2.4.2. Linux 10.00 Performance Guide

Read This First

All performance numbers provided in this document are gathered using following Evaluation Modules unless otherwise specified.

Name

Description

AM62Px SK

AM62Px Starter Kit rev E1 with ARM running at 1.4GHz, DDR data rate 3200 MT/S

Table: Evaluation Modules

About This Manual

This document provides performance data for each of the device drivers which are part of the Processor SDK Linux package. This document should be used in conjunction with release notes and user guides provided with the Processor SDK Linux package for information on specific issues present with drivers included in a particular release.

If You Need Assistance

For further information or to report any problems, contact http://e2e.ti.com/ or http://support.ti.com/

2.4.2.1. System Benchmarks

2.4.2.1.1. LMBench

LMBench is a collection of microbenchmarks of which the memory bandwidth and latency related ones are typically used to estimate processor memory system performance. More information about lmbench at http://lmbench.sourceforge.net/whatis_lmbench.html and http://lmbench.sourceforge.net/man/lmbench.8.html

Latency: lat_mem_rd-stride128-szN, where N is equal to or smaller than the cache size at given level measures the cache miss penalty. N that is at least double the size of last level cache is the latency to external memory.

Bandwidth: bw_mem_bcopy-N, where N is equal to or smaller than the cache size at a given level measures the achievable memory bandwidth from software doing a memcpy() type operation. Typical use is for external memory bandwidth calculation. The bandwidth is calculated as byte read and written counts as 1 which should be roughly half of STREAM copy result.

Execute the LMBench with the following:

cd /opt/ltp
./runltp -P j721e-idk-gw -f ddt/lmbench -s LMBENCH_L_PERF_0001
Table 2.1 LMBench Benchmarks

Benchmarks

am62pxx_sk-fs: perf

af_unix_sock_stream_latency (microsec)

25.35

af_unix_socket_stream_bandwidth (MBs)

1257.15

bw_file_rd-io-1mb (MB/s)

1340.26

bw_file_rd-o2c-1mb (MB/s)

792.08

bw_mem-bcopy-16mb (MB/s)

1972.39

bw_mem-bcopy-1mb (MB/s)

2141.74

bw_mem-bcopy-2mb (MB/s)

1789.55

bw_mem-bcopy-4mb (MB/s)

1689.43

bw_mem-bcopy-8mb (MB/s)

1703.76

bw_mem-bzero-16mb (MB/s)

8109.48

bw_mem-bzero-1mb (MB/s)

5128.58 (min 2141.74, max 8115.42)

bw_mem-bzero-2mb (MB/s)

4951.93 (min 1789.55, max 8114.31)

bw_mem-bzero-4mb (MB/s)

4900.83 (min 1689.43, max 8112.22)

bw_mem-bzero-8mb (MB/s)

4906.62 (min 1703.76, max 8109.48)

bw_mem-cp-16mb (MB/s)

980.63

bw_mem-cp-1mb (MB/s)

4667.98 (min 963.86, max 8372.09)

bw_mem-cp-2mb (MB/s)

4618.37 (min 976.72, max 8260.01)

bw_mem-cp-4mb (MB/s)

4589.77 (min 1007.94, max 8171.60)

bw_mem-cp-8mb (MB/s)

4585.55 (min 1027.22, max 8143.88)

bw_mem-fcp-16mb (MB/s)

1841.20

bw_mem-fcp-1mb (MB/s)

4979.88 (min 1844.34, max 8115.42)

bw_mem-fcp-2mb (MB/s)

4932.81 (min 1751.31, max 8114.31)

bw_mem-fcp-4mb (MB/s)

4950.97 (min 1789.71, max 8112.22)

bw_mem-fcp-8mb (MB/s)

4967.46 (min 1825.44, max 8109.48)

bw_mem-frd-16mb (MB/s)

2015.37

bw_mem-frd-1mb (MB/s)

1949.44 (min 1844.34, max 2054.54)

bw_mem-frd-2mb (MB/s)

1801.58 (min 1751.31, max 1851.85)

bw_mem-frd-4mb (MB/s)

1887.41 (min 1789.71, max 1985.11)

bw_mem-frd-8mb (MB/s)

