
 Application Report

 1 Aug 2018

1

Migrating Applications from EDMA to UDMA using TI-
RTOS

 Embedded Processing, Processors Business Unit

ABSTRACT

EDMA is the DMA engine used to do direct memory access (DMA) between different peripherals
like McASP, SPI, UART and memory (DDR, L2, L3, MSMC) without CPU intervention in TI SoCs
AM3x, AM4x, AM5x, DRA7x, TDA2x, TDA3x. UDMA is the DMA engine that is included in next
generation TI SoCs like AM6x for the same purpose. UDMA is a new DMA architecture and SW
applications written for EDMA need to be adapted to use the UDMA APIs. This application note
is intended to help SW developers migrate their TI-RTOS based SW applications, device drivers
from EDMA based systems to UDMA based systems. The application note explains the
differences between EDMA and UDMA from a HW perspective. It then compares the DMA
programming model from a SW perspective. Finally it compares the SW APIs provided by TI in
Processor SDK RTOS for UDMA with EDMA.

IMPORANT NOTE: This application note provides a simplified description and comparison of
HW/SW features so that SW users can effectively migrate typical applications from EDMA to
UDMA. In some cases specific SoCs are referred to aid the description. For SoC specific details
users should refer to SoC technical reference manual (TRM).

Table of Contents

1 INTRODUCTION TO EDMA AND UDMA ... 2

1.1 EDMA OVERVIEW .. 2
1.2 NAVSS AND UDMA OVERVIEW .. 4
1.3 COMPARISON OF EDMA AND UDMA.. 9

2 DMA SW PROGRAMMING MODEL .. 11

2.1 EDMA SW PROGRAMMING MODEL .. 11
2.2 UDMA SW PROGRAMMING MODEL ... 13
2.3 COMPARISON OF SW PROGRAMMING MODEL IN EDMA AND UDMA .. 18

3 DMA SW API FOR APPLICATIONS .. 22

3.1 EDMA SW API OVERVIEW ... 22
3.2 UDMA SW API OVERVIEW ... 25
3.3 MIGRATION FROM EDMA LLD TO UDMA LLD... 33
3.4 USING UDMA WITH PROCESSOR SDK RTOS DRIVERS .. 34

4 SUMMARY .. 34

5 REFERENCES .. 34

6 REVISION HISTORY .. 34

2 Migrating Applications from EDMA to UDMA using TI-RTOS

Figures

FIGURE 1. EDMA IN AM5X SOC .. 3
FIGURE 2. MAIN NAVSS BLOCK DIAGRAM IN AM6X SOC.. 4
FIGURE 3. AM6X MAIN NAVSS: SW VIEW AND MCASP UDMA SEQUENCE .. 7
FIGURE 4. AM6X MAIN NAVSS: SW VIEW AND DRU UDMA SEQUENCE .. 8
FIGURE 5. EDMA PARAM SET .. 11
FIGURE 6. TR DESCRIPTOR ... 14
FIGURE 7. TR RECORD ... 14
FIGURE 8. HOST PACKET DESCRIPTOR ... 15
FIGURE 9. AM6X SOC MAIN NAVSS UDMA INTERRUPT AGGREGATOR AND INTERRUPT ROUTER .. 17

Tables

TABLE 1. COMPARISON OF EDMA AND UDMA FEATURES ... 9
TABLE 2. UDMA SUPPORTED PERIPHERALS IN AM6X SOC ... 13
TABLE 3. PROGRAMMING MODEL COMPARISON BETWEEN EDMA AND UDMA ... 18
TABLE 4. COMPARISON OF EDMA PARAM AND UDMA TR .. 19
TABLE 5. COMPARISON OF EDMA.OPT AND UDMA TR.FLAGS.. 20
TABLE 6. COMPARISON OF EDMA AND UDMA SW API ... 33

1 Introduction to EDMA and UDMA

This section gives an overview of EDMA and UDMA from HW perspective. In order to use the
DMA SW APIs effectively it is important to understand the DMA HW architecture at least at a
conceptual level. A brief EDMA overview is presented to refresh EDMA concepts for users
familiar with EDMA. A brief UDMA overview is presented with SW perspective in mind so that
users can then map these concepts to the UDMA SW API.

NOTE: Please note that users who use drivers from TI Processor SDK RTOS need not delve in
to the architectural and programming details of UDMA, instead need to use only the
Udma_init() API provided by UDMA driver in their application. The TI Processor SDK RTOS

drivers use UDMA driver internally greatly simplifying the migration of applications from EDMA to
UDMA. See section 3.4 Using UDMA with Processor SDK RTOS Drivers.

1.1 EDMA Overview

The enhanced direct memory access module, also called EDMA, performs high-performance
data transfers between two slave points, memories and peripheral devices without
microprocessor unit (MPU) or digital signal processor (DSP) support during data transfer. EDMA
transfer is programmed through a logical EDMA channel, which allows the transfer to be
optimally tailored to the requirements of the application.

EDMA controller is based on two major principal blocks:

 EDMA third-party channel controller (TPCC)

 EDMA third-party transfer controller (TPTC)

In a given SoC, typically one or more TPTC are associated with a TPCC. A given SoC could
have multiple EDMA controllers.

For example, there are two instances of the TPTC in the AM5x device and a single instance of
EDMA controller at SoC level.

 Migrating Applications from EDMA to UDMA using TI-RTOS 3

The TPCC is a highly flexible Channel Controller. It serves as the user interface and an event
interface for the EDMA controller. The TPCC serves to prioritize incoming software requests or
events from peripherals and submits transfer requests (TRs) to the transfer controller.

The TPTC performs read and write transfers by EDMA ports to the slave peripherals as
programmed in the "Active" and "Pending" set of the registers. The transfer controllers are
responsible for data movement and issue read/write commands to the source and destination
addresses that are programmed for a given transfer in the TPCC.

Figure 1. EDMA in AM5x SoC

NOTE: QDMA is not discussed in this application note since there isn’t an equivalent of QDMA
in UDMA architecture.

4 Migrating Applications from EDMA to UDMA using TI-RTOS

1.2 NavSS and UDMA Overview

1.2.1 NavSS Overview

The Navigator Subsystem (NAVSS) is a container which groups together components which are
involved in providing DMA services in a SoC. Additional DMA components such as DRUs, UTC,
and PDMAs exist outside the NAVSS but are controlled by UDMA controller provided in NAVSS.
There can be multiple instances of NavSS and UDMA in a given SoC. For example, the AM6x
SoC has two NAVSS’s: one in main domain (Main NavSS) and one in MCU domain (MCU
NavSS).

Figure 2. Main NavSS Block Diagram in AM6x SoC

 Migrating Applications from EDMA to UDMA using TI-RTOS 5

1.2.2 UDMA Overview

The UDMA is intended to perform similar (but significantly upgraded) functions as the packet-
oriented DMA used on some previous TI SoC devices. The UDMA module supports the
transmission and reception of various packet types. The UDMA is architected to facilitate the
segmentation and reassembly of SoC DMA data structure compliant packets to/from smaller
data blocks that are natively compatible with the specific requirements of each connected
peripheral. Multiple Tx and Rx channels are provided within the DMA which allow multiple
segmentation or reassembly operations to be ongoing. The DMA controller maintains state
information for each of the channels which allows packet segmentation and reassembly
operations to be time division multiplexed between channels in order to share the underlying
DMA hardware.

1.2.3 Unified Transfer Controller (UTC) Overview

The Unified Transfer Controller is intended to perform similar functions to the EDMA Transfer
Controller engine used on previous devices. The UTC engine is generally classified as a third-
party DMA. This designation comes from the fact that the engine is not actually the source or
sink of the data which is being moved but is instead an intermediary 3rd party that performs the
data move on behalf of the source and sink.

The UTC engine accepts Transfer Response messages from the UDMA via a PSI-L interface
which provide instructions to copy data between a source read interface and a destination write
interface. The sequence of operations that can be instructed includes up to 4-dimensional
nested loops. Multiple types of Transfer Request messages are specified and each UTC
instance in the system may support all types or any specified subset. When a Transfer Request
has been completed, the UTC returns a Transfer Response message back to the originating
UDMA.

