
OMAP35x EVM Linux PSP

User Guide

03.00.00.03

Publication date 27 November 2009

Version 03.00.00.03 Platform Support Products 2

Version 03.00.00.03 Platform Support Products 1

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other
changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions
of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and
other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements,
testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using
TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other
TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI
regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI
under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated
warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and
any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any
such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected
to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent
that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely
responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,
notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives
against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated
by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and
agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible
for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI
as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications,
TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:

 Texas Instruments,
 Post Office Box 655303,
 Dallas, Texas 75265

amplifier.ti.com
www.ti.com/audio
dataconverter.ti.com
www.ti.com/automotive
dsp.ti.com
www.ti.com/broadband
interface.ti.com
www.ti.com/digitalcontrol
logic.ti.com
www.ti.com/military
power.ti.com
www.ti.com/opticalnetwork
microcontroller.ti.com
www.ti.com/security
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Version 03.00.00.03 Platform Support Products 2

Version 03.00.00.03 Platform Support Products iii

Table of Contents

Read This First ... xv

1. Installation .. 1

1.1. System Requirements .. 2

1.2. Installation ... 3

1.3. Installation Steps ... 5

1.4. Environment Setup ... 6

1.5. Setup NFS filesystem ... 7

2. x-loader ... 9

2.1. Introduction .. 10

2.2. Compiling X-Loader .. 11

2.2.1. Signing x-load.bin .. 11

2.3. Saving x-loader on target media 12

2.3.1. OneNAND .. 12

2.3.2. NAND ... 12

2.3.3. MMC/SD Card .. 12

3. U-Boot .. 15

3.1. Compiling U-Boot .. 17

3.2. Flashing U-Boot ... 18

3.2.1. OneNAND .. 18

3.2.2. Micron NAND ... 18

3.3. Configuring U-Boot .. 19

3.3.1. Using ramdisk image .. 19

3.3.2. Using NFS (Default U-Boot configuration) 19

3.4. Managing OneNAND ... 22

3.4.1. Marking a bad block ... 22

3.4.2. Erasing OneNAND .. 22

3.4.3. Writing to OneNAND ... 23

OMAP35x EVM Linux PSP

iv Platform Support Products Version 03.00.00.03

3.4.4. Reading from OneNAND 23

3.4.5. Scrubbing OneNAND ... 24

3.5. Managing NAND .. 25

3.5.1. Marking a bad block ... 25

3.5.2. Viewing bad blocks ... 25

3.5.3. Erasing NAND .. 25

3.5.4. Writing to NAND .. 26

3.5.5. Reading from NAND ... 27

3.5.6. Unlocking NAND address space 27

3.5.7. NAND ECC algorithm selection 28

3.6. MUSB Host support .. 29

4. Kernel .. 31

4.1. Compiling Linux Kernel ... 32

4.2. Configuring Linux Kernel ... 33

4.3. Booting Linux Kernel .. 35

4.3.1. Selecting boot mode ... 35

4.3.2. Boot from NAND/OneNAND 36

4.3.3. Boot from MMC .. 37

5. Audio Driver ... 39

5.1. Introduction .. 41

5.1.1. References .. 41

5.1.2. Acronyms & Definitions 41

5.2. Features ... 43

5.3. ALSA SoC Architecture ... 44

5.3.1. Introduction .. 44

5.3.2. Design .. 44

5.4. Configuration .. 46

5.5. Application Interface .. 48

5.5.1. Device Interface .. 48

5.5.2. Proc Interface .. 48

OMAP35x EVM Linux PSP

Version 03.00.00.03 Platform Support Products v

5.5.3. Commonly Used APIs 49

5.5.4. User Space Interactions 49

5.6. Sample Applications ... 51

5.6.1. Introduction .. 51

5.6.2. A minimal playback application 51

5.6.3. A minimal record application 55

5.7. Revision History .. 58

6. Display Driver .. 59

6.1. Introduction .. 61

6.1.1. References .. 61

6.1.2. Acronyms & Definitions 61

6.1.3. Hardware Overview .. 61

6.2. Features ... 63

6.2.1. Overview .. 63

6.3. Architecture .. 64

6.3.1. Driver Architecture ... 64

6.3.2. Software Design Interfaces 64

6.4. Usage .. 66

6.4.1. Opening and Closing of Driver 66

6.4.2. Command Line arguments 66

6.4.3. Buffer Management .. 69

6.4.4. Rotation .. 73

6.4.5. Color Keying .. 75

6.4.6. Alpha Blending .. 80

6.4.7. Buffer Format .. 85

6.4.8. Display Window ... 88

6.4.9. Cropping ... 89

6.4.10. Scaling .. 90

6.4.11. Color look table ... 91

6.4.12. Streaming ... 91

6.5. Software Interfaces .. 94

OMAP35x EVM Linux PSP

vi Platform Support Products Version 03.00.00.03

6.5.1. Frame-Buffer Driver Interface 94

6.5.2. V4L2 Driver Interface 97

6.5.3. SYSFS Software Interfaces 99

6.5.4. Miscellaneous Configurations 103

6.6. Driver Configuration ... 106

6.6.1. V4L2 video driver ... 106

6.6.2. Framebuffer driver .. 107

6.7. Sample Application Flow ... 111

6.8. Revision History ... 113

7. Resizer Driver .. 115

7.1. Introduction .. 117

7.1.1. References .. 117

7.1.2. Acronyms .. 117

7.1.3. Hardware Overview 117

7.2. Features ... 118

7.2.1. Overview of features supported 118

7.2.2. Usage of Features ... 118

7.2.3. Constraints ... 124

7.3. Architecture .. 126

7.4. Software Interface ... 127

7.4.1. Application Programming Interface 127

7.4.2. IOCTLs .. 128

7.4.3. Data Structures .. 132

7.5. Driver Configuration ... 137

7.5.1. Configuration Steps .. 137

7.6. Sample Application Flow ... 139

7.7. Revision History ... 140

8. Daughter Card Module ... 141

8.1. Mass Market Daughter Card 142

8.1.1. Acronyms & Definitions 142

OMAP35x EVM Linux PSP

Version 03.00.00.03 Platform Support Products vii

8.1.2. Introduction ... 142

8.2. Block Diagram ... 143

8.3. Board Illustration ... 144

8.4. Features supported under software 145

9. Capture Driver ... 147

9.1. Introduction ... 149

9.1.1. References .. 150

9.1.2. Acronyms & Definitions 151

9.2. Features .. 152

9.3. Architecture ... 153

9.3.1. System Diagram ... 153

9.3.2. Software Design Interfaces 155

9.4. Driver Configuration ... 171

9.4.1. Configuration Steps .. 171

9.4.2. Installation .. 173

9.5. Sample Applications ... 175

9.5.1. Introduction ... 175

9.5.2. Hardware Setup ... 175

9.5.3. Sample Applications .. 175

10. USB Driver ... 177

10.1. Introduction .. 179

10.1.1. References ... 179

10.1.2. Hardware Overview 179

10.2. Features ... 181

10.3. Driver configuration .. 182

10.3.1. USB phy selection for MUSB OTG port 182

10.3.2. USB controller in host mode 182

10.3.3. MUSB OTG controller in gadget mode 183

10.3.4. MUSB OTG controller in OTG mode 184

10.3.5. Host mode applications 185

OMAP35x EVM Linux PSP

viii Platform Support Products Version 03.00.00.03

10.3.6. USB Controller and USB MSC HOST 185

10.3.7. USB HID Class ... 186

10.3.8. USB Controller and USB HID 186

10.3.9. USB Audio ... 187

10.3.10. USB Video ... 188

10.3.11. Gadget Mode Applications 188

10.3.12. CDC/RNDIS gadget 190

10.3.13. USB EHCI Electrical testing 191

10.3.14. USB OTG (HNP/SRP) testing 191

10.4. Software Interface .. 193

10.4.1. sysfs ... 193

10.4.2. procfs ... 193

10.5. Revision history ... 194

11. MMC Driver .. 195

11.1. Introduction .. 196

11.1.1. References ... 196

11.1.2. Acronyms & Definitions 196

11.2. Features ... 197

12. Power Management .. 199

12.1. Introduction .. 201

12.1.1. References ... 201

12.2. Features ... 202

12.3. Architecture ... 203

12.3.1. cpuidle .. 203

12.3.2. Dynamic Tick Suppression 205

12.3.3. Suspend & Resume 205

12.4. Configuration ... 206

12.4.1. cpuidle .. 206

12.4.2. cpufreq ... 208

12.4.3. SmartReflex ... 208

OMAP35x EVM Linux PSP

Version 03.00.00.03 Platform Support Products ix

12.5. Software Interface .. 210

12.5.1. cpuidle .. 210

12.5.2. Suspend & Resume 211

12.5.3. SmartReflex ... 211

12.6. Revision History ... 213

13. Power Management IC ... 215

13.1. Introduction .. 217

13.1.1. References ... 217

13.1.2. Acronyms & Definitions 218

13.2. Features ... 219

13.2.1. Features Supported 219

13.2.2. Constraints .. 219

13.3. Configuration ... 220

13.4. Application Interface ... 223

13.4.1. Consumer driver interface 223

13.4.2. Sysfs interface ... 223

13.5. Writing a Consumer Driver 225

13.6. Revision History ... 227

14. Appendix .. 229

14.1. Creating bootable partition on MMC/SD Card 230

Version 03.00.00.03 Platform Support Products x

Version 03.00.00.03 Platform Support Products xi

List of Figures
4.1. Boot from OneNAND ... 35

4.2. Boot from MMC (on EVM with Samsung OneNAND) 35

4.3. Boot from NAND .. 36

4.4. Boot from MMC (on EVM with Micron NAND) 36

5.1. ALSA SoC Architecture .. 45

5.2. OMAP3 ALSA Driver : Half duplex playback 50

5.3. OMAP3 ALSA Driver : Half duplex record 50

6.1. OMAP35x Display Subsystem Architecture 64

6.2. Video source color Keying .. 76

6.3. Video destination color Keying .. 77

6.4. Alpha blending with almost 50% transparency 80

6.5. Alpha blending with almost 100% transparency 81

6.6. Alpha blending with almost 0% transparency 81

6.7. 1-BPP Data Memory Organization 86

6.8. 2-BPP Data Memory Organization 86

6.9. 4-BPP Data Memory Organization 86

6.10. 8-BPP Data Memory Organization 87

6.11. 12-BPP Data Memory Organization 87

6.12. 16-BPP Data Memory Organization 87

6.13. 24-BPP Data Memory Organization 87

6.14. ARGB 32-BPP Data Memory Organization 87

6.15. RGBA 32-BPP Data Memory Organization 88

6.16. 24-BPP Packed Data Memory Organization 88

6.17. UYVY 4:2:2 Data Memory Organization 88

6.18. YUV2 4:2:2 Data Memory Organization 88

6.19. Application for v4l2 driver using MMAP buffers 111

6.20. Application for FBDEV driver ... 112

7.1. OMAP Resizer HW Block Diagram 117

7.2. Basic Architecture of Resizer Driver 126

7.3. Resizer Sample Application Flow 139

OMAP35x EVM Linux PSP

xii Platform Support Products Version 03.00.00.03

8.1. Block Diagram .. 143

8.2. Board Illustration .. 144

9.1. Capture Driver Component Overview 149

9.2. Capture Physical Input Interface 150

9.3. Capture Driver Basic Architecture 153

10.1. MUSB OTG: Location of Mini-AB receptacle on the EVM 180

10.2. MUSB OTG: Location of USB PHY from NXP on the EVM 180

10.3. USB Driver: Illustration of Mass Storage Class 185

10.4. USB Driver: Illustration of HID Class 186

12.1. cpuidle overview ... 203

Version 03.00.00.03 Platform Support Products xiii

List of Tables
5.1. Audio Driver: Acronyms .. 41

5.2. Device Interface ... 48

5.3. Proc Interface .. 48

5.4. Commonly Used APIs .. 49

6.1. Video Display Driver: Acronyms .. 61

6.2. Acronyms .. 67

6.3. Acronyms .. 68

6.4. Acronyms .. 69

6.5. Memory requirement for V4L2 and FBDEV driver Buffers 69

6.6. Frame-buffer Driver sysfs attributes 100

6.7. DSS Library-display0/1/2: sysfs attributes 102

6.8. DSS Library-Manager0/1: sysfs attributes 102

6.9. DSS Library-Overlay0/1/2: sysfs attributes 103

7.1. Resizer: Input Size Calculation ... 122

7.2. Resizer: open System Call arguments 127

7.3. Resizer: close system call arguments 127

7.4. Resizer: mmap system call arguments 128

7.5. Resizer: munmap system call arguments 128

7.6. Resizer: ioctl RSZ_S_PARAMS arguments 129

7.7. Resizer: ioctl RSZ_G_PARAMS arguments 129

7.8. Resizer: ioctl RSZ_G_STATUS argument 130

7.9. Resizer: ioctl RSZ_S_EXP argument 130

7.10. Resizer: ioctl RSZ_RESIZE arguments 131

7.11. Resizer: ioctl RSZ_REQBUF arguments 131

7.12. Resizer: ioctl RSZ_QUERYBUF arguments 132

7.13. Resizer: ioctl RSZ_QUEUEBUF arguments 132

7.14. Resizer: Parameters Configuration Structure fields 133

7.15. Resizer: Request Buffer Structure fields 133

7.16. Resizer: Buffer structure fields .. 134

7.17. Resizer: Luma enhancement structure fields 134

OMAP35x EVM Linux PSP

xiv Platform Support Products Version 03.00.00.03

7.18. Resizer: Status structure fields 135

7.19. Resizer: Crop Size structure fields 135

8.1. MMDC Acronyms ... 142

9.1. Capture Driver Acronyms ... 151

10.1. USB Driver: sysfs attributes ... 193

11.1. MMC Driver Acronyms ... 196

12.1. C-states in OMAP3 .. 204

13.1. PMIC Driver: Acronyms .. 218

13.2. Commonly Used APIs .. 223

13.3. Sysfs interface .. 224

Version 03.00.00.03 Platform Support Products xv

Read This First

About This Manual
This document describes how to install and work with Texas Instruments'
Platform Support Package (PSP) for OMAP35x platform running Linux.

This PSP provides a fundamental software platform for development,
deployment and execution on. It abstracts the functionality provided
by the hardware. The product forms the basis for all application
development on this platform.

In this context, the document contains instructions to:

• Install the release

• Build the sources contained in the release

The document also provides detailed description of drivers and modules
specific to this platform - as implemented in the PSP.

How to Use This Manual
This document includes the following chapters:

• Chapter 1, Installation - describes the installation procedure for
OMAP35x EVM Linux PSP package.

• Chapter 2, x-loader - describes the procedure to build and execute
the x-loader. and

• Chapter 3, U-Boot - describes the procedure to build and execute
U-Boot.

Read This First

Notation of information elements

xvi Platform Support Products Version 03.00.00.03

• Chapter 4, Kernel - describes the procedure to build and execute
the Linux kernel.

• Chapter 5, Audio Driver - describes the implementation of audio
driver.

• Chapter 6, Display Driver - describes the implementation of video
display driver.

• Chapter 7, Resizer Driver - describes the implementation of resizer
driver.

• Chapter 8, Daughter Card Module - describes the features available
on Daughter card.

• Chapter 9, Capture Driver - describes the implementation of video
capture driver.

• Chapter 10, USB Driver - describes the implementation of USB
driver.

• Chapter 11, MMC Driver - describes the implementation of MMC
driver.

• Chapter 12, Power Management - describes the power management
frameworks.

Please go through the Release Notes document available in the release
package before starting the installation.

Notation of information elements

The document may contain these additional elements:

Warning

This is an example of warning message. It usually indicates a non-
recoverable change, e.g. formatting a filesystem.

Caution

This is an example of caution message.

Important

This is an example of important message.

Read This First

If You Need Assistance

Version 03.00.00.03 Platform Support Products xvii

Note

This is an example of additional note. This usually indicates additional
information in the current context.

Tip

This is an example of a useful tip.

If You Need Assistance
For any assistance, please send an mail to software support
[mailto:softwaresupport@ti.com].

Trademarks
OMAP™ is a trademark of Texas Instruments Incorporated.

All other trademarks are the property of the respective owner.

mailto:softwaresupport@ti.com
mailto:softwaresupport@ti.com

Version 03.00.00.03 Platform Support Products xviii

Version 03.00.00.03 Platform Support Products 1

Installation

Abstract

This chapter describes the layout of the Linux PSP package for OMAP35x EVM and steps to install
on your development host.

Table of Contents

1.1. System Requirements ... 2

1.2. Installation .. 3

1.3. Installation Steps .. 5

1.4. Environment Setup ... 6

1.5. Setup NFS filesystem .. 7

Installation

System Requirements

2 Platform Support Products Version 03.00.00.03

1.1. System Requirements
Hardware Requirements:

• OMAP35x EVM

Software Requirements:

• CodeSourcery ARM tool chain version 2009-q1

Important

OMAP EVM2 - Main Board (REV G) and OMAP35XX Processor Board
with OMAP3530 ES3.1 processor - has been used for development
and test for this release.

Installation

Installation

Version 03.00.00.03 Platform Support Products 3

1.2. Installation
Extract the contents of release package with the following command:

$ tar -xvfz OMAP35x-PSP-SDK-MM.mm.pp.bb.tgz

This creates a directory OMAP35x-PSP-SDK-MM.mm.pp.bb with the
following contents:

\---AM35x-OMAP35x-PSP-SDK-MM.mm.pp.bb
 | Software-manifest.html
 | Arago-FS-Software-manifest.html
 +----docs
 | |----Building-RootFs-Arago.html
 | |----DataSheet-MM.mm.pp.bb.pdf
 | |----ReleaseNotes-MM.mm.pp.bb.pdf
 | |----am3517
 | | `----UserGuide-MM.mm.pp.bb.pdf
 | |----omap3530
 | | `----UserGuide-MM.mm.pp.bb.pdf
 +----host-tools
 | |----linux
 | | `----signGP
 | |----src
 | | `----signGP.c
 +----images
 | |----boot-strap
 | | |----am3517
 | | | `----x-load.bin.ift
 | | |----omap3530
 | | | `----x-load.bin.ift
 | |----fs
 | | |----nfs-base.tar.gz
 | | |----ramdisk-base.gz
 | | |----rootfs-base.jffs2
 | | |----am3517
 | | | |----nfs.tar.gz
 | | | |----ramdisk.gz
 | | | `----rootfs.jffs2
 | | |----omap3530
 | | | |----nfs.tar.gz
 | | | |----ramdisk.gz
 | | | `----rootfs.jffs2
 | |----kernel
 | | |----am3517
 | | | `----uImage
 | | |----omap3530
 | | | `----uImage
 | |----u-boot
 | | |----am3517
 | | | `----u-boot.bin
 | | |----omap3530

Installation

Installation

4 Platform Support Products Version 03.00.00.03

 | | | `----u-boot.bin
 +----scripts
 | |----am3517
 | | |----Readme.txt
 | | |----initenv-micron.txt
 | | `----reflash-micron.txt
 | |----omap3530
 | | |----Readme.txt
 | | |----initenv-micron.txt
 | | `----reflash-micron.txt
 +----src
 | |----boot-strap
 | | |----ChangeLog-MM.mm.pp.bb
 | | |----ShortLog
 | | |----Unified-patch-MM.mm.pp.bb.gz
 | | |----diffstat-MM.mm.pp.bb
 | | |----x-loader-patches-MM.mm.pp.bb.tar.gz
 | | `----x-loader-MM.mm.pp.bb.tar.gz
 | |----examples
 | | |----examples.tar.gz
 | |----kernel
 | | |----Readme.txt
 | | |----ChangeLog-MM.mm.pp.bb
 | | |----ShortLog
 | | |----Unified-patch-MM.mm.pp.bb.gz
 | | |----diffstat-MM.mm.pp.bb
 | | |----kernel-patches-MM.mm.pp.bb.tar.gz
 | | `----linux-MM.mm.pp.bb.tar.gz
 | |----u-boot
 | |----Readme.txt
 | |----ChangeLog-MM.mm.pp.bb
 | |----ShortLog
 | |----Unified-patch-MM.mm.pp.bb.gz
 | |----diffstat-MM.mm.pp.bb
 | |----u-boot-patches-MM.mm.pp.bb.tar.gz
 | `----u-boot-MM.mm.pp.bb.tar.gz
 +----test-suite
 `----lftb-MM.mm.pp.bb.tar.gz

Important

The values of MM, mm, pp and bb in this illustration will vary across
the releases and actually depends on individual component versions.

Installation

Installation Steps

Version 03.00.00.03 Platform Support Products 5

1.3. Installation Steps
Instructions for initial setup of the EVM are contained in the OMAP3 EVM
Users Guide included with the EVM kit.

Installation

Environment Setup

6 Platform Support Products Version 03.00.00.03

1.4. Environment Setup
1. Set the environment variable PATH to contain the binaries of the

CodeSourcery cross-compiler tool-chain.

2. For example, in bash:

$ export PATH=/opt/toolchain/2009-q1/bin:$PATH

Add location of u-boot tools to the PATH environment variable.

3. For example, in bash:

$ export PATH=/opt/u-boot/tools:$PATH

Note

Actual instructions and the path setting will depend upon your shell
and location of the tools

Installation

Setup NFS filesystem

Version 03.00.00.03 Platform Support Products 7

1.5. Setup NFS filesystem
This step is required when root filesystem is mounted from an NFS
location.

Extract the contents of the NFS image (nfs.tar.gz) to a directory exported
via NFS.

$ cd /opt/nfs/target
$ tar xvfz nfs.tar.gz

Important

Execute this command as root user. Some of the files included in this
archive require root permissions for creation.

Version 03.00.00.03 Platform Support Products 8

Version 03.00.00.03 Platform Support Products 9

x-loader

Abstract

This chapter describes the steps required to build and execute the x-loader.

Table of Contents

2.1. Introduction ... 10

2.2. Compiling X-Loader .. 11

2.2.1. Signing x-load.bin ... 11

2.3. Saving x-loader on target media .. 12

2.3.1. OneNAND .. 12

2.3.2. NAND .. 12

2.3.3. MMC/SD Card ... 12

x-loader

Introduction

10 Platform Support Products Version 03.00.00.03

2.1. Introduction
X-loader is loaded by ROM boot loader into internal RAM. X-loader
support boot from OneNAND, NAND, MMC/SD.

x-loader

Compiling X-Loader

Version 03.00.00.03 Platform Support Products 11

2.2. Compiling X-Loader
Change to the base of the X-Loader directory.

$ cd ./x-load

Remove the intermediate files generated during build. This step is not
necessary when building for the first time.

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm distclean

Choose the configuration for OMAP3 EVM.

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm
 omap3evm_config

Initiate the build.

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm

On successful completion, file x-load.bin will be created in the current
directory.

2.2.1. Signing x-load.bin
The file x-load.bin needs to be signed before it can be used by the
ROM bootloader. The signGP tool required for signing is available in the
release package under the folder - host-tools/linux.

To sign the X-Loader binary:

$ signGP x-load.bin

The signing utility creates x-load.bin.ift in the current directory.

x-loader

Saving x-loader on target media

12 Platform Support Products Version 03.00.00.03

2.3. Saving x-loader on target media

2.3.1. OneNAND
To flash the x-loader into OneNAND, execute following commands at the
U-Boot prompt:

OMAP3_EVM # mw.b 0x80000000 0xFF 0x100000
OMAP3_EVM # tftp 0x80000000 x-load.bin.ift

Note

On Older U-boot versions(from PSP 1.0.x releases), the OneNand
will have to be unlocked before write/erase operation. For subsequent
releases of u-boot, this step is not required.

OMAP3_EVM # onenand unlock 0x000000 0x20000

OMAP3_EVM # onenand erase 0x00000000 0x00080000
OMAP3_EVM # onenand write 0x80000000 0x0 0x10000

2.3.2. NAND
To flash the x-loader into Micron NAND, execute following commands at
the U-Boot prompt:

OMAP3_EVM # mw.b 0x80000000 0xFF 0x100000
OMAP3_EVM # tftp 0x80000000 x-load.bin.ift
OMAP3_EVM # nand erase 0 40000
OMAP3_EVM # nandecc hw
OMAP3_EVM # nand write.i 0x80000000 0 40000

Note

Syntax of nandecc command has changed since from PSP 1.0.x
releases.

2.3.3. MMC/SD Card
Copy x-load.bin.ift to the MMC/SD card and rename it as MLO.

x-loader

MMC/SD Card

Version 03.00.00.03 Platform Support Products 13

Important

The ROM bootloader scans only initial FAT entries for this binary.
Ensure that MLO is the first file to be copied on the card.

Once the U-Boot and Linux kernel are built, u-boot.bin, uImage and
ramdisk.gz should be copied to the card.

Important

The MMC/SD card should have a valid bootable partition on the card
before it can be used as boot media. See Section 14.1, “Creating
bootable partition on MMC/SD Card” for necessary steps.

Version 03.00.00.03 Platform Support Products 14

Version 03.00.00.03 Platform Support Products 15

U-Boot

Abstract

This chapter describes the steps required to build and configure u-boot to use different filesystems
during the kernel boot.

It also describes new commands for managing bad blocks.

Table of Contents

3.1. Compiling U-Boot ... 17

3.2. Flashing U-Boot .. 18

3.2.1. OneNAND .. 18

3.2.2. Micron NAND .. 18

3.3. Configuring U-Boot ... 19

3.3.1. Using ramdisk image ... 19

3.3.2. Using NFS (Default U-Boot configuration) 19

U-Boot

16 Platform Support Products Version 03.00.00.03

3.4. Managing OneNAND .. 22

3.4.1. Marking a bad block .. 22

3.4.2. Erasing OneNAND ... 22

3.4.3. Writing to OneNAND .. 23

3.4.4. Reading from OneNAND ... 23

3.4.5. Scrubbing OneNAND .. 24

3.5. Managing NAND ... 25

3.5.1. Marking a bad block .. 25

3.5.2. Viewing bad blocks ... 25

3.5.3. Erasing NAND ... 25

3.5.4. Writing to NAND ... 26

3.5.5. Reading from NAND .. 27

3.5.6. Unlocking NAND address space 27

3.5.7. NAND ECC algorithm selection 28

3.6. MUSB Host support .. 29

U-Boot

Compiling U-Boot

Version 03.00.00.03 Platform Support Products 17

3.1. Compiling U-Boot
Change to the base of the u-boot directory.

$ cd ./u-boot

Remove the intermediate files generated during build. This step is not
necessary when building for the first time.

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm distclean

Choose the configuration for OMAP3 EVM.

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm
 omap3_evm_config

Initiate the build.

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm

On successful completion, file u-boot.bin will be created in the current
directory.

Note

The u-boot build commands have changed from the previous release.

U-Boot

Flashing U-Boot

18 Platform Support Products Version 03.00.00.03

3.2. Flashing U-Boot

3.2.1. OneNAND
To flash u-boot.bin to the OneNAND execute the commands listed
below:

OMAP3_EVM # mw.b 0x80000000 0xFF 0x100000
OMAP3_EVM # tftp 0x80000000 u-boot.bin

Note

With Older U-boot versions (from PSP 1.0.x releases), the OneNand
will have to be unlocked before erase/write operation. For subsequent
releases of u-boot, this step is not required.

