
Unified DMA Controller (UDMA) Overview

K3 Processors
18th March 2019
V1.1

1

Agenda

• UDMA (NAVSS) Overview

– Features (Comparison with EDMA)

– Introduction to terminology: Channels, UTC, DRU, RA, IA, IR, Events, Proxy

– TR and TRPD Formats

• UDMA Software Architecture

– API Sequence

• UDMA Memcpy Example

– Code Walk Through

– UDMA LLD API Overview

• Back-up

– UDMA Hardware (In Details: Covered by Driver)

2

UDMA Features vs EDMA

3

Features UDMA EDMA

Address Range
64b source and destination DMA buffer address 32b source and destination DMA buffer

address

Transfer

Dimension

Two modes of operations

• Packet mode (Peripherals and scatter gather)

• Transfer Request (TR) mode (Memcpy, Video/Audio peripherals)

Up to four transfer dimensions in TR mode (DIM0, DIM1, DIM2, DIM3)

Three transfer dimensions (A, B, C)

Transfer

Synchronization

• DIM0 synchronized transfer: 1D

• DIM1 synchronized transfer: 2D

• DIM2 synchronized transfer: 3D

• DIM3 synchronized transfer: 4D

• A-synchronized transfers: one-dimension

serviced per event

• AB-synchronized transfers: two-

dimensions serviced per event

Buffer Indexing

Independent indexes and count on source and destination for DIM0/1/2/3 –

This gives flexibility to read/write differently based on memory layout (gives

optimized memory access)

Independent indexes on source and

destination. Same ACNT, BCNT, CCNT on

source and destination

Addressing

Mode

Increment or FIFO transfer addressing modes Increment or FIFO transfer addressing modes

Linking

TR Descriptor and ring accelerator allows multiple DMA transfers to be

sequenced on the same UDMA channel limited only by available system

memory space to store descriptors

Linking mechanism allows multiple DMAs to

be sequenced on the same EDMA Channel

limited by number of PaRAM entries

Chaining

Chaining allows multiple transfers to execute simultaneously on multiple

UDMA channels with one event. Chaining achieved using event steering

from event source to event sink on Event Transport Lane (ETL)

Chaining allows multiple transfers to execute

simultaneously on multiple EDMA channels

with one event

UDMA Features vs EDMA Contd…

4

Features UDMA EDMA

Events and

Interrupts

Event generation for the following

• Transfer completion, intermediate transfer completion

• Error conditions

Events can be converted to interrupts using Interrupt Aggregator and

Interrupt Router

Interrupt generation for the following:

• Transfer completion, intermediate transfer

completion

• Error conditions

Logical

Channels

• 140 TX channels (memory to peripheral) in J721E Main NAVSS

• 140 RX channels (peripheral to memory) in J721E Main NAVSS

• A pair of RX+TX channels is used for memory to memory DMA

NOTE: The number of RX and TX channel can change from SoC to SoC

and from Main NAVSS to MCU NAVSS. Refer to SoC TRM for exact

numbers

16 ~ 128 EDMA channels depending on the

SoC

Same channel can be used for RX or TX

Triggers

Synchronization based on

• Manual synchronization (CPU write to UDMA channel trigger register).

• Chain synchronization (completion of one transfer triggers another

transfer using events)

Synchronization based on

• Event from peripheral

• Manual synchronization (CPU write to event

set registers EDMA_TPCC_ESR and

EDMA_TPCC_ESRH)

• Chain synchronization (completion of one

transfer triggers another transfer)

Performance 32 DRU DMA channels for high throughput memory to memory DMA 8 QDMA channels

Parameter

Memory

DMA operation described by a packet descriptor or TR descriptor in system

memory. Number of descriptors only limited by amount of system memory

DMA operation described by a PaRAM set, up

to 512 PaRAM set in a EDMA controller

NAVSS Architecture (UDMA Focused) and
Terminology

5

• NAVSS (Navigator Subsystem)
– Container which groups together components which are involved

in providing DMA services in a SoC

• UDMA-C (Controller)
– Triggers request and receives response from UTC (Channel

controller), DRU, PDMA

• UTC (Unified Transfer Controller)
– Received Transfer Request from UDMA and performs actual

transfers (Transfer Controller)

