module ti.sysbios.family.arm.v7r.vim.Hwi

Hardware Interrupt Support Module

This Hwi module provides Hercules VIM specific implementations of the APIs defined in IHwi. [ more ... ]
C synopsis target-domain sourced in ti/sysbios/family/arm/v7r/vim/Hwi.xdc
#include <ti/sysbios/family/arm/v7r/vim/Hwi.h>
Functions
Void
Void
Void
UInt 
UInt 
Void
Void 
Void 
Functions common to all IHwi modules
Void 
macro UInt 
UInt 
macro UInt 
UInt 
Bool 
Ptr 
Bool 
Void 
macro Void 
Void 
Void 
Void 
Void 
Functions common to all target instances
Functions common to all target modules
Typedefs
typedef Void 
typedef Hwi_Object *
typedef struct
typedef UArg 
typedef enum
typedef struct
typedef struct
typedef struct
typedef struct
typedef enum
typedef Void 
Constants
extern const Assert_Id 
extern const Ptr 
extern const Ptr 
extern const Bool 
extern const Bool 
extern const Bool 
extern const Bool 
extern const Error_Id 
extern const Error_Id 
extern const Error_Id 
extern const Error_Id 
extern const Ptr 
extern const Ptr 
extern const Log_Event 
extern const Log_Event 
extern const UInt 
 
DETAILS
This Hwi module provides Hercules VIM specific implementations of the APIs defined in IHwi.
Additional ARM device-specific APIs are also provided.
MINIMAL LATENCY INTERRUPTS
For applications requiring extremely low interrupt latency, this Hwi module allows the user to create FIQ interrupts that bypass the SYS/BIOS interrupt dispatcher. Though not a precisely correct classification, these interrupts are referred to as "Zero latency" interrupts.
"FIQ" aka "Zero latency" interrupts can be created by setting the Hwi_Param type to Hwi_Type_FIQ. FIQ interrupts offer low interrupt latency as they do not have to pass through the regular SYS/BIOS interrupt dispatcher and are always enabled. When auto nesting is enabled and masking option ALL or LOWER is used, some or all of the VIM interrupt channels will be disabled while the interrupt is being serviced. However, none of the channels corresponding to "Zero latency" interrupts are disabled (masked).
The ISR handler function for a "Zero latency" interrupt must use the "interrupt" keyword in the function definition and should have no parameters. Using the "interrupt" keyword will ensure that the necessary registers are saved on entry into the interrupt routine and are restored upon exit from the interrupt routine.
Since the function pointer passed to Hwi_create()/Hwi_construct() has a different function signature (i.e. it accepts an argument), the "Zero latency" function must be type-casted to Hwi_FuncPtr type before being passed to Hwi_create()/Hwi_construct() in order to avoid any compiler warnings.
Unlike regular IRQ interrupts, FIQ interrupts do not run on the System stack but on their own FIQ stack. The stack pointer, size and section name for the FIQ stack can be set using the fiqStack, fiqStackSize and fiqStackSection module wide configuration params.
(Constraints of using "FIQ" aka "Zero latency" interrupts) Interrupts configured to bypass the dispatcher are not allowed to call ANY SYS/BIOS APIs that effect thread scheduling. Examples of API that should no be invoked are:
Swi_post(),
Semaphore_post(),
Event_post(),
Task_yield()
Here's an example showing how to create a Hwi of FIQ type:
  *.cfg:
  var Hwi = xdc.useModule('ti.sysbios.family.arm.v7r.vim.Hwi');
  Hwi.fiqStackSize = 2048;
  Hwi.fiqStackSection = ".myFiqStack"
  Program.sectMap[".myFiqStack"] = "RAM";

  *.c:
  #include <xdc/std.h>
  #include <xdc/runtime/System.h>

  #include <ti/sysbios/BIOS.h>
  #include <ti/sysbios/family/arm/v7r/vim/Hwi.h>

  #include <xdc/cfg/global.h>

  Void interrupt myIsrFIQ()
  {
      ...
  }

  Void main(Void)
  {
      Hwi_Params hwiParams;

      Hwi_Params_init(&hwiParams);
      hwiParams.type = Hwi_Type_FIQ;
      Hwi_create(INT_NUM_FIQ, (Hwi_FuncPtr)myIsrFIQ, &hwiParams, NULL);
      ...

      BIOS_start();
  }
(Non-dispatched interrupts) Cortex-R5 supports hardware vectored IRQ interrupts (i.e. interrupts are automatically dispatched to ISR). In order to leverage this feature for a given IRQ interrupt, the SYS/BIOS Hwi dispatcher needs to be bypassed for the particular interrupt. The Hwi params contain a useDispatcher param that can be used for this purpose.
When useDispatcher Hwi param is set to false, the Hwi function's address is written to the hardware interrupt vector table (VIM RAM). After an IRQ interrupt is received by the CPU, the CPU reads the address of the ISR directly from the VIM RAM and jumps to the function (See useDispatcher for more info).
INTERRUPT CHANNEL CONFIGURATION
Each VIM interrupt request (source) can be mapped to any of the interrupt channels (same as intNums). Lower numbered channels in each FIQ and IRQ have higher priority. Therefore, channel mapping provides a mechanism for prioritizing the interrupt requests.
Additionally, it is possible to configure a channel interrupt as a wakeup interrupt so it can bring the core out of low power mode (LPM).
This module has a Hwi.configChannelMeta() function that can be invoked from the cfg script to statically (at build time) change the channel mapping and wakeup functionality of a channel interrupt.
By default, all interrupt request sources are direct mapped to channels (i.e. interrupt request N is mapped to channel N) and wakeup feature is enabled for all interrupts.
Here's an example showing how to use this function:
  *.cfg:
  var Hwi = xdc.useModule('ti.sysbios.family.arm.v7r.vim.Hwi');

  // Map interrupt request line 86 to channel 2 (i.e. intNum 2) and disable
  // wakeup feature
  Hwi.configChannelMeta(2, 86, false);
MORE HWI EXAMPLES
Here's an example showing how to construct a Hwi at runtime:
  *.c:
  #include <ti/sysbios/family/arm/v7r/vim/Hwi.h>

  Hwi_Struct hwiStruct;

  Void myIsrIRQ(UArg arg)
  {
      ...
  }

  Void main(Void)
  {
      Hwi_Params hwiParams;

      Hwi_Params_init(&hwiParams);
      Hwi_construct(&hwiStruct, INT_NUM_IRQ, myIsrIRQ, &hwiParams, NULL);
      ...
      BIOS_start();
  }

