1    /* 
     2     *  Copyright (c) 2008 Texas Instruments. All rights reserved. 
     3     *  This program and the accompanying materials are made available under the 
     4     *  terms of the Eclipse Public License v1.0 and Eclipse Distribution License
     5     *  v. 1.0 which accompanies this distribution. The Eclipse Public License is
     6     *  available at http://www.eclipse.org/legal/epl-v10.html and the Eclipse
     7     *  Distribution License is available at 
     8     *  http://www.eclipse.org/org/documents/edl-v10.php.
     9     *
    10     *  Contributors:
    11     *      Texas Instruments - initial implementation
    12     * */
    13    /*
    14     *  ======== Log.xdc ========
    15     *
    16     */
    17    
    18    /*!
    19     *  ======== Log ========
    20     *  Event logging manager
    21     *
    22     *  RTSC modules and the application code generate `{@link #Event Log_Event}`
    23     *  events by calling the `Log` module's functions. The `Log` module then
    24     *  passes those events to an `{@link ILogger}` instance assigned to the event
    25     *  originating module, specified by that module's configuration parameter
    26     *  `common$.logger`. `ILogger` instances handle events, usually converting
    27     *  events to `{@link #EventRec Log_EventRec}` records prior to recording,
    28     *  transmitting, or displaying them.
    29     *
    30     *  All events generated by a target module are stored and displayed by an
    31     *  `ILogger`, for example, an instance of
    32     *  `{@link LoggerBuf xdc.runtime.LoggerBuf}` or
    33     *  `{@link LoggerSys xdc.runtime.LoggerSys}`. However at runtime, modules
    34     *  generate events through this module, rather than invoking directly their
    35     *  `ILogger`s. By doing so,  modules can be configured to use different
    36     *  `ILogger` implementations without any changes to their source code.
    37     *  
    38     *  A logger instance can accept `Log` events from any module, but a module
    39     *  can put `Log` events to only one logger instance. There can be one or
    40     *  more logger instances in a system. All `Log` calls that are not in a
    41     *  module are controlled by the module `{@link Main xdc.runtime.Main}`.
    42     *  For example, top-level application code or any existing sources that
    43     *  simply call the `Log` or `Assert` methods implicitly use the logger
    44     *  associated with the `Main` module.
    45     *
    46     *  The generation of a `Log` event is controlled by a module's diagnostics
    47     *  mask, which is described in details in `{@link Diags}`. Each `Log` event
    48     *  is associated with a mask. `Log` events are generated only when a
    49     *  particular bit is set in both the `Log` event mask
    50     *  and the module's diagnostics mask. For example, a `Log` event mask with
    51     *  the `{@link Diags#USER1 USER1}` bit set is generated only when the `USER1`
    52     *  bit is also set in the module's diagnostics mask.
    53     *
    54     *  There are two ways to generate `Log` events:
    55     *
    56     *  @p(blist)
    57     *  - `{@link #write8 LOG_write()}`, which is tailored for module writers
    58     *  and takes full advantage of the XDC configuration model. For example,
    59     *  the message string associated with the `Log` event need not be a part of
    60     *  the final application, significantly reducing the "footprint overhead"
    61     *  of embedding diagnostics in deployed systems. The `Log_write[0-8]()`
    62     *  functions allow up to 8 values to be passed to the logger. They expect
    63     *  the logger to handle any formatting. A `Log` event type allows you to
    64     *  specify the type of event.
    65     *  - `{@link #print6 LOG_print()}`, which is designed for arbitrary C code.
    66     *  The `Log_print[0-6]()` functions allow up to 6 values to be passed along
    67     *  with a printf-like format string to the logger. They handle printf-style
    68     *  formatting.
    69     *  @p
    70     *
    71     *  Both functions are controlled by the module's diagnostics mask. Their
    72     *  storage or output is defined by the logger that is assigned to the
    73     *  module that calls the `Log` methods or to the 
    74     *  `{@link Main xdc.runtime.Main}` module if the caller is not part of a
    75     *  module.
    76     *
    77     *  The `Log` function call sites are implemented in such a way that an
    78     *  optimizer can completely eliminate `Log` code from the program if the
    79     *  `Log` functions have been permanently disabled at configuration time. If
    80     *  the `Log` functions are permanently turned on at configuration time,
    81     *  then the optimizer can eliminate all runtime conditional checking and
    82     *  simply invoke the `Log` functions directly. Runtime checking is performed
    83     *  only when the `Log` functions are configured to be runtime modifiable.
