
Application Report

 28 April 2020

1

Migrating Applications from NAVSS UDMA to DMSS using
TI-RTOS

 Embedded Processing, Processors Business Unit

ABSTRACT

AM64x SoC introduces an updated DMA subsystem – DMSS, which is a lighter-weight version
of NAVSS UDMA. UDMA is the DMA engine used to do direct memory access (DMA) between
different peripherals like McASP, SPI, UART and memory (DDR, L2, L3, MSMC) without CPU
intervention in next generation TI SoCs like AM6x. DMSS is a new lighter version of DMA
architecture and SW applications written for NAVSS UDMA need to be adapted to use the
already existing UDMA API’s. This application note is intended to help SW developers migrate
their TI-RTOS based SW applications, device drivers from NAVSS UDMA based systems to
DMSS based systems. The application note explains the differences between NAVSS UDMA
and DMSS from a HW perspective. It then compares the SW API’s provided by TI in Processor
SDK RTOS for NAVSS UDMA / DMSS.

NOTE: It is expected that the reader knows about UDMA. For EDMA to UDMA migration refer to
the application note ‘Migrating Applications from EDMA to UDMA using TI-RTOS’.

IMPORANT NOTE: This application note provides a simplified description and comparison of
HW/SW features so that SW users can effectively migrate typical applications from NAVSS
UDMA to DMSS. For SoC specific details users should refer to SoC technical reference manual
(TRM). The type of DMA EDMA/UDMA/DMSS varies depending on the SoC. SoC TRM will
provide the details of the DMA infrastructure used.

Table of Contents

1 INTRODUCTION TO DMSS... 3
1.1 DMSS OVERVIEW .. 3
1.2 COMPARISON OF BCDMA AND PKTDMA.. 5

2 COMPARISON OF NAVSS UDMA AND DMSS .. 6
2.1 TOP LEVEL OVERVIEW... 6
2.2 CHANGES IN PKTDMA COMPARED TO UDMA-P .. 7
2.3 USING DMSS WITH PROCESSOR SDK RTOS DRIVERS ..10
2.4 ENPOINT SPANNING RESTRICTIONS IN BCDMA & PKTDMA ..11

3 UDMA SW API FOR APPLICATIONS..11
3.1 UDMA SW API CHANGES..11
3.2 UDMA SW API BEAVIOUR CHANGES ..16
3.3 UNSUPPORTED UDMA SW API’S FOR DMSS ..18

4 SUMMARY ..19

5 REFERENCES ...20

6 REVISION HISTORY ..20

2 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

Figures

FIGURE 1. AM64X DMSS TOP LEVEL BLOCK DIAGRAM .. 3
FIGURE 2. PKTDMA BLOCK DIAGRAM.. 4
FIGURE 3. BLOCK COPY DMA BLOCK DIAGRAM ... 5
FIGURE 3. TX CHANNELS AND FLOWS IN PKTMDA .. 8
FIGURE 3. RX CHANNELS AND FLOWS IN PKTMDA .. 9

Tables

TABLE 1. COMPARISON BETWEEN BCDMA AND PKTDMA .. 5
TABLE 2. COMPARISON BETWEEN DMSS AND NAVSS UDMA... 6

 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS 3

1 Introduction to DMSS

1.1 DMSS Overview

The primary goal of the Data Movement Subsystem (DMSS) is to ensure that data can be
efficiently transferred from a producer to a consumer so that the real time requirements of the
system can be met. The Data Movement architecture aims to facilitate Direct Memory Access
(DMA) and to provide a consistent Application Programming Interface (API) to the host software.
Data movement tasks are commonly offloaded from the host processor to peripheral hardware to
increase system performance. Significant performance gains may result from careful design of
the interface between the host software and the underlying acceleration hardware. In
networking applications packet transmission and reception are critical tasks. In general purpose
compute, ping pong buffer pre-fetch and store are critical tasks as are general misaligned block
copy operations.