OMAP3_EVM # onenand unlock 0x000000 0x300000

OMAP3_EVM # onenand erase 0x00080000 0x001C0000
OMAP3_EVM # onenand write 0x80000000 0x80000 0x1C0000

3.2.2. Micron NAND
To flash u-boot.bin to the Micron NAND execute the commands listed
below:

OMAP3_EVM # mw.b 0x80000000 0xFF 0x100000
OMAP3_EVM # tftp 0x80000000 u-boot.bin
OMAP3_EVM # nand erase 0x80000 0x1C0000
OMAP3_EVM # nandecc sw
OMAP3_EVM # nand write.i 0x80000000 0x80000 0x1C0000

Note

The syntax of nandecc command has changed since the PSP 1.0.x
release.

U-Boot

Configuring U-Boot

Version 03.00.00.03 Platform Support Products 19

3.3. Configuring U-Boot
This section assumes that EVM has been setup properly.

1. Enable UART1 on the EVM : On Jumper J8 select 1-2

2. Connect EVM (UART1) to the HOST PC through serial cable.

3. Start a terminal emulator (e.g. Hyperterm) on the HOST PC.

4. Power on EVM and wait for u-boot to come up.

Important

Some commands entered on the console are long. The command
text may appear wrapped in the document. Wherever indicated, these
commands must be entered in a single line.

3.3.1. Using ramdisk image
Set the bootargs:

OMAP3_EVM # setenv bootargs mem=128M console=ttyS0,115200n8
 root=/dev/ram0 rw initrd=0x81600000,40M ip=dhcp
 mpurate=600

Note

The entire command should be entered in a single line.

Set the bootcmd:

OMAP3_EVM # setenv bootcmd 'dhcp;
 tftp 0x80000000 uImage;tftp 0x81600000 ramdisk.gz;
 bootm 80000000'

Note

The entire command should be entered in a single line.

3.3.2. Using NFS (Default U-Boot configuration)
Set the bootargs:

U-Boot

Using NFS (Default U-Boot configuration)

20 Platform Support Products Version 03.00.00.03

OMAP3_EVM # setenv bootargs console=ttyS0,115200n8 noinitrd
 ip=dhcp rw root=/dev/nfs nfsroot=192.168.1.101:
 /opt/nfs/target,nolock mem=128M mpurate=600

Note

• The entire command should be entered in a single line.

• Replace NFS server IP address(192.168.1.101) and mount path
(/opt/nfs/target) with actuals based on your NFS server
setting.

Set the bootcmd:

OMAP3_EVM # setenv 'bootcmd dhcp;tftp 0x80000000 uImage;bootm'

3.3.2.1. Using NFS without DHCP

Disable the DHCP support in the build configuration:

 Device Drivers
 Networking Support
 Networking options
 IP: DHCP Support

Set the bootargs:

OMAP3_EVM # setenv bootargs 'console=ttyS0,115200n8 noinitrd rw
 root=/dev/nfs nfsroot=192.168.1.101:
 /opt/nfs/target,nolock mem=128M mpurate=600'

Set the bootcmd:

OMAP3_EVM # setenv bootcmd 'dhcp;setenv addip setenv bootargs
 $(bootargs)
 ip=$(ipaddr):$(serverip):$(gatewayip):$(netmask):
 $(hostname)::off eth=$(ethaddr);run addip;
 tftp 0x80000000 uImage; bootm 0x80000000'

U-Boot

Using NFS (Default U-Boot configuration)

Version 03.00.00.03 Platform Support Products 21

Note

The entire command should be entered in a single line.

Important

Save the changes to these variables on the flash with u-boot command
- saveenv.

U-Boot

Managing OneNAND

22 Platform Support Products Version 03.00.00.03

3.4. Managing OneNAND
The u-boot has been updated to include bad block management for
OneNAND. These updates also impacted behavior of existing OneNAND
commands. This section describes the new and modified commands
added for the purpose.

3.4.1. Marking a bad block
To forcefully mark a block as bad:

OMAP3_EVM # onenand markbad <offset>

For example, to mark block 32 (assuming erase block size of 128Kbytes)
as bad block - offset = blocknum * 128 * 1024:

OMAP3_EVM # onenand markbad 0x400000

3.4.2. Erasing OneNAND
To erase OneNAND blocks in the address range:

OMAP3_EVM # onenand erase <stoffaddr> <endoffaddr>
 or
OMAP3_EVM # onenand erase block <stblknum-endblknum>

Note

The behavior of this command was modified.

This commands skips bad blocks (both factory or user marked)
encountered within the specified range.

Important

If the erase operation fails, the block is marked bad and the command
aborts. To continue erase operation, the command needs to be re-
executed for the remaining blocks in the range.

For example, to erase blocks 32 through 34:

U-Boot

Writing to OneNAND

Version 03.00.00.03 Platform Support Products 23

OMAP3_EVM # onenand erase 0x00400000 0x00440000
 or
OMAP3_EVM # onenand erase block 32-34

3.4.3. Writing to OneNAND
To write len bytes of data from a memory buffer located at addrto the
OneNAND block offset:

OMAP3_EVM # onenand write <addr> <offset> <len>

Note

The behavior of this command was modified.

If a bad block is encountered during the write operation, it is skipped
and the write operation continues from next 'good' block.

Important

If the write fails on ECC check, the block where the failure occurred
is marked bad and write operation is aborted. The command needs to
be re- executed to complete the write operation. The offset and length
for reading have to be page aligned else the command will abort.

For example, to write 0x40000 bytes from memory buffer at address
0x80000000 to OneNAND - starting at block 32 (offset 0x400000):

OMAP3_EVM # onenand write 0x80000000 0x400000 0x40000

3.4.4. Reading from OneNAND
To read len bytes of data from OneNAND block at offset to memory buffer
located at addr:

OMAP3_EVM # onenand read <addr> <offset> <len>

Note

The behavior of this command was modified.

U-Boot

Scrubbing OneNAND

24 Platform Support Products Version 03.00.00.03

If a bad block is encountered during the read operation, it is skipped and
the read operation continues from next 'good' block.

Important

If the read fails on ECC check, the block where the failure occurred
is marked bad and read operation is aborted. The command needs
to be re- executed to complete the read operation. But, the data in
just marked bad block is irrecoverably lost. The offset and length for
reading have to be page aligned else the command will abort.

For example, to read 0x40000 bytes from OneNAND - starting at block
32 (offset 0x400000) to memory buffer at address 0x80000000:

OMAP3_EVM # onenand read 0x80000000 0x400000 0x40000

3.4.5. Scrubbing OneNAND
This command operation is similar to the erase command, with a
difference that it doesn't care for bad blocks. It attempts to erase all
blocks in the specified address range.

To scrub OneNAND blocks in the address range:

OMAP3_EVM # onenand scrub <stoffaddr> <eoffaddr>
 or
OMAP3_EVM # onenand scrub block <stblknum-endblknum>

Note

This is a new command.

Important

The command does not check whether the block is a user marked or
factory marked bad block. This command fails on a factory marked
bad block.

Important

If the erase operation fails, the block is marked as bad and the
command aborts. The command needs to be re-executed for the
remaining blocks in the range.

U-Boot

Managing NAND

Version 03.00.00.03 Platform Support Products 25

3.5. Managing NAND
The u-boot has been updated to include NAND flash support

3.5.1. Marking a bad block

To forcefully mark a block as bad:

OMAP3_EVM # nand markbad <offset>

Note

This is a new command.

For example, to mark block 32 (assuming erase block size of 128Kbytes)
as bad block - offset = blocknum * 128 * 1024:

OMAP3_EVM # nand markbad 0x400000

3.5.2. Viewing bad blocks

Gives a list of bad blocks in NAND

OMAP3_EVM # nand bad

Note

The user marked bad blocks can be viewed by using this command
only after a reset.

3.5.3. Erasing NAND

To erase NAND blocks in the address range or using block numbers

OMAP3_EVM # nand erase <stoffaddr> <len>

U-Boot

Writing to NAND

26 Platform Support Products Version 03.00.00.03

Note

The behavior of this command was modified.

This commands skips bad blocks (both factory or user marked)
encountered within the specified range.

Important

If the erase operation fails, the block is marked bad and the command
aborts. To continue erase operation, the command needs to be re-
executed for the remaining blocks in the range.

For example, to erase blocks 32 through 34

OMAP3_EVM # nand erase 0x00400000 0x40000

3.5.4. Writing to NAND
To write len bytes of data from a memory buffer located at addrto the
NAND block offset:

OMAP3_EVM # nand write <addr> <offset> <len>

Note

The behavior of this command was modified.

If a bad block is encountered during the write operation, it is skipped
and the write operation continues from next 'good' block.

Important

If the write fails on ECC check, the block where the failure occurred
is marked bad and write operation is aborted. The command needs to
be re- executed to complete the write operation. The offset and length
for reading have to be page aligned else the command will abort.

For example, to write 0x40000 bytes from memory buffer at address
0x80000000 to NAND - starting at block 32 (offset 0x400000):

OMAP3_EVM # nand write 0x80000000 0x400000 0x40000

U-Boot

Reading from NAND

Version 03.00.00.03 Platform Support Products 27

3.5.5. Reading from NAND
To read len bytes of data from NAND block at offset to memory buffer
located at addr:

OMAP3_EVM # nand read <addr> <offset> <len>

Note

The behavior of this command was modified.

If a bad block is encountered during the read operation, it is skipped and
the read operation continues from next 'good' block.

Important

If the read fails on ECC check, the block where the failure occurred
is marked bad and read operation is aborted. The command needs
to be re- executed to complete the read operation. But, the data in
just marked bad block is irrecoverably lost. The offset and length for
reading have to be page aligned else the command will abort.

For example, to read 0x40000 bytes from NAND - starting at block 32
(offset 0x400000) to memory buffer at address 0x80000000:

OMAP3_EVM # nand read 0x80000000 0x400000 0x40000

3.5.6. Unlocking NAND address space
To unlock NAND flash for writing

OMAP3_EVM # nand unlock <offset> <len>

Note

This is a new command.

For example, to unlock block 32 (assuming erase block size of
128Kbytes)

U-Boot

NAND ECC algorithm selection

28 Platform Support Products Version 03.00.00.03

OMAP3_EVM # nand unlock 0x20000

3.5.7. NAND ECC algorithm selection
To select ECC algorithm for NAND

OMAP3_EVM # nandecc <sw/hw>

Note

To write X-loader from U-Boot, ECC algorithm to be selected is HW
since bootrom uses this algorithm for reading. To write U-Boot from U-
Boot, ECC algorithm to be selected is SW.

OMAP3_EVM # nandecc hw
 or
OMAP3_EVM # nandecc sw

U-Boot

MUSB Host support

Version 03.00.00.03 Platform Support Products 29

3.6. MUSB Host support
The u-boot now supports USB Mass storage class (MSC) on the MUSB
port. It can be used to load any file from USB MSC device.

Important

Ensure that USB MSC device is connected to the MUSB port before
issuing any of the commands described in this section.

To initialize the USB subsystem:

OMAP3_EVM# usb start

All the connected devices will, now, get recognized.

To view all connected USB devices in a tree form:

OMAP3_EVM# usb tree

To view all Mass Storage USB devices:

OMAP3_EVM# usb storage

To view filesystem information of MSC device:

OMAP3_EVM# fatinfo usb D:P

This command shows filesystem information of a partition on the MSC
device.

Note

Substitute D with the storage device number and p with the partition
number on the device.

To load a file from MSC device:

OMAP3_EVM# fatload usb D:P <addr>ADDR> <file-name>

U-Boot

MUSB Host support

30 Platform Support Products Version 03.00.00.03

This command reads specified file from MSC device and writes its
contents at the specified address.

Note

Substitute D with the storage device number and p with the partition
number on the device.

Version 03.00.00.03 Platform Support Products 31

Kernel

Abstract

This chapter describes the steps required to build and configure the Linux kernel. It also provides
basic steps to boot kernel on the EVM.

Table of Contents

4.1. Compiling Linux Kernel .. 32

4.2. Configuring Linux Kernel ... 33

4.3. Booting Linux Kernel ... 35

4.3.1. Selecting boot mode ... 35

4.3.2. Boot from NAND/OneNAND 36

4.3.3. Boot from MMC .. 37

Kernel

Compiling Linux Kernel

32 Platform Support Products Version 03.00.00.03

4.1. Compiling Linux Kernel
Change to the base of the Linux source directory.

Create default configuration for the OMAP3EVM.

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm
 omap3_evm_defconfig

Initiate the build.

Note

For the kernel image (uImage) to be built, mkimage utility must be
included in the path. mkimage utility is generated (under tools folder)
while building u-boot.bin.

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm uImage

On successful completion, file uImage will be created in the directory ./
arch/arm/boot.

Copy this file to the root directory of your TFTP server.

Kernel

Configuring Linux Kernel

Version 03.00.00.03 Platform Support Products 33

4.2. Configuring Linux Kernel
Before building the Linux kernel, it should be configured for a specific
platform. This chapter describes steps to configure the kernel for
OMAP35x EVM and illustrates related configuration items for reference.

To create default configuration:

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm
 omap3_evm_defconfig

To view configuration interactively:

$ make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm menuconfig

From the onscreen menu, select System Type:

 General setup --->
[*] Enable loadable module support --->
[*] Enable the block layer --->
 System Type --->
 Bus support --->
 Kernel Features --->
 ...
 ...

These items would be selected by default:

• OMAP35x Family

• OMAP 3530 EVM board

 ARM system type (TI OMAP) --->
 TI OMAP Implementations --->
-*- OMAP34xx Based System
-*- OMAP3430 support
[*] OMAP35x Family
 *** OMAP Board Type ***
[] OMAP3 LDP board
[] OMAP 3430 SDP board
[*] OMAP 3530 EVM board
 ...
 ...

Kernel

Configuring Linux Kernel

34 Platform Support Products Version 03.00.00.03

Choose Exit to successively to return to previous menu(s) and eventually
back to the shell.

Some of the key drivers are enabled in the default configuration are:

• Serial port

• Mentor USB in OTG mode

• USB EHCI

• Ethernet

• MMC/SD

• Video Display

• Audio

• NAND and OneNAND

• Touchscreen

Kernel

Booting Linux Kernel

Version 03.00.00.03 Platform Support Products 35

4.3. Booting Linux Kernel

4.3.1. Selecting boot mode
The boot mode is selected by DIP switch SW4 on the main board. This
selection identifies the location from where the x-loader and u-boot
binaries are loaded for execution.

The switch positions differ across the boards populated with Samsung
OneNAND and Micron NAND parts.

4.3.1.1. EVM populated with Samsung OneNAND

To boot from OneNAND, use either of following switch settings:

Figure 4.1. Boot from OneNAND

To boot from MMC, use either of following switch settings:

Figure 4.2. Boot from MMC (on EVM with Samsung OneNAND)

4.3.1.2. EVM populated with Micron NAND

To boot from NAND, use either of following switch settings:

Kernel

Boot from NAND/OneNAND

36 Platform Support Products Version 03.00.00.03

Figure 4.3. Boot from NAND

To boot from MMC, use either of following switch settings:

Figure 4.4. Boot from MMC (on EVM with Micron NAND)

Note

Position of switches SW4-6, SW4-7 and SW4-8 is Don't Care. These
are grayed in the illustrations above.

Important

Ensure that u-boot environment variables bootargs and bootcmd
are properly set. See section 3.3 for more details.

4.3.2. Boot from NAND/OneNAND

Power on EVM and wait for u-boot to come up.

When kernel image and filesystem are flashed on the NAND/OneNAND
device:

Kernel

Boot from MMC

Version 03.00.00.03 Platform Support Products 37

/* NAND Boot mode */
$ nand read.i 0x80000000 280000 500000
$ setenv bootargs 'mem=128M console=ttyS0,115200n8 noinitrd
 root=/dev/mtdblock4 rw rootfstype=jffs2 ip=dhcp'
$ bootm 0x80000000

/* ONENAND Boot mode*/
$ onenand read 0x80000000 0x280000 0x0220000
$ setenv bootargs 'mem=128M console=ttyS0,115200n8 noinitrd
 root=/dev/mtdblock4 rw rootfstype=jffs2 ip=dhcp'
$ bootm 0x80000000

When kernel image is flashed on the NAND/OneNAND device, and NFS
mounted filesystem is being used:

/* NAND Boot mode */
$ nand read.i 0x80000000 280000 500000
$ setenv bootargs 'mem=128M console=ttyS0,115200n8 noinitrd rw
 root=/dev/nfs nfsroot=/mnt/nfs,nolock ip=dhcp'
$ bootm 0x80000000

/* ONENAND Boot mode*/
$ onenand read 0x80000000 0x280000 0x0220000
$ setenv bootargs 'mem=128M console=ttyS0,115200n8 noinitrd rw
 root=/dev/nfs nfsroot=/mnt/nfs,nolock ip=dhcp'
$ bootm 0x80000000

When kernel image and ramdisk image are fetched from a tftp server:

$ setenv autoload no
$ dhcp
$ setenv serverip <Server IP Address>
$ tftp 0x80000000 uImage
$ tftp 0x82000000 ramdisk.gz
$ setenv bootargs 'mem=128M console=ttyS0,115200n8 root=/dev/ram0
 initrd=0x82000000,40M ramdisk_size=32768 ip=dhcp'
$ bootm 0x80000000

4.3.3. Boot from MMC
Power on EVM and wait for u-boot to come up.

When kernel image and filesystem (ramdisk) are available on the MMC
card:

$ mmc init
$ fatload mmc 0 0x80000000 uImage

Kernel

Boot from MMC

38 Platform Support Products Version 03.00.00.03

$ fatload mmc 0 0x80000000 ramdisk.gz
$ setenv bootargs 'mem=128M console=ttyS0,115200n8 root=/dev/ram0
 initrd=0x82000000,40M ramdisk_size=32768 ip=dhcp'
$ bootm 0x80000000

When kernel image is available on the MMC card and NFS mounted
filesystem is being used:

$ mmc init
$ fatload mmc 0 0x80000000 uImage
$ setenv bootargs 'mem=128M console=ttyS0,115200n8 noinitrd rw
 root=/dev/nfs nfsroot=/mnt/nfs,nolock ip=dhcp'
$ bootm 0x80000000

When kernel image is available on the MMC card and filesystem on the
NAND device is used:

$ mmc init
$ fatload mmc 0 0x80000000 uImage
$ setenv bootargs 'mem=128M console=ttyS0,115200n8 noinitrd
 root=/dev/mtdblock4 rw rootfstype=jffs2 ip=dhcp'
$ bootm 0x80000000

Note

Once the Linux kernel boots, login as "root". No password is required.

Version 03.00.00.03 Platform Support Products 39

Audio Driver

Abstract

This chapter provides details on how to configure the audio driver, its interfaces and a simple
application code illustrates the use of this interface.

Table of Contents

5.1. Introduction ... 41

5.1.1. References ... 41

5.1.2. Acronyms & Definitions .. 41

5.2. Features .. 43

5.3. ALSA SoC Architecture .. 44

5.3.1. Introduction ... 44

5.3.2. Design ... 44

5.4. Configuration ... 46

Audio Driver

40 Platform Support Products Version 03.00.00.03

5.5. Application Interface ... 48

5.5.1. Device Interface ... 48

5.5.2. Proc Interface .. 48

5.5.3. Commonly Used APIs .. 49

5.5.4. User Space Interactions ... 49

5.6. Sample Applications .. 51

5.6.1. Introduction ... 51

5.6.2. A minimal playback application 51

5.6.3. A minimal record application 55

5.7. Revision History ... 58

Audio Driver

Introduction

Version 03.00.00.03 Platform Support Products 41

5.1. Introduction
The TPS65950 audio module contains audio analog inputs and outputs.
It is connected to the main OMAP35x processor through the TDM/I2S
interface (audio interface) and used to transmit and receive audio data.
The TPS65950 codec is connected via Multi-Channel Buffered Serial Port
(McBSP) interface, a communication peripheral, to the main processor.

McBSP provides a full-duplex direct serial interface between the device
(OMAP35x processor) and other devices in the system such as the
TPS65950 codec. It provides a direct interface to industry standard
codecs, analog interface chips (AICs) and other serially connected A/D
and D/A devices:

• Inter-IC Sound (I2S) compliant devices

• Pulse Code Modulation (PCM) devices

• Time Division Multiplexed (TDM) bus devices.

The TPS65950 audio module is controlled by internal registers that can
be accessed by the high speed I2C control interface.

This user manual defines and describes the usage of user level and
platform level interfaces of the ALSA SoC Audio driver.

5.1.1. References
1. ALSA SoC Project Homepage [http://www.alsa-project.org/main/

index.php/ASoC]

2. ALSA Project Homepage [http://www.alsa-project.org/main/
index.php/Main_Page]

3. ALSA User Space Library [http://www.alsa-project.org/alsa-doc/
alsa-lib/]

4. Using ALSA Audio API [http://www.equalarea.com/paul/alsa-
audio.html/]

Author: Paul Davis

5. TPS65950: Integrated Power Management IC with 3 DC/DC's,
11 LDO's, Audio Codec, USB HS Transceiver, Charger [http://
focus.ti.com/docs/prod/folders/print/tps65950.html]

5.1.2. Acronyms & Definitions

Acronym Definition

ALSA Advanced Linux Sound Architecture

http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/Main_Page
http://www.alsa-project.org/main/index.php/Main_Page
http://www.alsa-project.org/main/index.php/Main_Page
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.equalarea.com/paul/alsa-audio.html/
http://www.equalarea.com/paul/alsa-audio.html/
http://www.equalarea.com/paul/alsa-audio.html/
http://focus.ti.com/docs/prod/folders/print/tps65950.html
http://focus.ti.com/docs/prod/folders/print/tps65950.html
http://focus.ti.com/docs/prod/folders/print/tps65950.html
http://focus.ti.com/docs/prod/folders/print/tps65950.html

Audio Driver

Acronyms & Definitions

42 Platform Support Products Version 03.00.00.03

Acronym Definition

ALSA SoC ALSA System on Chip

DMA Direct Memory Access

I2C Inter-Integrated Circuit

McBSP Multi-channel Buffered Serial Port

PCM Pulse Code Modulation

TDM Time Division Multiplexing

OSS Open Sound System

I2S Inter-IC Sound

Table 5.1. Audio Driver: Acronyms

Audio Driver

Features

Version 03.00.00.03 Platform Support Products 43

5.2. Features
This section describes the features supported by ALSA SoC Audio driver.

• Supports TPS65950 audio codec in ALSA SoC framework.

• Supports audio in both mono and stereo modes.

• Multiple sample rate support (8 KHz, 11.025 KHz, 12 KHz, 16 KHz,
22.05 KHz, 24 KHz, 32 KHz, 44.1 KHz and 48 KHz) for both capture
and playback.

• Supports simultaneous playback and record (full-duplex mode).

• 16 Bit Little Endian Signed PCM data.

• I2S mode of operation.

• Interleaved access mode.

• Start, stop, pause and resume feature.

• Supports mixer interface for TPS65950 audio codec.

• McBSP is configured as slave and TPS65950 Codec is configured as
master.

• Supports MMAP mode for both playback and capture.

Important

Audio capture channels AUXL and AUXR are by default disabled. To
enable them, use the following 'amixer' commands:

amixer cset name='Analog Left AUXL Capture Switch' 1

amixer cset name='Analog Right AUXR Capture Switch' 1

Audio Driver

ALSA SoC Architecture

44 Platform Support Products Version 03.00.00.03

5.3. ALSA SoC Architecture

5.3.1. Introduction
The overall project goal of the ALSA System on Chip (ASoC) layer is to
provide better ALSA support for embedded system on chip processors
and portable audio codecs. Currently there is some support in the kernel
for SoC audio, however it has some limitations:

• Currently, codec drivers are often tightly coupled to the underlying
SoC cpu. This is not really ideal and leads to code duplication.

• There is no standard method to signal user initiated audio events
e.g. Headphone/Mic insertion, Headphone/Mic detection after an
insertion event.

• Current drivers tend to power up the entire codec when playing (or
recording) audio. This is fine for a PC, but tends to waste a lot of
power on portable devices. There is also no support for saving power
via changing codec oversampling rates, bias currents, etc.

5.3.2. Design
The ASoC layer is designed to address these issues and provide the
following features:

• Codec independence: Allows reuse of codec drivers on other
platforms and machines.

• Easy I2S/PCM audio interface setup between codec and SoC. Each
SoC interface and codec registers it's audio interface capabilities with
the core and are subsequently matched and configured when the
application hw params are known.

• Dynamic Audio Power Management (DAPM): DAPM automatically
sets the codec to it's minimum power state at all times. This includes
powering up/down internal power blocks depending on the internal
codec audio routing and any active streams.

• Pop and click reduction: Pops and clicks can be reduced by powering
the codec up/down in the correct sequence (including using digital
mute). ASoC signals the codec when to change power states.

To achieve all this, ASoC basically splits an embedded audio system into
three components:

• Codec driver: The codec driver is platform independent and contains
audio controls, audio interface capabilities, codec dapm definition
and codec IO functions.

• Platform driver: The platform driver contains the audio dma engine
and audio interface drivers (e.g. I2S, AC97, PCM) for that platform.

Audio Driver

Design

Version 03.00.00.03 Platform Support Products 45

• Machine driver: The machine driver handles any machine specific
controls and audio events i.e. turning on an amp at start of playback.

Following architecture diagram shows all the components and the
interactions among them:

Figure 5.1. ALSA SoC Architecture

Audio Driver

Configuration

46 Platform Support Products Version 03.00.00.03

5.4. Configuration
To enable/disable audio support, start the Linux Kernel Configuration
tool.

$ make menuconfig

Select Device Drivers from the main menu.

 ...
 ...
 Power management options --->
[*] Networking support --->
 Device Drivers --->
 File systems --->
 Kernel hacking --->
 ...
 ...

Select Sound card support as shown here:

 ...
 ...
 Multimedia devices --->
 Graphics support --->
<*> Sound card support --->
[*] HID Devices --->
[*] USB support --->
 ...
 ...

Select Advanced Linux Sound Architecture as shown here:

--- Sound card support
<*> Advanced Linux Sound Architecture --->
< > Open Sound System (DEPRECATED) --->

Select ALSA for SoC audio support as shown here:

 ...
 ...
[*] ARM sound devices (NEW) --->
[*] USB sound devices (NEW) --->
<*> ALSA for SoC audio support --->

Audio Driver

Configuration

Version 03.00.00.03 Platform Support Products 47

Select SoC Audio for TI OMAP EVMs as shown here:

--- ALSA for SoC audio support
<*> SoC Audio for the Texas Instruments OMAP chips
<*> SoC Audio support for OMAP3EVM board
< > Build all ASoC CODEC drivers (NEW)

Make sure that McBSP support is enabled. To check the same:

Select System Type from the main menu.

 ...
 ...
[*] Enable loadable module support --->
[*] Enable the block layer --->
 System Type --->
 Bus support --->
 Kernel Features --->
 ...
 ...

Select TI OMAP Implementations as shown here:

 ARM system type (TI OMAP) --->
 TI OMAP Implementations --->
-*- OMAP34xx Based System
-*- OMAP3430 support
 ...
 ...

McBSP support should be selected:

 ...
 ...
[] Multiplexing debug output
[*] Warn about pins the bootloader didn't set up
-*- McBSP support
< > Mailbox framework support
 System timer (Use 32KHz timer) --->
 ...
 ...

Audio Driver

Application Interface

48 Platform Support Products Version 03.00.00.03

5.5. Application Interface
This section provides the details of the Application Interface for the ALSA
Audio driver.

Application developer uses ALSA-lib, a user space library, rather than the
kernel API. The library offers 100% of the functionality of the kernel API,
but adds major improvements in usability, making the application code
simpler and better looking.

The online-documentation for the same is available at:

http://www.alsa-project.org/alsa-doc/alsa-lib/

5.5.1. Device Interface
The operational interface in /dev/ contains three main types of devices:
(a) PCM devices for recording or playing digitized sound samples, (b)
CTL devices that allow manipulating the internal mixer and routing of the
card, and (c) MIDI devices to control the MIDI port of the card, if any.

