I3 TEXAS

INSTRUMENTS

MSP MCU FRAM Utilities version 03.10.00.10

USER’S GUIDE

FRAM-Utilities-UsersGuide-03.10.00.10 Copyright © Texas Instruments Incorporated.

Copyright

Copyright © Texas Instruments Incorporated. All rights reserved.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments I TEXAS

Post Office Box 655303

Dallas, TX 75265 INSTRUMENTS

http://www.ti.com/msp430

Revision Information

This is version 03.10.00.10 of this document, last updated on October 27, 2017.

2 October 27, 2017

Table of Contents

Table of Contents

CopyHght . . . e e e e e e e e e e e e e e e e e 2
Revision Information e e e e e e e e 2
1 Introduction e e e e e e 5
2 Compute Through Power Loss (CTPL) i i i i it e e e e e e e e e e n e s 7
2.1 Introduction L e 7
2.2 Usage o 8
221 Components e e 8
2.2.2 Debugging LPM3.5and LPM4.5Modes 10
2.2.3 Code Composer Studio (CCS) e e 11
2.24 IAREmbedded Workbench 13
2.3 APIReference 16
2.3.1 APIOVerview e e e e 16
2.3.2 Core APl Set e 16
2.3.3 LowlLevel e 21
2.3.4 Peripherals e 24
235 Benchmark 25
2.4 Exampleso e 26
241 Examples Overview e 26
242 LPM4A5WithGPIOWakeup 27
243 LPM35WithRTCWakeup e e e s 28
2.4.4 COMP_E Powerloss Monitor e e e e 29
24,5 ADC12 B Powerloss Monitor e 30
2.5 Benchmarking 31
251 OVEIVIEBW 31
252 Configuration L e 33
3 LZ4 CompPressSion o i i i i i e e e e e e e e e e e e e e e e e e 35
3.1 Introduction L e e e e e e 35
3.2 Usage o o 36
.21 Components e e 36
3.2.2 Performance Configuration 37
3.23 Command Line Utility 38
3.3 APIReference e 39
3.3.1 APIOVEIVIEW e e 39
3.8.2 LZ4A 39
3.8.3 xxHash 46
3.4 Examples . . . o e 48
3.4.1 Examples Overview e e 48
3.42 Compress Textto LZ4 File e 48
3.4.3 Compress Text with CRC16 Checksum e 48
3.44 Decompress Data Stream 48
3.5 LZ4Benchmarks e e e 49
3.5.1 LZ4Compression Ratio e 49
3.5.2 LZ4 Compression Speed 51
4 Random Number Generator (RNG) i i ittt et e e e e e e a s 53
4.1 Introduction L e 53
4.2 APIReference e 54
421 APIOVEIVIEW e e 54
422 RBNG . . . 54

October 27, 2017 3

Table of Contents

4.3 Examples 56
4.3.1 Examples Overview e e 56
43.2 Generate RandomData 56
4.3.3 Generate Random Datato CSV File 56
5 Non-Volatile Storage (NVS) o o i i e e e e e e e e e e e e 57
5.1 Introduction 57
5.2 Features 57
5.8 Storage Containers e 57
58,1 DataStorage 57
5.83.2 LogStorage e 58
5833 RingStorage e 58
5.4 Memory Allocation L e 58
541 FRAM . e 58
5.4.2 Information Memory e 58
55 APIReference 59
5.5 NVS 59
552 NVSData e 59
553 NVSLOG . . . 63
554 NVSRING o 66
555 NVS Support 69
5.6 Examples e 71
5.6.1 Examples Overview e 71
5.6.2 Continuous Counter e 71
5.6.3 Application Configuration e 71
5.6.4 Datalogger. e 71
5.6.5 Black Box Recorder e 71
IMPORTANT NOTICE o e e e e e e e e e e e e et s e e e e 72

4 October 27, 2017

Introduction

1 Introduction

The Texas Instruments FRAM Utilities is a collection of embedded software utilities that leverage
the ultra-low power and virtually unlimited write endurance of ferroelectric RAM (FRAM). The utili-
ties are available for MSP430FRx FRAM microcontrollers and provide example code to help start
application development.

Included are the following FRAM Utilities:

m Compute Through Power Loss (CTPL): A utility application programming interface (API) that

enables ease of use with LPMx.5 low-power modes and a powerful shutdown mode that allows
an application to save and restore critical system components when a power loss is detected.

LZ4 Compression (LZ4): A lightweight compression utility based on the open source LZ4
compression standard and algorithm. The utility provides APls for both compression and
decompression on MSP FRAM microcontrollers and has been optimized for ultra-low power to
enable data logging, over the air updates and more.

Random Number Generator (RNG): Implementation of a counter mode deterministic random
byte generator (CTR-DRBG) according to the NIST SP 800-90A Rev 1 specification. Random
numbers are generated using seed information stored in the TLV tables and are unique to
each device.

Non-Volatile Storage (NVS): Library that make handling of non-volatile data easy and robust
against intermittent power loss or asynchronous device resets. Includes three different storage
containers for a wide range of applications.

October 27, 2017

Introduction

6 October 27, 2017

Compute Through Power Loss (CTPL)

2.1

Compute Through Power Loss (CTPL)

INEOAUCH ON .. e e 7
L =T = 7
AP R BIENCE ... it e 16
XMl ..o e 26
BeNCMarKiNg . ..o e 31
Introduction

Compute Through Power Loss (CTPL) is a utility API set that leverages FRAM to enable ease of
use with LPMx.5 low-power modes (LPM) and provides a powerful shutdown mode that allows an
application to save and restore critical system components when a power loss is detected.

Traditional use of the LPM3.5 and LPM4.5 cause the application to reset when waking up and
both application and peripheral state are not retained. The application must check for the LPMx.5
reset source at the start of the program and execute a separate branch of code if the device is
waking up from a LPMx.5 mode. This often includes reinitializing both core system and application
required peripherals in addition to initialization of global variables by the compiler defined c-start up
function that is executed before the main program. This increases the start up time and increases
the complexity of applications. As a result application programmers often avoid these low-power
modes unless absolutely necessary.

The CTPL utility provides an easier solution for the application programmer. The included linker
configuration files will place all application data sections into FRAM where they are retained through
LPMx.5 low-power modes. The utility will also allocate FRAM storage used to save the state of the
application and critical system peripherals. When entering into low-power modes with the CTPL
utility the FRAM storage will be used to save the necessary components and the utility will put the
device into the specific low power mode and wait for a device wakeup or reset. Upon device wakeup
or reset the utility will intercept the reset and restore the application and peripheral state from the
FRAM storage. After restoring the state the utility returns back to the application and the next line
of code is executed, removing the need for the application programmer to check for a reset at the
start of main.

Application execution using LPMx.5 modes and the CTPL utility can now be written using the same
methods as LPMO0-3 where the system state is retained. This enables existing applications to easily
integrate the CTPL utility and begin using LPMx.5 modes in place of existing LPM0-3 modes and
avoid rewriting complex application start up code.

Additionally the CTPL utility provides an API to safely save and restore context in the event of a
powerloss. The utility will save the state of the application and critical system peripherals just like
the LPMx.5 modes and then wait for the device to enter a BOR due to powerloss. A configurable
parameter allows for a timeout for situations where the voltage ramps back up to operational levels.
A device reset, power on or timeout will all restore the saved state and return to the application in
the same manner as the LPMx.5 functions. See the CTPL examples section for powerloss mon-
itor examples using an internal ADC12_B window comparator solution and an external COMP_E
solution using a simple voltage divider to detect when power is lost.

October 27, 2017 7

Compute Through Power Loss (CTPL)

2.2

2.2.1

2.2.1.1

221.2

2.2.1.3

Usage

(070 14170 1T | £ 8
Code Composer STUAIO (CCS) ...t et e e 11
IAR Embedded WOrkDenCh e e e 13
Debugging LPM3.5 and LPM4.5 MOGESniii it e e e e 10
Components

The CTPL utility consists of the following software components. Some of these are intended to be
directly called from the application while others are internal to the utility implementation.

Core API Set

The CTPL Core API Set represents utility API’s that the application can directly interface with. The
simple API set includes the following functions:

m ctpl_init(): Initialize the CTPL library at the start of the system pre-init.

m ctpl_enterLpm35(): Save context, enter LPM3.5, restore context and return to the main appli-
cation.

m ctpl_enterLpm45(): Save context, enter LPM4.5, restore context and return to the main appli-
cation.

m ctpl_enterShutdown(): Save context, disable all interrupt sources, configure watchdog timeout
and wait for BOR. Restore context and return to the main application on a device reset, power
on or timeout.

See the Core API reference for complete API documentation.

Low Level

Low-level C and assembly functions that directly interface with the MSP430 to save the state and
enter low power modes. These functions are called by the Core API Set and should not be invoked
from the main application.

See the Low Level reference section for complete APl documentation.

Peripheral

Peripheral specific functions to save and restore context. Each peripheral supported by the utility
has a save, restore and epilogue function that can be defined by the CTPL device file based on
peripheral availability and called by the Core API Set.

The CTPL utility currently supports the following peripherals. By default the core peripheral modules
are enabled and the application peripheral modules are disabled.

m Core Peripherals

October 27, 2017

Compute Through Power Loss (CTPL)

« System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
» Power Management Module (PMM)
 Clock System (CS)
» 32-Bit Hardware Multiplier (MPY32)
* FRAM Controller (FRCTL)
* Memory Protection Unit (MPU)
* RAM Controller (RAMCTL)
« Digital /O (PORT, PORT_INT)
» Watchdog Timer (WDT_A)
* Real-Time Clock (RTC)
+ Real-Time Clock B (RTC_B)
* Real-Time Clock C (RTC_C)
m Application Peripherals
« ADC Module (ADC)
+ ADC Module (ADC10_B)
« ADC Module (ADC12_B)
» Capacitive Touch I/O (CAPTIO)
» Comparator D Module (COMP_D)
» Comparator E Module (COMP_E)
* CRC Module (CRC)
+ CRC32 Module (CRC32)
+ DMA Controller (DMAX_3)
* DMA Controller (DMAX_6)
» Enhanced Comparator (ECOMP)
* Enhanced Universal Serial Communication Interface (EUSCI_A)
» Enhanced Universal Serial Communication Interface (EUSCI_B)
» LCD Controller (LCD_C)
« LCD Controller (LCD_E)
+ Smart Analog Combo (SAC)
* Timer (TIMER_A)
* Timer (TIMER_B)
 Trans-Impedance Amplifier (TRI)

See the Peripheral reference section for complete APl documentation.

2.21.4 Device

Device specific C and linker configuration files. Every CTPL application needs to include the device
C file that corresponds to the device being used. This device C file defines the peripherals that
are saved and restored by the utility. Generally the LPMx.5 device wakeup time is significantly long
enough that the peripheral restore routine has minimal impact on the overall wakeup time of the
application, however certain peripherals can be excluded if they are not used in the application by
editing this device C file. Additionally any CTPL application is required to use the device and IDE
specific linker configuration file which places all read/write data into FRAM. Both of these files are
included by default in the empty and example projects provided with the utility.

See the Code Composer Studio (CCS) or IAR Embedded Workbench section for IDE specific in-
struction on using the CTPL utility.

October 27, 2017 9

Compute Through Power Loss (CTPL)

2.2.2 Debugging LPM3.5 and LPM4.5 Modes

Applications that use LPM3.5 and LPM4.5 modes can enable easier debugging by defining
CTPL_LPM_DEBUG in the compiler predefined symbols. This will enable emulation of LPM3.5 and
LPM4.5 modes and proper wakeup of the device upon receiving an interrupt. While emulating
LPM3.5 and LPM4.5 modes the CPU is in active mode and polling for interrupts as a wakeup
source. Upon receiving a wakeup interrupt the software performs a software reset and processes

the event.