• DRU (Data Routing Unit)
– Special UTC for high performance data movement esp meant for

C7x algorithms

• PDMA (Peripheral DMA)
– Located close to peripherals

• PSILSS (Packet Streaming Interface)
– Switch fabric: Pairing source/destination, routing PSI-L packets

• Key Features:
– Split DMA: Needs a paired TX and RX channel and transfer

request contains independent params for TX and RX

– Multiple Instances in an SOC: Main NAVSS and MCU NAVSS (*

varies from SOC to SOC)

Ethernet,

SA2UL, CSI

UART, SPI,

ADC, MCAN,

McASP

NAVSS Architecture (UDMA Focused) and
Terminology Contd…

6

• RA (Ring Accelerator)

– Mechanism to submit request to UDMA and get response back from UDMA

– Manages queue and state for producer and consumer to exchange data (Note: not limited to UDMA alone)

• Proxy

– Mechanism to access RA in an atomic way: Ex: 32-bit CPU like R5 can’t perform a 64-bit single atomic write to RA

• Events

– 16-bit unique global entity which can be generated by specific sources

– Can be used to trigger interrupt to CPU via IA/IR or to trigger other transfers

– Sources include: RA, DMA channel, Ring monitors, various error events

• IA (Interrupt Aggregator)

– With so many events possible in a system (up to 64K), it is not possible to route all events to the CPU interrupt (which are usually

limited and in ~100 range)

– Mechanism to aggregate events: Up to 64 event aggregation per VINT (Virtual interrupt: not yet an interrupt to the CPU, see IR)

– Supports polling mode as well without generating interrupts

• IR (Interrupt Router)

– M:N mux (cross bar) to generate interrupt to various CPU in the system
• where M is larger compared to N with sources from VINT, other NAVSS modules like Timer Manager

• N interrupts to the CPU (N usually in the range of 128 to MPU/GIC, 32 to each of R5FSS; specific value varies from SOC to SOC)

– There are multiple IR in the system which are identical in functionality – only source and destination differs. We will cover only NAVSS IR specifics in this

training

UDMA Setup/Flow – At a High Level

7

TRPD

TRPD Pointer 1

TRPD Pointer 2

TRPD Pointer 4

TRPD Pointer 3

TRPD Pointer 5

RA: FQ (Forward Queue)

UDMA TX Channel

UDMA RX Channel

TRPD Header

TR1

TR2

TR Responses

UDMA - C

BlockCopy

DRU

UTC

(VHWA)

PDMA

PSIL

Peripherals

PSILSS
Source/Sink

Via Proxy

(based on

 need)

TRPD Pointer 1

TRPD Pointer 2

TRPD Pointer 4

TRPD Pointer 3

TRPD Pointer 5

RA: CQ (Completion Queue)

Event

IA

IR Interrupt/

Callback

Abstracted by UDMA LLD

Abstracted

by UDMA

LLD

Transfer Request (TR) Record

Size of TR is variable from 16 bytes to 64

bytes.

Specified via TR Type in FLAGS field

TR Type Descriptrion

Type 0 1D (word0-3)

Type 1 2D (word0-4)

Type 2 3D (word0-6)

Type 3 4D (word0-8)

Type 5 Cache warm (word0-15)

(MSMC DRU ONLY)

Type 8 4D Block Copy (word0-15)

Type 9 4D Block Copy with

reformatting (word0-15)

(MSMC DRU ONLY)

Type 10 2D Block Copy (word0-15)

Type 11 2D Block Copy with

reformatting (word0-15)

(MSMC DRU ONLY)

Type 15 4D Block Copy with

reformatting and indirection

(word0-15)

(MSMC DRU ONLY) 8

Comparison of TR Record with EDMA PaRAM
UDMA TR EDMA PaRAM Remarks

ADDR SRC 64b address

DADDR DST 64b address

ICNT0 ACNT ICNT0 is 1st DIM for data @ ADDR

ICNT1 BCNT ICNT1 is 2nd DIM for data @ ADDR

ICNT2 CCNT ICNT2 is 3rd DIM for data @ ADDR

ICNT3 na ICNT3 is 4th DIM for data @ ADDR

DIM1 SBIDX 2nd DIM stride in bytes for data @ ADDR

DIM2 SCIDX 3rd DIM stride in bytes for data @ ADDR

DIM3 Na 4th DIM stride in bytes for data @ ADDR

DICNT0/1/2/3 Na ICNTx for DIMx for data @ DADDR

DDIM1/2/3 DBIDX / DCIDX /

na

DIMx Stride in bytes for data @ DADDR

FLAGS OPT TR Type, Trigger type, Event condition

na LINK No equivalent in TR. Linking done via Ring Accelerator.

na BCNTRLD No equivalent in TR.