Name Description

/dev/snd/controlC0 Control devices (i.e. mixer, etc).

/dev/snd/pcmC0D0c PCM Card 0 Device 0 Capture
device.

/dev/snd/pcmC0D0p PCM Card 0 Device 0 Playback
device..

Table 5.2. Device Interface

5.5.2. Proc Interface
The /proc/asound kernel interface is a status and configuration
interface. A lot of useful information about the sound system can be
found in the /proc/asound subdirectory.

See the table below for different proc entries in /proc/asound:

Name Description

cards List of registered cards.

version Version and date the driver was
built on.

devices List of registered ALSA devices.

pcm The list of allocated PCM streams.

cardX/ (X = 0-7) The card specific directory.

cardX/pcm0p The directory of the given PCM
playback stream.

http://www.alsa-project.org/alsa-doc/alsa-lib/

Audio Driver

Commonly Used APIs

Version 03.00.00.03 Platform Support Products 49

Name Description

cardX/pcm0c The directory of the given PCM
capture stream.

Table 5.3. Proc Interface

5.5.3. Commonly Used APIs
Some of the commonly used APIs to write an ALSA based application are:

Name Description

snd_pcm_open Opens a PCM stream.

snd_pcm_close Closes a previously opened PCM
stream.

snd_pcm_hw_params_any Fill params with a full configuration
space for a PCM.

snd_pcm_hw_params_test_
<<parameter>>

Test the availability of important
parameters like number of
channels, sample rate etc.

snd_pcm_hw_params_test_format,
snd_pcm_hw_params_test_rate,
etc.

snd_pcm_hw_params_set_
<<parameter>>

Set the different configuration
parameters.

snd_pcm_hw_params_set_format,
snd_pcm_hw_params_set_rate,
etc.

snd_pcm_hw_params Install one PCM hardware
configuration chosen from a
configuration space.

snd_pcm_writei Write interleaved frames to a PCM.

snd_pcm_readi Read interleaved frames from a
PCM.

snd_pcm_prepare Prepare PCM for use.

snd_pcm_drop Stop a PCM dropping pending
frames.

snd_pcm_drain Stop a PCM preserving pending
frames.

Table 5.4. Commonly Used APIs

5.5.4. User Space Interactions
This section depicts the sequence of operations for a simple playback
and capture application.

Audio Driver

User Space Interactions

50 Platform Support Products Version 03.00.00.03

Figure 5.2. OMAP3 ALSA Driver : Half duplex playback

Figure 5.3. OMAP3 ALSA Driver : Half duplex record

Audio Driver

Sample Applications

Version 03.00.00.03 Platform Support Products 51

5.6. Sample Applications
This chapter describes the sample application provided along with the
package. The binary and the source for these sample application can are
available in the Examples directory of the Release Package folder.

5.6.1. Introduction
Writing an audio application involves the following steps:

• Opening the audio device.

• Set the parameters of the device.

• Receive audio data from the device or deliver audio data to the
device.

• Close the device.

These steps are explained in detail in this section.

Note

User space ALSA libraries can be downloaded from this link [http://
www.alsa-project.org/main/index.php/Download].

User needs to build and install them before he starts using the ALSA
based applications.

5.6.2. A minimal playback application
This program opens an audio interface for playback, configures it for
stereo, 16 bit, 44.1kHz, interleaved conventional read/write access.
Then its delivers a chunk of random data to it, and exits. It represents
about the simplest possible use of the ALSA Audio API, and isn't meant
to be a real program.

5.6.2.1. Opening the audio device

To write a simple PCM application for ALSA, we first need a handle for the
PCM device. Then we have to specify the direction of the PCM stream,
which can be either playback or capture. We also have to provide some
information about the configuration we would like to use, like buffer size,
sample rate, pcm data format. So, first we declare:

#include <stdio.h>
#include <stdlib.h>
#include <alsa/asoundlib.h>

#define BUFF_SIZE 4096

http://www.alsa-project.org/main/index.php/Download
http://www.alsa-project.org/main/index.php/Download
http://www.alsa-project.org/main/index.php/Download

Audio Driver

A minimal playback application

52 Platform Support Products Version 03.00.00.03

int main (int argc, char *argv[])
{
 int err;
 short buf[BUFF_SIZE];
 int rate = 44100; /* Sample rate */
 unsigned int exact_rate; /* Sample rate returned by */

 /* Handle for the PCM device */
 snd_pcm_t *playback_handle;

 /* Playback stream */
 snd_pcm_stream_t stream = SND_PCM_STREAM_PLAYBACK;

 /* This structure contains information about */
 /* the hardware and can be used to specify the */
 /* configuration to be used for the PCM stream. */
 snd_pcm_hw_params_t *hw_params;

The most important ALSA interfaces to the PCM devices are the "plughw"
and the "hw" interface. If you use the "plughw" interface, you need
not care much about the sound hardware. If your sound card does not
support the sample rate or sample format you specify, your data will
be automatically converted. This also applies to the access type and
the number of channels. With the "hw" interface, you have to check
whether your hardware supports the configuration you would like to use.
Otherwise, user can use the default interface for playback by:

 /* Name of the PCM device, like plughw:0,0 */
 /* The first number is the number of the soundcard, */
 /* the second number is the number of the device. */

 static char *device = "default"; /* playback device */

Now we can open the PCM device:

 /* Open PCM. The last parameter of this function is the mode. */
 if ((err = snd_pcm_open (&playback_handle,
 device, stream, 0)) < 0) {
 fprintf (stderr, "cannot open audio device (%s)\n",
 snd_strerror (err));
 exit (1);
 }

5.6.2.2. Setting the parameters of the device

Now we initialize the variables and allocate the hwparams structure:

 /* Allocate the snd_pcm_hw_params_t structure on the stack. */
 if ((err = snd_pcm_hw_params_malloc (&hw_params)) < 0) {
 fprintf (stderr, "cannot allocate hardware parameters (%s)\n",

Audio Driver

A minimal playback application

Version 03.00.00.03 Platform Support Products 53

 snd_strerror (err));
 exit (1);
 }

Before we can write PCM data to the soundcard, we have to specify
access type, sample format, sample rate, number of channels, number
of periods and period size. First, we initialize the hwparams structure
with the full configuration space of the soundcard:

 /* Init hwparams with full configuration space */
 if ((err = snd_pcm_hw_params_any (playback_handle,
 hw_params)) < 0) {
 fprintf (stderr, "cannot initialize hardware
 parameter structure (%s)\n",
 snd_strerror (err));
 exit (1);
 }

Now configure the desired parameters. For this example, we assume
that the soundcard can be configured for stereo playback of 16 Bit
Little Endian data, sampled at 44100 Hz. Therefore, we restrict the
configuration space to match this configuration only.

The access type specifies the way in which multi-channel data is stored
in the buffer. For INTERLEAVED access, each frame in the buffer contains
the consecutive sample data for the channels. For 16 Bit stereo data,
this means that the buffer contains alternating words of sample data for
the left and right channel.

 /* Set access type. */
 if ((err = snd_pcm_hw_params_set_access (playback_handle,
 hw_params, SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) {
 fprintf (stderr, "cannot set access type (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 /* Set sample format */
 if ((err = snd_pcm_hw_params_set_format (playback_handle,
 hw_params, SND_PCM_FORMAT_S16_LE)) < 0) {
 fprintf (stderr, "cannot set sample format (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 /* Set sample rate. If the exact rate is not supported */
 /* by the hardware, use nearest possible rate. */
 exact_rate = rate;

 if ((err = snd_pcm_hw_params_set_rate_near (playback_handle,
 hw_params, &exact_rate, 0)) < 0) {
 fprintf (stderr, "cannot set sample rate (%s)\n",
 snd_strerror (err));

Audio Driver

A minimal playback application

54 Platform Support Products Version 03.00.00.03

 exit (1);
 }

 if (rate != exact_rate) {
 fprintf(stderr, "The rate %d Hz is not supported by
 your hardware.\n ==> Using %d
 Hz instead.\n", rate, exact_rate);
 }

 /* Set number of channels */
 if ((err = snd_pcm_hw_params_set_channels (playback_handle,
 hw_params, 2)) < 0) {
 fprintf (stderr, "cannot set channel count (%s)\n",
 snd_strerror (err));
 exit (1);
 }

Now we apply the configuration to the PCM device pointed to by
pcm_handle and prepare the PCM device.

 /* Apply HW parameter settings to PCM device and prepare
 * device.
 */
 if ((err = snd_pcm_hw_params (playback_handle,
 hw_params)) < 0) {
 fprintf (stderr, "cannot set parameters (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 snd_pcm_hw_params_free (hw_params);

 if ((err = snd_pcm_prepare (playback_handle)) < 0) {
 fprintf (stderr, "cannot prepare audio
 interface for use (%s)\n", snd_strerror (err));
 exit (1);
 }

5.6.2.3. Writing data to the device

After the PCM device is configured, we can start writing PCM data to it.
The first write access will start the PCM playback. For interleaved write
access, we use the function:

 /* Write some junk data to produce sound. */
 if ((err =
 snd_pcm_writei (playback_handle, buf, BUFF_SIZE/2))
 != BUFF_SIZE/2) {
 fprintf (stderr, "write to audio interface failed (%s)\n",
 snd_strerror (err));
 exit (1);
 } else {
 fprintf (stdout, "snd_pcm_writei successful\n");

Audio Driver

A minimal record application

Version 03.00.00.03 Platform Support Products 55

 }

After the PCM playback is started, we have to make sure that our
application sends enough data to the soundcard buffer. Otherwise, a
buffer under-run will occur. After such an under-run has occurred,
snd_pcm_prepare should be called.

5.6.2.4. Closing the device

After the data has been transferred, the device needs to be closed by
calling:

 snd_pcm_close (playback_handle);
 exit (0);
}

5.6.3. A minimal record application
This program opens an audio interface for capture, configures it for
stereo, 16 bit, 44.1kHz, interleaved conventional read/write access.
Then its reads a chunk of random data from it, and exits. It isn't meant
to be a real program.

Note that it is not possible to use one pcm handle for both playback and
capture. So you have to configure two handles if you want to access the
PCM device in both directions.

#include <stdio.h>
#include <stdlib.h>
#include <alsa/asoundlib.h>

#define BUFF_SIZE 4096

int main (int argc, char *argv[])
{
 int err;
 short buf[BUFF_SIZE];
 int rate = 44100; /* Sample rate */
 int exact_rate; /* Sample rate returned by */

 snd_pcm_t *capture_handle;

 /* This structure contains information about */
 /* the hardware and can be used to specify the */
 /* configuration to be used for the PCM stream. */
 snd_pcm_hw_params_t *hw_params;

 /* Name of the PCM device, like hw:0,0 */
 /* The first number is the number of the soundcard, */
 /* the second number is the number of the device. */
 static char *device = "default"; /* capture device */

Audio Driver

A minimal record application

56 Platform Support Products Version 03.00.00.03

 /* Open PCM. The last parameter of this function is
 * the mode.
 */
 if ((err = snd_pcm_open (&capture_handle, device,
 SND_PCM_STREAM_CAPTURE, 0)) < 0) {
 fprintf (stderr, "cannot open audio device (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 memset(buf,0,BUFF_SIZE);

 /* Allocate the snd_pcm_hw_params_t structure on the stack. */
 if ((err = snd_pcm_hw_params_malloc (&hw_params)) < 0) {
 fprintf (stderr, "cannot allocate hardware
 parameter structure (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 /* Init hwparams with full configuration space */
 if ((err = snd_pcm_hw_params_any (capture_handle,
 hw_params)) < 0) {
 fprintf (stderr, "cannot initialize hardware
 parameter structure (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 /* Set access type. */
 if ((err = snd_pcm_hw_params_set_access (capture_handle,
 hw_params,
 SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) {
 fprintf (stderr, "cannot set access type (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 /* Set sample format */
 if ((err = snd_pcm_hw_params_set_format (capture_handle,
 hw_params,
 SND_PCM_FORMAT_S16_LE)) < 0) {
 fprintf (stderr, "cannot set sample format (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 /* Set sample rate. If the exact rate is not supported */
 /* by the hardware, use nearest possible rate. */
 exact_rate = rate;

 if ((err = snd_pcm_hw_params_set_rate_near (capture_handle,
 hw_params, &exact_rate, 0)) < 0) {
 fprintf (stderr, "cannot set sample rate (%s)\n",
 snd_strerror (err));
 exit (1);
 }

Audio Driver

A minimal record application

Version 03.00.00.03 Platform Support Products 57

 if (rate != exact_rate) {
 fprintf(stderr, "The rate %d Hz is not supported "
 "by your hardware.\n ==> Using %d "
 "Hz instead.\n", rate, exact_rate);
 }

 /* Set number of channels */
 if ((err = snd_pcm_hw_params_set_channels(capture_handle,
 hw_params, 2)) < 0) {
 fprintf (stderr, "cannot set channel count (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 /* Apply HW parameter settings to PCM device and
 * prepare device.
 */
 if ((err = snd_pcm_hw_params (capture_handle,
 hw_params)) < 0) {
 fprintf (stderr, "cannot set parameters (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 snd_pcm_hw_params_free (hw_params);

 if ((err = snd_pcm_prepare (capture_handle)) < 0) {
 fprintf (stderr, "cannot prepare audio interface for use
 (%s)\n",
 snd_strerror (err));
 exit (1);
 }

 /* Read data into the buffer. */
 if ((err = snd_pcm_readi (capture_handle, buf, 128)) != 128) {
 fprintf (stderr, "read from audio interface failed (%s)\n",
 snd_strerror (err));
 exit (1);
 } else {
 fprintf (stdout, "snd_pcm_readi successful\n");
 }

 snd_pcm_close (capture_handle);
 exit (0);
}

Audio Driver

Revision History

58 Platform Support Products Version 03.00.00.03

5.7. Revision History
0.95 Original version

0.97 Added proc and device related information and reorganized
the content.

0.97p1 Added constraint that configuration of capture and playback
streams in different sampling rates is not possible because
of McBSP instance 2 limitation.

02.00.00 Moved to kernel version 2.6.26 and alsa core version 1.0.16.

02.01.00 Moved to ALSA SoC layer v1.0.18a and kernel version
2.6.29.

02.01.01 Moved to ALSA SoC layer v1.0.19.

03.00.00 Moved to ALSA SoC layer v1.0.20 and kernel version 2.6.31-
rc7.

Version 03.00.00.03 Platform Support Products 59

Display Driver

Abstract

This chapter provides detailed description of feature set and software interface for the display driver
implementation.

Table of Contents

6.1. Introduction ... 61

6.1.1. References ... 61

6.1.2. Acronyms & Definitions .. 61

6.1.3. Hardware Overview ... 61

6.2. Features .. 63

6.2.1. Overview ... 63

6.3. Architecture ... 64

6.3.1. Driver Architecture .. 64

Display Driver

60 Platform Support Products Version 03.00.00.03

6.3.2. Software Design Interfaces 64

6.4. Usage ... 66

6.4.1. Opening and Closing of Driver 66

6.4.2. Command Line arguments .. 66

6.4.3. Buffer Management ... 69

6.4.4. Rotation ... 73

6.4.5. Color Keying .. 75

6.4.6. Alpha Blending ... 80

6.4.7. Buffer Format ... 85

6.4.8. Display Window .. 88

6.4.9. Cropping .. 89

6.4.10. Scaling .. 90

6.4.11. Color look table .. 91

6.4.12. Streaming .. 91

6.5. Software Interfaces .. 94

6.5.1. Frame-Buffer Driver Interface 94

6.5.2. V4L2 Driver Interface .. 97

6.5.3. SYSFS Software Interfaces 99

6.5.4. Miscellaneous Configurations 103

6.6. Driver Configuration .. 106

6.6.1. V4L2 video driver .. 106

6.6.2. Framebuffer driver .. 107

6.7. Sample Application Flow .. 111

6.8. Revision History .. 113

Display Driver

Introduction

Version 03.00.00.03 Platform Support Products 61

6.1. Introduction
Display Sub-System hardware integrates one graphics pipeline, two
video pipelines, and two overlay managers (one for digital and one for
analog interface). Digital interface is used for LCD and DVI output and
analog interface is used for TV out.

The primary functionality of the display driver is to provide interfaces
to user level applications and management of Display Sub-System
hardware.

This section defines and describes the usage of user level interfaces of
Video Display Driver.

Note

Please note that the AM3517 Display Sub-System module is same as
OMAP35x, so terms have been used inter-changeably and referred as
OMAP35x in this document.

6.1.1. References
1. Video for Linux Two Home Page [http://linux.bytesex.org/v4l2/]

2. Video for Linux Two API Specification [http://v4l2spec.bytesex.org/
v4l2spec/v4l2.pdf]

6.1.2. Acronyms & Definitions
Acronym Definition

V4L2 Video for Linux Two

DSS Display SubSystem

NTSC National Television System Committee

PAL Phase Alternating Line

LCD Liquid Crystal Display

DVI Digital Visual Interface

Table 6.1. Video Display Driver: Acronyms

6.1.3. Hardware Overview
The display subsystem provides the logic to display a video frame from
the memory frame buffer (either SDRAM or SRAM) on a liquid-crystal
display (LCD) panel or a TV set. The display subsystem integrates the
following elements

• Display controller (DISPC) module

http://linux.bytesex.org/v4l2/
http://linux.bytesex.org/v4l2/
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf

Display Driver

Hardware Overview

62 Platform Support Products Version 03.00.00.03

• Remote frame buffer interface (RFBI) module

• Serial display interface (SDI) complex input/output (I/O) module
with the associated phased-locked loop (PLL)

• Display serial interface (DSI) complex I/O module and a DSI protocol
engine

• DSI PLL controller that drives a DSI PLL and high-speed (HS) divider

• NTSC/PAL video encoder

Display Driver

Features

Version 03.00.00.03 Platform Support Products 63

6.2. Features

6.2.1. Overview
The Display driver supports the following features:

• Supports LCD display interface at VGA resolution (480*640)

• Supports TV display interface at NTSC/PAL resolutions (both S-Video
out and Composite out is supported)

• Supports DVI digital interface (mode selection via boot argument).

• Supports Graphics pipeline and two video pipelines. Graphics
pipeline is supported through fbdev and video pipelines through
V4L2.

• Supported color formats: On OSD (Graphics pipeline): RGB565,
RGB888, ARGB and RGBA. On Video pipelines: YUV422 interleaved,
RGB565, RGB888.

• Configuration of parameters such as height and width of display
screen, bits-per-pixel etc.

• Supports setting up of OSD and Video pipeline destinations (TV or
LCD) through syfs interface.

• Supports buffer management through memory mapped and user
pointer buffer exchange for application usage (mmaped).

• Supports rotation - 0, 90, 180 and 270 degrees on LCD and TV
output

• Supports destination and source colorkeying on Video pipelines
through V4L2.

• Supports alpha blending through ARGB pixel format on Video2
pipeline and RGBA and ARGB format on graphics pipeline and global
alpha blending

Display Driver

Architecture

64 Platform Support Products Version 03.00.00.03

6.3. Architecture
This chapter describes the Driver Architecture and Design concepts

6.3.1. Driver Architecture
OMAP35x display hardware integrates one graphics pipeline, two video
pipelines, and two overlay managers (one for digital and one for analog
interface). Digital interface is used for LCD and DVI output and analog
interface is used for TV out.

The primary functionality of the display driver is to provide interfaces to
user level applications and management to OMAP35x display hardware.
This includes, but is not limited to:

• GUI rendering through the graphics pipeline.

• Static image or video rendering through two video pipelines.

• Connecting each of three pipelines to either LCD or TV output so the
display layer is presented on the selected output path.

• Image processing (cropping, rotation, mirroring, color conversion,
resizing, and etc).

Figure 6.1. OMAP35x Display Subsystem Architecture

6.3.2. Software Design Interfaces
Above figure shows the major components that makes up the DSS
software sub-system

Display Driver

Software Design Interfaces

Version 03.00.00.03 Platform Support Products 65

Display Library

This is a HAL/functional layer controlling the bulk of DSS hardware. It
exposes the number of APIs controlling the overlay managers, clock, and
pipelines to the user interface drivers like V4L2 and FBDEV.

It also exposes the functions for registering and de-registering of the
various display devices like LCD and DVI to the DSS overlay managers.
SYSFS interfaces

The SYSFS interfaces are mostly used as the control path for configuring
the DSS parameters which are common between FBDEV and V4L2 like
the alpha blending, color keying, etc.

It is also used for switching the output of the pipeline to either LCD or
Digital overlay manager. In future sysfs entries might also be used to
switch the modes like NTSC, PAL on TV and 480P, 720P on DVI outputs.

Note

Please note that due to clock source limitation while switching the
output DSS2 throws error message "Could not find exact pixel
clock" (In order to fix this we need to use DSI input clock source).

Frame Buffer Driver

This driver is registered with the FBDEV subsystem, and is responsible
for managing the graphics layer frame buffer. Driver creates /dev/fb0 as
the device node. Application can open this device node to open the driver
and negotiate parameters with the driver through frame buffer ioctls.
Application maps driver allocated buffers in the application memory
space and fills them for the driver to display.
Video Applications & V4L2 subsystem

Video applications (camera, camcorder, image viewer, etc.) use the
standard V4L2 APIs to render static images and video to the video layers,
or capture/preview camera images.

This driver is responsible for managing the video layers' frame buffers.
It is a V4L2 compliant driver with some additions to implement special
software requirements that target OMAP35x hardware features . This
driver conforms to the Linux driver model. For using the driver,
application should create the device nodes /dev/video1and /dev/
video2device nodes for two video layers. Application can open the driver
by opening these device nodes and negotiate the parameters by V4L2
ioctls. Initially application can request the driver to allocate number of
buffers and MMAPs these buffers. Then the application can fill up these
buffers and pass them to driver for display by using the standard V4L2
streaming ioctls.

Display Driver

Usage

66 Platform Support Products Version 03.00.00.03

6.4. Usage

6.4.1. Opening and Closing of Driver

The device can be opened using open call from the application, with
the device name and mode of operation as parameters. Application can
open the driver only in blocking mode. Non-blocking mode of open is
not supported.

V4L2 Driver

The driver will expose two software channels (/dev/video1 and /dev/
video2), one for each video pipeline. Both of these channels supports
only blocking mode of operations. These channels can only be opened
once.

/* Open a video Display logical channel in blocking mode */
fd = open ("/dev/video1", O_RDWR);
if (fd == -1) {
 perror("failed to open display device\n");
 return -1;
}
/* closing of channels */
close (fd);

FBDEV Driver

The driver will expose one software channels (/dev/fb0) for the graphics
pipeline. The driver cannot be opened multiple times. Driver can be
opened only once.

/* Open a graphics Display logical channel in blocking mode */
fd = open ("/dev/fb0", O_RDWR);
if (fd == -1) {
 perror("failed to open display device\n");
 return -1;
}
/* closing of channels */
close (fd);

6.4.2. Command Line arguments

V4L2 Driver

V4L2 driver supports set of command line argument for, default number
of buffers, their buffer size, enable/disable VRFB buffer allocation and
debug option for both the video pipelines.

Display Driver

Command Line arguments

Version 03.00.00.03 Platform Support Products 67

V4L2 driver uses the VRFB buffers for rotation. Because of the limitation
of the VRFB engine these buffers are quite big in size. Please refer to the
Buffer Management section for required and allocated size of the VRFB
buffers. VRFB buffers are allocated by driver during vidioc_reqbufs
ioctl if the rotation is enabled and freed during vidioc_streamoff. But
under heavy system load, memory fragmentation may occur and VFRB
buffer allocation may fail. To address this issue V4L2 driver provides
command line argument to allocate the VRFB buffers at driver init time
and buffers will be freed when driver is unloaded.

Below is the list of arguments which V4L2 driver supports -

Argument Description

video1_numbuffers Number of buffers to be allocated at
init time for Video1 device.

video2_numbuffers Number of buffers to be allocated at
init time for Video2 device.

video1_bufsize Size of the buffer to be allocated for
video1 device

video2_bufsize Size of the buffer to be allocated for
video2 device

vid1_static_vrfb_alloc Static allocation of the VRFB buffer for
video1 device

vid2_static_vrfb_alloc Static allocation of the VRFB buffer for
video2 device

debug Enable debug messaging

Table 6.2. Acronyms

For dynamic build of the driver, these argument are specified at the time
of inserting the driver. For static build of the driver, these argument can
be specified along with boot time arguments. Following example shows
how to specify command line argument for static and dynamic build.

Insert the dynamically built module with following parameters

insmod omap_vout.ko video1_numbuffers=3 video2_numbuffers=3
 video1_bufsize=644000 video2_bufsize=644000
 vid1_static_vrfb_alloc=y vid2_static_vrfb_alloc=y

Set the bootargs for statically compiled driver from bootloader:

OMAP3_EVM # setenv bootargs console=ttyS0,115200n8
 mem=128M root=/dev/nfs noinitrd
 nfsroot=172.24.190.19:nfs-server/home,nolock ip=dhcp
 omap_vout.video1_numbuffers=3 omap_vout.video2_numbuffers=3
 omap_vout.video1_bufsize=64400 omap_vout.video2_bufsize=64400

Display Driver

Command Line arguments

68 Platform Support Products Version 03.00.00.03

 omap_vout.vid1_static_vrfb_alloc=y
 omap_vout.vid2_static_vrfb_alloc=y mpurate=600

Note

The entire command should be entered in a single line.

FBDEV Driver

FBDEV driver supports set of command line argument for enabling/
setting rotation angle, enable/disable VRFB rotation, default mode, size
of vram and debug option. These command line arguments can only be
used with boot time arguments as FBDEV driver only supports static
build.

Below is the list of arguments which Fbdev driver supports -

Argument Description

mode Default video mode for specified displays

vram VRAM allocated memory for a framebuffer, user
can individually configure VRAM buffers for each
plane/device node.

debug Enable debug printing. You have to have OMAPFB
debug support enabled in kernel config

vrfb Use VRFB rotation for framebuffer

rotate Default rotation applied to framebuffer

Table 6.3. Acronyms

Following example shows how to specify 90 degree rotation in boot time
argument.

Set the bootargs for enabling rotation:

OMAP3_EVM # setenv bootargs console=ttyS0,115200n8 mem=128M
 noinitrd root=/dev/nfs nfsroot=172.24.190.19:nfs-server/
home,nolock ip=dhcp omapfb.rotate=1 omapfb.vrfb=y mpurate=600

Following example shows how to specify size of framebuffer in boot time
argument.

Set the bootargs for specifying size of framebuffer:

OMAP3_EVM # setenv bootargs console=ttyS0,115200n8 mem=128M
 noinitrd root=/dev/nfs nfsroot=172.24.190.19:nfs-server/
home,nolock ip=dhcp vram=20M omapfb.vram=0:20M mpurate=600

Display Driver

Buffer Management

Version 03.00.00.03 Platform Support Products 69

Note

The entire command should be entered in a single line.

Misc (DSS) Argument

There are few arguments which allows control over core DSS
functionality.

Argument Description

def_disp Name of default display, to which all overlays will
be connected.

debug Enable debug printing.

Table 6.4. Acronyms

Usage:

OMAP3_EVM # setenv bootargs console=ttyS0,115200n8 mem=128M
 noinitrd root=/dev/nfs nfsroot=172.24.190.19:nfs-server/
home,nolock ip=dhcp omapdss.def_disp="dvi" omapdss.debug=y
 mpurate=600

Note

The entire command should be entered in a single line.

