2.4.2. Linux Performance Guide

Read This First

All performance numbers provided in this document are gathered using following Evaluation Modules unless otherwise specified.

Name

Description

AM62Px SK

AM62Px Evaluation Module rev E1 with ARM running at 1.4GHz, DDR data rate 3200MT/s

Table: Evaluation Modules

About This Manual

This document provides performance data for each of the device drivers which are part of the Process SDK Linux package. This document should be used in conjunction with release notes and user guides provided with the Process SDK Linux package for information on specific issues present with drivers included in a particular release.

If You Need Assistance

For further information or to report any problems, contact http://e2e.ti.com/ or http://support.ti.com/

2.4.2.1. System Benchmarks

2.4.2.1.1. LMBench

LMBench is a collection of microbenchmarks of which the memory bandwidth and latency related ones are typically used to estimate processor memory system performance. More information about lmbench at http://lmbench.sourceforge.net/whatis_lmbench.html and http://lmbench.sourceforge.net/man/lmbench.8.html

Latency: lat_mem_rd-stride128-szN, where N is equal to or smaller than the cache size at given level measures the cache miss penalty. N that is at least double the size of last level cache is the latency to external memory.

Bandwidth: bw_mem_bcopy-N, where N is equal to or smaller than the cache size at a given level measures the achievable memory bandwidth from software doing a memcpy() type operation. Typical use is for external memory bandwidth calculation. The bandwidth is calculated as byte read and written counts as 1 which should be roughly half of STREAM copy result.

Execute the LMBench with the following:

cd /opt/ltp
./runltp -P j721e-idk-gw -f ddt/lmbench -s LMBENCH_L_PERF_0001

Benchmarks

am62pxx_sk-fs: perf

af_unix_sock_stream_latency (microsec)

23.62

af_unix_socket_stream_bandwidth (MBs)

1127.14

bw_file_rd-io-1mb (MB/s)

1266.28

bw_file_rd-o2c-1mb (MB/s)

767.02

bw_mem-bcopy-16mb (MB/s)

1805.26

bw_mem-bcopy-1mb (MB/s)

1959.04

bw_mem-bcopy-2mb (MB/s)

1744.59

bw_mem-bcopy-4mb (MB/s)

1779.62

bw_mem-bcopy-8mb (MB/s)

1787.31

bw_mem-bzero-16mb (MB/s)

7770.76

bw_mem-bzero-1mb (MB/s)

4874.90 (min 1959.04, max 7790.76)

bw_mem-bzero-2mb (MB/s)

4757.16 (min 1744.59, max 7769.73)

bw_mem-bzero-4mb (MB/s)

4782.93 (min 1779.62, max 7786.23)

bw_mem-bzero-8mb (MB/s)

4784.08 (min 1787.31, max 7780.84)

bw_mem-cp-16mb (MB/s)

885.20

bw_mem-cp-1mb (MB/s)

1201.26 (min 867.60, max 1534.92)

bw_mem-cp-2mb (MB/s)

1122.32 (min 902.80, max 1341.83)

bw_mem-cp-4mb (MB/s)

1146.19 (min 905.90, max 1386.48)

bw_mem-cp-8mb (MB/s)

1213.68 (min 931.75, max 1495.61)

bw_mem-fcp-16mb (MB/s)

1685.45

bw_mem-fcp-1mb (MB/s)

4723.04 (min 1655.32, max 7790.76)

bw_mem-fcp-2mb (MB/s)

4677.51 (min 1585.29, max 7769.73)

bw_mem-fcp-4mb (MB/s)

4723.91 (min 1661.59, max 7786.23)

bw_mem-fcp-8mb (MB/s)

4722.72 (min 1664.59, max 7780.84)

bw_mem-frd-16mb (MB/s)

1815.91

bw_mem-frd-1mb (MB/s)

1792.41 (min 1655.32, max 1929.49)

bw_mem-frd-2mb (MB/s)

1682.33 (min 1585.29, max 1779.36)

bw_mem-frd-4mb (MB/s)

1731.70 (min 1661.59, max 1801.80)

bw_mem-frd-8mb (MB/s)