FMTFLAGS na Data reformatting options (used by MSMC DRU)

9

EDMA Params

TRPD (TR Packet Descriptor) Layout

- Packet Info important fields

- Number of TR records

- Reload enable

- Loop to index “IDX” within TR

records

- TR Record Size

- Packet Return Queue (CQ RA)

- TR Response

- Status of TR – no error, transfer

error, aborted

- CMDID from TR.FLAGS – helps

associate TR response to TR

10

TRPD

TRPD Header

TR1

TR2

TR Responses

UDMA and Peripherals

11

Peripheral DMA Type DMA descriptor Remarks

McSPI*

PDMA + UDMA-P

HOST Descriptor

UART* HOST Descriptor

MCAN** HOST Descriptor

McASP* TR Descriptor Special mode in PDMA for MCAN

ADC** TR Descriptor

CPSWx*

Native PSI + UDMA-P

HOST Descriptor

ICSSG* HOST Descriptor

SA2UL* HOST Descriptor

CSI2 TX / RX* TR Descriptor

VPAC / DMPAC* VPAC/DMPAC UTC + UDMA-P TR Descriptor UDMA-P only used to transfer TR

C7x/MMA** MSMC DRU + UDMA-P TR Descriptor UDMA-P only used to transfer TR

OSPI*

UDMA-P

HOST/TR Descriptor

UDMA-P used in block copy (memory to memory) mode.

Peripheral acts as memory mapped region
PCIe* HOST/TR Descriptor

TR Descriptor
CRC**

NOTE:

1. * Already supported/abstracted by TI RTOS drivers

2. ** CSL-FL based examples or DMA utils provided for DMA demonstration

3. DSS, GPU, D55xx encode/decode, VPE, USB, MMCSD, FlexRay, MLB, UFS have embedded DMA, i.e no UDMA/NavSS interaction

UDMA Driver: Dependencies and Features

12

UDMA

Customer
Application

Data Transfer

UART

McSPI

McASP

OSPI

CPSW2G

CPSW9G

ICSSG

MCAN

CRC

ADC

SA2UL

TIDL

Algorithms

CSI-RX

CSI-TX

VHWA (MSC,
DOF, SDE, NF,

VISS, LDC)

Dependent SW Modules

UDMA

TI-RTOS

Baremetal

AUTOSAR

Resource
Management

Event
Management

DMSC
Interaction

and
Abstraction

Low
overhead

runtime API

API for all
the DMA
modules

Multiple
Context

Handle for
FFI Support

Features

UDMA SW Architecture

13

13

UDMA Driver

Channel

PDMA

DRU Proxy

Flow Event

 Ring

IA

IR

R

M

API

SCICLIENT

DMSC

Running on

M3

Secure Proxy
CSL-FL

UDMA HW

Setup/Configuration (Firewalled based on DMSC board config)

Non-Run Time Config (NRT) Run Time Config (RT)

Channelized Firewall

UDMA LLD API Flow

14

14

UDMA Init

Channel Open

Channel Config

Event Registration

Ring Queue

Wait for Completion (Event CB)

Ring Dequeue

Channel Disable/Teardown

Channel Close

UDMA Deinit

Channel Enable/Pairing

Event Free

• RM init and static

partition across cores

• SW init; no HW

initialization
• Resource

Allocation: Channel,

FQ ring, CQ ring

• Ring configuration
• Channel parameters:

Priority, burst size,

channel type

• Interrupt registration

• Share IA, Polling,

Interrupt priority • PSIL Pairing (Split

DMA)

• Channel Enable

(Doesn’t start

transfer)

• Push /Queue TRPD

to FQ ring (This

starts transfer)

