I3 TEXAS

INSTRUMENTS

MSP Graphics Library 3.21.00.00 version

USER’S GUIDE

Copyright © Texas Instruments Incorporated.

Copyright

Copyright © Texas Instruments Incorporated. All rights reserved. MSP430 and 430ware are registered trademarks of Texas Instruments. Other names
and brands may be claimed as the property of others.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments I TEXAS

Dutlas Tx 75008 INSTRUMENTS

http://www.ti.com/msp430

Revision Information

This is version 3.21.00.00 of this document, last updated on February 15, 2016.

2 February 15, 2016

Table of Contents

Table of Contents

CopyHght . . . e e e e e e e e e e e e e e e e e 2
Revision Information e e e e e e e e 2
1 Using Template Driverfiles i i i it e e e e e e e e 5
1.1 Modifying the Template Driver File 5
2 Circle APl e e e e e e e e e e e e e 7
2.1 Introduction L e 7
2.2 APIFuUNctions e e e 7
2.3 Programming Example e 8
3 Context APl e e e e e e e e e e e e e 11
3.1 Introduction L e e e e e e e 11
3.2 APIFuUNnctions e e e 11
3.3 Programming Example e 18
4 Image APl e e e e e e e e e e e e e e e e e e 21
4.1 Introduction L. e e e e 21
4.2 APIFunctions e e 21
4.3 Programming Example e 24
5 Line APl e e e e e e e e e e e e e e e e e 27
5.1 Introduction L e e 27
5.2 APIFunctions e 27
5.3 Programming Example 29
6 Rectangle APl e e e e e e e 31
6.1 Introduction L L e e e 31
6.2 APIFuUNnctions 31
6.3 Programming Example 34
7 String APl e e e e e e e e e e e e e e e e 35
7.1 Introduction L e 35
7.2 APIFUNCtions 35
7.3 Programming Example 38
8 Button APl e e e e e e e e e e e e e e e e 1
8.1 Introduction 41
8.2 APIFUNCtions 41
8.3 Programming Example e 43
9 ImageButton APl e e e e e e e 45
9.1 Introduction L e 45
9.2 APIFuUNctions e e e e 45
9.3 Programming Example e 47
10 RadioButton APl e e e e e e e e e e e 49
10.1 Introduction L e e e e e e e 49
10.2 APl Functions e 49
10.3 Programming Example 51
11 CheckBoX APl e et e e e e e e e e e e e e e e e e e 53
11.1 Introduction L e e e 53
11.2 Checkbox_api e 53
11.3 Programming Example 55
12 Using the MSP Image Reformer Tool« i ittt e e e e s 57

February 15, 2016 3

Table of Contents

12.1 Introduction e e 57
12.2 Running MSP Image Reformer Tool 57
12.3 Launching MSP Image Reformer from Tl Resource Explorer 58
IMPORTANT NOTICEo i e e e e e e e e e e et e et e e e e e 60

4 February 15, 2016

Using Template Driver files

1.1

Using Template Driver files

Modifying the Template Driver Fileo e e 5

Modifying the Template Driver File

This template driver is intended to be modified for creating new LCD drivers. It is setup so that
only Template_DriverPixelDraw() and DPYCOLORTRANSLATE() and some LCD size configura-
tion settings in the header file Template_Driver.h are REQUIRED to be written. These func-
tions are marked with the string "TemplateDisplayFix" in the comments so that a search through
Template_Driver.c and Template_Driver.h can quickly identify the necessary areas of
change.

Template_DriverPixelDraw() is the base function to write to the LCD display. Functions like Write-
Data(), WriteCommand(), and SetAddress() are suggested to be used to help implement the Tem-
plate_DriverPixelDraw() function, but are not required. SetAddress() should be used by other pixel
level functions to help optimize them.

This is not an optimized driver and will significantly impact performance. It is highly recommended
to first get the prototypes working with the single pixel writes, and then go back and optimize the
driver. Please see application note sTLAA548 for more information on how to fully optimize LCD
driver files. In short, driver optimizations should take advantage of the auto-incrementing of the
LCD controller. This should be utilized so that a loop of WriteData() can be used instead of a
loop of Template_DriverPixelDraw(). The pixel draw loop contains both a SetAddress() + Write-
Data() compared to WriteData() alone. This is a big time saver especially for the line draws and
Template_DriverPixelDrawMultiple(). More optimization can be done by reducing function calls by
writing macros, eliminating unnecessary instructions, and of course taking advantage of other fea-
tures offered by the LCD controller. With so many pixels on an LCD screen each instruction can
have a large impact on total drawing time.

February 15, 2016 5

http://www.ti.com/lit/pdf/slaa548

Using Template Driver files

6 February 15, 2016

Circle API

2.1

2.2

2.2.1

2.2.2

2.2.2.1

Circle API

I OAUCH ON ..t e e e e 7
AP FUNCHIONS ..o e e e e e e e e e 7
Programming EXamIpIe 8
Introduction

The Circle API provides simple functions to draw a circle on the display. There are two different
functions used to draw a circle; one which draws the outline, and the other which draws a filled-in
circle. The clipping of the circle is performed within the routine; the display driver’s circle fill routine
is used to permore the actual circle fill.

The code for this APl is contained in grlib/circle.c, with grlib/circle.h containing the
API definitions for use by applications.

API Functions

Functions

m void Graphics_drawCircle (const Graphics_Context xcontext, int32_t x, int32_t y, int32_t ra-
dius)
m void Graphics_fillCircle (const Graphics_Context xcontext, int32_t x, int32_t y, int32_t radius)

Detailed Description
The Circle APl is broken into two separate functions both of which write to the display.
The function which draws a circle is handled by
m GrCircleDraw()
The function which draws a filled-in circle is handled by

= GrCircleFill()

Function Documentation

Graphics_drawCircle

Draws a circle.

Prototype:
void
Graphics_drawCircle (const Graphics_Context =*context,

February 15, 2016

Circle API

int32_t x,
int32_t vy,
int32_t radius)

Parameters:
context is a pointer to the drawing context to use.

X is the X coordinate of the center of the circle.
y is the Y coordinate of the center of the circle.
radius is the radius of the circle.

Description:
This function draws a circle, utilizing the Bresenham circle drawing algorithm. The extent of the
circle is from x - radius to x + radius and y - radius to y + radius, inclusive.

Returns:
None.

2.2.2.2 Graphics_fillCircle

Draws a filled circle.

Prototype:
void
Graphics_fillCircle (const Graphics_Context *context,
int32_t x,
int32_t vy,
int32_t radius)
Parameters:

context is a pointer to the drawing context to use.
X is the X coordinate of the center of the circle.

y is the Y coordinate of the center of the circle.
radius is the radius of the circle.

Description:
This function draws a filled circle, utilizing the Bresenham circle drawing algorithm. The extent
of the circle is from x - radius to x + radius and y - radius to y + radius, inclusive.

Returns:
None.