1737.79 (min 1664.59, max 1810.98)

bw_mem-fwr-16mb (MB/s)

1583.69

bw_mem-fwr-1mb (MB/s)

1732.21 (min 1534.92, max 1929.49)

bw_mem-fwr-2mb (MB/s)

1560.60 (min 1341.83, max 1779.36)

bw_mem-fwr-4mb (MB/s)

1594.14 (min 1386.48, max 1801.80)

bw_mem-fwr-8mb (MB/s)

1653.30 (min 1495.61, max 1810.98)

bw_mem-rd-16mb (MB/s)

1895.29

bw_mem-rd-1mb (MB/s)

1925.26 (min 1738.79, max 2111.73)

bw_mem-rd-2mb (MB/s)

1741.56 (min 1621.27, max 1861.85)

bw_mem-rd-4mb (MB/s)

1799.96 (min 1708.67, max 1891.25)

bw_mem-rd-8mb (MB/s)

1828.23 (min 1765.42, max 1891.03)

bw_mem-rdwr-16mb (MB/s)

1817.98

bw_mem-rdwr-1mb (MB/s)

1303.97 (min 867.60, max 1740.34)

bw_mem-rdwr-2mb (MB/s)

1202.94 (min 902.80, max 1503.08)

bw_mem-rdwr-4mb (MB/s)

1284.03 (min 905.90, max 1662.16)

bw_mem-rdwr-8mb (MB/s)

1343.07 (min 931.75, max 1754.39)

bw_mem-wr-16mb (MB/s)

1817.77

bw_mem-wr-1mb (MB/s)

1739.57 (min 1738.79, max 1740.34)

bw_mem-wr-2mb (MB/s)

1562.18 (min 1503.08, max 1621.27)

bw_mem-wr-4mb (MB/s)

1685.42 (min 1662.16, max 1708.67)

bw_mem-wr-8mb (MB/s)

1759.91 (min 1754.39, max 1765.42)

bw_mmap_rd-mo-1mb (MB/s)

2053.00

bw_mmap_rd-o2c-1mb (MB/s)

704.85

bw_pipe (MB/s)

710.33

bw_unix (MB/s)

1127.14

lat_connect (us)

52.89

lat_ctx-2-128k (us)

4.79

lat_ctx-2-256k (us)

5.25

lat_ctx-4-128k (us)

4.50

lat_ctx-4-256k (us)

2.95

lat_fs-0k (num_files)

305.00

lat_fs-10k (num_files)

115.00

lat_fs-1k (num_files)

176.00

lat_fs-4k (num_files)

198.00

lat_mem_rd-stride128-sz1000k (ns)

31.81

lat_mem_rd-stride128-sz125k (ns)

5.57

lat_mem_rd-stride128-sz250k (ns)

5.83

lat_mem_rd-stride128-sz31k (ns)

2.16

lat_mem_rd-stride128-sz50 (ns)

2.15

lat_mem_rd-stride128-sz500k (ns)

12.35

lat_mem_rd-stride128-sz62k (ns)

5.28

lat_mmap-1m (us)

55.00

lat_ops-double-add (ns)

2.86

lat_ops-double-div (ns)

15.73

lat_ops-double-mul (ns)

2.86

lat_ops-float-add (ns)

2.86

lat_ops-float-div (ns)

9.30

lat_ops-float-mul (ns)

2.86

lat_ops-int-add (ns)

0.72

lat_ops-int-bit (ns)

0.48

lat_ops-int-div (ns)

4.29

lat_ops-int-mod (ns)

4.53

lat_ops-int-mul (ns)

3.07

lat_ops-int64-add (ns)

0.72

lat_ops-int64-bit (ns)

0.48

lat_ops-int64-div (ns)

6.79

lat_ops-int64-mod (ns)

5.24

lat_ops-int64-mul (ns)

3.56

lat_pagefault (us)

1.30

lat_pipe (us)

19.91

lat_proc-exec (us)

743.86

lat_proc-fork (us)

582.60

lat_proc-proccall (us)

0.01

lat_select (us)

32.67

lat_sem (us)

1.57

lat_sig-catch (us)

5.44

lat_sig-install (us)

0.65

lat_sig-prot (us)