1909.11 (min 1825.44, max 1992.78)

bw_mem-fwr-16mb (MB/s)

8127.33

bw_mem-fwr-1mb (MB/s)

5213.32 (min 2054.54, max 8372.09)

bw_mem-fwr-2mb (MB/s)

5055.93 (min 1851.85, max 8260.01)

bw_mem-fwr-4mb (MB/s)

5078.36 (min 1985.11, max 8171.60)

bw_mem-fwr-8mb (MB/s)

5068.33 (min 1992.78, max 8143.88)

bw_mem-rd-16mb (MB/s)

2065.32

bw_mem-rd-1mb (MB/s)

2133.24 (min 1956.60, max 2309.88)

bw_mem-rd-2mb (MB/s)

1910.09 (min 1769.60, max 2050.58)

bw_mem-rd-4mb (MB/s)

1968.89 (min 1872.37, max 2065.40)

bw_mem-rd-8mb (MB/s)

1992.38 (min 1915.71, max 2069.05)

bw_mem-rdwr-16mb (MB/s)

1992.78

bw_mem-rdwr-1mb (MB/s)

1423.73 (min 963.86, max 1883.59)

bw_mem-rdwr-2mb (MB/s)

1354.61 (min 976.72, max 1732.50)

bw_mem-rdwr-4mb (MB/s)

1438.84 (min 1007.94, max 1869.74)

bw_mem-rdwr-8mb (MB/s)

1480.03 (min 1027.22, max 1932.83)

bw_mem-wr-16mb (MB/s)

1968.75

bw_mem-wr-1mb (MB/s)

1920.10 (min 1883.59, max 1956.60)

bw_mem-wr-2mb (MB/s)

1751.05 (min 1732.50, max 1769.60)

bw_mem-wr-4mb (MB/s)

1871.06 (min 1869.74, max 1872.37)

bw_mem-wr-8mb (MB/s)

1924.27 (min 1915.71, max 1932.83)

bw_mmap_rd-mo-1mb (MB/s)

2253.81

bw_mmap_rd-o2c-1mb (MB/s)

736.11

bw_pipe (MB/s)

813.43

bw_unix (MB/s)

1257.15

lat_connect (us)

50.07

lat_ctx-2-128k (us)

6.47

lat_ctx-2-256k (us)

5.52

lat_ctx-4-128k (us)

5.96

lat_ctx-4-256k (us)

2.79

lat_fs-0k (num_files)

313.00

lat_fs-10k (num_files)

139.00

lat_fs-1k (num_files)

202.00

lat_fs-4k (num_files)

194.00

lat_mem_rd-stride128-sz1000k (ns)

29.33

lat_mem_rd-stride128-sz125k (ns)

5.57

lat_mem_rd-stride128-sz250k (ns)

5.84

lat_mem_rd-stride128-sz31k (ns)

4.19

lat_mem_rd-stride128-sz50 (ns)

2.15

lat_mem_rd-stride128-sz500k (ns)

11.26

lat_mem_rd-stride128-sz62k (ns)

5.23

lat_mmap-1m (us)

53.00

lat_ops-double-add (ns)

2.86

lat_ops-double-div (ns)

15.73

lat_ops-double-mul (ns)

2.86

lat_ops-float-add (ns)

2.86

lat_ops-float-div (ns)

9.30

lat_ops-float-mul (ns)

2.86

lat_ops-int-add (ns)

0.72

lat_ops-int-bit (ns)

0.48

lat_ops-int-div (ns)

4.29

lat_ops-int-mod (ns)

4.53

lat_ops-int-mul (ns)

3.07

lat_ops-int64-add (ns)

0.72

lat_ops-int64-bit (ns)

0.48

lat_ops-int64-div (ns)

6.80

lat_ops-int64-mod (ns)

5.25

lat_ops-int64-mul (ns)

3.55

lat_pagefault (us)

1.25

lat_pipe (us)

21.96

lat_proc-exec (us)

764.14

lat_proc-fork (us)

593.33

lat_proc-proccall (us)

0.01

lat_select (us)

35.81

lat_sem (us)

1.80

lat_sig-catch (us)

5.29

lat_sig-install (us)

0.65

lat_sig-prot (us)