The UTC has the ability to generate events at specified completion points when processing a
Transfer Request. These events are sent back to the Interrupt Aggregator block.

1.2.4 Data Routing Unit (DRU) Overview

For purposes of the AM6x SoC Data Movement architecture, the DRU is a UTC which supports
only the block copy mode subset of the Transfer Request message formats. The DRU typically
will provide the highest performance block copy data movement capability of any DMA engine
within the SoC.

6 Migrating Applications from EDMA to UDMA using TI-RTOS

1.2.5 PDMA Overview

The Peripheral DMA is a simple DMA which has been architected to specifically meet the data
transfer needs of peripherals which perform data transfers using memory mapped registers
accessed via a standard non-coherent bus fabric. The PDMA module is intended to be located
close to one or more peripherals which require an external DMA for data movement and
supporting only statically configured Transfer Request operations. The PDMA is only responsible
for performing the data movement transactions which interact with the peripherals themselves.
Data which is read from a given peripheral is packed by a PDMA source channel into a PSI-L
data stream which is then sent to a remote peer UDMA-P destination channel which then
performs the movement of the data into memory. Likewise, a remote UDMA-P source channel
fetches data from memory and transfers it to a peer PDMA destination channel over PSI-L which
then performs the writes to the peripheral.

The Peripheral DMA architecture is intentionally heterogeneous (UDMA + PDMA) to right size
the data transfer complexity at each point in the system to match the requirements of whatever is
being transferred to or from. Peripherals are typically FIFO based and do not require multi-
dimensional transfers beyond their FIFO dimensioning requirements, so the PDMA transfer
engines are kept simple with only a few dimensions (typically for sample size and FIFO depth),
hardcoded address maps, and simple triggering capabilities.

Multiple source and destination channels are provided within the PDMA which allow multiple
simultaneous transfer operations to be ongoing. The DMA controller maintains state information
for each of the channels and employs round-robin scheduling between channels in order to
share the underlying DMA hardware.

 Migrating Applications from EDMA to UDMA using TI-RTOS 7

1.2.6 UDMA Block diagram : SW View

Below figures show how the various blocks of UDMA collaborate to perform a DMA transaction.
Figure below shows as example of McASP DMA transfer in AM6x on using Main NavSS UDMA
instance. The numbers in the figure show the sequence of steps that SW does for DMA
configuration and the sequence of steps UDMA does to perform the DMA

Figure 3. AM6x Main NavSS: SW view and McASP UDMA sequence

A brief description of the sequence of the configuration steps is given below

1. Setup “Proxy” to submit descriptors (this is an optional step)

2. Setup a RX free ring and RX completion within ring accelerator. A ring acts as HW FIFO
to accept DMA transfer descriptors from the SW and pass on to the UDMA

3. Setup UDMA RX channel within UDMA

4. Pair the UDMA RX channel thread ID with McASP PDMA thread ID in the PSI-L (Packet
Streaming Interface - Link) network

5. Setup static TR in PDMA channel for McASP

6. Setup McASP to receive data

7. Setup interrupt aggregator to receive RX packet completion event and convert to an
interrupt

8. Setup interrupt router to route the interrupt to required CPU

A brief description of the sequence of steps as data flows through the SoC is given below

1. SW submits a DMA transfer descriptor to the RX free ring directly or via the “Proxy” HW

2. The descriptor is enqueue into the ring

8 Migrating Applications from EDMA to UDMA using TI-RTOS

3. The descriptor is forwarded to the UDMA channel so that when data is received from
McASP the data is stored at the buffer pointed to by the descriptor

4. As McASP receives data the data is sent over the PSI-L network to the “paired” UDMA
channel.

5. UDMA RX channel receives the data

6. The received data is written to the buffer pointed by the previously enqueued descriptor

7. Once the complete data packet is received an event is generated over the ETL (Event
Transport Lane) bus

a. The completed descriptor is written out to the RX completion queue (NOT shown
in the figure)

8. The event is routed to a programmed interrupt within the interrupt aggregator

9. The interrupt aggregator route the event to the interrupt router

10. The interrupt router routes the event to the required CPU interrupt line

The figure below as example of DRU DMA transfer using UDMA

Figure 4. AM6x Main NavSS: SW view and DRU UDMA sequence

Here most of the steps are same as Figure 3 shown previously (config steps and data flow steps
1, 2, 3). Main difference is here the descriptor is forwarded by the UDMA to the DRU (UTC)
peripheral (step 4, 5). Here the PSI-L network is used to transfer the descriptor. The DRU then
does the DMA transfer without the intervention of the UDMA (step 6). The PSI-L network is not
used for data transfer. When the DMA transfer completes the completion event is routed to the
user via the ETL (step 7, 8, 9, 10).

 Migrating Applications from EDMA to UDMA using TI-RTOS 9

1.3 Comparison of EDMA and UDMA

Below table shows a comparison of features in EDMA and UDMA.

Table 1. Comparison of EDMA and UDMA features

EDMA features UDMA features

32b source and destination DMA buffer

address

64b source and destination DMA buffer

address

Three transfer dimensions (A, B, C)

Two modes of operations

 Packet mode

 Transfer Request (TR) mode

Up to four transfer dimensions in TR mode

(DIM0, DIM1, DIM2, DIM3)

 A-synchronized transfers: one-

dimension serviced per event

 AB-synchronized transfers: two-

dimensions serviced per event

 DIM0 synchronized transfer: 1D

 DIM1 synchronized transfer: 2D

 DIM2 synchronized transfer: 3D

 DIM3 synchronized transfer: 4D

Independent indexes on source and

destination. Same ACNT, BCNT, CCNT on

source and destination.

Independent indexes and count on source and

destination for DIM0/1/2/3.

Increment or FIFO transfer addressing modes Increment or FIFO transfer addressing modes

Linking mechanism allows multiple DMAs to be

sequenced on the same EDMA Channel

limited by number of PaRAM entries

TR Descriptor and ring accelerator allows

multiple DMA transfers to be sequenced on the

same UDMA channel limited only by available

system memory space to store descriptors

Chaining allows multiple transfers to execute

simultaneously on multiple EDMA channels

with one event

Chaining allows multiple transfers to execute

simultaneously on multiple UDMA channels

with one event. Chaining achieved using event

steering from event source to event sink on

Event Transport Lane (ETL)

Interrupt generation for the following:

 Transfer completion, intermediate

transfer completion

 Error conditions

Event generation for the following

 Transfer completion, intermediate

transfer completion

 Error conditions

Events can be converted to interrupts using

Interrupt Aggregator and Interrupt Router

10 Migrating Applications from EDMA to UDMA using TI-RTOS

EDMA features UDMA features

Debug visibility:

 Queue water marking/threshold.

 Error and status recording to facilitate

debug.

Debug visibility:

 Queue water marking/threshold.

 Error and status recording to facilitate

debug.

16 ~ 128 EDMA channels depending on the

SoC

Same channel can be used for RX or TX

 120 TX channels (memory to peripheral)

in AM6x Main NavSS

 150 RX channels (peripheral to

memory) in AM6x Main NavSS

 A pair of RX+TX channels is used for

memory to memory DMA

NOTE: the number of RX and TX channel can

change from SoC to SoC and from Main

NavSS to MCU NavSS. Refer to SoC TRM for

exact numbers.

Synchronization based on

 Event from peripheral.

 Manual synchronization (CPU(s) write to

event set registers EDMA_TPCC_ESR

and EDMA_TPCC_ESRH).

 Chain synchronization (completion of

one transfer triggers another transfer).

Synchronization based on

 Manual synchronization (CPU(s) write to

UDMA channel trigger register).

 Chain synchronization (completion of

one transfer triggers another transfer

(using events)).

Eight QDMA channels

32 external DMA channels in AM6x SoC to

interface to DRU

DRU used for high throughput memory to

memory DMA

DMA operation described by a PaRAM set, up

to 512 PaRAM set in a EDMA controller

DMA operation described by a packet

descriptor or TR descriptor in system memory.

