I3 TEXAS
INSTRUMENTS

MSP430® IEC60730 Software Package for F5xx,

FR57xx, G23xx, G24xx, G25xx, G2x44, and G2x55
Devices 1.04.00.05 version

USER’S GUIDE

Copyright © 2015 Texas Instruments Incorporated.

Copyright

Copyright © 2015 Texas Instruments Incorporated. All rights reserved. MSP430 and 430ware are registered trademarks of Texas Instruments. Other
names and brands may be claimed as the property of others.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments I TEXAS

Post Office Box 655303

Dallas, TX 75265 INSTRUMENTS

http://www.ti.com/msp430

Revision Information

This is version 1.04.00.05 of this document, last updated on 2015-02-12,8 : 19 : 04_0600.

2 2015-02-12;8 : 19 : 04_0600

Table of Contents

Table of Contents

Copyright . . e 2
Revision Information e e e e e e e e e e e s 2
1 INtrodUcCtion L e 5
2 API relation to Table H.1 in IEC60730:2010 standard o i i i i it e e e e e e 7
3 Running IEC60730 example Projects o i i i i e 9
3.1 Running IECB0730 example Projects o o e e e e 9
3.2 Generating CRC-CCITT Checksums for examples in CCS i 10
3.3 Generating CRC-CCITT Checksums for examples in IAR e e e e 11
4 Starting a New IEC60730 ProjeCt o v v v vt e 13
4.1 Introduction L 13
4.2 Starting a New [EC60730 project in CCS e e 13
4.3 Starting a New IEC60730 project in IAR L L L e 18
4.4 Location in Memory to Test Program Counter CCS e 22
4.5 Location in Memory to Test Program Counter IAR 23
5 Analog-to-Digital Converter Test i it i i e e e e e 25
5.1 Introduction L e 25
52 Typeoftest 25
5.3 APIFUNCHONS o o e 25
5.4 Programming Example e 26
6 CPURegisters Testt i it it e e e e e e e e e e e e e e e e 29
6.1 INtroduCtion L . e 29
6.2 Type Of teSt e 29
6.3 APIFUNCLONS e 29
6.4 Programming Example 30
7 Clock Fail Test e i i e et e e e e e e e e e e e e e e e 31
7.0 Introduction . . . L L L e 31
7.2 Typeoftest e 31
7.3 APIFUNCHONS o e 31
7.4 Programming Example e 32
7.5 Usingdifferent Timer e 32
8 Non Volatile Memory Test o i it e e e e e e e e e e e e e e e e e e e 33
8.1 INtroduCtion L . e 33
8.2 Typeoftest e 33
8.3 APIFUNCLONS 33
8.4 Programming Example L e 34
9 General Purpose /O Test i i i it i e e e e e e e e e s 35
9.1 Introduction L e e 35
9.2 Typeoftest 35
9.3 APIFUNCHONS . . . o o e e 35
9.4 Programming Example e e e 37
10 Variable Memory Test e e e e e e e e e e e e e e e e e e 39
10.1 Introduction L e e 39
10.2 Type of test e 39
10.3 APIFUNCHONS e e 39
10.4 Programming Example 40
11 Program Counter Register Test o i i i i i e e e e e e e e e e e e e e e e 4
11.1 Introduction L 41
11.2 Type of test e 41
11.3 APILFUNCLIONS o o 41
11.4 Programming Example L L e 42
12 |EC60730 Class B APl executiontimesand Code Size i it i it ittt it it e e 43
12.1 Introduction L e 43
12.2 IEC60730 Class B API Execution Time and Code Size MSP430G2553 CCS 43
12.3 IEC60730 Class B APl Execution Time and Code Size MSP430G2553 IAR i i 44
12.4 IEC60730 Class B API Execution Time and Code Size MSP430F5529 CCS it 45
12.5 IEC60730 Class B APl Execution Time and Code Size MSP430F5529 IAR i 46
12.6 IEC60730 Class B API Execution Time and Code Size MSP430FR5739 CCS 47
12.7 1EC60730 Class B APl Execution Time and Code Size MSP430FR5739 1AR 48
13 Using the MSP430 IEC60730 Software Package ConfigurationTool 51
13.1 IntroduCtion L 51

2015-02-12,8 : 19 : 040600 3

Table of Contents

13.2 Running Configuration Tool e 51
13.3 Launching Configuration Tool from Tl Resource Explorer e e 52
13.4 Generating custom “IEC60730_user_config.h"file e 53
13.5 Generating CRC-CCITT checksum memory file e 54
13.6 Obtaining memory file e 56
13.7 Example obtaining memory file in CCS L L L e 56
13.8 Example obtaining memory file in [AR L e 60
13.9 Loading CRC checksum memory file o 61
IMPORTANT NOTICE i i i i i ittt e e e e e e et e e e e et e e e e e et e e e et e e e e e e 64
4 2015-02-12,8 : 19 : 04-0600

Introduction

1

Introduction

Manufacturers of household appliances must take steps to ensure safe and reliable operation of their products in order
to meet the IEC60730 standard. The IEC60730 standard covers mechanical, electrical, electronic, EMC, and abnormal
operation of AC appliances. Annex H of this standard covers the aspects most relevant to microcontrollers including the
three software classifications defined for automatic electronic controls:

B Class A.- functions such as room thermostats, humidity controls, lighting controls, timers and switches. These are
distinguished by not being relied upon for the safety of the equipment.

B Class B.- functions such as thermal cut-offs are intended to prevent unsafe operation of appliances such as washing
machines, dishwashers, dryers, refrigerators, freezers and cookers/stoves.

B Class C.- functions are intended to prevent special hazards such as explosions. These include automatic burner
controls and thermal cut-outs for closed, unvented water heaters.

These software libraries allow for a variety of system tests required by IEC 60730-1:2010 for up to Class B products. The
software libraries include projects that demonstrate running power-on self-test (POST) and periodic self-test (PST) with
reporting conducted through flashing an LED. The userSs guide demonstrates how to integrate the POST and PST into
an application design. In addition, the software package for IEC 60730 also includes a GUI configuration tool which allows
users to easily generate customized configuration header files.

All the configurations available for the test can be found in “lEC60730_user_config.h" file. The default options for the tests
are:

ENABLED_WDT is enabled

JUMP_TO_FAILSAFE is enabled

MAIN_CLOCK_FREQUENCY is defined at 12 MHz

RAM test is run using March X algorithm in non-destructive mode

PERCENT_FREQUENCY_DRIFT is defined +/-3%

Stack size of 80 Bytes and

MINIMUM_ADC_COUNT_DRIFT and MAXIMUM_ADC_COUNT_DRIFT are defined as -50 and 50, resectively.
CRC_CHECKSUM_LOCATION

» for MSP430G2553: Information memory (0x1004)
» for MSP430F5529: Beginning of Info D section (0x1800)
» for MSP430FR5739: Beginning of Info A section (0x1880)

The examples for MSP430F5529 in this library use API calls from Driverlib which is part of MSP430Ware.

The following tool chains are supported:

B Texas Instruments Code Composer Studio™v5.3 or later;
B |AR Embedded Workbench®v5.51.3 or later ;

2015-02-12,8 : 19 : 040600

Introduction

6 2015-02-12,8 : 19 : 040600

APl relation to Table H.1 in IEC60730:2010 standard

2 API relation to Table H.1 in IEC60730:2010
standard

The table below show the relation of the API provided in MSP430 IEC60730 Software Package and the component that
needs to be tested according to Table H.1 in Annex H of the IEC60730:2010 standard.

Component Test ltem Software Package API

1.1 CPU Registers CPU test API

1.3 PC PC test API

2.0 Interrupt handling and execution Device project example shows
a method to test interrupts
in software

3.0 Clock frequency CLOCK test API

4.1 Memory Testing (Flash\FRAM) CRC test API

4.2 Memory Testing (RAM\FRAM) MARCH test API

4.3 Memory addressing N/A

5.0 Memory (external) Does not apply to MSP430

5.2 Memory Addressing (external) Does not apply to MSP430

6.0 Communication N/A

6.3 Timing of communication N/A

7.0 Input/output periphery GPIO test APIs

7.21 A/D tests ADC test API

7.2.2 Analog multiplexer N/A

9.0 Custom chip Does not apply to MSP430

Certain tests are not relevant to MCUs because the function is implemented by another chip external to the MCU — usually
memory of a custom chip.

2015-02-12,8 : 19 : 040600 7

APl relation to Table H.1 in IEC60730:2010 standard

8 2015-02-12,8 : 19 : 040600

Running IEC60730 example projects

3 Running IEC60730 example projects

Running IECB0730 eXamPIE PrOJECESttt ettt et e et ettt e e e e 9
Generating CRC-CCITT Checksums for examples in CCS 10 Generating CRC-CCITT Checksums for
EXAMPIES N LA R L 11

3.1 Running IEC60730 example projects

The example projects included in this library will run all available tests in addition to the interrupt test which is included in the
example project. The example projects will toggle different pins depending on the result of each test. The table below shows
the number of times the FAILURE pin will toggle to indicate which test failed. If none of the tests failed, the SUCCESS pin
will remain set.

The example projects contain two functions calls that are not included in the software package. The two function calls
are IEC60730_FAIL_SAFE_failSafe and IEC60730_INTERRUPT_TEST _testInterrupt. IEC60730_FAIL_SAFE_failSafe is a
user defined function which needs to ensure that the application shuts downs gracefully. The purpose of defining this function
was to show how the JUMP_TO_FAILSAFE macro can be use during the development phase of the application. In the ex-
ample projects IEC60730_FAIL_SAFE_failSafe only reports the type of failure. IEC60730_INTERRUPT_TEST _testInterrupt
is also a user defined function which shows how each interrupt in the device can be triggered by software and verified that
the interrupt jumped to the correct Interrupt Service Routine (ISR).

Failure Detected Number of Toggles
CPU test failure 1

PC test failure
OSCILLATOR test failure
MARCH test failure

CRC test failure
INTERRUPT test failure
ADC test failure

GPIO INPUT test failure
GPIO OUTPUT test failure

O|0O| N| O O] AW N

Each example project uses different pin configuration to display SUCCESS or FAILURE status of each test. The table below
shows the pin configuration for each project. The table also shows the preferred development kit to run the examples.

Example Project Name SUCCESS Pin FAILURE Pin Preferred Dev Kit
IEC60730_msp43092553 P1.6 P1.0 MSP430-EXP430G2
_example
IEC60730_msp430f5529 P8.2 P1.0 MSP-EXP430F5529
_example
IEC60730_msp430fr5739 P3.6 P3.7 MSP-EXP430FR5739
_example

Note:

It is not required to run the example project on the development kit specified in the table. However, it will help visualize
the SUCCESS and FAILURE sequences since the configured pins have an LED connected to the selected pins of the
development kits.

IMPORTANT: Before running the examples make sure:

B ACLK is sourced by a 32768 KHz external crystal
B The input pins are set to the expected logic level
» For IEC60730_msp430f5529_example
= P3.7 must be set high
B FOR CCS EXAMPLES ONLYCRC checksums are loaded to the expected INFO memory address of of the device. To
generate the crc checksums file please refer to Generating CRC-CCITT Checksums for examples in CCS
+ IEC60730_msp430g2553_example
= Address 0x1004
» IEC60730_msp430f5529_example
« Expected CRC checksum location for Bank A: 0x1800

2015-02-12,8 : 19 : 040600 9

http://www.ti.com/tool/msp-exp430g2
http://www.ti.com/tool/msp-exp430f5529
http://www.ti.com/tool/msp-exp430fr5739

Running IEC60730 example projects

« Expected CRC checksum location for Bank B: 0x1802

= Expected CRC checksum location for Bank C: 0x1804

« Expected CRC checksum location for Bank D: 0x1806
» |[EC60730_msp430fr5739_example

» Address 0x1880

3.2 Generating CRC-CCITT Checksums for examples in
CCS

The following steps show how to obtain the CRC-CCITT checksums for the non-volatile memory monitored in the example
projects.

1. After importing the project to CCS and connecting the hardware to your computer. Click on the example project and

then go to Run->Debug.

B+ ccs Edit - 1EC60730_msp430fr5739_example/main.c - Code Composer Studio RN

X File Edit View Navigate Project |Run| Scripts Window Help
=G Q v x; — i}_ Load 4

L[Project Explorer &3 %, Debug AL

o

)

oS

i IEC60730_msp430fr5739_exal pepyg History)

Debug Configurations...
| T 4=)ed TF(IECH
. Generate the memory file for the example project. To obtain the memory file please refer to Example obtaining
memory file in CCS. The number of memory files needed is project dependent:

B For “IEC60730_msp430fr5739_example".- One memory file is needed. The Start address=0xC200 and number
of words= 0x1ECO.