    84     *
    85     *  @a(Examples)
    86     *  Example 1: The following example defines a `Log` event, uses that `Log`
    87     *  event in a module, and configures the program to generate the `Log`
    88     *  event. In this example, both `USER1` and `USER2` bits are set in the
    89     *  event mask. This means that if either bit is set in the module's
    90     *  diagnostics mask, then the `Log` event will be generated.
    91     *
    92     *  This is a part of the XDC specification file for the `Mod` module
    93     *  (Mod.xdc):
    94     *
    95     *  @p(code)
    96     *  import xdc.runtime.Diags;
    97     *  import xdc.runtime.Log;
    98     *
    99     *  config Log.Event L_someEvent = {
   100     *      mask: Diags.USER1 | Diags.USER2,
   101     *      msg: "my log event message, arg1: 0x%x, arg2: 0x%x"
   102     *  };
   103     *  @p
   104     *
   105     *  This is a part of the C code implementation of the Mod module:
   106     *
   107     *  @p(code)
   108     *  #include <xdc/runtime/Log.h>
   109     *  UInt x, y;
   110     *
   111     *  Log_write2(Mod_L_someEvent, (IArg)x, (IArg)y);
   112     *  @p
   113     *
   114     *  The following configuration script demonstrates how the application might
   115     *  control the `Log` statements embedded in the `Mod` module at configuration
   116     *  time. In this case, the configuration script arranges for the `Log`
   117     *  statements within the `Mod` module (shown above) to always generate events.
   118     *  Without these configuration statements, no `Log` events would be generated
   119     *  by this module.
   120     *
   121     *  This is part of the XDC configuration file for the application:
   122     *
   123     *  @p(code)
   124     *  var Diags = xdc.useModule('xdc.runtime.Diags');
   125     *  var Mod = xdc.useModule('my.pkg.Mod');
   126     *  Mod.common$.diags_USER1 = Diags.ALWAYS_ON;
   127     *  @p
   128     *
   129     *  @p(html)
   130     *  <hr />
   131     *  @p
   132     *
   133     *  Example 2: The following XDC configuration statements turn on enter
   134     *  and exit logging at configuration time for a module. Without any other
   135     *  changes in the runtime code, every time a module `Mod`'s function is 
   136     *  being called or exits, an event will be logged.
   137     *
   138     *  @p(code)
   139     *  var Diags = xdc.useModule('xdc.runtime.Diags');
   140     *  var Mod = xdc.useModule('my.pkg.Mod');
   141     *
   142     *  Mod.common$.diags_ENTER = Diags.ALWAYS_ON;
   143     *  Mod.common$.diags_EXIT = Diags.ALWAYS_ON;
   144     *  @p
   145     *
   146     *  @p(html)
   147     *  <hr />
   148     *  @p
   149     *
   150     *  Example 3: The following example configures a module to support enter and
   151     *  exit logging, but defers the actual activation and deactivation of the
   152     *  logging until runtime. See the `{@link Diags#setMask Diags_setMask()}`
   153     *  function for details on specifying the control string.
   154     *
   155     *  This is a part of the XDC configuration file for the application:
   156     *
   157     *  @p(code)
   158     *  var Diags = xdc.useModule('xdc.runtime.Diags');
   159     *  var Mod = xdc.useModule('my.pkg.Mod');
   160     *
   161     *  Mod.common$.diags_ENTER = Diags.RUNTIME_OFF;
   162     *  Mod.common$.diags_EXIT = Diags.RUNTIME_OFF;
   163     *  @p
   164     *
   165     *  This is a part of the C code for the application:
   166     *
   167     *  @p(code)
   168     *  // turn on enter and exit logging in the module
   169     *  Diags_setMask("my.pkg.Mod+EX");
   170     *
   171     *  // turn off enter and exit logging in the module
   172     *  Diags_setMask("my.pkg.Mod-EX");
   173     *  @p
   174     */
   175    
   176    @CustomHeader
   177    
   178    module Log {
   179    
   180        /*!
   181         *  ======== NUMARGS ========
   182         *  Maximum number of arguments supported in `Log` events.
   183         */
   184        const Int NUMARGS = 8;
   185    
   186        /*!
   187         *  ======== PRINTFID ========
   188         *  The `EventId` for `Log_print()` events
   189         */
   190        const EventId PRINTFID = 0;
   191        
   192        /*! 
   193         *  ======== EventDesc ========
   194         *  `Log` event descriptor
   195         *
   196         *  Each `Log` event is defined by a `Log` event descriptor.