Number of descriptors only limited by amount

of system memory

 Migrating Applications from EDMA to UDMA using TI-RTOS 11

2 DMA SW Programming Model

When programming a DMA there are multiple low level HW concepts, features like describing a
DMA, DMA trigger, interrupt handling, that need to be understood by the SW user in order to use
the SW API effectively. This section refreshes the EDMA programming model, followed by a
detailed discussion on the UDMA programming model. Finally the EDMA and UDMA
programming models are compared.

2.1 EDMA SW Programming model

2.1.1 Describing and Triggering DMA

In EDMA, a DMA transfer is described by programming a PaRAM set. A given EDMA CC has
typically 32 to 512 PaRAM set MMRs located within the EDMA CC MMR memory map.

Figure 5. EDMA PaRAM set

A PaRAM set specifies

 Dimensions of the DMA transfer (3 dimensions ACNT, BCNT, CCNT)

 Source / destination 32b address

 DMA transfer flags

A EDMA is triggered in one of the ways below,

 Event-triggered transfer request (this is the typical usage of EDMA controller): A
peripheral, system or externally-generated event triggers a transfer request.

 Manually-triggered transfer request: The CPU manually triggers a transfer by writing
a 1 to the corresponding bit in the event set registers (EDMA_TPCC_ESR /
EDMA_TPCC_ESRH).

 Chain-triggered transfer request: A transfer is triggered on the completion of another
transfer or sub transfer.

12 Migrating Applications from EDMA to UDMA using TI-RTOS

2.1.2 Interfacing DMA to Peripherals

Peripherals are interfaced to EDMA via event signals. An event signal is asserted from a
peripheral when it is ready to receive or transmit data to the EDMA. When an event is asserted
from a peripheral or device pins, it gets latched in the corresponding bit of the event register
(EDMA_TPCC_ER[31:0] En = 1). For more information about peripheral events to EDMA events
mapping, refer to the device data manual.

2.1.3 Resource Management

In a typical SW architecture below modules in EDMA are considered as resources which need to
be managed by a SW driver

 EDMA CC channels

 TCC for chaining of EDMA channels

 PaRAM sets

 Event Queues

 Number of regions (to allow same EDMA to be used from multiple CPUs within a SoC)

2.1.4 Interrupt Handling and Synchronization

The EDMA CC generates transfer completion interrupts to the CPU(s). The EDMA generates a
single completion interrupt per shadow region. Usage of shadow regions allows multiple CPUs to
handle completion interrupts from different DMA channels belonging to the same EDMA
instance.

Interrupt generation can be enabled at either final transfer completion or intermediate transfer
completion, or both.

Consider channel m as an example.

 If the final transfer interrupt (EDMA_TPCC_OPT_n[20] TCINTEN = 1) is enabled, the
interrupt occurs after the last transfer request of channel m is either submitted or
completed (depending on early or normal completion).

 If the intermediate transfer interrupt (EDMA_TPCC_OPT_n[21] ITCINTEN = 1) is
enabled, the interrupt occurs after every transfer request, except the last TR of channel
m is either submitted or completed (depending on early or normal completion).

 If both final and intermediate transfer completion interrupts (EDMA_TPCC_OPT_n[20]
TCINTEN = 1, and EDMA_TPCC_OPT_n[21] ITCINTEN = 1) are enabled, then the
interrupt occurs after every transfer request is submitted or completed (depending on
early or normal completion).

 Migrating Applications from EDMA to UDMA using TI-RTOS 13

2.2 UDMA SW Programming model

2.2.1 Describing and Triggering DMA

A UDMA DMA request is specified by user constructing a data structure in memory called
“Descriptor”. Once a “Descriptor” is constructed by SW, it is submitted into a “Ring” to trigger the
DMA operation,

There are various types of descriptors, the most commonly used descriptors are listed below

1. Host Packet Descriptor – these descriptors typically describe 1D “packet” buffers that
need to be RX’ed or TX’ed with a peripheral or used in memory to memory copy transfer
(Block Copy)

2. Transfer Request (TR) Descriptor – these descriptors typically describe an up to 4D data
buffer that needs to be RX’ed or TX’ed with a peripheral or used in memory to memory
copy transfer (Block Copy)

The descriptor that needs to be used depends on the peripheral that the DMA channel interfaces
to. As an example, below table for AM6x SoC lists the peripherals and the descriptors types that
are supported by each.

Table 2. UDMA supported peripherals in AM6x SoC

Peripheral

UDMA instance to use to submit

descriptor

(Main NavSS UDMA

or MCU NavSS UDMA)

Peripheral

Type

Recommended

Descriptor type

supported

SA2UL Main NavSS UDMA
Native PSI-

L

Host Packet Descriptor

ICSS-G Main NavSS UDMA Host Packet Descriptor

CPSW2g MCU NavSS UDMA Host Packet Descriptor

SPI
Main NavSS UDMA

MCU NavSS UDMA

PDMA

Host Packet Descriptor

UART
Main NavSS UDMA

MCU NavSS UDMA
Host Packet Descriptor

McASP
Main NavSS UDMA

MCU NavSS UDMA
TR Descriptor

MCAN MCU NavSS UDMA Host Packet Descriptor

ADC MCU NavSS UDMA
Host Packet Descriptor or

TR Descriptor

FSS (OSPI,

HyperFlash)

Main NavSS UDMA

Or MCU NavSS UDMA
Block Copy

Host Packet Descriptor or

TR Descriptor

MCRC
Main NavSS UDMA

Or MCU NavSS UDMA
TR Descriptor

14 Migrating Applications from EDMA to UDMA using TI-RTOS

Peripheral

UDMA instance to use to submit

descriptor

(Main NavSS UDMA

or MCU NavSS UDMA)

Peripheral

Type

Recommended

Descriptor type

supported

PCIe
Main NavSS UDMA

Or MCU NavSS UDMA

Host Packet Descriptor or

TR Descriptor

Memory

Copy

Main NavSS UDMA

Or MCU NavSS UDMA

Host Packet Descriptor or

TR Descriptor

DRU Main NavSS UDMA TR Descriptor

Figure 6 shows the TR Descriptor and TR data structure format. A TR Descriptor consists of a
list of TR records. A TR record specifies up to 4D DMA transfer. A TR record data structure is
shown in Figure 7.

Figure 6. TR Descriptor

Figure 7. TR record

 Migrating Applications from EDMA to UDMA using TI-RTOS 15

Figure 8 below shows the Host Packet Descriptor data structure format

Figure 8. HOST Packet Descriptor

2.2.2 Interfacing DMA to Peripherals

Peripherals are interfaced to UDMA using the PSI-L (Packet switching interface) bus. The
peripheral to PSI-L bus connections are fixed in a SoC.

Some legacy peripherals like SPI, UART, McSPI do not support native PSI-L bus interface. Such
peripherals are interfaced to UDMA via a PDMA peripheral. Here the legacy peripheral is
connected to the PDMA peripheral and PDMA is connected to the PSI-L bus interface. The
Peripheral to PDMA connection is fixed for a given SoC. For example see Figure 3 AM6x Main
NavSS: SW view and McASP UDMA sequence.

Once a peripheral is connected to the PSI-L bus it appears on the bus with a unique “thread ID”.
Each UDMA RX and TX channel is also visible on the bus as a unique “thread ID”. Connecting a
peripheral to a UDMA channel is done by SW “pairing” of UDMA CH “thread ID” with the
peripheral “thread ID”.

2.2.3 Resource Management

The following UDMA resources are limited in number and need to be resource managed by the
SW.

