TIOVX User Guide
vx_tutorial_graph_image_gradients_pytiovx_uc.py
Go to the documentation of this file.
1 #
2 # Copyright (c) 2017 Texas Instruments Incorporated
3 #
4 # All rights reserved not granted herein.
5 #
6 # Limited License.
7 #
8 # Texas Instruments Incorporated grants a world-wide, royalty-free, non-exclusive
9 # license under copyrights and patents it now or hereafter owns or controls to make,
10 # have made, use, import, offer to sell and sell ("Utilize") this software subject to the
11 # terms herein. With respect to the foregoing patent license, such license is granted
12 # solely to the extent that any such patent is necessary to Utilize the software alone.
13 # The patent license shall not apply to any combinations which include this software,
14 # other than combinations with devices manufactured by or for TI ("TI Devices").
15 # No hardware patent is licensed hereunder.
16 #
17 # Redistributions must preserve existing copyright notices and reproduce this license
18 # (including the above copyright notice and the disclaimer and (if applicable) source
19 # code license limitations below) in the documentation and/or other materials provided
20 # with the distribution
21 #
22 # Redistribution and use in binary form, without modification, are permitted provided
23 # that the following conditions are met:
24 #
25 # No reverse engineering, decompilation, or disassembly of this software is
26 # permitted with respect to any software provided in binary form.
27 #
28 # any redistribution and use are licensed by TI for use only with TI Devices.
29 #
30 # Nothing shall obligate TI to provide you with source code for the software
31 # licensed and provided to you in object code.
32 #
33 # If software source code is provided to you, modification and redistribution of the
34 # source code are permitted provided that the following conditions are met:
35 #
36 # any redistribution and use of the source code, including any resulting derivative
37 # works, are licensed by TI for use only with TI Devices.
38 #
39 # any redistribution and use of any object code compiled from the source code
40 # and any resulting derivative works, are licensed by TI for use only with TI Devices.
41 #
42 # Neither the name of Texas Instruments Incorporated nor the names of its suppliers
43 #
44 # may be used to endorse or promote products derived from this software without
45 # specific prior written permission.
46 #
47 # DISCLAIMER.
48 #
49 # THIS SOFTWARE IS PROVIDED BY TI AND TI'S LICENSORS "AS IS" AND ANY EXPRESS
50 # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 # IN NO EVENT SHALL TI AND TI'S LICENSORS BE LIABLE FOR ANY DIRECT, INDIRECT,
53 # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
54 # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
56 # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
57 # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
58 # OF THE POSSIBILITY OF SUCH DAMAGE.
59 #
60 #
61 
62 
63 
99 
100 from tiovx import *
101 
102 
103 def make_my_graph() :
104 
105  context = Context("vx_tutorial_graph_image_gradients_pytiovx_uc")
106 
107 
108  graph = Graph()
109 
110 
111  width = 640
112 
113  height = 480
114 
115 
116  in_image = Image(width, height, DfImage.U8, name="input")
117 
118 
119  grad_x = Image(width, height, DfImage.S16, name="grad_x")
120 
121 
122  grad_y = Image(width, height, DfImage.S16, name="grad_y")
123 
124 
125  magnitude = Image(width, height, DfImage.S16, name="magnitude")
126 
127 
128  phase = Image(width, height, DfImage.U8, name="phase")
129 
130 
131  grad_x_img = Image(width, height, DfImage.U8, name="grad_x_img")
132 
133 
134  grad_y_img = Image(width, height, DfImage.U8, name="grad_y_img")
135 
136 
137  magnitude_img = Image(width, height, DfImage.U8, name="magnitude_img")
138 
139 
140  shift = Scalar(Type.INT32, 0, name="shift")
141 
142 
143  graph.add ( NodeSobel3x3(in_image, grad_x, grad_y, target=Target.DSP1) )
144 
145 
146  graph.add ( NodeMagnitude(grad_x, grad_y, magnitude, target=Target.DSP2) )
147 
148 
149  graph.add ( NodePhase(grad_x, grad_y, phase, target=Target.DSP1) )
150 
151 
152  graph.add ( NodeConvertDepth(magnitude, magnitude_img, Policy.SATURATE, shift, target=Target.DSP2) )
153 
154 
155  graph.add ( NodeConvertDepth(grad_x, grad_x_img, Policy.SATURATE, shift, target=Target.DSP2) )
156 
157 
158  graph.add ( NodeConvertDepth(grad_y, grad_y_img, Policy.SATURATE, shift, target=Target.DSP1) )
159 
160 
161  context.add ( graph )
162 
163 
164  ExportImage(context).export()
165 
166  ExportCode(context).export()
167 
168 make_my_graph()