B For “IEC60730_msp430f5529_example".- Four memory file are needed.
 File 1.- Start address=0x4400 and number of words= 0x4000.
« File 2.- Start address=0xC400 and number of words= 0x4000.
« File 3.- Start address=0x14400 and number of words= 0x4000.
« File 4.- Start address=0x1C400 and number of words= 0x4000.
B For “IEC60730_msp430g2553_example".- One memory file is needed. The Start address=0xC000 and number
of words= 0x1FEOQ.
Once you have obtained the memory you may use the Configuration Tool included in {IEC60730_ROOT}/utils to
generate the memory file with the CRC checksums. For a step-by-step instruction on how to generate the checksums
please refer to Generating CRC-CCITT checksum memory file. The tool requires you specify the “CRC checksum
location" as an input parameter. Theses are the locations for each example project:
B For “IEC60730_msp430fr5739_example".- CRC checksum location = 0x1880
B For “IEC60730_msp430f5529_example".- CRC checksum location = 0x1800
B For “IEC60730_msp4309g2553_example".- CRC checksum location = 0x1004

4. Once you have obtained the file with CRC checksum. Go to “Memory Browser" in CCS and Select “Load Memory".

(J Memory Browser {3 I v [w v N 2 |
0x1880 #J Save Memory [
s Load Memory
@ Fill Memory

10 2015-02-12,8 : 19 : 040600

Running IEC60730 example projects

5. In the “Load Memory" window click “Browse" and select the file which contains the generated checksums. And verify
that “Use the file header information to set the start address and size of the memory block to be loaded." is checked.
Click “Finish".

[«« Load Memory l | =] Lihr

Load Memory

Select a file containing the memory data to be lcaded

NICAE PATH TO MEMORY FILE WITH_CHECKSUMS Browse...

Mote that the default format is Raw Data Format.

For TI Data Format, specify ".dat" as the file extension.

For COFF Format, specify ".out” as the file extension.

Loading COFF files using this tool is not recommended. Use Program Load instead.
ELF files are not supported by this tool, Use Pregram Lead instead.

Use the file header information to set the start address and size of the memory block to be loaded.

Y . .
@) < Back Mext = Einish

3.3 Generating CRC-CCITT Checksums for examples in
IAR

IAR examples contain a modified XLINK file that will generate the necessary CRC-CCITT checksums and place them in the
expected FLASH/FRAM memory location. For more information on how to modify the XLINK file to automatically generate
CRC checksum in IAR please refer to the modified . xc1 in every IAR project example and “IAR Linker and Library ToolsT
documentation which can be found at { TAR_INSTALL_PATH}\430\doc\x1link.ENU.pdf. The examples show how to
calculate single and multiple CRC-CCITT checksums.

2015-02-12,8 : 19 : 040600 1

Running IEC60730 example projects

12 2015-02-12;8 : 19 : 04_0600

Starting a New IEC60730 project

4.1

4.2

Starting a New IEC60730 project

Mt OTUCH ON e e 13
Starting @ New IECB0730 project in CCS it ettt 13
Starting @ New IECB0730 project in JAR ... e e 18
Location in Memory to Test Program Counter CCS e 22
Location in Memory to Test Program Counter AR e 23
Introduction

In order to minimize the amount of initial configuration required to start a new IEC60730 project
the library includes emptyProject templates for CCS and IAR. The projects can be found in
{IEC60730_PATH}\examples\iec60730\emptyProject. The following sections provide the steps required to
configure your project to be able to use IEC60730 API calls. The following steps show how to properly configure the project:

B Modify the linker command file configuration for PC test.
B Set desired configuration for tests using IEC60730_user_config.h file.

All configurations available for the library are defined in the “IEC60730_user_config.h" file. The default configuration are the
following:

B Watchdog enabled (ENABLED_WDT=1)

B Jump to failsafe enabled (JUMP_TO_FAILSAFE=1)

B MCLK frequency of 12MHz (MAIN_CLOCK_FREQUENCY_12MHz is defined)

B MCLK frequency divider 1 (MAIN_CLOCK_DIVIDER=1)

B ACLK is sourced by an external 32768 Hz crystal (LFXT1_FREQUENCY = 32768)

B ACLK frequency divider 1 (LFXT1_FREQUENCY_DIVIDER = 1)

B Allowed frequency drift is +/- 2% (PERCENT_FREQUENCY_DRIFT = 2)

B RAM_START_ADDRESS, RAM_SIZE, STACK_SIZE need to be explicitly defined if not using MSP430F5529 or
MSP430G2553.

B March X in non-destructive mode is applied for RAM testing (MARCH_X_TEST and NON_DESTRUCTIVE are not
commented).

B The size of the array to store RAM values in non-destructive mode is 8 16bit words (RAM_TEST_BUFSIZE=8).

B The FRAM/FLASH address where the CRC checksum will be stored needs to be defined. If using MSP430F5529
the default location is address 0x1800. If using MSP430G2553 the default location is 0x1004. Finally, if using
MSP430FR5739 the default location is 0x1880.

B The allowed ADC count drift is set to +/- 50 (MINIMUM_ADC_COUNT_DRIFT= -50 and MAXI-
MUM_ADC_COUNT_DRIFT = 50).

Starting a New IEC60730 project in CCS

1. Start Code Composer Studio (CCS) and select/create the workspace where you want to import the emptyProject. If
this is the first time you run CCS please refer to CCSv5 Running for the first time.

2. Import the following projects to your workspace:
B |[EC60730_emptyProject

This project is be located in TEC60730_PATH\examples\iec60730. Make sure only the project listed above are
selected in the “Import CCS Eclipse Projects" window.

2015-02-12:8 : 19 : 040600 13

http://processors.wiki.ti.com/index.php/GSG:CCSv5_Running_for_the_first_time

Starting a New IEC60730 project

w7+ Impart CC5 Eclipse Projects 2
— " " -
Select Existing CCS Eclipse Project =Y
Select » directory to search for edisting CCS Eclipse projects. -!""f {
-4
& Select sgarch-directory: Cumispd 30-ieob0T300examples iecb730 Byowie...
Select grehive file:
Discovered projects:
7] 121 IECE0730_emptyProject [C:\mapd30-iectT: Select All
10 BECE0730_mispd 3015529 _eanple : -
7 ECH0730_mspd30g2553_example Deselect Al |
Refresh
Lopy projects into workipace
Automatically import referenced projects
" o i br ¢ project

3. If the project was imported correctly you will be able to see the “emptyProject” in your CCS workspace.

[Project Explorer &2

2%~ =C

Workspace §30_emptyProject

nill Includes
(= IECBO730

| Ink_rmsp430f3438a.cmd

@ main.c

macros.ini_initial

[#] MSP430F5438.coumnl [Default]
[z MSP430F5438A coml [Active]

. The first step is to setup the “IEC60730_user_config.h" file.

“IEC60730_user_config.h" file within the “Project Explorer" window.

L[Project Explorer i =k

4 1= [ECB0730_emptyProject [Active - Debug)

4, Binaries

il Includes

(= Debug

« (= [ECE0730

4 [include
|h| TECH0730_adc_testh
[W| IECB0730_clock_fail_testh
th| IECH0730_cpu_test.h
|k TECE0730_cre_testh
[IECB0730_gpio_testh
|h| TECH0730_march_test.h
[K| IECB0730_pe_test.h
Lk IECE0730_system_config.h
|k IECE0730_user_config.h

(g source

(= Releaze

& Ink_msp430f5438a.cmd

Ly main.c

macres.ini_initial
2 MSP430F5438.coml [Active/Default
) MSP430F5438A coxml

Note:

C

You can modify this file by double-clicking

The sotware package includes a Configuration Tool under { IEC60730_ROOT }\utils which allows the users to
generate custom “IEC60730_user_config.h". For more information on how to use the Configuration Tool please
refer to Generating custom “IEC60730_user_config.h" file .

. If you are not building the library for a MSP430F5529, MSP430G2553 of MSP430FR5739 you must define

RAM_START_ADDRESS, RAM_SIZE, STACK_SIZE in “IEC60730_user_config.h". Or if you are not using the de-

fault stack size in your project.

B To determine RAM_START_ADDRESS value, please consult the “Memory Organization" section of the
datasheet for the device that you are building the library for.

14

2015-02-12,8 : 19 : 040600

Starting a New IEC60730 project

B To determine RAM_SIZE
« If you are using the RAM test in destructive mode.
» RAM_SIZE= endAddressOfRamMemory - RAM_START_ADDRESS
« If you are using the RAM test in non-destructive mode.
» RAM_SIZE= endAddressOfRamMemory - RAM_START_ADDRESS - 2«(RAM_TEST_BUFSIZE)
B To determine STACK_SIZE
 Right click on “emptyProject" select “Properties”

' CCS Edit - Code Compaser Studio
File Edit View MNavigate Project Run Seripts Window Help
- B B~ g * - -
" Project Explorer I E®~=0
4 1o [ECHOTAN mmmtnsBlnnivnt (A tiosn Flanl 1
Incly New E
= IECHL

Ink_r *
o Paste Ctrl+V

Copy Ctrl+C

[main

|1 macd B Delete Delete

[MSP Source »
B Mshy Move...

Rename... F2

Import...

Export..

Show Build Settings...

Rebuild Project

Build Project

Clean Project

Refresh F5
Close Project

EE

Build Configurations &
Make Targets »
Index »

Add Files...

Debug As *
Team *
Compare With *
Restore from Local History...

Refactor »
Source »

Properties Alt+Enter

+ Click on “General" and in the “Variant" section select the device for which you are building the library.

W Properties for IEC60730_emptyProject = p——
type filter text General L= v w
Resource
| General
Build Configuration: |Debug [Active] v| |Manage Configurations...

MSP430 Compiler
Processor Options

Optimization [Main |
Debug Options '
Include Options Qutput type: | Executable
ULP Advisor
Advanced Options Device
| MSP430 Linker Family: MSP430
Debug
Variant: <select or type filter text> v |MSP430G2332 -]
| Connection: | TIMSP430 USB1 [Default] Mepiae i
‘ MS5P430G2253
- . MS5P430G2302
Advanced settings MSP43062303
MSP430G2312
Device endianness: little MSP430G2313
SP420G2332
Compiler version: |TI\n4.1.0 MS5P430G2333
- MSP430G2352
Output format: [eabi (ELF) MSP430G2353
MSP430G2402
Linker command file: Ink_msp43092332.cmd MSP430G2403
) - MSP430G2412
Runtime support library: <automatic> MSP430G2413
MSP430G2432
MSP430G2433 -
MS5P430G2452
— MSP430G2453 =

2015-02-12:8 : 19 : 040600 15

Starting a New IEC60730 project

» Once you have selected the device, expand the “Build" menu and then expand “MSP430 Linker" menu
and click on “Basic Options". The stack size value is the value that you will use to define STACK_SIZE.

W Propersies for [EC60730_emptyProject [
Type e ot Basic Options BTy
Resource 1
General e
« Buld Configuration: Debug [Adtive) = | Manage Configueations...
MEP0 Compiler
4 MSPA3) Linkes
Bauc Options. r
e TR ==
Advanced Gptons I et € systemn stack sire (--stack_size, -stack] [I
Debug

e " ——
Heap size for /T dynamic memory allocation (--heap_size. -heap) 80

Link in hardware version of RTS mpy routine {-—-wse_he_mgy) | =

@ Shomatincetsoiogs et (mtimon]

6. The Program Counter test requires two test functions to be placed at specific memory locations to check for stuck at
bits in Program Counter register. Therefore, the linker command file 1nk_msp430xxxx.cmd needs to be modified.
The linker command file is automatically added to your project when you select the MSP430 variant for the project.

({5 Project Explorer £2 =h-Sd

1= IEC60730_emptyProject [Active - Debug]
[t Includes
(= IEC60730
| Ink_msp430f5438a.cmd
[& main.c
\=] macros.ini_initial
1% MSP430F5438.coxml [Defau
[MSP430F5438A.coml [Ac

To modify the linker command file follow this steps:

(a) Double-click the 1nk_msp430xxxx.cmd file. Depending on the device for which the library will
be built. The linker command file could have a FLASH section or FLASH and FLASH2 sec-
tion. The linker command file in IEC60730_PATH\examples\iec60730\msp430g2553\ccs\ and
IEC60730_PATH\examples\iec60730\msp430£5529\cCs\ shows the modification required to add
PC _TEST_SECTION_1and PC_TEST_SECTION_2. Below is a snapshot of each modification.