1. UDMA Channels

a. UDMA RX High Capacity channels

b. UDMA TX High Capacity channels

c. UDMA RX Normal Capacity channels

d. UDMA TX Normal Capacity channels

e. UDMA Block Copy Channels

f. UDMA Free Flows

16 Migrating Applications from EDMA to UDMA using TI-RTOS

g. UDMA External Channels to interface with UTC’s like DRU

2. Ring

a. UDMA Ring – One Ring is associated with UDMA RX, TX, Block copy channels
to submit descriptors – when a DMA channel is allocated the associated ring is
also allocated by UDMA LLD. These rings are used for

i. TX Ring for submitting TX packet, TX TR, or Block Copy TR

ii. External TX Ring for submitting block copy to external channel

iii. RX Ring for submitting RX TR

b. Free Ring – Additional rings are used to receive completed DMA requests
(completion rings). Any of the remaining rings can be used as free rings. These
rings are used for,

i. TX Completion Ring for packet or TR

ii. RX Completion Ring for packet or TR

iii. TX Completion for Teardown or External Channel Block Copy

iv. RX Completion for Teardown

3. Events

a. Free global events – global events are used to trigger interrupts via the interrupt
aggregator. Any event ID from a range of event ID can be used by the SW to
route a generated event to an interrupt

4. Interrupt Aggregator virtual interrupts, virtual interrupt bit position, interrupt router
interrupt output

a. Events are converted to interrupts by routing to an interrupt aggregator.

2.2.4 Interrupt Handling and Synchronization

In UDMA there is distinct mechanism of events and interrupts. An event is generated when some
pre-defined condition occurs. SW can then use the event to either trigger another DMA channel
(similar to chaining in EDMA) and/or convert the event to an interrupt.

In UDMA events can be generated for the below conditions

1. Descriptor RX or TX completed – this event is generated when a submitted descriptor is
“fully consumed”, i.e. all expected data is RX’ed or TX’ed. This condition is indicated to
SW via a descriptor response in a completion ring. The event ID to generate is
programmed within the completion ring in this case

2. Partial or full TR completion – this event generated when 1D, 2D,3D or 4D transfers of a
TR are completed. This allows SW to sync on intermediate TR completion conditions.
The event ID to generate for these conditions is programmed in the UDMA RX or TX
channel (or DRU CH in case of DRU based DMA)

3. Events are also generated based on a ring status as well (ex, pushing to an empty ring).

 Migrating Applications from EDMA to UDMA using TI-RTOS 17

Figure 9 shows the basic concept of event getting converted to an interrupt.

Figure 9. AM6x SoC Main NavSS UDMA Interrupt Aggregator and Interrupt Router

This shows example of AM6x Main NavSS UDMA interrupt routing from a global event to
interrupt at NavSS boundary. Here global events from ID 0 to 4607 are routed to Main NavSS
UDMA Interrupt aggregator. If an event ID in this range is programmed at any ring or UDMA CH
or DRU CH or any other event generator source then it reaches this interrupt aggregator. The
IMAP_j (j=0 .. 4607) register at the interrupt aggregator then maps this event to one of 256
“virtual interrupts (VINT)” and within a “virtual interrupt” to one of 64 “bitnum”. i.e. up to 64 events
can be aggregated at a single interrupt aggregator VINT. SW can now poll on the VINT x, bitnum
y MMR for interrupt arrival or SW can route this VINT further to the CPU via the interrupt router.
The interrupt router is M:N mux. In above example the interrupt router takes 255 inputs from the
interrupt aggregator and routes them to 151 interrupt outputs. The outputs of interrupt router are
then further routed to respective CPUs based on the SoC architecture.

18 Migrating Applications from EDMA to UDMA using TI-RTOS

2.3 Comparison of SW Programming Model in EDMA and UDMA

The table below shows the comparison of programming model between EDMA and UDMA
based on the concepts introduced in previous sections

Table 3. Programming model comparison between EDMA and UDMA

Programming Model EDMA UDMA

Describing DMA
PaRAM MMRs within EDMA

HOST packet descriptor (1D)

or TR Descriptor (up to 4D) in

any memory visible to UDMA,

ex, DDR, MSMC, TCM,

MCUSS MSRAM.

NOTE: since memory could

be cache SW should make

sure cache coherency

operations are performed for

descriptors in memory

Triggering DMA Setting channel enable bit
Queuing a descriptor into a

ring

Linking DMA transfers

Using LINK field in PaRAM.

Max DMA transfers that can

be linked limited by number of

PaRAM (typically 100’s)

Multiple TRs within TR

descriptors OR queueing

multiple descriptors into a

ring.

Max DMA transfer than can

be linked limited by available

system memory (practically

unlimited if descriptors in

DDR).

Resource Management

SW needs to manage these

resources since they are

limited in numbers

 EDMA channels

 EDMA regions

 PaRAMs

 TCCs

 UDMA RX/TX/External

channels

 UDMA RX Flows

 Free RINGs

 Global event ID

 Interrupt aggregator

VINT and “bitnum”

(0..63)

 Interrupt router output

interrupt

 Migrating Applications from EDMA to UDMA using TI-RTOS 19

Programming Model EDMA UDMA

Interfacing Peripheral to DMA

By routing peripheral

ready/busy signal to event

input signal at EDMA

By paring peripheral PSI-L

bus thread ID to UDMA CH

thread ID

Interrupt handling

At DMA transfer completion

and at intermediate DMA

transfer completion (1D, 2D)

Interrupts latched within one

of N regions (typically 4-8) to

allow multiple CPUs to use

different EDMA channels of

the same EDMA instance

At DMA transfer completion

and at intermediate DMA

transfer completion (1D, 2D,

3D)

Interrupts latched by routing

global events to interrupt

aggregator. Multiple CPU can

use different EDMA by routing

different interrupt aggregator

VINT to itself via interrupt

router.

Chaining DMA channels

By setting TCC of EDMA

channel to be chained within

PaRAM

By setting event ID to a

UDMA channel trigger event

ID within the source UDMA

CH CFG MMR

2.3.1 Comparision of EDMA PaRAM vs UDMA TR

A large part of user SW deals with setup of EDMA PaRAM fields to setup the DMA transfer and
decide the SW sync points, next DMA transfer linking/chaining. In EDMA this is specified in
PaRAM. This section does a field by field comparison of EDMA PaRAM with UDMA TR which is
the closest equivalent in UDMA.

Table 4. Comparison of EDMA PaRAM and UDMA TR

EDMA PaRAM
UDMA TR

(4D Block Copy TR)

Purpose

ACNT (16b)
ICNT0 (16b)

DICNT0 (16b)

1st dimension loop count

BCNT (16b)
ICNT1 (16b)

DICNT1 (16b)

2nd dimension loop count

CCNT (16b)
ICNT2 (16b)

DICNT2 (16b)

3rd dimension loop count

NA
ICNT3 (16b)

DICNT3 (16b)

4th dimension loop count

20 Migrating Applications from EDMA to UDMA using TI-RTOS

EDMA PaRAM
UDMA TR

(4D Block Copy TR)

Purpose

SBIDX (signed 16b) DIM1(signed 32b)
2nd dimension stride at

source

DBIDX (signed 16b) DDIM1 (signed 32b)
2nd dimension stride at

destination

SCIDX (signed 16b) DIM2 (signed 32b) 3rd dimension stride at source

DCIDX DDIM2 (signed 32b)
3rd dimension stride at

destination

NA
DIM3 (signed 32b)

DDIM3 (signed 32b)

4th dimension stride at source

and destination

SRC (32b) ADDR (64b) Source address

DST (32b) DAADR (64b) Destination address

LINK

Linking is done in UDMA by

listing TRs one after another

within a TR descriptor OR

queuing multiple TR

Descriptors at the same RING

Pointer to next DMA transfer

to execute after current DMA

transfer

BCNTRLD NA
BCNT value to reload after

BCNT decrements to zero.

OPT FLAGS
DMA transfer options / flags

see table below

Table 5. Comparison of EDMA.OPT and UDMA TR.FLAGS

EDMA.OPT UDMA TR.FLAGS Purpose

PRIV Specified via ISC registers in Ring

that is used to submit the TR

OR

inherited from the CPU host the

writes to the ring when ring is used in

credentials mode

Specified via ISC registers in Ring

that is used to submit the TR

OR inherited from the programming

CPU host when ring is used in

credentials mode

Privilege level User / supervisor

PRIVID

Privilege ID for the external

host/cpu/dma that programmed this DMA

transfer

 Migrating Applications from EDMA to UDMA using TI-RTOS 21

EDMA.OPT UDMA TR.FLAGS Purpose

ITCCHEN

TCCHEN

TCC

In UDMA this is specified by

programing the destination UDMA

Block Copy channel event ID in

current UDMA channel event ID

MMR

Chaining condition and EDMA channel to

chain after current EDMA channel DMA

transfer completes.