Figure 1. AM64x DMSS Top Level Block Diagram

The block diagram provides a high level picture of not only the 2 different interconnect fabrics

but also some key standard data movement components that have been defined and placed in

the various parts of the low cost compliant SoC. The following sections will provide a high level

overview of Packet DMA (PKTDMA) and Block Copy DMA (BCDMA) which are the two

instances of the DMSS specification serving different use cases as described below:

4 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

1.1.1 Packet DMA (PKTDMA)

The PKTDMA is intended to perform similar functions as the packet oriented DMA. The
PKTDMA module supports the transmission and reception of various packet types. The
PKTDMA is architected to facilitate the segmentation and reassembly of DMA data structure
compliant packets to/from smaller data blocks that are natively compatible with the specific
requirements of each connected peripheral. Multiple TX and RX channels are provided within
the DMA which allow multiple segmentation or reassembly operations to be ongoing. The DMA
controller maintains state information for each of the channels which allows packet segmentation
and reassembly operations to be time division multiplexed between channels in order to share
the underlying DMA hardware. An internal DMA scheduler is used to control the ordering and
rate at which this multiplexing occurs for Transmit operations. The ordering and rate of Receive
operations is indirectly controlled by the order in which blocks are pushed into the DMA on the
RX PSI-L interface.

A block diagram of the PKTDMA Controller is shown below:

Figure 2. PKTDMA Block Diagram

1.1.2 Block Copy DMA (BCDMA)

The Block Copy DMA is intended to perform similar functions as the EDMA or the UDMA-P/UTC.
The BCDMA module moves data from a memory mapped source address set to a corresponding
memory mapped address set. The BCDMA maintains state information for each of the
channels which allows data copy operations to be time division multiplexed between channels in
order to share the underlying DMA hardware. An internal DMA scheduler is used to control the
ordering and rate at which this multiplexing occurs.

A block diagram of the Block Copy DMA Controller is shown below:

 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS 5

Figure 3. Block Copy DMA Block Diagram

1.2 Comparison of BCDMA and PKTDMA

This following table gives an overview of the comparison between BCDMA and PKTDMA, the
two instances of the DMSS specification.

Table 1. Comparison between BCDMA and PKTDMA

 BCDMA PKTDMA

Descriptors

The Block Copy DMA
architecture provides for a single
descriptor type:

● Transfer Request Packet
Descriptor (TRPD)

All applications using TRPD
must use BCDMA instance.

PKTDMA architecture provides for 2
basic types of descriptors:

● Host Packet Descriptor (HPD)

● Host Buffer Descriptor (HBD)

All applications using HPD/HBD must
use PKTDMA instance.

Channels

● Block Copy Channels

● Split TR TX Channels

● Split TR RX Channels

(Refer TRM for SoC specific details)

● TX Channels

● RX Channels

(See Section 2.2.1 for more details)

Flows /
Rings

Each flow is tied to a channel.

There are no free / no extra
flows. Only default flow is
available.

No free flows.

Extra flow(s) tied to channels.

(See Section 2.2.2 for more details)

6 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

2 Comparison of NAVSS UDMA and DMSS

This section provides a top level overview of the comparison between NAVSS UDMA & DMSS
and discuss in detail about the changes in PKTDMA compared to UDMA-P. It also discuss about
the endpoint spanning restrictions in BCDMA & PKTDMA.

2.1 Top Level Overview

The following table gives an overview of hardware changes in DMSS compared to NAVSS
UDMA, corresponding changes in UDMA LLD Driver and its impact to applications using UDMA
SW API’s.

Table 2. Comparison between DMSS and NAVSS UDMA

HW Changes SW Changes Impact on Applications
based on how UDMA LLD

abstracts the changes

Application
Change Required

Breakout DMA into
Block Copy DMA
and Packet DMA

Two Instances in
DMSS: BCDMA &
PKTDMA

Low Impact.

Instance Id must be modified
to UDMA_INST_ID_BCDMA_0/
UDMA_INST_ID_PKTDMA_0

YES

Separate (free) ring
accelerator is
removed and
support for only
Exposed RING
mode

Ring is tied to the
channel used.

Other ring modes
not supported

Ring cannot be used for other
general purposes.Other ring
modes such as MESSAGE,
CREDENTIAL, QM can’t be

used. API’s return error.

YES – if
MESSAGE/QM/
CREDENTIAL Ring
mode used
NO – if Exposed
RING mode used.