10 October 27, 2017

Compute Through Power Loss (CTPL)

2.2.3 Code Composer Studio (CCS)

2.2.3.1 Creating an Empty CTPL Project

FRAM Utilities is a discoverable package in Code Composer Studio (CCS). Creating a new project
with the complete CTPL library configured is as easy as selecting the "File -> New -> CCS Project”
menu option and selecting the "Empty Project with FRAM Utilities" project template.

+'+ Mew CCS Project o 2=

CCS Project —*

(1) Project name must be specified { :
Target: msp430fr5969 ~ |Mspa30FRsgE0 v]
Connection: | TI M5P430 USBL [Default] || Identify.. |

£ MSP430

Project name:

[T Use default location

Location: Browse...

Compiler version: | TIvd.4.1 V] ’ More...]

b Advanced settings

* Project templates and examples

type filter text Initial starting point for using the Compute -
- Through Power Loss (CTPL) utility.
=| Empty Projects
> |i=| Basic BExamples Copies source code into your project and
a4 [=| FRAM Utilities configures the project settings. Everything
& Empty Project with CTPL you need to get started using CTPL in a new

=| MSP430 DriverLib [P

I:'Z:' < Back Mext = Finish

Figure 2.1: CCS new project wizard

2.2.3.2 Add CTPL to an Existing Application

The same project template can be used to apply the FRAM Utilities and CTPL settings and source
code to an existing CCS project. Right click the project and select the "Source -> Apply Project

October 27, 2017 11

Compute Through Power Loss (CTPL)

Template..." menu option and select the "Add Copy of FRAM Utilities to Project” project template.

+'« Apply Project Template = @

Project Templates

Select one of the available project templates,

type filter text Add the CTPL utility to an existing project. Copies »
- — — source code into your project and configures the
4 [=| FRAM Utilities Additions project settings.
= Add CTPL to Project
4 ||=| M5P430 DriverLib Additions
= Add Local Copy of DriverLib
Point to Installed DriverLib

@

Im
m

Mext > [Finish l | Cancel

Figure 2.2: CCS apply project template

October 27, 2017

Compute Through Power Loss (CTPL)

2.2.4 |AR Embedded Workbench

2.2.41 Opening the Examples

The CTPL utility provides an IAR Embedded Workbench workspace with preconfigured projects for
each example. The workspace can be opened in IAR Embedded Workbench by double clicking
the .eww file if windows associates this file type with IAR Embedded Workbench. Alternatively the
workspace can be opened within IAR Embedded Workbench by navigating to and selecting the
desired workspace in the "File -> Open -> Workspace" menu option.

2.2.4.2 Add CTPL to an Existing Application

Using the CTPL utility with IAR Embedded Workbench requires several different step to configure
properly. The steps have been listed below and need to be followed closely to ensure proper
integration with the existing application.

1. Add the CTPL source code to the project.
2. Add the CTPL include path to the project compiler options.

Options for node "ctpl-monitor-mspd30fr59691p-sharp96” IEI

Categary: Factomy Settings

General Options Multi-file Cornpilation
[Discard Unused Publics
Assembler
Custom Build | Language 2 | Code | Optimizations | Output | List | Preprocessar || 4| *
Build Actions
Linker [Ignore standard include directories
TIULP Advisor Additional include directories: (one per line)
Debugger C:divmsp430+fram-utils_1_00_00_00%srcctpl - E]
FET Debugger
Simulator

Preinclude file:

[

Defined symbals: jone per ling)
CTPL_STACK_SIZE=160 - [C] Preprocessor output to file
Preserve comments

Generate Hine directives

[Ok] [Cancel

Figure 2.3: CTPL include path

3. Add the required predefined assembler symbols to the project assembler options.

October 27, 2017 13

Compute Through Power Loss (CTPL)

(a) CTPL_STACK_SIZE is required and must be predefined to the same size as the config-
ured stack size.

(o) _ LARGE_CODE_MODEL__is optional and should only be predefined if the project uses
the large code model.

-

Options for node "ctpl-monitor-mspd30fr59691p-sharp96” IEI

Categary: Factomy Settings

General Options
C/C++ Compiler
Assembler
Custom Build | Language | Output | List | Preprocessor | Diagnostics | Extra Opﬁonsl
Build Actions .
Linker [Jignore standard include directories!
TI ULP Advisor

Debugger
FET Debugger Additional include directories: (one per ling)

Simulator - E]

Defined symbals: jone perling)

CTPL_STACK_SIZE=160 -
_ LARGE_CODE_MODEL__

[Ok] [Cancel

Figure 2.4: CTPL assembler options

4. Configure the project to use the device linker file (.xcl extension) in the project linker options.

14 October 27, 2017

Compute Through Power Loss (CTPL)

Options for node "ctpl-monitor-rmspd30fr59691p-sharpga”

Categary:

(=)

General Options
C/C++ Compiler
Assembler
Custom Build
Build Actions
Linker
TI ULP Advisor
Debugger

FET Debugger
Simulator

Factary Settings

Corfig |0Lrtp|_rt I Extra Output | List |#de'ﬁne | Diagnostics |Ched<)
Linker corfiguration file
COvemde default
C:Mivmspd30fram-utils_1_00_00_00\srchwtplidevices 'msp430 E]

[7] owemide default program entry
(@) Entry symbol | program_start
Defined by application
Search paths: (one perling)
STOOLKIT_DIRELLIB - E]

Raw binary image
File: Symbol: Seagment: Align:

(-]

[Ok] [Cancel

Figure 2.5: CTPL IAR linker file

October 27, 2017

15

Compute Through Power Loss (CTPL)

2.3

2.3.1

2.3.2

2.3.2.1

API Reference

AP OVeIVIBW ..
Core APl St .. e
LOW LeVel ..
Peripherals
Benchmark

APl Overview

The CTPL utility is designed to provide a simplified Core API set for use by the main application
program. Methods outside of this API set have been documented below but are not intended to be

modified or directly interfaced with by the main application program.

Core API Set

Macros

m #define CTPL_DISABLE_RESTORE_ON_RESET
m #define CTPL_ENABLE_RESTORE_ON_RESET

m #define CTPL_SHUTDOWN_TIMEOUT_1024_MS

m #define CTPL_SHUTDOWN_TIMEOUT_128_MS
m #define CTPL_SHUTDOWN_TIMEOUT_16_MS
m #define CTPL_SHUTDOWN_TIMEOUT_1_MS

m #define CTPL_SHUTDOWN_TIMEOUT_256_MS
m #define CTPL_SHUTDOWN_TIMEOUT_2_MS

m #define CTPL_SHUTDOWN_TIMEOUT_32_MS
m #define CTPL_SHUTDOWN_TIMEOUT_4_MS

m #define CTPL_SHUTDOWN_TIMEOUT_512_MS
m #define CTPL_SHUTDOWN_TIMEOUT_64_MS
m #define CTPL_SHUTDOWN_TIMEOUT_8_MS

Functions

m void ctpl_enterLpm35 (bool restoreOnReset)
m void ctpl_enterLpm45 (bool restoreOnReset)
m void ctpl_enterShutdown (uint16_t timeout)
m void ctpl_init (void)

Detailed Description

The following is a reference of all CTPL API’s available for the application to use. The application
should only directly interface with the function defined in ctpl/ctpl.h and listed below.

16

October 27, 2017

Compute Through Power Loss (CTPL)

2.3.2.2

23.2.2.1

23.2.2.2

23.2.2.3

23.2.24

2.3.2.25

2.3.2.2.6

2.3.2.2.7

2.3.2.2.8

23.2.29

2.3.2.2.10

Macro Definition Documentation

#define CTPL_DISABLE_RESTORE_ON_RESET Do not allow the CTPL utility to restore a saved
state if the device is reset or powered on from a cold start.

#define CTPL_ENABLE_RESTORE_ON_RESET Allow the CTPL utility to restore a saved state
if the device is reset or powered on from a cold start.

Referenced by ctpl_enterShutdown().

#define CTPL_SHUTDOWN_TIMEOUT_1024_MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 1024 milliseconds the watchdog
timer will reset the device and cause a restore of the saved state.

#define CTPL_SHUTDOWN_TIMEOUT_128_MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 128 milliseconds the watchdog timer
will reset the device and cause a restore of the saved state.

#define CTPL_SHUTDOWN_TIMEOUT_16_MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 16 milliseconds the watchdog timer
will reset the device and cause a restore of the saved state.

#define CTPL_SHUTDOWN_TIMEOUT_1_MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 1 millisecond the watchdog timer
will reset the device and cause a restore of the saved state.

#define CTPL_SHUTDOWN_TIMEOUT_256 MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 256 milliseconds the watchdog timer
will reset the device and cause a restore of the saved state.

#define CTPL_SHUTDOWN_TIMEOUT 2 _MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 2 milliseconds the watchdog timer will
reset the device and cause a restore of the saved state.

#define CTPL_SHUTDOWN_TIMEOUT_32_MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 32 milliseconds the watchdog timer
will reset the device and cause a restore of the saved state.

#define CTPL_SHUTDOWN_TIMEOUT_ 4 MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 4 milliseconds the watchdog timer will
reset the device and cause a restore of the saved state.

October 27,

2017 17

Compute Through Power Loss (CTPL)

2.3.2.2.11

2.3.2.2.12

2.3.2.2.13

2.3.2.3

#define CTPL_SHUTDOWN_TIMEOUT_512_MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 512 milliseconds the watchdog timer
will reset the device and cause a restore of the saved state.

#define CTPL_SHUTDOWN_TIMEOUT_64 MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 64 milliseconds the watchdog timer
will reset the device and cause a restore of the saved state.

#define CTPL_SHUTDOWN_TIMEOUT_8 MS Timeout duration that can be passed to
ctpl_enterShutdown(). If the device does not enter BOR after 8 milliseconds the watchdog timer will
reset the device and cause a restore of the saved state.

Function Documentation

2.3.2.3.1 void ctpl_enterLpm35 (bool restoreOnReset) Save state and enter into low power mode

LPM3.5.

LPMS3.5 does not retain the settings of peripheral registers or RAM contents so these settings and
states must be saved to non-volatile FRAM. This function will save the state of all the peripherals
defined in the include device file, the context of the CPU and the active stack to non-volatile FRAM
storage. After saving the state it is marked as valid so that it may be restored after wakeup and
the function will enter into LPM3.5. When the device wakes up due to an interrupt or reset/power
on event the ctpl_init() function will check if the state is valid and if it should be restored. The
restoreOnReset argument determines if state context is restored on a device reset or power on,
passing true will always restore the saved state where as passing false will only restore state on a
LPM3.5 wakeup from interrupt (returning to the start of main if the device was reset). The saved
peripheral states, CPU states and stack are restored from the FRAM storage and the function
returns back to the application from where it was called. This function bypasses the need to check
at device start up for a LPM3.5 wakeup and the application only needs to reinitialize peripherals
that are not saved by the utility.

This API is functionally the same as ctpl_enterLpm45(). The actual low-power mode used (LPM3.5
or LPM4.5) is determined by the state of the RTC peripheral, LPM3.5 is used if the RTC is enabled
and LPM4.5 is used if the RTC is disabled. For more information on low power modes refer to the
device datasheet and user’s guide.