In UDMA after event EVENT_SIZE

completion an event is generated. If the

event ID maps to another UDMA channel

then that triggers the UDMA channel

(when trigger type of the chained

channel is “global” in TRIGGER_TYPEx)

ITCINTEN

TCINTEN
EVENT_SIZE

DMA transfer interrupt/event condition,

1D, 2D, 3D, or 4D

(In EDMA SYNCDIM controls both the

sync condition and the intermediate

event/interrupt condition.

In UDMA the sync and event/condition

can be specified independently in

EVENT_SIZE and TRIGGER_TYPEx

respectively)

SYNCDIM TRIGGERx_TYPE (x=0,1)

DMA trigger type, A-sync, AB-sync

mode.

(A-sync mode in EDMA has a different

dimension skip pattern vs AB-sync,

however in UDMA 1D, 2D, 3D, 4D sync

modes all have the same dimension skip

pattern, that is similar to AB-sync in

EDMA)

UDMA support two trigger event and

sync type can be specified on each

trigger event.

FWID

DAM

SAM

NA

Used for FIFO mode of access in EDMA,

typically to read/write data to peripheral

FIFOs

In UDMA, the PDMA typically reads the

peripheral FIFO so this mode is not

applicable for UDMA

WIMODE

TCCMODE

STATIC

NA

No equivalent feature in UDMA

22 Migrating Applications from EDMA to UDMA using TI-RTOS

3 DMA SW API for Applications

This section provides an overview of EDMA and UDMA SW APIs and describes how an
application can migrate from EDMA SW APIs to UDMA SW APIs.

3.1 EDMA SW API Overview

EDMA LLD is the SW API for EDMA on TI-RTOS. It is included as a package within TI
Processor SDK. This section gives brief overview of EDMA LLD APIs using
“edma3_lld_02_12_00_20” package as the reference. Specifically it gives an overview of the

EDMA LLD driver module within this package
(edma3_lld_02_12_00_20\packages\ti\sdo\edma3\drv)

3.1.1 Steps to initialize and deinitialize EDMA driver

1. Create a EDMA3 driver handle.

a. EDMA instance ID and global EDMA configuration is provided as input.
 edma3Result = EDMA3_DRV_create (
 pObj->edma3InstanceId,
 pObj->pGblCfgParams ,
 (void *)&miscParam);

b. Global params among other things defines the capabilities of the EDMA
controller like total number of channels, total number of PaRAM entries, EDMA
CC/TC MMR base address, and so on. These parameters are different for
different SoCs

2. Open a EDMA3 driver instance handle

a. EDMA instance ID and initialization configuration is provided as input
EDMA3_DRV_InitConfig initCfg;
initCfg.drvSemHandle = Osal_createSemaphore;
initCfg.isMaster = TRUE;
/* Choose shadow region unique to current CPU */
initCfg.regionId = (EDMA3_RM_RegionId)pObj->regionId;
/* Driver instance specific config NULL */
initCfg.drvInstInitConfig = pObj->pInstInitConfig;
initCfg.gblerrCb = NULL;
initCfg.gblerrData = NULL;

pObj->hEdma = EDMA3_DRV_open (
 pObj->edma3InstanceId,
 (void *) &initCfg,
 &edma3Result);

b. Initialization configuration specifies among other things, the EDMA channels
reserved for current CPU, the region ID current CPU will use and so on. This
allows the same EDMA controller instance to be shared among multiple CPU in
the same SoC.

 Migrating Applications from EDMA to UDMA using TI-RTOS 23

3. Register interrupt handler based on CPU specific architecture. The below code snippet
shows an example of ISR registration on ARM M4 for AM5x SoC
/* Do interrupt cross bar connection if any */
IntXbar_connect(
 pObj->pIntrConfig->ccXferCompCtrlModXbarIndex,
 pObj->pIntrConfig->ccXferCompXbarInt
);

pObj->hwiCCXferCompInt = Osal_registerIntr(
 pObj->pIntrConfig->ccXferCompCpuInt, /* CPU interrupt
number associated with EDMA completion for a specific EDMA region */
 &lisrEdma3ComplHandler0, /* defined by EDMA driver */
 (void*)pObj->edma3InstanceId);

4. To de-initialize EDMA driver SW uses below sequence

a. Deregister CPU interrupts (EDMA driver API not needed for this)

b. Close EDMA driver instance handle, delete EDMA driver
EDMA3_DRV_close (pObj->hEdma, NULL);
EDMA3_DRV_delete (pObj->edma3InstanceId, NULL);

3.1.2 Steps to setup and use EDMA channels

There many different ways to use program and use an EDMA channel and PaRAM. This section
shows the typical sequence used for memory to memory copy using EDMA.

1. Firstly a EDMA channel is allocated using below API.

a. The EDMA driver instance handle create earlier is used as input.

b. In the below example, SW requests for any available EDMA channel and TCC
ID.

c. SW also registers a callback to be called when EDMA transfer is complete. If
NULL is specified then SW wants to use the channel in polling mode

pObj->tccId = EDMA3_DRV_TCC_ANY;
pObj->edmaChId = EDMA3_DRV_DMA_CHANNEL_ANY;
tccCb = NULL;
if(pObj->enableIntCb)
 tccCb = (EDMA3_RM_TccCallback)&Utils_dmaCallback;
edma3Result = EDMA3_DRV_requestChannel(
 pObj->hEdma,
 (uint32_t*)&pObj->edmaChId,
 (uint32_t*)&pObj->tccId,
 (EDMA3_RM_EventQueue)pObj->eventQ,
 tccCb, (void *)pObj);

2. Reset EDMA channel error state to clear any pending error condition on the channel.
 EDMA3_DRV_clearErrorBits(pObj->hEdma, pObj->edmaChId);

24 Migrating Applications from EDMA to UDMA using TI-RTOS

3. When a channel is allocated, one PaRAM is automatically allocated for that channel.
User can allocate additional PaRAMs for linking using below API
paramID = EDMA3_DRV_LINK_CHANNEL;
tccId = EDMA3_DRV_TCC_ANY;
edma3Result = EDMA3_DRV_requestChannel (
 pObj->hEdma,
 ¶mId,
 &tccId,
 (EDMA3_RM_EventQueue)pObj->eventQ,
 NULL,
 NULL);

4. Next, the PaRAM associated with the EDMA channel and its associated linked PaRAMs
are programmed.

a. Below API is called to get the PaRAM address pointer.

b. After get the pointer to the PaRAM, the PaRAM fields are set based on the
Figure 5 EDMA PaRAM set
 edma3Result = EDMA3_DRV_getPaRAMPhyAddr(
 pObj->hEdma,
 edmaChId,
 ¶mPhyAddr);

5. After the PaRAM fields are programmed EDMA channel is triggered as shown below

a. Previous EDMA state is cleared, if any
 edma3Result = EDMA3_DRV_checkAndClearTcc(pObj->hEdma,
 pObj->tccId,
 &tccStatus);

b. Trigger EDMA. Here the manual mode DMA trigger example is shown
 edma3Result = EDMA3_DRV_enableTransfer (
 pObj->hEdma,pObj->edmaChId,
 EDMA3_DRV_TRIG_MODE_MANUAL);

6. After a EDMA channel is triggered SW can wait for the previously registered callback to
get called on DMA channel completion and/or DMA intermediate channel completion
(depending on the bits set in PaRAM) OR SW can poll on DMA completion as shown
below
 EDMA3_DRV_waitAndClearTcc(pObj->hEdma,pObj->tccId);
 EDMA3_DRV_clearErrorBits (pObj->hEdma,pObj->edmaChId);

7. After a DMA channel completes, SW can program the same PaRAM again and trigger
another DMA channel

8. After SW is done using the DMA channel it can free the DMA channel (and linked
PaRAMs) as shown below
 EDMA3_DRV_freeChannel(pObj->hEdma, pObj->edmaChId);