B |inker command file with FLASH section only
* Original linker command file:

MEMORY

{
SFR : origin = @xBe@d, length = @x8@le
PERIPHERALS_BBIT : origin = @x8816, length = GxB8F®
PERIPHERALS 16BIT : origin = @xBlee, length = 8x@18@
RaM : origin = @xB288, length = Bx@led
INFOA : origin = @xi18C8, length = GuBade
INFOB : origin = @xlese, length = exe@4e
INFOC : origin = = @xER49

ex1848, length

INFOD : ig ex1068,

INTae : origin = BxFFE@, length = @x8@82
INT@1 : origin = BxFFE2, length = Gu@@82
INTE2 : origin = @xFFE4, length = ex@ea2
INTE3 : origin = @xFFES, length = BxB882
INTa : origin = @xFFES, length = GwB@a2
INTEs : origin = @xFFEA, length = 8xB8a2
INTaE : origin = @xFFEC, length = Bx@@az
INT®7 : origin = @xFFEE, length = 8x2382

16 2015-02-12,8 : 19 : 04-0600

Starting a New IEC60730 project

» Modified linker command file:
INFOC : origin = UxX1040, length = UxUO&0

INFOD : origin — 0Ox1000, lengbh — Ox0040
FLASHR : origin = OxC000, length = 0x0354
PC_TEST SECTION 1 ; origin = 0OxCS554, length = 0x0006
FLASHE ! origin = 0xc55a, length = 023550
PC_TEST SECTION 2 : origin = OxFARAR, length = 0x0006
FLASHC origin = OxFABO, length = 0x0530
NTO0 : origin = 0OxFFE0, length = Dx0003

B Linker command file with FLASH and FLASH2 section
* Original linker command file:

MEMORY
{

SFR : origin = @x@eee, length = @xeele

PERIPHERALS_BBIT : origin = @xeel1@e, length = @xeere

PERIPHERALS_16BIT : origin = @x@10@, length = @xelee

RAM : origin = @x2400, length = @x4000

INFOA : origin = @x198@, length = exeese

INFOB : origin = @x190@, length = @xeese

INFOC : origin = 9x188@, length = exeese

INFOD : origin = @x18e@, length = @xeese

FLASH : origin = @x800@, length = @x7Fge

FLASH2 : origin = @x10000,length = 8x38000

INTee : origin = @xFF8@, length = @xeee2

INTe1 : origin = @xFF82, length = @x@ee2

INT@2 : origin = @xFFB84, length = @xeee2

INTe3 : origin = @xFF86, length = @xeee2

+ Modified linker command file:

origin = O0x1800, length = Ox0080
origin = 0x4400, length = 0Ox1154
origin 1x55254, length Ox000E
origin = 0x555A, length = 0x6626
origin = 0x10000, length = OxAAAA
origin JxlAARAR, length Ox0008
origin = O0x1AABD, length = OxS9850
origin 0xFFA0, langth Ox0002
origin = O0xFF82, length = 0x0002

To determine the origin of each PC_TEST_SECTION please refer to section Location in Memory to Test Program
Counter CCS.

Link .pc_test_section_1 and .pc_test_section_2 to the previously defined Memory locations.
.pc_test_section_1 : {} > PC_TEST_SECTION_1
.pc_test_section_2 : {} > PC_TEST_SECTION_2

Make sure to append all FLASH memory locations to .text , .cinit, .const, .pint, .init_array
, mspabi.exidx , .mspabi.extab sections accordingly. For an example of how to append
FLASH section refer to the linker command files for MSP430G2553 and MSP430F5529
example projects.

If the library will test RAM memory using the non-destructive mode.

i. MEMORY location in RAM called /EC60730 SAFE RAM needs to be defined in
the highest section of RAM with a length of 2xRAM_TEST_BUFSIZE (defined in
“IEC60730_user_config.h").

ii. Define the following section in the linker command file:

.safe_ram: {} > IEC60730_SAFE_RAM

7. Rebuild the emptyProject for the desired MSP430 device.

Right click on “IEC60730_emptyProject" select “Properties"

Click on “General" and in the “Variant" section select the device for which you are building the library.
Click "OK"

Right click on “IEC60730_emptyProject" project select “Rebuild Project”

8. The project is ready to run IEC60730 test.

2015-02-12:8 : 19 : 04—

0600 17

Starting a New IEC60730 project

Note:

If importing the IEC example project from MSP430Ware the empty project window will have the option of launching
the IEC Configuration Tool. Lauching the tool from this link will set the output path to the location of the project in the
IEC60730\include folder of the project.

E] Topics: | All

= Empty IEC60730 project

Creates an empty IEC60730 project to start development

These are the steps to import the project, use the configuration tool, build the
Step 1:

za Import the example project into CCS (Do not rename)

ecorted project is available in the Pro

es need for your project
Sten 3 Rename the nroiect (if needed)

4.3 Starting a New IEC60730 project in IAR

1. Go to IEC60730_PATH\examples\iec60730\emptyProject\IAR and double-click on emptyProject.eww.
When IAR starts click on “Overview" tab in the “Workspace" window you should be able to see the emptyProject
int the workspace.

Workspace x
lDebug =
Files & B
Sl JlemptyProject-Debug [+ [|
@ CIIECE0730 E
& [main.c .

L@ 3 Output

2. The first step if is to setup the “IEC60730_user_config.h" file. You can modify this file by double-clicking
“IEC60730_user_config.h" file within the workspace window.

2015-02-12;8 : 19 : 040600

Starting a New IEC60730 project

T -
[Dehug -
Files fnomy
El (J emptyProject - Debug v
& (JIEC60730
& Cinclude
—) IECE0730_adc_testh
I— k) IECE0730_clock_fail_testh
— B IEC80730_cpu_testh
I— &) IECE0730_crc_testh
— B IEC60730_gpio_testh
— k) IECE0730_march_testh
— R IECE0730_pc_testh
— E) IEC80730_system_config.h
el 8JIEC60730_user_configh [[|
@ [J source
main.c
1 Output
Note:

The sotware package includes a Configuration Tool under { IEC60730_R0OOT }\utils which allows the users to
generate custom “IEC60730_user_config.h". For more information on how to use the Configuration Tool please
refer to Generating custom “IEC60730_user_config.h" file .

3. If you are not building the library for a MSP430F5529, MSP430G2553 or MSP430FR5739 you must define
RAM_START_ADDRESS, RAM_SIZE, STACK_SIZE in “IEC60730_user_config.h". Or if you are not using the de-
fault stack size in your project.

B To determine RAM_START_ADDRESS value, please consult the “Memory Organization" section of the
datasheet for the device that you are building the library for.
B To determine RAM_SIZE
« If you are using the RAM test in destructive mode.
» RAM_SIZE= endAddressOfRamMemory - RAM_START_ADDRESS
« If you are using the RAM test in non-destructive mode.
» RAM_SIZE= endAddressOfRamMemory - RAM_START_ADDRESS - 2x(RAM_TEST_BUFSIZE)
B To determine STACK_SIZE
 Right click on “emptyProject" select “Options..."

Debug -
Files EL]
=]= Jlempty] : e
5 (1 IECHC Options...

& B IE(Make

—REC

L@ B IEC Compile .

— R1IE(Rebuild All

— B1IEC Clean

8 f=mlE(-

—E B IE(Stop Build »

— RIEC

e RE(AW ’

— RIIEQ

LagQie(e .

| BIE(Rename...

__E‘ % :EE Version Control System » ’

— BIEC Open Containing Folder...

L— RIE¢
L@ E) main. File Properties... .
— (3 Outpy Set as Active

« In the “Category" window select “General Options" and make sure the “Target" tab is selected. In the device
section select the device for which you are building the library.

2015-02-12:8 : 19 : 040600 19

Starting a New IEC60730 project

L

Options for node "emphyProject” “
Categany
CfC++ Compiler
Assembler
Custom Bukd Target | Cutput | Library Corfiguration | Libeary Options | Stack/Heap | « [+
Build Actiore Devi -~
Linker e Madel
i@ Smal
TLLLE Advisor Generic M5P430 device I L
Debugger
FEN D Large
Simuilator Lim2
@ L0G2 mode Buﬂl'lgpml .
L0592 emulation made ?a of type ‘double’
@ 2bts
i Postionindependancs) 64 bie
| [Code and read-only data e

Na dynamic read Awite inRialization

7 Exclude RESET vector

|| Hapdware mukipher
@ Allow direct access
71 Uss only Ibraey calls

J [Concel |

» Once you have selected the device, select “Stack/Heap" tab. This window will show you the default stack
size for the device. The “Stack size" value is the value that you will use to define STACK_SIZE.

Options for node "emptyProject”

e S— .

Categorny:

[General options |
CfC ++ Compiler
Aszembler
Custom Suild
Build Actions
Linker

TI LLF Advsor
Debugger

FET Debugger
Simulator

[Gvende

@ i.,-gl B0 B0

Read from linker command file

[Target | Output | Libeary Configuration | Library Options | Stack./Heap | [+

heap Zize [1aka

0 heap size

B0

J 1 Cancel |

4. The Program Counter test requires two test functions to be placed in a specific location to check for stuck

at bits in Program Counter register.

Therefore, the linker command file 1nk430xxxx.xcl, which is located

20

2015-02-12;8 : 19 : 040600

Starting a New IEC60730 project

in {IAR_INSTALLATION PATH}\IAR Systems\Embedded Workbench x.x\430\config\, needs to be modi-
fied.

WARNING: It is recommended that you create a copy of the linker command in the project location.

To modify the linker command file follow this steps:

(a) Make a copy of the original linker command file and place it in
{IEC60730_PATH}\examples\iec60730\emptyProject\IAR. The image below shows the folder
content of the IAR project after the . xc1 was copied.

Name
Debug
settings
emptyProject.dep
emptyProject.ewd
| emptyProject.ewp
R emptyProject.eww

e P e
|| Ink430g2352.xcl
T IMam.T

(b) Open 1nk430xxxx.xcl file in IAR or your preffered text editor and scroll to the CODE section.

[/ -
J/ Code
[/

(c) Create PC_TEST_SECTION_1, PC_TEST_SECTION_2 code sections. You can copy and paste the commands
shown below:

—Z (CODE) PC_TEST_SECTION_1=
—Z (CODE) PC_TEST_SECTION_2=

Your CODE section should look very similar to the image below:

-Z (CODE) PC_TEST SECTION 1=
—-Z (CODE) PC_TEST SECTION 2=
-Z (CODE) CSTART, ISR _CODE,CODE_ID=F000-FFDF
-P (CODE) CODE=F000-FFDF
(d) The final step is to determine the memory location where the functions need to be placed.

To determine the memory location and range for each PC_TEST_SECTION please refer
to section Location in Memory to Test Program Counter IAR

2015-02-12:8 : 19 : 040600 21

Starting a New IEC60730 project

4.4

Location in Memory to Test Program Counter CCS

MSP430 Device

PC_TEST_SECTION_1 CCS

PC_TEST_SECTION_2 CCS

MSP430G23xx origin:0xF554,length=0x0008 origin:0xFAAA length=0x0008
MSP430G24xx origin:0xEAAA,length=0x0008 origin:0xF554,length=0x0008
MSP430G25xx origin:0xD554,length=0x0008 origin:0xEAAA length=0x0008

MSP430F5340, MSP430F5212,
MSP430F5217, MSP430F5222,
MSP430F5227, MSP430F5324,
MSP430F5325, MSP430F5514,
MSP430F5515, MSP430F5524,
MSP430F5525, MSP430F5341,
MSP430F5326, MSP430F5327,
MSP430F5517, MSP430F5526,
MSP430F5527

origin:0x13D54,length=0x0008

origin:0xC2AA length=0x0008

MSP430F5342, MSP430F5214,
MSP430F5219, MSP430F5224,
MSP430F5229, MSP430F5328,
MSP430F5329, MSP430F5519,
MSP430F5528, MSP430F5529

origin:0x1C2AA,length=0x0008

origin:0x23D54,length=0x0008

MSP430F5513, MSP430F5521,
MSP430F5522

origin:0xD554,length=0x0008

origin:0xAAAA length=0x0008

MSP430F5418A, MSP430F5419A,
MSP430F5435A, MSP430F5436A,
MSP430F5437A, MSP430F5438A

origin:0x1D554,length=0x0008

origin:0x22AAA,length=0x0008

MSP430F5171, MSP430F5172,
MSP430F5310, MSP430F5503,
MSP430F5507, MSP430F5510

origin:0xAAAA length=0x0008

origin:0xD554,length=0x0008

MSP430F5309, MSP430F5502,
MSP430F5506, MSP430F5509

origin:0xAAAA length=0x0008

origin:0xB554,length=0x0008

MSP430F5151, MSP430F5152,
MSP430F5308, MSP430F5501,
MSP430F5505, MSP430F5508

origin:0xAAAA length=0x0008

origin:0xC554,length=0x0008

MSP430F5508, MSP430F5131,
MSP430F5132, MSP430F5304,
MSP430F5500, MSP430F5504

origin:0xE554,length=0x0008

origin:0xFAAA length=0x0008

MSP430F5333, MSP430F5336,
MSP430F5630, MSP430F5633,
MSP430F5636, MSP430F5631,
MSP430F5634, MSP430F5637,
MSP430F5335, MSP430F5338,
MSP430F5632, MSP430F5635,
MSP430F5638, MSP430F5358,
MSP430F5658

origin:0x1D554,length=0x0008

origin:0x22AAA length=0x0008

22

2015-02-12,8 : 19 : 040600

Starting a New IEC60730 project

4.5

Location in Memory to Test Program Counter IAR

MSP430 Device

PC_TEST_SECTION_1 IAR

PC_TEST_SECTION_2 IAR

MSP430G23xx F554-F55D FAAA-FAB3
MSP430G24xx EAAA-EAB3 F554-F55D

MSP430G25xx D554-D55d EAAA-EAB3
MSP430F5340, MSP430F5212, 13D54-13D5D C2AA-C2B3

MSP430F5217, MSP430F5222,
MSP430F5227, MSP430F5324,
MSP430F5325, MSP430F5514,
MSP430F5515, MSP430F5524,
MSP430F5525, MSP430F5341,
MSP430F5326, MSP430F5327,
MSP430F5517, MSP430F5526,
MSP430F5527