Parameters

restoreOnReset | Allow the CTPL utility to restore a saved state if the device is reset or powered
on from a cold start. Valid values are:

m CTPL_DISABLE_RESTORE_ON_RESET
m CTPL_ENABLE_RESTORE_ON_RESET

Returns
none

2.3.2.3.2 void ctpl_enterLpm45 (bool restoreOnReset) Save state and enter into low power mode

LPM4.5.

18

October 27, 2017

Compute Through Power Loss (CTPL)

LPM4.5 does not retain the settings of peripheral registers or RAM contents so these settings and
states must be saved to non-volatile FRAM. This function will save the state of all the peripherals
defined in the include device file, the context of the CPU and the active stack to non-volatile FRAM
storage. After saving the state it is marked as valid so that it may be restored after wakeup and
the function will enter into LPM4.5. When the device wakes up due to an interrupt or reset/power
on event the ctpl_init() function will check if the state is valid and if it should be restored. The
restoreOnReset argument determines if state context is restored on a device reset or power on,
passing true will always restore the saved state where as passing false will only restore state on a
LPM4.5 wakeup from interrupt (returning to the start of main if the device was reset). The saved
peripheral states, CPU states and stack are restored from the FRAM storage and the function
returns back to the application from where it was called. This function bypasses the need to check
at device start up for a LPM4.5 wakeup and the application only needs to reinitialize peripherals
that are not saved by the utility.

This APl is functionally the same as ctpl_enterLpm35(). The actual low-power mode used (LPM3.5
or LPM4.5) is determined by the state of the RTC peripheral, LPM3.5 is used if the RTC is enabled
and LPM4.5 is used if the RTC is disabled. For more information on low power modes refer to the
device datasheet and user’s guide.

Parameters

restoreOnReset | Allow the CTPL utility to restore a saved state if the device is reset or powered
on from a cold start. Valid values are:

m CTPL_DISABLE_RESTORE_ON_RESET
m CTPL_ENABLE_RESTORE_ON_RESET

Returns
none

2.3.2.3.3 void ctpl_enterShutdown (uint16_t timeout) Save the state when power is lost.

Device shutdown does not retain the settings of peripheral registers or RAM contents so these
settings and states must be saved to non-volatile FRAM. This function will save the state of all the
peripherals defined in the include device file, the context of the CPU and the active stack to non-
volatile FRAM storage. After saving the state it is marked as valid so that it may be restored after a
reset or powering the device back on. All interrupt and wakeup sources are disabled and the device
waits in active mode for the SVS to put the device into BOR. MCLK is configured to 4MHz and the
SMCLK and WDT_A dividers are set based on the timeout parameter. In this state the only source
of a wakeup is a device reset, power up or a shutdown timeout. In all three wakeup scenarios the
state is restored and the application resumes. The saved peripheral states, CPU states and stack
are restored from the FRAM storage and the function returns back to the application from where it
was called.

When configuring the shutdown timeout parameter the device supply voltage and ramp conditions
should be considered to avoid scenarios where voltage ramps down too slowly. If the timeout
duration is not long enough the timeout will trigger a restore before the device enters the BOR
state. In this scenario the restored image is no longer valid and the next power on will cause a
device reset to the beginning of the main application. To prevent this a timeout duration should be
selected so that sufficient time is provided for the supply voltage to ramp down and the timeout only
triggers in the scenario where voltage ramps back up to operational levels.

This API provides a method for application programmers to efficiently save the application state

October 27, 2017 19

Compute Through Power Loss (CTPL)

and shutdown the CPU when a power loss is detected and restore the applications state when the
device regains power. The utility includes two examples demonstrating methods for monitoring the
device voltage and detecting a power loss.

This API only saves and restores RTC_B and RTC_C registers that are not retained in LPMx.5
modes. In device shutdown the context of these other registers must be reinitialized if using these
peripherals. See the device users guide for the complete list of RTC registers and details on which
are retained.

Parameters

timeout | Configurable timeout for a reset if device does not enter BOR. Valid values
are:

= CTPL_SHUTDOWN_TIMEOUT 1_MS

= CTPL_SHUTDOWN_TIMEOUT 2_MS

= CTPL_SHUTDOWN_TIMEOUT 4_MS

= CTPL_SHUTDOWN_TIMEOUT 8 _MS

= CTPL_SHUTDOWN_TIMEOUT 16_MS
= CTPL_SHUTDOWN_TIMEOUT 32_MS
= CTPL_SHUTDOWN_TIMEOUT 64 MS
= CTPL_SHUTDOWN_TIMEOUT 128_MS
= CTPL_SHUTDOWN_TIMEOUT 256_MS
= CTPL_SHUTDOWN_TIMEOUT 512_MS
= CTPL_SHUTDOWN_TIMEOUT 1024 _MS

Returns
none

2.3.2.3.4 void ctpl_init (void) Initialize the CTPL utility.

2.3.3

This function initializes the utility and must be called at the start of the _system_pre_init function for
CCS orthe __low_level_init function for IAR. By default these functions are defined in ctpl_pre_init.c
but some applications might have their own version of the function. In this case the ctpl_pre_init.c
file can be omitted and the function called at the start of the application’s low level function.

Returns
none

Low Level

Macros

m #define CTPL_MODE_BITS

m #define CTPL_MODE_LPM35

m #define CTPL_MODE_LPM45

m #define CTPL_MODE_LPMX5_WAKEUP
m #define CTPL_MODE_NONE

20

October 27, 2017

Compute Through Power Loss (CTPL)

2.3.3.1

2.3.3.2

2.3.3.2.1

m #define CTPL_MODE_RESTORE_RESET
m #define CTPL_MODE_SHUTDOWN

Functions

m uint16_t ctpl_saveCpuStackEnterLpm (uint16_t mode, uint16_t timeout)

Detailed Description

The following is a reference of the CTPL low level functions. These functions are invoked by the
Core API Set and should not be called from outside the utility.

Function Documentation

uint16_t ctpl_saveCpuStackEnterLpm (uint16_t mode, uint16_t timeout) Low level assem-
bly function used to save the state and enter LPM.

Size of RAM contents to save to FRAM. By default this is set to the entire RAM contents for FR2xx
and FR4xx devices and disabled for all other devices. This setting can be overriden by manually
defining in the compiler options (—define=CTPL_RAM_SIZE=864).This assembly function saves the
CPU state and stack into non-volatile FRAM before setting the state as valid and entering into the
low-power mode defined by ctpl_mode. On device reset with a valid state ctpl_init will jump back to
this function which restores the CPU state and stack from the FRAM copy. After restoring the state
the function returns to the higher-level CTPL function that was invoked by the main application.

This function is only intended to be called from within the library code, the user does not need to
invoke this function manually.

October 27, 2017 21

Compute Through Power Loss (CTPL)

2.3.4

Parameters

mode

CTPL modes and flags. Valid flags are:
m CTPL_MODE_NONE
= CTPL_MODE_LPM35
m CTPL_MODE_LPM45
m CTPL_MODE_SHUTDOWN
m CTPL_MODE_RESTORE_RESET
m CTPL_MODE_LPMX5 WAKEUP

timeout

Configurable timeout for a reset if device does not enter BOR. Valid values
are:

= CTPL_POWERLOSS_TIMEOUT 1_MS

= CTPL_POWERLOSS_TIMEOUT 2_MS

= CTPL_POWERLOSS_TIMEOUT 4_MS

= CTPL_POWERLOSS_TIMEOUT 8 _MS

= CTPL_POWERLOSS_TIMEOUT_16_MS
= CTPL_POWERLOSS_TIMEOUT 32_MS
= CTPL_POWERLOSS_TIMEOUT 64 MS
= CTPL_POWERLOSS_TIMEOUT 128 _MS
= CTPL_POWERLOSS_TIMEOUT 256_MS
= CTPL_POWERLOSS_TIMEOUT 512_MS
= CTPL_POWERLOSS_TIMEOUT 1024 MS

Returns

mode CTPL mode and flags.

Peripherals

Data Structures

m struct ctpl_peripheral

Typedefs

m typedef struct ctpl_peripheral ctpl_peripheral
m typedef void(x ctpl_tFunction)(uint16_t baseAddress, uint16_t xstorage, uint16_t mode)

Variables

m const ctpl_peripheral xconst ctpl_peripherals []
m const uint16_t ctpl_peripheralsLen

22

October 27, 2017

Compute Through Power Loss (CTPL)

2.3.4.1 Detailed Description

The following is a reference of the CTPL peripheral functions. These functions are invoked by the
Core API Set and should not be called from outside the utility.

2.3.4.2 Data Structure Documentation

2.3.4.2.1 struct ctpl_peripheral Structure defining how to save and restore a peripherals context. These
structures are provided for each device in the included device-specific ctpl_x.c file required when
using the utility.

Data Fields
uint16_t | baseAddress Peripheral base address.
epilogue Optional function to run after clearing the LOCKLPM5
ctpl_tFunction bit. If this function pointer is null the function will not be
called.
restore Function to restore peripheral context.
ctpl_tFunction
save Function to save peripheral context.
ctpl_tFunction
uint16_t « | storage Peripheral non-volatile storage.

2.3.4.3 Typedef Documentation

2.3.4.3.1 typedef struct ctpl_peripheral ctpl_peripheral Structure defining how to save and restore a pe-
ripherals context. These structures are provided for each device in the included device-specific
ctpl_x.c file required when using the utility.

2.3.4.3.2 typedef void(+ ctpl_tFunction)(uint16_t baseAddress, uint16_t xstorage, uint16_t mode)
Function prototype for peripheral save, restore and epilogue functions.

Parameters

baseAddress | Peripheral base address.

storage | Peripheral non-volatile register storage.

mode | CTPL mode used.

Returns
none

2.3.4.4 Variable Documentation

2.3.4.4.1 const ctpl_peripheralx const ctpl_peripherals[] The device specific array of peripherals to save
and restore. This symbol is defined in the device-specific ctpl_x.c file included with the library.

October 27, 2017 23

Compute Through Power Loss (CTPL)

2.3.4.4.2 const uint16_t ctpl_peripheralsLen Abstracted symbol for the length of the ctpl_peripherals ar-
ray. This symbol is defined in the device-specific ctpl_x.c file required when using the library.

2.3.5 Benchmark

The following is a reference of the CTPL benchmark function. These defines are used by the Core
APl Set and should not be referenced from outside the utility.

24 October 27, 2017

Compute Through Power Loss (CTPL)

2.4

2.4.1

Examples

EXamMPIES OVEIVIBWttt e e e e 26
LPM4.5 With GPIO WaKeUDottt ittt e e e e e e ettt aaeae s 27
LPMB.5 With RTC WaKBUP .ot e ettt ettt ettt et et et e e e e e e e e e et e e e eeees 28
COMP_E POWErIOSS MONItOrttt ittt it e et e e e e e e e et e et e e ettt e 29
ADCT12 B PoWErlOSS MONIMOr ..\ttt e e e e et e e e e e e 30

Examples Overview

These examples demonstrate how to use the CTPL utility in several application use cases. The
examples are implemented for all FRAM LaunchPad Development Kits and Experimenter Boards.
See table below for supported hardware and examples.

Hardware Examples
LPM4.5 GPIO | LPM3.5 RTC | COMP_E Powerloss | ADC12_B Powerloss
msp-exp430fr2311 v v X X
msp-exp430fr2433 v v X X
msp-exp430fr4133 v v X X
msp-exp430fr5739 v v X X
msp-exp430fr5969 v v v v
msp-exp430fr5994 v v v v
msp-exp430fr6989 v v v v

Table 2.1: Hardware support for CTPL examples

Using CCS and Resource Explorer it's easy to import and run the examples. Navigate to the CCS
"View" menu and select "Resource Explorer (Examples)". Under the MSPWare package libraries
select the FRAM-Ustilities node and then CTPL node to view examples, user guides and release
notes.