2.3 Programming Example

tContext sContext;

//

// Initialize the graphics context

//

GrContextInit (&sContext, &g_sharp400x240LCD);
GrContextForegroundSet (&sContext, ClrBlack);
GrContextBackgroundSet (&sContext, ClrWhite);

8 February 15, 2016

Circle API

GrClearDisplay (&sContext);

GrCircleDraw (&sContext, 275, 100, 30);
GrCircleFill (&sContext, 50, 100, 30);

GrFlush (&sContext) ;
__no_operation();

February 15, 2016 9

Circle API

10 February 15, 2016

Context API

3.1

3.2

3.2.1

Context API

I OAUCH ON ... e e e e e e e s 11
AP FUNCHIONS .. e e e e 11
Programming EXample e 18
Introduction

The Context API provides simple functions to initialize a drawing context, preparing it for use on the
display. The display driver will be used for all subsequent graphics operations.

The code for this APl is contained in grlib/context.c, With grlib/context .h containing the
API definitions for use by applications.

API Functions

Functions

void Graphics_clearDisplay (const Graphics_Context xcontext)

void Graphics_drawPixel (const Graphics_Context «context, uint16_t x, uint16_t y)

void Graphics_flushBuffer (const Graphics_Context xcontext)

uint16_t Graphics_getDisplayHeight (Graphics_Context xcontext)

uint16_t Graphics_getDisplayWidth (Graphics_Context xcontext)

uint8_t Graphics_getFontBaseline (const Graphics_Font «font)

uint8_t Graphics_getFontHeight (const Graphics_Font «font)

uint8_t Graphics_getFontMaxWidth (const Graphics_Font «font)

uint16_t Graphics_getHeightOfDisplay (const Graphics_Display xdisplay)

uint16_t Graphics_getWidthOfDisplay (const Graphics_Display *display)

void Graphics_initContext (Graphics_Context xcontext, const Graphics_Display «display)
void Graphics_setBackgroundColor (Graphics_Context xcontext, int32_t value)

void Graphics_setBackgroundColorTranslated (Graphics_Context xcontext, int32_t value)
void Graphics_setClipRegion (Graphics_Context xcontext, Graphics_Rectangle xrect)
void Graphics_setFont (Graphics_Context xcontext, const Graphics_Font «font)

void Graphics_setForegroundColor (Graphics_Context xcontext, int32_t value)

void Graphics_setForegroundColorTranslated (Graphics_Context xcontext, int32_t value)

Detailed Description

The Context API is broken into two separate functions both of which initialize the context for the
display, but differ in the way they set the clipping regions of the screen. The clipping region is
not allowed to exceed the extents of the screen, but may be a portion of the screen. The supplied
coordinates are inclusive for the clipping region. As a consequence, the clipping region must contain
at least one row and one column.

February 15, 2016 11

Context API

The function which initializes the context and who’s clipping region is set to the extent of the entire
screen is handled by

m GrContextlnit()
The function which initializes the context and also sets a clipping region is handled by

m GrContextClipRegionSet()

3.2.2 Function Documentation

3.2.2.1 Graphics_clearDisplay

Forces a clear screen. Contents of Display buffer unmodified

Prototype:
void
Graphics_clearDisplay (const Graphics_Context xcontext)

Parameters:
context is a pointer to the drawing context to use.

Description:
This function forces a clear screen.

Returns:
None.

3.2.2.2 Graphics_drawPixel

Draws a pixel.

Prototype:
void
Graphics_drawPixel (const Graphics_Context =*context,
uintlé6_t x,
uintl6_t vy)

Parameters:
context is a pointer to the drawing context to use.

X is the X coordinate of the pixel.
y is the Y coordinate of the pixel.

Description:
This function draws a pixel if it resides within the clipping region.

Returns:
None.

12 February 15, 2016

Context API

3.2.2.3

3.2.2.4

3.2.2.5

Graphics_flushBuffer

Flushes any cached drawing operations.

Prototype:
void
Graphics_flushBuffer (const Graphics_Context *context)

Parameters:
context is a pointer to the drawing context to use.

Description:
This function flushes any cached drawing operations. For display drivers that draw into a local
frame buffer before writing to the actual display, calling this function will cause the display to be
updated to match the contents of the local frame buffer.

Returns:
None.

Graphics_getDisplayHeight

Gets the height of the display being used by this drawing context.

Prototype:
uintl6_t
Graphics_getDisplayHeight (Graphics_Context =*context)

Parameters:
context is a pointer to the drawing context to query.

Description:
This function returns the height of the display that is being used by this drawing context.

Returns:
Returns the height of the display in pixels.

Graphics_getDisplayWidth

Gets the width of the display being used by this drawing context.

Prototype:
uintle6_t
Graphics_getDisplayWidth (Graphics_Context *context)

Parameters:
context is a pointer to the drawing context to query.

Description:
This function returns the width of the display that is being used by this drawing context.

Returns:
Returns the width of the display in pixels.

February 15, 2016 13

Context API

3.2.2.6

3.2.2.7

3.2.2.8

Graphics_getFontBaseline

Gets the baseline of a font.

Prototype:
uint8_t
Graphics_getFontBaseline (const Graphics_Font xfont)

Parameters:
font is a pointer to the font to query.

Description:
This function determines the baseline position of a font. The baseline is the offset between the
top of the font and the bottom of the capital letters. The only font data that exists below the
baseline are the descenders on some lower-case letters (such as “y”).

Returns:
Returns the baseline of the font, in pixels.

Graphics_getFontHeight

Gets the height of a font.

Prototype:
uint8_t
Graphics_getFontHeight (const Graphics_Font =*font)

Parameters:
font is a pointer to the font to query.

Description:
This function determines the height of a font. The height is the offset between the top of the
font and the bottom of the font, including any ascenders and descenders.

Returns:
Returns the height of the font, in pixels.

Graphics_getFontMaxWidth

Gets the maximum width of a font.

Prototype:
uint8_t
Graphics_getFontMaxWidth (const Graphics_Font xfont)

Parameters:
font is a pointer to the font to query.

Description:
This function determines the maximum width of a font. The maximum width is the width of the
widest individual character in the font.

14

February 15, 2016

Context API

3.2.2.9

3.2.2.10

3.2.2.11

Returns:
Returns the maximum width of the font, in pixels.

Graphics_getHeightOfDisplay

Gets the height of the display.

Prototype:
uintle6_t
Graphics_getHeightOfDisplay (const Graphics_Display =*display)

Parameters:
display is a pointer to the display driver structure for the display to query.

Description:
This function determines the height of the display.

Returns:
Returns the height of the display in pixels.

Graphics_getWidthOfDisplay

Gets the width of the display.

Prototype:
uintle6_t
Graphics_getWidthOfDisplay (const Graphics_Display =*display)

Parameters:
display is a pointer to the display driver structure for the display to query.

Description:
This function determines the width of the display.

Returns:
Returns the width of the display in pixels.

Graphics_initContext

Initializes a drawing context.

Prototype:
void
Graphics_initContext (Graphics_Context xcontext,
const Graphics_Display =*display)

Parameters:
context is a pointer to the drawing context to initialize.
display is a pointer to the Graphics_Display Info structure that describes the display driver to
use.

February 15, 2016 15

Context API

Description:
This function initializes a drawing context, preparing it for use. The provided display driver will
be used for all subsequent graphics operations, and the default clipping region will be set to
the extent of the screen.

Returns:
None.