0.98

lat_syscall-fstat (us)

1.64

lat_syscall-null (us)

0.46

lat_syscall-open (us)

145.68

lat_syscall-read (us)

0.77

lat_syscall-stat (us)

4.16

lat_syscall-write (us)

0.68

lat_tcp (us)

0.94

lat_unix (us)

25.35

latency_for_0.50_mb_block_size (nanosec)

11.26

latency_for_1.00_mb_block_size (nanosec)

14.66 (min 0.00, max 29.33)

pipe_bandwidth (MBs)

813.43

pipe_latency (microsec)

21.96

procedure_call (microsec)

0.01

select_on_200_tcp_fds (microsec)

35.81

semaphore_latency (microsec)

1.80

signal_handler_latency (microsec)

0.65

signal_handler_overhead (microsec)

5.29

tcp_ip_connection_cost_to_localhost (microsec)

50.07

tcp_latency_using_localhost (microsec)

0.94

2.4.2.1.2. Dhrystone

Dhrystone is a core only benchmark that runs from warm L1 caches in all modern processors. It scales linearly with clock speed.

Please take note, different run may produce different slightly results. This is advised to run this test multiple times in order to get maximum performance numbers.

Execute the benchmark with the following:

runDhrystone
Table 2.2 Dhrystone Benchmarks

Benchmarks

am62pxx_sk-fs: perf

cpu_clock (MHz)

1400.00

dhrystone_per_mhz (DMIPS/MHz)

2.90

dhrystone_per_second (DhrystoneP)

7142857.00

2.4.2.1.3. Whetstone

Whetstone is a benchmark primarily measuring floating-point arithmetic performance.

Execute the benchmark with the following:

runWhetstone
Table 2.3 Whetstone Benchmarks

Benchmarks

am62pxx_sk-fs: perf

whetstone (MIPS)

5000.00

2.4.2.1.4. Linpack

Linpack measures peak double precision (64 bit) floating point performance in solving a dense linear system.

Table 2.4 Linpack Benchmarks

Benchmarks

am62pxx_sk-fs: perf

linpack (Kflops)

577128.00

2.4.2.1.5. NBench

NBench which stands for Native Benchmark is used to measure macro benchmarks for commonly used operations such as sorting and analysis algorithms. More information about NBench at https://en.wikipedia.org/wiki/NBench and https://nbench.io/articles/index.html

Table 2.5 NBench Benchmarks

Benchmarks

am62pxx_sk-fs: perf

assignment (Iterations)

14.47

fourier (Iterations)

22833.00

fp_emulation (Iterations)

215.65

huffman (Iterations)

1183.60

idea (Iterations)

3444.70

lu_decomposition (Iterations)

526.69

neural_net (Iterations)

8.66

numeric_sort (Iterations)

616.00

string_sort (Iterations)

163.93

2.4.2.1.6. Stream

STREAM is a microbenchmark for measuring data memory system performance without any data reuse. It is designed to miss on caches and exercise data prefetcher and speculative accesses. It uses double precision floating point (64bit) but in most modern processors the memory access will be the bottleneck. The four individual scores are copy, scale as in multiply by constant, add two numbers, and triad for multiply accumulate. For bandwidth, a byte read counts as one and a byte written counts as one, resulting in a score that is double the bandwidth LMBench will show.

Execute the benchmark with the following:

stream_c
Table 2.6 Stream Benchmarks

Benchmarks

am62pxx_sk-fs: perf

add (MB/s)

2891.10

copy (MB/s)

4048.10

scale (MB/s)

3716.50

triad (MB/s)

2541.40

2.4.2.1.7. CoreMarkPro

CoreMark®-Pro is a comprehensive, advanced processor benchmark that works with and enhances the market-proven industry-standard EEMBC CoreMark® benchmark. While CoreMark stresses the CPU pipeline, CoreMark-Pro tests the entire processor, adding comprehensive support for multicore technology, a combination of integer and floating-point workloads, and data sets for utilizing larger memory subsystems.