October 27, 2017 25

Compute Through Power Loss (CTPL)

2.4.2 LPM4.5 With GPIO Wakeup

This example is an adaptation of the C code example msp430fr59xx_Ipm4-5_01 and demonstrates
how to enter LPM4.5 and wakeup from a GPIO interrupt. The example will turn on P4.6 and enter
into LPM4.5. When P1.1 (S2 on MSP-EXP430FR5969) transitions from high to low the example
will turn off P4.6 to indicate the device is no longer in LPM4.5 and blink P1.0 forever.

By using the compute through power loss (CTPL) library the original example code is greatly sim-
plified. The peripherals are initialized once at the start of the application and the library will save
the peripheral and application state in FRAM before entering LPM. Upon wakeup from LPM the
peripheral and application state is restored and the code continues execution from the next line of

code.

// ACLK = VLOCLK, MCLK = SMCLK = DCO = ~1MHz

//

// MSP-EXP430FR5969

VA

// VAR |

// (. P1.0|---> LED2

// -—|RST P4.6|---> LED1

// I I

// | P1l.1|<--- S2 push-button

// I I

26 October 27, 2017

Compute Through Power Loss (CTPL)

2.4.3 LPM3.5 With RTC Wakeup

This example is an adaptation of the C code example msp430fr59xx_Ipm3-5_02 and demonstrates
how to use RTC_B as an interval wakeup in LPM3.5. The example will toggle P4.6 after initialization
to indicate a device start up and then enter LPM3.5 with interrupts enabled. The RTC interrupt will
wake the device up every two seconds and toggle P1.0.

By using the compute through power loss (CTPL) library the original example code is greatly sim-
plified. The peripherals are initialized once at the start of the application and the library will save
the peripheral and application state in FRAM before entering LPM. Upon wakeup from LPM the
peripheral and application state is restored and the code continues execution from the next line of

code.

// ACLK = 32.768kHz, MCLK = SMCLK = DCO = ~1MHz
//

// MSP-EXP430FR5969

A

// VAR XIN| -

// [| 32kHz

// -—|RST XOUT | -

// |

// P1.0|--> LED2

|
// | P4.6|-—> LED1
// I I

October 27, 2017 27

Compute Through Power Loss (CTPL)

24.4

COMP_E Powerloss Monitor

This example demonstrates how to use the COMP_E peripheral and an external voltage divider
to actively monitor supply voltage and detect when power is lost. The comparator is configured
with a 1.5V reference and an external voltage divider provides Vcc/2 to the input pin (P1.5/C5).
When Vcc/2 drops below the 1.5V reference (meaning Vcce is below 3.0V) the comparator interrupt
service routine will disable the comparator monitor and invoke the ctpl_enterShutdown API. This
API will save the application and peripheral state and waits for the device to enter BOR with a
64ms timeout. The device will restore application and peripheral state when power is restored and
continue execution from the next line of code.

The main application will blink LED2 with incremental counts, resetting after four blinks. The power
supply can be removed (by disconnecting the USB cable or unplugging the jumpers connecting
the on-board emulator to the device) after a specific count of blink and then reapplied to verify that
context was saved.

// ACLK = VLOCLK, MCLK = SMCLK = DCO = ~1MHz

//

// MSP-EXP430FR5969

/) e

// /N P1.7|---> Vcc

// [(C5)P1.5|-—-> Vcc/2 (350k/350k voltage divider)
// -—|RST P1.4|---> GND

// | I

// | P1.0|---> LED2

// I I

28

October 27, 2017

Compute Through Power Loss (CTPL)

2.4.5 ADC12_B Powerloss Monitor

This example demonstrates how to use the ADC12_B battery monitor and window comparator to
actively monitor supply voltage and detect when power is lost. The ADC12_B peripheral is config-
ured with a 2.0V reference voltage and the internal battery monitor channel provides Vcc/2. The
ADC12_B low side window comparator is configured to trigger the interrupt when Vcc reaches
ADC_MONITOR_THRESHOLD, 3.0V by default. The high side window comparator is set to
ADC_MONITOR_THRESHOLD + 0.1V to ensure the device has reached a stable voltage before
enabling the monitor. When the high side interrupt is triggered it is disabled and the low side in-
terrupt is enabled to begin actively monitoring Vcc. When power loss is detected the device will
invoke the ctpl_enterShutdown API which saves the application and peripheral state and waits for
the device to enter BOR with a 64ms timeout. The device will restore application and peripheral
state when power is restored and continue execution from the next line of code.

The main application will blink LED2 with incremental counts, resetting after four blinks. The power
supply can be removed (by disconnecting the USB cable or unplugging the jumpers connecting
the on-board emulator to the device) after a specific count of blink and then reapplied to verify that
context was saved.

// ACLK = VLOCLK, MCLK = SMCLK = DCO = ~1MHz
//

// MSP-EXP430FR5969

VA

// /NI |

// (. I

// -—|RST P1.0|---> LED2

// I I
// I I

October 27, 2017 29

Compute Through Power Loss (CTPL)

2.5

2.5.1

Benchmarking

LY 1 31
(070 a1 7o 0 = 1 /o] o 33
Overview

The CTPL utility can be benchmarked by defining CTPL_BENCHMARK in the compiler and assembler
predefined symbols. When this symbol is defined the code will toggle a single pin to indicate the
CTPL function has started. Once the state has been saved the software will toggle the benchmark
pin to indicate the end of the CTPL function. The ctpl_enterShutdown() function will continue to
toggle the benchmark pin inside the software loop while waiting for the device to enter a BOR. The
repeated pin toggle provides a measurement of how long the CPU can run before complete power
is lost and the device shuts down to help select the right timeout parameter.

Q, Saleae Logic 1115 - [Connected] - [24 MHz, 1 M Samples]

[][5]

1MSamples = e

Figure 2.6: Benchmark of the ctpl_enterShutdown() function when power is lost (8MHz CPU clock)

The above screen capture shows the ctpl_enterShutdown() APl when power is lost on a
MSP430FR5969 device running at 8MHz with all available peripherals saved (a total of eleven,
see peripheral usage section for the complete peripheral list). In this example the "Width" mea-
surement is the total time the API needs to save the state of the peripherals, stack and CPU. The
"IT1 - T2|" measurement indicates the life of the CPU before complete power is lost. The second
measurement will be dependant on both the hardware design and the software configuration of the
device (active peripherals when entering API). In scenarios where power is lost it's best practice to
shut down any active peripherals before calling the API to conserve the remaining energy.

30

October 27, 2017

Compute Through Power Loss (CTPL)

Q, Saleae Logic 1115 - [Connected] - [24 MHz, 1 M Samples] EI@

1M Samples = fal

F
T
T
| T1

~ Analyzers

Figure 2.7: Close up view of benchmark pin toggle

October 27, 2017 31

Compute Through Power Loss (CTPL)

2.5.2 Configuration

The pin used for the benchmark is defined in ctpl_benchmark.h. By default P4.6 is used, LED1
on the MSP430-EXP430FR5969 LaunchPad. This pin can be change to any available GPIO by
editing this file and changing the pin and port registers used.

See the Benchmark API reference for more on configuration.

32 October 27, 2017

LZ4 Compression

3

3.1

LZ4 Compression

INEOAUCH ON L e e 35
LT T = 35
AP R BIENCE ... it e 39
XMl ..o e 48
BeNCMarKiNg . ..o e 49
Introduction

The LZ4 compression utility is a lightweight compression library optimized for ultra-low-power MSP
microcontrollers. The software is based on the open source LZ4 specification and algorithm and is
compatible with existing LZ4 software and files.

Traditional compression formats such as .gzip, .zip and .7z are optimized for high compression ratio
with slow compression and fast decompression performance. These formats are typically used
for file transfer where there is a single source and multiple destinations (such as file download).
Compressing the files is a one time cost and it’s beneficial to trade compression speed for a higher
ratio. While compression may be very slow decompression is typically very fast, up to 100x faster,
due to the nature of only needing to unroll the compressed file. While these algorithms are possible
to run on an ultra-low-power microcontroller it would typically be impractical and take a significant
amount of energy to enable both compression and decompression.

The LZ4 compression algorithm on the other hand is designed for both fast compression and de-
compression with less focus on compression ratio. This format is well suited for applications with
point to point transfer of data such as in large data centers where reducing transfer time is desired
but not at the cost of significantly increasing processing power to run compression. This makes LZ4
an excellent choice for an ultra-low-power embedded device where compression and decompres-
sion are equally important to target applications. The LZ4 algorithm provides the perfect balance
of compression performance and functionality for a wide range of embedded applications such as
data logging, expanded data storage, over-the-air data transfers and more.

The LZ4 full specification and open source software can be obtained at http://www.1z4.org.

October 27, 2017 33

LZ4 Compression

3.2

3.2.1

3.2.1.1

3.2.1.2

Usage

(070 141 7o) 1T | £ IR 36
CON UL ON . 37
Command Line ULility e e 38
Components

The LZ4 compression utility consists of the following software components.

LZ4 API Set

The LZ4 API set included both compression and decompression API’'s that can be called directly
from the main application.

Iz4_compress(): Compress a block of data to a LZ4 frame.

Iz4_compressBlock(): Compress a block of data to a single LZ4 block without framing.

Iz4_decompress(): Decompress a LZ4 frame to a block of data.

Iz4_decompressBlock(): Decompress a LZ4 block to a block of data.

Iz4_getContentSize(): Get the content size of a compressed LZ4 frame.

See the LZ4 API reference for complete APl documentation.

xxHash API Set

The xxHash API set includes a single function for computing the xxHash of a data block. This
function is provided to allow comparability with the official LZ4 framing structure however is not
very efficient to run on MSP430 microcontrollers. If a checksum is necessary the application can
use an available CRC module and the LZ4 block API's to create a custom framing scheme. See
Iz4_ex2_custom_frame for an example of how to create this.

m xxhash_compute(): Compute xxhash checksum for a block of data.

See the xxHash API reference for complete APl documentation.

34

October 27, 2017

LZ4 Compression

3.2.2

3.2.2.1

3.2.2.2

Performance Configuration

The following are options for configuring the performance of LZ4 compression. There are no per-
formance configuration options for decompression.

Hash Table Size

The LZ4 compression API’s use a hash table to find matches in the input data. A larger hash
table provides a larger window of past history and a higher chance of finding a match (thus better
compression ratio). The hash table size must be a power of two with a maximum size of 32768
bytes and is passed as the log2() of the table size. It is recommended to use a minimum size of
1024 bytes (hashLog2Size = 10) but some data sets may see a large improvement increasing the
hash table size.

Hash Table Function

The LZ4 hash table function used for compression can be configured based on peripheral avail-
ability. By default the utility will use a multiplication based hash function, making use of the 32-bit
hardware multiplier (MPY32) peripheral when available. For higher performance the compression
functions can be configured to use CRC16 as a hashing function by defining L.Z4_CRC16_HASH.
When available the CRC16 or CRC32 peripheral will be used, see the LZ4 compression speed
section for benchmarks of MPY32 versus CRC16 hash function performance.