0.56

lat_syscall-fstat (us)

2.42

lat_syscall-null (us)

0.46

lat_syscall-open (us)

158.71

lat_syscall-read (us)

0.74

lat_syscall-stat (us)

3.41

lat_syscall-write (us)

0.65

lat_tcp (us)

0.91

lat_unix (us)

23.62

latency_for_0.50_mb_block_size (nanosec)

12.35

latency_for_1.00_mb_block_size (nanosec)

15.90 (min 0.00, max 31.81)

pipe_bandwidth (MBs)

710.33

pipe_latency (microsec)

19.91

procedure_call (microsec)

0.01

select_on_200_tcp_fds (microsec)

32.67

semaphore_latency (microsec)

1.57

signal_handler_latency (microsec)

0.65

signal_handler_overhead (microsec)

5.44

tcp_ip_connection_cost_to_localhost (microsec)

52.89

tcp_latency_using_localhost (microsec)

0.91

Table: LM Bench Metrics

2.4.2.1.2. Dhrystone

Dhrystone is a core only benchmark that runs from warm L1 caches in all modern processors. It scales linearly with clock speed. For standard ARM cores the DMIPS/MHz score will be identical with the same compiler and flags.

Execute the benchmark with the following:

runDhrystone

Benchmarks

am62pxx_sk-fs: perf

cpu_clock (MHz)

1400.00

dhrystone_per_mhz (DMIPS/MHz)

3.00

dhrystone_per_second (DhrystoneP)

7407407.50

Table: Dhrystone Benchmark

2.4.2.1.3. Whetstone

Whetstone is a benchmark primarily measuring floating-point arithmetic performance.

Execute the benchmark with the following:

runWhetstone

Benchmarks

am62pxx_sk-fs: perf

whetstone (MIPS)

5000.00

Table: Whetstone Benchmark

2.4.2.1.4. Linpack

Linpack measures peak double precision (64 bit) floating point performance in solving a dense linear system.

Benchmarks

am62pxx_sk-fs: perf

linpack (Kflops)

578928.00

Table: Linpack Benchmark

2.4.2.1.5. NBench

NBench which stands for Native Benchmark is used to measure macro benchmarks for commonly used operations such as sorting and analysis algorithms. More information about NBench at https://en.wikipedia.org/wiki/NBench and https://nbench.io/articles/index.html

Benchmarks

am62pxx_sk-fs: perf

assignment (Iterations)

13.93

fourier (Iterations)

22638.00

fp_emulation (Iterations)

92.30

huffman (Iterations)

1169.30

idea (Iterations)

3444.90

lu_decomposition (Iterations)

538.17

neural_net (Iterations)

8.82

numeric_sort (Iterations)

598.37

string_sort (Iterations)

164.96

Table: NBench Benchmarks

2.4.2.1.6. Stream

STREAM is a microbenchmark for measuring data memory system performance without any data reuse. It is designed to miss on caches and exercise data prefetcher and speculative accesses. It uses double precision floating point (64bit) but in most modern processors the memory access will be the bottleneck. The four individual scores are copy, scale as in multiply by constant, add two numbers, and triad for multiply accumulate. For bandwidth, a byte read counts as one and a byte written counts as one, resulting in a score that is double the bandwidth LMBench will show.

Execute the benchmark with the following:

stream_c

Benchmarks

am62pxx_sk-fs: perf

add (MB/s)

2533.40

copy (MB/s)

3668.10

scale (MB/s)

3375.50

triad (MB/s)

2330.40

Table: Stream

2.4.2.1.7. CoreMarkPro

CoreMark®-Pro is a comprehensive, advanced processor benchmark that works with and enhances the market-proven industry-standard EEMBC CoreMark® benchmark. While CoreMark stresses the CPU pipeline, CoreMark-Pro tests the entire processor, adding comprehensive support for multicore technology, a combination of integer and floating-point workloads, and data sets for utilizing larger memory subsystems.