MSP430F5342, MSP430F5214,
MSP430F5219, MSP430F5224,
MSP430F5229, MSP430F5328,
MSP430F5329, MSP430F5519,
MSP430F5528, MSP430F5529

1C2AA-1C2B3

23D54-23D5D

MSP430F5513, MSP430F5521,
MSP430F5522

AAAA-AAB3

D554-D55D

MSP430F5418A, MSP430F5419A,
MSP430F5435A, MSP430F5436A,
MSP430F5437A, MSP430F5438A

1D554-1D55D

22AAA-22AB3

MSP430F5171, MSP430F5172,
MSP430F5310, MSP430F5503,
MSP430F5507, MSP430F5510

AAAA-AAB3

D554-D55D

MSP430F5309, MSP430F5502,
MSP430F5506, MSP430F5509

AAAA-AAB3

B554-B55D

MSP430F5151, MSP430F5152,
MSP430F5308, MSP430F5501,
MSP430F5505, MSP430F5508

C554-C55D

AAAA-AAB3

MSP430F5508, MSP430F5131,
MSP430F5132, MSP430F5304,
MSP430F5500, MSP430F5504

E554-E55D

FAAA-FAB3

MSP430F5333, MSP430F5336,
MSP430F5630, MSP430F5633,
MSP430F5636, MSP430F5631,
MSP430F5634, MSP430F5637,
MSP430F5335, MSP430F5338,
MSP430F5632, MSP430F5635,
MSP430F5638, MSP430F5358,
MSP430F5658

1D554-1D55D

22AAA-22AB3

MSP430FR5726, MSP430FR5727,
MSP430FR5728, MSP430FR5729
MSP430FR5736, MSP430FR5737,
MSP430FR5738, MSP430FR5739

D554-D55D

EAAA-EAB3

MSP430FR5722, MSP430FR5723,
MSP430FR5724, MSP430FR5725
MSP430FR5732, MSP430FR5733,
MSP430FR5734, MSP430FR5735

EAAA-EAB3

F554-F55D

MSP430FR5720, MSP430FR5721,
MSP430FR5730, MSP430FR5731

F554-F55D

FAAA-FAB3

2015-02-12,8 : 19 : 040600

23

Starting a New IEC60730 project

24

2015-02-12,8 : 19 : 040600

Analog-to-Digital Converter Test

5.2

2.3

5.3.1

Analog-to-Digital Converter Test

It OTUCH 0N L e 25
PP Of Bt ot 25
AP FUNCHONS . e e e 25
Programming EXample e 26

Introduction

This functions performs a plausibility check on the ADC10 or ADC12 module. The proper operation of the pin mux selection,
and the A/D converter is checked with this function. Before calling this APl the user must set three parameters in struct
IEC60730_ADC_TEST_adcTest_Handle. This structure has three parameters:

B pinCount this value is the expected ADC conversion result

B uselnternallnput specifies if the ADC voltage reference that will be use to make the conversion. The following are
acceptable inputs:

« EXTERNAL_REF
« INT_REF_1_5_V
« INT_REF_2 5 V
B muxChannel specifies tha ADC channel that will be tested
If "muxChannel" is set to 2, ADC INCH_2 channel will be sampled. To avoid disabling interrupts in the application the function
will poll ADCxxIFG to verify the ADC conversion is complete. The ADC conversion result is compared with "pinCount"

value. The user can define the acceptable ADC count drift by adjusting the values of MINIMUM_ADC_COUNT_DRIFT and
MAXIMUM_ADC_COUNT_DRIFT macros in "IEC60730_user_config.h" file.

The function may return failure if any of the following errors occur:

B User selected to test ADC module using internal voltage generator, but does not have internal voltage generator
enabled.

B User has wrong internal voltage selection (e.g. user is testing with 1.5V internal voltage selection but ADC register
are configured for 2.5V internal voltage selection.

B User selected an invalid ADC channel
B FOR ADC12 MODULE ONLY.- If ADC module is not configured in single-conversion mode.
B ADC conversion is out of user defined ADC drift range.

Type of test
The ADC test checks for fault conditions using plausibility check (H.2.18.13).
API Functions

Functions
B yuint8_t IEC60730_ADC_TEST_testAdclnput (IEC60730_ADC_TEST_adcTest_Handle xadcTestHandle)

Detailed Description

To test the ADC module is operating correctly the following APl can be called: IEC60730_ADC_TEST_testAdclnput()

2015-02-12:8 : 19 : 040600 25

Analog-to-Digital Converter Test

5.3.2
5.3.2.1

5.4

Function Documentation

IEC60730_ADC_TEST_testAdclnput

Tests functionality of ADC converter

Prototype:

uint8_t

IEC60730_ADC_TEST_testAdcInput (IEC60730_ADC_TEST_adcTest_Handle xadcTestHandle)

Parameters:

adcTestHandle contains parameter to test ADC channel.

Description:

This function performs a plausibility check on the ADC10 or ADC12 module. The proper operation of the pin mux selec-
tion, and the A/D converter is checked with this function. Before calling this API the user must set values for pinCount,
uselnternallnput, and muxChannel in IEC60730_ADC_TEST_adcTest_Handle structure. The ADC conversion result
is compared with "pinCount" value. The user can define the acceptable ADC count drift by adjusting the values of
MINIMUM_ADC_COUNT_DRIFT and MAXIMUM_ADC_COUNT_DRIFT macros in "IEC60730_user_config.h" file.

Modified registers are ADCxxCTLO

Returns:

SIG_ADC_TEST.- if the counts provided by the user match the converted counts. TEST_FAILED. - if ADC test fail and

JUMP_TO_FAILSAFE is disabled in "IEC60730_user_config.h".

Programming Example

MSP430G2553 devices

// Initialize IEC60730_ADC_TEST_ adcTest_Handle
IEC60730_ADC_TEST_adcTest_Handle adcTestHandle;
// Select input channel 1 for ADC

ADC10CTL1 = INCH_S8;

// Set-up struct to test ADC input channel 8 with expected value of O0x3FF

// using internal voltage reference of 2.5V
adcTestHandle.muxChannel=38;
adcTestHandle.pinCount=0x3FF;
adcTestHandle.uselInternalInput=INT_REF_2_5_V;

IEC60730_ADC_TEST_testAdcInput (&adcTestHandle) ;

The following example shows how to use the IEC60730_ADC_TEST_testAdclnput to test internal ADC channels in

The following example shows how to use the IEC60730_ADC_TEST_testAdclnput to test internal

ADC channels in MSP430F5529 devices

// Initialize IEC60730_ADC_TEST_ adcTest_Handle
IEC60730_ADC_TEST_adcTest_Handle adcTestHandle;

//Configure Memory Buffer
/%
Base Addres of ADC12_A Module
Configure memory buffer 0
Map temp sensor to memory buffer 0
Vref+ = Vref+ (int)

Vref- = AVss
Memory buffer 0 is not the end of a sequence
*/

ADC12_A memoryConfigure (ADC12_A_BASE,

26

2015-02-12,8 : 19

: 040600

Analog-to-Digital Converter Test

ADC12_A_MEMORY_O,
ADC12_A_INPUT_AS,
ADC12_A_VREFPOS_INT,
ADC12_A_VREFNEG_AVSS,
ADC12_A_NOTENDOFSEQUENCE) ;

// Set—up struct to test ADC input channel 8 with expected value of Ox3FF
// using internal voltage reference of 2.5V

adcTestHandle.muxChannel=8;

adcTestHandle.pinCount=0x3FF;
adcTestHandle.uselInternalInput=INT_REF_2_5_V;

IEC60730_ADC_TEST_testAdcInput (&adcTestHandle) ;

2015-02-12:8 : 19 : 040600 27

Analog-to-Digital Converter Test

28 2015-02-12:8 : 19 : 040600

CPU Registers Test

6.1

6.2

6.3

6.3.1

CPU Registers Test

Mt OTUCH 0N L e 29
WP OF St e 29
AP FUNCHONS ...ttt e e e e e e e 29
Programming EXample e 30
Introduction

This C-callable assembly routine tests CPU core registers for stuck at bits. The following registers
are tested:

m R4
m SP
m SR
m R5-R15 The registers are tested in the order listed above

The first register to be tested is R4 since this register is used to store the content of SP and SR.
After SP and SR are tested the rest of the registers are tested.

Each register is filled with OxA value and then read to verify that the register has OXAAAA or
0xAAAAA. This value depends on whether the library was compiled for a CPU or a CPUX ar-
chitecture. If the test passes, the same register is filled with 0x5. Afterwards, the register is read to
verify the content of the register is 0x5555 or 0x55555, depending on the architecture.

The CPU test will preserve the content of each register.

WARNING: Not all the bits in the SR are tested. This is to prevent the MSP430 going to LPMO0 and
turning off the CPU. Also R3 is not tested since R3 always reads as 0 and writes to it are ignored.

Type of test

The CPU test checks for stuck at bits using a static memory test (H.2.19.6). This test should be
implemented as a periodic self-test.

API Functions

Functions
m uint8_t IEC60730_CPU_TEST_testCpuRegisters ()

Detailed Description

To test the CPU register for stuck at bits, the following API can be called:
IEC60730_CPU_TEST_testCpuRegisters()

2015-02-12:8 : 19 : 040600 29

CPU Registers Test

6.3.2 Function Documentation
6.3.2.1 |IEC60730_CPU_TEST testCpuRegisters

Test CPU registers

Prototype:
uint8_t
IEC60730_CPU_TEST_testCpuRegisters ()

Description:
This C-callable assembly routine tests CPU core registers for stuck at bits. The following

registers are tested:

m R4

m SP

m SR

m R5-R15 The registers are tested in the order listed above

Modified registers are R4, SP, SR, and R5-R15

Returns:
SIG_CPU REG TEST.- if test does not detects stuck at bits. = TEST FAILED. - if

test detects stuck at bits in CPU registers and JUMP_TO_FAILSAFE is disabled in
"IEC60730_user_config.h".

6.4 Programming Example

The following example shows how to use the IEC60730_CPU_TEST _testCpuRegisters.

IEC60730_CPU_TEST_testCpuRegisters();

30 2015-02-12,8 : 19 : 040600

Clock Fail Test

7.1

7.2

7.3

7.3.1

7.3.2

7.3.2.1

Clock Fail Test

Mt OTUCH 0N L e 31
WP OF St e 31
AP FUNCHIONS .ttt e e e e e e 31
Programming Example ...l 32 Using different Timer ..., 32
Introduction

The following function verifies that MCLK is oscillating at the frequency specified by the
MAIN_CLOCK_FREQUENCY macro. The user must define the allowed +/- percentage frequency
drift using the macro PERCENT_FREQUENCY_DRIFT in "IEC60730_user_config.h". The test
passes if freqCounter is between FREQUENCY_COUNT_MAX and FREQUENCY_COUNT_MIN.
TAO must be sourced by ACLK with a high precision clock source. To increase accuracy of oscillator
measurement, it is suggested to source LF or XT1 with a 32768 Hz crystal. If the application uses
a different frequency for LF or XT1, the LFXT1_FREQUENCY macro in "IEC60730_user_config.h"
file must be updated with correct frequency.

NOTE: The test requires TAO to be source by ACLK, and configured in Up mode. Also, TAIE will be
disabled. Therefore, if the application requires TAIE to be enabled the user must set TAIE upon test
completion.

Type of test

The Clock Fail Test API checks for wrong frequency using frequency monitoring (H.2.18.10.1)

API Functions

Functions
m uint8_t IEC60730_OSCILLATOR_TEST _testOsc ()

Detailed Description

To test that MCLK is oscillating at the user defined frequency the following APl can be called:
IEC60730_OSCILLATOR_TEST_testOsc()

Function Documentation

IEC60730_OSCILLATOR_TEST _testOsc

Tests MCLK for proper operation at user defined frequency.

2015-02-12,8 : 19 : 040600 31

Clock Fail Test

7.4

7.5

Prototype:
uint8_t
IEC60730_OSCILLATOR_TEST_testOsc ()

Description:

The following function verifies that MCLK is oscillating at the frequency specified by the
MAIN_CLOCK_FREQUENCY macro. The user must define the allowed +/- percentage fre-
quency drift using the macro PERCENT_FREQUENCY_DRIFT in "IEC60730_user_config.h".
The test is passed if freqCounter is between FREQUENCY_COUNT_MAX and FRE-
QUENCY_COUNT_MIN. TAx must be source by ACLK with a high precision clock source. To
increase accuracy of oscillator measurement, it is suggested to source LF or XT1 with a 32768
Hz crystal. If the application uses a different frequency for LF or XT1, the LFXT1_FREQUENCY
macro in "IEC60730_user_config.h" file must be updated with correct frequency.