October 27, 2017 35

LZ4 Compression

3.2.3 Command Line Utility
The LZ4 open source project provides a command line utility that can be used to compress and
decompress .1z4 files on another platform such as a personal computer. Some examples of how
this can be used in combination with the LZ4 compression utility API’s:
m Data logging: Store compressed data in FRAM, transmit to a host processor and decompress
the data.
m Extended data storage: Compress program data on a personal computer with maximum com-
pression and extract data at runtime on MSP MCU.
m Over the air update: Compress an entire MSP MCU program with maximum compression and
transmit the data to a device for firmware upgrade.
The LZ4 source code and makefile to build the command line utility can be obtained with the latest
release at http://www.1z4.org.
3.2.3.1 Windows
A pre-built command line utility is provided with this release. An example of invoking this command
to compress a file with maximum compression settings is shown below.
${INSTALL_DIR}/tools/lz4.exe -9 data.txt
3.2.3.2 Linux
The command line utility can be installed on linux systems by running the following app-get com-
mand.
sudo apt-get install liblz4-tool
3.23.3 Mac
Mac users can download the latest release from http://www.|z4.org or extract the included release
version and run Make.
36 October 27, 2017

LZ4 Compression

3.3

3.3.1

3.3.2

API Reference

AP OV VI W ettt e e e e 39
LA e 39
XXHAS N Lo 46

APl Overview

The LZ4 compression utility is designed to provide a simplified API set for use by the main applica-
tion program.

LZ4

Data Structures

struct 1z4_compressBlockParams

struct Iz4_compressParams

struct 1z4_decompressBlockParams

struct 1z4_decompressParams

struct 1z4_stream_decompressBlockParams
struct 1z4_stream_decompressBlockState

Macros

m #define LZ4_COMPRESS_MAX_SIZE(n)

Typedefs

m typedef struct
Iz4_compressBlockParams 1z4_compressBlockParams
m typedef struct [z4_compressParams 1z4_compressParams
m typedef struct
Iz4_decompressBlockParams 1z4_decompressBlockParams
m typedef struct [z4_decompressParams |1z4_decompressParams
m typedef struct
Iz4_stream_decompressBlockParams Iz4_stream_decompressBlockParams
m typedef struct
Iz4_stream_decompressBlockState 1z4_stream_decompressBlockState

Enumerations

m enum Iz4_status {
LZ4 SUCCESS, LZ4 PARTIAL_SUCCESS, LZ4 NO _CONTENT _SIZE,
LZ4 FRAMING_ERROR,
LZ4 BLOCK _CHECKSUM_ERROR, LZ4 CONTENT_CHECKSUM_ERROR }

October 27, 2017 37

LZ4 Compression

®m enum Iz4_stream_state {
LZ4 BLOCK_SIZE, LZ4 TOKEN, LZ4 LITERAL LENGTH, LZ4 LITERAL,
LZ4 MATCH_LENGTH, LZ4_MATCH_OFFSET_LOW, LZ4 MATCH_OFFSET_HIGH }

Functions

xstatus)

uint32_t [z4_compress (const [z4_compressParams «params, 1z4_status xstatus)

uint32_t Iz4_compressBlock (const 1z4_compressBlockParams xparams, [z4_status xstatus)
uint32_t Iz4_decompress (const 1z4_decompressParams xparams, Iz4_status «status)
uint32_t 1z4 decompressBlock (const 1z4 decompressBlockParams xparams, |z4 status

uint32_t Iz4_getContentSize (const uint8_t xsrc, 1z4_status xstatus)

m uint32_t Iz4_stream_decompressBlock (I1z4_stream_decompressBlockState «state, const void
xdata, uint16_t length, 1z4_status xstatus)

m void 1z4_stream_decompressBlocklnit (const 1z4_stream_decompressBlockParams xparams,
Iz4_stream_decompressBlockState xstate, 1z4_status xstatus)

3.3.2.1 Detailed Description

The following is a reference of all LZ4 compression and decompression API's available for the
application to use.

3.3.2.2 Data Structure Documentation

3.3.2.2.1 struct 1z4_compressBlockParams Compression parameters for a single LZ4 block.

Data Fields
bool | addBlockChecksum Add checksum to each compressed block. Decreases
compression performance. Valid values are:
m false
m true
void x | dst Pointer to the destination data buffer to store com-
pressed data.
uint16_t | hashLog2Size Power of two used to determine the hash table size.
void x | hashTable Pointer to memory block with pow2(hashLog2Size)
bytes allocated.
uint32_t | length Length of source data buffer.
const void % | src Pointer to the source data buffer to compress.

3.3.2.2.2 struct 1z4_compressParams Compression parameters for a LZ4 frame.

38

October 27, 2017

LZ4 Compression

Data Fields
bool | addBlockChecksum Add checksum to each compressed block. Decreases
compression performance. Valid values are:
m false
m true
bool | addContentChecksum Add checksum of original source data buffer. Decreases
compression performance. Valid values are:
m false
m true
bool | addContentSize Add total content size to LZ4 frame. Increases total
frame size by 8 bytes. Valid values are:
m false
m true
void * | dst Pointer to the destination data buffer to store com-
pressed data.
uint16_t | hashLog2Size Power of two used to determine the hash table size.
void x | hashTable Pointer to memory block with pow2(hashLog2Size)
bytes allocated.
uint32_t | length Length of source data buffer.
const void % | src Pointer to the source data buffer to compress.

3.3.2.2.3 struct 1z4_decompressBlockParams Decompression parameters for a single LZ4 block.

Data Fields
void * | dst Pointer to the destination data buffer to store com-
pressed data.
uint32_t | dstLength Length of the destination data buffer.
const void % | src Pointer to the source data buffer to decompress.
bool | verifyBlockChecksum Enable verification of block checksum if present. Valid
values are:
m false
m true

3.3.2.2.4 struct 1z4_decompressParams Decompression parameters for a LZ4 frame.

October 27, 2017 39

LZ4 Compression

Data Fields
void * | dst Pointer to the destination data buffer to store com-
pressed data.
uint32_t | dstLength Length of the destination data buffer.
const void x | src Pointer to the source data buffer to decompress.
bool | verifyBlockChecksum Enable verification of block checksum if present. Valid
values are:
m false
m true
bool | verifyContentChecksum | Enable verification of content checksum if present. Valid
values are:
m false
m true

3.3.2.2.5 struct 1z4_stream_decompressBlockParams Decompression parameters for a streaming LZ4

block.
Data Fields
bool | containsBlockSize Compressed LZ4 data contains block size.
m false
m true
void * | dst Pointer to the destination data buffer to store com-
pressed data.
int32_t | dstLength Length of the destination data buffer.

3.3.2.2.6 struct I1z4_stream_decompressBlockState

Decompression state for a streaming LZ4 block.

Data Fields
uint32_t | dstLength Length of the destination data buffer.
uint8_t x | dstOrigin Destination buffer pointer origin.
uint8_t * | dstPtr Pointer to the destination data buffer to write.
uint16_t | literalLength Length of literals.
uint16_t | matchLength Length of match.
uint16_t | matchOffset Offset address of match.
state Decompress stream state.
Iz4 stream_state

40

October 27, 2017

LZ4 Compression

3.3.2.3 Enumeration Type Documentation

3.3.2.3.1 enum Iz4_status LZ4 status return types.

Enumerator
LZ4 SUCCESS Successful operation.

LZ4 PARTIAL_SUCCESS Data was partially decompressed due to insufficient space.
LZ4 NO_CONTENT_SIZE Content size is not present in LZ4 frame header.

LZ4 FRAMING_ERROR Error in frame header.

LZ4 BLOCK _CHECKSUM_ERROR Incorrect block checksum.

LZ4 CONTENT_CHECKSUM_ERROR Incorrect content checksum.

3.3.2.3.2 enum Iz4_stream_state LZ4 streaming API state.

Enumerator
LZ4 BLOCK_SIZE Next byte is the token.

LZ4 TOKEN Next byte is the token.

LZ4 LITERAL LENGTH Next byte is the literal length.

LZ4 LITERAL Nextbyte is a literal character.

LZ4 MATCH_LENGTH Next byte is the match length.

LZ4 MATCH_OFFSET_LOW Next byte is the low match address offset.
LZ4 MATCH_OFFSET_HIGH Next byte is the high match address offset.

3.3.2.4 Function Documentation

3.3.2.4.1 uint32_t 1z4_compress (const 1z4_compressParams « params, 1z4_status « status) Com-
press a block of data to a LZ4 frame.

Compress a block of data using LZ4 compression and add LZ4 framing. This API will compress
data to a valid LZ4 file and contains several parameters to enable or disable features of the LZ4
framing specification such as content and block checksum using the xxHash algorithm or block
size. See the Iz4_compressParams structure documentation for more details about the available
parameters.

A block compressed with this method can be saved as a binary .1z4 file and extracted using the LZ4
command line utility.

Parameters

params | Pointer to the LZ4 compression parameter structure.

status | Pointer to a LZ4 status that will contain the result status.

Returns
The total compressed frame size.

October 27, 2017 41

LZ4 Compression

3.3.2.4.2 uint32_t 1z4_compressBlock (const 1z4_compressBlockParams x params, 1z4_status x sta-

tus) Compress a block of data to a single LZ4 block without framing.

Compress a block of data using only LZ4 compression and block format. This APl can be used
to compress data and create a custom framing scheme using an alternative checksum method.
The LZ4 block format has a single parameter for enabling block checksum computation with the
xxHash algorithm. The block checksum is computed on the compressed data block. See the
1z4_compressBlockParams structure documentation for more details about the available parame-

ters.

Parameters

params | Pointer to the LZ4 compression block parameter structure.
status | Pointer to a LZ4 status that will contain the result status.

Returns
The total compressed block size.

Referenced by 1z4_compress().

3.3.2.4.3 uint32_t 1z4_decompress (const 1z4_decompressParams x params, |z4_status « status)

Decompress a LZ4 frame to a block of data.

Decompress a LZ4 frame to an uncompressed data block. This API contains parameters to enable
checking of content and block checksum. When enabled the xxHash algorithm is used to verify
the checksum. While not required it is the application programmers responsibility to determine if
validating the checksum is necessary. See the 1z4_decompressParams structure documentation

for more details about the available parameters.
A .1z4 file compressed with the LZ4 command line utility can be decompressed using this API.

Parameters

params | Pointer to the LZ4 decompression parameter structure.
status | Pointer to a LZ4 status that will contain the result status.

Returns
The total decompressed data block size.

3.3.2.4.4 uint32_t 1z4_decompressBlock (const 1z4_decompressBlockParams « params, 1z4_status x

status) Decompress a single LZ4 block without framing to a block of data.

Decompress a LZ4 block to an uncompressed data block. This API contains a single parameter to
enable checking of the block checksum. When enabled the xxHash algorithm is used to verify the
checksum. While not required it is the application programmers responsibility to determine if vali-
dating the checksum is necessary. See the 1z4_decompressBlockParams structure documentation
for more details about the available parameters.

42

October 27, 2017

LZ4 Compression

Parameters

params | Pointer to the LZ4 decompression block parameter structure.

status | Pointer to a LZ4 status that will contain the result status.

Returns
The total decompressed data block size.

Referenced by 1z4_decompress().

3.3.2.4.5 uint32_t I1z4_getContentSize (const uint8_t « src, 1z4_status « status) Get the content size
of a compressed LZ4 frame.

Get the size of the original uncompressed data block if it is present. The content size is an optional
parameter when compressing but it is recommended to enable it and verify the uncompressed data
block fits in the allocated buffer before decompressing.

Parameters

src | Pointer to the LZ4 frame.

status | Pointer to a LZ4 status that will contain the result status.

Returns
The total decompressed content size. The content size is stored as 64-bit but will be truncated
to 32-bit.

