_ctx-4-256k (us) 6.45
lat_fs-0k (num_files) 242.00
lat_fs-10k (num_files) 118.00
lat_fs-1k (num_files) 162.00
lat_fs-4k (num_files) 161.00
lat_mem_rd-stride128-sz1000k (ns) 50.76
lat_mem_rd-stride128-sz125k (ns) 6.49
lat_mem_rd-stride128-sz250k (ns) 6.80
lat_mem_rd-stride128-sz31k (ns) 4.26
lat_mem_rd-stride128-sz50 (ns) 2.50
lat_mem_rd-stride128-sz500k (ns) 13.27
lat_mem_rd-stride128-sz62k (ns) 6.14
lat_mmap-1m (us) 54.00
lat_ops-double-add (ns) 0.61
lat_ops-double-mul (ns) 3.34
lat_ops-float-add (ns) 0.61
lat_ops-float-mul (ns) 3.34
lat_ops-int-add (ns) 0.83
lat_ops-int-bit (ns) 0.56
lat_ops-int-div (ns) 5.01
lat_ops-int-mod (ns) 5.29
lat_ops-int-mul (ns) 2.53
lat_ops-int64-add (ns) 0.84
lat_ops-int64-bit (ns) 0.56
lat_ops-int64-div (ns) 7.93
lat_ops-int64-mod (ns) 6.12
lat_pagefault (us) 1.35
lat_pipe (us) 20.93
lat_proc-exec (us) 1193.40
lat_proc-fork (us) 922.00
lat_proc-proccall (us) 0.01
lat_select (us) 41.12
lat_sem (us) 1.95
lat_sig-catch (us) 5.71
lat_sig-install (us) 0.55
lat_sig-prot (us) 0.57
lat_syscall-fstat (us) 1.34
lat_syscall-null (us) 0.33
lat_syscall-open (us) 164.94
lat_syscall-read (us) 0.69
lat_syscall-stat (us) 3.65
lat_syscall-write (us) 0.54
lat_tcp (us) 0.72
lat_unix (us) 39.23
latency_for_0.50_mb_block_size (nanosec) 13.27
latency_for_1.00_mb_block_size (nanosec) 25.38 (min 0.00, max 50.76)
pipe_bandwidth (MBs) 492.24
pipe_latency (microsec) 20.93
procedure_call (microsec) 0.01
select_on_200_tcp_fds (microsec) 41.12
semaphore_latency (microsec) 1.95
signal_handler_latency (microsec) 0.55
signal_handler_overhead (microsec) 5.71
tcp_ip_connection_cost_to_localhost (microsec) 55.35
tcp_latency_using_localhost (microsec) 0.72

Table: LM Bench Metrics

2.4.2.1.2. Dhrystone

Dhrystone is a core only benchmark that runs from warm L1 caches in all modern processors. It scales linearly with clock speed. For standard ARM cores the DMIPS/MHz score will be identical with the same compiler and flags.

Benchmarks am62xx-evm: perf
cpu_clock (MHz) 1200.00
dhrystone_per_mhz (DMIPS/MHz) 3.00
dhrystone_per_second (DhrystoneP) 6250000.00

Table: Dhrystone Benchmark

2.4.2.1.3. Whetstone

Benchmarks am62xx-evm: perf
whetstone (MIPS) 5000.00

Table: Whetstone Benchmark

2.4.2.1.4. Linpack

Linpack measures peak double precision (64 bit) floating point performance in sloving a dense linear system.

Benchmarks am62xx-evm: perf
linpack (Kflops) 500924.00

Table: Linpack Benchmark

2.4.2.1.5. Stream

STREAM is a microbenchmarks for measuring data memory system performance without any data reuse. It is designed to miss on caches and exercise data prefetcher and apeculative accesseses. it uses double precision floating point (64bit) but in most modern processors the memory access will be the bottleck. The four individual scores are copy, scale as in multiply by constant, add two numbers, and triad for multiply accumulate. For bandwidth a byte read counts as one and a byte written counts as one resulting in a score that is double the bandwidth LMBench will show.

Benchmarks am62xx-evm: perf
add (MB/s) 1452.80
copy (MB/s) 1679.20
scale (MB/s) 1835.30
triad (MB/s) 1456.40

Table: Stream

2.4.2.1.6. CoreMarkPro

CoreMark®-Pro is a comprehensive, advanced processor benchmark that works with and enhances the market-proven industry-standard EEMBC CoreMark® benchmark. While CoreMark stresses the CPU pipeline, CoreMark-Pro tests the entire processor, adding comprehensive support for multicore technology, a combination of integer and floating-point workloads, and data sets for utilizing larger memory subsystems.