Changes in
PKTDMA compared
to UDMA-P.
(See Section 2.2)

Handled by UDMA
driver or other
drivers supported
by PDK.
(See Section 2.3)

No Impact / Low Impact.

(See Section 3.1.3)

Depends on Driver
used.

YES – if UDMA
Driver alone is used.

No Ring monitors
Ring Monitor API’s
not supported

Ring Monitor API’s can’t be
used. API’s return error

YES – if Ring
Monitor API’s are
used

No non-secure
Proxy

Proxy API’s are
not supported

Proxy API’s can’t be used.
API’s return error

YES – if Proxy
API’s are used

Single ring for both
forward direction
(FQ ring) and
reverse
direction(CQ ring)

Completion Queue
(CQ) Ring points
to Free Queue
(FQ) Ring itself

No Impact

Optional -but
recommended to
remove CQ ring
memory from
application to save
memory

No teardown
descriptor is written
back if a channel is
disabled while DMA
is active

TEARDOWN_PACKET
event bypassed

No Impact on Teardown
Event;
Udma_chDequeueTdResponse
API can’t be used and will
return error

Optional - but
recommended to
remove Teardown
ring memory from
application to save
memory

 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS 7

Dedicated Block Copy
Channels in BCDMA

TX Channel API’s can be used for Block
Copy Channels too. RX Channel API’s
bypassed in Block Copy mode.

No Impact NO

DMA channel events
moved into an OES table
within the Interrupt
Aggregator

Channel events from interrupt
aggregator are handled in the same
way as ring events.

No Impact NO

No Interrupt Router as
part of navigator

IR config is bypassed and IA events
directly mapped to core interrupts

No Impact NO

For detailed information Ref ‘Section 3 - UDMA SW API for Applications’.

2.2 Changes in PKTDMA compared to UDMA-P

This section discuss in detail about the changes in PKTDMA compared to UDMA-P. This covers
the changes in channels, flows/rings, descriptors and other major changes.

2.2.1 Channels in PKTDMA

In case of AM64x, PKTDMA instance has 42 TX channels and 29 RX channels. Among this
some channels are hardwired to specific peripherals. i.e., there is no dynamic thread mapping.

The 42 TX Channels are grouped as given below:

 16 Peripheral TX Channels

 8 CPSW TX Channels

 2 SAUL TX Channels

 8 ICSSG 0 TX Channels

 8 ICSSG 1 TX Channels

NOTE: The TX channels reserved for CPSW / SAUL / ICSSG 0 / ICSSG 1 will be referred as
‘MAPPED TX’ channels in UDMA LLD.

 The 29 RX Channels are grouped as given below:

 16 Peripheral RX Channels

 1 CPSW RX Channels

 4 SAUL RX Channels

 4 ICSSG 0 RX Channels

 4 ICSSG 1 RX Channels

NOTE: The RX channels reserved for CPSW / SAUL / ICSSG 0 / ICSSG 1 will be referred as
‘MAPPED RX’ channels in UDMA LLD.

NOTE: The above configurations may be different depending on the SoC .Refer TRM for details.

8 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

2.2.2 Flows / Rings in PKTDMA

DMSS eliminates all ring steering. The rings are now dedicated for a single TX or RX flow.

Henceforth the Flows specified in the DMSS specs are equivalent to Rings in UDMA LLD.

DMSS introduced the new feature ‘TX-FLOW’ for TX channels (similar to RX-FLOW for RX
channels). It allows separate TX exposed rings to be multiplexed onto one TX channel. The
multiplexing is done on packet / entire block copy work units. It does not allow interleaving of
individual transfers within the DMA operation.

Compared to UDMA-P, PKTDMA has a reduced RX flow feature set. There is no multiple 'free
pool' selection based on incoming packet size and no destination ring override. Destination ring
is hard wired to the flow effectively. RX flows are hard-wired to the DMA channel. There is no
longer a generic pool of flows that can be assigned ad hoc to any channel.

The following diagrams show how the flow(s) are tied to different channels in PKTMDA.

Figure 4. TX Channels and Flows in PKTMDA

 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS 9

Figure 5. RX Channels and Flows in PKTDMA

2.2.3 Changes in PKTDMA Descriptors

The differences in descriptors of PKTDMA compared to UDMA-P include:

 Descriptor layout changes :

o Fields no longer used are marked as reserved.

o Protocol specific region must be in descriptor.

o At start of packet option is no longer supported and the descriptor bit controlling this is

now a reserved bit.