Table 2.7 CoreMarkPro Benchmarks

Benchmarks

am62pxx_sk-fs: perf

cjpeg-rose7-preset (workloads/)

42.02

core (workloads/)

0.30

coremark-pro ()

944.14

linear_alg-mid-100x100-sp (workloads/)

14.68

loops-all-mid-10k-sp (workloads/)

0.72

nnet_test (workloads/)

1.09

parser-125k (workloads/)

8.93

radix2-big-64k (workloads/)

71.46

sha-test (workloads/)

81.97

zip-test (workloads/)

22.22

Table 2.8 CoreMarkProTwoCore Benchmarks

Benchmarks

am62pxx_sk-fs: perf

cjpeg-rose7-preset (workloads/)

83.33

core (workloads/)

0.60

coremark-pro ()

1691.80

linear_alg-mid-100x100-sp (workloads/)

29.34

loops-all-mid-10k-sp (workloads/)

1.32

nnet_test (workloads/)

2.17

parser-125k (workloads/)

14.71

radix2-big-64k (workloads/)

72.98

sha-test (workloads/)

163.93

zip-test (workloads/)

43.48

2.4.2.1.8. MultiBench

MultiBench™ is a suite of benchmarks that allows processor and system designers to analyze, test, and improve multicore processors. It uses three forms of concurrency: Data decomposition: multiple threads cooperating on achieving a unified goal and demonstrating a processor’s support for fine grain parallelism. Processing multiple data streams: uses common code running over multiple threads and demonstrating how well a processor scales over scalable data inputs. Multiple workload processing: shows the scalability of general-purpose processing, demonstrating concurrency over both code and data. MultiBench combines a wide variety of application-specific workloads with the EEMBC Multi-Instance-Test Harness (MITH), compatible and portable with most any multicore processors and operating systems. MITH uses a thread-based API (POSIX-compliant) to establish a common programming model that communicates with the benchmark through an abstraction layer and provides a flexible interface to allow a wide variety of thread-enabled workloads to be tested.

Table 2.9 Multibench Benchmarks

Benchmarks

am62pxx_sk-fs: perf

4m-check (workloads/)

436.61

4m-check-reassembly (workloads/)

127.55

4m-check-reassembly-tcp (workloads/)

61.12

4m-check-reassembly-tcp-cmykw2-rotatew2 (workloads/)

33.80

4m-check-reassembly-tcp-x264w2 (workloads/)

1.93

4m-cmykw2 (workloads/)

243.61

4m-cmykw2-rotatew2 (workloads/)

51.37

4m-reassembly (workloads/)

86.88

4m-rotatew2 (workloads/)

53.97

4m-tcp-mixed (workloads/)

118.52

4m-x264w2 (workloads/)

1.95

idct-4m (workloads/)

19.30

idct-4mw1 (workloads/)

19.30

ippktcheck-4m (workloads/)

435.46

ippktcheck-4mw1 (workloads/)

436.45

ipres-4m (workloads/)

116.28

ipres-4mw1 (workloads/)

116.55

md5-4m (workloads/)

29.34

md5-4mw1 (workloads/)

29.42

rgbcmyk-4m (workloads/)

62.93

rgbcmyk-4mw1 (workloads/)

62.81

rotate-4ms1 (workloads/)

24.17

rotate-4ms1w1 (workloads/)

24.08

rotate-4ms64 (workloads/)

24.47

rotate-4ms64w1 (workloads/)

24.41

x264-4mq (workloads/)

0.58

x264-4mqw1 (workloads/)

0.58


2.4.2.2. Boot-time Measurement

2.4.2.2.1. Boot media: MMCSD

Table 2.10 Boot time MMCSD

Boot Configuration

am62pxx_sk-fs: boot time (sec)

Kernel boot time test when bootloader, kernel and sdk-rootfs are in mmc-sd

14.46 (min 14.10, max 14.85)

Kernel boot time test when init is /bin/sh and bootloader, kernel and sdk-rootfs are in mmc-sd

4.43 (min 4.38, max 4.48)

kernel boot time test when bootloader, kernel and sdk-rootfs are in mmc-sd

16.23 (min 16.08, max 16.43)


2.4.2.3. ALSA SoC Audio Driver

  1. Access type - RW_INTERLEAVED

  2. Channels - 2

  3. Format - S16_LE

  4. Period size - 64

Table 2.11 Audio Capture

Sampling Rate (Hz)

am62pxx_sk-fs: Throughput (bits/sec)

am62pxx_sk-fs: CPU Load (%)