6.4.3. Buffer Management
Driver Without Rotation With Rotation

FBDEV Driver A single buffer of size
480*640*2 bytes, can be
changed through bootargs

A single buffer of size
2048*640*2 bytes, can be
changed through bootargs

V4L2 Driver Single buffer takes
1280*720*4 bytes. Number
of buffers is configurable
using VIDIOC_REQBUFS
ioctl and command line
argument.

Same requirement as
without rotation.
Additionally allocates one
buffer of size 3686400 bytes
for each context. Number
of context are same as the
number of buffers allocated
using REQBUFS, which is
not more than four.

Table 6.5. Memory requirement for V4L2 and FBDEV driver Buffers

Display Driver

Buffer Management

70 Platform Support Products Version 03.00.00.03

Note

Please note that user must configure the required amount of buffer
size through command line argument in case of Framebuffer VRFB
rotation.

V4L2 Driver

Memory Mapped buffer mode and User pointer buffer mode are the two
memory allocation modes supported by driver.

In Memory map buffer mode, application can request memory from the
driver by calling VIDIOC_REQBUFS ioctl. In this mode, maximum number
of buffers is limited to VIDEO_MAX_FRAME (defined in driver header
files) and is limited by the available memory in the kernel. If driver is not
able to allocate the requested number of buffer, it will return the number
of buffer it is able to allocate. The main steps that the application must
perform for buffer allocation are:

1) Allocating Memory

This ioctl is used to allocate memory for frame buffers. This is a necessary
ioctl for streaming IO. It has to be called for both drivers buffer mode
and user buffer mode. Using this ioctl, driver will identify whether driver
buffer mode or user buffer mode will be used.

Ioctl: VIDIOC_REQBUFS

It takes a pointer to instance of the v4l2_requestbuffers structure as
an argument.

User can specify the buffer type (V4L2_BUF_TYPE_VIDEO_OUTPUT),
number of buffers, and memory type (V4L2_MEMORY_MMAP,
V4L2_MEMORY_USERPTR)at the time of buffer allocation. In case of driver
buffer mode, this ioctl also returns the actual number of buffers allocated
in count member of v4l2_requestbuffer structure

It can be called with zero number of buffers to free up all the
buffers already allocated. It also frees allocated buffers when application
changes buffer exchange mechanism. Driver always allocates buffers
of maximum image size supported. If application wants to change
buffer size, it can be done through video1_buffsize and video2_buffsize
command line arguments

When rotation is enabled, driver also allocates buffer for the VRFB virtual
memory space along with the mmap or user buffer. It allocates same
number of buffers as the mmap or user buffers. Maximum number of
buffers, which can be allocated, is 4 when rotation is enabled.

/* structure to store buffer request parameters */
struct v4l2_requestbuffers reqbuf;
reqbuf.count = numbuffers;

Display Driver

Buffer Management

Version 03.00.00.03 Platform Support Products 71

reqbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
reqbuf.memory = V4L2_MEMORY_MMAP;
ret = ioctl(fd , VIDIOC_REQBUFS, &reqbuf);
if(ret < 0) {
 printf("cannot allocate memory\n");
 close(fd);
 return -1;
}

2) Getting physical address

This ioctl is used to query buffer information like buffer size and buffer
physical address. This physical address is used in m-mapping the buffers.
This ioctl is necessary for driver buffer mode as it provides the physical
address of buffers, which are used to mmap system call the buffers.

Ioctl: VIDIOC_QUERYBUF

It takes a pointer to instance of v4l2_buffer structure as an argument.
User has to specify the buffer type (V4L2_BUF_TYPE_VIDEO_OUTPUT),
buffer index, and memory type (V4L2_MEMORY_MMAP)at the time of
querying.

/* allocate buffer by VIDIOC_REQBUFS */

/* structure to query the physical address
of allocated buffer */
struct v4l2_buffer buffer;
/* buffer index for querying -0 */
buffer.index = 0;
buffer.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
buffer.memory = V4L2_MEMORY_MMAP;

if (ioctl(fd, VIDIOC_QUERYBUF, &buffer) < 0) {
 printf("buffer query error.\n");
 close(fd);
 exit(-1);
}
/*The buffer.m.offset will contain the physical
address returned from driver*/

3) Mapping Kernel space address to user space

Mapping the kernel buffer to the user space can be done via mmap. User
can pass buffer size and physical address of buffer for getting the user
space address

/* allocate buffer by VIDIOC_REQBUFS */
/* query the buffer using VIDIOC_QUERYBUF */
/* addr hold the user space address */
unsigned int addr;
Addr = mmap(NULL, buffer.size,PROT_READ | PROT_WRITE, MAP_SHARED,

Display Driver

Buffer Management

72 Platform Support Products Version 03.00.00.03

 fd, buffer.m.offset);
/* buffer.m.offset is same as returned from VIDIOC_QUERYBUF */

FBDEV Driver

FBDEV driver supports only memory mapped buffers. Driver allocates
one physically contiguous buffers, which can support 640X480 resolution
for 16 bpp format. Following steps are required to map buffers in
application memory space

1) Getting fix screen information

FBIOGET_FSCREENINFO ioctl is used to get the not-changing screen
information like physical address of the buffer, size of the buffer, line
length.

/* Getting fix screen information */
struct fb_fix_screeninfo fix;
ret = ioctl(fd, FBIOGET_FSCREENINFO, &fix);
if(ret < 0) {
 printf("Cannot get fix screen information\n");
 close(fd);
 exit(0);
}
printf("Line length = %d\n",fix.line_length);
printf("Physical Address = %x\n",fix.smem_start);
printf("Buffer Length = %d\n",fix.smem_len);

2) Getting Variable screen information

FBIOGET_VSCREENINFO ioctl is used to get the variable screen
information like resolution, bits per pixel etc.

/* Getting fix screen information */
struct fb_var_screeninfo var;
ret = ioctl(fd, FBIOGET_VSCREENINFO, &var);
if(ret < 0) {
 printf("Cannot get variable screen information\n");
 close(fd);
 exit(0);
}
printf("Resolution = %dx%d\n",var.xred, var.yres);
printf("bites per pixel = %d\n",var.bpp);

3) Mapping Kernel space address to user space

Mapping the kernel buffer to the user space can be done via mmap
system call.

/* addr hold the user space address */
unsigned int addr, buffersize;

Display Driver

Rotation

Version 03.00.00.03 Platform Support Products 73

/* Get the fix screen info */
/* Get the variable screen information */
buffersize = fix.line_length * var.yres;
addr = mmap(NULL, buffersize, PROT_READ | PROT_WRITE, MAP_SHARED,
 fd, 0);
/* buffer.m.offset is same as returned from VIDIOC_QUERYBUF */

6.4.4. Rotation

Rotation is implemented with use of Rotation Engine module in Virtual
Rotation Frame Buffer module in OMAP35X. Rotation engine supports
rotation of an image with degree 0, 90, 180 and 270. There are 12
contexts available for rotating an image and there are four virtual
memory space associated with each context. To rotate an image, image
is written to 0 degree virtual memory for a context and rotated image can
read back from the virtual memory for that angle of the same context.

For using Rotation Engine, User has to allocate physical memory and
provide address of the memory to the rotation engine. The buffer size
for this physical buffer should be large enough to store the image to
be rotated. When program writes to the virtual address of the context,
rotation engine write to this memory space and when program reads
image from virtual address, rotation engine reads image from this buffer
with rotation angle.

V4L2 Driver

V4L2 driver supports rotation by using rotation engine in the VRFB
module. Driver allocates physical buffers, required for the rotation
engine, when application calls VIDIOC_REQBUFS ioctl. Therefore, when
this ioctl is called driver allocates buffers for storing image and allocates
buffers for the rotation engine. It also programs VRFB rotation engine
when this ioctl is called. At the time of enqueing memory mapped
buffer, driver copies entire image from mmaped buffer to buffer for the
rotation engine using DMA. DSS is programmed to take image from VRFB
memory space when rotation is enabled. So DSS always gets rotated
image. Maximum four buffers can be allocated using REQBUFS ioctl when
rotation is enabled.

Driver provides ioctl interface for enabling/disabling and changing the
rotation angle. These ioctls are VIDIOC_S_CTRL/VIDIOC_G_CTRL as
drive allocates buffer for VRFB during REQBUFS ioctl, application has
to enable/set the rotation angle before calling REQBUFS ioctl. After
enabling rotation, application can change the rotation angle. Rotation
angle cannot be changed while streaming is on. Following code shows
how to set rotation angle to 90 degree.

Important

Rotation value must be set using VIDIOC_S_CTRL before setting any
format using VIDIOC_S_FMT as VIDIOC_S_FMT uses rotation value

Display Driver

Rotation

74 Platform Support Products Version 03.00.00.03

for calculating buffer formats. Also VIDIOC_S_FMT ioctl must be
called after changing the rotation angle to change parameters as per
the new rotation angle

struct v4l2_control control;
int degree = 90;

control.id = V4L2_CID_ROTATE;
control.value = degree;
ret = ioctl(fd, VIDIOC_S_CTRL, &control);
 if (ret < 0) {
 perror("VIDIOC_S_CTRL\n");
 close(fd);
 exit(0);
 }
/* Rotation angle is now set to 90 degree. Application can now do
 streaming to see rotated image*/

FBDEV Driver

FBDEV driver supports rotation by using rotation engine in the VRFB
module. For using this feature of the driver, rotation has to be enabled.
Application can enable rotation by enabling/setting rotation angle in boot
time argument of the kernel for FBDEV driver. Applications can thus use
the FBIOPUT_VSCREENINFO ioctl to set the rotation angle. Applications
have to set the 'rotate' field in the fb_var_screeninfo structure equal to
the angle of rotation (0, 90, 180 or 270) and call this ioctl. Frame buffer
driver also supports the rotation through sysfs entry. Any one of the two
method can be used to configure rotation.

Constraint: While doing rotation x-resolution virtual should be equal to
x-resolution. y-resolution virtual should be greater than or equal to y-
resolution. Please note that VRFB rotation engine requires alignment of
32 bytes in horizontal size and 32 lines in vertical size. So while doing
rotation x-resolution should be 32 byte aligned and y resolution and y
resolution virtual should be 32 lines aligned. For example for 360X360
required resolution with 16bpp no of bytes per line comes to 360*2=720.
Which is not 32 byte aligned. While no of lines comes to 360 which is also
not 32 lines aligned. So actual resolution should be set to 368X368. But
if same resolution is required for 32bpp then no of bytes per line comes
to 360*4 that is 1440. Which is 32 byte aligned so actual resolution
should be set to 360X368. Also the maximum y-res virtual possible is
2048 because of VRFB limitation when rotation enabled.

var.rotate variable should not be modified when rotation is not selected
through command line arguments else behaviour is unexpected.

Important

By default frame buffer driver allocates the buffer for single VGA
(480x640) frame considering 0 degree rotation.

Display Driver

Color Keying

Version 03.00.00.03 Platform Support Products 75

This allocation can be overridden using the command line arguments
"vram=<size> and omapfb.vram=<fb>:<size>

Memory requirement can be calculated by following equation

(2048 * max(xres_virtual, yres_virtual) * max_Bpp)*
NO_OF_BUFFERS, 2048 is the default pitch required by VRFB,
xres_virtual = maximum virtual x-resolution required, yres_virtual =
maximum virtual y-resolution required, max_Bpp = maximum bytes per
pixel required, NO_OF_BUFFERS = Number of buffers required for
panning.

So for 720*1280 resolution with 32bpp with two buffers with 90 or 270
degree rotation it comes to (2048 * 1280 * 4) * 2 = 20971520 bytes
which rounds upto 20M bytes. so above command line arguments will
look like

"vram=20M omapfb.vram=0:20M"

Please refer to the section Supported Command line Argument.

Following code listings demos how to set the rotation in frame buffer
driver using ioctl and sysfs entry.

struct fb_var_screeninfo var;
/* Set the rotation through ioctl. */
/* Get the Variable screen info through "FBIOGET_VSCREENINFO" */
var.rotate = 1; /* To set rotation angle to 90 degree */
if (ioctl(fd, FBIOPUT_VSCREENINFO, &var)<0) {
 perror("Error:FBIOPUT_VSCREENINFO\n");
 close(fd);
 exit(4);
}

Setting the rotation through sysfs where 0 - 0 degree, 1 - 90 degree, 2
- 180 degree and 3 - 270 degree respectively

echo 1 > /sys/class/graphics/fb0/rotate

6.4.5. Color Keying

There are two types of transparent color keys: Video source transparency
and graphics destination transparency key. The encoded pixel color value
is compared to the transparency color key. For CLUT bitmaps, the palette
index is compared to the transparency color key and not to the palette
value pointed out by the palette index.

Display Driver

Color Keying

76 Platform Support Products Version 03.00.00.03

Figure 6.2. Video source color Keying

Display Driver

Color Keying

Version 03.00.00.03 Platform Support Products 77

Figure 6.3. Video destination color Keying

Constraint:The video source transparency color key and graphics
destination transparency color key cannot be active at the same time.
Color keys are only available in V4L2 Driver.

Video source transparency color key value allows defining a color that
the matching pixels with that color in the video pipelines are replaced
by the pixels in graphics pipeline. It is limited to RGB formats only and
non-scaling cases.

The Graphics destination color key allows defining a color that the non-
matching pixels in the graphics pipelines prevent video overlay. The
destination transparency color key is applicable only in the graphics
region when graphics and video overlap. Otherwise, the destination
transparency color key is ignored.

One of the colors keys can be activated at a time. This implies both
key cannot be used simultaneously. All color key related IOCTLs are not
pipeline oriented. An application can configure keys through either of two
device nodes. Following example shows how to enable source color key.

struct v4l2_framebuffer framebuffer;

ret = ioctl (fd, VIDIOC_G_FBUF, &framebuffer);

Display Driver

Color Keying

78 Platform Support Products Version 03.00.00.03

if (ret < 0) {
 perror ("VIDIOC_G_FBUF");
 close(fd);
 exit(1);
}
/* Set SRC_COLOR_KEYING if device supports that */
if(framebuffer.capability & V4L2_FBUF_CAP_SRC_CHROMAKEY) {

 framebuffer.flags |= V4L2_FBUF_FLAG_SRC_CHROMAKEY;
 ret = ioctl (fd, VIDIOC_S_FBUF, &framebuffer);
 if (ret < 0) {
 perror ("VIDIOC_S_FBUF");
 close(fd);
 exit(1);
 }
}

The code snippet below illustrates how to disable source color keying

struct v4l2_framebuffer framebuffer;
ret = ioctl (fd, VIDIOC_G_FBUF, &framebuffer);
if (ret < 0) {
 perror ("VIDIOC_G_FBUF");
 close(fd);
 exit(1);
}
if(framebuffer.capability & V4L2_FBUF_CAP_SRC_CHROMAKEY) {

 framebuffer.flags &= ~V4L2_FBUF_FLAG_SRC_CHROMAKEY;

 ret = ioctl (fd, VIDIOC_S_FBUF, &framebuffer);
 if (ret < 0) {
 perror ("VIDIOC_S_FBUF");
 close(fd);
 exit(1);
 }
}

The code snippet below illustrates how to enable destination color keying

struct v4l2_framebuffer framebuffer;

ret = ioctl (fd, VIDIOC_G_FBUF, &framebuffer);
if (ret < 0) {
 perror ("VIDIOC_G_FBUF");
 close(fd);
 exit(1);
}
/* Set SRC_COLOR_KEYING if device supports that */
if(framebuffer.capability & V4L2_FBUF_CAP_CHROMAKEY) {

 framebuffer.flags |= V4L2_FBUF_FLAG_CHROMAKEY;
 ret = ioctl (fd, VIDIOC_S_FBUF, &framebuffer);
 if (ret < 0) {
 perror ("VIDIOC_S_FBUF");

Display Driver

Color Keying

Version 03.00.00.03 Platform Support Products 79

 close(fd);
 exit(1);
 }
}

The code snippet below illustrates how to disable destination color keying

struct v4l2_framebuffer framebuffer;
ret = ioctl (fd, VIDIOC_G_FBUF, &framebuffer);
if (ret < 0) {
 perror ("VIDIOC_G_FBUF");
 close(fd);
 exit(1);
}
if(framebuffer.capability & V4L2_FBUF_CAP_CHROMAKEY) {

 framebuffer.flags &= ~V4L2_FBUF_FLAG_CHROMAKEY;

 ret = ioctl (fd, VIDIOC_S_FBUF, &framebuffer);
 if (ret < 0) {
 perror ("VIDIOC_S_FBUF");
 close(fd);
 exit(1);
 }
}

Below program listing shows how to set the chromakey value. Please
note that chroma key value should be set before enabling the chroma
keying. Overlay manager should not be changed between the setting up
of chroma key and enabling the chroma keying.

struct v4l2_format fmt;
u8 chromakey = 0xF800; /* Red color RGB565 format */
fmt.type = V4L2_BUF_TYPE_VIDEO_OVERLAY;

ret = ioctl(fd, VIDIOC_G_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_G_FMT\n");
 close(fd);
 exit(0);
}
fmt.fmt.win.chromakey = chromakey;

ret = ioctl(fd, VIDIOC_S_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_G_FMT\n");
 close(fd);
 exit(0);
}

The code snippet below illustrates how to get the chromakey value.

struct v4l2_format fmt;
fmt.type = V4L2_BUF_TYPE_VIDEO_OVERLAY;

Display Driver

Alpha Blending

80 Platform Support Products Version 03.00.00.03

ret = ioctl(fd, VIDIOC_G_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_G_FMT\n");
 close(fd);
 exit(0);
}
printf("Global alpha value read is %d\n", fmt.fmt.win.chromakey);

6.4.6. Alpha Blending

Alpha blending is a process of blending a foreground color with a
background color and producing a new blended color. New blended color
depends on the transparency factor referred to as alpha factor of the
foreground color. If the alpha factor is 100% then blended image will
have only foreground color. If the alpha factor is 0% blended image
will have only back ground color. Any value between 0 to 100% will
blend the foreground and background color to produce new blended color
depending upon the alpha factor.

Figure 6.4. Alpha blending with almost 50% transparency

Display Driver

Alpha Blending

Version 03.00.00.03 Platform Support Products 81

Figure 6.5. Alpha blending with almost 100% transparency

Figure 6.6. Alpha blending with almost 0% transparency

Overlay manager of DSS is capable of supporting the alpha blending.
This is done by displaying more than one layer (video and graphics) to
the same output device, TV or LCD. Overlay manager supports normal
mode and alpha mode of operation. In normal mode graphics plane is
at bottom on top of it is video1 and video2 is on top of video1. While in

Display Driver

Alpha Blending

82 Platform Support Products Version 03.00.00.03

alpha mode video1 plane is at bottom, video2 is on top of video1, and
graphics plane is above video2. Alpha mode is selectable on any of the
output device TV or LCD.

Video2 and graphics layer of the DSS is capable of supporting alpha
blending. Two types of alpha blending is supported global and pixel alpha
blending. ARGB and RGBA formats of the video2 and graphics pipeline
supports pixel based alpha blending. In which A represent the alpha
value for each pixel. Thus, each pixel can have different alpha value.
While global alpha is the constant alpha factor for the pipeline for all the
pixels. Both can be used in conjunction.

Both V4L2 and Frame buffer driver supports alpha blending based on
pixel format for video2 and graphics pipeline respectively. Global alpha
blending is also supported through V4L2 and Fbdev ioctls. Before using
any of the alpha blending methods alpha blending needs to be enabled
on the selected output device through V4L2 ioctl. Alpha blending will be
enabled on the output device to which video pipeline is connected

Following program listing will enable alpha blending through V4L2 driver
ioctl -

struct v4l2_framebuffer framebuffer;

ret = ioctl (fd, VIDIOC_G_FBUF, &framebuffer);
if (ret < 0) {
 perror ("VIDIOC_S_FBUF");
 close(fd);
 return 0;
}

framebuffer.flags |= V4L2_FBUF_FLAG_LOCAL_ALPHA;
ret = ioctl (fd, VIDIOC_S_FBUF, &framebuffer);
if (ret < 0) {
 perror ("VIDIOC_S_FBUF");
 close(fd);
 return 0;
}

Following program listing will disable alpha blending through V4L2 driver
ioctl -

struct v4l2_framebuffer framebuffer;

ret = ioctl (fd, VIDIOC_G_FBUF, &framebuffer);
if (ret < 0) {
 perror ("VIDIOC_S_FBUF");
 close(fd);
 return 0;
}

framebuffer.flags &= ~V4L2_FBUF_FLAG_LOCAL_ALPHA;

Display Driver

Alpha Blending

Version 03.00.00.03 Platform Support Products 83

ret = ioctl (fd, VIDIOC_S_FBUF, &framebuffer);
if (ret < 0) {
 perror ("VIDIOC_S_FBUF");
 close(fd);
 return 0;
}

Following program listing will enable/disable alpha blending through
SYSFS entry -

echo 0/1 > /sys/devices/platform/omapdss/manager<index>/
alpha_blending_enabled

where,
 0/1 => 0 - Disable, 1 - Enable.
 index => 0 - LCD Manager
 1 - TV Manager.

V4L2 Driver

V4l2 driver supports alpha blending through ARGB pixel format as well
as global alpha value.

To set the pixel alpha value set ARGB format by setting format type to
V4L2_PIX_FMT_RGB32. Call VIDIOC_S_FMTioctl of the driver to set it to
ARGB format. Note: RGBA format is not supported.

struct v4l2_format fmt;
/* Set the video type*/
fmt.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
/* Set the width and height of the picture*/
fmt.fmt.pix.width = 400;
fmt.fmt.pix.height = 400;
/* Set the format to ARGB */
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_RGB32;
/* Call set format Ioctl */
ret = ioctl(fd, VIDIOC_S_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_S_FMT\n");
 close(fd);
 exit(0);
}

Setting the global alpha value is supported through
V4L2_BUF_TYPE_VIDEO_OVERLAY format type. Below programlisting
shows how to set the global alpha value for video2 pipeline.

struct v4l2_format fmt;
u8 global_alpha = 128;
fmt.type = V4L2_BUF_TYPE_VIDEO_OVERLAY;

ret = ioctl(fd, VIDIOC_G_FMT, &fmt);

Display Driver

Alpha Blending

84 Platform Support Products Version 03.00.00.03

if (ret < 0) {
 perror("VIDIOC_G_FMT\n");
 close(fd);
 exit(0);
}
fmt.fmt.win.global_alpha = global_alpha;

ret = ioctl(fd, VIDIOC_S_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_G_FMT\n");
 close(fd);
 exit(0);
}

FBDEV Driver

Frame buffer driver supports setting of pixel alpha value as well as global
alpha value

Pixel alpha value is supported through 32 bpp. Setting the offsets
correctly will set the pixel format as ARGB or RGBA. Below program
listing shows how to set ARGB pixel format.

fb_var_screeninfo var;
/* Get variable screen information. Variable screen information
 * gives information like size of the image, bites per pixel,
 * virtual size of the image etc. */
ret = ioctl(fd, FBIOGET_VSCREENINFO, &var);
if (ret < 0) {
 perror("Error reading variable information.\n");
 close(fd);
 exit(3);
}
/* Set bits per pixel and offsets*/
var.red.length= 8;
var.green.length = 8;
var.blue.length = 8;
var.transp.length= 8;
var.transp.offset = 24;
var.red.offset = 16;
var.green.offset =8;
var.blue.offset = 0;
var.bits_per_pixel = 32;
if (ioctl(fd, FBIOPUT_VSCREENINFO, &var)<0) {
 perror("Error:FBIOPUT_VSCREENINFO\n");
 close(fd);
 exit(4);
}

User can set the global alpha value for graphics pipeline using sysfs entry,
as shown below -

echo <global alpha value> > /sys/devices/platform/omapdss/
overlay0/global_alpha

Display Driver

Buffer Format

Version 03.00.00.03 Platform Support Products 85

Note

Before using the global alpha or pixel based alpha on graphics pipeline.
Alpha blending needs to be enabled using either sysfs entry described
below or V4L2 ioctl described under V4L2 driver in this section.

echo 1 > /sys/devices/platform/omapdss/manager0/
alpha_blending_enabled

6.4.7. Buffer Format
Buffer format describes the pixel format in the image. It also describes
the memory organization of each color component within the pixel
format. In all buffer formats, blue value is always stored in least
significant bits, then green value and then red value.

V4L2 Driver

Video layer supports following buffer format: YUYV, UYVY,
RGB565, RGB24 (packed and unpacked). The corresponding
v4l2 defines for pixel format are V4L2_PIX_FMT_YUYV,
V4L2_PIX_FMT_UYVY, V4L2_PIX_FMT_RGB565, V4L2_PIX_FMT_RGB24
(packed), V4L2_PIX_FMT_RGB32. (For video1 and video2
V4L2_PIX_FMT_RGB32 corresponds to RGB24 unpacked).

Buffer format can be changed using VIDIOC_S_FMT ioctl with type
as V4L2_BUF_TYPE_VIDEO_OUTPUT and appropriate pixel format type.
Following example shows how to change pixel format to RGB565

struct v4l2_format fmt;
fmt.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_RGB565;
ret = ioctl(fd, VIDIOC_S_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_S_FMT\n");
 close(fd);
 exit(0);
}

FBDEV Driver

Graphics layer supports following buffer format: RGB24(un-packed)
ARGB, RGBA and RGB565. Buffer format can be changed in FBDEV driver
by using bpp, red, green, and blue fields of fb_vscreeninfo structure and
ioctl FBIOPUT_VSCREENINFO. Application needs to specify bits per pixel
and length and offset of red, green and blue component. Bits-per-pixel
and color depth in the pixel aren't quite the same thing. The display
controller supports color depths of 1, 2, 4, 8, 12, 16, 24 and 32 bits.
Color depth and bits-per-pixel are the same for depths of 1, 2, 4, 8, and
16 bits, but for a color depth of 12 bits the pixel data is padded to 16 bits-

Display Driver

Buffer Format

86 Platform Support Products Version 03.00.00.03

per-pixel, and for a color depth of 24 bits the pixel data is padded to 32
bits-per-pixel. So application has to specify bits per pixel 16 and 32 for
the color depth 12 and 24. To specify exact color depth, red, green and
blue member of the fb_varscreeninfo can be used. Following example
shows how to set 12 and 24 bits per pixels.

Struct fb_varscreeninfo var;
var.bpp = 16;
var.red.length = var.green.length = var.blue.length = 4;
var.red.offset = 8;
var.green.offset = 4;
var.blue.offset = 0;
ret = ioctl(fd, FBIOPUT_VSCREENINFO, &var);
if (ret < 0) {
 perror("FBIOPUT_VSCREENINFO\n");
 close(fd);
 exit(0);
}

Buffer Formats

Figure 6.7. 1-BPP Data Memory Organization

Figure 6.8. 2-BPP Data Memory Organization

Figure 6.9. 4-BPP Data Memory Organization

Display Driver

Buffer Format

Version 03.00.00.03 Platform Support Products 87

Figure 6.10. 8-BPP Data Memory Organization

Figure 6.11. 12-BPP Data Memory Organization

Figure 6.12. 16-BPP Data Memory Organization

Figure 6.13. 24-BPP Data Memory Organization

Figure 6.14. ARGB 32-BPP Data Memory Organization

Display Driver

Display Window

88 Platform Support Products Version 03.00.00.03

Figure 6.15. RGBA 32-BPP Data Memory Organization

Figure 6.16. 24-BPP Packed Data Memory Organization

Figure 6.17. UYVY 4:2:2 Data Memory Organization

Figure 6.18. YUV2 4:2:2 Data Memory Organization

6.4.8. Display Window

The video pipelines can be connected to either an DVI output LCD output
or a TV output either through boot time parameter or through SYSFS
interface. Although the display Driver computes a default display window

Display Driver

Cropping

Version 03.00.00.03 Platform Support Products 89

whenever the image size or cropping is changed, an application should
position the display window via the VIDIOC_S_FMT I/O control with the
V4L2_BUF_TYPE_VIDEO_OVERLAY buffer type. When a switch from LCD
to TV or from TV to LCD happens, an application is expected to adjust
the display window. V4L2 driver only supports change of display window.