Calling Context

Function Hwi Swi Task Main Startup
clearInterrupt Y Y Y Y Y
create N N Y Y N
disable Y Y Y Y Y
disableInterrupt Y Y Y Y N
disableIRQ Y Y Y Y Y
enable Y Y Y N N
enableInterrupt Y Y Y Y N
enableIRQ Y Y Y N N
getHandle Y Y Y Y N
Params_init Y Y Y Y Y
restore Y Y Y Y Y
restoreInterrupt Y Y Y Y Y
restoreIRQ Y Y Y Y Y
construct N N Y Y N
delete N N Y Y N
destruct N N Y Y N
getHookContext Y Y Y Y N
reconfig Y Y Y Y N
setFunc Y Y Y Y N
setHookContext Y Y Y Y N
Definitions:
  • Hwi: API is callable from a Hwi thread.
  • Swi: API is callable from a Swi thread.
  • Task: API is callable from a Task thread.
  • Main: API is callable during any of these phases:
    • In your module startup after this module is started (e.g. Hwi_Module_startupDone() returns TRUE).
    • During xdc.runtime.Startup.lastFxns.
    • During main().
    • During BIOS.startupFxns.
  • Startup: API is callable during any of these phases:
    • During xdc.runtime.Startup.firstFxns.
    • In your module startup before this module is started (e.g. Hwi_Module_startupDone() returns FALSE).
 
enum Hwi_MaskingOption

Shorthand interrupt masking options

C synopsis target-domain
typedef enum Hwi_MaskingOption {
    Hwi_MaskingOption_NONE,
    Hwi_MaskingOption_ALL,
    Hwi_MaskingOption_SELF,
    Hwi_MaskingOption_BITMASK,
    Hwi_MaskingOption_LOWER
} Hwi_MaskingOption;
 
VALUES
MaskingOption_NONE — No interrupts are disabled
MaskingOption_ALL — All interrupts are disabled
MaskingOption_SELF — Only this interrupt is disabled
MaskingOption_BITMASK — User supplies interrupt enable masks
MaskingOption_LOWER — All current and lower priority interrupts are disabled.
Only a few targets/devices truly support this masking option. For those that don't, this setting is treated the same as MaskingOption_SELF.
 
enum Hwi_Type

Interrupt type. IRQ or FIQ

C synopsis target-domain
typedef enum Hwi_Type {
    Hwi_Type_IRQ,
    // IRQ interrupt
    Hwi_Type_FIQ
    // FIQ interrupt
} Hwi_Type;
 
 
typedef Hwi_FuncPtr

Hwi create function type definition

C synopsis target-domain
typedef Void (*Hwi_FuncPtr)(UArg);
 
 
typedef Hwi_Irp

Interrupt Return Pointer

C synopsis target-domain
typedef UArg Hwi_Irp;
 
DETAILS
This is the address of the interrupted instruction.
 
typedef Hwi_VectorFuncPtr

Hwi vector function type definition

C synopsis target-domain
typedef Void (*Hwi_VectorFuncPtr)(Void);
 
 
struct Hwi_HookSet

Hwi hook set type definition

C synopsis target-domain
typedef struct Hwi_HookSet {
    Void (*registerFxn)(Int);
    Void (*createFxn)(IHwi_Handle,Error_Block*);
    Void (*beginFxn)(IHwi_Handle);
    Void (*endFxn)(IHwi_Handle);
    Void (*deleteFxn)(IHwi_Handle);
} Hwi_HookSet;
 
DETAILS
The functions that make up a hookSet have certain restrictions. They cannot call any Hwi instance functions other than Hwi_getHookContext() and Hwi_setHookContext(). For all practical purposes, they should treat the Hwi_Handle passed to these functions as an opaque handle.
 
struct Hwi_StackInfo

Structure contains Hwi stack usage info

C synopsis target-domain
typedef struct Hwi_StackInfo {
    SizeT hwiStackPeak;
    SizeT hwiStackSize;
    Ptr hwiStackBase;
} Hwi_StackInfo;
 
DETAILS
Used by getStackInfo() and viewGetStackInfo() functions
 
config Hwi_A_badChannelId  // module-wide

Assert raised when an invalid channelId is passed to Hwi_mapChannel() function

C synopsis target-domain
extern const Assert_Id Hwi_A_badChannelId;
 
 
config Hwi_E_alreadyDefined  // module-wide

Error raised when Hwi is already defined

C synopsis target-domain
extern const Error_Id Hwi_E_alreadyDefined;
 
 
config Hwi_E_badIntNum  // module-wide

Error raised if an attempt is made to create a Hwi with an interrupt number greater than Hwi_NUM_INTERRUPTS - 1

C synopsis target-domain
extern const Error_Id Hwi_E_badIntNum;
 
 
config Hwi_E_undefined  // module-wide

Error raised when an undefined interrupt has fired

C synopsis target-domain
extern const Error_Id Hwi_E_undefined;
 
 
config Hwi_E_unsupportedMaskingOption  // module-wide

Error raised when an unsupported Hwi.MaskingOption used

C synopsis target-domain
extern const Error_Id Hwi_E_unsupportedMaskingOption;
 
 
config Hwi_LD_end  // module-wide

Issued just after return from Hwi function (with interrupts disabled)

C synopsis target-domain
extern const Log_Event Hwi_LD_end;
 
 
config Hwi_LM_begin  // module-wide

Issued just prior to Hwi function invocation (with interrupts disabled)

C synopsis target-domain
extern const Log_Event Hwi_LM_begin;
 
 
config Hwi_NUM_INTERRUPTS  // module-wide
C synopsis target-domain
extern const UInt Hwi_NUM_INTERRUPTS;
 
 
config Hwi_core0VectorTableAddress  // module-wide

Determines the location of Core0's Interrupt Vector Table on a Dual-Core device. Default is device dependent

C synopsis target-domain
extern const Ptr Hwi_core0VectorTableAddress;
 
DETAILS
On Dual-Core devices, both Cortex-R5 cores share a common reset vector table. In order to allow the 2 cores to register their own exception handlers, each core generates its own clone of the reset vector table and initializes it with its own exception handler addresses. The core specific vector tables are placed at fixed addresses so that the exception handler functions called by the common reset vector table known each core's vector table address and are able to reference it once they detect which core the application is currently running on.
The address of Core0's vector table is determined by this parameter.
Here are the default Core0 vector table addresses for all supported Dual-Core devices:
   ----------------------------------------------------
  | Device name | Core0's default vector table address |
   ----------------------------------------------------
  | RM57D8xx    | 0x100                                |
   ----------------------------------------------------
NOTE
If changing Core0's vector table address, it is not necessary to rebuild Core1's application as it does not need to know the location of Core0's vector table.
 
config Hwi_core1VectorTableAddress  // module-wide

Determines the location of Core1's Interrupt Vector Table on a Dual-Core device. Default is device dependent

C synopsis target-domain
extern const Ptr Hwi_core1VectorTableAddress;
 
DETAILS
On Dual-Core devices, both Cortex-R5 cores share a common reset vector table. In order to allow the 2 cores to register their own exception handlers, each core generates its own clone of the reset vector table and initializes it with its own exception handler addresses. The core specific vector tables are placed at fixed addresses so that the exception handler functions called by the common reset vector table known each core's vector table address and are able to reference it once they detect which core the application is currently running on.
Core0's vector table is always placed at 0x100 while the address of Core1's vector table is determined by this parameter.
Here are the default Core1 vector table addresses for all supported Dual-Core devices:
   ----------------------------------------------------
  | Device name | Core1's default vector table address |
   ----------------------------------------------------
  | RM57D8xx    | 0x200000                             |
   ----------------------------------------------------
NOTE
If changing Core1's vector table address, it is important to rebuild Core0's application with the same change as Core0 owns the common reset vector table and the common exception handler functions need to know Core1's vector table address so they can determine the address of the handler function they need to jump to.
 
config Hwi_dispatcherAutoNestingSupport  // module-wide

Include interrupt nesting logic in interrupt dispatcher?