8000

255997.00

0.09

11025

352797.00

0.14

16000

511997.00

0.09

22050

705595.00

0.25

24000

705593.00

0.23

32000

1023988.00

0.51

44100

1411184.00

0.41

48000

1535984.00

0.84

88200

2822368.00

0.74

96000

3071965.00

1.72


2.4.2.4. Graphics SGX/RGX Driver

2.4.2.4.1. GFXBench

Run GFXBench and capture performance reported (Score and Display rate in fps). All display outputs (HDMI, Displayport and/or LCD) are connected when running these tests

Table 2.12 GFXBench Performance

Benchmark

am62pxx_sk-fs: Score

am62pxx_sk-fs: Fps

GFXBench 3.x gl_manhattan_off

918.13

14.81

GFXBench 3.x gl_trex_off

1590.73

28.41

GFXBench 4.x gl_4_off

263.52

4.46

GFXBench 5.x gl_5_high_off

113.87

1.77

2.4.2.4.2. Glmark2

Run Glmark2 and capture performance reported (Score). All display outputs (HDMI, Displayport and/or LCD) are connected when running these tests

Table 2.13 Glmark2 Performance

Benchmark

am62pxx_sk-fs: Score

Glmark2-DRM

309.00

Glmark2-Wayland

794.00


2.4.2.5. Ethernet

Ethernet performance benchmarks were measured using Netperf 2.7.1 https://hewlettpackard.github.io/netperf/doc/netperf.html Test procedures were modeled after those defined in RFC-2544: https://tools.ietf.org/html/rfc2544, where the DUT is the TI device and the “tester” used was a Linux PC. To produce consistent results, it is recommended to carry out performance tests in a private network and to avoid running NFS on the same interface used in the test. In these results, CPU utilization was captured as the total percentage used across all cores on the device, while running the performance test over one external interface.

UDP Throughput (0% loss) was measured by the procedure defined in RFC-2544 section 26.1: Throughput. In this scenario, netperf options burst_size (-b) and wait_time (-w) are used to limit bandwidth during different trials of the test, with the goal of finding the highest rate at which no loss is seen. For example, to limit bandwidth to 500Mbits/sec with 1472B datagram:

burst_size = <bandwidth (bits/sec)> / 8 (bits -> bytes) / <UDP datagram size> / 100 (seconds -> 10 ms)
burst_size = 500000000 / 8 / 1472 / 100 = 425

wait_time = 10 milliseconds (minimum supported by Linux PC used for testing)

UDP Throughput (possible loss) was measured by capturing throughput and packet loss statistics when running the netperf test with no bandwidth limit (remove -b/-w options).

In order to start a netperf client on one device, the other device must have netserver running. To start netserver:

netserver [-p <port_number>] [-4 (IPv4 addressing)] [-6 (IPv6 addressing)]

Running the following shell script from the DUT will trigger netperf clients to measure bidirectional TCP performance for 60 seconds and report CPU utilization. Parameter -k is used in client commands to summarize selected statistics on their own line and -j is used to gain additional timing measurements during the test.

#!/bin/bash
for i in 1
do
   netperf -H <tester ip> -j -c -l 60 -t TCP_STREAM --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &

   netperf -H <tester ip> -j -c -l 60 -t TCP_MAERTS --
      -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE &
done

Running the following commands will trigger netperf clients to measure UDP burst performance for 60 seconds at various burst/datagram sizes and report CPU utilization.

  • For UDP egress tests, run netperf client from DUT and start netserver on tester.

netperf -H <tester ip> -j -c -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE
  • For UDP ingress tests, run netperf client from tester and start netserver on DUT.

netperf -H <DUT ip> -j -C -l 60 -t UDP_STREAM -b <burst_size> -w <wait_time> -- -m <UDP datagram size>
   -k DIRECTION,THROUGHPUT,MEAN_LATENCY,LOCAL_CPU_UTIL,REMOTE_CPU_UTIL,LOCAL_BYTES_SENT,REMOTE_BYTES_RECVD,LOCAL_SEND_SIZE