Following example shows how to change display window size.

struct v4l2_format fmt;
Fmt.type = V4L2_BUF_TYPE_VIDEO_OVERLAY;
fmt.fmt.win.w.left = 0;
fmt.fmt.win.w.top = 0;
fmt.fmt.win.w.width = 200;
fmt.fmt.win.w.height = 200;
ret = ioctl(fd, VIDIOC_S_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_S_FMT\n");
 close(fd);
 exit(0);
}
/* Display window size and position is changed now */

6.4.9. Cropping

The V4L2 Driver allows an application to define a rectangular portion
of the image to be rendered via the VIDIOC_S_CROP Ioctl with
the V4L2_BUF_TYPE_VIDEO_OUTPUT buffer type. When application calls
VIDIOC_S_FMT ioctl, driver sets default cropping rectangle that is the
largest rectangle no larger than the image size and display windows size.
The default cropping rectangle is centered in the image. All cropping
dimensions are rounded down to even numbers. Changing the size of
the cropping rectangle will in general also result in a new default display
window. As stated above, an application must adjust the display window
accordingly.

Following example shows how to change crop size.

struct v4l2_crop crop;
crop.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
crop.c.left = 0;
crop.c.top = 0;
crop.c.width = 320;
crop.c.height = 320;
ret = ioctl(fd, VIDIOC_S_CROP, &crop);
if (ret < 0) {
 perror("VIDIOC_S_CROP\n");
 close(fd);
 exit(0);
}
/* Image cropping rectangle is now changed */

Display Driver

Scaling

90 Platform Support Products Version 03.00.00.03

6.4.10. Scaling
Video pipe line contains scaling unit which is used when transferring
pixels from the system memory to the LCD panel or the TV set.
The scaling unit consists of two scaling blocks: The vertical scaling
block followed by the horizontal scaling block. The two scaling units
are independent: Neither of them, only one, or both can be used
simultaneously.

As scaling unit is on video pipeline, scaling is only supported in V4L2
driver. Scaling is not explicitly exposed at the API level. Instead, the
horizontal and vertical scaling factors are based on the display window
and the image cropping rectangle. The horizontal scaling factor is
computed by dividing the width of the display window by the width of the
cropping rectangle. Similarly, the vertical scaling factor is computed by
dividing the height of the display window by the height of the cropping
rectangle.

Down-scaling is limited upto factor 0.5 and the up-scaling factor to 8 in
the software, while hardware supports from 0.25x to 8x both horizontally
and vertically . The display Driver makes sure the limits are never
exceeded.

The code snippet below illustrates how to scale image by factor of 2.

struct v4l2_format fmt;
struct v4l2_crop crop;
/* Changing display window size to 200x200 */
fmt.type = V4L2_BUF_TYPE_VIDEO_OVERLAY;
fmt.fmt.win.w.left = 0;
fmt.fmt.win.w.top = 0;
fmt.fmt.win.w.width = 200;
fmt.fmt.win.w.height = 200;
ret = ioctl(fd, VIDIOC_S_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_S_FMT\n");
 close(fd);
 exit(0);
}
/* Changing crop window size to 400x400 */
crop.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
crop.c.left = 0;
crop.c.top = 0;
crop.c.width = 400;
crop.c.height = 400;
ret = ioctl(fd, VIDIOC_S_CROP, &crop);
if (ret < 0) {
 perror("VIDIOC_S_CROP\n");
 close(fd);
 exit(0);
}
/* Image should be now scaled by factor 2 */

Display Driver

Color look table

Version 03.00.00.03 Platform Support Products 91

6.4.11. Color look table
The graphics pipeline supports the color look up table. The CLUT mode
uses the encoded pixel values from the input image as pointers to index
the 24-bit-wide CLUT value: 1-BPP pixels address 2 entries, 2-BPP pixels
address 4 entries, 4-BPP pixels address 16 entries, and 8-BPP pixels
address 256 entries.

Driver supports 1, 2, 4 and 8 bits per pixel image format using color
lookup table. FBIOPUTCMAP and FBIOGETCMAP can be used to set
and get the color map table. When CLUT is set, the driver makes the
hardware to reload the CLUT.

Following example shows how to change CLUT.

struct fb_cmap cmap;
unsigned short r[4]={0xFF,0x00, 0x00, 0xFF};
unsigned short g[4]={0x00, 0xFF, 0x00, 0xFF};
unsigned short b[4]={0x00, 0x00, 0xFF, 0x00};
cmap.len = 4;
cmap.red = r;
cmap.green = g;
cmap.blue = b;
if (ioctl(fd, FBIOPUTCMAP, &cmap)) {
 perror("FBIOPUTCMAP\n");
 exit(3);
}

6.4.12. Streaming
V4L2 driver supports the streaming of the buffer. To do streaming
minimum of three buffers should be requested by the application
by using VIDIOC_REQBUFS ioctl. Once driver allocates the requested
buffers application should call VIDIOC_QUERYBUF and mmap to get the
physical address of the buffers and map the kernel memory to user space
as explained earlier. Following are the steps to enable streaming.

1. Fill the buffers with the image to be displayed in the proper format.

2. Queue buffers to the driver queue using VIDIOC_QBUF ioctl.

3. Start streaming using VIDIOC_STREAMON ioctl.

4. Call VIDIOC_DQBUF to get the displayed buffer.

5. Repeat steps 1, 2, 4 and 5 in a loop for the frame count to be displayed.

6. Call VIDIOC_STREAMOFF ioctl to stop streaming.

Following example shows how to do streaming with V4l2 driver.

/* Initially fill the buffer */

Display Driver

Streaming

92 Platform Support Products Version 03.00.00.03

 struct v4l2_requestbuffers req;
 struct v4l2_buffer buf;
 struct v4l2_format fmt;
/* Fill the buffers with the image */

 /* Enqueue buffers */
for (i = 0; i < req.count; i++) {
 buf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
 buf.index = i;
 buf.memory = V4L2_MEMORY_MMAP;
 ret = ioctl(fd, VIDIOC_QBUF, &buf);
 if (ret < 0) {
 perror("VIDIOC_QBUF\n");
 for (j = 0; j < req.count; j++){
 /* Unmap all the buffers if call fails */
 exit(0);
 }
 printf("VIDIOC_QBUF = %d\n",i);
 }
}
/* Start streaming */
a = 0;
ret = ioctl(fd, VIDIOC_STREAMON, &a);
if (ret < 0) {
 perror("VIDIOC_STREAMON\n");
 for (i = 0; i < req.count; i++)
 /* Unmap all the buffers if call fails */
 exit(0);
 }
/* loop for streaming with 500 Frames*/
for(i = 0 ;i < LOOPCOUNT ;i ++) {
 ret = ioctl(fd, VIDIOC_DQBUF, &buf);
 if(ret < 0){
 perror("VIDIOC_DQBUF\n");
 for (j = 0; j < req.count; j++){
 /* Unmap all the buffers if call fails */
 exit(0);
 }
 }
 /* Fill the buffer with new data
 fill(buff_info[buf.index].start, fmt.fmt.pix.width,
 fmt.fmt.pix.height,0);
 /Queue the buffer again */
 ret = ioctl(fd, VIDIOC_QBUF, &buf);
 if(ret < 0){
 perror("VIDIOC_QBUF\n");
 for (j = 0; j < req.count; j++){
 /* Unmap all the buffers if call fails */
 exit(0);
 }
 }
}

/* Streaming off */
 ret = ioctl(fd, VIDIOC_STREAMOFF, &a);
 if (ret < 0) {
 perror("VIDIOC_STREAMOFF\n");

Display Driver

Streaming

Version 03.00.00.03 Platform Support Products 93

 for (i = 0; i < req.count; i++){
 /* Unmap all the buffers if call fails */
 exit(0);
 }
 }

Display Driver

Software Interfaces

94 Platform Support Products Version 03.00.00.03

6.5. Software Interfaces

6.5.1. Frame-Buffer Driver Interface

6.5.1.1. Application Interface

open ()

To open a framebuffer device

close ()

To close a framebuffer device

ioctl ()

To send ioctl commands to the framebuffer driver.

mmap ()

To obtain the framebuffer region as mmap'ed area in user space.

6.5.1.2. Supported Standard IOCTLs

FBIOGET_VSCREENINFO, FBIOPUT_VSCREENINFO

These I/O controls are used to query and set the so-called variable screen
info. This allows an application to query or change the display mode,
including the color depth, resolution, timing etc. These I/O controls
accept a pointer to a struct fb_var_screeninfo structure. The video mode
data supplied in the fb_var_screeninfo struct is translated to values
loaded into the display controller registers.

FBIOGET_FSCREENINFO

This I/O control can be used by applications to get the fixed properties
of the display, e.g. the start address of the framebuffer memory. This I/
O control accepts a pointer to a struct fb_fix_screeninfo

FBIOGETCMAP, FBIOPUTCMAP

These I/O controls are used to get and set the color-map for the
framebuffer. These I/O controls accept a pointer to a struct fb_cmap
structure.

FBIO_BLANK

This I/O control is used to blank or unblank the framebuffer console.

Display Driver

Frame-Buffer Driver Interface

Version 03.00.00.03 Platform Support Products 95

6.5.1.3. Supported Custom IOCTLs

OMAPFB_WAITFORVSYNC

This ioctl can be used to put an application to sleep until next vertical
sync interval of the display.

OMAPFB_GET_VRAM_INFO

Ioctl returns the configured/allocated vram information.

OMAPFB_QUERY_MEM

Returns the size and type of the frame buffer.

Data Structure:

#define OMAPFB_MEMTYPE_SDRAM 0
#define OMAPFB_MEMTYPE_SRAM 1
#define OMAPFB_MEMTYPE_MAX 1

struct omapfb_mem_info {
 __u32 size;
 __u8 type;
 __u8 reserved[3];
};

Usage:

struct omapfb_mem_info mi;
if (ioctl(fb, OMAPFB_QUERY_MEM, &mi)) {
 perror("Error: OMAPFB_QUERY_MEM.\n");
 exit(1);
}
printf("size - %d\n", mi.size);
printf("type - %d\n", mi.type);

OMAPFB_SETUP_MEM

Allows user to setup the frame buffer memory, like size and type.

Data Structure:

#define OMAPFB_MEMTYPE_SDRAM 0
#define OMAPFB_MEMTYPE_SRAM 1
#define OMAPFB_MEMTYPE_MAX 1

struct omapfb_mem_info {
 __u32 size;
 __u8 type;

Display Driver

Frame-Buffer Driver Interface

96 Platform Support Products Version 03.00.00.03

 __u8 reserved[3];
};

Usage:

struct omapfb_mem_info mi;
mi.size = <Expected size of buffer>
mi.type = <Expected type of buffer>
if (ioctl(fb, OMAPFB_SETUP_MEM, &mi)) {
 perror("Error: OMAPFB_SETUP_MEM.\n");
 exit(1);
}

OMAPFB_QUERY_PLANE

Query the plane (gfx) and returns the omapfb_plane_info information -

Data Structure:

struct omapfb_plane_info {
 __u32 pos_x;
 __u32 pos_y;
 __u8 enabled;
 __u8 channel_out;
 __u8 mirror;
 __u8 reserved1;
 __u32 out_width;
 __u32 out_height;
 __u32 reserved2[12];
};

Usage:

struct omapfb_plane_info pi;
if (ioctl(fb, OMAPFB_QUERY_PLANE, &pi)) {
 perror("Error: OMAPFB_QUERY_PLANE.\n");
 exit(1);
}

OMAPFB_SETUP_PLANE

TBD.

6.5.1.4. Data Structures

fb_var_screeninfo

This structure is used to query and set the so-called variable screen
information. This allows an application to query or change the display
mode, including the color depth, resolution, timing etc.

Display Driver

V4L2 Driver Interface

Version 03.00.00.03 Platform Support Products 97

fb_fix_screeninfo

This structure is used by applications to get the fixed properties of the
display, e.g. the start address of the framebuffer memory, framebuffer
length etc.

fb_cmap

This structure is used to get/set the color-map for the framebuffer

6.5.2. V4L2 Driver Interface

6.5.2.1. Application Interface

open

To open a video device

close

To close a video device

ioctl

To send ioctl commands to the display driver.

mmap

To memory map a driver allocated buffer to user space

6.5.2.2. Supported Standard IOCTLs

Note

This section describes the standard V4L2 IOCTLs supported by the
Display Driver. Standard IOCTLs that are not listed here are not
supported. The Display Driver handles the unsupported ones by
returning EINVALerror code.

VIDIOC_QUERYCAP

This is used to query the driver's capability. The video driver fills a
v4l2_capability struct indicating the driver is capable of output and
streaming.

VIDIOC_ENUM_FMT

This is used to enumerate the image formats that are supported by the
driver. The driver fills a v4l2_fmtdesc struct.

Display Driver

V4L2 Driver Interface

98 Platform Support Products Version 03.00.00.03

VIDIOC_G_FMT

This is used to get the current image format or display window depending
on the buffer type. The driver fills the information to a v4l2_format
struct.

VIDIOC_TRY_FMT

This is used to validate a new image format or a new display window
depending on the buffer type. The driver may change the passed values
if they are not supported. Application should check what is granted.

VIDIOC_S_FMT

This is used to set a new image format or a new display window
depending on the buffer type. The driver may change the passed values
if they are not supported. Application should check what is granted if
VIDIOC_TRY_FMT is not used first.

VIDIOC_CROPCAP

This is used to get the default cropping rectangle based on the
current image size and the current display panel size. The driver fills a
v4l2_cropcap struct.

VIDIOC_G_CROP

This is used to get the current cropping rectangle. The driver fills a
v4l2_crop struct.

VIDIOC_S_CROP

This is used to set a new cropping rectangle. The driver fills a v4l2_crop
struct. Application should check what is granted.

VIDIOC_REQBUFS

This is used to request a number of buffers that can later be memory
mapped. The driver fills a v4l2_requestbuffers struct. Application should
check how many buffers are granted.

VIDIOC_QUERYBUF

This is used to get a buffer's information so mmap can be called for that
buffer. The driver fills a v4l2_buffer struct.

VIDIOC_QBUF

This is used to queue a buffer by passing a v4l2_buffer struct associated
to that buffer.

Display Driver

SYSFS Software Interfaces

Version 03.00.00.03 Platform Support Products 99

VIDIOC_DQBUF

This is used to dequeue a buffer by passing a v4l2_buffer struct
associated to that buffer.

VIDIOC_STREAMON

This is used to turn on streaming. After that, any VIDIOC_QBUF results
in an image being rendered.

VIDIOC_S_CTRL VIDIOC_G_CTRL VIDIOC_QUERYCTRL

These ioctls are used to set/get and query various V4L2 controls
like rotation, mirror and background color. Currently only rotation is
supported

VIDIOC_STREAMOFF

This is used to turn off streaming.

6.5.3. SYSFS Software Interfaces
User can control all dynamic configuration of DSS core and Fbdev
functionality thorugh SYSFS interface.

6.5.3.1. Frame-buffer Driver sysfs attributes

Following attributes are available for user control -

root@omap3evm:~#
root@omap3evm:~# ls -1 /sys/class/graphics/fb0/
bits_per_pixel
lank
console
cursor
dev
device
mirror
mode
modes
name
overlays
overlays_rotate
pan
phys_addr
power
rotate
rotate_type
size
state
stride

Display Driver

SYSFS Software Interfaces

100 Platform Support Products Version 03.00.00.03

subsystem
uevent
virt_addr
virtual_size
root@omap3evm:~#

SYSFS attribute Description

bits_per_pixel Allows user to control bits per pixel configuration,
currently the supported values are 16, 24 and 32.

echo 16/24/32 > /sys/class/graphics/fb0/
bits_per_pixel

blank Allows user to control lcd display blanking
configuration independently.

echo 0/4 > /sys/class/graphics/fb0/blank

Values only 0(FB_BLANK_UNBLANK) and
4(FB_BLANK_POWERDOWN) is supported

rotate Allows user to control rotation through this entry,

echo 0/1/2/3 > /sys/class/graphics/fb0/
rotate

0 - 0 degree, 1 - 90 degree, 2 - 180 degree
 and 3 - 270 degree respectively.

rotate_type Allows user to control rotation type through this
entry,

echo 0/1 > /sys/class/graphics/fb0/
rotate_type

0 - DMA based rotation,
1 - VRFB based rotation.
Currently only VRFB based rotation is
 supported.

virtual_size Allows user to configure xres_virtual and
yres_virtual parameters of frame-buffer,

cat /sys/class/graphics/fb0/virtual_size
480,640

Display Driver

SYSFS Software Interfaces

Version 03.00.00.03 Platform Support Products 101

SYSFS attribute Description

virt_addr Readonly entry, displays virtual address of the
frame-buffer memory.

phys_addr Readonly entry, displays physical address of the
frame-buffer memory.

Table 6.6. Frame-buffer Driver sysfs attributes

6.5.3.2. DSS Library sysfs attributes

DSS library provides/exports following attributes, which explained in
detail below -

root@omap3evm:~#
root@omap3evm:~# ls -1 /sys/devices/platform/omapdss/
bus
display0
display1
display2
driver
manager0
manager1
microamps_requested_vdda_dac
modalias
overlay0
overlay1
overlay2
power
subsystem
uevent
root@omap3evm:~#

6.5.3.2.1. DSS Library: display0/1/2

In all total 3 output displays are supported on EVM,

root@omap3evm:~#
root@omap3evm:~# ls -1 /sys/devices/platform/omapdss/display0/
bus
driver
enabled
microamps_requested_vdvi
mirror
name
power
rotate
subsystem
tear_elim
timings

Display Driver

SYSFS Software Interfaces

102 Platform Support Products Version 03.00.00.03

uevent
update_mode
wss
root@omap3evm:~#

SYSFS attribute Description

enabled User can enable/disable the display through this
entry

timings Displays the timing configuration for specific
display panel

name Shows name of the display panel/output

Table 6.7. DSS Library-display0/1/2: sysfs attributes

6.5.3.2.2. DSS Library: Manager0/1

In all total 2 managers are supported on EVM,

root@omap3evm:~#
root@omap3evm:~# ls -1 /sys/devices/platform/omapdss/manager0/
alpha_blending_enabled
default_color
display
name
trans_key_enabled
trans_key_type
trans_key_value
root@omap3evm:~#

SYSFS attribute Description

alpha_blending_
enabled

User can enable/disable Alpha-blending through
this entry.

display Allows user to control the output display, user can
set the output to any of the display.

trans_key_enabled User can enable/disable Transparency key keying
through this entry.

trans_key_type User can control the Transparency key type here.

trans_key_value User can configure Transparency color keying
value through this entry.

Table 6.8. DSS Library-Manager0/1: sysfs attributes

6.5.3.2.3. DSS Library: Overlay0/1/2

In all total 3 Overlays/Planes/Pipelines are supported on EVM,

Display Driver

Miscellaneous Configurations

Version 03.00.00.03 Platform Support Products 103

root@omap3evm:~#
root@omap3evm:~# ls -1 /sys/devices/platform/omapdss/overlay0/
enabled
global_alpha
input_size
manager
name
output_size
position
screen_width
root@omap3evm:~#

SYSFS attribute Description

enabled User can enable/disable overlay through this
entry.

global_alpha User can configure global alpha value through this
entry.

manager Allows control over manager <-> overlay
interface, user can configure any overlay to any
of the manager.

Table 6.9. DSS Library-Overlay0/1/2: sysfs attributes

6.5.4. Miscellaneous Configurations
The default setup/configuration is -

 GFX => - - \ DVI
 \
 Vid1 => => => LCD
 /
 Vid2 => _ _ / TV

User can control/configure the various interfaces like, overlay <=>
manager <=> display. This section demonstrate/explains the dynamic
switching of output using above interfaces.

6.5.4.1. Switching output from LCD to DVI

Follow the steps below to switch output from LCD to DVI interface:

• Disable LCD display

echo 0 > /sys/devices/platform/omapdss/display0/enabled

• Disable manager link to display

Display Driver

Miscellaneous Configurations

104 Platform Support Products Version 03.00.00.03

echo "" > /sys/devices/platform/omapdss/manager0/display

• Configure the framebuffer driver for target display panel size

fbset -fb /dev/fb0 -xres $w -yres $h -vxres $w -vyres $h

• Configure manager to DVI display interface

echo "dvi" > /sys/devices/platform/omapdss/manager0/display

• Enable DVI display

echo 1 > /sys/devices/platform/omapdss/display2/enabled

Note

Similar steps must be followed for switching from DVI to LCD.

Note

Please note that the user can read the panel configuration through
sysfs entry "/sys/devices/platform/omapdss/display<index>/timings".

6.5.4.2. Switching Overlay0 (GFX) output from LCD to TV

Follow below steps to switch output from LCD to TV interface -

• Disable GFX overlay

echo 0 > /sys/devices/platform/omapdss/overlay0/enabled

• Disable GFX overlay link to LCD manager

echo "" > /sys/devices/platform/omapdss/overlay0/manager

• Disable LCD display output

Display Driver

Miscellaneous Configurations

Version 03.00.00.03 Platform Support Products 105

echo 0 > /sys/devices/platform/omapdss/display0/enabled

• Configure the framebuffer driver for target display panel size

fbset -fb /dev/fb0 -xres $w -yres $h -vxres $w -vyres $h

• Switch GFX overlay to TV manager

echo "tv" > /sys/devices/platform/omapdss/overlay0/manager

• Enable TV display interface

echo 1 > /sys/devices/platform/omapdss/display1/enabled

• Enable GFX overlay

echo 1 > /sys/devices/platform/omapdss/overlay0/enabled

Note

Similar steps must follow for other (Video 1 & 2) overlays.

Display Driver

Driver Configuration

106 Platform Support Products Version 03.00.00.03

6.6. Driver Configuration

6.6.1. V4L2 video driver
To V4L2 video driver start the Linux Kernel Configuration tool.

$ make menuconfig ARCH=arm

Select Device Drivers from the main menu.

 ...
 ...
 Kernel Features --->
 Boot options --->
 CPU Power Management --->
 Floating point emulation --->
 Userspace binary formats --->
 Power management options --->
[*] Networking support --->
 Device Drivers --->
 ...
 ...

Select Multimedia support from the menu.

 ...
 ...
 Sonics Silicon Backplane --->
 Multifunction device drivers --->
[*] Voltage and Current Regulator Support --->
<*> Multimedia support --->
 Graphics support --->
<*> Sound card support --->
[*] HID Devices --->
[*] USB support --->
 ...
 ...

Select Video For Linux from the menu.

 ...
 ...
 *** Multimedia core support ***
<*> Video For Linux
[*] Enable Video For Linux API 1 (DEPRECATED)

Display Driver

Framebuffer driver

Version 03.00.00.03 Platform Support Products 107

< > DVB for Linux
 ...
 ...

Select Video capture adapters from the same menu. Press <ENTER> to
enter the corresponding sub-menu.

 ...
 ...
[] Customize analog and hybrid tuner modules to build --->
[*] Video capture adapters --->
[] Radio Adapters --->
[] DAB adapters
 ...
 ...

Select TI Media Drivers from the menu. After selecting this option sub-
menu will appear.

 ...
 ...
<*> OMAP ISP Resizer
<*> TI Media Drivers
 ...
 ...

Select OMAP2/OMAP3 V4L2-DSS drivers from the menu.

 ...
 ...
<*> TI Media Drivers
< > VPSS System module driver
<*> OMAP2/OMAP3 V4L2-DSS drivers
< > SoC camera support
 ...
 ...

6.6.2. Framebuffer driver

$ make menuconfig

Select Device Drivers from the main menu.

 ...

Display Driver

Framebuffer driver

108 Platform Support Products Version 03.00.00.03

 ...
 Kernel Features --->
 Boot options --->
 CPU Power Management --->
 Floating point emulation --->
 Userspace binary formats --->
 Power management options --->
[*] Networking support --->
 Device Drivers --->
 ...
 ...

Select Graphics support from the menu.

 ...
 ...
 Sonics Silicon Backplane --->
 Multifunction device drivers --->
[*] Voltage and Current Regulator Support --->
<*> Multimedia support --->
 Graphics support --->
<*> Sound card support --->
[*] HID Devices --->
[*] USB support --->
 ...
 ...

Select Support for frame buffer devices from the menu.

 ...
 ...
<M> Lowlevel video output switch controls
<*> Support for frame buffer devices --->
< > E-Ink Broadsheet/Epson S1D13521 controller support
[] Check bootloader initialization
-*- OMAP2/3 Display Subsystem support (EXPERIMENTAL) --->
[] Backlight & LCD device support --->
 ...
 ...

Select OMAP2/3 Display Subsystem support (EXPERIMENTAL) from the
same menu.

 ...
 ...
<M> Lowlevel video output switch controls
<*> Support for frame buffer devices --->
[] Check bootloader initialization
-*- OMAP2/3 Display Subsystem support (EXPERIMENTAL) --->
[] Backlight & LCD device support --->

Display Driver

Framebuffer driver

Version 03.00.00.03 Platform Support Products 109

 ...
 ...

Configure default VRAM size to the required/expected size of buffer, the
default is 4MB.

 ...
--- OMAP2/3 Display Subsystem support (EXPERIMENTAL)
(4) VRAM size (MB)
[] Debug support
 ...
 ...

Select VENC support from the menu.

 ...
 ...
[] Debug support
[] RFBI support
[*] VENC support
 OMAP2_VENC_OUT_TYPE (Use S-Video output interface) --->
 [] SDI support
 ...
 ...

The default TV out interface is S-Video. Other option available is
Composite.

Note

On OMAP3EVM-1 (< Rev-E) SW1.6 is used to select between S-Video
and Composite outputs. ON :- S-Video, OFF :- Composite

Select minimum functional/pixel clock ratio for scaling to required value,
the default value if 4.

 ...
 ...
[] Fake VSYNC irq from manual update displays
(4) Minimum FCK/PCK ratio (for scaling)
<*> OMAP2/3 frame buffer support (EXPERIMENTAL) --->
 ...
 ...

Select OMAP2/3 frame buffer support (EXPERIMENTAL) from the same
menu. Press <ENTER> to enter the corresponding sub-menu.

Display Driver

Framebuffer driver

110 Platform Support Products Version 03.00.00.03

 ...
 ...
[] Fake VSYNC irq from manual update displays
(0) Minimum FCK/PCK ratio (for scaling)
<*> OMAP2/3 frame buffer support (EXPERIMENTAL) --->
 OMAP2/3 Display Device Drivers --->
 ...
 ...

Value for Number of framebuffers can be changed here.

 ...
 ...
 [] Force main display to automatic update mode
 (1) Number of framebuffers
 ...
 ...

Note

If this value is set as 1, the graphics pipeline of the DSS is controlled by
the FBDEV interface and both video pipelines by the V4L2 interface.

If this value is set as 2, the graphics pipeline and one video pipeline is
controlled by the FBDEV interface and one video pipeline by the V4L2
interface.

If this value is set as 3, all 3 pipelines are controlled by the FBDEV
interface.