C synopsis target-domain
extern const Bool Hwi_dispatcherAutoNestingSupport;
 
DETAILS
Default is true.
This option provides the user with the ability to optimize interrupt dispatcher performance when support for interrupt nesting is not required.
Setting this parameter to false will disable the logic in the interrupt dispatcher that manipulates interrupt mask registers and enables and disables interrupts before and after invoking the user's Hwi function.
Set this parameter to false if you don't need interrupts enabled during the execution of your Hwi functions.
 
config Hwi_dispatcherIrpTrackingSupport  // module-wide

Controls whether the dispatcher retains the interrupted thread's return address

C synopsis target-domain
extern const Bool Hwi_dispatcherIrpTrackingSupport;
 
DETAILS
This option is enabled by default.
Setting this parameter to false will disable the logic in the interrupt dispatcher that keeps track of the interrupt's return address and provide a small savings in interrupt latency.
The application can get an interrupt's most recent return address using the getIrp API.
 
config Hwi_dispatcherSwiSupport  // module-wide

Include Swi scheduling logic in interrupt dispatcher?

C synopsis target-domain
extern const Bool Hwi_dispatcherSwiSupport;
 
DETAILS
Default is inherited from BIOS.swiEnabled, which is true by default.
This option provides the user with the ability to optimize interrupt dispatcher performance when it is known that Swis will not be posted from any of their Hwi threads.
WARNING
Setting this parameter to false will disable the logic in the interrupt dispatcher that invokes the Swi scheduler prior to returning from an interrupt. With this setting, Swis MUST NOT be posted from Hwi functions!
 
config Hwi_dispatcherTaskSupport  // module-wide

Include Task scheduling logic in interrupt dispatcher?

C synopsis target-domain
extern const Bool Hwi_dispatcherTaskSupport;
 
DETAILS
Default is inherited from BIOS.taskEnabled, which is true by default.
This option provides the user with the ability to optimize interrupt dispatcher performance when it is known that no Task scheduling APIs (ie Semaphore_post()) will be executed from any of their Hwi threads.
Setting this parameter to false will disable the logic in the interrupt dispatcher that invokes the Task scheduler prior to returning from an interrupt.
 
config Hwi_fiqStack  // module-wide

FIQ stack pointer. Default = null. (Indicates that stack is to be created using staticPlace())

C synopsis target-domain
extern const Ptr Hwi_fiqStack;
 
 
config Hwi_irqStack  // module-wide

Non dispatched IRQ stack pointer. Default = null. (Indicates that stack is to be created using staticPlace())

C synopsis target-domain
extern const Ptr Hwi_irqStack;
 
 
Hwi_clearInterrupt()  // module-wide

Clear a specific interrupt

C synopsis target-domain
Void Hwi_clearInterrupt(UInt intNum);
 
ARGUMENTS
intNum — interrupt number to clear
DETAILS
Clears a specific interrupt's pending status. The implementation is family-specific.
 
Hwi_disable()  // module-wide

Globally disable interrupts

C synopsis target-domain
macro UInt Hwi_disable();
 
RETURNS
opaque key for use by Hwi_restore()
DETAILS
Hwi_disable globally disables hardware interrupts and returns an opaque key indicating whether interrupts were globally enabled or disabled on entry to Hwi_disable(). The actual value of the key is target/device specific and is meant to be passed to Hwi_restore().
Call Hwi_disable before a portion of a function that needs to run without interruption. When critical processing is complete, call Hwi_restore or Hwi_enable to reenable hardware interrupts.
Servicing of interrupts that occur while interrupts are disabled is postponed until interrupts are reenabled. However, if the same type of interrupt occurs several times while interrupts are disabled, the interrupt's function is executed only once when interrupts are reenabled.
A context switch can occur when calling Hwi_enable or Hwi_restore if an enabled interrupt occurred while interrupts are disabled.
Hwi_disable may be called from main(). However, since Hwi interrupts are already disabled in main(), such a call has no effect.
CONSTRAINTS
If a Task switching API such as Semaphore_pend(), Semaphore_post(), Task_sleep(), or Task_yield() is invoked which results in a context switch while interrupts are disabled, an embedded call to Hwi_enable occurs on the way to the new thread context which unconditionally re-enables interrupts. Interrupts will remain enabled until a subsequent Hwi_disable invocation.
Swis always run with interrupts enabled. See Swi_post() for a discussion Swis and interrupts.
 
Hwi_disableIRQ()  // module-wide

Disable IRQ interrupts

C synopsis target-domain
UInt Hwi_disableIRQ();
 
RETURNS
previous IRQ interrupt enable/disable state
 
Hwi_disableInterrupt()  // module-wide

Disable a specific interrupt

C synopsis target-domain
UInt Hwi_disableInterrupt(UInt intNum);
 
ARGUMENTS
intNum — interrupt number to disable
RETURNS
key to restore previous enable/disable state
DETAILS
Disable a specific interrupt identified by an interrupt number.
 
Hwi_enable()  // module-wide

Globally enable interrupts

C synopsis target-domain
macro UInt Hwi_enable();
 
RETURNS
opaque key for use by Hwi_restore()
DETAILS
Hwi_enable globally enables hardware interrupts and returns an opaque key indicating whether interrupts were globally enabled or disabled on entry to Hwi_enable(). The actual value of the key is target/device specific and is meant to be passed to Hwi_restore().
This function is called as part of SYS/BIOS Startup_POST_APP_MAIN phase.
Hardware interrupts are enabled unless a call to Hwi_disable disables them.
Servicing of interrupts that occur while interrupts are disabled is postponed until interrupts are reenabled. However, if the same type of interrupt occurs several times while interrupts are disabled, the interrupt's function is executed only once when interrupts are reenabled.
A context switch can occur when calling Hwi_enable or Hwi_restore if an enabled interrupt occurred while interrupts are disabled.
Any call to Hwi_enable enables interrupts, even if Hwi_disable has been called several times.
Hwi_enable must not be called from main().
 
Hwi_enableIRQ()  // module-wide

Enable IRQ interrupts

C synopsis target-domain
UInt Hwi_enableIRQ();
 
ARGUMENTS
key — enable/disable state to restore
 
Hwi_enableInterrupt()  // module-wide

Enable a specific interrupt

C synopsis target-domain
UInt Hwi_enableInterrupt(UInt intNum);
 
ARGUMENTS
intNum — interrupt number to enable
RETURNS
key to restore previous enable/disable state
DETAILS
Enables a specific interrupt identified by an interrupt number.
 