Benchmarks

am62pxx_sk-fs: perf

cjpeg-rose7-preset (workloads/)

41.84

core (workloads/)

0.30

coremark-pro ()

942.75

linear_alg-mid-100x100-sp (workloads/)

14.69

loops-all-mid-10k-sp (workloads/)

0.71

nnet_test (workloads/)

1.09

parser-125k (workloads/)

8.77

radix2-big-64k (workloads/)

75.31

sha-test (workloads/)

81.30

zip-test (workloads/)

21.74

Table: CoreMarkPro

2.4.2.1.8. MultiBench

MultiBench™ is a suite of benchmarks that allows processor and system designers to analyze, test, and improve multicore processors. It uses three forms of concurrency: Data decomposition: multiple threads cooperating on achieving a unified goal and demonstrating a processor’s support for fine grain parallelism. Processing multiple data streams: uses common code running over multiple threads and demonstrating how well a processor scales over scalable data inputs. Multiple workload processing: shows the scalability of general-purpose processing, demonstrating concurrency over both code and data. MultiBench combines a wide variety of application-specific workloads with the EEMBC Multi-Instance-Test Harness (MITH), compatible and portable with most any multicore processors and operating systems. MITH uses a thread-based API (POSIX-compliant) to establish a common programming model that communicates with the benchmark through an abstraction layer and provides a flexible interface to allow a wide variety of thread-enabled workloads to be tested.

Benchmarks

am62pxx_sk-fs: perf

4m-check (workloads/)

411.25

4m-check-reassembly (workloads/)

122.70

4m-check-reassembly-tcp (workloads/)

59.95

4m-check-reassembly-tcp-cmykw2-rotatew2 (workloads/)

32.88

4m-check-reassembly-tcp-x264w2 (workloads/)

1.96

4m-cmykw2 (workloads/)

244.80

4m-cmykw2-rotatew2 (workloads/)

49.79

4m-reassembly (workloads/)

87.26

4m-rotatew2 (workloads/)

53.28

4m-tcp-mixed (workloads/)

119.40

4m-x264w2 (workloads/)

1.99

idct-4m (workloads/)

19.20

idct-4mw1 (workloads/)

19.21

ippktcheck-4m (workloads/)

408.90

ippktcheck-4mw1 (workloads/)

409.50

ipres-4m (workloads/)

109.97

ipres-4mw1 (workloads/)

108.62

md5-4m (workloads/)

28.82

md5-4mw1 (workloads/)

29.20

rgbcmyk-4m (workloads/)

65.85

rgbcmyk-4mw1 (workloads/)

65.90

rotate-4ms1 (workloads/)

23.39

rotate-4ms1w1 (workloads/)

23.36

rotate-4ms64 (workloads/)

23.56

rotate-4ms64w1 (workloads/)

23.58

x264-4mq (workloads/)

0.58

x264-4mqw1 (workloads/)

0.58

Table: Multibench


2.4.2.2. Boot-time Measurement

2.4.2.2.1. Boot media: MMCSD

Boot Configuration

am62pxx_sk-fs: boot time (sec)

Kernel boot time test when bootloader, kernel and sdk-rootfs are in mmc-sd

27.62 (min 23.09, max 33.56)

Kernel boot time test when init is /bin/sh and bootloader, kernel and sdk-rootfs are in mmc-sd

7.01 (min 6.96, max 7.21)

Table: Boot time MMC/SD


2.4.2.3. Graphics SGX/RGX Driver

2.4.2.3.1. Glmark2

Run Glmark2 and capture performance reported (Score). All display outputs (HDMI, Displayport and/or LCD) are connected when running these tests

Benchmark

am62pxx_sk-fs: Score

Glmark2-DRM

57.00

Glmark2-Wayland

860.00

Table: Glmark2


2.4.2.4. Ethernet

Ethernet performance benchmarks were measured using Netperf 2.7.1 https://hewlettpackard.github.io/netperf/doc/netperf.html Test procedures were modeled after those defined in RFC-2544: https://tools.ietf.org/html/rfc2544, where the DUT is the TI device and the “tester” used was a Linux PC. To produce consistent results, it is recommended to carry out performance tests in a private network and to avoid running NFS on the same interface used in the test. In these results, CPU utilization was captured as the total percentage used across all cores on the device, while running the performance test over one external interface.