 No monolithic descriptor mode (only host mode for PKTDMA)

 No prefetching of descriptors. The control fetches are in-line with data transfers.

10 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

 No RX chaining of descriptors, but scatter is still supported.

 Less flexibility in packet return mode options.

o Chained descriptors will be freed still chained.

o No option to return descriptors to a specific ring.

o Early return bit no longer used.

 PS words in descriptor only.

2.2.4 Other changes in PKTDMA

The key differences in PKTDMA compared to UDMA-P, other than that discussed above are:

 No automatic garbage collection on TX. There is no early completion or buffer return.

 Packet is received into pre-linked buffer chain provided by Host.

 No pass through of SECURE / PRIV/ PRIVID credentials with each packet. Each flow is locked

to a single SECURE / PRIV/ PRIVID.

 Hardcodes output event indices.

2.3 Using DMSS with Processor SDK RTOS Drivers

If the usage of UDMA is intended for peripherals whose drivers are supported by PDK in
Processor SDK RTOS, the configuration/setup is limited to the initialization of UDMA driver. In
this case the change required to migrate to DMSS is to update the instance id before
initialization.

For example in Packet DMA mode:

#include <ti/drv/udma/udma.h>

Udma_InitPrms initPrms;
uint32_t instId;

instId = UDMA_INST_ID_PKTDMA_0;

UdmaInitPrms_init(instId, &initPrms)

struct Udma_DrvObj gUdmaDrvObj; /* MUST be global */

retVal = Udma_init(&gUdmaDrvObj, &initPrms);

This is because PDK drivers already configures and uses UDMA internally. The application
would only need to perform the UDMA driver initialization. Please refer to the driver unit level
tests and/or examples present in Processor SDK RTOS for sample usage.

 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS 11

2.4 Enpoint Spanning Restrictions in BCDMA & PKTDMA

Spanning endpoints means logical banks of the same memory or even between different
memories. This section discusses in detail the restriction in spanning endpoints on BCDMA &
PKTDMA.

2.4.1 BCDMA Endpoint Spanning Restrictions

The endpoint spanning restrictions for BCDMA are summarized below:

1. Descriptors:

a) Descriptor reads for BCDMA cannot span multiple endpoints.

b) Individual Descriptors can be at different endpoints.

c) Descriptors and Data buffers can be at different endpoint.

2. BCDMA – block copy reads cannot cross end points. This is for a single TR regardless of
dimensioning. The write phase of the block copy does not have this restriction.

3. All writes to memory by BCDMA (RX transfers) have no restrictions.

4. All reads to memory by BCDMA (TX transfers) cannot cross end points (straddle multiple
OCSRAM banks).

2.4.2 PKTDMA Endpoint Spanning Restrictions

The endpoint spanning restrictions for PKTDMA are summarized below:

1. Descriptors:

a) Descriptor reads for PKTDMA cannot span multiple endpoints.

b) Individual Descriptors can be at different endpoints.

c) Descriptors and Data buffers can be at different endpoint.

2. All writes to memory by PKTDMA (RX transfers) have no restrictions.

3. All reads to memory by PKTDMA (TX transfers) have no restrictions.

4. Chained buffers in the same packet can be at different endpoints

5. A buffer can span endpoints

3 UDMA SW API for Applications

This section provides an overview of the changes in UDMA SW API’s, details on API’s that are
unsupported by DMSS and the behavioral changes in UDMA SW API’s when used for DMSS as
compared to that for NAVSS UDMA.

3.1 UDMA SW API changes

This section provides details about the changes in using UDMA SW API’s for DMSS as
compared to that for NAVSS UDMA.

12 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

3.1.1 BCDMA and PKTDMA instances

One of the key differences in DMSS as compared to NAVSS UDMA is the instances. The two
instances that are present in DMSS are Packet DMA (PKTDMA) and Block Copy DMA
(BCDMA). In contrast to this, the two instances in NAVSS UDMA were the MAIN NAVSS and
the MCU NAVSS.