Hwi_getCoreStackInfo()  // module-wide

Get Hwi stack usage Info for the specified coreId

C synopsis target-domain
Bool Hwi_getCoreStackInfo(IHwi_StackInfo *stkInfo, Bool computeStackDepth, UInt coreId);
 
ARGUMENTS
stkInfo — pointer to structure of type StackInfo
computeStackDepth — decides whether to compute stack depth
coreId — core whose stack info needs to be retrieved
RETURNS
boolean to indicate a stack overflow
DETAILS
getCoreStackInfo returns the Hwi stack usage info for the specified coreId to its calling function by filling stack base address, stack size and stack peak fields in the StackInfo structure.
This function should be used only in applications built with ti.sysbios.BIOS.smpEnabled set to true.
getCoreStackInfo accepts three arguments, a pointer to a structure of type StackInfo, a boolean and a coreId. If the boolean is set to true, the function computes the stack depth and fills the stack peak field in the StackInfo structure. If a stack overflow is detected, the stack depth is not computed. If the boolean is set to false, the function only checks for a stack overflow.
The isr stack is always checked for an overflow and a boolean is returned to indicate whether an overflow occured.
Below is an example of calling getCoreStackInfo() API:
  #include <ti/sysbios/BIOS.h>
  #include <ti/sysbios/hal/Hwi.h>
  #include <ti/sysbios/hal/Core.h>
  #include <ti/sysbios/knl/Task.h>

  ...

  Void idleTask()
  {
      UInt idx;
      Hwi_StackInfo stkInfo;
      Bool stackOverflow = FALSE;

      // Request stack depth for each core's Hwi stack and check for
      // overflow
      for (idx = 0; idx < Core_numCores; idx++) {
          stackOverflow = Hwi_getCoreStackInfo(&stkInfo, TRUE, idx);

          // Alternately, we can omit the request for stack depth and
          // request only the stack base and stack size (the check for
          // stack overflow is always performed):
          //
          // stackOverflow = Hwi_getCoreStackInfo(&stkInfo, FALSE, idx);

          if (stackOverflow) {
              // isr Stack Overflow detected
          }
      }
  }

  Int main(Int argc, char* argv[])
  {
      ...
      BIOS_start();
      return (0);
  }
 
Hwi_getHandle()  // module-wide

Returns pointer to Hwi instance object

C synopsis target-domain
Hwi_Object *Hwi_getHandle(UInt intNum);
 
ARGUMENTS
intNum — interrupt number
 
Hwi_getStackInfo()  // module-wide

Get Hwi stack usage Info

C synopsis target-domain
Bool Hwi_getStackInfo(IHwi_StackInfo *stkInfo, Bool computeStackDepth);
 
ARGUMENTS
stkInfo — pointer to structure of type StackInfo
computeStackDepth — decides whether to compute stack depth
RETURNS
boolean to indicate a stack overflow
DETAILS
getStackInfo returns the Hwi stack usage info to its calling function by filling stack base address, stack size and stack peak fields in the StackInfo structure.
getStackInfo accepts two arguments, a pointer to a structure of type StackInfo and a boolean. If the boolean is set to true, the function computes the stack depth and fills the stack peak field in the StackInfo structure. If a stack overflow is detected, the stack depth is not computed. If the boolean is set to false, the function only checks for a stack overflow.
The isr stack is always checked for an overflow and a boolean is returned to indicate whether an overflow occured.
Below is an example of calling getStackInfo() API:
  #include <ti/sysbios/BIOS.h>
  #include <ti/sysbios/hal/Hwi.h>
  #include <ti/sysbios/knl/Swi.h>
  #include <ti/sysbios/knl/Task.h>

  Swi_Handle swi0;
  volatile Bool swiStackOverflow = FALSE;

  Void swi0Fxn(UArg arg1, UArg arg2)
  {
      Hwi_StackInfo stkInfo;

      // Request stack depth
      swiStackOverflow = Hwi_getStackInfo(&stkInfo, TRUE);
 
      // Alternately, we can omit the request for stack depth and 
      // request only the stack base and stack size (the check for
      // stack overflow is always performed):
      //
      // swiStackOverflow = Hwi_getStackInfo(&stkInfo, FALSE);

      if (swiStackOverflow) {
          // isr Stack Overflow detected
      }
  }

  Void idleTask()
  {
      Swi_post(swi0);
  }

  Int main(Int argc, char* argv[])
  {
      swi0 = Swi_create(swi0Fxn, NULL, NULL);

      BIOS_start();
      return (0);
  }
 
Hwi_post()  // module-wide

Generate an interrupt for test purposes

C synopsis target-domain
Void Hwi_post(UInt intNum);
 
ARGUMENTS
intNum — ID of interrupt to generate
 
Hwi_restore()  // module-wide

Globally restore interrupts

C synopsis target-domain
macro Void Hwi_restore(UInt key);
 
ARGUMENTS
key — enable/disable state to restore
DETAILS
Hwi_restore globally restores interrupts to the state determined by the key argument provided by a previous invocation of Hwi_disable.
A context switch may occur when calling Hwi_restore if Hwi_restore reenables interrupts and another Hwi occurred while interrupts were disabled.
Hwi_restore may be called from main(). However, since Hwi_enable cannot be called from main(), interrupts are always disabled in main(), and a call to Hwi_restore has no effect.
 
Hwi_restoreIRQ()  // module-wide

Restore IRQ interrupts

C synopsis target-domain
Void Hwi_restoreIRQ(UInt key);
 
ARGUMENTS
key — enable/disable state to restore
 
Hwi_restoreInterrupt()  // module-wide

Restore a specific interrupt's enabled/disabled state

C synopsis target-domain
Void Hwi_restoreInterrupt(UInt intNum, UInt key);
 
ARGUMENTS
intNum — interrupt number to restore
key — key returned from enableInt or disableInt
DETAILS
Restores a specific interrupt identified by an interrupt number. restoreInterrupt is generally used to restore an interrupt to its state before disableInterrupt or enableInterrupt was invoked
 
Hwi_startup()  // module-wide

Initially enable interrupts

C synopsis target-domain
Void Hwi_startup();
 
DETAILS
Called within BIOS_start
Module-Wide Built-Ins

C synopsis target-domain
Types_ModuleId Hwi_Module_id();
// Get this module's unique id
 
Bool Hwi_Module_startupDone();
// Test if this module has completed startup
 
IHeap_Handle Hwi_Module_heap();
// The heap from which this module allocates memory
 
Bool Hwi_Module_hasMask();
// Test whether this module has a diagnostics mask
 
Bits16 Hwi_Module_getMask();
// Returns the diagnostics mask for this module
 
Void Hwi_Module_setMask(Bits16 mask);
// Set the diagnostics mask for this module
Instance Object Types

C synopsis target-domain
typedef struct Hwi_Object Hwi_Object;
// Opaque internal representation of an instance object
 
typedef Hwi_Object *Hwi_Handle;
// Client reference to an instance object
 
typedef struct Hwi_Struct Hwi_Struct;
// Opaque client structure large enough to hold an instance object
 
Hwi_Handle Hwi_handle(Hwi_Struct *structP);
// Convert this instance structure pointer into an instance handle
 
Hwi_Struct *Hwi_struct(Hwi_Handle handle);
// Convert this instance handle into an instance structure pointer
Instance Config Parameters