 Migrating Applications from EDMA to UDMA using TI-RTOS 25

3.2 UDMA SW API Overview

UDMA LLD is the SW API for UDMA on TI-RTOS. It is included as a package within TI
Processor SDK. This section gives brief overview of EDMA LLD APIs using “pdk_xx_xx_xx_xx”

package as the reference. Specifically it gives an overview of the UDMA LLD driver module
within this package (pdk_xx_xx_xx_xx\packages\ti\drv\udma)

3.2.1 Steps to initialize and deinitialize UDMA driver

1. Initialize the UDMA driver with default resource allocation as shown below

a. Initialize default parameters. When default parameters are used UDMA
resources are divided among different CPUs by a TI defined scheme. Users can
override the default by modify the fields within initPrms. rmInitPrms after

calling UdmaInitPrms. Users must to careful to make sure overlapping resources

are not assigned to different CPUs.
#include <ti/drv/udma/udma.h>

 Udma_InitPrms initPrms;
 uint32_t instId;

 instId = UDMA_INST_ID_MAIN_0; /* or UDMA_INST_ID_MCU_0 */
 UdmaInitPrms_init(instId, &initPrms);

b. Initialize the UDMA instance
struct Udma_DrvObj gUdmaDrvObj; /* MUST be global */

Udma_DrvHandle drvHandle = &gUdmaDrvObj;
 retVal = Udma_init(drvHandle, &initPrms);

2. To de-initialize the UDMA driver call the below API
 Udma_deinit(drvHandle);

3.2.2 Steps to setup and use UDMA channels

There many different ways to use program and use an UDMA channels. This section shows the
typical sequence used for memory to memory copy using UDMA. For more examples users are
encouraged to browse the code at (pdk_xx_xx_xx_xx\packages\ti\drv\udma\examples).

The below sequence uses the “examples\ udma_memcpy_test” as reference

3.2.2.1 Open a UDMA channel

1. UDMA driver handle created previous is used as input

2. A UDMA channel handle is returned as output

3. UDMA channel type is block copy for memory to memory copy DMA transfer

4. UDMA channel parameters can be set to default, however user has to give additional
memory for the UDMA ring memory (submit ring, completion ring, teardown ring). In this
example only one UDMA descriptor is queued at time and hence ring element count can
be one.

26 Migrating Applications from EDMA to UDMA using TI-RTOS

5. The ring memory MUST be cache line aligned. The ring memory can be from a cache
region of the CPU

/** \brief Number of ring entries - we can prime this much memcpy
operations */
#define UDMA_TEST_APP_RING_ENTRIES (1U)

/** \brief Size (in bytes) of each ring entry (Size of pointer - 64-
bit) */
#define UDMA_TEST_APP_RING_ENTRY_SIZE (sizeof(uint64_t))

/** \brief Total ring memory */
#define UDMA_TEST_APP_RING_MEM_SIZE (UDMA_TEST_APP_RING_ENTRIES *
UDMA_TEST_APP_RING_ENTRY_SIZE)

/* MUST be global */
static uint8_t gTxRingMem[UDMA_TEST_APP_RING_MEM_SIZE]
_attribute__((aligned(UDMA_CACHELINE_ALIGNMENT)));
static uint8_t gTxCompRingMem[UDMA_TEST_APP_RING_MEM_SIZE]
__attribute__((aligned(UDMA_CACHELINE_ALIGNMENT)));
static uint8_t gTxTdCompRingMem[UDMA_TEST_APP_RING_MEM_SIZE]
__attribute__((aligned(UDMA_CACHELINE_ALIGNMENT)));

struct Udma_ChObj gUdmaChObj; /* MUST be global */

Udma_ChHandle chHandle = &gUdmaChObj;

/* channel type for memory to memory DMA copy */
chType = UDMA_CH_TYPE_TR_BLK_COPY;
UdmaChPrms_init(&chPrms, chType);
/* ring memory for descriptors and number of elements in the ring */
chPrms.fqRingPrms.ringMem = &gTxRingMem[0U];
chPrms.cqRingPrms.ringMem = &gTxCompRingMem[0U];
chPrms.tdCqRingPrms.ringMem = &gTxTdCompRingMem[0U];
chPrms.fqRingPrms.elemCnt = UDMA_TEST_APP_RING_ENTRIES;
chPrms.cqRingPrms.elemCnt = UDMA_TEST_APP_RING_ENTRIES;
chPrms.tdCqRingPrms.elemCnt = UDMA_TEST_APP_RING_ENTRIES;
/* Open channel for block copy */
retVal = Udma_chOpen(drvHandle, chHandle, chType, &chPrms);

 Migrating Applications from EDMA to UDMA using TI-RTOS 27

3.2.2.2 Setup UDMA channel for DMA transfer

1. A UDMA block copy involves setup of a pair of UDMA TX and UDMA RX channels. This
detail is handle by the SW internally and users can simple initialize the RX and TX
portions of the UDMA channel with default parameters as shown below
Udma_ChTxPrms txPrms;
Udma_ChRxPrms rxPrms;

/* Config TX channel */
UdmaChTxPrms_init(&txPrms, chType);
retVal = Udma_chConfigTx(chHandle, &txPrms);

/* Config RX channel - which is implicitly paired to TX channel in
block copy mode */
UdmaChRxPrms_init(&rxPrms, chType);
retVal = Udma_chConfigRx(chHandle, &rxPrms);

2. Enable events and register callbacks. For polling mode operation, users can set the
callback function pointer to NULL but still use the same sequence of steps below. Here
two interrupts are enabled, a DMA transfer completion via ring response and ring tear
down completion callback. Both events are registered on the same interrupt line using
the “shared interrupt” property as shown below.
struct Udma_EventObj gUdmaCqEventObj; /* MUST be global */
struct Udma_EventObj gUdmaTdCqEventObj; /* MUST be global */

Udma_EventHandle eventHandle;
Udma_EventPrms eventPrms;

/* Register ring completion callback */
eventHandle = &gUdmaCqEventObj;
UdmaEventPrms_init(&eventPrms);
eventPrms.eventType = UDMA_EVENT_TYPE_DMA_COMPLETION;
eventPrms.eventMode = UDMA_EVENT_MODE_SHARED;
eventPrms.chHandle = chHandle;
eventPrms.masterEventHandle = NULL;
eventPrms.eventCb = &App_udmaEventDmaCb;
retVal = Udma_eventRegister(drvHandle, eventHandle, &eventPrms);

/* Register teardown ring completion callback */
eventHandle = &gUdmaTdCqEventObj;
UdmaEventPrms_init(&eventPrms);
eventPrms.eventType = UDMA_EVENT_TYPE_TEARDOWN_PACKET;
eventPrms.eventMode = UDMA_EVENT_MODE_SHARED;
eventPrms.chHandle = chHandle;
eventPrms.masterEventHandle = &gUdmaCqEventObj;
eventPrms.eventCb = &App_udmaEventTdCb;
retVal = Udma_eventRegister(drvHandle, eventHandle, &eventPrms);

28 Migrating Applications from EDMA to UDMA using TI-RTOS

3. After interrupts are registered, UDMA channel is enabled. Note, this does NOT start any
DMA transfer, this just keeps the channel ready for DMA transfer. DMA transfer is trigger
when a descriptor is enqueued into the submit ring later.
 retVal = Udma_chEnable(chHandle);

3.2.2.3 Program descriptor

1. Reserve memory for TR Descriptor. Make sure it is cache line aligned
/**
 * \brief UDMA TR packet descriptor memory.
 * This contains the CSL_UdmapCppi5TRPD + Padding to
sizeof(CSL_UdmapTR15) +
 * one Type_15 TR (CSL_UdmapTR15) + one TR response of 4 bytes.
 * Since CSL_UdmapCppi5TRPD is less than CSL_UdmapTR15, size is just
two times
 * CSL_UdmapTR15 for alignment.
 */
#define UDMA_TEST_APP_TRPD_SIZE ((sizeof(CSL_UdmapTR15) * 2U) +
4U)

static uint8_t gUdmaTprdMem[UDMA_TEST_APP_TRPD_SIZE]
__attribute__((aligned(UDMA_CACHELINE_ALIGNMENT)));