3.2.2.12 Graphics_setBackgroundColor
Sets the background color to be used.
Prototype:
void
Graphics_setBackgroundColor (Graphics_Context =xcontext,
int32_t value)
Parameters:
context is a pointer to the drawing context to modify.
value is the 24-bit RGB color to be used.
Description:
This function sets the background color to be used for drawing operations in the specified
drawing context.
Returns:
None.
3.2.2.13 Graphics_setBackgroundColorTranslated
Sets the background color to be used.
Prototype:
void
Graphics_setBackgroundColorTranslated (Graphics_Context xcontext,
int32_t value)
Parameters:
context is a pointer to the drawing context to modify.
value is the display driver-specific color to be used.
Description:
This function sets the background color to be used for drawing operations in the specified
drawing context, using a color that has been previously translated to a driver-specific color (for
example, via Graphics_translateColorDisplay()).
Returns:
None.
16 February 15, 2016

Context API

3.2.2.14

3.2.2.15

3.2.2.16

Graphics_setClipRegion

Sets the extents of the clipping region.

Prototype:
void
Graphics_setClipRegion (Graphics_Context #*context,
Graphics_Rectangle =xrect)

Parameters:
context is a pointer to the drawing context to use.

rect is a pointer to the structure containing the extents of the clipping region.

Description:
This function sets the extents of the clipping region. The clipping region is not allowed to
exceed the extents of the screen, but may be a portion of the screen.

The supplied coordinate are inclusive; xMin of 1 and xMax of 1 will define a clipping region
that will display only the pixels in the X = 1 column. A consequence of this is that the clipping
region must contain at least one row and one column.

Returns:
None.

Graphics_setFont

Sets the font to be used.

Prototype:

void
Graphics_setFont (Graphics_Context xcontext,
const Graphics_Font xfont)

Parameters:
context is a pointer to the drawing context to modify.

font is a pointer to the font to be used.

Description:
This function sets the font to be used for string drawing operations in the specified drawing
context. If a tFontEx type font is to be used, cast its pointer to a font pointer before passing it
as the font parameter.

Returns:
None.

Graphics_setForegroundColor

Sets the foreground color to be used.

February 15, 2016 17

Context API

3.2.2.17

3.3

Prototype:
void
Graphics_setForegroundColor (Graphics_Context xcontext,
int32_t value)

Parameters:
context is a pointer to the drawing context to modify.

value is the 24-bit RGB color to be used.

Description:
This function sets the color to be used for drawing operations in the specified drawing context.

Returns:
None.

Graphics_setForegroundColorTranslated

Sets the foreground color to be used.

Prototype:
void
Graphics_setForegroundColorTranslated (Graphics_Context xcontext,
int32_t wvalue)

Parameters:
context is a pointer to the drawing context to modify.

value is the display driver-specific color to be used.

Description:
This function sets the foreground color to be used for drawing operations in the specified draw-
ing context, using a color that has been previously translated to a driver-specific color (for
example, via Graphics_translateColorDisplay()).

Returns:
None.

Programming Example

tContext sContext;

//

// Initialize the graphics context

//

GrContextInit (&sContext, &g_sharp400x240LCD) ;
GrContextForegroundSet (&sContext, ClrBlack);
GrContextBackgroundSet (&sContext, ClrWhite);

GrClearDisplay (&sContext) ;

GrContextFontSet (&sContext, &g_sFontCm26);
GrStringDraw (&sContext, "Welcome to ", -1, 20, 8, 0);

GrContextFontSet (&sContext, &g_sFontCm30);

18

February 15, 2016

Context API

GrStringDraw (&sContext, "Dallas TX", -1, 20, 180, 0);

GrFlush (&sContext) ;
__no_operation();

February 15, 2016 19

Context API

20

February 15, 2016

Image API

4

4.1

4.2

4.21

Image API

I OAUCH ON ... e e e 21
AP FUNCHIONS .. e e e e e 21
Programming EXamIpIe 24
Introduction

The Image API provides simple functions to draw images on the screen. There are two different
functions used to draw a image; one which converts the palette of a bitmap image and the other
which renders the bitmap image onto the screen.

The code for this APl is contained in grlib/image.c, with gr1ib/image.h containing the API
definitions for use by applications.

API Functions

Functions

m void Graphics_drawlmage (const Graphics_Context xcontext, const Graphics_Image xbitmap,
int16_t x, int16_t y)

uint16_t Graphics_getimageColors (const Graphics_Image ximage)

uint16_t Graphics_getimageHeight (const Graphics_Image ximage)

uint16_t Graphics_getimageWidth (const Graphics_Image ximage)

uint32_t Graphics_getOffscreen1BpplmageSize (uint16_t width, uint16_t height)

uint32_t Graphics_getOffscreen4BpplmageSize (uint16_t width, uint16_t height)

uint32_t Graphics_getOffScreen8BPPSize (uint16_t width, uint16_t height)

Detailed Description

The Image API is broken into two separate functions, one to converte the palette and the other to
render to the display. Calling the GrimageDraw() function also invokes GrPaletteConversion() as
well so the user only needs to be concerned with the GrimageDraw() function.

The image may be either 1-, 4-, or 8-bits per pixel by using a palette supplied in the image data.
The image palette is in 24-bit RGB form and by calling GrPaletteConversion(), the palette can then
be sent to the LCD usign DpyColorTranslate function. The converted palette is contained in a global
buffer while the original image remains the same. The palette can be uncompressed data or it can
be compressed using several different compresion types. Compression options are either 4- or
8-bit run length encoding, or a custom run lenth endocing variation written for complex 8-bit per
pixel images.

The function which converts the palette of the bitmap is handled by

m GrPaletteConversion()

February 15, 2016 21

Image API

The function which draws a bitmap image is handled by

m GrimageDraw()

4.2.2 Function Documentation

4.2.2.1 Graphics_drawlmage

Draws a bitmap image.

Prototype:
void
Graphics_drawImage (const Graphics_Context xcontext,
const Graphics_Image xbitmap,
intl6_t x,
intle_t vy)

Parameters:
context is a pointer to the drawing context to use.
bitmap is a pointer to the image to draw.
x is the X coordinate of the upper left corner of the image.
y is the Y coordinate of the upper left corner of the image.

Description:
This function draws a bitmap image. The image may be 1 bit per pixel, 4 bits per pixel or 8 bits
per pixel (using a palette supplied in the image data). It can be uncompressed data, or it can
be compressed using several different compression types. Compression options are 4-bit run
length encoding, 8-bit run length encoding, and a custom run length encoding variation written
for complex 8-bit per pixel images.

Returns:
None.

4.2.2.2 Graphics_getimageColors

Gets the number of colors in an image.

Prototype:
uintle6_t
Graphics_getImageColors (const Graphics_Image ximage)

Parameters:
image is a timage struct

Description:
This function determines the number of colors in the palette of an image. This is only valid for
4bpp and 8bpp images; 1bpp images do not contain a palette.

Returns:
Returns the number of colors in the image.

22 February 15, 2016

Image API

4.2.2.3

4224

4225

Graphics_getimageHeight

Gets the height of an image.

Prototype:
uintle6_t
Graphics_getImageHeight (const Graphics_Image ximage)

Parameters:
image is a timage struct

Description:
This function determines the height of an image in pixels.

Returns:
Returns the height of the image in pixels.

Graphics_getlmageWidth

Gets the width of an image.

Prototype:
uintle6_t
Graphics_getImageWidth (const Graphics_Image ximage)

Parameters:
image is a timage struct

Description:
This function determines the width of an image in pixels.

Returns:
Returns the width of the image in pixels.