C synopsis target-domain
typedef struct Hwi_Params {
// Instance config-params structure
    IInstance_Params *instance;
    // Common per-instance configs
    UArg arg;
    // ISR function argument. Default is 0
    Bool enableInt;
    // Enable this interrupt when object is created? Default is true
    Int eventId;
    // Interrupt event ID (Interrupt Selection Number)
    IHwi_MaskingOption maskSetting;
    // Default setting for this Hwi module is IHwi.MaskingOption_LOWER
    Int priority;
    // Interrupt priority
    Hwi_Type type;
    // Interrupt type (IRQ/FIQ. Default is IRQ
    Bool useDispatcher;
    // Use the SYS/BIOS Hwi dispatcher. Default is true
} Hwi_Params;
 
Void Hwi_Params_init(Hwi_Params *params);
// Initialize this config-params structure with supplier-specified defaults before instance creation
 
config Hwi_Params.arg  // instance

ISR function argument. Default is 0

C synopsis target-domain
struct Hwi_Params {
      ...
    UArg arg;
 
 
config Hwi_Params.enableInt  // instance

Enable this interrupt when object is created? Default is true

C synopsis target-domain
struct Hwi_Params {
      ...
    Bool enableInt;
 
 
config Hwi_Params.eventId  // instance

Interrupt event ID (Interrupt Selection Number)

C synopsis target-domain
struct Hwi_Params {
      ...
    Int eventId;
 
DETAILS
Default is -1. Not all targets/devices support this instance parameter. On those that don't, this parameter is ignored.
 
config Hwi_Params.maskSetting  // instance

Default setting for this Hwi module is IHwi.MaskingOption_LOWER

C synopsis target-domain
struct Hwi_Params {
      ...
    IHwi_MaskingOption maskSetting;
 
 
config Hwi_Params.priority  // instance

Interrupt priority

C synopsis target-domain
struct Hwi_Params {
      ...
    Int priority;
 
DETAILS
The default value of -1 is used as a flag to indicate the lowest (logical) device-specific priority value.
Not all targets/devices support this instance parameter. On those that don't, this parameter is ignored.
 
config Hwi_Params.type  // instance

Interrupt type (IRQ/FIQ. Default is IRQ

C synopsis target-domain
struct Hwi_Params {
      ...
    Hwi_Type type;
 
 
config Hwi_Params.useDispatcher  // instance

Use the SYS/BIOS Hwi dispatcher. Default is true

C synopsis target-domain
struct Hwi_Params {
      ...
    Bool useDispatcher;
 
DETAILS
This param can be set to false for IRQ interrupts to bypass the SYS/BIOS interrupt dispatcher. FIQ interrupts do not go through the dispatcher and therefore this param has no affect on FIQ interrupts.
Unlike dispatched IRQ interrupts, non-dispatched IRQ interrupts do not use the system stack. The stack pointer, stack size and stack section for the non-dispatched interrupts can be set using the irqStack, irqStackSize and irqStackSection module wise config params.
CONSTRAINTS
- Interrupts configured to bypass the dispatcher are not allowed to call ANY SYS/BIOS APIs that effect thread scheduling. Examples of API that should not be invoked are:
Swi_post(),
Semaphore_post(),
Event_post(),
Task_yield()
- Additionally, although the signature for a non-dispatched interrupt function is the same as that for a dispatched interrupt (see FuncPtr), no argument is actually passed to the non-dispatched ISR handler. - A non-dispatched interrupt function must use the "interrupt" keyword in the function definition in order to ensure that all the necessary registers are saved on exception entry and a special return instruction is used when returning from the interrupt routine.
Runtime Instance Creation

C synopsis target-domain
Hwi_Handle Hwi_create(Int intNum, IHwi_FuncPtr hwiFxn, const Hwi_Params *params, Error_Block *eb);
// Allocate and initialize a new instance object and return its handle
 
Void Hwi_construct(Hwi_Struct *structP, Int intNum, IHwi_FuncPtr hwiFxn, const Hwi_Params *params, Error_Block *eb);
// Initialize a new instance object inside the provided structure
ARGUMENTS
intNum — interrupt number
hwiFxn — pointer to ISR function
params — per-instance config params, or NULL to select default values (target-domain only)
eb — active error-handling block, or NULL to select default policy (target-domain only)
DETAILS
A Hwi dispatcher table entry is created and filled with the function specified by the fxn parameter and the attributes specified by the params parameter.
If params is NULL, the Hwi's dispatcher properties are assigned a default set of values. Otherwise, the following properties are specified by a structure of type Hwi_Params.
  • The arg element is a generic argument that is passed to the plugged function as its only parameter. The default value is 0.
  • The enableInt element determines whether the interrupt should be enabled in the IER by create.
  • The maskSetting element defines the dispatcherAutoNestingSupport behavior of the interrupt.
Hwi_create returns a pointer to the created Hwi object.
Instance Deletion

C synopsis target-domain
Void Hwi_delete(Hwi_Handle *handleP);
// Finalize and free this previously allocated instance object, setting the referenced handle to NULL
 
Void Hwi_destruct(Hwi_Struct *structP);
// Finalize the instance object inside the provided structure
 
Hwi_getFunc()  // instance

Get Hwi function and arg

C synopsis target-domain
IHwi_FuncPtr Hwi_getFunc(Hwi_Handle handle, UArg *arg);
 
ARGUMENTS
handle — handle of a previously-created Hwi instance object
arg — pointer for returning hwi's ISR function argument
RETURNS
hwi's ISR function
 
Hwi_getHookContext()  // instance

Get hook instance's context for a Hwi

C synopsis target-domain
Ptr Hwi_getHookContext(Hwi_Handle handle, Int id);
 
ARGUMENTS
handle — handle of a previously-created Hwi instance object
RETURNS
hook instance's context for hwi
 
Hwi_getIrp()  // instance

Get address of interrupted instruction

C synopsis target-domain
IHwi_Irp Hwi_getIrp(Hwi_Handle handle);
 
ARGUMENTS
handle — handle of a previously-created Hwi instance object
RETURNS
most current IRP of a Hwi
 
Hwi_reconfig()  // instance

Reconfigure a dispatched interrupt

C synopsis target-domain
Void Hwi_reconfig(Hwi_Handle handle, Hwi_FuncPtr fxn, Hwi_Params *params);
 
ARGUMENTS
handle — handle of a previously-created Hwi instance object
 
Hwi_setFunc()  // instance

Overwrite Hwi function and arg

C synopsis target-domain
Void Hwi_setFunc(Hwi_Handle handle, IHwi_FuncPtr fxn, UArg arg);
 
ARGUMENTS
handle — handle of a previously-created Hwi instance object
fxn — pointer to ISR function
arg — argument to ISR function
DETAILS
Replaces a Hwi object's hwiFxn function originally provided in create.
 