 Migrating Applications from EDMA to UDMA using TI-RTOS 29

2. Program TR Descriptor header. Most of the fields can be programed to default as shown
below. The completion ring ID is programmed in the TR Descriptor as shown below
static void App_udmaTrpdInit(Udma_ChHandle chHandle,
 uint8_t *pTrpdMem,
 const void *destBuf,
 const void *srcBuf,
 uint32_t length)
{
 CSL_UdmapCppi5TRPD *pTrpd = (CSL_UdmapCppi5TRPD *) pTrpdMem;
 CSL_UdmapTR15 *pTr = (CSL_UdmapTR15 *)(pTrpdMem +
sizeof(CSL_UdmapTR15));
 uint32_t *pTrResp = (uint32_t *) (pTrpdMem + (sizeof(CSL_UdmapTR15)
* 2U));
 uint32_t cqRingNum = Udma_chGetCqRingNum(chHandle);
 uint32_t descType = CSL_UDMAP_CPPI5_PD_DESCINFO_DTYPE_VAL_TR;

 /* Setup descriptor */
 CSL_udmapCppi5SetDescType(pTrpd, descType);
 CSL_udmapCppi5TrSetReload(pTrpd, 0U, 0U);
 CSL_udmapCppi5SetPktLen(pTrpd, descType, 1U); /* Only one TR
in TRPD */
 CSL_udmapCppi5SetIds(pTrpd, descType, 0U, 0x3FFFU); /* Flow ID and
Packet ID */
 CSL_udmapCppi5SetSrcTag(pTrpd, 0x0000); /* Not used */
 CSL_udmapCppi5SetDstTag(pTrpd, 0x0000); /* Not used */
 CSL_udmapCppi5TrSetEntryStride(
 pTrpd, CSL_UDMAP_CPPI5_TRPD_PKTINFO_RECSIZE_VAL_64B);
 CSL_udmapCppi5SetReturnPolicy(
 pTrpd,
 descType,
 CSL_UDMAP_CPPI5_PD_PKTINFO2_RETPOLICY_VAL_ENTIRE_PKT, /*
Don't
care for TR */
 CSL_UDMAP_CPPI5_PD_PKTINFO2_EARLYRET_VAL_NO,
 CSL_UDMAP_CPPI5_PD_PKTINFO2_RETPUSHPOLICY_VAL_TO_TAIL,
 cqRingNum);

30 Migrating Applications from EDMA to UDMA using TI-RTOS

3. Program the TR as shown below
 /* Setup TR */
 pTr->flags = CSL_FMK(UDMAP_TR_FLAGS_TYPE, 15)
 CSL_FMK(UDMAP_TR_FLAGS_STATIC, 0U) |
 CSL_FMK(UDMAP_TR_FLAGS_EOL, 0U) | /* NA */
 CSL_FMK(UDMAP_TR_FLAGS_EVENT_SIZE,
CSL_UDMAP_TR_FLAGS_EVENT_SIZE_COMPLETION) |
 CSL_FMK(UDMAP_TR_FLAGS_TRIGGER0,
CSL_UDMAP_TR_FLAGS_TRIGGER_NONE) |
 CSL_FMK(UDMAP_TR_FLAGS_TRIGGER0_TYPE,
CSL_UDMAP_TR_FLAGS_TRIGGER_TYPE_ALL) |
 CSL_FMK(UDMAP_TR_FLAGS_TRIGGER1,
CSL_UDMAP_TR_FLAGS_TRIGGER_NONE) |
 CSL_FMK(UDMAP_TR_FLAGS_TRIGGER1_TYPE,
CSL_UDMAP_TR_FLAGS_TRIGGER_TYPE_ALL) |
 CSL_FMK(UDMAP_TR_FLAGS_CMD_ID, 0x25U) | /* This
will come back in TR response */
 CSL_FMK(UDMAP_TR_FLAGS_SA_INDIRECT, 0U) |
 CSL_FMK(UDMAP_TR_FLAGS_DA_INDIRECT, 0U) |
 CSL_FMK(UDMAP_TR_FLAGS_EOP, 1U);
 pTr->icnt0 = length;
 pTr->icnt1 = 1U;
 pTr->icnt2 = 1U;
 pTr->icnt3 = 1U;
 pTr->dim1 = pTr->icnt0;
 pTr->dim2 = (pTr->icnt0 * pTr->icnt1);
 pTr->dim3 = (pTr->icnt0 * pTr->icnt1 * pTr->icnt2);
 pTr->addr = (uint64_t) srcBuf;
 pTr->fmtflags = 0x00000000U;/*Linear addressing, 1 byte per elem*/
 pTr->dicnt0 = length;
 pTr->dicnt1 = 1U;
 pTr->dicnt2 = 1U;
 pTr->dicnt3 = 1U;
 pTr->ddim1 = pTr->dicnt0;
 pTr->ddim2 = (pTr->dicnt0 * pTr->dicnt1);
 pTr->ddim3 = (pTr->dicnt0 * pTr->dicnt1 * pTr->dicnt2);
 pTr->daddr = (uint64_t) destBuf;

4. Clear TR response memory
 *pTrResp = 0xFFFFFFFFU;

5. Cache Write back the descriptor since the descriptor could be cache in the CPU
 CacheP_wb(pTrpdMem, UDMA_TEST_APP_TRPD_SIZE);

3.2.2.4 Trigger and wait for DMA transfer

1. Submit TR descriptor to submit ring
 retVal = Udma_ringQueueRaw(
 Udma_chGetFqRingHandle(chHandle), (uint64_t) tprdMem);

 Migrating Applications from EDMA to UDMA using TI-RTOS 31

2. Wait for ring completion. Application waits on a semaphore which is posted from the
application registered callback
/* Wait for return descriptor in completion ring - this marks the
 * transfer completion */
SemaphoreP_pend(gUdmaAppDoneSem, SemaphoreP_WAIT_FOREVER);

3. The application callback is shown below
static void App_udmaEventDmaCb(Udma_EventHandle eventHandle,
 uint32_t eventType,
 void *appData)
{
 if(UDMA_EVENT_TYPE_DMA_COMPLETION == eventType)
 SemaphoreP_post(gUdmaAppDoneSem);
}

4. After a ring completion callback is received, dequeue the completed TR descriptor as
shown below
uint64_t pDesc = 0;

/* Completed TR descriptor received in completion queue */
retVal = Udma_ringDequeueRaw(Udma_chGetCqRingHandle(chHandle), &pDesc);

5. Check if DMA completed successfully by checking the TR response field as shown
below. Note, since the TR descriptor can be cached user should invalidate cache line
before touching the TR descriptor fields
uint32_t *pTrResp, trRespStatus;

/* Invalidate cache */
CacheP_Inv((void*)pDesc, UDMA_TEST_APP_TRPD_SIZE);

/* check TR response status */
pTrResp = (uint32_t *) (pDesc + (sizeof(CSL_UdmapTR15) * 2U));
trRespStatus = CSL_FEXT(*pTrResp, UDMAP_TR_RESPONSE_STATUS_TYPE);
if(trRespStatus != CSL_UDMAP_TR_RESPONSE_STATUS_COMPLETE)
 retVal = UDMA_EFAIL;

6. Once a TR descriptor is received, the same TR descriptor can be updated with new
DMA transfer parameters and submitted again. Also while a DMA transfer is active
another TR descriptor can be submitted into the DMA channel asynchronously.