   197         *
   198         *  The `mask` defines which bits in the module's diagnostics mask
   199         *  enable this `Log` event.  Events "posted" via `Log_write` are only
   200         *  written to the underlying logger if one of the mask's bits matches 
   201         *  the caller's module diagnostics settings (see
   202         *  `{@link xdc.runtime.Types#common$}`).
   203         *
   204         *  The `msg` defines a printf style format string that defines how to
   205         *  render the arguments passed along the event in a `Log_write` call.
   206         *  For a description of the allowable format strings see
   207         *  `{@link #print6}`.
   208         *
   209         *  @see #write8
   210         *  @see #print6
   211         */
   212        metaonly struct EventDesc {
   213            Diags.Mask  mask;   /*! event enable mask */
   214            String      msg;    /*! event "printf" message format string */
   215        };
   216    
   217        /*!
   218         *  ======== EventInfo ========
   219         *  @_nodoc
   220         */
   221        metaonly struct EventInfo {
   222            String text;
   223            String modName;
   224            String eventName;
   225            Int eventId;
   226            IArg arg[NUMARGS];
   227        };
   228    
   229        /*!
   230         *  ======== EventRec ========
   231         *  The target representation of a recorded event
   232         *
   233         *  This structure defines how events are recorded on the target.
   234         */
   235        struct EventRec {
   236            Types.Timestamp64 tstamp;   /*! time event was written */
   237            Bits32 serial;              /*! serial number of event */
   238            Types.Event evt;            /*! target encoding of an Event */
   239            IArg arg[NUMARGS];          /*! arguments passed via Log_write/print */
   240        }
   241    
   242        /*! 
   243         *  ======== Event ========
   244         *  `Log` event type
   245         *
   246         *  An `Event` is represented on the target as a 32-bit value that can
   247         *  be decoded offline to recover the `Event` information defined in
   248         *  a corresponding metaonly `EventDesc`.  In addition, `Event`s may be
   249         *  decoded at runtime via methods provided in this module; see
   250         *  `{@link #getMask}` and `{@link #getEventId}`.
   251         *
   252         *  When an event is "raised" a `{@link Types#Event Types_Event}` is
   253         *  created which has the same event ID as the `Log_Event` but also
   254         *  encodes the module ID of the caller.  This new event is passed to
   255         *  the underlying `{@link ILogger}` module along with any arguments
   256         *  associated with the event.
   257         *
   258         *  @see #getMask
   259         *  @see #getEventId
   260         */
   261        @Encoded typedef EventDesc Event;
   262    
   263        /*!
   264         *  ======== EventId ========
   265         *  Unique ID embedded in each `{@link #Event}`
   266         *
   267         *  This ID must be used to compare two `Event`s for equality.  Event
   268         *  ids are not guaranteed to remain constant between different
   269         *  configurations of an application.  For example, adding a module
   270         *  may cause the event ids of another module to change.
   271         *
   272         *  However, event ids declared by a module are guaranteed to be
   273         *  consecutive values starting from the first declared
   274         *  `{@link #Event Log_Event}` and increasing to the last declared
   275         *  event.  As a result, clients of a module can efficiently test ranges
   276         *  of events and modules can add new events, such as internal trace
   277         *  events, without breaking clients; simply be careful to add new events
   278         *  after any existing events in you module's `.xdc` specification.
   279         *
   280         *  @see #getEventId
   281         *  @see #Event
   282         */
   283        typedef Types.RopeId EventId;
   284        
   285        /*! 
   286         *  ======== L_construct ========
   287         *  Lifecycle event posted when an instance is constructed
   288         */
   289        config Log.Event L_construct = {
   290            mask: Diags.LIFECYCLE, msg: "<-- construct: %p('%s')"
   291        };
   292    
   293        /*!
   294         *  ======== L_create ========
   295         *  Lifecycle event posted when an instance is created
   296         */
   297        config Log.Event L_create = {
   298            mask: Diags.LIFECYCLE, msg: "<-- create: %p('%s')"
   299        };
   300    
   301        /*!
   302         *  ======== L_destruct ========
   303         *  Lifecycle event posted when an instance is destructed
   304         */
   305        config Log.Event L_destruct = {
   306            mask: Diags.LIFECYCLE, msg: "--> destruct: (%p)"
   307        };
   308    
   309        /*!
   310         *  ======== L_delete ========
   311         *  Lifecycle event posted when an instance is deleted
   312         */
   313        config Log.Event L_delete = {
   314            mask: Diags.LIFECYCLE, msg: "--> delete: (%p)"
   315        };
   316    
   317        /*!