The Instance ID’s in DMSS are:

1) UDMA_INST_ID_BCDMA_0 /* For Block Copy DMA */

2) UDMA_INST_ID_PKTDMA_0 /* For Packet DMA */

This change does impact UDMA SW API’s. The application must be updated with the correct
instance ID for DMSS.

 instId = UDMA_INST_ID_BCDMA_0; /* or UDMA_INST_ID_PKTDMA_0*/

3.1.2 Unsupported Ring Modes

In DMSS the separate ring accelerator for DMA is removed and support for just Exposed RING
mode is moved in with DMA. DMSS doesn’t support other ring modes such as MESSAGE,
CREDENTIAL and QM.

As a result of this, applications using DMSS must use only Exposed RING mode. If other ring
modes are passed, the driver will return Error.

3.1.3 Changes in PKTDMA compared to UDMA-P

In PKTDMA there are mapped channels which are hardwired to specific peripherals and also the
ring(s) are tied to each channel. The UDMA LLD has introduced new channel types and an
additional parameter mapped group to configure and use these channels and rings with the
already existing UDMA API’s. This section describe in detail about the new channel types,
mapped groups and how to use the UDMA channel / ring API’s with minimal changes.

NOTE: The PKTDMA instance is majorly used by peripherals, whose drivers are supported by
PDK in Processor SDK RTOS. So the changes in PKTDMA compared to UDMA-P may not
impact the applications. For this, Ref section 2.3 - Using DMSS with Processor SDK RTOS
Drivers.

3.1.3.1 New Channel Types

The new channel types that are introduced to configure and use the mapped channels are:

1. UDMA_CH_TYPE_TX_MAPPED

2. UDMA_CH_TYPE_RX_MAPPED

 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS 13

3.1.3.2 Mapped Groups

Mapped group is a new parameter that is introduced to UDMA LLD. The different types of
mapped groups in DMSS are as follows:

1. UDMA_MAPPED_TX_GROUP_CPSW

2. UDMA_MAPPED_TX_GROUP_SAUL

3. UDMA_MAPPED_TX_GROUP_ICSSG_0

4. UDMA_MAPPED_TX_GROUP_ ICSSG_1

5. UDMA_MAPPED_RX_GROUP_CPSW

6. UDMA_MAPPED_RX_GROUP_SAUL

7. UDMA_MAPPED_RX_GROUP_ICSSG_0

8. UDMA_MAPPED_RX_GROUP_ ICSSG_1

9. UDMA_MAPPED_GROUP_INVALID

The new parameter in Udma_ChPrms named mappedChGrp and that in Udma_RingPrms named
mappedRingGrp can be assigned with these values. By default the param mappedChGrp /
mappedRingGrp is initialized to UDMA_MAPPED_GROUP_INVALID.

3.1.3.3 Usage of UDMA Channel / Ring API’s

This section describes about the usage of UDMA API’s to configure and use the mapped
channels and its corresponding tied rings. With the addition of new channel types and additional
parameters in Udma_ChPrms and Udma_RingPrms, these parameters should be properly set.

Before calling the UDMA channel API Udma_chOpen the following parameters in Udma_ChPrms
should be set based on the use-case.

1. chType = UDMA_CH_TYPE_TX_MAPPED (for Mapped TX Channels)

 = UDMA_CH_TYPE_RX_MAPPED (for Mapped RX Channels)

2. mappedChGrp = UDMA_MAPPED_<TX/RX>_GROUP_<group> ,

 where group = CPSW / SAUL / ICSSG _0 / ICSGG_1

NOTE: When ring memory is provided while calling Udma_chOpen, then the UDMA driver
allocates and configures the mapped channel and its corresponding tied ring. In this case, the
UDMA driver itself will populate the new params in Udma_ringPrms.