3.2.2.5 Close a UDMA channel

Once all DMA transfers are done from application point of view, DMA channel can be disabled
and closed as shown below

1. Disable channel
 retVal = Udma_chDisable(chHandle, UDMA_DEFAULT_CH_DISABLE_TIMEOUT);

32 Migrating Applications from EDMA to UDMA using TI-RTOS

2. If a channel is disabled while DMA is active a teardown descriptor is written to the
teardown ring. This descriptor MUST be dequeued. In the example a teardown callback
is registered to handle this condition as shown below
 static void App_udmaEventTdCb(Udma_EventHandle eventHandle,
 uint32_t eventType,
 void *appData)
 {
 CSL_UdmapTdResponse tdResp;

 if(UDMA_EVENT_TYPE_TEARDOWN_PACKET == eventType)
 /* Response received in Teardown completion queue */
 Udma_chDequeueTdResponse(&gUdmaChObj, &tdResp);

 return;
 }

3. Unregister interrupts
 Udma_EventHandle eventHandle;

 /* Unregister master event at the end */
 eventHandle = &gUdmaTdCqEventObj;
 retVal += Udma_eventUnRegister(eventHandle);
 eventHandle = &gUdmaCqEventObj;
 retVal += Udma_eventUnRegister(eventHandle);

4. Flush any pending requests. These are descriptors that are submitted but DMA channel
is disabled before UDMA got a chance to execute these descriptors.
 uint64_t pDesc;

 /* Flush any pending request from the free queue */
 while(1) {
 tempRetVal = Udma_ringFlushRaw(
 Udma_chGetFqRingHandle(chHandle), &pDesc);
 if(UDMA_ETIMEOUT == tempRetVal)
 break;
 }

5. Close DMA channel handle
 retVal += Udma_chClose(chHandle);

 Migrating Applications from EDMA to UDMA using TI-RTOS 33

3.3 Migration from EDMA LLD to UDMA LLD

This section compares the SW APIs between EDMA and UDMA to aid in migrating applications
from EDMA to UDMA. When migrating applications from EDMA to UDMA, users are
recommended to refer to EDMA sequence documented in 3.1 EDMA SW API Overview and
replace the EDMA sequence of APIs in their application with corresponding sequence of UDMA
APIs described in 3.2 UDMA SW API Overview.

Table 6. Comparison of EDMA and UDMA SW API

 EDMA SW API UDMA SW API

Package edma3_lld_xx_xx_xx_xx\packages\ti\sdo\edma3\ pdk_xx_xx_xx_xx\packages\ti\drv\udma

Interface

header

files

#include <ti/sdo/edma3/drv/edma3_drv.h>

#include <ti/sdo/edma3/rm/edma3_rm.h>

#include <ti/sdo/edma3/rm/src/edma3resmgr.h>

#include <ti/drv/udma/udma.h>

Programming

Step

EDMA SW API UDMA SW API

Data Structure Function Data structure Function

DMA driver init

EDMA3_DRV_InitConfig

EDMA3_RM_MiscParam

EDMA3_DRV_GblConfigParams

EDMA3_DRV_InstanceInitConfig

EDMA3_DRV_Handle

EDMA3_DRV_create

EDMA3_DRV_open

Udma_DrvObj

Udma_DrvHandle

Udma_InitPrms

UdmaInitPrms_init

Udma_init

DMA channel

open
EDMA3_DRV_Handle EDMA3_DRV_requestChannel

Udma_ChObj

Udma_ChHandle

Udma_ChPrms

UdmaChPrms_init

Udma_chOpen

DMA channel

setup

EDMA3_DRV_Handle

EDMA3_DRV_PaRAMRegs

EDMA3_DRV_clearErrorBits

EDMA3_DRV_getPaRAMPhyAddr

Udma_ChHandle

Udma_ChTxPrms

Udma_ChRxPrms

UdmaChTxPrms_init

UdmaChRxPrms_init

Udma_chConfigTx

Udma_chConfigRx

Udma_chEnable

DMA interrupt

register
Done by application based on the CPU on which the SW is running

Udma_DrvHandle

Udma_ChHandle

Udma_EventObj

Udma_EventHandle

Udma_EventPrms

UdmaEventPrms_init

Udma_eventRegister

DMA transfer

descriptor setup
Set PaRAM fields in EDMA MMRs Set TR Descriptor header and TR in memory

DMA trigger EDMA3_DRV_Handle EDMA3_DRV_enableTransfer Udma_ChHandle
Udma_ringQueueRaw

Udma_chGetFqRingHandle

DMA wait EDMA3_DRV_Handle
EDMA3_DRV_waitAndClearTcc

EDMA3_DRV_checkAndClearTcc
Udma_ChHandle

Udma_ringDequeueRaw

Udma_chGetFqRingHandle

DMA channel

close
EDMA3_DRV_Handle EDMA3_DRV_freeChannel

Udma_ChHandle

Udma_EventHandle

Udma_chDisable

Udma_eventUnRegister

Udma_chClose

DMA driver

deinit
EDMA3_DRV_Handle

EDMA3_DRV_close

EDMA3_DRV_delete
Udma_DrvHandle Udma_deinit

34 Migrating Applications from EDMA to UDMA using TI-RTOS

3.4 Using UDMA with Processor SDK RTOS Drivers

 If the usage of UDMA is intended for peripherals whose drivers are supported by PDK in
Processor SDK RTOS, the configuration/setup is limited to the initialization of UDMA driver. This
is because PDK drivers already configures and uses UDMA internally. The application would
only need to perform the UDMA driver initialization as described in 3.2.1 Steps to initialize and
deinitialize UDMA driver. Please refer to the driver unit level tests and/or examples present in
Processor SDK RTOS for sample usage.

4 Summary

This application note gave an overview of EDMA and UDMA from a HW and SW perspective. It
described and compared the programming model, SW API of EDMA and UDMA. Migrating
applications from EDMA to UDMA involves having a brief understanding the HW characteristics
of UDMA as compared to EDMA. An application writer should identify the sequence of EDMA
SW APIs used in his application during the various phases of driver usage like DMA driver
initialization, DMA channel open, DMA transfer setup, DMA transfer trigger and wait. Users can
then replace these with equivalent sequence of APIs from UDMA driver as described in this app
note. Finally refer to TRMs and API guide for more details about UDMA programming.

5 References

[1] AM5x Technical Reference Manual – EDMA / DMA controller chapter

[2] AM6x Technical Reference Manual – NavSS / DMA controller chapter

[3] AM5x Processor SDK RTOS User Guide – EDMA LLD section

[4] AM6x Processor SDK RTOS User Guide – UDMA LLD section

6 Revision History

Date Revision Changes

28 Jun 2018 1.00 First draft

1 Aug 2018 1.01 Updated Figure 2, Figure 3, section 2.2

	1 Introduction to EDMA and UDMA
	1.1 EDMA Overview
	1.2 NavSS and UDMA Overview
	1.2.1 NavSS Overview
	1.2.2 UDMA Overview
	1.2.3 Unified Transfer Controller (UTC) Overview
	1.2.4 Data Routing Unit (DRU) Overview
	1.2.5 PDMA Overview
	1.2.6 UDMA Block diagram : SW View

	1.3 Comparison of EDMA and UDMA

	2 DMA SW Programming Model
	2.1 EDMA SW Programming model
	2.1.1 Describing and Triggering DMA
	2.1.2 Interfacing DMA to Peripherals
	2.1.3 Resource Management
	2.1.4 Interrupt Handling and Synchronization

	2.2 UDMA SW Programming model
	2.2.1 Describing and Triggering DMA
	2.2.2 Interfacing DMA to Peripherals
	2.2.3 Resource Management
	2.2.4 Interrupt Handling and Synchronization

	2.3 Comparison of SW Programming Model in EDMA and UDMA
	2.3.1 Comparision of EDMA PaRAM vs UDMA TR

	3 DMA SW API for Applications
	3.1 EDMA SW API Overview
	3.1.1 Steps to initialize and deinitialize EDMA driver
	3.1.2 Steps to setup and use EDMA channels

	3.2 UDMA SW API Overview
	3.2.1 Steps to initialize and deinitialize UDMA driver
	3.2.2 Steps to setup and use UDMA channels
	3.2.2.1 Open a UDMA channel
	3.2.2.2 Setup UDMA channel for DMA transfer
	3.2.2.3 Program descriptor
	3.2.2.4 Trigger and wait for DMA transfer
	3.2.2.5 Close a UDMA channel

	3.3 Migration from EDMA LLD to UDMA LLD
	3.4 Using UDMA with Processor SDK RTOS Drivers

	4 Summary
	5 References
	6 Revision History