NOTE: The test requires TAx to be source by ACLK, and configured in Up mode. Also, TAIE
will be disable. Therefore, if the application requires TAIE to be enable, the user must set TAIE
upon test completion.

Modified registers are TAXCCRO, TAXCCTLO, and TAXCTL
Returns:

SIG_CLOCK_TEST .- If test is passed. TEST_FAILED. - if ADC test fail and
JUMP_TO_FAILSAFE is disabled in "IEC60730_user_config.h".

Programming Example

The following example shows how to use the IEC60730_OSCILLATOR_TEST _testOsc.

IEC60730_OSCILLATOR_TEST _testOsc();

Using different Timer

By default TAO is used to monitor the frequency of MCLK. If required by the application,
a different timer can be used to generate the 10 msec interval. To use a different timer
IEC60730_clock_fail_test.c needs to be modified. In the file replace all TAO registers for
the desired TAx to be used by the test. Finally, go to TEC60730_user_config.h file and update
TAOCCRO_VALUE_FOR_10_mSEC for TAXCCRO_VALUE_FOR_10_mSEC, where x is the timer
that you want to use.

32

2015-02-12,8 : 19 : 040600

Non Volatile Memory Test

8

8.1

8.2

8.3

8.3.1

Non Volatile Memory Test

Mt OTUCH 0N L e 33
WP OF St e 33
AP FUNCHONS ...ttt e e e e e e e 33
Programming EXample e 34
Introduction

The following function checks for memory corruption in non volatile memory. The user must first
calculate the CRC-CCITT value of the memory to be checked. This can be achieved by using the
CRC_tool which is included in the utils folders of the library.

If the library is built for an MSP430 device that has a CRC module, the API will take advatange of
the CRC module and calculate the CRC in hardware. Otherwise the CRC is calculated in software.

Before calling the function the user must calculate the CRC of non volatile memory and store it in
FLASH/FRAM memory.

The memorySize parameter is specified in 16 bit words and should not exceed 65535 16 bit words.

The expectedCrc value is compared to the newly calculated CRC value. The test passes if the two
CRC values are identical.

To determine the start address and size of non volatile memory for each MSP430 device, please
consult the device datasheet.

Type of test

The CRC test checks for single bit faults using word protection with multi-bit redundancy
(H.2.19.8.1)

API Functions

Functions

m uint8_t IEC60730_CRC_TEST_testNvMemory (uint16_t xpStartAddress, uint16_t memory-
Size, uint16_t xpExpectedCrc)
Detailed Description

To test for memory corruption in non volatile memory the following API can be called:
IEC60730_CRC_TEST_testNvMemory()

2015-02-12,8 : 19 : 040600 33

Non Volatile Memory Test

8.3.2

8.3.2.1

8.4

Function Documentation

IEC60730_CRC_TEST_testNvMemory

Tests invariable (non volatile) memory (FLASH)

Prototype:
uint8_t
IEC60730_CRC_TEST_testNvMemory (uintl6_t xpStartAddress,
uintl6_t memorySize,
uintlé6_t xpExpectedCrc)

Parameters:
«xpStartAddress is a pointer the start address of memory to be tested

memorySize size of memory to be tested
xpExpectedCrc is a pointer to the expected CRC value

Description:

The following function check for memory corruption in non volatile memory. The user must first
calculate the CRC value of the memory to be checked. This can be achieved by using the
CRC_tool which is included in the utils folders of the library. To learn how to use the CRC_tool
please consult the IEC60730 Class B APl User’s Guide. When the CRC value is obtain, the
user must store the CRC value in FLASH before calling the function. The memorySize para-
mater is specified in 16 bit words and should not exceed 65535 16 bit words. The expectedCrc
value is compared to the newly calculated CRC value. The test passes if the two CRC values
are identical.

NOTE: memorySize should be even an value, otherwise the the test fails.

Returns:
SIG_NV_MEM_CRC_TEST.- if expected CRC and calculated CRC are identical.
TEST _FAILED. - if non volatile test fail and JUMP_TO_FAILSAFE is disabled in
"IEC60730_user_config.h".

Programming Example

The following example shows how to use the IEC60730_CRC_TEST_testNvMemory.

IEC60730_CRC_TEST_testNvMemory ((uintl6_t*) 0xc000, 0x3£fd0, (uintl6_t«+) CRC_CHECKSUM_LOCATION) ;

34

2015-02-12,8 : 19 : 040600

General Purpose I/O Test

9.1

9.2

9.3

9.3.1

General Purpose /O Test

Mt OTUCH 0N L e 35
WP OF St e 35
AP FUNCHONS ...ttt e e e e e e e 35
Programming EXample e 37
Introduction

The following functions will perform output and input plausibility checks on the GPIO module. When
testing an output the function sets and clears the pin specified by gpioPin. The test passes if the
function is able to set and clear the BITX on PXOUT. When testing an input the function compares
the current state in PxIN with the expectedValue and the test passes if both values are equal.

The function will check if the user has passed valid port and gpioPin values. If the MSP430
device does not have the selected PORTx or if the value value for gpioPin is outside the valid
range, the function will call IEC60730_FAIL_SAFE_failSafe() if JUMP_TO_FAILSAFE is enabled in
"IEC60730_user_config.h", otherwise TEST_FAILURE is returned.

The valid parameters for gpioPin:

= PORT1-PORT11 valid range (0x0000-0x00FF)
= PORTA-PORTF valid range (0x0000-0xFFFF)
= PORTJ valid range (0x0000-0x000F)

NOTE: PORT will retain after function call.

Type of test

The GPIO test checks for faul conditions using plausibility check (H.2.18.13).

API Functions

Functions

m uint8_t IEC60730_GPIO_TEST_testGpiolnput (uint16_t port, uint16_t gpioPin, uint16_t ex-
pectedValue)
m uint8_t IEC60730_GPIO_TEST_testGpioOutput (uint16_t port, uint16_t gpioPin)

Detailed Description

To test the GPIO module is operating correctly the following APIs can be called:
IEC60730_GPIO_TEST_testGpioOutput() IEC60730_GPIO_TEST_testGpiolnput()

2015-02-12,8 : 19 : 040600 35

General Purpose I/O Test

9.3.2 Function Documentation

9.3.2.1 |IEC60730_GPIO_TEST _testGpiolnput

Tests input functionality of GPIO module

Prototype:
uint8_t
IEC60730_GPIO_TEST_testGpioInput (uintlé6_t port,
uintl6_t gpioPin,
uintl6_t expectedvValue)

Parameters:

port is the port number to be tested. Consult device datasheet to determine which ports are
available in your device. Valid values are PORT_1 PORT_2 PORT_3 PORT_4 PORT_5
PORT_6 PORT_7 PORT_8 PORT_9 PORT_10 PORT_11 PORT_A PORT_B PORT_C
PORT_D PORT_E PORT_F PORT_J

gpioPin is the GPIO pin number(s) that will be test. The following values can be ORed to test
multiple pins. Valid values are PINO PIN1 PIN2 PIN3 PIN4 PIN5 PIN6 PIN7 PIN8 PIN9
PIN10 PIN11 PIN12 PIN13 PIN14 PIN15

expected is the GPIO pin number(s) that will be test. Valid values are PINO_HIGH PINO_LOW
PIN1_HIGH PIN1_LOW PIN2_HIGH PIN2_LOW PIN3_HIGH PIN3_LOW PIN4_HIGH
PIN4A_LOW PIN5_HIGH PIN5_LOW PIN6_HIGH PIN6_LOW PIN7_HIGH PIN7_LOW
PIN8_HIGH PIN8_LOW PIN9_HIGH PIN9_LOW PIN10_HIGH PIN10_LOW PIN11_HIGH
PIN11_LOW PIN12_HIGH PIN12_LOW PIN13_HIGH PIN13_LOW PIN14_HIGH
PIN14_LOW PIN15_HIGH PIN15_LOW

Description:
This function performs an input plausibility check on the GPIO module. The function compares
the current state in PxIN with the expectedValue and the test is passed if both values are
equal. If the MSP430 device does not have the selected PORTXx or if the value value for
gpioPin is outside the valid range, the function will call IEC60730_FAIL_SAFE_failSafe() if
JUMP_TO_FAILSAFE is enabled in "IEC60730_user_config.h" otherwise TEST_FAILURE is
returned.

These are the valid parameters for gpioPin: -PORT1-PORT11 valid range (0x0000-0x00FF)
-PORTA-PORTF valid range (0x0000-0xFFFF) -PORTJ valid range (0x0000-0x000F)

Returns:
If the test passes.- SIG_GPIO_TEST If the test fails.- TEST_FAILURE

9.3.2.2 |IEC60730_GPIO_TEST _testGpioOutput

Tests output functionality of GPIO module

Prototype:
uint8_t
IEC60730_GPIO_TEST_testGpioOutput (uintl6_t port,
uintl6_t gpioPin)

Parameters:
port is the port number to be tested. Consult device datasheet to determine which ports are
available in your device. Valid values are PORT_1 PORT_2 PORT_3 PORT_4 PORT_5

36 2015-02-12,8 : 19 : 040600

General Purpose I/O Test

PORT_6 PORT_7 PORT_8 PORT_9 PORT_10 PORT_11 PORT_A PORT_B PORT_C
PORT_D PORT_E PORT_F PORT_J

gpioPin is the GPIO pin number(s) that will be test. The following values can be ORed to test
multiple pins. Valid values are PINO PIN1 PIN2 PIN3 PIN4 PIN5 PIN6 PIN7 PIN8 PIN9
PIN10 PIN11 PIN12 PIN13 PIN14 PIN15

Description:
This function performs an output plausibility check on the GPIO module. The function sets and
clears the pin specified by gpioPin. The function will check if the user has passed valid port and
gpioPin values. If the MSP430 device does not have the selected PORTXx or if the value value
for gpioPin is outside the valid range, the function will call IEC60730_FAIL_SAFE_failSafe() if
JUMP_TO_FAILSAFE is enabled in "IEC60730_user_config.h", otherwise TEST_FAILURE is
returned.

These are the valid parameters for gpioPin: -PORT1-PORT11 valid range (0x0000-0x00FF)
-PORTA-PORTF valid range (0x0000-0xFFFF) -PORTJ valid range (0x0000-0x000F)

PxOUT are modified by this test but the original state of PxOUT, if test is PASSED.
Modified registers are PxOUT.

Returns:
If the test passes.- SIG_GPIO_TEST If the test fails.- TEST_FAILURE

9.4 Programming Example

The following example shows how to use the IEC60730_GPIO_TEST_testGpioOutput and
IEC60730_GPIO_TEST_testGpiolnput.

// Code to test outputs

IEC60730_GPIO_TEST_testGpioOutput (PORT_2, PINO|PIN1|PIN2);

//Code to test inputs

IEC60730_GPIO_TEST_testGpioInput (PORT_1, PIN3|PIN4|PIN5, PIN3_LOW|PIN4_HIGH|PIN5_HIGH);

2015-02-12,8 : 19 : 040600 37

General Purpose I/O Test

38

2015-02-12,8 : 19 : 040600

Variable Memory Test

10 Variable Memory Test

Mt OTUCH 0N L e 39
WP OF St e 39
AP FUNCHIONS .ttt e e e e e e 39
Programming EXample e 40

10.1 Introduction

This function checks RAM memory for DC fault using march test. MarchC and MarchX can be
run in destructive or non-destructive mode based on the macro definition of MARCH_X_TEST or
MARCH_C_TEST in "IEC60730_user_config.h" file. The macros for RAM_START_ADDRESS and
RAM_END_ADDRESS are defined in "IEC60730_user_config.h" file. to determine the correct start
and end address for ram please consult the MSP430 datasheet.

The test will perform the desired march test over the range of RAM memory specified by
pui16_StartAddr and pui16_EndAddr.

When the test is run in NON-DESTRUCTIVE mode, the SAFE_RAM_BUFFER is used to store the
current content of ram to be tested. The first task performed by the test is to check for DC faults on
the SAFE_RAM_BUFFER. Once the buffer is checked, the test cotinues checking the rest of RAM
memory.

NOTE: If the march test is going to be run in NON-DESTRUCTIVE mode in CCS the linker com-
mand file (x.cmd) needs to have a section called ".safe_ram". For more information on how to
define this section in the linker command file please refer to the sample project and inspect the
linker command files associated with the projects.

10.2 Type of test

The MARCH test checks for DC fault using static memory tests (H.2.19.6). This test should be
implemented as a periodic self-test.