Hwi_setHookContext()  // instance

Set hook instance's context for a Hwi

C synopsis target-domain
Void Hwi_setHookContext(Hwi_Handle handle, Int id, Ptr hookContext);
 
ARGUMENTS
handle — handle of a previously-created Hwi instance object
id — hook instance's ID
hookContext — value to write to context
Instance Convertors

C synopsis target-domain
IHwi_Handle Hwi_Handle_upCast(Hwi_Handle handle);
// unconditionally move one level up the inheritance hierarchy
 
Hwi_Handle Hwi_Handle_downCast(IHwi_Handle handle);
// conditionally move one level down the inheritance hierarchy; NULL upon failure
Instance Built-Ins

C synopsis target-domain
Int Hwi_Object_count();
// The number of statically-created instance objects
 
Hwi_Handle Hwi_Object_get(Hwi_Object *array, Int i);
// The handle of the i-th statically-created instance object (array == NULL)
 
Hwi_Handle Hwi_Object_first();
// The handle of the first dynamically-created instance object, or NULL
 
Hwi_Handle Hwi_Object_next(Hwi_Handle handle);
// The handle of the next dynamically-created instance object, or NULL
 
IHeap_Handle Hwi_Object_heap();
// The heap used to allocate dynamically-created instance objects
 
Types_Label *Hwi_Handle_label(Hwi_Handle handle, Types_Label *buf);
// The label associated with this instance object
 
String Hwi_Handle_name(Hwi_Handle handle);
// The name of this instance object
 
Configuration settings sourced in ti/sysbios/family/arm/v7r/vim/Hwi.xdc
var Hwi = xdc.useModule('ti.sysbios.family.arm.v7r.vim.Hwi');
module-wide constants & types
        const Hwi.MaskingOption_NONE;
        const Hwi.MaskingOption_ALL;
        const Hwi.MaskingOption_SELF;
        const Hwi.MaskingOption_BITMASK;
        const Hwi.MaskingOption_LOWER;
 
        const Hwi.Type_IRQ// IRQ interrupt;
        const Hwi.Type_FIQ// FIQ interrupt;
 
        obj.registerFxn = Void(*)(Int)  ...
        obj.createFxn = Void(*)(IHwi.Handle,Error.Block*)  ...
        obj.beginFxn = Void(*)(IHwi.Handle)  ...
        obj.endFxn = Void(*)(IHwi.Handle)  ...
        obj.deleteFxn = Void(*)(IHwi.Handle)  ...
 
        obj.hwiStackPeak = SizeT  ...
        obj.hwiStackSize = SizeT  ...
        obj.hwiStackBase = Ptr  ...
module-wide config parameters
        msg: "A_badChannelId: ChannelId is either not re-mappable or invalid."
    };
        msg: "E_alreadyDefined: Hwi already defined: intr# %d"
    };
        msg: "E_badIntNum, intnum: %d is out of range"
    };
        msg: "E_undefined: Hwi undefined, intnum: %d"
    };
        msg: "E_unsupportedMaskingOption: Unsupported masking option passed."
    };
        mask: Diags.USER2,
        msg: "LD_end: hwi: 0x%x"
    };
        mask: Diags.USER1 | Diags.USER2,
        msg: "LM_begin: hwi: 0x%x, func: 0x%x, preThread: %d, intNum: %d, irp: 0x%x"
    };
    Hwi.NUM_INTERRUPTS//  = UInt undefined;
 
    Hwi.resetFunc// Reset Handler. Default is c_int00 = Void(*)(Void) undefined;
module-wide functions
per-instance config parameters
    var params = new Hwi.Params// Instance config-params object;
        params.arg// ISR function argument. Default is 0 = UArg 0;
        params.priority// Interrupt priority = Int -1;
per-instance creation
    var inst = Hwi.create// Create an instance-object(Int intNum, Void(*)(UArg) hwiFxn, params);
 
 
enum Hwi.MaskingOption

Shorthand interrupt masking options

Configuration settings
values of type Hwi.MaskingOption
    const Hwi.MaskingOption_NONE;
    const Hwi.MaskingOption_ALL;
    const Hwi.MaskingOption_SELF;
    const Hwi.MaskingOption_BITMASK;
    const Hwi.MaskingOption_LOWER;
 
VALUES
MaskingOption_NONE — No interrupts are disabled
MaskingOption_ALL — All interrupts are disabled
MaskingOption_SELF — Only this interrupt is disabled
MaskingOption_BITMASK — User supplies interrupt enable masks
MaskingOption_LOWER — All current and lower priority interrupts are disabled.
Only a few targets/devices truly support this masking option. For those that don't, this setting is treated the same as MaskingOption_SELF.
C SYNOPSIS
 
enum Hwi.Type

Interrupt type. IRQ or FIQ

Configuration settings
values of type Hwi.Type
    const Hwi.Type_IRQ;
    // IRQ interrupt
    const Hwi.Type_FIQ;
    // FIQ interrupt
 
C SYNOPSIS
 
struct Hwi.HookSet

Hwi hook set type definition

Configuration settings
var obj = new Hwi.HookSet;
 
    obj.registerFxn = Void(*)(Int)  ...
    obj.createFxn = Void(*)(IHwi.Handle,Error.Block*)  ...
    obj.beginFxn = Void(*)(IHwi.Handle)  ...
    obj.endFxn = Void(*)(IHwi.Handle)  ...
    obj.deleteFxn = Void(*)(IHwi.Handle)  ...
 
DETAILS
The functions that make up a hookSet have certain restrictions. They cannot call any Hwi instance functions other than Hwi_getHookContext() and Hwi_setHookContext(). For all practical purposes, they should treat the Hwi_Handle passed to these functions as an opaque handle.
C SYNOPSIS
 
struct Hwi.StackInfo

Structure contains Hwi stack usage info

Configuration settings
var obj = new Hwi.StackInfo;
 
    obj.hwiStackPeak = SizeT  ...
    obj.hwiStackSize = SizeT  ...
    obj.hwiStackBase = Ptr  ...
 
DETAILS
Used by getStackInfo() and viewGetStackInfo() functions
C SYNOPSIS
 
config Hwi.A_badChannelId  // module-wide

Assert raised when an invalid channelId is passed to Hwi_mapChannel() function

Configuration settings
Hwi.A_badChannelId = Assert.Desc {
    msg: "A_badChannelId: ChannelId is either not re-mappable or invalid."
};
 
C SYNOPSIS
 
config Hwi.E_alreadyDefined  // module-wide

Error raised when Hwi is already defined

Configuration settings
Hwi.E_alreadyDefined = Error.Desc {
    msg: "E_alreadyDefined: Hwi already defined: intr# %d"
};
 
C SYNOPSIS
 
config Hwi.E_badIntNum  // module-wide

Error raised if an attempt is made to create a Hwi with an interrupt number greater than Hwi_NUM_INTERRUPTS - 1

Configuration settings
Hwi.E_badIntNum = Error.Desc {
    msg: "E_badIntNum, intnum: %d is out of range"
};
 
C SYNOPSIS
 
config Hwi.E_undefined  // module-wide

Error raised when an undefined interrupt has fired

Configuration settings
Hwi.E_undefined = Error.Desc {
    msg: "E_undefined: Hwi undefined, intnum: %d"
};
 
C SYNOPSIS
 
config Hwi.E_unsupportedMaskingOption  // module-wide

Error raised when an unsupported Hwi.MaskingOption used

Configuration settings
Hwi.E_unsupportedMaskingOption = Error.Desc {
    msg: "E_unsupportedMaskingOption: Unsupported masking option passed."
};
 
C SYNOPSIS
 
config Hwi.LD_end  // module-wide

Issued just after return from Hwi function (with interrupts disabled)