Graphics_getOffscreen1BpplmageSize

Determines the size of the buffer for a 1 BPP off-screen image.

Prototype:
uint32_t
Graphics_getOffscreenlBppImageSize (uintl6_t width,
uintl6_t height)

Parameters:
width is the width of the image in pixels.

height is the height of the image in pixels.

Description:

This function determines the size of the memory buffer required to hold a 1 BPP off-screen

image of the specified geometry.

February 15, 2016

23

Image API

4.2.2.6

4227

4.3

Returns:
Returns the number of bytes required by the image.

Graphics_getOffscreen4BpplmageSize

Determines the size of the buffer for a 4 BPP off-screen image.

Prototype:
uint32_t
Graphics_getOffscreendBppImageSize (uintl6_t width,
uintl6_t height)

Parameters:
width is the width of the image in pixels.

height is the height of the image in pixels.

Description:
This function determines the size of the memory buffer required to hold a 4 BPP off-screen
image of the specified geometry.

Returns:
Returns the number of bytes required by the image.

Graphics_getOffScreen8BPPSize

Determines the size of the buffer for an 8 BPP off-screen image.

Prototype:
uint32_t
Graphics_getOffScreen8BPPSize (uintl6_t width,
uintl6_t height)

Parameters:
width is the width of the image in pixels.

height is the height of the image in pixels.

Description:
This function determines the size of the memory buffer required to hold an 8 BPP off-screen
image of the specified geometry.

Returns:
Returns the number of bytes required by the image.

Programming Example

tContext sContext;

//

// Initialize the graphics context

24

February 15, 2016

Image API

//

GrContextInit (&sContext, &g_sharp400x240LCD) ;

GrContextForegroundSet (&sContext,
GrContextBackgroundSet (&sContext,

GrClearDisplay (&sContext) ;

ClrBlack);
ClrWhite);

GrImageDraw (&sContext, &infoHugePig, 200, 70);

GrFlush (&sContext) ;
__no_operation();

February 15, 2016

25

Image API

26

February 15, 2016

Line API

5

5.1

5.2

5.2.1

5.2.2

5.2.2.1

Line API

I OAUCH ON ... e e e e e e e s 27
AP FUNCHIONS .. e e e e 27
Programming EXamIPIe ... e 29
Introduction

The Line API provides simple functions to draw lines on the display. There are five different func-
tions used to draw a line; two optimized functions for horizontal and vertical drawing, one generic
line drawing function, two functions for clipping. The user needs only to be concerned with the
generic line drawing function, GrLineDraw(), as it incorporates the use of all the other functions
automatically.

The code for this API is contained in grlib/line.c, with grlib/line.h containing the API
definitions for use by applications.

API Functions

Functions

m void Graphics_drawLine (const Graphics_Context xcontext, int32_t x1, int32_t y1, int32_t x2,
int32_t y2)

m void Graphics_drawLineH (const Graphics_Context xcontext, int32_t x1, int32_t x2, int32_t y)

m void Graphics_drawLineV (const Graphics_Context xcontext, int32_t x, int32_t y1, int32_t y2)

Detailed Description

The Line API is broken into two separate functions; one for drawing and the other for clipping
(internal functions).

The functions that draw a line are handled by

m GrLineDrawH()
m GrLineDrawlL()
m GrLineDraw()

The user needs only to be concerned with the generic line drawing function, GrLineDraw(), as it
incorporates the use of all the other functions automatically.

Function Documentation

Graphics_drawLine

Draws a line.

February 15, 2016 27

Line API

Prototype:
void
Graphics_drawlLine (const Graphics_Context =*context,
int32_t x1,
int32_t vy1,
int32_t x2,
int32_t y2)

Parameters:
context is a pointer to the drawing context to use.

x1 is the X coordinate of the start of the line.
y1 is the Y coordinate of the start of the line.
x2 is the X coordinate of the end of the line.
y2 is the Y coordinate of the end of the line.

Description:
This function draws a line, utilizing Graphics_drawLineH() and Graphics_drawLineV() to draw
the line as efficiently as possible. The line is clipped to the clippping rectangle using the
Cohen-Sutherland clipping algorithm, and then scan converted using Bresenham’s line drawing
algorithm.

Returns:
None.

5.2.2.2 Graphics_drawLineH
Draws a horizontal line.
Prototype:
void
Graphics_drawLineH (const Graphics_Context =*context,
int32_t x1,
int32_t x2,
int32_t vy)
Parameters:
context is a pointer to the drawing context to use.
x1 is the X coordinate of one end of the line.
x2 is the X coordinate of the other end of the line.
y is the Y coordinate of the line.
Description:
This function draws a horizontal line, taking advantage of the fact that the line is horizontal to
draw it more efficiently. The clipping of the horizontal line to the clipping rectangle is performed
within this routine; the display driver’s horizontal line routine is used to perform the actual line
drawing.
Returns:
None.
28 February 15, 2016

Line API

5.2.2.3

2.3

Graphics_drawLineV

Draws a vertical line.

Prototype:
void
Graphics_drawLineV (const Graphics_Context =*context,
int32_t x,
int32_t vyi1,
int32_t y2)
Parameters:

context is a pointer to the drawing context to use.
x is the X coordinate of the line.

y1 is the Y coordinate of one end of the line.

y2 is the Y coordinate of the other end of the line.

Description:
This function draws a vertical line, taking advantage of the fact that the line is vertical to draw
it more efficiently. The clipping of the vertical line to the clipping rectangle is performed within
this routine; the display driver’s vertical line routine is used to perform the actual line drawing.

Returns:
None.

Programming Example

tContext sContext;

//

// Initialize the graphics context

//

GrContextInit (&sContext, &g_sharp400x240LCD) ;
GrContextForegroundSet (&sContext, ClrBlack);
GrContextBackgroundSet (&sContext, ClrWhite);

GrClearDisplay (&sContext) ;
GrLineDraw (&sContext, 130, 30, 275, 200);
GrLineDrawH (&sContext, 20, 180, 220);

GrLineDrawV (&sContext, 30, 50, 160);

GrFlush (&sContext) ;
__no_operation();

February 15, 2016 29

Line API

30

February 15, 2016

Rectangle API

6

6.1

6.2

6.2.1

Rectangle API

I OAUCH ON ... e e e 31
AP FUNCHIONS .. e e e e e 31
Programming EXamIpIe 34
Introduction

The Rectangle API provides simple functions to draw a rectangle on the display. There are two
different functions used to draw a rectangle; one which draws the outline, and the other which
draws a filled-in rectangle. The clipping of the rectangle is performed within the routine; the display
driver’s rectangle fill routine is used to permore the actual rectangle fill.

The code for this APl is contained in grlib/rectangle.c, with grlib/rectangle.h contain-
ing the API definitions for use by applications.

API Functions

Functions
m void Graphics_drawRectangle (const Graphics_Context xcontext, const Graphics_Rectangle
xrect)
m void Graphics_fillRectangle (const Graphics_Context xcontext, const Graphics_Rectangle
xrect)

m int32_t Graphics_getRectanglelntersection (Graphics_Rectangle xrect1, Graphics_Rectangle
xrect2, Graphics_Rectangle xintersect)
m bool Graphics_isPointWithinRectangle (const Graphics_Rectangle *rect, uint16_t x, uint16_t

y)
m int32_t Graphics_isRectangleOverlap (Graphics_Rectangle xrectl, Graphics_Rectangle
xrect2)

Detailed Description

The Rectangle API is broken into two groups; one that draws to the screen and the other which
perform checks(internal functions).