Select the supported display panels, as shown below

<*> Generic Panel
< > Samsung LTE430WQ-F0C LCD Panel
<*> Sharp LS037V7DW01 LCD Panel
< > Sharp LQ043T1DG01 LCD Panel

Display Driver

Sample Application Flow

Version 03.00.00.03 Platform Support Products 111

6.7. Sample Application Flow
This chapter describes the application flow using the V4l2 and FBDEV
drivers.

Figure 6.19. Application for v4l2 driver using MMAP buffers

Display Driver

Sample Application Flow

112 Platform Support Products Version 03.00.00.03

Figure 6.20. Application for FBDEV driver

Display Driver

Revision History

Version 03.00.00.03 Platform Support Products 113

6.8. Revision History
03.00.00.02Updated for 03.00.00.02 PSP release

03.00.00.03Updated for 03.00.00.03 PSP release

Version 03.00.00.03 Platform Support Products 114

Version 03.00.00.03 Platform Support Products 115

Resizer Driver

Abstract

This chapter provides detailed description of feature set and software interface for the video resizer
driver implementation.

Table of Contents

7.1. Introduction ... 117

7.1.1. References ... 117

7.1.2. Acronyms ... 117

7.1.3. Hardware Overview .. 117

7.2. Features .. 118

7.2.1. Overview of features supported 118

7.2.2. Usage of Features .. 118

7.2.3. Constraints ... 124

Resizer Driver

116 Platform Support Products Version 03.00.00.03

7.3. Architecture ... 126

7.4. Software Interface .. 127

7.4.1. Application Programming Interface 127

7.4.2. IOCTLs ... 128

7.4.3. Data Structures ... 132

7.5. Driver Configuration .. 137

7.5.1. Configuration Steps ... 137

7.6. Sample Application Flow .. 139

7.7. Revision History .. 140

Resizer Driver

Introduction

Version 03.00.00.03 Platform Support Products 117

7.1. Introduction
This section provides overview of the Resizer Hardware.

7.1.1. References
• Video for Linux Two API Specification [http://v4l2spec.bytesex.org/

v4l2spec/v4l2.pdf]

• Linux Device Drivers Edition-3 [http://lwn.net/Kernel/LDD3/]

7.1.2. Acronyms
• V4L2: Video For Linux 2

7.1.3. Hardware Overview
The OMAP Resizer module enables up scaling and down scaling. It resizes
YUV422 image and stores output image in the RAM. The following figure
shows the block diagram for Resizer module.

Figure 7.1. OMAP Resizer HW Block Diagram

The Resizer module performs digital zoom either up sampling or down
sampling on image/video data within a range of 0.25x to 4x resizing. The
input source can be sent to either the preview engine/CCDC or memory,
and the output is sent to memory.

The Resizer module performs horizontal resizing, then vertical resizing,
independently. Between them, there is an optional edge-enhancement
feature. This process is shown in the above Figure.

http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://lwn.net/Kernel/LDD3/
http://lwn.net/Kernel/LDD3/

Resizer Driver

Features

118 Platform Support Products Version 03.00.00.03

7.2. Features
This section describes features supported by the resizer driver.

7.2.1. Overview of features supported
The Resizer driver supports the following features:

• Resizes input frame stored in RAM and stores output frame in RAM.

• Supports resizing from 1/4x to 4x.

• Supports independent horizontal and vertical resizing.

• Supports YUV422 packed data and Color Separate data.

• Supports driver allocated and user provided buffers.

• Supports Luminance Enhancement.

• Supports configuration of read request cycles.

7.2.2. Usage of Features
Following sections provides details about the drive supported features.

7.2.2.1. Opening and Closing the Driver

The device can be opened using open call from the application with
device name and mode of operation as parameters. Mode can be
blocking, non-blocking and readwrite. Application can open the driver
in either blocking mode or non-blocking mode. If driver is opened in
blocking mode, RSZ_RESIZE ioctl will block until resizing task is over for
that channel. If the driver is opened in non-blocking mode, RSZ_RESIZE
ioctl returns if hardware is busy serving other channel.

Driver can be opened multiple times. Driver maintains software channels
for all opened instances. If multiple resizing task is submitted at the
same time, driver serializes the resizing task.

To close a specific device, application calls the close function with the
file handle.

/* call to open a Resizer logical channel in blocking mode */
rszfd_blocking = open ("/dev/omap-resizer", O_RDWR);
if (rszfd_blocking == -1) {
 perror("failed to open Resizer device\n");
 return -1;
}
/* closing of channels */

Resizer Driver

Usage of Features

Version 03.00.00.03 Platform Support Products 119

close (rszfd_blocking);

7.2.2.2. Buffer Management

Resizer Driver requires buffers for storing input/output images. Buffers
can be allocated by the driver itself or application can provide the buffers.
These buffers need to be virtually contiguous. Physically buffers can be
scattered in the memory.

The Resizer Driver supports two memory usage models.

• Memory map/Driver allocated buffer mode

• User Pointer Exchange

7.2.2.2.1. Memory map/Driver Allocated buffer

In Memory map buffer mode, application can request memory from the
driver by calling RSZ_REQBUF ioctl. With this ioctl, application passes
pointer to the structure v4l2_requestbuffers . In this structure,
buffer exchange mechanism can be specified. For memory map buffer
exchange mechanism, it should be V4L2_MEMORY_MMAP. Driver always
allocates buffer of maximum size required to store input or output image.
If output image width is less than input image width, a single buffer
can be used to store input and output images. Otherwise, at least, two
buffers are required to store input and output images. Application can
request as many buffers as it wants. Buffer with the index 0 is always
used as the input buffer and other buffer can be used as the output buffer.

The main steps that the application must perform for buffer allocation
are:

• Allocating Memory

• Getting Physical Address

• Mapping Kernel Space Address to User Space

Allocating Memory:

Application can allocate buffers using RSZ_REQBUF IOCTL. While
allocating the buffers, the application have to specify the buffer type,
number of buffers and memory type. Here the buffer type must be
V4L2_BUF_TYPE_VIDEO_CAPTURE. Number of buffers can be greater than
or equal to one. If output image is less than input image, number of
buffers can be one. Drivers always uses maximum of input and output
image size as the buffer size.

This ioctl takes object of v4l2_request buffer structure.

/* structure to store buffer request parameters */

Resizer Driver

Usage of Features

120 Platform Support Products Version 03.00.00.03

struct v4l2_requestbuffers reqbuf;
reqbuf. type =V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.count = 2; /* number of buffers */
reqbuf.memory = V4L2_MEMORY_MMAP; /* Type of buffer exchange
 mechanism */
if(ioctl(rszfd, RSZ_REQBUF, &reqbuf)< 0) {
 perror("RSZ_REQBUF failed\n");
 close(rszfd);
 exit(-1);
}
/* The above example will allocate 2 buffers */

Getting Physical Address:

The RSZ_QUERYBUF IOCTL can obtain the physical address of the
allocated buffer. Application has to specify the index, buffer type and
buffer's memory type at time of calling this ioctl. Buffer type must be
V4L2_BUF_TYPE_VIDEO_CAPTURE. Index of each type of buffer starts from
0. Buffer memory type must be V4L2_MEMORY_MMAP for driver allocated
buffers. The driver fills the size and physical address, and then returns
to the application so that the relevant data can be used to mmap the
buffer to user space.

This ioctl takes object of the structure v4l2_buffer.

/* allocate buffer by RSZ_REQBUF */
/* structure to query the physical address of allocated buffer */
struct v4l2_buffer buffer;
buffer.index = 0; /* buffer index - 0 */
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; /* Input buffer */
if (ioctl(rszfd, RSZ_QUERYBUF, &buffer) < 0) {
 perror("RSZ_QUERYBUF ioctl failed\n");
 close(rszfd);
 exit(-1);
}
/* The buffer.m.offset will contain the physical address returned
 from driver */

Mapping Kernel Space Address to User Space:

Mapping the kernel buffer to the user space is done via the Linux mmap
system call. Application must pass the buffer size and buffer's physical
address for getting the user mapped address.

/* allocate buffer by RSZ_REQBUF */
/* query the buffer using RSZ_REQBUF */
/* addr hold the user space address */
unsigned long addr;
addr = mmap(NULL, buffer.size, PROT_READ | PROT_WRITE,
 MAP_SHARED, rszfd, buffer.offset);
/* buffer.offset is same as returned from RSZ_QUERYBUF */

Resizer Driver

Usage of Features

Version 03.00.00.03 Platform Support Products 121

7.2.2.2.2. User Pointer Exchange

Application informs driver whether to use memory mapped buffer or user
buffer in memory allocation operation (RSZ_REQBUFS ioctl). This ioctl is
being used when request for buffer allocation is submitted to the driver.
Along with ioctl, application has to specify either memory mapped or user
buffer to be used. If user provided buffer is used, application has to pass
memory type as V4L2_MEMORY_USERPTR. Then at the time of en-queueing
buffers, application can specify pointer to the virtually contiguous buffer
allocated by the application and size of the buffer. This size of the buffer,
specified at the time of en-queueing buffer, must be page-aligned.

/* structure to store buffer request parameters */
struct v4l2_requestbuffers reqbuf;
reqbuf. type =V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.count = 2; /* number of buffers */
reqbuf.memory = V4L2_MEMORY_USERPTR; /* Type of buffer exchange
 mechanism */
if(ioctl(rszfd, RSZ_REQBUF, &reqbuf)< 0) {
 perror("RSZ_REQBUF failed\n");
 close(rszfd);
 exit(-1);
}
/* This above example will allocate 2 buffer descriptors */

7.2.2.3. Parameter Configuration

7.2.2.3.1. Resizing

The Resizer module takes input image from RAM, resizes it horizontally
and vertically using given resizing ratio and stores output image in
RAM. The Resizer module can up scale or down scale image data with
independent resizing factors in the horizontal and vertical directions.
The resizing ratio is calculated using formula 256/N where value
of N can range from 64 to 1024. The Resizer module uses the
same resampling algorithm for the horizontal and vertical directions.
The resizing/resampling algorithm uses a programmable polyphase
sample rate converter (resampler). The polyphase filter coefficients are
programmable so that any user-specified filter can be implemented.

For horizontal and vertical direction, application has to provide 32
coefficients. These coefficient values are dependent on resizing ratio. The
Resizer hardware uses 4 taps and 8 phases filters for the resizing range
of 1/2x to 4x and 7 taps and 4 phases filters for a resizing range of 1/4x
to 1/2x for both the direction. So different set of coefficients must be
provided for 4 taps and 8 phases filters and 7 taps and 4 phases filter.

As the hardware uses multi tape poly phase filters, filter requires more
input pixel than following equation calculates.

Resizer Driver

Usage of Features

122 Platform Support Products Version 03.00.00.03

Input size = output size * N / 256; /* 256 where N is from 64 to
 1024 */

Input size is also dependent on the starting phase and rounding issues
in the resizing algorithm of the hardware. The input width and height
parameters must be programmed strictly according to these equations
given in following table otherwise, incorrect hardware operation may
occur.

Ratio 1/2x to 4x Ration 1/4x to 1/2x

Input width (32*sph+(ow-1)*hrsz
+16)>>(8+7)

(64*sph+(ow-1)*hrsz
+32)>>(8+7)

Input height (32*spv+(oh-1)*vrsz
+16)>>(8+4)

(64*spv+(oh-1)*vrsz
+32)>>(8+7)

Table 7.1. Resizer: Input Size Calculation

 Where
 sph = horizontal starting phase
 spv = vertical starting phase
 ow = output width
 oh = output height
 hrsz = horizontal resize value
 vrsz = vertical resize value.

Application sets the resizing ratio by providing input size and output size
parameters in RSZ_S_PARAMS ioctl. This ioctl takes object of rsz_params
structures. Application provides input width, pitch and height and output
width, pitch and height. Driver calculates the resizing ratio for horizontal
and vertical direction using below equation.

Horizontal_ratio = (input_width-N)*256/(output_width-1);

Where N = 7 for ratio in between 1/4x to 1/2x 4 for ratio
in between 1/2x to 4x

Similar equation is used to calculate vertical resizing ratio. So this
equation must be used by the application when calculating input and
output size for the given resizing ratio.

Actual Resizing operation is performed when application calls
RSZ_RESIZE ioctl. This ioctl programs Resizer Hardware, submits
resizing task and waits for it to be completed. This ioctl will block the
application if the resizer driver is opened in blocking mode. If it is opened
in non-blocking mode, it will simply return with busy if the hardware
is busy. Before submitting resizing task, the input and output buffers
must be en-queued to the driver so the drive will come to know which
buffers to be used as input and output. Also resize ioctl, as an side effect,
removed buffers from the queue. So if resizing task required to be re-

Resizer Driver

Usage of Features

Version 03.00.00.03 Platform Support Products 123

submitted, buffers must be en-queued again. So whenever resizing task
is submitted, input and output buffers must also be enqueued first.

7.2.2.3.2. Chroma Algorithm

Chroma components, which are 2:1 horizontally down sampled with
respect to luma, have two methods of horizontal resizing: Filtering
with luma, and Bilinear interpolation. The Chroma algorithm option
can be selected in the cbilin field of rsz_params structure. However,
filtering with luma is only intended for down sampling, and bilinear
interpolation is only intended for up sampling.

There are two possible values of cbilin member of rsz_params structures.
0 and 1. 0 indicates that the chrominance uses the same processing
as the luminance and 1 indicates that the chrominance uses bilinear
interpolation processing.

7.2.2.3.3. Input/output image format

Resizer module supports two types of image format. One is YUV422
packed data and the other is color separate data. Input image format
can be selected by providing one of RSZ_INTYPE_YCBCR422_16BIT or
RSZ_INTYPE_PLANAR_8BIT value to inptype member of rsz_params
structure. Configured input image format is used for both input and
output image.

When YUV422 interleaved (packed) image format is selected, resizer
module resizes entire image and stores it in output buffer.

When color separate image format is selected, application has to resize
each of the color components separately. Application must open three
instances of the resizer driver and resize each color components in one
instance separately. Application must provide correct input and output
size of the each color components when resizing color components.

7.2.2.3.4. Pixel Format

Resizer module supports two pixel format YUYV and UYVY. Pixel
format can be selected by providing one of RSZ_PIX_FMT_YUYV or
RSZ_PIX_FMT_UYVY value to pix_fmt member of rsz_params structure.
Configured pixel format is used for both input and output image. When
color separate input data is used, this field is ignored.

7.2.2.3.5. Luma Enhancement

Edge enhancement can be applied to the horizontally resized luminance
component before the output of the horizontal stage is sent to the line
memories and the vertical stage. type member of rsz_yenh member of
rsz_params structure can be set to disable edge enhancement, or to
select a 3-tap or a 5-tap horizontal high-pass filter (HPF) for luminance
enhancement. So possible values of type is 0, 1 or 2 for disabling luma
enhancement, selecting 3 tap filed or selecting 5 tap filter. If edge

Resizer Driver

Constraints

124 Platform Support Products Version 03.00.00.03

enhancement is selected, the two left-most and two right-most pixels
in each line are not outputted to the line memories and the vertical
stage. When luma enhancement is enabled, maximum output width can
be 1280 when 1/2x to 4x vertical resizing ratio is selected and 640 when
1/4x to 1/2x vertical resizing ratio is selected.

Luma enhancement algorithm is as follows.

HPF (Y_IN) = Y_IN convolved with {[-0.5, 1, 0.5] or [-0.25, -0.5, 1.5,
-0.5, -0.25]}

Implemented as [-1, 2, -1] >> 1, [-1, -2, 6, -2, -1] >> 2)

Saturate HPF(Y) between -256 and +255

Hpgain = (|HPF(Y)| - CORE) * SLOP

Saturate hpgain between 0 and GAIN

Y_OUT = Y_IN + (HPF (Y_IN) * hpgain + 8) >> 4

Saturate Y_OUT between 0 and 255

Application have to provide core, slope and gain members of rsz_yenh
member of rsz_params structure.

7.2.2.3.6. Configuring the Read cycle for Resizer module

ISP module supports configuration of number of clock cycles between
two consecutive read request from resizer module. Value supported is
0 - 0x3FF.

 unsigned int read_exp;
 read_exp = 0xe;
 ret_val = ioctl(fd, RSZ_S_EXP, &read_exp);
 if (ret_val){
 printf("\nUnable to set the read cycle expand register\n");
 return ret_val;
 }

The default configuration of read cycle is 0xE.

7.2.3. Constraints

• For driver allocated buffers, driver allocates maximum size of buffers
for both input and output.

• All input/output buffers addresses and pitch must be 32 bytes
aligned.

• Output image size cannot be more than 2047x2047.

Resizer Driver

Constraints

Version 03.00.00.03 Platform Support Products 125

• Output width must be even.

• Output width must be 16 byte aligned for vertical resizing.

• The horizontal start pixel must be within the range: 0 to 15 for color
interleaved, 0 to 31 for color separate data.

Resizer Driver

Architecture

126 Platform Support Products Version 03.00.00.03

7.3. Architecture
Following block diagram shows the basic architecture of the Resizer
Driver -

Figure 7.2. Basic Architecture of Resizer Driver

Resizer Driver provides Resizer Hardware access to a channel by
using Linux Character driver interface. Driver supports all the features
supported by the hardware. It provides easy way of configuring
the hardware. To understand this, that the hardware module driver
implements, is briefly described in this section.

Resizer Driver

Software Interface

Version 03.00.00.03 Platform Support Products 127

7.4. Software Interface
This section describes the Data Structures, Enumerations, and API
Specifications used in the OMAP Resizer Driver.

7.4.1. Application Programming Interface

7.4.1.1. open
Description

Opens the device driver for processing.
Prototype

 int fd = open(device_name, mode);

Field Description

device_name It is /dev/omap-resizer

mode O_RDWR or ORed with O_NONBLOCK

Table 7.2. Resizer: open System Call arguments

Return Values

Zero on success, or negative if an error has occurred.

7.4.1.2. close
Description

Close the device.
Prototype

 close(fd);

Field Description

fd File descriptor returned from open call.

Table 7.3. Resizer: close system call arguments

Return Values

Zero on success.

EINTR, if driver could not get the handle.

Resizer Driver

IOCTLs

128 Platform Support Products Version 03.00.00.03

7.4.1.3. mmap
Description

Map the kernel space buffer to user space.
Prototype

 void * mmap(void *, size_t image_size, int prot, int
 flags, int fd, off_t offset)

Field Description

void * Generally NULL

image_size Buffer size that needs to be mapped

flag PROT_SHARED

fd File descriptor

offset Physical address of the buffer

Table 7.4. Resizer: mmap system call arguments

Return Values

Zero on success.

EAGAIN, if the address is not found.

7.4.1.4. munmap
Description

Unmap the frame buffers that were previously mapped to user space
using mmap() system call.
Prototype

 void *munmap(void *start_addr, size_t length)

Field Description

start_addr Start address of buffer which is to be unmapped.

length Length of buffer.

Table 7.5. Resizer: munmap system call arguments

Return Values

Zero on success, or Negative if an error has occurred.

7.4.2. IOCTLs

Resizer Driver

IOCTLs

Version 03.00.00.03 Platform Support Products 129

7.4.2.1. RSZ_S_PARAMS
Description

Set the resizer parameters necessary for processing.
Prototype

 int ioctl(int fd, RSZ_S_PARAMS, struct rsz_params *argp)

Field Description

fd File handle associated with fd.

cmd RSZ_S_PARAMS ioctl command.

argp Pointer to rsz_params structure.

Table 7.6. Resizer: ioctl RSZ_S_PARAMS arguments

Return Values

Zero on success,

EINVAL, if parameters are incorrect.

EINTR, if device is in use by the same channel handle.

7.4.2.2. RSZ_G_PARAMS
Description

Get the Resizer parameters that are previously being set.
Prototype

 int ioctl(int fd, RSZ_G_PARAMS,struct rsz_params *argp)

Field Description

fd File handle associated with fd.

cmd RSZ_G_PARAMS ioctl command.

argp Pointer to rsz_params structure.

Table 7.7. Resizer: ioctl RSZ_G_PARAMS arguments

Return Values

Zero on success,

EINVAL, if device is not configured before calling this API.

7.4.2.3. RSZ_G_STATUS
Description

Resizer Driver

IOCTLs

130 Platform Support Products Version 03.00.00.03

Get the channel status for the particular current Resizer channel.
Prototype

 int ioctl(int fd, RSZ_G_STATUS, struct rsz_status *argp)

Field Description

fd File handle associated with fd.

cmd RSZ_G_STATUS ioctl command.

argp Pointer to rsz_status structure.

Table 7.8. Resizer: ioctl RSZ_G_STATUS argument

Return Values

Zero on success,

7.4.2.4. RSZ_S_EXP
Description

Configure the Read cycle required for Resizer module. This configuration
is provided per channel.
Prototype

 int ioctl(int fd, RSZ_S_EXP, unsigned int *argp)

Field Description

fd File handle associated with fd.

cmd RSZ_S_EXP ioctl command.

argp Pointer to unsigned int.

Table 7.9. Resizer: ioctl RSZ_S_EXP argument

Return Values

Zero on success,

7.4.2.5. RSZ_RESIZE
Description

Starts the Resizer processing for the parameters previously set by
RSZ_S_PARAMS
Prototype

 int ioctl(int fd, RSZ_RESIZE, int *argp)

Resizer Driver

IOCTLs

Version 03.00.00.03 Platform Support Products 131

Field Description

fd File handle associated with fd.

cmd RSZ_RESIZE ioctl command.

argp Pointer to int.

Table 7.10. Resizer: ioctl RSZ_RESIZE arguments

Return Values

Zero on success,

EINVAL, if parameters are incorrect.

EBUSY/EINTR, if device is in use by the same channel handle.

7.4.2.6. RSZ_REQBUF
Description

Request to allocate buffers
Prototype

 int ioctl(int fd, RSZ_REQBUF, struct v4l2_requestbuffers *argp)

Field Description

fd File handle associated with fd.

cmd RSZ_REQBUF ioctl command.

argp Pointer to v4l2_requestbuffers structure.

Table 7.11. Resizer: ioctl RSZ_REQBUF arguments

Return Values

Zero on success,

ENOMEM, if memory is not available.

EINTR, if device is in use by the same channel handle.

7.4.2.7. RSZ_QUERYBUF
Description

Request physical address of buffers allocated by the RSZ_REQBUF
Prototype

 int ioctl(int fd, RSZ_QUERYBUF, struct v4l2_buffer *argp)

Resizer Driver

Data Structures

132 Platform Support Products Version 03.00.00.03

Field Description

fd File handle associated with fd.

cmd RSZ_QUERYBUF ioctl command.

argp Pointer to v4l2_buffer structure.

Table 7.12. Resizer: ioctl RSZ_QUERYBUF arguments

Return Values

Zero on success,

EINVAL/EFAULT, if parameters are incorrect.

EINTR, if device is in use by the same channel handle.

7.4.2.8. RSZ_QUEUEBUF
Description

Queue the buffer for resize operation.
Prototype

 int ioctl(int fd, RSZ_QUEUEBUF, struct v4l2_buffer *argp)

Field Description

fd File handle associated with fd.

cmd RSZ_QUEUEBUF ioctl command.

argp Pointer to v4l2_buffer structure.

Table 7.13. Resizer: ioctl RSZ_QUEUEBUF arguments

Return Values

Zero on success,

EINVAL/EFAULT, if parameters are incorrect.

EINTR, if device is in use by the same channel handle.

7.4.3. Data Structures

7.4.3.1. Resizer Parameters Configuration Structure

struct rsz_params {
 __s32 in_hsize;
 __s32 in_vsize;
 __s32 in_pitch;
 __s32 inptyp;
 __s32 vert_starting_pixel;

Resizer Driver

Data Structures

Version 03.00.00.03 Platform Support Products 133

 __s32 horz_starting_pixel;
 __s32 cbilin;
 __s32 pix_fmt;
 __s32 out_hsize;
 __s32 out_vsize;
 __s32 out_pitch;
 __s32 hstph;
 __s32 vstph;
 __u16 tap4filt_coeffs[32];
 __u16 tap7filt_coeffs[32];
 struct rsz_yenh yenh_params;
} ;

Name Description

in_hsize Width of the input image in pixels.

in_vsize Height of the input image in pixels.

in_pitch Pitch of input image in bytes.

inptype Input image format.

vert_starting_pixel Vertical starting pixel.

horz_starting_pixel Horizontal starting pixel.

cbilin Chroma resizing algorithm.

pix_fmt Image Pixel format for YUV422 image.

out_hsize Width of the output image in pixels.

out_vsize Height of the output image in pixels.

out_pitch Pitch of the output image in bytes.

hstph Horizontal starting phase.

vstph Vertical starting phase.

tap4filt_coeffs Set of coefficients for scaling ratio 0.5x - 4x.

tap7filt_coeffs Set of coefficients for scaling ratio 0.25x -
0.5x.

yenh_params Luma Enhancement parameters.

Table 7.14. Resizer: Parameters Configuration Structure fields

7.4.3.2. Request Buffer Structure

struct v4l2_requestbuffer {
 unsigned int type;
 unsigned int count;
 enum v4l2_memory memory;
 ...
}

Name Description

type Buffer type V4L2_BUF_TYPE_VIDEO_CAPTURE.

Resizer Driver

Data Structures

134 Platform Support Products Version 03.00.00.03

Name Description

count Number of buffers to be allocated.

memory Type of the buffer exchange mechanism
requested.

Table 7.15. Resizer: Request Buffer Structure fields

7.4.3.3. Buffer structure

struct v4l2_buffer {
 unsigned int index;
 unsigned int type;
 enum v4l2_memory memory;
 union {
 unsigned long offset;
 unsigned long userptr
 }m;
}

Name Description

index Index of the input/output buffer.

type Type of the buffer is
V4L2_BUF_TYPE_VIDEO_CAPTURE.

offset/userptr Physical/virtual address of the buffer.

memory Type of memory, V4L2_MEMORY_MMAP or
V4L2_MEMORY_USERPTR.

Table 7.16. Resizer: Buffer structure fields

7.4.3.4. Luma enhancement structure

struct rsz_yenh {
 __s32 type;
 __u8 gain;
 __u8 char slop;
 __u8 core;
}

Name Description

type Luma Enhancement algorithm.

gain Gain.

slop Slop.

core Core.

Table 7.17. Resizer: Luma enhancement structure fields

Resizer Driver

Data Structures

Version 03.00.00.03 Platform Support Products 135

7.4.3.5. Status structure

struct rsz_status {
 __s32 chan_busy;
 __s32 hw_busy;
 __s32 src;
}

Name Description

chan_busy Status of the channel.

hw_busy Status of the hardware.

src Input source.

Table 7.18. Resizer: Status structure fields

7.4.3.6. Crop Size structure

struct rsz_cropsize {
 __u32 hcrop;
 __u32 vcrop;
}

Name Description

hcrop Number of pixels cropped in horizontal direction.

vcrop Number of pixels cropped in vertical direction.

Table 7.19. Resizer: Crop Size structure fields

7.4.3.7. Input/Output image format

This describes the input and output image format, which can be YUV
interleaved 16 bit or planar 8 bit. This can be specified in inptype field
of the rsz_params structure.

#define RSZ_INTYPE_YCBCR422_16BIT 0
#define RSZ_INTYPE_PLANAR_8BIT 1

7.4.3.8. Pixel Format

This describes pixel format for the YUV interleaved data. This can be
specified in pix_fmt member of rsz_params structure.

#define RSZ_PIX_FMT_UYVY 1 /* cb:y:cr:y */
#define RSZ_PIX_FMT_YUYV 0 /* y:cb:y:cr */

Resizer Driver

Data Structures

136 Platform Support Products Version 03.00.00.03

Resizer Driver

Driver Configuration

Version 03.00.00.03 Platform Support Products 137

7.5. Driver Configuration

7.5.1. Configuration Steps
To enable OMAP Resizer driver, start Linux Kernel Configuration tool.

$ make menuconfig ARCH=arm

Select Device Drivers from the main menu.