10.3 API Functions

Functions
m uint8_t IEC60730_MARCH_TEST_testRam (uint16_t xpui16_StartAddr, uint16_t

xpui16_EndAddr)
10.3.1 Detailed Description

To test the volatle memory for DC fault, the following APIscan be -called:
IEC60730_MARCH_TEST testRam()

2015-02-12,8 : 19 : 040600 39

Variable Memory Test

10.3.2

10.3.2.1

10.4

Function Documentation
IEC60730_MARCH_TEST testRam

Tests Variable memory (RAM memory)

Prototype:
uint8_t
IEC60730_MARCH_TEST_testRam(uintl6_t *puil6_StartAddr,
uintl6_t =*puil6_EndAddr)

Parameters:
xpui16_StartAddr is the start address of RAM to be tested

xpUi16_EndAddr is the end address of RAM to be tested

Description:
This function checks the RAM memory for DC fault using march test. The following march tests
are implemented. Both test can be run in destructive or non-destructive mode based on the
macro definition of MARCH_X_TEST or MARCH_C_TEST in "IEC60730_user_config.h" file

m March X
m March C

The test will perform the desired march test over the range of RAM memory specified by
pui16_StartAddr and pui16_EndAddr.

Returns:

SIG_RAM_TEST.- if RAM test is passed TEST_FAILED. - if RAM test fail and
JUMP_TO_FAILSAFE is disabled in "IEC60730_user_config.h".

Programming Example

The following example shows how to use IEC60730_MARCH_TEST _testRam.

IEC60730_MARCH_TEST_testRam((uintl6_tx)RAM_START_ADDRESS,
(uintl6_t)RAM_END_ADDRESS) ;

40

2015-02-12,8 : 19 : 040600

Program Counter Register Test

11 Program Counter Register Test

Mt OTUCH 0N L e 41
WP OF St e 41
AP FUNCHIONS .ttt e e e e e e 41
Programming EXample e 42

11.1 Introduction

This function tests the Program Counter register for stuck at bits. The routine calls two test functions
that return their addresses. Their return values are compared to the PC test function address. If the
value matches, the function passes, if not it fails. The PC test functions need to reside in separate
memory locations such that, by the time all of the functions are called, all the Program Counter
register bits are set or cleared, thus indirectly testing the PC register for stuck at bits. The user
must define two sections named "pc_test_section_1", "pc_test_section_2" in the linker command
file. The example project contains a modified linker command file with both sections defined.

In the example code provided for MSP430G2553 devices the PC test functions have the following
memory address locations in the specified sections.

m pcTestFunction1 - (0xD554) pc_test_section_1

m pcTestFunction2 - (OxEAAA) pc_test _section_2 In the example code provided for
MSP430F5529 devices the PC test functions have the following memory address locations
in the specified sections.

m pcTestFunction1 - (0x23D54) pc_test_section_1
m pcTestFunction2 - (0x1C2AA) pc_test_section_2

11.2 Type of test

The PC test checks for stuck at bits using logical monitoring of the program counter (H.2.18.10.2).
This test should be implemented as a periodic self-test.

11.3 API Functions

Functions

m uint8_t IEC60730_PC_TEST _testPcRegister (void)

11.3.1 Detailed Description

To test the PC register for stuck at bits the following APl can be called:
IEC60730_PC_TEST testPcRegister()

2015-02-12,8 : 19 : 040600 41

Program Counter Register Test

11.3.2 Function Documentation

11.3.2.1 IEC60730_PC_TEST_testPcRegister

Tests Program Counter register for stuck at bits

Prototype:
uint8_t
IEC60730_PC_TEST_testPcRegister (void)

Description:
This function tests the Program Counter register for stuck at bits. The routine call two test
functions that return their addresses. Their return values are compared to the PC test function
address. If the value matches, the function passes, if not it fails. The PC test functions need to
reside in separate memory locations such that , by the time all of them are called, all the Pro-
gram Counter register bits are set or cleared. Thus indirectly testing the PC register for stuck
at bits. The user must define two sections named "pc_test_section_1", "pc_test_section_2"

Modified registers are REGISTER_1, REGSITER_2, and REGISTER_3

Returns:
None

11.4 Programming Example

The following example shows how to use the IEC60730_PC_TEST_testPcRegister

IEC60730_PC_TEST_testPcRegister();

42 2015-02-12;8 : 19 : 04_0600

IEC60730 Class B API execution times and Code Size

12

12.1

12.2

IEC60730 Class B API execution times and
Code Size

I OAUCH ON L e e e 43
IEC60730 Class B API Execution Time and Code Size MSP430G2553 CCS, 43
IEC60730 Class B API Execution Time and Code Size MSP430G2553 IARt 44
IEC60730 Class B API Execution Time and Code Size MSP430F5529 CCS ..., 45
IEC60730 Class B API Execution Time and Code Size MSP430F5529 IARo, 46
IEC60730 Class B API Execution Time and Code Size MSP430FR5739 CCScciiiiiiiiia... 47
IEC60730 Class B API Execution Time and Code Size MSP430FR5739 1AR ..., 48
Introduction

The following section shows the API execution times for the example projects included in this soft-
ware package. The example projects were developed for MSP430G2553 , MSP430F5529 and
MSP430FR5739 devices.

IEC60730 Class B API Execution Time and Code Size
MSP430G2553 CCS

The MSP430G2553 device was tested on the MSP430 LaunchPad Value Line Development kit
(MSP-EXP430G2). MCLK was sourced by the integrated digitally controlled oscillator (DCO) with
a frequency of 12 MHz. ACLK was source by an external 32768 Hz crystal. Finally, the Analog-to-
Digital Converter (ADC) was configured to use the internal voltage generator to test the execution of
the API. The projects were built on Texas Instruments Code Composer Studio5.3 using Tl compiler
v4.1.3 with no optimization.

2015-02-12:8 : 19 : 040600 43

IEC60730 Class B API execution times and Code Size

12.3

APl Name

Execution Time

Code Size (Bytes)

IEC60730
CPU_TEST _testCpuRegisters

19.91 usec

736

IEC60730_
PC_TEST_testPcRegister

7.66 usec

160

IEC60730_ OSCILLA-
TOR_TEST testOsc

9.97 msec

152

IEC60730_ INTER-
RUPT_TEST _testlInterrupt

35.54 usec

336

IEC60730_
MARCH_TEST testRam size
(416 Bytes)

using March X algorithm
(non-destructive mode)

9.49 msec

676

using March X algorithm
(destructive mode)

8.64 msec

using March C algorithm
(non-destructive mode)

18.16 msec

using March C algorithm
(destructive mode)

16.96 msec

IEC60730_
CRC_TEST_testNvMemory
(16KB) in software

168.37 msec

272

IEC60730_
ADC_TEST_testAdclnput

16.20 usec

308

IEC60730
GPIO_TEST_testGpioOutput

34.62 usec

412

IEC60730_

GPIO_TEST_testGpiolnput

46.70 usec

460

The example project will run all the APls mentioned above and in case any of the tests fails, the

program will call IEC60730_FAIL_SAFE_failSafe function.

IEC60730 Class B API Execution Time and Code Size
MSP430G2553 IAR

The MSP430G2553 device was tested on the MSP430 LaunchPad Value Line Development kit
(MSP-EXP430G2). MCLK was sourced by the integrated Digitally Controlled Oscillator (DCO) with
a frequency of 12 MHz. ACLK was source by an external 32768 Hz crystal. Finally, the Analog-to-
Digital Converter (ADC) was configured to use the internal voltage generator to test the execution
of the API. The projects were built on IAR Embedded Workbench®5.51.3 with no optimization.

44

2015-02-12,8 : 19 : 040600

IEC60730 Class B API execution times and Code Size

API Name Execution Time Code Size (Bytes)
IEC60730 18.50 usec 358

CPU_TEST _testCpuRegisters

IEC60730_ 8.33 usec 88
PC_TEST_testPcRegister

IEC60730_ OSCILLA- 9.99 msec 78

TOR_TEST testOsc

IEC60730 INTER- 35.54 usec 166

RUPT_TEST _testlInterrupt

IEC60730

MARCH_TEST testRam size
(416 Bytes)

using March X algorithm 10.89 msec 326
(non-destructive mode)

using March X algorithm 8.64 msec 186
(destructive mode)

using March C algorithm 20.79 msec 416
(non-destructive mode)

using March C algorithm 19.35 msec 276
(destructive mode)

IEC60730_ 178.52 msec 134

CRC_TEST_testNvMemory
(16KB) in software

IEC60730_ 13.95 usec 176
ADC_TEST_testAdclnput

IEC60730_ 50.83 usec 414
GPIO_TEST_testGpioOutput

IEC60730_ 38.95 usec 378

GPIO_TEST_testGpiolnput

The example project will run all the APls mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function.

12.4 1EC60730 Class B API Execution Time and Code Size
MSP430F5529 CCS

The MSP430F5529 device was tested on the MSP430F5529 USB ExperimenterSs Board (MSP-
EXP430F5529). MCLK was sourced by the DCO with a frequency of 12 MHz. ACLK was sourced
by an external 32768 Hz crystal. The project was built on Code Composer Studio 5.3 using Tl
compiler v4.1.3 with no optimization.

2015-02-12:8 : 19 : 040600 45

IEC60730 Class B API execution times and Code Size

12.5

APl Name

Execution Time

Code Size (Bytes)

IEC60730
CPU_TEST _testCpuRegisters

26.50 usec

732

IEC60730_
PC_TEST_testPcRegister

15.58 usec

220

IEC60730_ OSCILLA-
TOR_TEST testOsc

10.01 msec

152

IEC60730_ INTER-
RUPT_TEST _testlInterrupt

54.29 usec

672

IEC60730_
MARCH_TEST testRam size
(416 Bytes)

using March X algorithm
(non-destructive mode)

171.92 msec

660

using March X algorithm
(destructive mode)

162.00 msec

348

using March C algorithm
(non-destructive mode)

329.31 msec

844

using March C algorithm
(destructive mode)

318.73 msec

532

IEC60730_
CRC_TEST_testNvMemory
(16KB) in software

19.13 msec

164

IEC60730_
ADC_TEST_testAdclnput

19.29 usec

312

IEC60730
GPIO_TEST_testGpioOutput

41.29 usec

612

IEC60730
GPIO_TEST_testGpiolnput

52.20 usec

664

The example project will run all the APls mentioned above and in case any of the tests fails, the

program will call IEC60730_FAIL_SAFE_failSafe function.

IEC60730 Class B API Execution Time and Code Size

MSP430F5529 IAR

The MSP430F5529 device was tested on the MSP430F5529 USB ExperimenterSs Board (MSP-
EXP430F5529). MCLK was sourced by the DCO with a frequency of 12 MHz. ACLK was sourced
by an external 32768 Hz crystal. The project was built on IAR Embedded Workbench®5.51.3 with

no optimization.

46

2015-02-12,8 : 19 : 040600

IEC60730 Class B API execution times and Code Size

API Name Execution Time Code Size (Bytes)
IEC60730 27.04 usec 368

CPU_TEST _testCpuRegisters

IEC60730_ 19.08 usec 106
PC_TEST_testPcRegister

IEC60730_ OSCILLA- 10.01 msec 78

TOR_TEST testOsc

IEC60730 INTER- 55.12 usec 672

RUPT_TEST _testlInterrupt

IEC60730

MARCH_TEST testRam size
(416 Bytes)

using March X algorithm 186.61 msec 318
(non-destructive mode)

using March X algorithm 174.40 msec 184
(destructive mode)

using March C algorithm 356.57 msec 406
(non-destructive mode)

using March C algorithm 343.43 msec 272
(destructive mode)

IEC60730_ 24.59 msec 94

CRC_TEST_testNvMemory
(16KB) in software

IEC60730_ 21.33 usec 164
ADC_TEST_testAdclnput

IEC60730 44.87 usec 501
GPIO_TEST_testGpioOutput

IEC60730 34.33 usec 474

GPIO_TEST_testGpiolnput

The example project will run all the APls mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function.

12.6 [1EC60730 Class B API Execution Time and Code Size
MSP430FR5739 CCS

The MSP430FR5739 device was tested on the MSP-EXP430FR5739. MCLK was sourced by the
DCO with a frequency of 12 MHz. ACLK was sourced by an external 32768 Hz crystal. The project
was built on Code Composer Studio v 5.3 using Tl compiler v4.1.3 with no optimization.