Benchmarks am62xx-evm: perf
cjpeg-rose7-preset (workloads/) 36.10
core (workloads/) 0.26
coremark-pro () 792.87
linear_alg-mid-100x100-sp (workloads/) 12.58
loops-all-mid-10k-sp (workloads/) 0.59
nnet_test (workloads/) 0.94
parser-125k (workloads/) 7.41
radix2-big-64k (workloads/) 55.15
sha-test (workloads/) 69.44
zip-test (workloads/) 18.87

Table: CoreMarkPro

Benchmarks am62xx-evm: perf
cjpeg-rose7-preset (workloads/) 71.43
core (workloads/) 0.52
coremark-pro () 1339.97
linear_alg-mid-100x100-sp (workloads/) 25.14
loops-all-mid-10k-sp (workloads/) 1.04
nnet_test (workloads/) 1.87
parser-125k (workloads/) 11.63
radix2-big-64k (workloads/) 37.65
sha-test (workloads/) 138.89
zip-test (workloads/) 35.71

Table: CoreMarkPro for Two Cores

2.4.2.1.7. MultiBench

MultiBench™ is a suite of benchmarks that allows processor and system designers to analyze, test, and improve multicore processors. It uses three forms of concurrency: Data decomposition: multiple threads cooperating on achieving a unified goal and demonstrating a processor’s support for fine grain parallelism. Processing multiple data streams: uses common code running over multiple threads and demonstrating how well a processor scales over scalable data inputs. Multiple workload processing: shows the scalability of general-purpose processing, demonstrating concurrency over both code and data. MultiBench combines a wide variety of application-specific workloads with the EEMBC Multi-Instance-Test Harness (MITH), compatible and portable with most any multicore processors and operating systems. MITH uses a thread-based API (POSIX-compliant) to establish a common programming model that communicates with the benchmark through an abstraction layer and provides a flexible interface to allow a wide variety of thread-enabled workloads to be tested.

Benchmarks am62xx-evm: perf
4m-check (workloads/) 351.57
4m-check-reassembly (workloads/) 69.16
4m-check-reassembly-tcp (workloads/) 42.88
4m-check-reassembly-tcp-cmykw2-rotatew2 (workloads/) 23.91
4m-check-reassembly-tcp-x264w2 (workloads/) 1.59
4m-cmykw2 (workloads/) 183.99
4m-cmykw2-rotatew2 (workloads/) 37.55
4m-reassembly (workloads/) 53.91
4m-rotatew2 (workloads/) 41.95
4m-tcp-mixed (workloads/) 97.56
4m-x264w2 (workloads/) 1.56
empty-wld (workloads/) 1.00
idct-4m (workloads/) 16.23
idct-4mw1 (workloads/) 16.22
ippktcheck-4m (workloads/) 349.70
ippktcheck-4mw1 (workloads/) 350.83
ipres-4m (workloads/) 61.93
ipres-4mw1 (workloads/) 62.29
md5-4m (workloads/) 25.17
md5-4mw1 (workloads/) 24.88
rgbcmyk-4m (workloads/) 55.02
rgbcmyk-4mw1 (workloads/) 55.13
rotate-4ms1 (workloads/) 17.31
rotate-4ms1w1 (workloads/) 17.28
rotate-4ms64 (workloads/) 17.39
rotate-4ms64w1 (workloads/) 17.56
x264-4mq (workloads/) 0.49
x264-4mqw1 (workloads/) 0.48

Table: Multibench

2.4.2.2. Boot-time Measurement

2.4.2.2.1. Boot media: MMCSD

Boot Configuration am62xx-evm: boot time (sec)
Kernel boot time test when bootloader, kernel and sdk-rootfs are in mmc-sd 19.38 (min 18.47, max 19.93)

Table: Boot time MMC/SD

2.4.2.3. Graphics SGX/RGX Driver

2.4.2.3.1. GFXBench

Run GFXBench and capture performance reported (Score and Display rate in fps). All display outputs (HDMI, Displayport and/or LCD) are connected when running these tests

Benchmark am62xx-evm: Score am62xx-evm: Fps
GFXBench 3.x gl_manhattan_off
82.49 1.33
GFXBench 3.x gl_trex_off
135.92 2.43
GFXBench 5.x gl_5_high_off
10.99 0.17