The functions which draw rectangles are handled by

m GrRectDraw()
m GrRectFill()

February 15, 2016 31

Rectangle API

6.2.2 Function Documentation
6.2.2.1 Graphics_drawRectangle
Draws a rectangle.
Prototype:
void
Graphics_drawRectangle (const Graphics_Context =xcontext,
const Graphics_Rectangle x*rect)
Parameters:
context is a pointer to the drawing context to use.
rect is a pointer to the structure containing the extents of the rectangle.
Description:
This function draws a rectangle. The rectangle will extend from xMin to xMax and yMin to
yMax, inclusive.
Returns:
None.
6.2.2.2 Graphics_fillRectangle
Draws a filled rectangle.
Prototype:
void
Graphics_fillRectangle (const Graphics_Context xcontext,
const Graphics_Rectangle =rect)
Parameters:
context is a pointer to the drawing context to use.
rect is a pointer to the structure containing the extents of the rectangle.
Description:
This function draws a filled rectangle. The rectangle will extend from xMin to xMax and yMin
to yMax, inclusive. The clipping of the rectangle to the clipping rectangle is performed within
this routine; the display driver’s rectangle fill routine is used to perform the actual rectangle fill.
Returns:
None.
6.2.2.3 Graphics_getRectanglelntersection
Determines the intersection of two rectangles.
Prototype:
int32_t
Graphics_getRectanglelIntersection (Graphics_Rectangle xrectl,
32 February 15, 2016

Rectangle API

Graphics_Rectangle =*rect2,
Graphics_Rectangle xintersect)

Parameters:
rect1 is a pointer to the first rectangle.

rect2 is a pointer to the second rectangle.

intersect is a pointer to a rectangle which will be written with the intersection of rect? and
rect2.

Description:
This function determines if two rectangles overlap and, if they do, calculates the rectangle
representing their intersection. If the rectangles do not overlap, 0 is returned and intersect is
not written.

Returns:
Returns 1 if there is an overlap or 0 if not.

6.2.2.4 Graphics_isPointWithinRectangle

Determines if a point lies within a given rectangle.

Prototype:
bool
Graphics_isPointWithinRectangle (const Graphics_Rectangle x*rect,
uintle6e_t x,
uintl6_t vy)

Parameters:
rect is a pointer to the rectangle which the point is to be checked against.

x is the X coordinate of the point to be checked.
y is the Y coordinate of the point to be checked.

Description:
This function determines whether point (x, y) lies within the rectangle described by rect.

Returns:
Returns 1 if the point is within the rectangle or 0 otherwise.

6.2.2.5 Graphics_isRectangleOverlap

Determines if two rectangles overlap.

Prototype:
int32_t
Graphics_isRectangleOverlap (Graphics_Rectangle =*rectl,
Graphics_Rectangle xrect2)

Parameters:
rect1 is a pointer to the first rectangle.

rect2 is a pointer to the second rectangle.

February 15, 2016 33

Rectangle API

6.3

Description:

This function determines whether two rectangles overlap. It assumes that rectangles rect? and

rect2 are valid with xMin < xMax and yMin < yMax.

Returns:

Returns 1 if there is an overlap or 0 if not.

Programming Example

tContext sContext;
tRectangle myRectanglel = { 60, 60, 120, 120};
tRectangle myRectangle2 = { 160, 60, 220, 120};

//

// Initialize the graphics context

//

GrContextInit (&sContext, &g_sharp400x240LCD) ;
GrContextForegroundSet (&sContext, ClrBlack);
GrContextBackgroundSet (&sContext, ClrWhite);

GrClearDisplay (&sContext) ;

GrRectDraw (&sContext, &myRectanglel);
GrRectFill (&sContext, &myRectangle2);

GrFlush (&sContext) ;
__no_operation();

34

February 15, 2016

String API

7.1

7.2

7.2.1

String API

I OAUCH ON ... e e e e e e e s 35
AP FUNCHIONS .. e e e e 35
Programming EXamIPIe ... e 38
Introduction

The String API provides simple functions to draw strings on the screen. There are several different
functions used to draw a string; one which counts the number of leading zeroes, one for obtaining
the display width of the string, one for drawing the string to the display, one for setting the location
of the current string table, one to set the current language, and the last one for grabbing the string
from the current string table. The user should not directly call NumLeadingZeroes() as it is used
internally.

The code for this APl is contained in grlib/string.c, with grlib/string.h containing the
API definitions for use by applications.

API Functions

Functions

m void Graphics_drawString (const Graphics_Context xcontext, int8_t xstring, int32_t length,
int32_t x, int32_t y, bool opaque)

m void Graphics_drawStringCentered (const Graphics_Context xcontext, int8_t xstring, int32_t

length, int32_t x, int32_t y, bool opaque)

uint8_t Graphics_getStringBaseline (const Graphics_Context xcontext)

uint8_t Graphics_getStringHeight (const Graphics_Context xcontext)

uint8_t Graphics_getStringMaxWidth (const Graphics_Context xcontext)

int32_t Graphics_getStringWidth (const Graphics_Context xcontext, const int8_t xstring,
int32_t length)

Detailed Description

The String API available are classified as below.

The functions which calculate and set up parameters are handled by
m GrStringWidthGet()

The function which draws a string to the display is handled by

m GrStringDraw()

February 15, 2016 35

String API

7.2.2 Function Documentation

7.2.21 Graphics_drawString

Draws a string.

Prototype:

void

Graphics_drawString (const Graphics_Context *context,
int8_t *string,
int32_t length,
int32_t x,
int32_t vy,
bool opaque)

Parameters:
context is a pointer to the drawing context to use.
string is a pointer to the string to be drawn.
length is the number of characters from the string that should be drawn on the screen.
X is the X coordinate of the upper left corner of the string position on the screen.
y is the Y coordinate of the upper left corner of the string position on the screen.

opaque is true if the background of each character should be drawn and false if it should not
(leaving the background as is).

Description:
This function draws a string of test on the screen. The length parameter allows a portion of the
string to be examined without having to insert a NULL character at the stopping point (which
would not be possible if the string was located in flash); specifying a length of -1 will cause the
entire string to be rendered (subject to clipping).

Returns:
None.

7.2.2.2 Graphics_drawStringCentered

Draws a centered string.

Prototype:

void

Graphics_drawStringCentered (const Graphics_Context =*context,
int8_t #*string,
int32_t length,
int32_t x,
int32_t vy,
bool opaque)

Parameters:
context is a pointer to the drawing context to use.

string is a pointer to the string to be drawn.
length is the number of characters from the string that should be drawn on the screen.

36 February 15, 2016

String API

7.2.2.3

7.22.4

x is the X coordinate of the center of the string position on the screen.

y is the Y coordinate of the center of the string position on the screen.

opaque is true if the background of each character should be drawn and false if it should not
(leaving the background as is).

Description:
This function draws a string of test on the screen centered upon the provided position. The
ILength parameter allows a portion of the string to be examined without having to insert a NULL
character at the stopping point (which would not be possible if the string was located in flash);
specifying a length of -1 will cause the entire string to be rendered (subject to clipping).

Returns:
None.