 For example to allocate and configure a CPSW TX channel and ring:

 struct Udma_DrvObj gUdmaDrvObj;

 struct Udma_ChObj gUdmaTxChObj;

14 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

 uint32_t chType;

 Udma_ChPrms chPrms;

 chType = UDMA_CH_TYPE_TX_MAPPED;

 UdmaChPrms_init(&chPrms, chType);

 chPrms.mappedChGrp = UDMA_MAPPED_TX_GROUP_CPSW;

 chPrms.peerChNum = UDMA_PSIL_CH_CPSW2_TX;

 chPrms.fqRingPrms.ringMem = &gTxFqRingMem[0U];

 /* Open channel */

 retVal = Udma_chOpen(&gUdmaDrvObj, &gUdmaTxChObj, chType, &chPrms);

If Udma_ringAlloc API is explicitly called to allocate and configure a ring after configuring the
channel, then the following parameters in Udma_RingPrms should be properly set beforehand.

1. mappedRingGrp = UDMA_MAPPED_<TX/RX>_GROUP_<group> ,

 where group = CPSW / SAUL / ICSSG _0 / ICSGG_1

2. mappedChNum = Channel number of the already allocated mapped channel.

This is used to allocate the corresponding mapped ring for the particular channel.

For example to allocate and configure a ring for CPSW TX channel,

(where txChHandle->txChNum refers to the already allocated channel number)

 struct Udma_RingObj gUdmaRingObj;

 Udma_RingPrms fqRingPrms;

 UdmaRingPrms_init(&fqRingPrms);

 fqRingPrms.mappedRingGrp = UDMA_MAPPED_TX_GROUP_CPSW;

 fqRingPrms.mappedChNum = txChHandle->txChNum;

 /* Allocate Ring */

 retVal = Udma_ringAlloc(&gUdmaDrvObj,

 &gUdmaRingObj,

 UDMA_RING_ANY,

 &fqRingPrms);

 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS 15

3.1.4 Absence of Free General Purpose Ring – No Completion Ring

In DMSS there is only a single ring (instead of 2) for both forward and reverse direction. So the
common ring ID itself must be programmed in the TR Descriptor instead of the completion ring
ID. UDMA SW API internally handles this by pointing the same ring ID to completion ring ID.
That is, since there is no separate completion queue, completion queue ring handle points to
forward queue ring itself. So programming the TR Descriptor either way will work fine.

Hence Completion queue ring params is not used, but even if the application sets this it will be
ignored. But it’s not required to be set. Here completion queue ring object is also not used.

This change doesn’t impact the usage of UDMA SW API’s, since it’s handled inside the driver
itself. So the existing application for NAVSS UDMA will work for DMSS without any issues.
Hence the following lines of codes which allocate memory for completion ring are optional for
DMSS (no effect):

static uint8_t gTxCompRingMem[UDMA_TEST_APP_RING_MEM_SIZE]
__attribute__((aligned(UDMA_CACHELINE_ALIGNMENT)));

chPrms.cqRingPrms.ringMem = &gTxCompRingMem[0U];
chPrms.cqRingPrms.elemCnt = UDMA_TEST_APP_RING_ENTRIES;

3.1.5 Teardown unsupported and absence of Teardown Ring

In DMSS, there is no teardown ring and no teardown descriptor is written back if a channel is
disabled while DMA is active. So the TEARDOWN_PACKET event is not supported in DMSS.

Hence Teardown completion queue ring params is not used, but even if the application sets this
it will be ignored. But it’s not required to be set. Teardown completion queue ring object is also
not used.

And there is no need to register teardown ring completion callback. But even if the application
tries to register the teardown ring completion callback, the UDMA Driver internally bypass
registering the TEARDOWN_PACKET event. This is to ensure backward compatibility with NAVSS
UDMA.

As a result, this change doesn’t impact the usage of UDMA SW API’s. So the existing
application for NAVSS UDMA will work for DMSS without any issues. Hence the following lines
of codes are optional for DMSS (no effect):

1. static uint8_t gTxTdCompRingMem[UDMA_TEST_APP_RING_MEM_SIZE]

 __attribute__((aligned(UDMA_CACHELINE_ALIGNMENT)));

 chPrms.tdCqRingPrms.ringMem = &gTxTdCompRingMem[0U];
 chPrms.tdCqRingPrms.elemCnt = UDMA_TEST_APP_RING_ENTRIES;