• Pop /DeQueue

TRPD from CQ ring

(This completes

transfer)

UdmaInitPrms_init(instId, &initPrms);

Udma_init(drvHandle, &initPrms);

UdmaChPrms_init(&chPrms, chType);

Udma_chOpen(drvHandle, chHandle, chType, &chPrms);

UdmaChTxPrms_init(&txPrms, chType);

Udma_chConfigTx(chHandle, &txPrms);

UdmaEventPrms_init(&eventPrms);

Udma_eventRegister(drvHandle, eventHandle, &eventPrms);

Udma_chEnable(chHandle);

Udma_ringQueueRaw(Udma_chGetFqRingHandle(chHandle), (uint64_t) trpdMem);

/* Wait for event */

Udma_ringDequeueRaw(Udma_chGetCqRingHandle(chHandle), &pDesc);

Udma_chDisable(chHandle, UDMA_DEFAULT_CH_DISABLE_TIMEOUT);

Udma_eventUnRegister(eventHandle);

Udma_chClose(chHandle);

Udma_deinit(drvHandle);

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly “as-is,” for informational purposes only, and without any warranty.

Use of this material is subject to TI’s , viewable at TI.com

Back-up (Advance users)

16

UDMA Setup

• Describe the DMA transfer

• Using Descriptors – HOST descriptors, TR

descriptors

• Submit the DMA transfer

• Using Proxy, RING Accelerator

• Execute the DMA transfer

• Using UDMA-P, PDMA, PSI

• Wait for DMA transfer completion

• Using Events, Interrupt Aggregator, Interrupt Router
17

HOST Descriptor (Used in peripherals)

- Useful to describe “packet”

like data structures

- Ex, networking packets

- Useful to describe scatter

gather data structures

18

HOST Descriptor

19

HOST Packet Descriptor HOST Buffer Descriptor

To use UDMA

20

• Describe the DMA transfer

• Using Descriptors – HOST descriptors, TR descriptors

• Submit the DMA transfer

• Using Proxy, RING Accelerator

• Execute the DMA transfer

• Using UDMA-P, PDMA, PSI

• Wait for DMA transfer completion

• Using Events, Interrupt Aggregator, Interrupt Router

RING Accelerator

21

• The Ring Accelerator implements a HW Queue
– Used to submit descriptors to UDMA-P

– Used to exchange arbitrary messages between
SW entities (i.e IPC)

• N independent RINGs are provided
– Ex, 1024 RINGs in J721E (Varies across SOC)

• Each queue is implemented as a circular buffer in
memory which is external to the RA

– Any size ring from 1 entry to 1M-1 entries is
supported

– Each element on the ring can be up to 256 bytes

– Contents of a ring element are as follows:
• The message data (can be an actual data value set or

a reference to a set of data)
• Optional credentials (priv, privid,secure,virtid)
• Optional message length

NOTE: Bottom “N” (equal to channel count) RING instance to UDMA-P

channel association is fixed

Pass By Reference RING mode

22

Pass By Value RING mode

23

PROXY
• The Proxy receives small CPU transactions to write or read parts

of messages (as CPU transactions cannot handle a single 64 byte
message), while accessing the RA in atomic message bursts to
simplify queuing

• For writes the Proxy stores the partial message as it is built in the
Buffer RAM

– When the message is completed (by writing the final message
byte) the Proxy sends the full burst to the RA

• For reads the Proxy reads the full message from the RA (upon
CPU initial read) into the Buffer RAM

– Then each CPU read will read from the buffer RAM message until
completed (by reading the final message byte)

• The Proxy IP is built to support N threads of execution and M size
messages

– Each thread maps to a CPU thread that can independently access
a message

– Each thread can store up to a single max sized message, M
bytes, in the Buffer RAM

– Each thread has a 64KB (MMU aligned) memory range to access
its window, with the offset determining which queue to access

• The Proxy IP will detect errors when thread access changes
rings/queues while in the middle of a message

– Once the proxy is in error, it will no longer send or receive
messages until the error status is cleared

- Used to indirectly access a RING.