Graphics_getStringBaseline

Gets the baseline of a string.

Prototype:
uint8_t
Graphics_getStringBaseline (const Graphics_Context *context)

Parameters:
context is a pointer to the drawing context to query.

Description:
This function determines the baseline position of a string. The baseline is the offset between
the top of the string and the bottom of the capital letters. The only string data that exists below
the baseline are the descenders on some lower-case letters (such as “y”).

Returns:
Returns the baseline of the string, in pixels.

Graphics_getStringHeight

Gets the height of a string.

Prototype:
uint8_t
Graphics_getStringHeight (const Graphics_Context xcontext)

Parameters:
context is a pointer to the drawing context to query.

Description:
This function determines the height of a string. The height is the offset between the top of the
string and the bottom of the string, including any ascenders and descenders. Note that this will
not account for the case where the string in question does not have any characters that use
descenders but the font in the drawing context does contain characters with descenders.

Returns:
Returns the height of the string, in pixels.

February 15, 2016 37

String API

7.2.2.5 Graphics_getStringMaxWidth

Gets the maximum width of a character in a string.

Prototype:
uint8_t
Graphics_getStringMaxWidth (const Graphics_Context *context)

Parameters:
context is a pointer to the drawing context to query.

Description:
This function determines the maximum width of a character in a string. The maximum width is
the width of the widest individual character in the font used to render the string, which may be
wider than the widest character that is used to render a particular string.

Returns:
Returns the maximum width of a character in a string, in pixels.

7.2.2.6 Graphics_getStringWidth

Determines the width of a string.

Prototype:
int32_t
Graphics_getStringWidth (const Graphics_Context =*context,
const int8_t <string,
int32_t length)

Parameters:
context is a pointer to the drawing context to use.
string is the string in question.
length is the length of the string.

Description:
This function determines the width of a string (or portion of the string) when drawn with a
particular font. The length parameter allows a portion of the string to be examined without
having to insert a NULL character at the stopping point (would not be possible if the string
was located in flash); specifying a length of -1 will cause the width of the entire string to be
computed.

Returns:
Returns the width of the string in pixels.

7.3 Programming Example

tContext sContext;

//

// Initialize the graphics context

38 February 15, 2016

String API

//

GrContextInit (&sContext, &g_sharp400x240LCD) ;
GrContextForegroundSet (&sContext, ClrBlack);
GrContextBackgroundSet (&sContext, ClrWhite);

GrClearDisplay (&sContext) ;

GrContextFontSet (&sContext, &g_sFontCm26);
GrStringDraw (&sContext, "Welcome to ", -1, 20, 8, 0);

GrContextFontSet (&sContext, &g_sFontCm30);
GrStringDraw (&sContext, "Dallas TX", -1, 20, 180, 0);

GrFlush (&sContext) ;
__no_operation();

February 15, 2016 39

String API

40

February 15, 2016

Button API

8

8.1

8.2

8.2.1

8.2.2

8.2.2.1

Button API

I OAUCH ON ... e e e 41
AP FUNCHIONS .. e e e e e 41
Programming EXamIpIe 43
Introduction

The Button API provides simple functions to draw a button on the display.

API Functions

Functions

m void Graphics_drawButton (const Graphics_Context xcontext, const Graphics_Button sbutton)

m void Graphics_drawReleasedButton (const Graphics_Context =xcontext, const Graph-
ics_Button xbutton)

m void Graphics_drawSelectedButton (const Graphics_Context xcontext, const Graphics_Button
xbutton)

m bool Graphics_isButtonSelected (const Graphics_Button xbutton, uint16_t x, uint16_t y)

Detailed Description
The Button APl is broken into four separate functions both of which write to the display.
The function which draws a button is handled by
m Graphics_drawButton()
The function which draws a selected button
m Graphics_drawSelectedButton()
The function which draws a released button
m Graphics_drawReleasedButton()
The function which determines if button has been pressed

m Graphics_isButtonSelected()

Function Documentation

Graphics_drawButton

Draws a button.

February 15, 2016 41

Button API

Prototype:
void
Graphics_drawButton (const Graphics_Context =*context,
const Graphics_Button xbutton)

Parameters:
context is a pointer to the drawing context to use.

button is a pointer to the structure containing the extents of the button.

Description:
This function draws a button. The button will contain a text string and will be created based on
the parameters passed in the button struct.

Returns:
None.

8.2.2.2 Graphics_drawReleasedButton

Draws a released Button.

Prototype:
void
Graphics_drawReleasedButton (const Graphics_Context *context,
const Graphics_Button xbutton)

Parameters:
context is a pointer to the drawing context to use.
button is a pointer to the structure containing the extents of the button.

Description:
This function draws a button using the released parameters.

Returns:
None.

8.2.2.3 Graphics_drawSelectedButton

Draws a selected Button.

Prototype:
void
Graphics_drawSelectedButton (const Graphics_Context *context,
const Graphics_Button xbutton)

Parameters:
context is a pointer to the drawing context to use.

button is a pointer to the structure containing the extents of the button.

Description:
This function draws a button using the selected parameters.

Returns:
None.

42 February 15, 2016

Button API

8.2.2.4

8.3

Graphics_isButtonSelected

Determines if x and y coordinates are contained in button .

Prototype:
bool
Graphics_isButtonSelected (const Graphics_Button xbutton,
uintlé_t x,
uintlé_t vy)

Parameters:
button is a pointer to the structure containing the extents of the button.

X x-coordinate to be determined if is inside button
y y-coordinate to be determined if is inside button

Description:
This function determines if x and y coordinates are contains inside button

Returns:
true if x and y coordinates are inside button, false if not

Programming Example

Graphics_Button yesButton;

yesButton.xMin = 80;

yesButton.xMax = 150;

yesButton.yMin = 80;

yesButton.yMax = 120;

yesButton.borderWidth = 1;

yesButton.selected = false;

yesButton.fillColor = GRAPHICS_COLOR_RED;
yesButton.borderColor = GRAPHICS_COLOR_RED;
yesButton.selectedColor = GRAPHICS_COLOR_BLACK;
yesButton.textColor = GRAPHICS_COLOR_BLACK;
yesButton.selectedTextColor = GRAPHICS_COLOR_RED;
yesButton.textXPos = 100;

yesButton.textYPos = 90;

yesButton.text = "YES";

yesButton.font = &g_sFontCml8;

Graphics_drawButton (&g_sContext, &yesButton);

February 15, 2016 43

Button API

44

February 15, 2016

ImageButton AP/

9

9.1

9.2

9.2.1

ImageButton API

I OAUCH ON ... e e e 45
AP FUNCHIONS .. e e e e e 45
Programming EXamIpIe 47
Introduction

The ImageButton API provides simple functions to draw a imageButton on the display.

API Functions

Functions

m void Graphics_drawlmageButton (const Graphics_Context sxcontext, const Graph-
ics_ImageButton ximageButton)

m void Graphics_drawReleasedlmageButton (const Graphics_Context xcontext, const Graph-
ics_ImageButton ximageButton)

m void Graphics_drawSelectedlmageButton (const Graphics_Context xcontext, const Graph-
ics_ImageButton ximageButton)

m bool Graphics_islmageButtonSelected (const Graphics_ImageButton ximageButton, uint16_t
X, uint16_ty)

Detailed Description
The ImageButton APl is broken into four separate functions both of which write to the display.
The function which draws a imageButton is handled by
m Graphics_drawlmageButton()
The function which draws a selected imageButton
m Graphics_drawSelectedlmageButton()
The function which draws a released imageButton
m Graphics_drawReleasedImageButton()
The function which determines if imageButton has been pressed

m Graphics_isImageButtonSelected()

February 15, 2016 45

ImageButton API

9.2.2 Function Documentation

9.2.2.1 Graphics_drawlmageButton

Draws a ImageButton .