Configuration settings
Hwi.LD_end = Log.EventDesc {
    mask: Diags.USER2,
    msg: "LD_end: hwi: 0x%x"
};
 
C SYNOPSIS
 
config Hwi.LM_begin  // module-wide

Issued just prior to Hwi function invocation (with interrupts disabled)

Configuration settings
Hwi.LM_begin = Log.EventDesc {
    mask: Diags.USER1 | Diags.USER2,
    msg: "LM_begin: hwi: 0x%x, func: 0x%x, preThread: %d, intNum: %d, irp: 0x%x"
};
 
C SYNOPSIS
 
config Hwi.NUM_INTERRUPTS  // module-wide
Configuration settings
Hwi.NUM_INTERRUPTS = UInt undefined;
 
C SYNOPSIS
 
config Hwi.core0VectorTableAddress  // module-wide

Determines the location of Core0's Interrupt Vector Table on a Dual-Core device. Default is device dependent

Configuration settings
Hwi.core0VectorTableAddress = Ptr undefined;
 
DETAILS
On Dual-Core devices, both Cortex-R5 cores share a common reset vector table. In order to allow the 2 cores to register their own exception handlers, each core generates its own clone of the reset vector table and initializes it with its own exception handler addresses. The core specific vector tables are placed at fixed addresses so that the exception handler functions called by the common reset vector table known each core's vector table address and are able to reference it once they detect which core the application is currently running on.
The address of Core0's vector table is determined by this parameter.
Here are the default Core0 vector table addresses for all supported Dual-Core devices:
   ----------------------------------------------------
  | Device name | Core0's default vector table address |
   ----------------------------------------------------
  | RM57D8xx    | 0x100                                |
   ----------------------------------------------------
NOTE
If changing Core0's vector table address, it is not necessary to rebuild Core1's application as it does not need to know the location of Core0's vector table.
C SYNOPSIS
 
config Hwi.core1VectorTableAddress  // module-wide

Determines the location of Core1's Interrupt Vector Table on a Dual-Core device. Default is device dependent

Configuration settings
Hwi.core1VectorTableAddress = Ptr undefined;
 
DETAILS
On Dual-Core devices, both Cortex-R5 cores share a common reset vector table. In order to allow the 2 cores to register their own exception handlers, each core generates its own clone of the reset vector table and initializes it with its own exception handler addresses. The core specific vector tables are placed at fixed addresses so that the exception handler functions called by the common reset vector table known each core's vector table address and are able to reference it once they detect which core the application is currently running on.
Core0's vector table is always placed at 0x100 while the address of Core1's vector table is determined by this parameter.
Here are the default Core1 vector table addresses for all supported Dual-Core devices:
   ----------------------------------------------------
  | Device name | Core1's default vector table address |
   ----------------------------------------------------
  | RM57D8xx    | 0x200000                             |
   ----------------------------------------------------
NOTE
If changing Core1's vector table address, it is important to rebuild Core0's application with the same change as Core0 owns the common reset vector table and the common exception handler functions need to know Core1's vector table address so they can determine the address of the handler function they need to jump to.
C SYNOPSIS
 
config Hwi.dispatcherAutoNestingSupport  // module-wide

Include interrupt nesting logic in interrupt dispatcher?

Configuration settings
Hwi.dispatcherAutoNestingSupport = Bool true;
 
DETAILS
Default is true.
This option provides the user with the ability to optimize interrupt dispatcher performance when support for interrupt nesting is not required.
Setting this parameter to false will disable the logic in the interrupt dispatcher that manipulates interrupt mask registers and enables and disables interrupts before and after invoking the user's Hwi function.
Set this parameter to false if you don't need interrupts enabled during the execution of your Hwi functions.
C SYNOPSIS
 
config Hwi.dispatcherIrpTrackingSupport  // module-wide

Controls whether the dispatcher retains the interrupted thread's return address

Configuration settings
Hwi.dispatcherIrpTrackingSupport = Bool true;
 
DETAILS
This option is enabled by default.
Setting this parameter to false will disable the logic in the interrupt dispatcher that keeps track of the interrupt's return address and provide a small savings in interrupt latency.
The application can get an interrupt's most recent return address using the getIrp API.
C SYNOPSIS
 
config Hwi.dispatcherSwiSupport  // module-wide

Include Swi scheduling logic in interrupt dispatcher?

Configuration settings
Hwi.dispatcherSwiSupport = Bool undefined;
 
DETAILS
Default is inherited from BIOS.swiEnabled, which is true by default.
This option provides the user with the ability to optimize interrupt dispatcher performance when it is known that Swis will not be posted from any of their Hwi threads.
WARNING
Setting this parameter to false will disable the logic in the interrupt dispatcher that invokes the Swi scheduler prior to returning from an interrupt. With this setting, Swis MUST NOT be posted from Hwi functions!
C SYNOPSIS
 
config Hwi.dispatcherTaskSupport  // module-wide

Include Task scheduling logic in interrupt dispatcher?

Configuration settings
Hwi.dispatcherTaskSupport = Bool undefined;
 
DETAILS
Default is inherited from BIOS.taskEnabled, which is true by default.
This option provides the user with the ability to optimize interrupt dispatcher performance when it is known that no Task scheduling APIs (ie Semaphore_post()) will be executed from any of their Hwi threads.
Setting this parameter to false will disable the logic in the interrupt dispatcher that invokes the Task scheduler prior to returning from an interrupt.
C SYNOPSIS
 
config Hwi.fiqStack  // module-wide

FIQ stack pointer. Default = null. (Indicates that stack is to be created using staticPlace())

Configuration settings
Hwi.fiqStack = Ptr null;
 
C SYNOPSIS
 
config Hwi.irqStack  // module-wide

Non dispatched IRQ stack pointer. Default = null. (Indicates that stack is to be created using staticPlace())

Configuration settings
Hwi.irqStack = Ptr null;
 
C SYNOPSIS
 
metaonly config Hwi.common$  // module-wide

Common module configuration parameters

Configuration settings
Hwi.common$ = Types.Common$ undefined;
 
DETAILS
All modules have this configuration parameter. Its name contains the '$' character to ensure it does not conflict with configuration parameters declared by the module. This allows new configuration parameters to be added in the future without any chance of breaking existing modules.
 
metaonly config Hwi.dataAbortFunc  // module-wide

Data abort exception handler. Default is set to an internal exception handler

Configuration settings
Hwi.dataAbortFunc = Void(*)(Void) undefined;
 
 
metaonly config Hwi.fiqStackSection  // module-wide

Memory section used for FIQ stack Default is null

Configuration settings
Hwi.fiqStackSection = String null;
 
 
metaonly config Hwi.fiqStackSize  // module-wide

FIQ stack size in MAUs. Default is 1024 bytes

Configuration settings
Hwi.fiqStackSize = SizeT 1024;
 
 
metaonly config Hwi.irqStackSection  // module-wide

Memory section used for non dispatched IRQ stack Default is null

Configuration settings
Hwi.irqStackSection = String null;
 
 
metaonly config Hwi.irqStackSize  // module-wide

Non dispatched IRQ stack size in MAUs. Default is 1024 bytes

Configuration settings
Hwi.irqStackSize = SizeT 1024;
 
 
metaonly config Hwi.prefetchAbortFunc  // module-wide

Prefetch abort exception handler. Default is set to an internal exception handler