2.4.2.5.1. CPSW/CPSW2g/CPSW3g Ethernet Driver

  • CPSW3g: AM62px

TCP Bidirectional Throughput

Table 2.14 CPSW2g TCP Bidirectional Throughput

Command Used

am62pxx_sk-fs: THROUGHPUT (Mbits/sec)

am62pxx_sk-fs: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

1772.82

58.57

TCP Bidirectional Throughput Interrupt Pacing

Table 2.15 CPSW2g TCP Bidirectional Throughput Interrupt Pacing

Command Used

am62pxx_sk-fs: THROUGHPUT (Mbits/sec)

am62pxx_sk-fs: CPU Load % (LOCAL_CPU_UTIL)

netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_STREAM; netperf -H 192.168.0.1 -j -c -C -l 60 -t TCP_MAERTS

1854.00

37.39


2.4.2.6. Linux OSPI Flash Driver

2.4.2.6.1. AM62PXX-SK

2.4.2.6.1.1. UBIFS

Table 2.16 OSPI Flash Driver

Buffer size (bytes)

am62pxx_sk-fs: Write UBIFS Throughput (Mbytes/sec)

am62pxx_sk-fs: Write UBIFS CPU Load (%)

am62pxx_sk-fs: Read UBIFS Throughput (Mbytes/sec)

am62pxx_sk-fs: Read UBIFS CPU Load (%)

102400

0.18 (min 0.13, max 0.28)

14.12 (min 13.22, max 14.70)

28.63

6.67

262144

0.16 (min 0.11, max 0.19)

13.98 (min 13.38, max 14.41)

28.56

12.50

524288

0.15 (min 0.11, max 0.19)

12.19 (min 11.31, max 13.62)

28.33

3.45

1048576

0.16 (min 0.11, max 0.19)

13.34 (min 11.79, max 14.39)

28.14

10.00

2.4.2.6.1.2. RAW

Table 2.17 OSPI Raw Flash Driver

File size (Mbytes)

am62pxx_sk-fs: Raw Read Throughput (Mbytes/sec)

50

37.59


2.4.2.7. EMMC Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

2.4.2.7.1. AM62PXX-SK

Table 2.18 EMMC EXT4 FIO 1G

Buffer size (bytes)

am62pxx_sk-fs: Write EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Write EXT4 CPU Load (%)

am62pxx_sk-fs: Read EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Read EXT4 CPU Load (%)

1m

90.20

1.46

285.00

2.24

4m

96.40

1.03

287.00

2.10

4k

78.90

23.50

91.20

19.73

256k

90.30

1.77

288.00

3.76


2.4.2.8. UBoot EMMC Driver

2.4.2.8.1. AM62PXX-SK

Table 2.19 UBOOT EMMC RAW

File size (bytes in hex)

am62pxx_sk-fs: Write Throughput (Kbytes/sec)

am62pxx_sk-fs: Read Throughput (Kbytes/sec)

2000000

97814.93

270809.92

4000000

96518.41

281270.39


2.4.2.9. MMC/SD Driver

Warning

IMPORTANT: The performance numbers can be severely affected if the media is mounted in sync mode. Hot plug scripts in the filesystem mount removable media in sync mode to ensure data integrity. For performance sensitive applications, umount the auto-mounted filesystem and re-mount in async mode.

2.4.2.9.1. AM62PXX-SK

Table 2.20 MMC EXT4 FIO 1G

Buffer size (bytes)

am62pxx_sk-fs: Write EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Write EXT4 CPU Load (%)

am62pxx_sk-fs: Read EXT4 Throughput (Mbytes/sec)

am62pxx_sk-fs: Read EXT4 CPU Load (%)

1m

42.60

0.96

84.90

0.87

4m

42.30

0.70

85.00

0.87

4k

2.82

1.49

13.60

4.19

256k

37.50

1.08

84.10

1.35

The performance numbers were captured using the following:

  • SanDisk 8GB MicroSDHC Class 10 Memory Card

  • Partition was mounted with async option


2.4.2.10. UBoot MMC/SD Driver

2.4.2.10.1. AM62PXX-SK

Table 2.21 UBOOT MMCSD FAT

File size (bytes in hex)

am62pxx_sk-fs: Write Throughput (Kbytes/sec)

am62pxx_sk-fs: Read Throughput (Kbytes/sec)