   318         *  ======== getMask ========
   319         *  Get the `Diags` mask for the specified (encoded) event
   320         *
   321         *  @param(evt)     the `Log` event encoding a mask and event ID
   322         *
   323         *  @a(returns)     `Diags` mask for the specified event
   324         */
   325        @Macro Diags.Mask getMask(Event evt);
   326    
   327        /*!
   328         *  ======== getRope ========
   329         *  Get RopeId of the Event.msg for the specified (encoded) event
   330         *  @_nodoc
   331         */
   332        @Macro Text.RopeId getRope(Event evt);
   333    
   334        /*!
   335         *  ======== getEventId ========
   336         *  Get event ID of the specified (encoded) event
   337         *
   338         *  This method is used to compare "known" `Log` events with
   339         *  "raised" `{@link Types#Event Types_Event}`.
   340         *
   341         *  @param(evt)     the `Log` event encoding a mask and event ID
   342         *
   343         *  @a(returns)     event ID of the specified event
   344         *
   345         *  @see Types#getEventId
   346         */
   347        @Macro EventId getEventId(Event evt);
   348    
   349        /*!
   350         *  ======== print0 ========
   351         *  Generate a `Log` "print event" with 0 arguments
   352         *
   353         *  @see #print6
   354         */
   355        @Macro Void print0(Diags.Mask mask, String fmt);
   356    
   357        /*!
   358         *  ======== print1 ========
   359         *  Generate a `Log` "print event" with 1 argument
   360         *
   361         *  @see #print6
   362         */
   363        @Macro Void print1(Diags.Mask mask, String fmt, IArg a1);
   364    
   365        /*!
   366         *  ======== print2 ========
   367         *  Generate a `Log` "print event" with 2 arguments
   368         *
   369         *  @see #print6
   370         */
   371        @Macro Void print2(Diags.Mask mask, String fmt, IArg a1, IArg a2);
   372    
   373        /*!
   374         *  ======== print3 ========
   375         *  Generate a `Log` "print event" with 3 arguments
   376         *
   377         *  @see #print6
   378         */
   379        @Macro Void print3(Diags.Mask mask, String fmt, IArg a1, IArg a2, IArg a3);
   380    
   381        /*!
   382         *  ======== print4 ========
   383         *  Generate a `Log` "print event" with 4 arguments
   384         *
   385         *  @see #print6
   386         */
   387        @Macro Void print4(Diags.Mask mask, String fmt, IArg a1, IArg a2, IArg a3,
   388            IArg a4);
   389    
   390        /*!
   391         *  ======== print5 ========
   392         *  Generate a `Log` "print event" with 5 arguments
   393         *
   394         *  @see #print6
   395         */
   396        @Macro Void print5(Diags.Mask mask, String fmt, IArg a1, IArg a2, IArg a3,
   397            IArg a4, IArg a5);
   398    
   399        /*!
   400         *  ======== print6 ========
   401         *  Generate a `Log` "print event" with 6 arguments
   402         *
   403         *  As a convenience to C (as well as assembly language) programmers,
   404         *  the `Log` module provides a variation of the ever-popular `printf`
   405         *  function.
   406         *  The `print[0-6]` functions generate a `Log` "print event" and route
   407         *  it to the current module's logger.
   408         *
   409         *  The arguments passed to `print[0-6]` may be characters, integers,
   410         *  strings, or pointers.  However, because the declared type of the
   411         *  arguments is `{@link xdc IArg}`, all pointer arguments must be cast
   412         *  to an `IArg` type.  `IArg` is an integral type large enough to hold
   413         *  any pointer or an `int`.  So, casting a pointer to an `IArg` does
   414         *  not cause any loss of information and C's normal integer conversions
   415         *  make the cast unnecessary for integral arguments.
   416         *
   417         *  The format string can use the following conversion characters.
   418         *  However, it is important to recall that all arguments referenced by
   419         *  these conversion characters have been converted to an `IArg`
   420         *  prior to conversion; so, the use of "length modifiers" should be
   421         *  avoided.