Prototype:
void
Graphics_drawImageButton (const Graphics_Context xcontext,
const Graphics_ImageButton ximageButton)

Parameters:
context is a pointer to the drawing context to use.
imageButton is a pointer to the structure containing the extents of the ImageButton .

Description:
This function draws a ImageButton . The ImageButton will contain the image passed in the
ImageButton struct.

Returns:
None.

9.2.2.2 Graphics_drawReleasedlmageButton

Draws a released ImageButton .

Prototype:
void
Graphics_drawReleasedImageButton (const Graphics_Context =*context,
const Graphics_ImageButton
*imageButton)

Parameters:
context is a pointer to the drawing context to use.

imageButton is a pointer to the structure containing the extents of the ImageButton .

Description:
This function draws a ImageButton using the released parameters.

Returns:
None.

9.2.2.3 Graphics_drawSelectedimageButton

Draws a selected ImageButton .

Prototype:
void
Graphics_drawSelectedImageButton (const Graphics_Context *context,
const Graphics_ImageButton
*imageButton)

46 February 15, 2016

ImageButton AP/

9.224

9.3

Parameters:
context is a pointer to the drawing context to use.

imageButton is a pointer to the structure containing the extents of the ImageButton .

Description:
This function draws a ImageButton using the selected parameters.

Returns:
None.

Graphics_islmageButtonSelected

Determines if x and y coordinates are contained in ImageButton .

Prototype:
bool
Graphics_isImageButtonSelected (const Graphics_ImageButton
*imageButton,
uintlé6_t x,
uintlé6e_t vy)
Parameters:

imageButton is a pointer to the structure containing the extents of the ImageButton .
X x-coordinate to be determined if is inside ImageButton
y y-coordinate to be determined if is inside ImageButton

Description:
This function determines if x and y coordinates are contains inside ImageButton

Returns:
true if x and y coordinates are inside ImageButton, false if not

Programming Example

Graphics_ImageButton primitiveButton;

primitiveButton.xPosition=20;

primitiveButton.yPosition=50;

primitiveButton.borderWidth=5;

primitiveButton.selected=false;
primitiveButton.imageWidth=Primitives_Button4BPP_UNCOMP.xSize;
primitiveButton.imageHeight=Primitives_Button4BPP_UNCOMP.ySize;
primitiveButton.borderColor=GRAPHICS_COLOR_WHITE;
primitiveButton.selectedColor=GRAPHICS_COLOR_RED;
primitiveButton.image=&Primitives_Button4BPP_UNCOMP;

Graphics_drawImageButton (&g_sContext, &primitiveButton);

February 15, 2016 47

ImageButton API

48

February 15, 2016

RadioButton API

10

10.1

10.2

10.2.1

RadioButton API

I OAUCH ON ... e e e e e e e s 49
AP FUNCHIONS .. e e e e 49
Programming EXamIPIe ... e 51
Introduction

The RadioButton API provides simple functions to draw a radioButton on the display.

API Functions

Functions

m void Graphics_drawRadioButton (const Graphics_Context =xcontext, const Graph-
ics_RadioButton xradioButton)

m void Graphics_drawReleasedRadioButton (const Graphics_Context xcontext, const Graph-
ics_RadioButton «radioButton)

m void Graphics_drawSelectedRadioButton (const Graphics_Context xcontext, const Graph-
ics_RadioButton «radioButton)

m bool Graphics_isRadioButtonSelected (const Graphics_RadioButton xradioButton, uint16_t x,
uint16_ty)

Detailed Description
The RadioButton APl is broken into four separate functions both of which write to the display.
The function which draws a radioButton is handled by
m Graphics_drawRadioButton()
The function which draws a selected radioButton
m Graphics_drawSelectedRadioButton()
The function which draws a released radioButton
m Graphics_drawReleasedRadioButton()
The function which determines if radioButton has been pressed

m Graphics_isRadioButtonSelected()

February 15, 2016 49

RadioButton API

10.2.2 Function Documentation

10.2.2.1 Graphics_drawRadioButton

Draws a RadioButton.

Prototype:
void
Graphics_drawRadioButton (const Graphics_Context xcontext,
const Graphics_RadioButton xradioButton)

Parameters:
context is a pointer to the drawing context to use.

radioButton is a pointer to the structure containing the extents of the RadioButton.

Description:
This function draws a RadioButton . The RadioButton will contain the image passed in the
RadioButton struct.

Returns:
None.

10.2.2.2 Graphics_drawReleasedRadioButton

Draws a released RadioButton.

Prototype:
void
Graphics_drawReleasedRadioButton (const Graphics_Context xcontext,
const Graphics_RadioButton
*radioButton)

Parameters:
context is a pointer to the drawing context to use.

radioButton is a pointer to the structure containing the extents of the RadioButton.

Description:
This function draws a RadioButton using the released parameters.

Returns:
None.

10.2.2.3 Graphics_drawSelectedRadioButton

Draws a selected RadioButton.

Prototype:
void
Graphics_drawSelectedRadioButton (const Graphics_Context =*context,
const Graphics_RadioButton
*radioButton)

50 February 15, 2016

RadioButton API

Parameters:
context is a pointer to the drawing context to use.

radioButton is a pointer to the structure containing the extents of the RadioButton.

Description:
This function draws a RadioButton using the selected parameters.

Returns:
None.

10.2.2.4 Graphics_isRadioButtonSelected

Determines if x and y coordinates are contained in RadioButton.

Prototype:
bool
Graphics_isRadioButtonSelected (const Graphics_RadioButton
+*radioButton,
uintlé6_t x,
uintlé_t vy)
Parameters:

radioButton is a pointer to the structure containing the extents of the RadioButton.
X x-coordinate to be determined if is inside RadioButton
y y-coordinate to be determined if is inside RadioButton

Description:
This function determines if x and y coordinates are contains inside RadioButton.

Returns:
true if x and y coordinates are inside RadioButton, false if not

10.3 Programming Example

Graphics_RadioButton radioButtonl = {
5 4
15,
true,
4,
GRAPHICS_COLOR_BLACK,
9,
GRAPHICS_COLOR_BLACK,
GRAPHICS_COLOR_WHITE,
&g_sFontFixed6x8,
"Option #1"

bi

Graphics_drawRadioButton (&g_sContext, &radioButtonl);

February 15, 2016 51

RadioButton API

52

February 15, 2016

CheckBox API

11

11.1

11.2

11.2.1

11.2.1.1

CheckBox API

I OAUCH ON ... e e e e e e e s 53
AP FUNCHIONS ..o e e e e e e e ?2?
Programming EXamIpIe ... e 55
Introduction

The CheckBox API provides simple functions to draw a checkBox on the display.