400000

37236.36

59362.32

800000

45765.36

72495.58

1000000

48617.21

81108.91


2.4.2.11. USB Driver

2.4.2.11.1. USB Device Controller

Table 2.22 USBDEVICE HIGHSPEED SLAVE_READ_THROUGHPUT

Number of Blocks

am62pxx_sk-fs: Throughput (MB/sec)

150

37.60

Table 2.23 USBDEVICE HIGHSPEED SLAVE_WRITE_THROUGHPUT

Number of Blocks

am62pxx_sk-fs: Throughput (MB/sec)

150

32.40


2.4.2.12. CRYPTO Driver

2.4.2.12.1. OpenSSL Performance

Table 2.24 OpenSSL Performance

Algorithm

Buffer Size (in bytes)

am62pxx_sk-fs: throughput (KBytes/Sec)

aes-128-cbc

1024

25761.79

aes-128-cbc

16

468.65

aes-128-cbc

16384

87577.94

aes-128-cbc

256

7765.33

aes-128-cbc

64

2058.18

aes-128-cbc

8192

74989.57

aes-128-ecb

1024

26237.95

aes-128-ecb

16

475.15

aes-128-ecb

16384

90248.53

aes-128-ecb

256

8015.02

aes-128-ecb

64

2108.48

aes-128-ecb

8192

77111.30

aes-192-cbc

1024

25433.43

aes-192-cbc

16

461.86

aes-192-cbc

16384

78566.74

aes-192-cbc

256

7644.25

aes-192-cbc

64

1945.69

aes-192-cbc

8192

68698.11

aes-192-ecb

1024

25913.34

aes-192-ecb

16

474.18

aes-192-ecb

16384

81264.64

aes-192-ecb

256

7905.45

aes-192-ecb

64

2107.88

aes-192-ecb

8192

70653.27

aes-256-cbc

1024

24602.28

aes-256-cbc

16

467.03

aes-256-cbc

16384

71696.38

aes-256-cbc

256

7622.49

aes-256-cbc

64

2066.65

aes-256-cbc

8192

63457.96

aes-256-ecb

1024

25231.70

aes-256-ecb

16

476.09

aes-256-ecb

16384

74011.99

aes-256-ecb

256

7842.39

aes-256-ecb

64

2098.94

aes-256-ecb

8192

65126.40

sha256

1024

34277.72

sha256

16

573.53

sha256

16384

273716.57

sha256

256

8973.06

sha256

64

2288.19

sha256

8192

185611.61

sha512

1024

24480.09

sha512

16

564.82

sha512

16384

67807.91

sha512

256

8025.94

sha512

64

2264.26

sha512

8192

60511.57

Table 2.25 OpenSSL CPU Load

Algorithm

am62pxx_sk-fs: CPU Load

aes-128-cbc

34.00

aes-128-ecb

35.00

aes-192-cbc

33.00

aes-192-ecb

34.00

aes-256-cbc

33.00

aes-256-ecb

34.00

sha256

98.00

sha512

98.00

Listed for each algorithm are the code snippets used to run each

benchmark test.

time -v openssl speed -elapsed -evp aes-128-cbc

2.4.2.13. Low Power Performance

Table: Deep sleep

Rail name

Rail voltage(V)

Power (mW)

vdd_core

0.85

10.06

vddr_core

0.85

0.92

soc_dvdd_3v3

3.30

6.63

soc_dvdd_1v8

1.80

2.78

vdda_1v8

1.80

72.19

vdd_lpddr4/vdd_ddr4

1.10

4.40

Total

96.98

Table: MCU only

Rail name

Rail voltage(V)

Power (mW)

vdd_core

0.85

207.60

vddr_core

0.85

2.46

soc_dvdd_3v3

3.30

6.56

soc_dvdd_1v8

1.80

2.63

vdda_1v8

1.80

80.23

vdd_lpddr4/vdd_ddr4

1.10

4.05

Total

303.53

Partial I/O Data - All voltage rails were measured to be near 0V

Further optimizations are possible for these low power modes. Please refer to the AM62x Power Consumption App Note (https://www.ti.com/lit/pdf/spradg1)