   422         *
   423         *  @p(code)
   424         *  Conversion Character    Description
   425         *  ------------------------------------------------
   426         *  %c                      Character
   427         *  %d                      Signed integer
   428         *  %u                      Unsigned integer
   429         *  %x                      Unsigned hexadecimal integer
   430         *  %o                      Unsigned octal integer
   431         *  %s                      Character string
   432         *  %p                      Pointer
   433         *  %f                      Single precision floating point (float)
   434         *  @p
   435         *
   436         *  Format strings, while very convenient, are a well known source of
   437         *  portability problems: each format specification must precisely match
   438         *  the types of the arguments passed. Underlying "printf" functions use
   439         *  the format string to determine how far to advance through their
   440         *  argument list. For targets where pointer types and integers are the
   441         *  same size there are no problems.  However, suppose a target's pointer
   442         *  type is larger than its integer type. In this case, because integer
   443         *  arguments are widened to be of type `IArg`, a format specification of
   444         *  "%d" causes an underlying `printf()` implementation to read the
   445         *  extended part of the integer argument as part of the next argument(!).
   446         *
   447         *  To get around this problem and still allow the use of "natural" 
   448         *  format specifications (e.g., `%d` and `%x` with optional width
   449         *  specifications), `{@link System#aprintf()}` is used which assumes
   450         *  that all arguments have been widened to be of type `IArg`.
   451         *
   452         *  See `{@link System#printf}` for complete details.
   453         *
   454         *  The `%f` format specifier is used to print a single precision float
   455         *  value. Note that `%f` assumes that sizeof(Float) <= sizeof(IArg).
   456         *  Most clients that interpret float values except that they are
   457         *  represented in IEEE 754 floating point format. Therefore, it is
   458         *  recommended that the float values are converted into that format prior
   459         *  to supplying the values to `Log` functions in cases where targets do
   460         *  not generate the float values in IEEE 754 floating point format by
   461         *  default.
   462         *
   463         *  @param(mask)    enable bits for this `Log` event
   464         *  @param(fmt)     a `printf` style format string
   465         *  @param(a1)      value for first format conversion character
   466         *  @param(a2)      value for second format conversion character
   467         *  @param(a3)      value for third format conversion character
   468         *  @param(a4)      value for fourth format conversion character
   469         *  @param(a5)      value for fifth format conversion character
   470         *  @param(a6)      value for sixth format conversion character
   471         *
   472         *  @a(Examples)
   473         *  The following example demonstrates a typical usage.
   474         *  @p(code)
   475         *  String  list[];
   476         *  UInt    i;
   477         *
   478         *  Log_print2(Diags_USER2, "list[%u] = %s\n", i, (IArg)list[i]);
   479         *  @p
   480         *  Note that the `IArg` cast above is only necessary for pointer
   481         *  arguments; C's normal parameter conversions implicitly convert
   482         *  integral arguments.
   483         */
   484        @Macro Void print6(Diags.Mask mask, String fmt, IArg a1, IArg a2, IArg a3,
   485            IArg a4, IArg a5, IArg a6);
   486    
   487        /*!
   488         *  ======== put4 ========
   489         *  Unconditionally put the specified `Types` event
   490         *
   491         *  This method unconditionally puts the specified `{@link Types#Event}`
   492         *  `evt` into the log.  This type of event is created either implicitly
   493         *  (and passed to an `{@link ILogger}` implementation) or explicitly
   494         *  via `{@link Types#makeEvent()}`.
   495         *
   496         *  @param(evt)     the `Types` event to put into the log
   497         *  @param(a1)      value for first format conversion character
   498         *  @param(a2)      value for second format conversion character
   499         *  @param(a3)      value for third format conversion character
   500         *  @param(a4)      value for fourth format conversion character
   501         *
   502         *  @see #put8
   503         */
   504        @Macro Void put4(Types.Event evt, IArg a1, IArg a2, IArg a3, IArg a4);
   505    
   506        /*!
   507         *  ======== put8 ========
   508         *  Unconditionally put the specified `Types` event
   509         *
   510         *  This method is identical to `{@link #put4}` except that it allows
   511         *  up to eight arguments to be passed.
   512         *  
   513         *  @see #put4
   514         */
   515        @Macro Void put8(Types.Event evt, IArg a1, IArg a2, IArg a3, IArg a4,
   516                            IArg a5, IArg a6, IArg a7, IArg a8);
   517    
   518        /*! 
   519         *  ======== write0 ========
   520         *  Generate a `Log` event with 0 arguments
   521         *
   522         *  @see #write8
   523         */
   524        @Macro Void write0(Event evt);
   525    
   526        /*! 
   527         *  ======== write1 ========
   528         *  Generate a `Log` event with 1 argument
   529         *
   530         *  @see #write8
   531         */
   532        @Macro Void write1(Event evt, IArg a1);
   533    
   534        /*!