UDP Throughput (0% loss) was measured by the procedure defined in RFC-2544 section 26.1: Throughput. In this scenario, netperf options burst_size (-b) and wait_time (-w) are used to limit bandwidth during different trials of the test, with the goal of finding the highest rate at which no loss is seen. For example, to limit bandwidth to 500Mbits/sec with 1472B datagram:

burst_size = <bandwidth (bits/sec)> / 8 (bits -> bytes) / <UDP datagram size> / 100 (seconds -> 10 ms)
burst_size = 500000000 / 8 / 1472 / 100 = 425

wait_time = 10 milliseconds (minimum supported by Linux PC used for testing)

UDP Throughput (possible loss) was measured by capturing throughput and packet loss statistics when running the netperf test with no bandwidth limit (remove -b/-w options).

In order to start a netperf client on one device, the other device must have netserver running. To start netserver:

netserver [-p <port_number>] [-4 (IPv4 addressing)] [-6 (IPv6 addressing)]

Running the following shell script from the DUT will trigger netperf clients to measure bidirectional TCP performance for 60 seconds and report CPU utilization. Parameter -k is used in client commands to summarize selected statistics on their own line and -j is used to gain additional timing measurements during the test.

#!/bin/bash
for i in 1
do
   netperf -H <tester ip> -j -c -l 60 -t TCP_STREAM --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &

   netperf -H <tester ip> -j -c -l 60 -t TCP_MAERTS --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &
done

Running the following commands will trigger netperf clients to measure UDP burst performance for 60 seconds at various burst/datagram sizes and report CPU utilization.

  • For UDP egress tests, run netperf client from DUT and start netserver on tester.

netperf -H <tester ip> -j -c -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE
  • For UDP ingress tests, run netperf client from tester and start netserver on DUT.

netperf -H <DUT ip> -j -C -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE

2.4.2.4.1. CPSW/CPSW2g/CPSW3g Ethernet Driver

  • CPSW3g: AM64x, AM62x, AM62ax, AM62px

TCP Bidirectional Throughput

Command Used

am62pxx_sk-fs: THROUGHPUT (Mbits/sec)

am62pxx_sk-fs: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

1854.95

61.02

Table: CPSW TCP Bidirectional Throughput

TCP Bidirectional Throughput Interrupt Pacing

Command Used

am62pxx_sk-fs: THROUGHPUT (Mbits/sec)

am62pxx_sk-fs: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

1714.22

40.62

Table: CPSW TCP Bidirectional Throughput Interrupt Pacing


2.4.2.5. OSPI Flash Driver

2.4.2.5.1. AM62PXX-SK

2.4.2.5.1.1. UBIFS

Buffer size (bytes)

am62pxx_sk-fs: Write UBIFS Throughput (Mbytes/sec)

am62pxx_sk-fs: Write UBIFS CPU Load (%)

am62pxx_sk-fs: Read UBIFS Throughput (Mbytes/sec)

am62pxx_sk-fs: Read UBIFS CPU Load (%)

102400

0.18 (min 0.13, max 0.28)

12.59 (min 12.42, max 12.78)

29.18

7.14

262144

0.14 (min 0.11, max 0.18)

12.72 (min 11.06, max 14.17)

29.07

3.57

524288

0.14 (min 0.11, max 0.18)

12.32 (min 11.51, max 13.28)

28.81

6.90

1048576

0.14 (min 0.11, max 0.19)

12.37 (min 10.79, max 13.74)

28.56

10.00

2.4.2.5.1.2. RAW

File size (Mbytes)

am62pxx_sk-fs: Raw Read Throughput (Mbytes/sec)

50

37.88


2.4.2.6. UBoot QSPI/OSPI Driver

2.4.2.6.1. AM62PXX-SK

File size (bytes in hex)

am62pxx_sk-fs: Write Throughput (Kbytes/sec)

am62pxx_sk-fs: Read Throughput (Kbytes/sec)

400000

386.27

37577.98

800000

387.40

39009.52

1000000

389.39

39574.88

2000000

383.01

40009.77


2.4.2.7. EMMC Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

2.4.2.7.1. AM62PXX-SK

Buffer size (bytes)

am62pxx_sk-fs: Write EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Write EXT4 CPU Load (%)

am62pxx_sk-fs: Read EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Read EXT4 CPU Load (%)