Checkbox_api

Functions

m void Graphics_drawCheckBox (const Graphics_Context xcontext, const Graphics_CheckBox
«CheckBox)

m void Graphics_drawReleasedCheckBox (const Graphics_Context xcontext, const Graph-
ics_CheckBox xcheckBox)

m void Graphics_drawSelectedCheckBox (const Graphics_Context xcontext, const Graph-
ics_CheckBox xcheckBox)

m bool Graphics_isCheckBoxSelected (const Graphics_CheckBox xcheckBox, uint16_t X,
uint16_ty)

Function Documentation

Graphics_drawCheckBox

Draws a checkbox.

Prototype:
void
Graphics_drawCheckBox (const Graphics_Context *context,
const Graphics_CheckBox *checkBox)

Parameters:
context is a pointer to the drawing context to use.

checkBox is a pointer to the structure containing the extents of the checkbox.

Description:
This function draws a checkbox. The checkbox will be created based on the parameters passed
in the checkbox struct.

Returns:
None.

February 15, 2016 53

CheckBox API

11.2.1.2 Graphics_drawReleasedCheckBox

Draws a released Checkbox.

Prototype:
void
Graphics_drawReleasedCheckBox (const Graphics_Context xcontext,
const Graphics_CheckBox *checkBox)

Parameters:
context is a pointer to the drawing context to use.

checkBox is a pointer to the structure containing the extents of the checkBox.

Description:
This function draws a released checkbox using the selected parameters.

Returns:
None.

11.2.1.3 Graphics_drawSelectedCheckBox

Draws a selected Checkbox.

Prototype:
void
Graphics_drawSelectedCheckBox (const Graphics_Context xcontext,
const Graphics_CheckBox xcheckBox)

Parameters:
context is a pointer to the drawing context to use.

checkBox is a pointer to the structure containing the extents of the checkBox.

Description:
This function draws a selected checkbox using the selected parameters.

Returns:
None.

11.2.1.4 Graphics_isCheckBoxSelected

Determines if x and y coordinates are contained in the checkbox.

Prototype:
bool
Graphics_isCheckBoxSelected (const Graphics_CheckBox xcheckBox,
uintlée_t x,
uintlé_t vy)

Parameters:
checkBox is a pointer to the structure containing the extents of the checkbox.

X x-coordinate to be determined if is inside button

54 February 15, 2016

CheckBox API

y y-coordinate to be determined if is inside button .

Description:
This function determines if x and y coordinates are contains inside checkbox struct.

Returns:
true if x and y coordinates are inside checkbox, false if not

11.3 Programming Example

Graphics_CheckBox checkBoxl = ({
5/
15,
false,
4,
GRAPHICS_COLOR_BLACK,
GRAPHICS_COLOR_WHITE,
GRAPHICS_COLOR_BLACK,
9[
&g_sFontFixed6x8,
"Option #1"

}i

Graphics_drawCheckBox (&g_sContext, &checkBoxl);

February 15, 2016 55

CheckBox API

56

February 15, 2016

Using the MSP Image Reformer Tool

12

12.1

12.2

Using the MSP Image Reformer Tool

Mt OTUCH 0N L e 57
Running MSP Image Reformer TOOIi i et 57
Launching Configuration Tool from Tl Resource EXplorer 58
Introduction

Image Reformer converts images into C code that can be used with the MSP Graphics Library.
Import your source image, make your bpp and size settings, generate C code, and then add the
resulting file into your project.

=ee 2 Color »n

=ee 4 Color s

Resat

Running MSP Image Reformer Tool

To run the tool go to {GRLIB_INSTALLATION_PATH}\utils\image-reformer and run
imagereformer.exe

configuration
plugins
workspace
| .eclipseproduct
=

= imagereformer.exe

%) launchapp.bat

Note:
In order to keep MSP Graphics Library and Open Source Project the JRE is not shipped with

February 15, 2016 57

Using the MSP Image Reformer Tool

the Library and it requires that the users have Java 1.5 or later installed in their machines.

Currently the tool only has support for Windows OS support.

12.3 Launching MSP Image Reformer from Tl Resource

Explorer

If you download MSP Graphics Library as part of MSPWare, you will have the option to launch the

MSP Image Reformer tool from Tl Resource Explorer.

To launch the MSP Image Reformer tool tool, go to Tl Resource Explorer windows View -> TI

Resource Explorer.

it |View| Navigate Project Run Scrip

/) TIResource Explorer

st *# GUIComposer™
EC Applications »

&5 Grace Snippets

Under Packages select MSPware.

(/) Tl Resource Explorer 3

Packages: lMSP430ware v] 3| Devices: |All
All i

Welcome

MSP430ware |
- & Dev StellarisWare

. | Dev SYS/BIOS

4 [Libr System Analyzer (UIA Target)

enter searc

@9 Driver Library
4 %% Graphics Library
N User's Guide

B ADT Demmrammmnns e Pesida

Expand Libraries and Graphics Library and Select Image Reformer.

58

February 15, 2016

Using the MSP Image Reformer Tool

. ¥ Devices
. .’ Development Tools
4 [[J Libraries
. @9 Driver Library
4 ®% Graphics Library
] User's Guide
@ APIProgrammer's Guide
(= Template LCD Driver
&35 Image Reformer
. % Empty Projects
. ®% Example Projects

Finally, click on the "MSP Image Reformer Tool".

2> Launch External Application

Click on the link to launch the external application

Launch Image Reformer.

Note:
To download MSPware go to MSPWare.

February 15, 2016

59

http://www.ti.com/tool/mspware

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl| deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used.
Information published by Tl regarding third-party products or services does not constitute a license from Tl to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of Tl.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are specifi-
cally designated by Tl as military-grade or “enhanced plastic.” Only products designated by Tl as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications N ’
Amplifiers amplifier.ti.com Audio Wmotive
Data Converters dataconverter.ti.com Automotive grs

DLP® Products www.dlp.com Broadband www.f[!.comﬁ(tj)_ro_?dlban? |
DSP dsp.ficom Digital Control Www.1.com/digrarcontro
Clocks and Timers www.ti.com/clocks Medical %m/mgdmal
Interface interface.ti.com Military w
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.fi.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © , Texas Instruments Incorporated

60 February 15, 2016

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Using Template Driver files
	1.1 Modifying the Template Driver File

	2 Circle API
	2.1 Introduction
	2.2 API Functions
	2.3 Programming Example

	3 Context API
	3.1 Introduction
	3.2 API Functions
	3.3 Programming Example

	4 Image API
	4.1 Introduction
	4.2 API Functions
	4.3 Programming Example

	5 Line API
	5.1 Introduction
	5.2 API Functions
	5.3 Programming Example

	6 Rectangle API
	6.1 Introduction
	6.2 API Functions
	6.3 Programming Example

	7 String API
	7.1 Introduction
	7.2 API Functions
	7.3 Programming Example

	8 Button API
	8.1 Introduction
	8.2 API Functions
	8.3 Programming Example

	9 ImageButton API
	9.1 Introduction
	9.2 API Functions
	9.3 Programming Example

	10 RadioButton API
	10.1 Introduction
	10.2 API Functions
	10.3 Programming Example

	11 CheckBox API
	11.1 Introduction
	11.2 Checkbox_api
	11.3 Programming Example

	12 Using the MSP Image Reformer Tool
	12.1 Introduction
	12.2 Running MSP Image Reformer Tool
	12.3 Launching MSP Image Reformer from TI Resource Explorer

	IMPORTANT NOTICE

