DSS Overview

Agenda

- What is DSS?
- DSS Hardware Overview
 - Display Controller
 - Video Pipeline
 - Write back Pipeline
 - Overlay Manager
 - Video Port
 - Display Interfaces: eDP, DSI, DPI
 - DSS Interrupt Architecture
- DSS Driver Overview
- DSS Advance Features
 - Safety Checks
 - FIFO Buffer Mapping
 - Security Isolation
- Display Sharing

What is DSS?

Introduction

- DSS: Display Sub System
- Displays video frames from memory to LCD
- Provides the logic to output video frames stored in the memory to the external display interfaces.
- Performs multi-layer composition for the display output
- Supports a set of industry standard display interfaces to drive wide range of display panel resolutions
- Supports Scaling, Color Space Conversion, Blending, Color Keying

DSS Block Diagram for J721E

DSS Hardware Overview

Display Controller

Four Video Pipelines

- Two Video pipelines Supporting 8/10-bit/component RGB or 8/10/12-bit/component YUV source data formats with 3/5-tap 16-phase scaler capable of 0.25x to 16x resizing.
- Two Video_Lite pipelines Supporting 8/10-bit/component RGB or YUV source data formats (including YUV420/422 source data)

Four Overlay Managers

- Fully mapped to all input pipelines
- Multi-layer alpha blending

Four Video Ports

- Support up to four simultaneous 4K display outputs (600MHz pixel clock)
- 24/30/36-bit per pixel RGB output
- Additional 8/10-bit per component YUV422 embedded sync stream (BT1120/BT656) on every output
- One optional Write-back pipeline with a scaler to perform memory to memory operations or to capture one of the display outputs.
- DMA controller capable of supporting up to 8K-wide input source frame

Display Controller Architecture

Video/Video Lite Pipeline

- The video pipeline is connected to the video DMA buffer controller for the input port and to the overlay manager. It performs all functionalities of a Graphics pipeline.
 - Polyphase-filter based resizer
 - Programmable BCHS (Brightness/Contrast/Hue/Saturation) control
 - Luma-key support (for Blue-Ray application)
 - Crop support at the output of the video pipeline
- Video Lite is identical to the Video pipeline except polyphase-filter based resizer is not included

Write back Pipeline

- The write-back pipeline is connected to
 - a pipeline output (video lite 2 pipeline only for J721E)
 - the output of one of the overlay manager, either in M2M (memory-to-memory) or Capture mode.
- Write back pipeline consists of
 - Color Space Conversion Unit
 - Resizer unit
 - RGB truncation logic

Overlay Manager

- Composites selected input layers together to generate the final display output frame based on
 - Priority rule following the display Z-order (selected by configuring the input selector)
 - Color key configurations (destination and source transparency)
 - Alpha Blending values (using the Alpha component of each pixel or a global alpha value set by the user)
 - Size and position attributes of the source window data
- Each overlay manager supports a simple internal color bar insertion to enable testing of display output interface without using the frame buffer data from the memory

Video Port

- 36-bit per pixel on the RGB output interface (12-bits per component)
- Independent programmable timing generators for each display output to support up to 600
 MHz pixel clock video formats
- Fully programmable Color Space Conversion matrix to serve as color phase rotation (CPR) and/or as Brightness/Contrast/Saturation control on the combined output
- Selection between RGB(progressive) and YUV422(progressive/interlaced) output pixel format. YUV4:2:2 only available when BT656/1120 output is enabled.

Display Interfaces

- J721E supports below display interfaces:
 - One Display Port/embedded Display Port (DP/eDP)
 - One MIPI Display Serial Interface (DSI) port
 - Two Display Parallel Interface (DPI) ports.
- Future devices will have multiple DP/eDP and DSI ports
- The DP/eDP interface supports the following features:
 - VESA Display Port (DP) 1.3 specification compliant with DSC(1.1)/FEC support
 - VESA embedded Display Port (eDP) 1.4 specification compliant
 - Physical link rates up to HBR3 (up to 8.1 Gbps per lane)
 - Video pixel clock rate range from 25-600MHz
- DSI interface supports following features:
 - 4,2, or 1 data lane configurations
 - MIPI Display Serial Interface (DSI) 1.3 specification compliant with DSC(1.1) support
 - D-PHY 1.2 Physical link rates up to 2.5 Gbps per lane
 - Video pixel clock rate range from 25-400MHz (up to 3K Display Panels)
 - 4,3,2, or 1 data lane configurations

Connectivity Diagram for J721E

DSS Interrupt Architecture

- DSS supports multiple interrupt outputs each of which can be set independently
- There are separate interrupt lines for different category of events:
 - Functional
 - Safety
 - Security

 There are four common register regions which allows fully independent monitoring/control of the interrupt events by multiple hosts

DSS Driver Overview

FVID2 Introduction

What is FVID2?

- Provides interface to streaming operations like queuing of buffers to driver and getting back a buffer from the driver
- Abstracts the underlying hardware for the video application with a standard set of interface
- Gives a same look and feel for video applications across different SOC
- Interface is independent of OS/Hardware/Driver
- FVID2 is currently supported on BIOS

What is not FVID2?