2. struct Udma_EventObj gUdmaTdCqEventObj; /* MUST be global */

16 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

3. /* Register teardown ring completion callback */
 eventHandle = &gUdmaTdCqEventObj;
 UdmaEventPrms_init(&eventPrms);
 eventPrms.eventType = UDMA_EVENT_TYPE_TEARDOWN_PACKET;
 eventPrms.eventMode = UDMA_EVENT_MODE_SHARED;
 eventPrms.chHandle = chHandle;
 eventPrms.masterEventHandle = &gUdmaCqEventObj;
 eventPrms.eventCb = &App_udmaEventTdCb;
 retVal = Udma_eventRegister(drvHandle, eventHandle, &eventPrms);

4. eventHandle = &gUdmaTdCqEventObj;
 retVal += Udma_eventUnRegister(eventHandle);

5. static void App_udmaEventTdCb(Udma_EventHandle eventHandle,
 uint32_t eventType,
 void *appData)
 {
 CSL_UdmapTdResponse tdResp;

 if(UDMA_EVENT_TYPE_TEARDOWN_PACKET == eventType)
 /* Response received in Teardown completion queue */
 Udma_chDequeueTdResponse(&gUdmaChObj, &tdResp);

 return;
 }

3.1.6 Dedicated Block Copy Channels

DMSS introduced dedicated Block Copy channels in BCDMA apart from the Split TR TX and RX
Channels. The main impact of this in UDMA SW API is that, for Block copy mode there is no
need to configure RX channel (which was implicitly paired to TX channel in case of NAVSS
UDMA for block copy mode). But even if the application tries to configure RX channel, the UDMA
Driver internally bypass configuring the RX channel for block copy mode. i.e., the
Udma_chConfigRx() API returns gracefully, without doing anything. This is to ensure backward
compatibility with NAVSS UDMA.

UDMA Driver is designed such that, the new Block Copy channels uses the existing TX flavors
of UDMA SW API’s itself. i.e., when channel type is UDMA_CH_TYPE_TR_BLK_COPY, the UDMA
TX channel API’s make use of the Block Copy channels.

For example,

 UdmaChTxPrms_init() API, initialize the params for block copy channel

 Udma_chConfigTx() API, configures the block copy channel. (etc.)

As a result, this change doesn’t impact the usage of UDMA SW API’s. So the existing
applications for NAVSS UDMA will work for DMSS without any issues. Hence the following lines
of codes are optional for DMSS (no effect) [only for Block Copy Mode]

 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS 17

Udma_ChRxPrms rxPrms;

/* Config RX channel - which is implicitly paired to TX channel in
block copy mode */
UdmaChRxPrms_init(&rxPrms, chType);
retVal = Udma_chConfigRx(chHandle, &rxPrms);

3.2 UDMA SW API Beaviour Changes

This section describes about the behavioral changes in UDMA SW API when used for DMSS, as
compared to that for NAVSS UDMA.

3.2.1 Absence of Free General Purpose Ring – No completion Ring

Due to the absence of Completion Ring, there are some behavioral changes for the following
API’s when used for DMSS:

1. Udma_chGetCqRingHandle() - Returns the default common ring handle of the channel,
since there is no separate completion queue ring.

2. Udma_chGetCqRingNum() - Returns the default common ring number to be programmed in
descriptor, since there is no separate completion queue ring.

3.2.2 Teardown unsupported

In DMSS, since there is no need to register TEARDOWN_PACKET event and dequeue the teardown
response, the following API’s have some behavioral changes for DMSS:

1. Udma_eventRegister() for event Type = UDMA_EVENT_TYPE_TEARDOWN_PACKET

- won't do any operation and will return gracefully without returning any error

2. Udma_eventUnRegister() for event Type = UDMA_EVENT_TYPE_TEARDOWN_PACKET

- won't do any operation and will return gracefully without returning any error

3.2.3 Dedicated Block Copy Channels

Due to the presence of dedicated Block Copy Channels in BCDMA, there are some behavioral
changes for the following API’s when used for DMSS:

1. Udma_chConfigRx() for event Type = UDMA_CH_FLAG_BLK_COPY

- won't do any operation and will return gracefully without returning any error

2. Udma_chConfigTx() for event Type = UDMA_CH_FLAG_BLK_COPY

- configure Block Copy Channel instead to TX Channel

18 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

3.2.4 Channel Events moved to Interrupt Aggregator

 In DMSS, all DMA channel events have been moved into an OES table within the IA peripheral.
As a result, these channel events must be handled instead of the ring events.