 ...
 ...
 Kernel Features --->
 Boot options --->
 CPU Power Management --->
 Floating point emulation --->
 Userspace binary formats --->
 Power management options --->
[*] Networking support --->
 Device Drivers --->
 ...
 ...

Select Multimedia support from the menu.

 ...
 ...
 Sonics Silicon Backplane --->
 Multifunction device drivers --->
[*] Voltage and Current Regulator Support --->
<*> Multimedia support --->
 Graphics support --->
<*> Sound card support --->
[*] HID Devices --->
[*] USB support --->
 ...
 ...

Select Video For Linux from the menu.

 ...
 ...
 *** Multimedia core support ***
<*> Video For Linux
[*] Enable Video For Linux API 1 (DEPRECATED)

Resizer Driver

Configuration Steps

138 Platform Support Products Version 03.00.00.03

< > DVB for Linux
 ...
 ...

Select Video capture adapters from the same menu. Press <ENTER> to
enter the corresponding sub-menu.

 ...
 ...
[] Customize analog and hybrid tuner modules to build --->
[*] Video capture adapters --->
[] Radio Adapters --->
[] DAB adapters
 ...
 ...

Select OMAP ISP Resizer from the menu.

 ...
 ...
<*> OMAP 3 Camera support
< > OMAP ISP Previewer
<*> OMAP ISP Resizer
<*> TI Media Drivers
 ...
 ...

Resizer Driver

Sample Application Flow

Version 03.00.00.03 Platform Support Products 139

7.6. Sample Application Flow
This section shows application flow diagram for resizer application.

Figure 7.3. Resizer Sample Application Flow

Resizer Driver

Revision History

140 Platform Support Products Version 03.00.00.03

7.7. Revision History
0.97 Initial Draft.

02.00.01 Updated for the second snapshot release.

03.00.00.02Updated for PSP03.00.00.03 release.

Version 03.00.00.03 Platform Support Products 141

Daughter Card Module

Abstract

This chapter provides detailed description of feature set supported on Daughter Card and software
package.

Table of Contents

8.1. Mass Market Daughter Card ... 142

8.1.1. Acronyms & Definitions .. 142

8.1.2. Introduction ... 142

8.2. Block Diagram .. 143

8.3. Board Illustration .. 144

8.4. Features supported under software 145

Daughter Card Module

Mass Market Daughter Card

142 Platform Support Products Version 03.00.00.03

8.1. Mass Market Daughter Card

8.1.1. Acronyms & Definitions

Acronym Definition

MMDC Multi-Media Daughter Card/Customer Daughter
Card

Table 8.1. MMDC Acronyms

8.1.2. Introduction
OMAP35x daughter-card (MMDC) supports following features which are
not available on the main OMAP3EVM-1 (<Rev-E).

Note

Please note that all the MMDC components/peripherals have been
moved on-board for OMAP3EVM-2 (>=Rev-E). So this section is
applicable only for OMAP3EVM-1 (<Rev-E).

1. TVP5146 decoder interface supporting BT656 format.

2. Supports 3 types of video input types - S-Video, Composite and
component.

3. Supports 8/10 bit output interface from TVP5146.

4. Supports interface for Micron sensor.

5. HSUSB TRANSCEIVER- USB83320 supporting EHCI on port 2

Daughter Card Module

Block Diagram

Version 03.00.00.03 Platform Support Products 143

8.2. Block Diagram
The top level block depicts the features supported on the daughter-card.

Figure 8.1. Block Diagram

Daughter Card Module

Board Illustration

144 Platform Support Products Version 03.00.00.03

8.3. Board Illustration
The various connectors and hardware modules on the daughter card are
illustrated in the picture below:

Figure 8.2. Board Illustration

Daughter Card Module

Features supported under software

Version 03.00.00.03 Platform Support Products 145

8.4. Features supported under software
• Video capture (BT656 interface) using the TVP5146 decoder.

• Support Composite and S-video interface only.

• EHCI on USB port-2 using HSUSB TRANSCEIVER- USB83320.

Version 03.00.00.03 Platform Support Products 146

Version 03.00.00.03 Platform Support Products 147

Capture Driver

Abstract

This chapter provides detailed description of feature set and software interface for the video Capture
driver implementation.

Table of Contents

9.1. Introduction .. 149

9.1.1. References ... 150

9.1.2. Acronyms & Definitions .. 151

9.2. Features ... 152

9.3. Architecture .. 153

9.3.1. System Diagram .. 153

9.3.2. Software Design Interfaces 155

9.4. Driver Configuration .. 171

Capture Driver

148 Platform Support Products Version 03.00.00.03

9.4.1. Configuration Steps ... 171

9.4.2. Installation ... 173

9.5. Sample Applications .. 175

9.5.1. Introduction ... 175

9.5.2. Hardware Setup .. 175

9.5.3. Sample Applications .. 175

Capture Driver

Introduction

Version 03.00.00.03 Platform Support Products 149

9.1. Introduction
The camera ISP is a key component for imaging and video applications
such as video preview, video record, and still-image capture with or
without digital zooming.

The camera ISP provides the system interface and the processing
capability to connect RAW image-sensor modules and video decoders to
the OMAP35x device.

The capture module consists of the following interfaces:

• One S-video SD input in BT.656 format.

• One Composite SD input in BT.656 format.

Both these video inputs are connected to one TVP5146 decoder and the
application can select between these two inputs using standard V4L2
interface.

Note

Only one input can be captured or selected at any given point of time.

The following figure shows the basic block diagram of capture interface.

Figure 9.1. Capture Driver Component Overview

Capture Driver

References

150 Platform Support Products Version 03.00.00.03

The following figure shows the physical connection and inputs for
TVP5146 decoder.

Figure 9.2. Capture Physical Input Interface

The V4L2 Capture driver model is used for capture module. The
V4L2 driver model is widely used across many platforms in the Linux
community. V4L2 provides good streaming support and support for many
buffer formats. It also has its own buffer management mechanism that
can be used.

9.1.1. References

1. OMAP35x Camera Interface Subsystem (ISP) TRM

Author: Texas Instruments, Inc.

Literature Number: SPRUFA2

2. OMAP35x Memory Management Units (MMUs)TRM
Author: Texas Instruments, Inc.

Literature Number: SPRUFF5

3. Video for Linux Two API Specification
Author: Michael H Schimek

Version: 0.23

Capture Driver

Acronyms & Definitions

Version 03.00.00.03 Platform Support Products 151

9.1.2. Acronyms & Definitions

Acronym Definition

MMDC Mass Market Daughter Card/Customer Daughter
Card

3A Auto White Balance, Auto Focus, Auto Exposure

API Application Programming Interface

CCDC Input interface block of ISP

DMA Direct Memory Access

I/O Input & Output

IOCTL Input & Output Control

MMU Memory Management Unit

V4L2 Video for Linux specification version 2

YUV Luminance + 2 Chrominance Difference Signals
(Y, Cr, Cb) Color Encoding

Table 9.1. Capture Driver Acronyms

Capture Driver

Features

152 Platform Support Products Version 03.00.00.03

9.2. Features
The ISP Capture Driver provides the following features:

• Supports one software channel of capture and a corresponding
device node (/dev/video0) is created.

• Supports single I/O instance and multiple control instances.

• Supports buffer access mechanism through memory mapping and
user pointers.

• Supports dynamic switching among input interfaces with some
necessary restrictions wherever applicable.

• Supports NTSC and PAL standard on Composite and S-Video
interfaces.

• Supports 8-bit BT.656 capture in UYVY and YUYV interleaved
formats.

• Supports standard V4L2 IOCTLs to get/set various control
parameters like brightness, contrast, saturation, hue and auto gain
control.

• TVP5146 (TVP514x) decoder driver module can be used statically or
dynamically (insmod and rmmod supported).

• In USERPTR mode of operation both malloc'd and IO mapped buffers
are supported.

• The camera ISP driver supports both static into kernel and modular
build.

Capture Driver

Architecture

Version 03.00.00.03 Platform Support Products 153

9.3. Architecture

9.3.1. System Diagram

Following block diagram shows basic architecture of the ISP Capture
Driver.

Figure 9.3. Capture Driver Basic Architecture

The system architecture diagram illustrates the software components
that are relevant to the Camera Driver. Some components are outside
the scope of this design document. The following is a brief description
of each component in the figure.

Camera Applications: Camera applications refer to any application that
accesses the device node that is served by the Camera Driver. These
applications are not in the scope of this design. They are here to present
the environment in which the Camera Driver is used.

V4L2 Subsystem: The Linux V4L2 subsystem is used as an
infrastructure to support the operation of the Camera Driver. Camera
applications mainly use the V4L2 API to access the Camera Driver
functionality. A Linux 2.6 V4L2 implementation is used in order to support
the standard features that are defined in the V4L2 specification.

Capture Driver

System Diagram

154 Platform Support Products Version 03.00.00.03

Video Buffer Library: This library comes with V4L2. It provides helper
functions to cleanly manage the video buffers through a video buffer
queue object.

Camera Driver: The Camera Driver allows capturing video through an
external decoder. It is a V4L2-compliant driver with addition of an OMAP3
ISP hardware feature. This driver conforms to the Linux driver model
for power management. The camera driver is registered to the V4L2
layer as a master device driver. Any slave decoder driver added to the
V4L2 layer will be attached to this driver through the new V4L2 master-
slave interface layer. The current implementation supports only one slave
device.

Decoder Driver: The Camera Driver is designed to be OMAP dependent,
but platform and board independent. It is the decoder driver that
manages the board connectivity. A decoder driver must implement the
new V4L2 master-slave interface. It should register to the V4L2 layer as
a slave device. Changing a decoder requires implementation of a new
decoder driver; it does not require changing the Camera Driver. Each
decoder driver exports a set of IOCTLs to the master device through
function pointers.

ISP Library: The ISP library exports APIs to configure ISP module and
clocks to the sensor/decoder. It is the central interrupt handler where
callback routines for ISP interrupts are handled. This also manages the
video buffers.

CCDC library: CCDC is a HW block in Camera ISP which acts as a data
input port. It receives data from the sensor/decoder through parallel or
serial interface. The CCDC library exports API to configure CCDC module.
It is configured by the ISP driver based on the sensor/decoder attached
and desired output from the camera driver.

MMU library: MMU is a HW block in Camera ISP that handles the
translation from virtual into physical addresses. The camera subsystem
issues virtual addresses to the ISP MMU and the ISP MMU translates
these virtual addresses into physical addresses to access the actual
memory. Using this the camera driver captures video data in fragmented
physical memory without moving data. The MMU library exports API to
configure MMU module.

Preview library: Preview is a HW block in Camera ISP which is
responsible for image processing and color conversion. It has HW blocks
for image processing algorithms. Preview library allows camera driver to
configure, enable and disable the individual HW blocks in the preview
module. This module will be used only when a RAW sensor is connected
to the ISP.

Resizer library: Resizer is a HW block in Camera ISP which is
responsible for image downscaling and upscaling. It has HW filters which
resize the input image based on configuration. Resizer library allows
camera driver to query and configure the resizer module. Resizer in
OMAP3 ISP supports resizing ratios from 1/4 to 4. Resizer also has

Capture Driver

Software Design Interfaces

Version 03.00.00.03 Platform Support Products 155

multipass approach which can be used to overcome this limitation.
Current camera driver only supports on the fly mode of operation. In this
mode image is taken from sensor and passed to application without any
memory to memory operations in ISP and so multipass resizer operations
are not supported.

H3A library: H3A is a HW block in Camera ISP which is responsible
for collecting image statistics that can be used by other algorithms. It
generates auto focus, auto white balance, auto exposure and histogram
statistics. H3A library allows user space algorithms to configure and
request these statistics through custom IOCTLs.

9.3.2. Software Design Interfaces

9.3.2.1. Opening and Closing of driver

The device can be opened using open call from the application, with the
device name and mode of operation as parameters. Application should
open the driver in blocking mode. In this mode, DQBUF IOCTL will not
return until an empty frame is available.

/* Open a video capture logical channel in blocking mode */
fd = open("/dev/video0", O_RDWR);
if (fd == -1) {
 perror("failed to open Capture device\n");
 return -1;
}
/* closing of channel */
close (fd);

9.3.2.2. Buffer Management

ISP Capture driver can work with physically non-contiguous buffers. It
uses the ISP MMU to capture data to buffers scattered to a set of page
frames. Hence, in user pointer mode the application can allocate buffers
in user space, which need not be physically contiguous, and pass this
directly to driver for capture operation. The only restriction for the user
buffer is that, the buffer should be aligned to 32 bytes boundary. The
driver supports both memory usage modes:

1) Memory map buffer mode

2) User Pointer mode

In Memory map buffer mode, application can request memory from
the driver by calling VIDIOC_REQBUFS IOCTL. In user buffer mode,
application needs to allocate memory using some other mechanism in
user space like malloc or memalign. In driver buffer mode, maximum
number of buffers is limited to VIDEO_MAX_FRAME (defined in driver
header files) and is limited by the available memory in the kernel.

Capture Driver

Software Design Interfaces

156 Platform Support Products Version 03.00.00.03

The main steps that the application must perform for buffer allocation
are:

1) Allocating Memory

2) Getting Physical Address

3) Mapping Kernel Space Address to User Space

1. Allocating Memory

This IOCTL is used to allocate memory for frame buffers. This is the
necessary IOCTL for streaming IO. It has to be called for both driver
buffer mode and user buffer mode. Using this IOCTL, driver will know
whether driver buffer mode or user buffer mode will be used.

Ioctl: VIDIOC_REQBUFS

It takes a pointer to instance of v4l2_requestbuffers structure as an
argument.

User should specify buffer type as (V4L2_BUF_TYPE_VIDEO_CAPTURE),
number of buffers, and memory type (V4L2_MEMORY_MMAP,
V4L2_MEMORY_USERPTR) at the time of buffer allocation.

Constraint: This IOCTL can be called only once from the application. This
IOCTL is necessary IOCTL.

Example:

/* structure to store buffer request parameters */
struct v4l2_requestbuffers reqbuf;

reqbuf.count = numbuffers;
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_MMAP;
ret = ioctl(fd, VIDIOC_REQBUFS, &reqbuf);
if (ret < 0) {
 printf("cannot allocate memory\n");
 close(fd);
 return -1;
}

printf("Number of buffers allocated = %d\n", reqbuf.count);

2. Getting Physical Address

This IOCTL is used to query buffer information like buffer size and buffer
physical address. This physical address is used in mmapping the buffers.
This IOCTL is necessary for driver buffer mode as it provides the physical
address of buffers, which are used to mmap system call the buffers.

Ioctl: VIDIOC_QUERYBUF

Capture Driver

Software Design Interfaces

Version 03.00.00.03 Platform Support Products 157

It takes a pointer to instance of v4l2_buffer structure as an argument.

User has to specify buffer type as (V4L2_BUF_TYPE_VIDEO_CAPTURE),
buffer index, and memory type (V4L2_MEMORY_MMAP) at the time of
querying.

Example:

/* allocate buffer by VIDIOC_REQBUFS */
/* structure to query the physical address of allocated buffer */
struct v4l2_buffer buffer;

buffer.index = 0; /* buffer index for quering -0 */
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
if (ioctl(fd, VIDIOC_QUERYBUF, &buffer) < -1) {
 printf("buffer query error.\n");
 close(fd);
 exit(-1);
}

The buffer.m.offset will contain the physical address returned
 from driver.

3. Mapping Kernel Space Address to User Space

Mapping the kernel buffer to the user space can be done via mmap. This
is only required for MMAP buffer mode. User can pass buffer size and
physical address of buffer for getting the user space address.

Example:

/* allocate buffer by VIDIOC_REQBUFS */
/* query the buffer using VIDIOC_QUERYBUF */
/* addr hold the user space address */
int addr;
addr = mmap(NULL, buffer.size,PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, buffer.m.offset);

/* buffer.m.offset is same as returned from VIDIOC_QUERYBUF */

9.3.2.3. Query Capabilities

This IOCTL is used to verify kernel devices compatibility with V4L2
specification and to obtain information about individual hardware
capabilities. In this case, it will return capabilities provided by ISP
capture driver and current decoder driver.

Ioctl: VIDIOC_QUERYCAP

Capture Driver

Software Design Interfaces

158 Platform Support Products Version 03.00.00.03

Capabilities can be video capture (V4L2_CAP_VIDEO_CAPTURE) and
streaming (V4L2_CAP_STREAMING).

It takes pointer to v4l2_capability structure as an argument.

Capabilities can be accessed by capabilities field in the v4l2_capability
structure.

Example:

struct v4l2_capability capability;

ret = ioctl(fd, VIDIOC_QUERYCAP, &capability);
if (ret < 0) {
 printf("Cannot do QUERYCAP\n");
 return -1;
}

if (capability.capabilities & V4L2_CAP_VIDEO_CAPTURE) {
 printf("Capture capability is supported\n");
}
if (capability.capabilities & V4L2_CAP_STREAMING) {
 printf("Streaming is supported\n");
}

9.3.2.4. Input Enumeration

This IOCTL is used to enumerate the information of available inputs
(analog interface). It includes information like name of input type and
supported standards for that input type.

Ioctl: VIDIOC_ENUMINPUT

It takes pointer to v4l2_input structure. Application provides the index
number for which it requires the information, in index member of
v4l2_input structure.

Index with value zero indicates first input type of the decoder. It returns
combination of the standards supported on this input in the std member
of v4l2_input structure.

Example:

struct v4l2_input input;

i = 0;
while(1) {
 input.index = i;
 ret = ioctl(fd, VIDIOC_ENUMINPUT, &input);
 if (ret < 0)
 break;

 printf("name = %s\n", input.name);

Capture Driver

Software Design Interfaces

Version 03.00.00.03 Platform Support Products 159

 i++;
}

9.3.2.5. Set Input

This IOCTL is used to set input type (analog interface type).

Ioctl: VIDIOC_S_INPUT

This IOCTL takes pointer to integer containing index of the input which
has to be set.

Application will provide the index number as an argument.

 0 - Composite input,
 1 - S-Video input.

Example:

int index = 1; /*To set S-Video input*/
struct v4l2_input input;

ret = ioctl(fd, VIDIOC_S_INPUT, &index);
if (ret < 0) {
 perror("VIDIOC_S_INPUT\n");
 close(fd);
 return -1;
}

input.index = index;
ret = ioctl(fd, VIDIOC_ENUMINPUT, &input);
if (ret < 0) {
 perror("VIDIOC_ENUMINPUT\n");
 close(fd);
 return -1;
}

printf("name of the input = %s\n",input.name);

9.3.2.6. Get Input

This IOCTL is used to get the current input type (analog interface type).

Ioctl: VIDIOC_G_INPUT

This IOCTL takes pointer to integer using which the detected inputs will
be returned. It will return the software managed input detected during
open system call.

Application will provide the index number as an output argument.

Example:

Capture Driver

Software Design Interfaces

160 Platform Support Products Version 03.00.00.03

int input;
struct v4l2_input input;

ret = ioctl(fd, VIDIOC_G_INPUT, &input);
if (ret < 0) {
 perror("VIDIOC_G_INPUT\n");
 close(fd);
 return -1;
}

input.index = index;
ret = ioctl(fd, VIDIOC_ENUMINPUT, &input);
if (ret < 0) {
 perror("VIDIOC_ENUMINPUT\n");
 close(fd);
 return -1;
}

printf("name of the input = %s\n", input.name);

9.3.2.7. Standard Enumeration

This IOCTL is used to enumerate the information regarding video
standards.

This IOCTL is used to enumerate all the standards supported by the
registered decoder.

Ioctl: VIDIOC_ENUMSTD

This IOCTL takes a pointer to v4l2_standard structure. Application
provides the index of the standard to be enumerated in the index
member of this structure. It provides information like standard name,
standard ID defined at V4L2 header files (few new standards are included
in the respective decoder header files, which were not available in
standard V4L2 header files), and numerator and denominator values for
frame period and frame lines.

It takes index as an argument as a part of v4l2_standard structure.

Index with value zero provides information for the first standard among
all the standards of all the registered decoders.

If the index value exceeds the number of supported standards, it returns
an error.

Example:

struct v4l2_standard standard;

i = 0;
while(1) {
 standard.index = i;

Capture Driver

Software Design Interfaces

Version 03.00.00.03 Platform Support Products 161

 ret = ioctl(fd, VIDIOC_ENUMSTD, &standard);
 if (ret < 0)
 break;

 printf("name = %s\n", std.name);
 printf("framelines = %d\n", std.framelines);
 printf("numerator = %d\n",
 std.frameperiod.numerator);
 printf("denominator = %d\n",
 std.frameperiod.denominator);
 i++;
}

9.3.2.8. Standard Detection

This IOCTL is used to detect the current video standard set in the current
decoder.

Ioctl: VIDIOC_QUERYSTD

It takes a pointer to v4l2_std_id instance as an output argument.
Driver will call the current decoder's function internally (which has been
initialized) to detect the current standard set in hardware. Support of
this IOCTL depends on decoder device, whether it can detect a standard
or not.

Note: This IOCTL should be called by the application so that the camera
driver can configure ISP properly with the detected decoder standard.

Standard IDs are defined in the V4L2 header files

Example:

v4l2_std_id std;
struct v4l2_standard standard;

ret = ioctl(fd, VIDIOC_QUERYSTD, &std);
if (ret < 0) {
 perror("VIDIOC_QUERYSTD\n");
 close(fd);
 return -1;
}

while(1) {
 standard.index = i;
 ret = ioctl(fd, VIDIOC_ENUMSTD, &standard);
 if (ret < 0)
 break;

 if (standard.std & std) {
 printf("%s standard detected\n",
 standard.name);
 break;
 }

Capture Driver

Software Design Interfaces

162 Platform Support Products Version 03.00.00.03

 i++;
}

9.3.2.9. Set Standard

This IOCTL is used to set the standard in the decoder.

Ioctl: VIDIOC_S_STD

It takes a pointer to v4l2_std_id instance as an input argument. If the
standard is not supported by the decoder, the driver will return an error

Standard IDs are defined in the V4L2 header files (few new standards
are included in respective decoder header files, which were not available
in standard V4L2 header files).

Note: Application need not call this IOCTL as the decoder can auto detect
the current standard. This is required only when the application needs
to set a particular standard. In this case, the decoder driver auto detect
function is disabled. Auto detect can be enabled again only by closing
and re-opening the driver.

Example:

v4l2_std_id std = V4L2_STD_NTSC;

ret = ioctl(fd, VIDIOC_S_STD, &std);
if (ret < 0) {
 perror("S_STD\n");
 close(fd);
 return -1;
}

while(1) {
 standard.index = i;
 ret = ioctl(fd, VIDIOC_ENUMSTD, &standard);
 if (ret < 0)
 break;

 if (standard.std & std) {
 printf("%s standard is selected\n");
 break;
 }
 i++;
}

9.3.2.10. Get Standard

This IOCTL is used to get the current standard in the current decoder.

Ioctl: VIDIOC_G_STD

It takes a pointer to v4l2_std_id instance as an output argument.

Capture Driver

Software Design Interfaces

Version 03.00.00.03 Platform Support Products 163

Standard IDs are defined in the V4L2 header files

Example:

v4l2_std_id std;

ret = ioctl(fd, VIDIOC_G_STD, &std);
if (ret < 0) {
 perror("G_STD\n");
 close(fd);
 return -1;
}

while(1) {
 standard.index = i;
 ret = ioctl(fd, VIDIOC_ENUMSTD, &standard);
 if (ret < 0)
 break;

 if (standard.std & std) {
 printf("%s standard is selected\n");
 break;
 }
 i++;
}

9.3.2.11. Format Enumeration

This IOCTL is used to enumerate the information of pixel formats. The
driver supports only two pixel form at -8-bit UYVY interleaved and 8-bit
YUYV interleaved.

Ioctl: VIDIOC_ENUM_FMT

It takes a pointer to instance of v4l2_fmtdesc structure as an output
parameter.

Application must provide the buffer type in the type argument of
v4l2_fmtdesc structure as V4L2_BUF_TYPE_VIDEO_CAPTURE and index
member of this structure as zero.

Example:

struct v4l2_fmtdesc fmt;

i = 0;
while(1) {
 fmt.index = i;
 ret = ioctl(fd, VIDIOC_ENUM_FMT, &fmt);
 if (ret < 0)
 break;

 printf("description = %s\n",fmt.description);

Capture Driver

Software Design Interfaces

164 Platform Support Products Version 03.00.00.03

 if (fmt.type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
 printf("Video capture type\n");
 if (fmt.pixelformat == V4L2_PIX_FMT_YUYV)
 printf("V4L2_PIX_FMT_YUYV\n");
 i++;
}

9.3.2.12. Set Format

This IOCTL is used to set the format parameters. The format parameters
are line offset, storage format, pixel format, and so on. This IOCTL is
one of the necessary IOCTL. If it is not set, it uses the following default
values:

• Default storage format - V4L2_FIELD_INTERLACED

This IOCTL expects proper width and height members of the
v4l2_format structure from application as per the standard selected.

Please note that, V4L2_FIELD_INTERLACED is the only storage format
supported.

The application can decide the buffer pixel format using pixelformat
member of this IOCTL. The current driver supports - 8-bit UYVY
interleaved and 8-bit YUYV interleaved formats.

The desired pitch of the buffer can be set by using the bytesperline
member. The pitch should be at least one line size in bytes. When
changing the pitch, the application should also modify the sizeimage
member accordingly - sizeimage should be at least pitch * image height.

The driver allocates buffer of size sizeimage member of the v4l2_format
structure passed through this IOCTL for both mmap buffer and user
pointer mode. Driver validates the provided buffer size along with the
other members and uses this buffer size for calculating offsets for storing
video data.

This IOCTL is a necessary IOCTL for the user buffer mode because driver
will know the buffer size for user buffer mode. If it not called for the
user buffer mode, driver assumes the default buffer size and calculates
offsets accordingly.

Ioctl: VIDIOC_S_FMT

It will take pointer to instance of v4l2_format structure as an input
parameter.

If the type member is V4L2_BUF_TYPE_VIDEO_CAPTURE, it checks pixel
format, pitch value, and image size. It returns an error, if the parameters
are invalid.

Example:

Capture Driver

Software Design Interfaces

Version 03.00.00.03 Platform Support Products 165

struct v4l2_format fmt;

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_UYVY;
/* for NTSC standard */
fmt.fmt.pix.width = 720;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
ret = ioctl(fd, VIDIOC_S_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_S_FMT\n");
 close(fd);
 return -1;
}

9.3.2.13. Get Format

This IOCTL is used to get the current format parameters.

Ioctl: VIDIOC_G_FMT

It takes a pointer to instance of v4l2_format structure as an input
parameter.

Driver provides format parameters in the structure pointer passed as an
argument.

v4l2_format structure contains parameters like pixel format, image
size, bytes per line, and field type.

For type V4L2_BUF_TYPE_VIDEO_CAPTURE, the v4l2_pix_format
structure of fmt union is filled.

Example:

struct v4l2_format fmt;

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ret = ioctl(fd, VIDIOC_G_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_G_FMT\n");
 close(fd);
 return -1;
}

if (fmt.fmt.pix.pixelformat == V4L2_PIX_FMT_YUYV)
 printf("8-bit UYVY pixel format\n");

printf("Size of the buffer = %d\n", fmt.fmt.pix.sizeimage);
printf("Line offset = %d\n", fmt.fmt.pix.bytesperline);

if (fmt.fmt.pix.field == V4L2_FIELD_INTERLACED)
 printf("Storate format is interlaced frame format");

Capture Driver

Software Design Interfaces

166 Platform Support Products Version 03.00.00.03

9.3.2.14. Try Format

This IOCTL is used to validate the format parameters provided by the
application. It checks parameters and returns the correct parameter, if
any parameter is incorrect. It returns error only if the parameters passed
are ambiguous.