Configuration settings
Hwi.prefetchAbortFunc = Void(*)(Void) undefined;
 
 
metaonly config Hwi.reservedFunc  // module-wide

Reserved exception handler. Default is set to an internal exception handler

Configuration settings
Hwi.reservedFunc = Void(*)(Void) undefined;
 
 
metaonly config Hwi.resetFunc  // module-wide

Reset Handler. Default is c_int00

Configuration settings
Hwi.resetFunc = Void(*)(Void) undefined;
 
 
metaonly config Hwi.swiFunc  // module-wide

SWI Handler. Default is internal SWI handler

Configuration settings
Hwi.swiFunc = Void(*)(Void) undefined;
 
 
metaonly config Hwi.undefinedInstFunc  // module-wide

Undefined instruction exception handler. Default is set to an internal exception handler

Configuration settings
Hwi.undefinedInstFunc = Void(*)(Void) undefined;
 
 
metaonly Hwi.addHookSet()  // module-wide

addHookSet is used in a config file to add a hook set (defined by struct HookSet)

Configuration settings
Hwi.addHookSet(IHwi.HookSet hook) returns Void
 
ARGUMENTS
hook — structure of type HookSet
DETAILS
HookSet structure elements may be omitted, in which case those elements will not exist.
 
metaonly Hwi.configChannelMeta()  // module-wide

Configure which VIM interrupt request this channel maps to and whether this channel's interrupt is a wakeup interrupt

Configuration settings
Hwi.configChannelMeta(UInt channelId, UInt intRequestId, Bool wakeupEnable) returns Void
 
ARGUMENTS
channelId — Channel number (intNum)
intRequestId — VIM Interrupt request (source) number
wakeupEnable — Enable wakeup interrupt functionality ?
DETAILS
Each VIM interrupt request (source) can be mapped to any of the interrupt channels. Lower numbered channels in each FIQ and IRQ have higher priority. Therefore, channel mapping provides a mechanism for prioritizing the interrupt requests.
A channel interrupt can also be configured to be a wakeup interrupt so it can bring the core out of low power mode (LPM).
Instance Config Parameters

Configuration settings
var params = new Hwi.Params;
// Instance config-params object
    params.arg = UArg 0;
    // ISR function argument. Default is 0
    params.enableInt = Bool true;
    // Enable this interrupt when object is created? Default is true
    params.eventId = Int -1;
    // Interrupt event ID (Interrupt Selection Number)
    params.maskSetting = IHwi.MaskingOption IHwi.MaskingOption_LOWER;
    // Default setting for this Hwi module is IHwi.MaskingOption_LOWER
    params.priority = Int -1;
    // Interrupt priority
    params.type = Hwi.Type Hwi.Type_IRQ;
    // Interrupt type (IRQ/FIQ. Default is IRQ
    params.useDispatcher = Bool true;
    // Use the SYS/BIOS Hwi dispatcher. Default is true
 
config Hwi.Params.arg  // instance

ISR function argument. Default is 0

Configuration settings
var params = new Hwi.Params;
  ...
params.arg = UArg 0;
 
C SYNOPSIS
 
config Hwi.Params.enableInt  // instance

Enable this interrupt when object is created? Default is true

Configuration settings
var params = new Hwi.Params;
  ...
params.enableInt = Bool true;
 
C SYNOPSIS
 
config Hwi.Params.eventId  // instance

Interrupt event ID (Interrupt Selection Number)

Configuration settings
var params = new Hwi.Params;
  ...
params.eventId = Int -1;
 
DETAILS
Default is -1. Not all targets/devices support this instance parameter. On those that don't, this parameter is ignored.
C SYNOPSIS
 
config Hwi.Params.maskSetting  // instance

Default setting for this Hwi module is IHwi.MaskingOption_LOWER

Configuration settings
var params = new Hwi.Params;
  ...
 
C SYNOPSIS
 
config Hwi.Params.priority  // instance

Interrupt priority

Configuration settings
var params = new Hwi.Params;
  ...
params.priority = Int -1;
 
DETAILS
The default value of -1 is used as a flag to indicate the lowest (logical) device-specific priority value.
Not all targets/devices support this instance parameter. On those that don't, this parameter is ignored.
C SYNOPSIS
 
config Hwi.Params.type  // instance

Interrupt type (IRQ/FIQ. Default is IRQ

Configuration settings
var params = new Hwi.Params;
  ...
params.type = Hwi.Type Hwi.Type_IRQ;
 
C SYNOPSIS
 
config Hwi.Params.useDispatcher  // instance

Use the SYS/BIOS Hwi dispatcher. Default is true

Configuration settings
var params = new Hwi.Params;
  ...
params.useDispatcher = Bool true;
 
DETAILS
This param can be set to false for IRQ interrupts to bypass the SYS/BIOS interrupt dispatcher. FIQ interrupts do not go through the dispatcher and therefore this param has no affect on FIQ interrupts.
Unlike dispatched IRQ interrupts, non-dispatched IRQ interrupts do not use the system stack. The stack pointer, stack size and stack section for the non-dispatched interrupts can be set using the irqStack, irqStackSize and irqStackSection module wise config params.
CONSTRAINTS
- Interrupts configured to bypass the dispatcher are not allowed to call ANY SYS/BIOS APIs that effect thread scheduling. Examples of API that should not be invoked are:
Swi_post(),
Semaphore_post(),
Event_post(),
Task_yield()
- Additionally, although the signature for a non-dispatched interrupt function is the same as that for a dispatched interrupt (see FuncPtr), no argument is actually passed to the non-dispatched ISR handler. - A non-dispatched interrupt function must use the "interrupt" keyword in the function definition in order to ensure that all the necessary registers are saved on exception entry and a special return instruction is used when returning from the interrupt routine.
C SYNOPSIS
Static Instance Creation

Configuration settings
var params = new Hwi.Params;
// Allocate instance config-params
params.config =   ...
// Assign individual configs
 
var inst = Hwi.create(Int intNum, Void(*)(UArg) hwiFxn, params);
// Create an instance-object
ARGUMENTS
intNum — interrupt number
hwiFxn — pointer to ISR function
params — per-instance config params, or NULL to select default values (target-domain only)
eb — active error-handling block, or NULL to select default policy (target-domain only)
DETAILS
A Hwi dispatcher table entry is created and filled with the function specified by the fxn parameter and the attributes specified by the params parameter.
If params is NULL, the Hwi's dispatcher properties are assigned a default set of values. Otherwise, the following properties are specified by a structure of type Hwi_Params.
  • The arg element is a generic argument that is passed to the plugged function as its only parameter. The default value is 0.
  • The enableInt element determines whether the interrupt should be enabled in the IER by create.
  • The maskSetting element defines the dispatcherAutoNestingSupport behavior of the interrupt.
Hwi_create returns a pointer to the created Hwi object.
generated on Fri, 10 Jun 2016 23:29:28 GMT