   535         *  ======== write2 ========
   536         *  Generate a `Log` event with 2 arguments
   537         *
   538         *  @see #write8
   539         */
   540        @Macro Void write2(Event evt, IArg a1, IArg a2);
   541    
   542        /*!
   543         *  ======== write3 ========
   544         *  Generate a `Log` event with 3 arguments
   545         *
   546         *  @see #write8
   547         */
   548        @Macro Void write3(Event evt, IArg a1, IArg a2, IArg a3);
   549    
   550        /*!
   551         *  ======== write4 ========
   552         *  Generate a `Log` event with 4 arguments
   553         *
   554         *  @see #write8
   555         */
   556        @Macro Void write4(Event evt, IArg a1, IArg a2, IArg a3, IArg a4);
   557    
   558        /*!
   559         *  ======== write5 ========
   560         *  Generate a `Log` event with 5 arguments
   561         *
   562         *  @see #write8
   563         */
   564        @Macro Void write5(Event evt, IArg a1, IArg a2, IArg a3, IArg a4, IArg a5);
   565    
   566        /*!
   567         *  ======== write6 ========
   568         *  Generate a `Log` event with 6 arguments
   569         *
   570         *  @see #write8
   571         */
   572        @Macro Void write6(Event evt, IArg a1, IArg a2, IArg a3, IArg a4,
   573                            IArg a5, IArg a6);
   574    
   575        /*!
   576         *  ======== write7 ========
   577         *  Generate a `Log` event with 7 arguments
   578         *
   579         *  @see #write8
   580         */
   581        @Macro Void write7(Event evt, IArg a1, IArg a2, IArg a3, IArg a4,
   582                            IArg a5, IArg a6, IArg a7);
   583    
   584        /*!
   585         *  ======== write8 ========
   586         *  Generate a `Log` event with 8 arguments
   587         *
   588         *  If the mask in the specified `Log` event has any bit set which is
   589         *  also set in the current module's diagnostics mask, then this call to
   590         *  write will "raise" the given `Log` event.
   591         *
   592         *  @param(evt)     the `Log` event to write
   593         *  @param(a1)      value for first format conversion character
   594         *  @param(a2)      value for second format conversion character
   595         *  @param(a3)      value for third format conversion character
   596         *  @param(a4)      value for fourth format conversion character
   597         *  @param(a5)      value for fifth format conversion character
   598         *  @param(a6)      value for sixth format conversion character
   599         *  @param(a7)      value for seventh format conversion character
   600         *  @param(a8)      value for eighth format conversion character
   601         */
   602        @Macro Void write8(Event evt, IArg a1, IArg a2, IArg a3, IArg a4,
   603                            IArg a5, IArg a6, IArg a7, IArg a8);
   604    
   605        /*!
   606         *  ======== doPrint ========
   607         *  Render an event as text via `{@link System#printf System_printf}`
   608         *
   609         *  This method is not gated and may make more than one call to
   610         *  `System_printf`.  This utility method is typically used within the
   611         *  implementation of a logger which initializes
   612         *  `{@link #EventRec Log_EventRec}` structures based on `Log` events
   613         *  produced by the application.
   614         *
   615         *  @param(evRec)   a non`NULL` pointer to an initialized `Log_EventRec`
   616         *                  structure to be formated via
   617         *                  `{@link System#printf System_printf}`.
   618         */
   619        Void doPrint(EventRec *evRec);
   620    
   621        /*!
   622         *  @_nodoc
   623         *  ======== decode ========
   624         *  In ROV, decode the specified Event evt into info structure
   625         */
   626        function decode(info, evt, args);
   627        
   628        /*!
   629         *  @_nodoc
   630         *  ======== evtIdToName ========
   631         *  In ROV, lookup an event's name given its id.
   632         */
   633        function evtIdToName(eventId);
   634        
   635        /*!
   636         *  @_nodoc
   637         *  ======== getEventMsg ========
   638         *  In ROV, look up the record's message based on its event Id, then format it
   639         *  with the given arguments.
   640         */
   641        function getEventMsg(eventId, args);
   642    
   643    internal:
   644    
   645        /*
   646         *  ======== idToInfo ========
   647         *  Map event ID strings into a string of the form <eventName>::<eventMsg>
   648         */
   649        metaonly config String idToInfo[string] = [];
   650        
   651    }
   652    /*
   653     *  @(#) xdc.runtime; 2, 0, 0, 0,207; 6-9-2009 20:10:18; /db/ztree/library/trees/xdc-t50x/src/packages/
   654     */
   655