3.3.2.4.6 uint32_t 1z4_stream_decompressBlock (1z4_stream_decompressBlockState « state, const
void « data, uint16_t length, 1z4_status =« status) Decompress a single LZ4 block as a stream
of data.

Continue decompression using a stream of data blocks. The streaming API's can be used when
data is sent in chunks such as over-the-air or wired serial communication and removes the need to
buffer then entire compressed data before running decompression, reducing total system memory
used.

The 1z4_stream_decompressBlocklnit() function must first be called to initialize the state before
decompressing data.

Parameters
state | Pointer to the LZ4 decompression stream state.
data | Pointer to a block of data to continue decompression with.
length | Length of data block in bytes.
status | Pointer to a LZ4 status that will contain the result status.
Returns

The current length of decompressed data.

October 27, 2017 43

LZ4 Compression

3.3.2.4.7 void 1z4_stream_decompressBlocklnit (const 1z4_stream_decompressBlockParams

3.3.3

3.3.3.1

3.3.3.2

3.3.3.2.1

params, lz4_stream_decompressBlockState « state, 1z4_status = status) Initialize LZ4
stream decompression.

Initialize LZ4 decompression using a stream of data blocks. The streaming API's can be used when
data is sent in chunks such as over-the-air or wired serial communication and removes the need to
buffer then entire compressed data before running decompression, reducing total system memory
used.

This function must be first called to initialize the state before calling 1z4_stream_decompressBlock()
to decompress data.

Parameters

params | Pointer to the LZ4 decompression strean parameter structure.

state | Pointer to the LZ4 decompression stream state.

status | Pointer to a LZ4 status that will contain the result status.

Returns
none

xxHash

Functions

m uint32_t xxhash_compute (const void xsrc, uint32_t length, uint32_t seed)

Detailed Description

The following is a reference of the xxHash AP/I’s that can be used to calculate the xxHash used in
the LZ4 file format.

Function Documentation
uint32_t xxhash_compute (const void x src, uint32_t length, uint32_t seed) Compute
xxhash checksum for a block of data.

Used to compute and verify checksums for the LZ4 frame and block format. This function has been
optimized for MSP430 but it not as efficient as hardware CRC16 or CRC32 calculation.

Parameters

src | Pointer to the data block.

length | Length of data block.

seed | Initialization value.

44

October 27, 2017

LZ4 Compression

Returns
The computed xxhash checksum.

Referenced by 1z4_compress(), Iz4_compressBlock(), |z4_decompress(), and
Iz4_decompressBlock().

October 27, 2017 45

LZ4 Compression

3.4

3.4.1

3.4.2

3.4.3

3.4.4

Examples

EXamMPIES OVEIVIBWttt e e e e 48
Compress Text 10 LZ4 Fileo e e e 48
Compress Text with CRC16 CheCkSUM e 48
Decompress Data SIream 48

Examples Overview

These examples demonstrate how to use the LZ4 compression utility to compress binary data.

Compress Text to LZ4 File

This example demonstrates how to compress a block of text into a valid LZ4 file with framing. The
compressed data can be saved from memory as a raw binary file and recovered on the PC using
the LZ4 command line utility.

This example is configured with a hash size of 4096 and includes both the content size and a
content checksum to verify the original file contents. With these settings the LZ4 compression
achieves a 1.51 compression ratio (3283 bytes compressed to 2169 bytes).

Compress Text with CRC16 Checksum

This example demonstrates how to compress a block of text into a custom frame with CRC16
checksum. The advantage is a significantly faster checksum calculation using the hardware CRC
module compared to the software xxHash implementation.

// o o o +
// | 32-bit block size | compressed data | 16-bit CRC16 checksum |
// Fmm Fmm Fmm +

Decompress Data Stream

This example demonstrates how to decompress LZ4 data in chunks of compressed data. The
advantage of the stream decompress functions is less data usage due to only needing to buffer
small chunks, one at a time. The performance is slightly worse than the non-streaming AP/’s.

46

October 27, 2017

LZ4 Compression

3.5

3.5.1

3.5.1.1

LZ4 Benchmarks

LZ4 Compression Ratio e 49
LZ4 COMPreSSION SPEEAttt ittt e e e 51

LZ4 Compression Ratio

Canterbury Corpus

The Canterbury Corpus is a set of small sized files that represent a wide range of data formats
and is used to compare lossless compression algorithm performance. Applications can compare
typical data sets with the corpus files to determine a rough estimate of compression performance.
Since the benchmark does not measure compression speed the LZ4 compression utility has been
compiled without modifications using GCC and run on a Windows PC to obtain the following re-
sults. The results are comparable to the original LZ4 implementation with the default command line
options (fast compression).

File Category Size (bytes) | Ratio (HL2S 10) | Ratio (HL2S 12) | Ratio (HL2S 14)
alice29.txt English text 152089 1.3079 1.5266 1.6782
asyoulik.txt | Shakespeare 125179 1.2684 1.4457 1.585
cp.html HTML source 24603 1.6461 1.9097 2.0294
fields.c C source 11150 1.9161 2.0614 2.0896
grammar.lsp LISP source 3721 1.8512 1.9062 1.9141
kennedy.xls Excel Spreadsheet 1029744 2.3826 2.5877 2.7481
lcetl0.txt Technical writing 426754 1.3491 1.6052 1.7899
plrabnl2.txt | Poetry 481861 1.1735 1.3459 1.5018
ptt5 CCITT test set 513216 5.6318 5.8115 5.9357
sum SPARC Executable 38240 1.6961 1.9148 1.9827
xargs.1l GNU manual page 4227 1.4526 1.5326 1.5632
Total 2810784 1.8572 2.0987 2.2825

Table 3.1: Canterbury Corpus benchmark LZ4 performance where HL2S is the hashLog2Size setting.

3.5.1.2

The benchmark files, additional details and results for other compression algorithms can be found
on the Canterbury Corpus webpage (http://corpus.canterbury.ac.nz/).

Silesia Corpus

The Silesia Corpus is a set of large size files that represent a wide range of data formats and
is used to compare lossless compression algorithm performance. While large file sizes are not
typical in embedded applications they can still be used to compare typical data sets with the corpus
files to determine a rough estimate of compression performance. Since the benchmark does not
measure compression speed the LZ4 compression utility has been compiled without modifications
using GCC and run on a Windows PC to obtain the following results. The results are comparable
to the original LZ4 implementation with the default command line options (fast compression).

October 27, 2017 47

LZ4 Compression

File Category Size (bytes) | Ratio (HL2S 10) | Ratio (HL2S 12) | Ratio (HL2S 14)
dickens | English text 10192446 1.2268 1.4259 1.5882
mozilla | Executable 51220480 1.7236 1.8536 1.9501
mr Medical image 9970564 1.5728 1.6653 1.7521
nci Database 33553445 4.5649 5.357 5.7073
ooffice | Executable 6152192 1.2934 1.3811 1.466
osdb Database 10085684 1.1354 1.4785 1.965
reymont | Polish pdf 6627202 1.5583 1.7694 1.8747
samba Source code 21606400 2.1857 2.5442 2.7149
sao Binary data 7251944 1.0208 1.0538 1.0945
webster | HTML 41458703 1.5805 1.8459 2.0475
xml HTML 5345280 3.2759 3.8561 4.1454
x-ray Medical image 8474240 1.0036 1.0115 1.0441
total 211938580 1.7244 1.9328 2.0910

Table 3.2: Silesia Corpus benchmark LZ4 performance where HL2S is the hashLog2Size setting.

The benchmark files, additional details and results for other compression algorithms can be found
on the Silesia Corpus webpage (http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia).

48

October 27, 2017

LZ4 Compression

3.5.2 LZ4 Compression Speed

The speed at which data can be compressed is directly related to the compression ratio of the
data. Data that can be compressed at a higher ratio can be compressed faster because there are
more matched bytes and fewer literals that must be hashed into the table. The plot below shows a
synthetic benchmark created to compare the default multiply based hash function using the MPY32
peripheral with the CRC16 implementation. The original file being compressed is 32KB and a hash
table size of 4096 is used.

B R R B | R B
| | —#— Default hash

Compressed file ratio

Compression time (million CPU cycles)

As expected the hardware based CRC16 hash function is more efficient and results in faster com-
pression speeds. As the compression ratio decreases the advantage becomes even more signifi-
cant. This is because lower compression ratio results in less matches and more calls to the hashing
function, decreasing the overall compression speed.

October 27, 2017 49

LZ4 Compression

50

October 27, 2017

Random Number Generator (RNG)

4

4.1

Random Number Generator (RNG)

I OAUCH ON ... e e e e e e e s 53
AP RO BIENCE ... e e e 54
XMl .ot 56
Introduction

The random number generator (RNG) utility implements a counter mode deterministic random byte
generator (CTR-DRBG) according to the NIST SP 800-90A Rev 1 specification. Random numbers
are generated using seed information stored in the TLV tables unique to each device and generate
128-bits at a time (16-bytes). For more information on the implementation and test data refer to the
SLAA725 application note linked below.

Random Number Generation Using the MSP430FR59xx/69xx

October 27, 2017 51

http://www.ti.com/lit/an/slaa725/slaa725.pdf

Random Number Generator (RNG)

4.2 API Reference
N O =T 54
RN G L 54
4.2.1 APl Overview
The RNG utility includes a single API that can be used to generate random bytes using the CTR-
DRBG methodology specified in NIST SP 800-90A Rev 1.
42.2 RNG
Macros
m #define RNG_KEYLEN
Functions
m uint16_t rng_generateBytes (uint8_t xdst, uint16_t length)
4.2.2.1 Detailed Description
The following is a reference of all API’s available for the application to use.
4.2.2.2 Function Documentation
4.2.2.2.1 uint16_t rng_generateBytes (uint8_t « dst, uint16_t length) Generate random bytes and
store to destination array.
Generates the requested number of random bytes using the CTR-DRBG methodology and the
AES-128 block cipher algorithm according to Section 9.3.1 and 10.2.1.5.1 of NIST SP 800-90Ar1.
The length parameter must be a multiple of RNG_KEYLEN, if it is not the length will be rounded
down to the closest multiple and that many bytes will be generated and returned.
Note: Reseed, prediction resistance and additional inputs are not supported. Note: The security
strength is fixed at 128-bit.
Parameters
dst | Pointer to the destination array to store generated bytes.
length | Number of bytes requested by the user, must be a multiple of RNG_KEYLEN
bytes.
Returns
Length of random bytes that were generated.
52 October 27, 2017

Random Number Generator (RNG)

4.3

4.3.1

4.3.2

4.3.3

Examples

EXamMPIES OVEIVIBWttt e e e e 56
Generate RaNdom Dataoiuuiii i 56
Generate Random Datato CSV File i e 56

Examples Overview

These examples demonstrate how to use the RNG utility to generate random data.

Generate Random Data

This example demonstrates how to generate random 8-bit and 32-bit data. The random bytes can
be used for a variety of applications including cryptography and tamper detection.

This example generates data with length 64-bytes but data can be generated in any multiple of
RNG_KEYLEN (16) bytes.

Generate Random Data to CSV File

This example demonstrates how to generate random data and write it to a CSV (comma-separated
values) file. The generated CSV file can be used to analyze the randomness of generated bytes.
For example the data can be read and plotted to a histogram in MATLAB with the following code:

// data = csvread(’rng_data.csv’,1,1);
// hist (data);

This example generates 2”14 random data bytes and takes approximately 4 minutes to write all
values to the CSV file due to the limitations of file 10 on MSP devices (using the debug stack and
breakpoints to read/write data streams).