Table: GFXBench

2.4.2.3.2. Glmark2

Run Glmark2 and capture performance reported (Score). All display outputs (HDMI, Displayport and/or LCD) are connected when running these tests

Benchmark am62xx-evm: Score
Glmark2-Wayland 204.00

Table: Glmark2

2.4.2.4. Ethernet

Ethernet performance benchmarks were measured using Netperf 2.7.1 https://hewlettpackard.github.io/netperf/doc/netperf.html Test procedures were modeled after those defined in RFC-2544: https://tools.ietf.org/html/rfc2544, where the DUT is the TI device and the “tester” used was a Linux PC. To produce consistent results, it is recommended to carry out performance tests in a private network and to avoid running NFS on the same interface used in the test. In these results, CPU utilization was captured as the total percentage used across all cores on the device, while running the performance test over one external interface.

UDP Throughput (0% loss) was measured by the procedure defined in RFC-2544 section 26.1: Throughput. In this scenario, netperf options burst_size (-b) and wait_time (-w) are used to limit bandwidth during different trials of the test, with the goal of finding the highest rate at which no loss is seen. For example, to limit bandwidth to 500Mbits/sec with 1472B datagram:

burst_size = <bandwidth (bits/sec)> / 8 (bits -> bytes) / <UDP datagram size> / 100 (seconds -> 10 ms)
burst_size = 500000000 / 8 / 1472 / 100 = 425

wait_time = 10 milliseconds (minimum supported by Linux PC used for testing)

UDP Throughput (possible loss) was measured by capturing throughput and packet loss statistics when running the netperf test with no bandwidth limit (remove -b/-w options).

In order to start a netperf client on one device, the other device must have netserver running. To start netserver:

netserver [-p <port_number>] [-4 (IPv4 addressing)] [-6 (IPv6 addressing)]

Running the following shell script from the DUT will trigger netperf clients to measure bidirectional TCP performance for 60 seconds and report CPU utilization. Parameter -k is used in client commands to summarize selected statistics on their own line and -j is used to gain additional timing measurements during the test.

#!/bin/bash
for i in 1
do
   netperf -H <tester ip> -j -c -l 60 -t TCP_STREAM --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &

   netperf -H <tester ip> -j -c -l 60 -t TCP_MAERTS --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &
done

Running the following commands will trigger netperf clients to measure UDP burst performance for 60 seconds at various burst/datagram sizes and report CPU utilization.

  • For UDP egress tests, run netperf client from DUT and start netserver on tester.
netperf -H <tester ip> -j -c -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE
  • For UDP ingress tests, run netperf client from tester and start netserver on DUT.
netperf -H <DUT ip> -j -C -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE

2.4.2.4.1. CPSW Ethernet Driver

TCP Bidirectional Throughput

Command Used am62xx-evm: THROUGHPUT (Mbits/sec) am62xx-evm: CPU Load % (LOCAL_CPU_UTIL)
netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS 1542.46 41.63

Table: CPSW TCP Bidirectional Throughput


UDP Throughput

Frame Size(bytes) am62xx-evm: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE) am62xx-evm: THROUGHPUT (Mbits/sec) am62xx-evm: CPU Load % (LOCAL_CPU_UTIL)
64 18.00 17.22 43.38
128 82.00 78.36 43.38
256 210.00 206.08 43.96
1024 978.00 928.62 44.05
1518 1472.00 951.60 42.44

Table: CPSW UDP Egress Throughput


Frame Size(bytes) am62xx-evm: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE) am62xx-evm: THROUGHPUT (Mbits/sec) am62xx-evm: CPU Load % (LOCAL_CPU_UTIL)
64 18.00 11.26 14.14
128 82.00 15.94 6.10
256 210.00 74.93 9.87
1024 978.00 936.71 39.66
1518 1472.00 957.00 40.75

Table: CPSW UDP Ingress Throughput (0% loss)


Frame Size(bytes) am62xx-evm: UDP Datagram Size(bytes) (LOCAL_SEND_SIZE) am62xx-evm: THROUGHPUT (Mbits/sec) am62xx-evm: CPU Load % (LOCAL_CPU_UTIL) am62xx-evm: Packet Loss %
64 18.00 23.37 37.33 63.54
128 82.00 105.21 38.92 63.21
256 210.00 258.67 40.09 64.88
1024 978.00 935.29 40.03 0.16
1518 1472.00 956.43 41.28 0.07