In case of DMSS, while registering these event using Udma_eventRegister(), the UDMA Driver
configures the channel events from IA instead of the ring events. It also unregisters these events
during Udma_eventUnRegister() in a similar fashion. So the channel events from interrupt
aggregator are handled the same way as ring events.

3.2.5 No Interrupt Router

In DMSS, there is no Interrupt Router as part of navigator. i.e., The DMSS IA has no IR’s
between itself and the destination cores. As a result there is no need to configure the IR’s in
case of DMSS.

In case of DMSS, UDMA Driver bypasses the configuration of IR’s during Udma_init(), and the
IA events are directly mapped to the corresponding core interrupts.

3.3 Unsupported UDMA SW API’s for DMSS

Some of the UDMA SW API’s is not supported by DMSS, due to unsupported ring modes,
absence of various modules like Ring Monitor, Proxy, CLEC etc. These API’s if called for DMSS,
will return Error.

3.3.1 Unsupported Ring Modes

Since DMSS doesn’t support ring modes such as MESSAGE, CREDENTIAL and QM,
Udma_chOpen() will return error when the following modes are used for Udma_RingPrms->mode

1. TISCI_MSG_VALUE_RM_RING_MODE_MESSAGE

2. TISCI_MSG_VALUE_RM_RING_MODE_CREDENTIALS

3. TISCI_MSG_VALUE_RM_RING_MODE_QM

3.3.2 Absence of Ring Monitors

In DMSS, since there are no Ring Monitors present, the following ring monitor API’s are

unsupported for DMSS. If these API’s are called, the driver will return error.

 Udma_ringMonAlloc()

 Udma_ringMonFree()

 Udma_ringMonConfig()

 Udma_ringMonGetData()

 Udma_ringMonGetNum() – will always return UDMA_RING_MON_INVALID

 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS 19

Even the event related to Ring Monitor is also not supported due to its absence and the following

will return error in case of DMSS:

 Udma_eventRegister() for event Type = UDMA_EVENT_TYPE_RING_MON

 Udma_eventUnRegister() for event Type = UDMA_EVENT_TYPE_RING_MON

3.3.3 Absence of Proxy

Due to the absence Proxy in DMSS, the following proxy API’s are unsupported for DMSS. If

these API’s are called, the driver will return error.

 Udma_proxyAlloc()

 Udma_proxyFree()

 Udma_proxyConfig()

3.3.4 Absence of Free General Purpose Ring – No completion Ring

For BCDMA instance, the UDMA ring allocation API, if passed with the parameter
UDMA_RING_ANY will try to will allocate from free ring pool. In DMSS, there are no free general
purpose rings. As a result, in case of BCDMA instance, Udma_ringAlloc() if used with
ringNum = UDMA_RING_ANY will return error.

3.3.5 Teradown unsupported

In DMSS, No teardown descriptor is written back if a channel is disabled while DMA is active.
Due to this, the UDMA SW API to dequeue teardown response Udma_chDequeueTdResponse()
is unsupported and will return error if used.

4 Summary

This application note gave an overview of NAVSS UDMA and DMSS from a HW and SW
perspective. It described and compared the programming model, SW API’s of UDMA. Migrating
applications from NAVSS UDMA to DMSS involves having a brief understanding the HW
characteristics of DMSS as compared to NAVSS UDMA. An application writer should identify the
sequence of UDMA SW API’s used in his application during the various phases of driver usage
like DMA driver initialization, DMA channel open, DMA transfer setup, DMA transfer trigger and
wait. Users can then make the required changes to use the existing UDMA SW API’s for DMSS
as described in this app note. Finally refer to TRMs and API guide for more details about UDMA
programming.

20 Migrating Applications from NAVSS UDMA to DMSS using TI-RTOS

5 References

[1] AM6x Technical Reference Manual – NavSS / DMA controller chapter

[2] AM6x Processor SDK RTOS User Guide – UDMA LLD section

6 Revision History

Date Revision Author Changes

28 Apr 2020 1.00 Don Dominic First draft

18 May 2020 1.01 Don Dominic Added updates for PKTDMA

27 May 2020 1.02 Don Dominic Addressed review comments