October 27, 2017 53

Random Number Generator (RNG)

54

October 27, 2017

Non-Volatile Storage (NVS)

5

5.1

5.2

5.3

5.3.1

Non-Volatile Storage (NVS)

I OAUCH ON ... e e e e e e e s 57
AP RO BIENCE ... e e e 59
XMl .ot 71
Introduction

The non-volatile storage (NVS) library makes handling of non-volatile data easy and robust against
intermittent power loss or asynchronous device resets. MSP430 devices with FRAM non-volatile
memory guarantee 16-bit writes in all scenarios however more often than not the data being stored
is a larger data type or a structure containing multiple types. That means an unintended reset or
power loss while data is written to the non-volatile memory will can result in partial data write and
corrupted entries. To keep data storage constant, the non-volatile storage library contains functions
that store data in a way that is guaranteed to recover the last valid entry without data corruption.

Features

The NVS library provides the following features:

m Recovery of latest valid entry
m Storage of any length data type or structure
m Application defined storage location

 Persistent FRAM
* Information memory

m Memory protection via MPU or SYS modules
m CRC protection

Storage Containers

The following storage containers are available in the NVS library.

Data Storage

The data storage is intended for single data structures. This could be device configurations, operat-
ing modes or operating counters like odometers. The data structures can be as simple as a single
byte, or complex components like arrays or structs. Internally a double buffering scheme is used to
be able to recover a known last state.

October 27, 2017 55

Non-Volatile Storage (NVS)

5.3.2

5.3.3

5.4

5.4.1

5.4.2

Log Storage

The log storage is intended for data logs. The corresponding functions allow adding data entries
to the log and retrieve the data to a later point in time. The number of log entries has to be known
ahead of time and the memory has to be reserved to hold the full log. Once the log is full, no further
data can be added, unless the log is reset.

Ring Storage

The ring storage is intended for endless logging in a ring buffer configuration. For a ring buffer of n
entries, only the last n-1 entries can be retrieved from the log.

Memory Allocation

The NVS library requires the application to allocated storage before initializing the storage con-
tainer. The storage can be located in FRAM or information memory and the length can be calcu-
lated using the included preprocessor macros.

FRAM

The code snippet below demonstrate how to correctly allocate memory in FRAM for both CCS and
IAR.

#if defined(__TI_COMPILER_VERSION_)

#pragma PERSISTENT (nvsStorage)

#elif defined(__ IAR_SYSTEMS_ICC_)

__persistent

#endif

uint8_t nvsStorage [NVS_LOG_STORAGE_SIZE (SIZE, ENTRIES)] = {0};

Information Memory

The code snippet below demonstrate how to correctly allocate memory in INFOA for both CCS and
IAR.

#if defined(__TI_COMPILER_VERSION_)

#pragma DATA_SECTION (nvsStorage, ".infoA")

#elif defined(___IAR_SYSTEMS_ICC_)

#pragma location="INFOA"

_ _no_init

#endif

uint8_t nvsStorage [NVS_LOG_STORAGE_SIZE (SIZE, ENTRIES)] = {0};

56

October 27, 2017

Non-Volatile Storage (NVS)

5.5 API Reference

NV S e e 59

N LY T - - 59

LI YA T 1o T 63

NV S RING o e 66

NV S SUP DO . e 69
5.5.1 NVS

Enumerations

®m enum nvs_status {
NVS_OK, NVS_NOK, NVS_INDEX_OUT_OF_BOUND, NVS_CRC_ERROR,
NVS_EMPTY, NVS_FULL}

5.5.1.1 Detailed Description

The following are shared API's between the three NVS storage containers.

5.5.1.2 Enumeration Type Documentation

5.5.1.2.1 enum nvs_status NVS return code and status information.

Enumerator
NVS_OK Successful operation.

NVS_NOK NVS storage format is corrupted.
NVS_INDEX_OUT_OF_BOUND Index is out of bounds.
NVS_CRC_ERROR Data checksum in incorrect.
NVS_EMPTY NVS storage is empty.

NVS_FULL NVS storage is full.

5.5.2 NVS Data

Data Structures

m struct nvs_data_header

Macros

m #define NVS_DATA_STORAGE_SIZE(size)
m #define NVS_DATA_TOKEN

October 27, 2017 57

Non-Volatile Storage (NVS)

Typedefs

m typedef void x nvs_data_handle
m typedef struct nvs_data_header nvs_data_header

Enumerations

m enum nvs_data_status { NVS_DATA_INIT, NVS_DATA_1, NVS_DATA 2}

Functions

m nvs_status nvs_data_commit (nvs_data_handle handle, void xdata)
m nvs_data_handle nvs_data_init (uint8_t xstorage, uint16_t size)
m nvs_status nvs_data_restore (nvs_data_handle handle, void xdata)

5.5.2.1 Detailed Description

The following are types, macros and functions available for the data storage container.

5.5.2.2 Data Structure Documentation

5.5.2.2.1 struct nvs_data_header NVS header for a non-volatile data storage container.

Data Fields
uint16_t | crct CRC for storage 1.
uint16_t | crc2 CRC for storage 2.
uint16_t | size Size of data entry in byte.

status Storage status.
nvs_data_status

uint16_t | token Identifier token.

5.5.2.3 Enumeration Type Documentation

5.5.2.3.1 enum nvs_data_status NVS data status flags.

Enumerator
NVS_DATA_INIT Successful operation.

NVS_DATA 1 Storage 1 contains the latest data.
NVS_DATA_ 2 Storage 2 contains the latest data.

55.2.4 Function Documentation

5.5.2.4.1 nvs_status nvs_data_commit (nvs_data_handle handle, void « data) Commit a data entry
to the non-volatile storage container.

58 October 27, 2017

Non-Volatile Storage (NVS)

This function copies the data to the storage container. For integrity checks the CRC of the data is
calculated and stored in the container as well.

October 27, 2017 59

Non-Volatile Storage (NVS)

Parameters

handle | NVS data container handle.

data | Pointer to a data structure that holds the data to be added to the storage
container.

Returns
Status of the NVS operation.

5.5.2.4.2 nvs_data_handle nvs_data_init (uint8_t « storage, uint16_t size) Initialize non-volatile data

storage container.

This function checks for an existing non-volatile data container at the given location. If it finds
an existing container, it will match the properties of the container and verify the constancy of the
container. A CRC check of the data is performed and if everything is match the function will return
without any modification to the storage container. In case of a failing CRC an incomplete storage
commit is assumed and the alternate storage buffer is checked. If the CRC check is OK, the status
is updated and will point to the alternate storage buffer. Only when no container is found, or the
properties of the container have changed, or no matching CRC was found, then the container will
be initialized.

Example non-volatile-storage space and function call:

m unit8_t nvs_data_container[NVS_DATA_STORAGE_SIZE(sizeof(DATA))];
m nvs_data_init(nvs_data_container, sizeof(DATA));

Parameters

storage | Pointer to NVS data storage with size calculated using
NVS_DATA_STORAGE_SIZE.

size | Size of data structure element that is being stored.

Returns
NVS data container handle.

5.5.2.4.3 nvs_status nvs_data_restore (nvs_data_handle handle, void « data) Restore a data entry

from the non-volatile data storage container.

This function does restore a data entry by copying the most recent data from the storage container
to the data location. The size of the data is defined during the nvs_data_init function call and is fixed
for every nvs_data_container. After the data has been copied, the CRC of the data is calculated
and compared against the stored CRC value. The result is reflected in the return value.

Parameters

handle | NVS data container handle.

data | Pointer to a data structure that will hold the data after the restore operation.

Returns
Status of the NVS operation.

60

October 27, 2017

Non-Volatile Storage (NVS)

5.5.3 NVS Log

Data Structures

m struct nvs_log_header

Macros

m #define NVS_LOG_STORAGE_SIZE(size, num)
m #define NVS_LOG_TOKEN

Typedefs

m typedef void x nvs_log_handle
m typedef struct nvs_log_header nvs_log_header

Functions

nvs_status nvs_log add (nvs_log_handle handle, void xdata)

uint16_t nvs_log_entries (nvs_log_handle handle)

bool nvs_log_full (nvs_log_handle handle)

nvs_log_handle nvs_log_init (uint8_t xstorage, uint16_t size, uint16_t length)
uint16_t nvs_log_max (nvs_log_handle handle)

nvs_status nvs_log_reset (nvs_log_handle handle)

nvs_status nvs_log_retrieve (nvs_log_handle handle, void xdata, uint16_t index)

5.5.3.1 Detailed Description

The following are types, macros and functions available for the log storage container.

5.5.3.2 Data Structure Documentation

5.5.3.2.1 struct nvs_log _header NVS type definition for a non volatile LOG storage container.

Data Fields
uint16_t | index Index of last log entry.
uint16_t | length Maximum number of entries in log storage.
uint16_t | size Size of data entry in bytes.
uint16_t | token Identifier token.

5.5.3.3 Macro Definition Documentation

5.5.3.3.1 #define NVS_LOG_STORAGE_SIZE(size, num) Calculate the NVS log storage size from
structure size and number of elements.

October 27, 2017 61

Non-Volatile Storage (NVS)

5.5.3.4 Function Documentation

5.5.3.4.1 nvs_status nvs_log_add (nvs_log_handle handle, void x data) Adds a data entry to the
non-volatile LOG storage container.

This function copies the data to the storage container. For integrity checks the CRC of the data is
calculated and stored in the container as well.

Parameters

handle | NVS log container handle.

data | Pointer to data structure to add to the storage container.

Returns
Status of the NVS operation.

5.5.3.4.2 uint16_t nvs_log_entries (nvs_log_handle handle) Return the number of valid entries in the
log container.

This function will return the number of valid entries of the log container.

Parameters

handle | NVS log container handle.

Returns
Number of valid entries.

5.5.3.4.3 bool nvs_log_full (nvs_log_handle handle) Check whether the log storage container is full.
This function does check whether the log storage container is full.

Parameters

handle | NVS log container handle.

Returns
True if NVS log is full.

5.5.3.4.4 nvs_log_handle nvs_log_init (uint8_t « storage, uint16_t size, uint16_t length) Initialize
non-volatile data LOG storage container.

This function checks for an existing non-volatile log container at the given location. If it finds an
existing container, it will match the properties of the container and verify the constancy of the
container. A CRC check of the most recent data is performed and if everything is match the function
will return without any modification to the storage container. In case of a failing CRC an incomplete
storage operation is assumed and the log container is verified for consistency from the beginning.
The last good known data/CRC match is used as the new end of log index.

Only when no container is found, or the properties of the container have changed, or no matching
CRC was found, then the container will be initialized.

62 October 27, 2017

Non-Volatile Storage (NVS)

Parameters
storage | Pointer to NVS data storage with size calculated using
NVS_LOG_STORAGE_SIZE.
size | Size of data structure element that is being stored.
length | Maximum number of entries in the log storage.
Returns

NVS log container handle

5.5.3.4.5 uint16_t nvs_log_max (nvs_log_handle handle) Returnthe max number of entries for this log

container.

This function will return the maximum number of allowed entries for the given log container.

Parameters

handle

NVS log container handle.

Returns

Maximum number of allowed entries in log container.

5.5.3.4.6 nvs_status nvs_log_reset (nvs_log_handle handle) Reset (clear) non-volatile data LOG stor-

age container.

This function will reset/clear the non-volatile log container. All CRC values will be invalidated, so no
data can be recovered.

Parameters

handle

NVS log container handle.

Returns

Status of the NVS operation.