2015-02-12:8 : 19 : 040600 47

IEC60730 Class B API execution times and Code Size

12.7

APl Name

Execution Time

Code Size (Bytes)

IEC60730
CPU_TEST _testCpuRegisters

31.70 usec

732

IEC60730_
PC_TEST_testPcRegister

18.29 usec

220

IEC60730_ OSCILLA-
TOR_TEST testOsc

10.009 msec

152

IEC60730_ INTER-
RUPT_TEST _testlInterrupt

271 usec

964

IEC60730_
MARCH_TEST testRam size
(416 Bytes)

using March X algorithm
(non-destructive mode)

19.02 msec

660

using March X algorithm
(destructive mode)

17.58 msec

348

using March C algorithm
(non-destructive mode)

36.47 msec

844

using March C algorithm
(destructive mode)

34.62 msec

532

IEC60730_
CRC_TEST_testNvMemory
(16KB) in software

11.25 msec

164

IEC60730_
ADC_TEST_testAdclnput

21.50 usec

364

IEC60730
GPIO_TEST_testGpioOutput

64.04 usec

472

IEC60730_

GPIO_TEST_testGpiolnput

50.00 usec

524

The example project will run all the APls mentioned above and in case any of the tests fails, the

program will call IEC60730_FAIL_SAFE_failSafe function.

IEC60730 Class B API Execution Time and Code Size
MSP430FR5739 IAR

The MSP430FR5739 device was tested on the MSP-EXP430FR5739. MCLK was sourced by the
DCO with a frequency of 12 MHz. ACLK was sourced by an external 32768 Hz crystal. The project
was built on IAR Embedded Workbench®5.51.3 with no optimization.

48

2015-02-12,8 : 19 : 040600

IEC60730 Class B API execution times and Code Size

API Name Execution Time Code Size (Bytes)
IEC60730 24.08 usec 368

CPU_TEST _testCpuRegisters

IEC60730_ 15.54 usec 112
PC_TEST_testPcRegister

IEC60730_ OSCILLA- 10.007 msec 78

TOR_TEST testOsc

IEC60730 INTER- 260 msec 406

RUPT_TEST _testlInterrupt

IEC60730

MARCH_TEST testRam size
(416 Bytes)

using March X algorithm 23.60 msec 316
(non-destructive mode)

using March X algorithm 21.74 msec 184
(destructive mode)

using March C algorithm 45.23 msec 404
(non-destructive mode)

using March C algorithm 42.82 msec 272
(destructive mode)

IEC60730_ 13.54 msec 94

CRC_TEST_testNvMemory
(16KB) in software

IEC60730_ 17.41 usec 200
ADC_TEST_testAdclnput

IEC60730_ 47.00 usec 434
GPIO_TEST_testGpioOutput

IEC60730_ 33.66 usec 404

GPIO_TEST_testGpiolnput

The example project will run all the APls mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function.

2015-02-12:8 : 19 : 040600 49

IEC60730 Class B API execution times and Code Size

50

2015-02-12,8 : 19 : 040600

Using the MSP430 IEC60730 Software Package Configuration Tool

13

13.1

13.2

Using the MSP430 IEC60730 Software
Package Configuration Tool

It OAUCH ON . e e 51
Running Configuration TOOI e e 51
Launching Configuration Tool from Tl Resource EXplorero 52
Generating custom IEC60730_user_config.h file 53
Generating CRC-CCITT checksum memory file e 54
Obtaining MemMOry file e e e 56
Example obtaining memory file in CCS e 56
Example obtaining memory file in JAR ... 60
Loading CRC checksum memory file e 61
Introduction

The MSP430 IEC60730 Software Package Configuration Tool allows the user to generate custom
IEC60730_user_config.h header files using a Graphical User Interface. The configuration tool al-
lows the user to obtain two essential files needed to run the self test:

m "[EC60730_user_config_custom.h" header file.- Used at compilation time to configure
MSP430 IEC60730 Software Package self tests.

m Memory file in 16-bit C-style (x.dat) file or MSP-430 TXT file (x.txt) containing crc checksum(s)
used in non-voltaile memory test.

Requirements to generate "IEC60730_user_config_custom.h" header file:

m RAM_START_ADDRESS
= RAM_SIZE
m STACK_SIZE

The value of these fields are device dependent. To determine the correct values for please refer
to step #5 on Starting a New IEC60730 project in CCS. The same instructions apply if you are
developing on IAR.

Requirements to generate CRC-CCITT checksum memory file:

m Single segment memory content file in 16-bit C-style (x.dat) file or MSP-430 TXT file (x.txt) to
be monitored using non-voltile test.

Running Configuration Tool

The software requirements to run the tool are: -Java 1.5 or later -The tool can be run in Windows
and Linux OS.

To run the tool just double-click in the executable jar file "MSP430_IEC60730_Config_Tool.jar"
which is located in: {IEC60730_ROOT}\utils directory. Below is a snapshot of the MSP430
IEC60730 Software Package Configuration Tool.

2015-02-12,8 : 19 : 040600 51

Using the MSP430 IEC60730 Software Package Configuration Tool

13.3

| M5P430 [EC60730 Software Package Configuratia

| File

Ui
MS5P430 IECE0730 Software Package Path
Cimspa30_lecB0T30_software_package_1_01_00_12iec807300ecB0730Unclude

|_J Use Default Location

Basic Configuration ADC Test Properties
] watchdog Timer will be enabled MIMIMUM ADC MAXIMUM ADC
[¥] Define JUMP_TO_FAILSAFE macro Count Drift Count Drift

Test Codes -50]ﬂ 50 lil

[] Use DEFAULT Test Code

RAM Test Properties

RAM start address: 0000
RAM size: 0x0000
STACK size: a0

() MARCH_C (=) MARCH_X

[¥] Run RAM test in NON-DESTRUCTIVE MODE

Clock Test Properties

Select type of MARCH algorithm to test RAM memaory.

Enter size of RAM_SAFE_BUFFER: 16 |&] Bytes

Select MCLK Frequency: 12000000
External ACLK Properties

| Select MCLK Frequency Divider. 1 hd External Clock Frequency. “3z788
Select TIMER_A for MCLK test TIMER_AD |¥

|| = 2 # \ Select MCLK Frequency Divider: |1 v
SelectCapture/Compare Register. | CCRO ;I
Frequency Drift Tolerance (%) +/- 3 lij

—

CRC-CCITT Test Properties

CRC Initial Value: OxFFFF

CRC-CCITT Checksum Generator

|| Load Memaory File #1

L Load Memory File #2

[_] Load Memory File #3

| Load Memory File #4

File #1 checksum:

File #3 checksum:

Browse...

| Generale |

CRC checksum location: | 0x1000 |

File #2 checksum:

File w4 checksum:

Launching Configuration Tool from Tl Resource Ex-

plorer

If you download MSP430 IEC60730 Software Package as part of MSP430Ware, you will have the
option to launch the IEC configuration tool from Tl Resource Explorer.

To launch the IEC configuration tool, go to Tl Resource Explorer windows View -> TI Resource

Explorer.

it | Viewl Navigate Project Run Scrip

(/) TIResource Explorer

st \# GUIComposer™ 2
EC Applications »

&5 Grace Snippets

Under Packages select MSP430ware.

52

2015-02-12,8 : 19 : 040600

Using the MSP430 IEC60730 Software Package Configuration Tool

(/) Tl Resource Explorer 3

Packages: IMSPBOware v] 3| Devices: |All

All
enter searc_Welcome

- & Dev StellarisWare
. | Dev SYS/BIOS
4 [Libr System Analyzer (UIA Target)

@9 Driver Library
4 %% Graphics Library
| User's Guide

GBS ADT Demmrnimmmnns's Roida

Expand Libraries and IEC 60730 Library and IEC Configuration Tool.

& Devices
." Development Tools
4 [Libraries
4 Driver Library
@4 Graphics Library
@4 USB Developers Package
@4 Capacitive Touch Software Library
4 %Y IEC 60730 Library
] User's Guide
@ APIProgrammer's Guide
@ IEC Configuration Tool
@ Empty Project
. ©% Example Projects
* NFCLink

' 4

Finally, click on the "Launch IEC60730 Configuration Tool".

13.4 Generating custom “IEC60730_user_config.h" file

The default output location of the header file is {IEC60730_R0OOT}\iec60730\include . If the
tool is run from a different directory the output directory path needs to be updated. The following

steps show how to update the output path:

1. Uncheck the “Use Default Location".
MSP430 IEC60730 Software Package Path

(V] Use Default Location Generate

2. After removing the check mark, click the “Browse..." button and point to the following directory
{IEC60730_ROOT}\iec60730\include

2015-02-12,8 : 19 : 040600 53

Using the MSP430 IEC60730 Software Package Configuration Tool

13.5

Once you have filled with the desired values, click the “Generate" button. If you have entered the
valid values, you will be prompted by a dialog box as the one shown below.

. o]

Do you want to generate header file;
Cimsp430-ec60730Mect07INncludeNECE0730_user_config_custom.h?

| Yes | | Mo | Cancel]

In case a field has invalid data content an error message similar to the one below will be generated.

]

Error
0 Check sum location is not a valid 16-bit hexvalue

Lox |

To integrate the custom generated file to the library you must rename
“IEC60730_user_config_custom.h" to “IEC60730_user_config.h". Once you rename the file
you will be able to run the self test with the custom parameters.

NOTE: It is suggested that the user keeps a copy of the original “IEC60730_user_config.h". Using
a custom configuration file may cause example projects to have compilation errors.

Generating CRC-CCITT checksum memory file

The MSP430 IEC60730 Software Package Configuration Tool includes a panel that allows users to
generate x.dat and *.txt memory file with CRC-CCITT checksums calculated from memory locations
that are monitored by the non-volatile test.

54

2015-02-12,8 : 19 : 040600

Using the MSP430 IEC60730 Software Package Configuration Tool

CRC-CCITT Test Properties

CRC Initial Value: 0xFFFF CRC checksum location: 0x1000
CRC-CCITT Checksum Generator

L_| Load Memory File #1
L_J Load Memory File #2

L_| Load Memory File #3

|| Load Memory File #4

File #1 checksum: File #2 checksum:

File #3 checksum: File #4 checksum:

To generate the checksum memory file:
1. Obtain a *.dat or *.txt file with the memory content to be monitored by the test. To generate
the memory file please refer to Obtaining memory file
2. Load the generated file(s) to the configuration tool using the “Load Memory File X" checkboxes.

3. Once you load all the memory files, click on “Calculate". If the files loaded had the expected
format, the CRC-CCITT checksum(s) will be calculated and displayed at “File N checksum:"
field. The supported formats are:

m 16-bit C-style (x.dat) file or
m MSP-430 TXT file (x.txt)

4. After, the CRC checksum are calculated click on the checkbox “Generate File with CRC check-
sums".

Memory File Generation

E] Generate File with CRC check sums

Select Output format of Memory File: |_*.dat L

Specify location to output memaory file:

Browse... |
Create |

5. Verify that the “CRC checksum location" fiels has the correct address.

2015-02-12,8 : 19 : 040600 55

Using the MSP430 IEC60730 Software Package Configuration Tool

13.6

13.7

rties
#FFFF CRC checksum location: 0x1000

m Generator

ila #4
6. Select the desired output format for the memory file. The output file is IDE dependent:

m For CCS use (x.dat) file
m For IAR use (x.txt) file

7. Select the output path for the memory file.

8. Click “Create".
NOTE: The CRC-CCITT checksum will be placed in the same order as you are loading the memory
files starting at the “CRC checksum location" specified in the Configuration Tool (e.g. loading

memory file #1 and #2 with CRC checksum loaction= 0x1800, will place checksum for file #1 in
memory location 0x1800 and checksum for file #2 will be placed in 0x1802).

Obtaining memory file

The general steps to obtain a memory content file in CCS are the following:

1. Determine non-volatile memory location in MSP430 device to be monitored.
m This can be determined using the “Memory Organization” section in the device datasheet.

2. Obtain memory file using CCS or IAR IDE. If you want to use the CRC checksum generation
feature, please verify that the memory file has the expected format.

m For CCS expected format 16-Bit Hex -C Style
m For IAR expected format msp430-txt

For more information on how to obtain memory content file in CCS please refer to Example obtain-
ing memory file in CCS or for IAR please refer to Example obtaining memory file in IAR.

Example obtaining memory file in CCS

The following section shows how to obtain the flash memory content of Bank A in a MSP430F5529
in Code Composer Studio.

1. Go to “Memory Organization” section in the device datasheet and determine the start and end
address for Bank A.

56

2015-02-12,8 : 19 : 040600

Using the MSP430 IEC60730 Software Package Configuration Tool

Table 6. Memory Organization!)

MSP430F5522 egsodbait MSPA430FS527 MSP430F5529
MSP430F5521 MSP430F5515 MSP430F5526 MSP430F5528
MSP430F5513 MSPAIOFSE1 MSP430F5517 MSP430F5519
Memory (flash) Total Size 32KB 84 KB 96 KB 128 KB
Main: interrupt vector 00FFFFh-00FFS0h | OOFFFFh-00FF8Oh | OOFFFFh-00FFE0h | | OOFFFFh-00FFS0h
MIA NIA NIA 32KB
Bank D 0243FFh-01C4000
Bank C MIA MNIA 32KB 32KB
_ 0IC3FFh-014400n | | 01C3FFR-0144000
Main: code memory
Bank B 15KB 2KB 2KB 32KB
DOFFFFR-00C4000 0143FFh-00C400h 0143FFh-00C400h 0143FFR-00C4000
Bank A 17KB NKB NKB 32KB
00C3FFh-008000h | 0OC3FFh-004400h | 0OC3FFh-004400n | | 00C3FFR-004400n
Sector 3 2KE™ NIA NIA 2KB
D043FFh-003C00h 0043FFh-003C00R
Sector 2 2K8" NiA 2KB
- D03BFFh-003400h 003BFFh-003400h | 003BFFh-003400h
For MSP430F5529 Bank A has a start address of “0x004400h" and end address of
“Ox00C3FF".