1m

90.10

1.33

285.00

2.16

4m

96.00

1.05

285.00

2.18

4k

79.30

27.44

92.90

25.35

256k

90.30

1.72

285.00

3.11


2.4.2.8. UBoot EMMC Driver

2.4.2.8.1. AM62PXX-SK

File size (bytes in hex)

am62pxx_sk-fs: Write Throughput (Kbytes/sec)

am62pxx_sk-fs: Read Throughput (Kbytes/sec)

2000000

98698.80

230760.56

4000000

96518.41

278876.60


2.4.2.9. MMC/SD Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

2.4.2.9.1. AM62PXX-SK

Buffer size (bytes)

am62pxx_sk-fs: Write EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Write EXT4 CPU Load (%)

am62pxx_sk-fs: Read EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Read EXT4 CPU Load (%)

1m

12.70

0.42

91.40

1.01

4m

15.10

0.42

91.50

0.91

4k

5.19

2.36

17.10

5.02

256k

12.70

0.50

91.90

1.21

The performance numbers were captured using the following:

  • SanDisk 8GB MicroSDHC Class 10 Memory Card

  • Partition was mounted with async option


2.4.2.10. USB Driver

2.4.2.10.1. USB Device Controller

Number of Blocks

am62pxx_sk-fs: Throughput (MB/sec)

150

44.00

Table: USBDEVICE HIGHSPEED SLAVE READ THROUGHPUT

Number of Blocks

am62pxx_sk-fs: Throughput (MB/sec)

150

38.00

Table: USBDEVICE HIGHSPEED SLAVE WRITE THROUGHPUT


2.4.2.11. CRYPTO Driver

2.4.2.11.1. OpenSSL Performance

Algorithm

Buffer Size (in bytes)

am62pxx_sk-fs: throughput (KBytes/Sec)

aes-128-cbc

1024

26695.34

aes-128-cbc

16

546.44

aes-128-cbc

16384

88451.75

aes-128-cbc

256

8090.11

aes-128-cbc

64

2170.79

aes-128-cbc

8192

76103.68

aes-128-ecb

1024

27254.10

aes-128-ecb

16

559.87

aes-128-ecb

16384

91329.88

aes-128-ecb

256

8285.61

aes-128-ecb

64

2216.41

aes-128-ecb

8192

78525.78

aes-192-cbc

1024

25874.43

aes-192-cbc

16

547.50

aes-192-cbc

16384

79724.54

aes-192-cbc

256

7955.80

aes-192-cbc

64

2152.45

aes-192-cbc

8192

69279.74

aes-192-ecb

1024

26567.00

aes-192-ecb

16

562.49

aes-192-ecb

16384

81597.78

aes-192-ecb

256

8201.05

aes-192-ecb

64

2231.96

aes-192-ecb

8192

70216.36

aes-256-cbc

1024

25366.53

aes-256-cbc

16

549.43

aes-256-cbc

16384

72750.42

aes-256-cbc

256

7966.04

aes-256-cbc

64

2162.73

aes-256-cbc

8192

64252.59

aes-256-ecb

1024

25857.37

aes-256-ecb

16

558.03

aes-256-ecb

16384

74678.27

aes-256-ecb

256

8092.33

aes-256-ecb

64

2202.47

aes-256-ecb

8192

65784.49

sha256

1024

36742.14

sha256

16

619.73

sha256

16384

289609.05

sha256

256

9681.32

sha256

64

2450.20

sha256

8192

197640.19

sha512

1024

25773.74

sha512

16

600.54

sha512

16384

68965.72

sha512

256

8536.58

sha512

64

2398.78

sha512

8192

61936.98

Algorithm

am62pxx_sk-fs: CPU Load

aes-128-cbc

32.00

aes-128-ecb

34.00

aes-192-cbc

32.00

aes-192-ecb

33.00

aes-256-cbc

32.00

aes-256-ecb

33.00

sha256

98.00

sha512

98.00

Listed for each algorithm are the code snippets used to run each benchmark test.

time -v openssl speed -elapsed -evp aes-128-cbc