Table: CPSW UDP Ingress Throughput (possible loss)


2.4.2.5. EMMC Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

2.4.2.5.1. AM62XX-EVM

Buffer size (bytes) am62xx-evm: Write EXT4 Throughput (Mbytes/sec) am62xx-evm: Write EXT4 CPU Load (%) am62xx-evm: Read EXT4 Throughput (Mbytes/sec) am62xx-evm: Read EXT4 CPU Load (%)
1m 57.80 1.44 173.00 1.95
4m 57.90 1.25 174.00 1.74
4k 51.00 20.10 55.70 19.06
256k 58.50 1.63 173.00 2.55

2.4.2.6. MMC/SD Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.


2.4.2.6.1. AM62XX-EVM

Buffer size (bytes) am62xx-evm: Write EXT4 Throughput (Mbytes/sec) am62xx-evm: Write EXT4 CPU Load (%) am62xx-evm: Read EXT4 Throughput (Mbytes/sec) am62xx-evm: Read EXT4 CPU Load (%)
1m 9.13 0.50 75.70 1.41
4m 8.65 1.10 85.70 1.43
4k 3.09 1.95 25.60 7.32
256k 9.18 0.59 75.20 1.65

The performance numbers were captured using the following:

  • SanDisk 8GB MicroSDHC Class 10 Memory Card
  • Partition was mounted with async option

2.4.2.7. CRYPTO Driver

2.4.2.7.1. OpenSSL Performance

Algorithm Buffer Size (in bytes) am62xx-evm: throughput (KBytes/Sec)
aes-128-cbc 1024 209475.24
aes-128-cbc 16 4548.46
aes-128-cbc 16384 632335.02
aes-128-cbc 256 66454.78
aes-128-cbc 64 17944.49
aes-128-cbc 8192 558333.95
aes-192-cbc 1024 199166.63
aes-192-cbc 16 4551.72
aes-192-cbc 16384 543342.59
aes-192-cbc 256 65624.23
aes-192-cbc 64 17926.36
aes-192-cbc 8192 488540.84
aes-256-cbc 1024 190219.26
aes-256-cbc 16 4545.40
aes-256-cbc 16384 488243.20
aes-256-cbc 256 64551.25
aes-256-cbc 64 17750.98
aes-256-cbc 8192 443083.43
des-cbc 1024 22458.03
des-cbc 16 4685.29
des-cbc 16384 23811.41
des-cbc 256 18987.35
des-cbc 64 11756.22
des-cbc 8192 23721.30
des3 1024 9426.26
des3 16 3653.49
des3 16384 9655.64
des3 256 8768.68
des3 64 6835.54
des3 8192 9639.25
md5 1024 43770.54
md5 16 956.34
md5 16384 134321.49
md5 256 13857.11
md5 64 3703.36
md5 8192 117940.22
sha1 1024 53661.70
sha1 16 935.48
sha1 16384 332338.52
sha1 256 14544.30
sha1 64 3712.70
sha1 8192 246718.46
sha224 1024 52768.43
sha224 16 914.61
sha224 16384 342518.44
sha224 256 14247.59
sha224 64 3625.60
sha224 8192 250396.67
sha256 1024 51911.34
sha256 16 913.85
sha256 16384 342502.06
sha256 256 14230.44
sha256 64 3627.22
sha256 8192 250025.30
sha384 1024 38473.05
sha384 16 882.59
sha384 16384 108030.63
sha384 256 12552.96
sha384 64 3522.30
sha384 8192 96384.34
sha512 1024 38417.41
sha512 16 880.41
sha512 16384 107992.41
sha512 256 12429.65
sha512 64 3516.54
sha512 8192 96324.27


Algorithm am62xx-evm: CPU Load
aes-128-cbc 98.00
aes-192-cbc 98.00
aes-256-cbc 98.00
des-cbc 98.00
des3 98.00
md5 98.00
sha1 98.00
sha224 98.00
sha256 98.00
sha384 98.00
sha512 98.00

Listed for each algorithm are the code snippets used to run each benchmark test.


time -v openssl speed -elapsed -evp aes-128-cbc

2.4.2.7.2. IPSec Software Performance

Algorithm am62xx-evm: Throughput (Mbps) am62xx-evm: Packets/Sec am62xx-evm: CPU Load
3des 64.80 5.00 26.06
aes128 230.50 20.00 27.59
aes192 215.80 19.00 27.63
aes256 216.70 19.00 27.68