2. Calculate the number of 16-bit word based on the start and end address:
of 16-bit words = (end_address - start_address +1)/2
For this example the “# of 16-bit words = 0x4000"

3. In CCS, start a debugging session of the project.

4. When the debug session has started, go to Windows->Show View->Memory Browser.
s | Window | Help

-l New Window
New Editor | | . & ~
er Open Perspective »
te Show View » | @5 Breakpoints Alt+Shift+Q, B
Customize Perspective... & Console Alt+Shift+Q, C
Save Perspective As... %5 Debug
Reset Perspective... = Disassembly
Close Perspective @) EmorLog Alt+Shift+Q, L
Close All Perspectives G Expressions
@ Memory Browser
Reagaton " |82 Outline AltsShift+Q, O
Refresh Debug Views il Registers
Preferences {8 Scripting Console Alt+Shift+Q, 1 || an
4 Target Configurations »
[T] Trace
AV 6= Variables AlteShift+ 0. V

5. In the Memory Browser window select “Save Memory"

[J Memory Browser :2 dEvielverHed

T

* | #J Save Memory ¢
| ¥4 Load Memory
‘@ Fill Memory

6. In the “Save Memory" window select the output path and file name for the memory file. Click
“Next"

2015-02-12,8 : 19 : 040600 57

Using the MSP430 IEC60730 Software Package Configuration Tool

v+ Save Memory I-_‘_l—JEI ot S

Save Memory

Select a file to save the memaory data

File C:\msp430-iec60730\examples\iec60730\mspd30f5529\CCS\BankD.dat

Mote that the default format is Raw Data Format.

For TI Data Format, specify ".dat" as the file extension.

For COFF Format, specify ".out” as the file extension.

Loading COFF files using this toel is not recommended. Use Program Load instead.
ELF files are not supported by this tool. Use Program Load instead.

':?:' < Back Mext =] [Einish] [Cancel

L

7. Verify “Format" is set to 16-Bit Hex - C Style. Enter “Start Address". Click on “Specify the
number of memory words to read" and enter the value calculated in step 2. Click “Finish"

58

2015-02-12,8 : 19 : 040600

Using the MSP430 IEC60730 Software Package Configuration Tool

v+ Save Memory I-_‘_l—JEI ot S

Save Memory

Enter the information for the memory block to be saved

Format: |16-Bit Hex - C Style [-

Target
Start Address: (oedd00
Length:

@ Specify the number of memory words to read:
04000

(") Specify the data block dimension in number of memaory words:

@:l Mext = Finish] [Cancel

L

Note:
When generating the memory file verify that no breakpoints are set in the project.

If you currently have no project in CCS and you just want to obtain the memory file. Follow this
steps:

1. In CCS, go to Windows->Show View->Target Configurations

MNew Window
New Editor -
ain.c 2
Open Perspective LI -
Show View v | Bl Console Alt+Shift+Q, C
Customize Perspective... @) Emorlog Alt+Shift+Q, L
Save Perspective As... il (Grace Snipgets
Reset Perspective... :: AR
Close Perspective ot | Outline Alt+Shift+Q, O
Close All Perspectives 2. Problems Alt+Shift+Q, X
{3 Project Explorer
Rlazgaton - ﬁ Scripting Console Alt+Shift+Q, I
Preferences % Target Configurations
Other... Alt+Shift+Q, Q

2. In the “Target Configuration” window right-click on “User Defined" and select “New Target
Configuration”. Type the name of the “Target Configuration". Click “Finish".

2015-02-12,8 : 19 : 040600 59

Using the MSP430 IEC60730 Software Package Configuration Tool

[%, CCSDebug [B1°
5| |4 Target Configurations &3 2 X | B
type filter text

= Projects
= Usr.h..l!--.l
¥ Mew Target Configuration

Import Target Configuration

Delete Delete

Rename F2
Refresh F5

Launch Selected Configuration

Set as Default

Link File To Project »

Properties Alt+Enter

3. In the “Target Configuration" window right-click on the new target configuration file you just
created and select “Launch Selected Configuration”
% Target Configurations 3 B X|$H B0
type filter text
= Projects

4 [= User Defined

%) F5529 ta—* - :
% Mew Target Configuration

Import Target Configuration

® Delete Delete
Rename F2
Refresh F5

we Launch Selected Configuration

Set as Default
4. Once “Debug Perspective" is available, go to Run->Connect Target.
‘ools |Run| Scripts Window Help

L — % Connect Target Ctrl+Alt+C
Disconnect Target Ctrl+Alt+D
Restore Debug State Alt+E

xml [¢

Mspg & Load %

5. Follow Step 4-7 from instructions above.

13.8 Example obtaining memory file in IAR

The following section shows how to obtain the flash memory content of Bank A in a MSP430F5529
in IAR.

1. Go to “Memory Organization" section in the device datasheet and determine the start and end
address for Bank A.

60 2015-02-12,8 : 19 : 040600

Using the MSP430 IEC60730 Software Package Configuration Tool

Table 6. Memory Organization!)

MSP430F5522 egsodbait MSPA430FS527 MSP430F5529
MSP430F5521 MSP430F5515 MSP430F5526 MSP430F5528
MSP430F5513 epodbadyt MSP430FS517 MSP430F5519
Memory (flash) Total Size 32KB 128 KB
Main: interrupt vector QOFFFFh-QFFS0h | OOFFFFR-OOFFSOh | OOFFFFR-OFFS0h | | 0OFFFFh-00FFa0h
MIA NIA MNIA 32KB
Bank D || oassern-oicaotn |
Bank C MIA MNIA 2KB 32KB
_ 01C3FFh-0144000 | | 01C3FFh-014400
Main: code memory
Bk 8 15KB 32K8 32K8 32K8
DOFFFFR-00C400h 0143FFh-00C400h 0143FFh-00C400h 0143FFh-00C400h
S 17KB 2K8 2K8 2K8
Q0C3FFR-008000h | OOC3FFR-004400h | O0OC3FFR-004400h | | 00C3FFR-004400h
Sector 3 2K MNIA MNIA 2KB
0043FFh-003C00h 0043FFh-003C00h
Sector 2 2KBP N/A 2KB
RAM 003BFFh—003400h 003BFFh—003400h 003BFFh=003400h

For MSP430F5529 Bank A has a start address of “0x004400" and end address of “0x00C3FF".
2. Start a debugging session in IAR.

3. When the debug session has started in IAR, go to Debug —> Memory —> Save.. .
Emulator Tools Window Help

Go B |~ % %"
Reset
Stop Debugging ChrleShifte D ey
Step Over [T
Step Into 11
Step Out Shift+F11]
Next Staternent 0
Run to Cursar
Arser el WL
Set Next Staternent - 0
Ce+ Exceptions * PTERM]
Memory » Save.
Refresh Restore...
Macros_. ’—’_n
Leaging 3

Note:

When generating the memory file verify that no breakpoints are set in the project.

4. In the “Memory Save" window, select “Memory" in the Drop-down menu for “Zone". Type the
start and end address. Select “msp430-txt” for File Format. Finally, select the output path and
file name of the memory file. Click “Save".

rMemorySave &1

Zone:

\Memory '] Save

Start address: End address: T

Ox0 0x0

File format:

| msp430-txt -

Filename:
C:\msp430-ec60730\examples\msp430g2553AR \memory.t [,

13.9 Loading CRC checksum memory file

To load the memory file in CCS use the “Load Memory" option in the Memory Browser windows.
The Memory Browser window can be accessed while debugging an application and selecting
Windows—>Show View—>Memory Browser.

2015-02-12,8 : 19 : 040600 61

Using the MSP430 IEC60730 Software Package Configuration Tool

Scripts | Window | Help
%, @ MNew Window
MNew Editer

ode Comy Open Perspective

sconnecte

ofels¢ns

Show View

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives
Navigation 3

Refresh Debug Views

Preferences

guration about the target.

sult] "]

2= oo

el

L] & e
Breakpoints AltsShift«Q, B
Console AlteShift+«Q, C
Debug
Disassembly
Ermror Log Alt+Shift+Q, L
Expressions
Memaory Browser
Qutline Alt+Shift+Q, O
Registers
Scripting Console Alt+Shift+Q, 1
Target Configurations
Trace

= Variables Alt+5Shift+Q, V
Cther... Alt+5Shift+Q, Q
rerger i opti

To load the memory file in IAR use the “Restore

The Restore option is under Debug—>Memory—>Restore.

.."_ memory option while debugging the application.

Debug | Emulator Tools Window Help

Go F5
& Break
Reset
= Stop Debugging Ctrl+Shift+D
3 Step Over F10
Step Into F11
Step Out Shift+F11
Next Statement
Run to Cursor
Autostep...
Set Next Statement

C++ Exceptions

Memory
Refresh

Macros...

Logging

Y w2 E

L T

For detailed step-by-step instruction on how to load the CRC checksums please refer to step 4
and 5 from Generating CRC-CCITT Checksums for examples in CCS or Generating CRC-CCITT
Checksums for examples in IAR .

62

2015-02-12,8 : 19 : 040600

2015-02-12,8 : 19 : 040600

63

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl| deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used.
Information published by Tl regarding third-party products or services does not constitute a license from Tl to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of Tl.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are specifi-
cally designated by Tl as military-grade or “enhanced plastic.” Only products designated by Tl as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications " ’
Amplifiers amplifier.ti.com Audio Wmoﬂve
Data Converters dataconverter.ti.com Automotive grs

DLP® Products www.dlp.com Broadband www.f[!.comﬁg_ro_?dlban? |
DSP dspi.com Digital Control www.ti.com/digitalcontro
Clocks and Timers www.ti.com/clocks Medical %m/mgdmal
Interface interface.ti.com Military w
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.fi.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

64 2015-02-12;8 : 19 : 04_0600

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	2 API relation to Table H.1 in IEC60730:2010 standard
	3 Running IEC60730 example projects
	3.1 Running IEC60730 example projects
	3.2 Generating CRC-CCITT Checksums for examples in CCS
	3.3 Generating CRC-CCITT Checksums for examples in IAR

	4 Starting a New IEC60730 project
	4.1 Introduction
	4.2 Starting a New IEC60730 project in CCS
	4.3 Starting a New IEC60730 project in IAR
	4.4 Location in Memory to Test Program Counter CCS
	4.5 Location in Memory to Test Program Counter IAR

	5 Analog-to-Digital Converter Test
	5.1 Introduction
	5.2 Type of test
	5.3 API Functions
	5.4 Programming Example

	6 CPU Registers Test
	6.1 Introduction
	6.2 Type of test
	6.3 API Functions
	6.4 Programming Example

	7 Clock Fail Test
	7.1 Introduction
	7.2 Type of test
	7.3 API Functions
	7.4 Programming Example
	7.5 Using different Timer

	8 Non Volatile Memory Test
	8.1 Introduction
	8.2 Type of test
	8.3 API Functions
	8.4 Programming Example

	9 General Purpose I/O Test
	9.1 Introduction
	9.2 Type of test
	9.3 API Functions
	9.4 Programming Example

	10 Variable Memory Test
	10.1 Introduction
	10.2 Type of test
	10.3 API Functions
	10.4 Programming Example

	11 Program Counter Register Test
	11.1 Introduction
	11.2 Type of test
	11.3 API Functions
	11.4 Programming Example

	12 IEC60730 Class B API execution times and Code Size
	12.1 Introduction
	12.2 IEC60730 Class B API Execution Time and Code Size MSP430G2553 CCS
	12.3 IEC60730 Class B API Execution Time and Code Size MSP430G2553 IAR
	12.4 IEC60730 Class B API Execution Time and Code Size MSP430F5529 CCS
	12.5 IEC60730 Class B API Execution Time and Code Size MSP430F5529 IAR
	12.6 IEC60730 Class B API Execution Time and Code Size MSP430FR5739 CCS
	12.7 IEC60730 Class B API Execution Time and Code Size MSP430FR5739 IAR

	13 Using the MSP430 IEC60730 Software Package Configuration Tool
	13.1 Introduction
	13.2 Running Configuration Tool
	13.3 Launching Configuration Tool from TI Resource Explorer
	13.4 Generating custom ``IEC60730_user_config.h`¨ file
	13.5 Generating CRC-CCITT checksum memory file
	13.6 Obtaining memory file
	13.7 Example obtaining memory file in CCS
	13.8 Example obtaining memory file in IAR
	13.9 Loading CRC checksum memory file

	IMPORTANT NOTICE