5.5.3.4.7 nvs_status nvs_log_retrieve (nvs_log_handle handle, void « data, uint16_t index) Retrieve
a specific data entry from the non-volatile log storage container.

This function does retrieve a specific data entry by copying the data with the given index from
the storage container to the data location. The size of the data is defined during the nvs_log_init
function call and is fixed for every nvs_log_container entry. After the data has been copied, the
CRC of the data is calculated and compared against the stored CRC value. The result is reflected

in the return value.

Parameters
handle | NVS log container handle.
data | Pointer to data structure to populate with retrieved data.
index | Index of data to retrieve.

October 27, 2017

63

Non-Volatile Storage (NVS)

Returns
Status of the NVS operation.

554 NVS Ring

Data Structures

m struct nvs_ring_header

Macros

m #define NVS_RING_STORAGE_SIZE(size, num)
m #define NVS_RING_TOKEN

Typedefs

m typedef void * nvs_ring_handle
m typedef struct nvs_ring_header nvs_ring_header

Functions

nvs_status nvs_ring_add (nvs_ring_handle handle, void xdata)

uint16_t nvs_ring_entries (nvs_log_handle handle)

bool nvs_ring_full (nvs_ring_handle handle)

nvs_ring_handle nvs_ring_init (uint8_t «storage, uint16_t size, uint16_t length)
uint16_t nvs_ring_max (nvs_ring_handle handle)

nvs_status nvs_ring_reset (nvs_ring_handle handle)

nvs_status nvs_ring_retrieve (nvs_ring_handle handle, void xdata, uint16_t index)

5.5.4.1 Detailed Description

The following are types, macros and functions available for the ring storage container.

5.5.4.2 Data Structure Documentation

5.5.4.2.1 struct nvs_ring_header NVS type definition for a non volatile RING storage container.

Data Fields
uint16_t | first Index of first ring entry.
uint16_t | last Index of last ring entry.
uint16_t | length Maximum number of entries in ring storage.
uint16_t | size Size of data entry in bytes.
uint16_t | token Identifier token.

64 October 27, 2017

Non-Volatile Storage (NVS)

5.5.4.3 Macro Definition Documentation

5.5.4.3.1 #define NVS_RING_STORAGE_SIZE(size, num) Calculate the NVS ring storage size from
structure size and number of elements.

55.4.4 Function Documentation

5.5.4.4.1 nvs_status nvs_ring_add (nvs_ring_handle handle, void x data) Adds a data entry to the
non-volatile RING storage container.

This function copies the data to the storage container. For integrity checks the CRC of the data is
calculated and stored in the container as well.

Parameters

handle | NVS ring container handle.

data | Pointer to data structure to add to the storage container.

Returns
Status of the NVS operation.

5.5.4.4.2 uint16_t nvs_ring_entries (nvs_log_handle handle) Return the number of valid entries in the
ring container.

This function will return the number of valid entries of the ring container.

Parameters

handle | NVS ring container handle.

Returns
Number of valid entries.

Referenced by nvs_ring_retrieve().

5.5.4.4.3 bool nvs_ring_full (nvs_ring_handle handle) Check whether the ring storage container is full.
This function does check whether the ring storage container is full.

Parameters

handle | NVS ring container handle.

Returns
True if NVS ring is full.

5.5.4.4.4 nvs_ring_handle nvs_ring_init (uint8_t « storage, uint16_t size, uint16_t length) Initialize
non-volatile data RING storage container.

October 27, 2017 65

Non-Volatile Storage (NVS)

This function checks for an existing non-volatile ring container at the given location.
an existing container, it will match the properties of the container and verify the constancy of the
container. A CRC check of the most recent data is performed and if everything is match the function
will return without any modification to the storage container. In case of a failing CRC an incomplete
storage operation is assumed and the ring container is completely analyzed to identify the oldest
and most recent data entry. The ring container is then updated to contain the updated first/last

information.

Only when no container is found, or the properties of the container have changed, or no matching
CRC was found, then the container will be initialized with an empty ring buffer.

Parameters

storage | Pointer to NVS data storage with
NVS_RING_STORAGE_SIZE.

size | Size of data structure element that is being stored.

length | Maximum number of entries in the ring storage.

Returns
NVS ring container handle

5.5.4.4.5 uint16_t nvs_ring_max (nvs_ring_handle handle) Return the max number of entries for this

ring container.

This function will return the maximum number of allowed entries for the given ring container.

Parameters

handle | NVS ring container handle.

Returns
Maximum number of allowed entries in ring container.

5.5.4.4.6 nvs_status nvs_ring_reset (nvs_ring_handle handle) Reset (clear) non-volatile data RING

storage container.

This function will reset/clear the non-volatile ring container. All CRC values will be invalidated, so

no data can be recovered.

Parameters

handle | NVS ring container handle.

Returns
Status of the NVS operation.

5.5.4.4.7 nvs_status nvs_ring_retrieve (nvs_ring_handle handle, void « data, uint16_t index) Re-

trieve a specific data entry from the non-volatile ring storage container.

This function does retrieve a specific data entry by copying the data with the given index from the
storage container to the data location. An index of 1 does point to the oldest entry and every

66

October 27, 2017

Non-Volatile Storage (NVS)

increment will return one younger data entry. The size of the data is defined during the nvs_log_init
function call and is fixed for every nvs_log_container entry. After the data has been copied, the
CRC of the data is calculated and compared against the stored CRC value. The result is reflected
in the return value.

Parameters

handle | NVS ring container handle.

data | Pointer to data structure to populate with retrieved data.

index | Index of data to retrieve.

Returns
Status of the NVS operation.

5.5.5 NVS Support

Functions

m uint16_t nvs_crc (void xdata, uint16_t size)
m void nvs_lockFRAM (uint16_t state)
m uint16_t nvs_unlockFRAM (void)

5.5.5.1 Detailed Description

The following are support functions used within the NVS library.

55.5.2 Function Documentation

5.5.5.2.1 uint16_t nvs_crc (void x data, uint16_t size) Calculate a 16-bit CRC over a storage buffer in

bytes.
Parameters
data | Pointer to data to calculate CRC on.
size | Length of data array.
Returns
none

Referenced by nvs_data_commit(), nvs_data_init(), nvs_data_restore(), nvs_log_add(),
nvs_log_init(), nvs_log_retrieve(), nvs_ring_add(), nvs_ring_init(), and nvs_ring_retrieve().

5.5.5.2.2 void nvs_lockFRAM (uint16_t state) [inline] Lock FRAM after writing.

Restore the previous FRAM protection state with the state returned from nvs_unlockFRAM().

October 27, 2017 67

Non-Volatile Storage (NVS)

Parameters

] state \ FRAM state returned from nvs_unlockFRAM().

Returns
none

Referenced by nvs_data_commit(), nvs_data_init(), nvs_log_add(), nvs_log_init(), nvs_log_reset(),
nvs_ring_add(), nvs_ring_init(), and nvs_ring_reset().

5.5.5.2.3 uint16_t nvs_unlockFRAM (void) [inline] Unlock FRAM for writing.

Clear the FRAM program write protection bit and return the original status of the bit. The return of
this function can be used to restore the previous FRAM protection state with nvs_lockFRAM().

Returns
FRAM state that can be passed into nvs_lockFRAM()

Referenced by nvs_data_commit(), nvs_data_init(), nvs_log_add(), nvs_log_init(), nvs_log_reset(),
nvs_ring_add(), nvs_ring_init(), and nvs_ring_reset().

68 October 27, 2017

Non-Volatile Storage (NVS)

5.6

5.6.1

5.6.2

5.6.3

5.6.4

5.6.5

Examples

EXamMPIES OVEIVIBWttt e e e e 71
(O] 111018 0T U E=3 oo 10 o] (= P 71
Store application CoNfIQUIAtIoNt e e e e 71
Log StruCtUre 10 FRAM .. e s 71
Black DOX r8COIARY ... e 71

Examples Overview

These examples demonstrate how to use the NVS utility to store data in non-volatile FRAM or
information memory.

Continuous Counter

This example demonstrates how to implement a continuous up counter that never looses its value
regardless of asynchronous reset or power cycle events. Even a compile and program update does
not disrupt the counter, as long as the NVS container stays the same.

Application Configuration

This example demonstrates how to store a complex structure in the non volatile memory. The library
function will assure to always retrieve a complete set of variables regardless of asynchronous reset
or power cycle events. Even a compile and program update does not disrupt the configuration as
long as the NVS container stays the same.

Data Logger

This example demonstrates how to utilize the data logger functionality of the NVS library to log
a structure containing timestamp and ADC measurement. The main program will log until NVS
storage is full and then read back and print logged data.

Black Box Recorder

This example demonstrates how to utilize the NVS ring storage container to create a black box
recorder with the most recent samples. The main program will log a specified number of entries
and then read back and print the latest data.

October 27, 2017 69

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl| deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used.
Information published by Tl regarding third-party products or services does not constitute a license from Tl to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of Tl.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are specifi-
cally designated by Tl as military-grade or “enhanced plastic.” Only products designated by Tl as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © , Texas Instruments Incorporated

70 October 27, 2017

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	2 Compute Through Power Loss (CTPL)
	2.1 Introduction
	2.2 Usage
	2.2.1 Components
	2.2.2 Debugging LPM3.5 and LPM4.5 Modes
	2.2.3 Code Composer Studio (CCS)
	2.2.4 IAR Embedded Workbench

	2.3 API Reference
	2.3.1 API Overview
	2.3.2 Core API Set
	2.3.3 Low Level
	2.3.4 Peripherals
	2.3.5 Benchmark

	2.4 Examples
	2.4.1 Examples Overview
	2.4.2 LPM4.5 With GPIO Wakeup
	2.4.3 LPM3.5 With RTC Wakeup
	2.4.4 COMP_E Powerloss Monitor
	2.4.5 ADC12_B Powerloss Monitor

	2.5 Benchmarking
	2.5.1 Overview
	2.5.2 Configuration

	3 LZ4 Compression
	3.1 Introduction
	3.2 Usage
	3.2.1 Components
	3.2.2 Performance Configuration
	3.2.3 Command Line Utility

	3.3 API Reference
	3.3.1 API Overview
	3.3.2 LZ4
	3.3.3 xxHash

	3.4 Examples
	3.4.1 Examples Overview
	3.4.2 Compress Text to LZ4 File
	3.4.3 Compress Text with CRC16 Checksum
	3.4.4 Decompress Data Stream

	3.5 LZ4 Benchmarks
	3.5.1 LZ4 Compression Ratio
	3.5.2 LZ4 Compression Speed

	4 Random Number Generator (RNG)
	4.1 Introduction
	4.2 API Reference
	4.2.1 API Overview
	4.2.2 RNG

	4.3 Examples
	4.3.1 Examples Overview
	4.3.2 Generate Random Data
	4.3.3 Generate Random Data to CSV File

	5 Non-Volatile Storage (NVS)
	5.1 Introduction
	5.2 Features
	5.3 Storage Containers
	5.3.1 Data Storage
	5.3.2 Log Storage
	5.3.3 Ring Storage

	5.4 Memory Allocation
	5.4.1 FRAM
	5.4.2 Information Memory

	5.5 API Reference
	5.5.1 NVS
	5.5.2 NVS Data
	5.5.3 NVS Log
	5.5.4 NVS Ring
	5.5.5 NVS Support

	5.6 Examples
	5.6.1 Examples Overview
	5.6.2 Continuous Counter
	5.6.3 Application Configuration
	5.6.4 Data Logger
	5.6.5 Black Box Recorder

	IMPORTANT NOTICE