- Not the actual driver
- Does not define hardware specific APIs and structures

FVID2 Interfaces

- Fvid2_init, Fvid2_deInit
- Fvid2_create, Fvid2_delete
- Fvid2_start, Fvid2_stop
- Fvid2_queue, Fvid2_dequeue
- Fvid2_processFrames, Fvid2_getProcessedFrames
- Fvid2_control

Typical Application Flow

Directory Structure

- DSS CSL RL and CSL FL files are present in <pdk>/packages/ti/csl/src/ip/dss
- FVID2 driver is present in <pdk>/packages/ti/drv/fvid2
- DSS driver is present in <pdk>/packages/ti/drv/dss

DSS Safety Checks

FIFO Buffer Mapping (1/2)

- When Scaler is enabled, the DMA needs to send multiple lines simultaneously (in parallel) to the VID pipeline.
- The number of lines could be up to 4 lines in parallel (the case when there is downscaling by 4).
- The buffer in this case needs to be used in "ping-pong" mode.
- Hence, the requirement on the buffer memory size is to have space to store at least eight full lines (The size in bytes of a line depends on the resolution as well as the pixel format)
- The below table lists the size of a line in bytes for the common resolutions and formats

Resolution	Format	1-line (in KB)	8-lines (in KB)
1920 (1080p)	ARGB32 (32bpp)	7.5	60
	RGB24p (24bpp)	5.625	45
	YUV422 (16bpp)	3.75	30
2560 (2.5K)	ARGB32 (32bpp)	10	80
	RGB24p (24bpp)	7.5	60
	YUV422 (16bpp)	5	40
4096 (4K)	ARGB32 (32bpp)	16	128
	RGB24p (24bpp)	12	96
	YUV422 (16bpp)	8	64

FIFO Buffer Mapping (2/2)

- Each channel in DMA is allocated a uniform buffer size of 64 Kilo Bytes at reset.
- To support resolutions larger than 4K YUV or 2K ARGB (with ping-pong configuration), the default buffer size of 64KB per RD channel is not sufficient as demonstrated above.
- In such cases, the design allows dynamic repartition of the allocated buffers across the different RD channels. In this way each RD channel can have a variable buffer size allocated to it, starting from a minimum of 16KB to a maximum of 256KB, in 16KB increments.

Security Isolation

- Configuration Firewall Each Common Region, Pipe, Overlay & Video Port has 64KB FW region
- Secure Mode setting Hardware based connection check/illegal connection prevention
- Multiple sets of Interrupt Logic for secure/non-secure host handling

Interface name	Region name	Addr size	Byte offset	Request ID
dss_inst0_vbusp_cfg	dispc_0_COMMON_M	16	0x0	0
dss_inst0_vbusp_cfg	dispc_0_COMMON_S0	16	0x10000	0
dss_inst0_vbusp_cfg	dispc_0_VIDL1	16	0x20000	0
dss_inst0_vbusp_cfg	dispc_0_VIDL2	16	0x30000	0
dss_inst0_vbusp_cfg	dispc_0_VID1	16	0x50000	0
dss_inst0_vbusp_cfg	dispc_0_VID2	16	0x60000	0
dss_inst0_vbusp_cfg	dispc_0_OVR1	16	0x70000	0
dss_inst0_vbusp_cfg	dispc_0_VP1	16	0x80000	0
dss_inst0_vbusp_cfg	dispc_0_OVR2	16	0x90000	0
dss_inst0_vbusp_cfg	dispc_0_VP2	16	0xa0000	0
dss_inst0_vbusp_cfg	dispc_0_OVR3	16	0xb0000	0
dss_inst0_vbusp_cfg	dispc_0_VP3	16	0xc0000	0
dss_inst0_vbusp_cfg	dispc_0_OVR4	16	0xd0000	0
dss_inst0_vbusp_cfg	dispc_0_VP4	16	0xe0000	0
dss_inst0_vbusp_cfg	dispc_0_WB	16	0xf0000	0
dss_inst0_vbusp_cfg	dispc_0_COMMON_S1	16	0x100000	0
dss_inst0_vbusp_cfg	dispc_0_COMMON_S2	16	0x110000	0

Display Sharing for K3 SoCs

- Cockpit Use case: Simultaneous Safety and QM Requirements on Display
 - Safety content is generated by a safety certified OS running on a dedicated core
 - QM content is usually generated by HLoS (Linux)
 - There may be multiple instances of QM SW running on different cores / same core with virtualization support
- Static partitioning of Resources
 - Resources are allocated at system boot time
- VP thread as Atomic Resource Partition Entity
 - VP Thread : A VP, Overlay-Manager and all pipes terminating at the VP
 - Any core can drive one / multiple end-to-end VP threads
 - All pipe, overlay manager and VP register updates for a thread shadowed by asserting VPx.GO bit
 - All interrupts for pipes and VP in a thread used by the driving core
- Distributed DSS Initialization
 - R5F boots up first and initializes DSS
 - Any core who owns a VP thread initializes the thread specific setup
 - Pipes are initialized and setup on-demand
- Pipe Subscription and IPC based Frame update requests
 - VP thread owner can
 - · Reserve a set of pipes to be used by local applications
 - Export a set of pipes to a remote core via a local display-server
 - Remote cores probe a display-server to get a list of exported pipes
 - Remote cores send frame update requests to display-server for exported pipes

Design: Logical HW Split