- Allow use-case of multiple producer – single consumer

- Typically one proxy used per CPU or per VM

- Ex, 64 proxies in J721E

24

To use UDMA

• Describe the DMA transfer

• Using Descriptors – HOST descriptors, TR descriptors

• Submit the DMA transfer

• Using Proxy, RING Accelerator

• Execute the DMA transfer

• Using UDMA-P, PDMA, PSI

• Wait for DMA transfer completion

• Using Events, Interrupt Aggregator, Interrupt Router

25

PSI

• PSI is a push-based interface for

routing packets of data between

peripherals

– Packets of data can be any generic

packet of work

• Features

– Multi-threaded

– Point-to-Point

– Non-blocking

– Highly Efficient

• Single cycle arbitration

• Data transfers every cycle

– Easy to pipeline with no throughput

penalty

26

UDMA – PSI – PDMA System in K3

27

To use UDMA

• Describe the DMA transfer

• Using Descriptors – HOST descriptors, TR descriptors

• Submit the DMA transfer

• Using Proxy, RING Accelerator

• Execute the DMA transfer

• Using UDMA-P, PDMA, PSI

• Wait for DMA transfer completion

• Using Events, Interrupt Aggregator, Interrupt Router

28

Events and Interrupts

• Events provide information to indicate that a condition has asserted or de-

asserted

– Ex, TR complete event or TR ICNT1 complete event or RING not empty event or

peripheral FIFO threshold reached

• Events can be of two types

– Local events

• Each event is signaled on a dedicated pin in the PDMA or UTC

• Local events are typically used between peripherals and PDMA or UTC

– Global events

• Signaled as message on Event Transport Lanes (ETL)

• Events in are not the same as interrupts !!!

– Interrupt Aggregator (IA) used to convert event to interrupt for SW notification
29

Global Events

• Global Event represented as 16b index, i.e there can be 64K distinct events

– The index value is generated using a direct lookup table which is controlled by SW.

– When an IP block needs to generate a global event it provides the ability to set the index value

– Once set, the index becomes the destination address to which the event is to be sent

– All event sinks in the system are mapped into a unified event map which contains up to 64K

different destination slots.

• Example,

– DMA channel chaining can be implemented using events

• In TR.FLAGS.EVENT_SIZE set the condition for generating an event, TR complete, ICNT0/1/2 complete

• In UDMAP.TXCHAN[a].TOES = CHAINED_CHANNEL_B_EVENT_ID

– Specifies the event to generate (or indirectly channel to trigger) when event is generated

30

Interrupt Aggregator (IA) - Global Event to
Interrupt Mapping
• For each received event, the IA performs a lookup into an interrupt

mapping table which specifies:

– Interrupt Status Register Number (regnum)

– Interrupt Status Bit Number (bitnum)

• For each up event which is received, the IA will set bit ‘bitnum’ in ISR

‘regnum’

• For each down event which is received, the IA will clear bit ‘bitnum’ in

ISR ‘regnum’

• Provides an active high level sensitive virtual interrupt line for each

ISR which is asserted anytime any enabled bit is set in the ISR

31

Interrupt Router (IR)

32

• Interrupt Router is a M to N mux

• Virtual Interrupt from IA + interrupts for other sources within NavSS example MailBox, feed as input to
Interrupt router

• N interrupts from IR appear at NavSS boundary and feed GIC (A72) or CLEC (C7x) or VIM (R5F)

32

Putting it all together …

33

System and SW View
(DMA and Interrupt)

34

INTR_AGGR1

PSI Switch (NavSS)

UDMA-P

TR over PSI

Data over

VBUS.M Or

VBUS.C

Data over PSI
Data over

VBUS.P

RINGACC

Proxy

ICSS-G

To DDR / MSMC

DRU

To MCU NavSS PSI

Switch

SA2UL PDMA1 PDMA0
ICSS-G

ICSS-G

McSPI UART McASP

INTR_ROUTER

TR or Host Desc Q

/ DQ

CPU or SW

RING

MODE

MSG

MODE

NavSS

Outside

NavSS

TIMER_MGR0

TIMER_MGR1

INTR_AGGR2

INTR_AGGR0

Events

over ETL

To SoC Top Level

Interrupts

TR or Host

Desc

1

1

2

3

4

5

6

7
8

9

10

1

2

3

4

5

6

7

Config Step

Control Flow

8