Ioctl: VIDIOC_TRY_FMT

It takes a pointer to instance of v4l2_format structure as an input/output
parameter

If the type member is V4L2_BUF_TYPE_VIDEO_CAPTURE, it checks pixel
format, pitch value, and image size. It returns errors to the application,
if the parameters are invalid.

Example:

struct v4l2_format fmt;

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_UYVY;
fmt.fmt.pix.sizeimage = size;
fmt.fmt.pix.bytesperline = pitch;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
ret = ioctl(fd, VIDIOC_TRY_FMT, &fmt);
if (ret < 0) {
 perror("VIDIOC_TRY_FMT\n");
 close(fd);
 return -1;
}

9.3.2.15. Query Control

This IOCTL is used to get the information of controls that is, brightness,
contrast, and so on supported by the current decoder.

Ioctl: VIDIOC_QUERYCTRL

This IOCTL takes a pointer to the instance of v4l2_queryctrl structure
as the argument and returns the control information in the same pointer.
Application provides the control ID in the v4l2_queryctrl id member in
this structure. This control ID is defined in V4L2 header file, for which
information is needed.

If the control command specified by Id is not supported in current
decoder, driver will return an error.

Example:

struct v4l2_queryctrl ctrl;

Capture Driver

Software Design Interfaces

Version 03.00.00.03 Platform Support Products 167

ctrl.id = V4L2_CID_CONTRAST;
ret = ioctl(fd, VIDIOC_QUERYCTRL, &ctrl);
if (ret < 0) {
 perror("VIDIOC_QUERYCTRL \n");
 close(fd);
 return -1;
}

printf("name = %s\n", ctrl.name);
printf("min = %d max = %d step = %d default = %d\n",
 ctrl.minimum, ctrl.maximum, ctrl.step, ctrl.default_value);

9.3.2.16. Set Control

This IOCTL is used to set the value for a particular control in current
decoder. To set the control value, this IOCTL can also be called when
streaming is on.

Ioctl: VIDIOC_S_CTRL

It takes a pointer to instance of v4l2_control structure as an input
parameter.

Application provides control ID and control values in the v4l2_control
id and value member in this structure. If the control command specified
by Id is not supported in the current decoder and if value of the control
is out of range, driver returns an error. Otherwise, it sets the control in
the registers.

Example:

struct v4l2_control ctrl;

ctrl.id = V4L2_CID_CONTRAST;
ctrl.value = 100;
ret = ioctl(fd, VIDIOC_S_CTRL, &ctrl);
if (ret < 0) {
 perror("VIDIOC_S_CTRL\n");
 close(fd);
 return -1;
}

9.3.2.17. Get Control

This IOCTL is used to get the value for a particular control in the current
decoder.

Ioctl: VIDIOC_G_CTRL

It takes a pointer to instance of v4l2_control structure as an output
parameter. Application provides the control ID of id member in this

Capture Driver

Software Design Interfaces

168 Platform Support Products Version 03.00.00.03

structure. If the control command specified by Id is not supported in the
current decoder, driver returns an error. Otherwise, it returns the value
of the control in the value member of the v4l2_control structure.

Example:

struct v4l2_control ctrl;

ctrl.id = V4L2_CID_CONTRAST;
ret = ioctl(fd, VIDIOC_G_CTRL, &ctrl);
if (ret < 0) {
 perror("VIDIOC_G_CTRL\n");
 close(fd);
 return -1;
}
printf("value = %x\n", ctrl.value);

9.3.2.18. Queue Buffer

This IOCTL is used to enqueue the buffer in buffer queue. This IOCTL will
enqueue an empty buffer in the driver buffer queue. This IOCTL is one
of necessary IOCTL for streaming IO. If no buffer is enqueued before
starting streaming, driver returns an error as there is no buffer available.
So at least one buffer must be enqueued before starting streaming. This
IOCTL is also used to enqueue empty buffers after streaming is started.

Ioctl: VIDIOC_QBUF

This IOCTL takes a pointer to instance of v4l2_buffer structure
as an argument. Application has to specify the buffer type
(V4L2_BUF_TYPE_VIDEO_CAPTURE), buffer index, and memory type
(V4L2_MEMORY_MMAP or V4L2_MEMORY_USERPTR) at the time of queuing.
For the user pointer buffer exchange mechanism, application also has
to provide buffer pointer in the m.userptr member of v4l2_buffer
structure.

Driver will enqueue buffer in the driver's incoming queue.

It will take pointer to instance of v4l2_ buffer structure as an input
parameter.

Example:

struct v4l2_buffer buf;

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.type = V4L2_MEMORY_MMAP;
buf.index = 0;
ret = ioctl(fd, VIDIOC_QBUF, &buf);
if (ret < 0) {
 perror("VIDIOC_QBUF\n");
 close(fd);

Capture Driver

Software Design Interfaces

Version 03.00.00.03 Platform Support Products 169

 return -1;
}

9.3.2.19. Dequeue Buffer

This IOCTL is used to dequeue the buffer in the buffer queue. This IOCTL
will dequeue the captured buffer from buffer queue of the driver. This
IOCTL is one of necessary IOCTL for the streaming IO. This IOCTL can
be used only after streaming is started. This IOCTL will block until an
empty buffer is available.

Note: The application can dequeue all buffers from the driver - the driver
will not hold the last buffer to itself. In this case, the driver will disable
the capture operation and the capture operation resumes when a buffer
is queued to the driver again.

Ioctl: VIDIOC_DQBUF

It takes a pointer to instance of v4l2_buffer structure as an output
parameter.

Application has to specify the buffer type
(V4L2_BUF_TYPE_VIDEO_CAPTURE) and memory type
(V4L2_MEMORY_MMAP or V4L2_MEMORY_USERPTR) at the time of
dequeueing.

If this IOCTL is called with the file descriptor, with which VIDIOC_REQBUF
is not performed, driver will return an error.

Driver will enqueue buffer, if the buffer queue is not empty.

Example:

struct v4l2_buffer buf;

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.type = V4L2_MEMORY_MMAP;
ret = ioctl(fd, VIDIOC_DQBUF, &buf);
if (ret < 0) {
 perror("VIDIOC_DQBUF\n");
 close(fd);
 return -1;
}

9.3.2.20. Stream On

This IOCTL is used to start video capture functionality.

Ioctl: VIDIOC_STREAMON

If streaming is already started, this IOCTL call returns an error.

Capture Driver

Software Design Interfaces

170 Platform Support Products Version 03.00.00.03

Example:

v4l2_buf_type buftype = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ret = ioctl(fd, VIDIOC_STREAMON, &buftype);
if (ret < 0) {
 perror("VIDIOC_STREAMON \n");
 close(fd);
 return -1;
}

9.3.2.21. Stream Off

This IOCTL is used to stop video capture functionality.

Ioctl: VIDIOC_STREAMOFF

If streaming is not started, this IOCTL call returns an error.

Example:

v4l2_buf_type buftype = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ret = ioctl(fd, VIDIOC_STREAMOFF, &buftype);
if (ret < 0) {
 perror("VIDIOC_STREAMOFF \n");
 close(fd);
 return -1;
}

Capture Driver

Driver Configuration

Version 03.00.00.03 Platform Support Products 171

9.4. Driver Configuration

9.4.1. Configuration Steps
To enable capture driver support in the kernel, start Linux Kernel
Configuration tool.

$ make menuconfig ARCH=arm

Select Device Drivers from the main menu.

 ...
 ...
 Kernel Features --->
 Boot options --->
 CPU Power Management --->
 Floating point emulation --->
 Userspace binary formats --->
 Power management options --->
[*] Networking support --->
 Device Drivers --->
 ...
 ...

Select Multimedia support from the menu.

 ...
 ...
 Sonics Silicon Backplane --->
 Multifunction device drivers --->
[*] Voltage and Current Regulator Support --->
<*> Multimedia support --->
 Graphics support --->
<*> Sound card support --->
[*] HID Devices --->
[*] USB support --->
 ...
 ...

Select Video For Linux from the menu.

 ...
 ...
 *** Multimedia core support ***
<*> Video For Linux

Capture Driver

Configuration Steps

172 Platform Support Products Version 03.00.00.03

[*] Enable Video For Linux API 1 (DEPRECATED)
< > DVB for Linux
 ...
 ...

Select Video capture adapters from the same menu. Press <ENTER> to
enter the corresponding sub-menu.

 ...
 ...
[] Customize analog and hybrid tuner modules to build --->
[*] Video capture adapters --->
[] Radio Adapters --->
[] DAB adapters
 ...
 ...

Select OMAP ISP Resizer from the menu.

 ...
 ...
< > SAA5249 Teletext processor
<*> OMAP 3 Camera support
< > OMAP ISP Previewer
<*> OMAP ISP Resizer
 ...
 ...

De-Select Autoselect pertinent encoders/decoders and other helper chips
from the same menu option. After De-selecting this option, new option
Encoders/decoders and other helper chips will drop down.

 ...
 --- Video capture adapters
[] Enable advanced debug functionality
[] Enable old-style fixed minor ranges for video devices
[] Autoselect pertinent encoders/decoders and other helper
 chips
 Encoders/decoders and other helper chips --->
< > Virtual Video Driver
< > CPiA Video For Linux

Go inside option Encoders/decoders and other helper chips.

 ...
 --- Video capture adapters
[] Enable advanced debug functionality

Capture Driver

Installation

Version 03.00.00.03 Platform Support Products 173

[] Enable old-style fixed minor ranges for video devices
[] Autoselect pertinent encoders/decoders and other helper
 chips
 Encoders/decoders and other helper chips --->
< > Virtual Video Driver
< > CPiA Video For Linux

Select TVP514x Video decoder driver from the menu.

 ...
 ...
< > Philips SAA7171/3/4 audio/video decoders
< > Philips SAA7191 video decoder
<*> Texas Instruments TVP514x video decoder
< > Texas Instruments TVP5150 video decoder
 ...
 ...

9.4.2. Installation

Note

Please note that the software detects and configures the peripherals
dynamically/run-time depending on EVM revision. In case of
OMAP3EVM-1 (<Rev-E) it configures the peripherals on MMDC and in
case of OMAP3EVM-2 (>=Rev-E) it configures On-board peripherals.

9.4.2.1. Driver built statically

If the OMAP35x Camera driver and TVP514x driver are built statically into
the kernel, it is activated during boot-up. There is no special procedure
to install the driver.

9.4.2.2. Driver built as loadable module

The OMAP35x Camera driver and OMAP35x daughter card (applicable
for OMAP3EVM-1 (<Rev-E)) driver cannot be build as a loadable module.
both the TVP514x driver and Capture master driver can be build as
a module. If the driver has been configured to be a loadable module,
then the driver is built as a module with the name tvp514x.ko and
omap34xxcam.ko, which will be placed under the directory drivers/
media/video in the kernel tree.

Copy this driver file on to the target board and issue the following
command to insert the driver:

Capture Driver

Installation

174 Platform Support Products Version 03.00.00.03

$ insmod omap34xxcam.ko
$ insmod tvp514x.ko

To remove the driver, issue the following command:

$ code>rmmod omap34xxcam.ko
$ code>rmmod tvp514x.ko

Capture Driver

Sample Applications

Version 03.00.00.03 Platform Support Products 175

9.5. Sample Applications
This chapter describes the sample application provided along with the
package. The binary and the source for these sample application can are
available in the Examples directory of the Release Package folder.

9.5.1. Introduction
Writing a capture application involves the following steps:

• Opening the capture device.

• Set the parameters of the device.

• Allocate and initialize capture buffer

• Receive video data from the device.

• Close the device.

9.5.2. Hardware Setup
Following are the steps required to run the capture sample application:

• If you are using OMAP3EVM-1 (<Rev-E) revision board, connect the
OMAP35x daughter card module containing the TVP5146 decoder
to the OMAP35x main board. For OMAP3EVM-2 (>=Rev-E), all the
peripherals including TVP5146 decoder is present on board.

• Connect a DVD player/camera generating a NTSC video signal to the
S-Video or Composite jack of the daughter card or EVM.

• Run the sample application after booting the kernel.

9.5.3. Sample Applications
Following are the list of capture sample application provided with the
release:

• MMAP Loopback Application (saMmapLoopback.c):

This sample application using driver allocated buffers to capture
video data from any one of the active inputs and displays the video
in the LCD using display driver.

• USERPTR Loopback Application (saUserPtrLoopback.c):

This sample application using User allocated buffers to capture video
data from any one of the active inputs and displays the video in the
LCD using display driver. The application makes use of V4L2 display
driver buffers as a user pointer in capture driver.

Version 03.00.00.03 Platform Support Products 176

Version 03.00.00.03 Platform Support Products 177

USB Driver

Abstract

This chapter provides detailed description of feature set and software interface for the USB driver.

Table of Contents

10.1. Introduction ... 179

10.1.1. References .. 179

10.1.2. Hardware Overview ... 179

10.2. Features .. 181

10.3. Driver configuration ... 182

10.3.1. USB phy selection for MUSB OTG port 182

10.3.2. USB controller in host mode 182

10.3.3. MUSB OTG controller in gadget mode 183

10.3.4. MUSB OTG controller in OTG mode 184

USB Driver

178 Platform Support Products Version 03.00.00.03

10.3.5. Host mode applications .. 185

10.3.6. USB Controller and USB MSC HOST 185

10.3.7. USB HID Class .. 186

10.3.8. USB Controller and USB HID 186

10.3.9. USB Audio .. 187

10.3.10. USB Video .. 188

10.3.11. Gadget Mode Applications 188

10.3.12. CDC/RNDIS gadget .. 190

10.3.13. USB EHCI Electrical testing 191

10.3.14. USB OTG (HNP/SRP) testing 191

10.4. Software Interface .. 193

10.4.1. sysfs .. 193

10.4.2. procfs .. 193

10.5. Revision history .. 194

USB Driver

Introduction

Version 03.00.00.03 Platform Support Products 179

10.1. Introduction
TI OMAP35x has a host cum gadget controller MUSB OTG, an EHCI and
its companion OHCI controller. There are three USB ports which are to
be controlled by either EHCI or OHCI controller individually.

In ES2.0/2.1 silicon all the three port can either be configured in PHY
mode or in TLL mode at a time. This limitation got resolved in ES3.0/3.1
silicon where PHY/TLL mode selection can be done on per port basis.

The salient features of the MUSB OTG controller are:

• High/full speed operation as USB peripheral.

• High/full/low speed operation as Host controller.

• The host controller for a multi-point USB system (when connected
via hub).

• USB On-The-Go compliant USB controller.

• 15 Transmit and 15 Receive Endpoints other than the mandatory
Control Endpoint 0.

• 16 Kilobytes of Endpoint FIFO RAM for USB packet buffering.

• Double buffering FIFO.

• Support for Bulk split and Bulk combine

• Support for high bandwidth Isochronous transfer

• Dual Mode HS DMA controller with 8 channels.

10.1.1. References

1. OMAP35x Technical Reference Manual

10.1.2. Hardware Overview

The OMAP35x MUSB OTG controller sits on the L3 and L4 interconnect.
It can be an L3 master while performing DMA transfers and an L4 target
when host CPU/DMA engine is the master.

OMAP3EVM-1 (<=Rev-E) has an OTG compliant USB PHY from NXP (ISP
1504) and OMAP3EVM-2 (>=Rev-E) has NXP USB PHY ISP1507.

The USB controller in the SoC is connected to the NXP PHY located on
the EVM. A mini-AB USB port connects to the PHY. Hence, there is only
one root port for the USB controller.

USB Driver

Hardware Overview

180 Platform Support Products Version 03.00.00.03

Figure 10.1. MUSB OTG: Location of Mini-AB receptacle on the EVM

Figure 10.2. MUSB OTG: Location of USB PHY from NXP on the EVM

The OMAP35x HS USB port2 is connected to SMSC USB83320 high
speed PHY on Mistral/Multimedia daughter card (MMDC) attached to
OMAP3EVM-1 (<=Rev-E) whereas on OMAP3EVM-2 (>=Rev-E) it is
connected to SMSC USB3320 PHY.

Port1 and Port3 are not available either on MMDC attached to
OMAP3EVM-1 (<=Rev-E) or OMAP3EVM-2 (>=Rev-E).

USB Driver

Features

Version 03.00.00.03 Platform Support Products 181

10.2. Features
The MUSB OTG and EHCI drivers supports a significant subset of all the
features provided by the USB controller. The following section discusses
the supported features in this release.

The Driver supports the following features for MUSB OTG port:

• Can be built in-kernel (part of vmlinux) as well as a driver module
(musb_hdrc.ko).

• Audio Class in Host mode.

• Video Class in Host mode.

• Mass Storage Class in Host mode.

• Mass Storage Class in Gadget mode.

• Hub Class in Host mode.

• Human Interface Devices (HID) in Host mode.

• Communication Device Class (CDC) in Gadget mode.

• Remote Network Driver Interface Specification (RNDIS) Gadget
support.

• OTG support which includes support for Host Negotiation Protocol
(HNP) and Session Request Protocol (SRP).

The Driver supports the following features for EHCI host port:

• Can be built in-kernel (part of vmlinux) as well as a driver module.

• Human Interface Devices (HID) via a high speed hub.

• Mass Storage Class.

• Audio Class.

• Video Class.

• Hub Class.

USB Driver

Driver configuration

182 Platform Support Products Version 03.00.00.03

10.3. Driver configuration
The MUSB OTG controller is used in Host and Gadget modes while EHCI
is used only in Host mode. The following section shows the configuration
options for USB and its associated class drivers.

10.3.1. USB phy selection for MUSB OTG port

Please select NOP USB transceiver for MUSB support.

Device Drivers --->
 USB support --->
 *** OTG and related infrastructure ***
 [] GPIO based peripheral-only VBUS sensing 'transceiver'
 [] Philips ISP1301 with OMAP OTG
 [] TWL4030 USB Transceiver Driver
 [*] NOP USB Transceiver Driver

10.3.2. USB controller in host mode

10.3.2.1. MUSB OTG Host Configuration

Device Drivers --->
 USB support --->
 <*> Support for Host-side USB
 *** Miscellaneous USB options ***
 [*] USB device filesystem
 [*] USB device class-devices (DEPRECATED)
 *** USB Host Controller Drivers ***
 <*> Inventra Highspeed Dual Role Controller (TI, ...)
 *** OMAP 343x high speed USB support ***
 Driver Mode (USB Host) --->
 [] Disable DMA (always use PIO)
 [*] Use System DMA for Rx endpoints
 [*] Enable debugging messages

10.3.2.2. EHCI Configuration

Port-2 will automatically be selected for OMAP3EVM and would be
configured in PHY mode.

Device Drivers --->
 USB support --->
 <*> Support for Host-side USB
 *** Miscellaneous USB options ***

USB Driver

MUSB OTG controller in gadget mode

Version 03.00.00.03 Platform Support Products 183

 [*] USB device filesystem
 [*] USB device class-devices (DEPRECATED)
 <*> EHCI HCD (USB2.0) Support
 [] Root hub transaction translators
 *** USB Host Controller Drivers ***

10.3.3. MUSB OTG controller in gadget mode

10.3.3.1. Configuration

Please do not disable support for host side usb as this will disable EHCI
host interface also. Gadget option in driver mode will appear only when
gadget support is also selected. Please enable gadget support as given
below.

 Device Drivers --->
 USB support --->
 <*> USB Gadget Support --->
 [] Debugging messages (DEVELOPMENT) NEW
 [] Debugging information files (DEVELOPMENT) NEW
 (2) Maximum VBUS power usage (2-500mA) NEW
 USB Peripheral Controller (Inventra HDRC Peripheral(TI, ...))
 --->
 <M> USB Gadget Drivers
 <M> File-backed Storage Gadget

Please make sure that Inventra HDRC is selected as USB peripheral
controller which will appear only when "USB Peripheral (gadget stack)"
is selected in driver mode as shown below so after selecting Gadget
Support go back to driver mode option to select "USB Peripheral (gadget
stack) " and then come back again to select Inventra HDRC as USB
peripheral controller.

Device Drivers --->
 USB support --->
 <*> Support for Host-side USB
 *** Miscellaneous USB options ***
 [*] USB device filesystem
 [*] USB device class-devices (DEPRECATED)
 *** USB Host Controller Drivers ***
 <*> Inventra Highspeed Dual Role Controller (TI, ...)
 *** OMAP 343x high speed USB support ***
 Driver Mode (USB Peripheral (gadget stack)) --->
 [] Disable DMA (always use PIO)
 [*] Use System DMA for Rx endpoints
 [*] Enable debugging messages

USB Driver

MUSB OTG controller in OTG mode

184 Platform Support Products Version 03.00.00.03

10.3.4. MUSB OTG controller in OTG mode

10.3.4.1. OTG Configuration

Both Host and Gadget driver should be selected for OTG support. If
gadget driver is build as module then the host side module will be
initialized only after gadget module is inserted after bootup.

If "Rely on targeted peripheral list" is also selected then make sure
to update "drivers/usb/core/otg_whitelist.h" with the desired supported
device class identification ids.

OTG option in driver mode will appear only when gadget support is also
selected. Please enable gadget support as given below.

 Device Drivers --->
 USB support --->
 <*> USB Gadget Support --->
 [] Debugging messages (DEVELOPMENT) NEW
 [] Debugging information files (DEVELOPMENT) NEW
 (2) Maximum VBUS power usage (2-500mA) NEW
 USB Peripheral Controller (Inventra HDRC Peripheral(TI, ...))
 --->
 <M> USB Gadget Drivers
 <M> File-backed Storage Gadget

Please make sure that Inventra HDRC is selected as USB peripheral
controller which will appear only when OTG is selected as below.

Device Drivers --->
 USB support --->
 <*> Support for Host-side USB
 *** Miscellaneous USB options ***
 [*] USB device filesystem
 [*] USB device class-devices (DEPRECATED)
 *** USB Host Controller Drivers ***
 <*> Inventra Highspeed Dual Role Controller (TI, ...)
 *** OMAP 343x high speed USB support ***
 Driver Mode (Both Host and peripheral : USB OTG (On
 The Go) Device) --->
 [] Disable DMA (always use PIO)
 [*] Use System DMA for Rx endpoints
 [*] Enable debugging messages

USB Driver

Host mode applications

Version 03.00.00.03 Platform Support Products 185

10.3.5. Host mode applications

10.3.5.1. Mass Storage Driver

This figure illustrates the stack diagram of the system with USB Mass
Storage class.

Figure 10.3. USB Driver: Illustration of Mass Storage Class

10.3.6. USB Controller and USB MSC HOST

10.3.6.1. Configuration

Device Drivers --->
 SCSI device support --->
 <*> SCSI device support
 [*] legacy /proc/scsi/support
 --- SCSI support type (disk, tape, CD-ROM)
 <*> SCSI disk support
 USB support --->
 <*> Support for Host-side USB
 *** Miscellaneous USB options ***
 [*] USB device filesystem
 [*] USB device class-devices (DEPRECATED)
 *** USB Host Controller Drivers ***

USB Driver

USB HID Class

186 Platform Support Products Version 03.00.00.03

 <*> Inventra Highspeed Dual Role Controller (TI, ...)
 *** OMAP 343x high speed USB support ***
 Driver Mode (USB Host) --->
 [] Disable DMA (always use PIO)
 [*] Use System DMA for Rx endpoints
 [*] Enable debugging messages
 --- USB Device Class drivers
 <*> USB Mass Storage support

10.3.6.2. Device nodes

The SCSI sub system creates /dev/sd* devices with help of mdev.

10.3.7. USB HID Class
USB Mouse and Keyboards that conform to the USB HID specifications
are supported.

Figure 10.4. USB Driver: Illustration of HID Class

10.3.8. USB Controller and USB HID

10.3.8.1. Configuration

Device Drivers --->
 USB support --->
 <*> Support for Host-side USB
 *** Miscellaneous USB options ***

USB Driver

USB Audio

Version 03.00.00.03 Platform Support Products 187

 [*] USB device filesystem
 [*] USB device class-devices (DEPRECATED)
 *** USB Host Controller Drivers ***
 <*> Inventra Highspeed Dual Role Controller (TI, ...)
 *** OMAP 343x high speed USB support ***
 Driver Mode (USB Host) --->
 [] Disable DMA (always use PIO)
 [*] Use System DMA for Rx endpoints
 [*] Enable debugging messages
 HID Devices --->
 <*> Generic HID Support
 *** USB Input Devices ***
 <*> USB Human Interface Device(full HID) support

10.3.8.2. Device nodes

The event sub system creates /dev/input/event* devices with the help
of mdev.

10.3.9. USB Audio

10.3.9.1. Configuration

Device Drivers --->
 Sound --->
 <*> Sound card support
 Advanced Linux Sound Architecture --->
 <*> Advanced Linux Sound Architecture
 [*] Dynamic device file minor number
 [*] Support old ALSA API
 USB devices --->
 <*> USB Audio/MIDI driver
 USB support --->
 <*> Support for Host-side USB
 *** Miscellaneous USB options ***
 [*] USB device filesystem
 [*] USB device class-devices (DEPRECATED)
 *** USB Host Controller Drivers ***
 <*> Inventra Highspeed Dual Role Controller (TI, ...)
 *** OMAP 343x high speed USB support ***
 Driver Mode (USB Host) --->
 [] Disable DMA (always use PIO)
 [*] Use System DMA for Rx endpoints
 [*] Enable debugging messages

10.3.9.2. Resources

For testing USB Audio support we need any ALSA compliant audio player/
capture application. Kindly read the Audio driver section to get more
inputs on this.

USB Driver

USB Video

188 Platform Support Products Version 03.00.00.03

10.3.10. USB Video

10.3.10.1. Configuration

 Device Drivers --->
 Multimedia devices --->
 *** Multimedia core support ***
 <*> Video for Linux
 [*] Enable Video for Linux API 1 (DEPRICATED)
 [*] Enable Video for Linux API 1 (compatible) layer
 *** Multimedia Drivers ***
 [*] Video capture adapters --->
 [*] V4L USB devices --->
 <*> USB Video Class (UVC)
 USB Support --->
 <*> Support for Host-side USB
 *** Miscellaneous USB options ***
 [*] USB device filesystem
 [*] USB device class-devices (DEPRECATED)
 *** USB Host Controller Drivers ***
 <*> Inventra Highspeed Dual Role Controller (TI, ...)
 *** OMAP 343x high speed USB support ***
 Driver Mode (USB Host) --->
 [] Disable DMA (always use PIO)
 [*] Use System DMA for Rx endpoints
 [*] Enable debugging messages

10.3.10.2. Resources

For testing USB Video support we need a user level application like
mplayer to stream video from an USB camera.

If you are using mplayer as the capture application, then you must export
the DISPLAY to a X server. Then, execute the following command:

$ mplayer tv:// -tv driver=v4l2:width=320:height=240

10.3.11. Gadget Mode Applications

File Storage Gadget: This is the Mass storage gadget driver.

USB Driver

Gadget Mode Applications

Version 03.00.00.03 Platform Support Products 189

10.3.11.1. Configuration

 Device Drivers --->
 USB support --->
 <*> Support for USB Gadgets
 USB Peripheral Controller (Inventra HDRC Peripheral(TI, ...))
 --->
 <M> USB Gadget Drivers
 <M> File-backed Storage Gadget

 <*> Inventra Highspeed Dual Role Controller (TI, ...)
 *** OMAP 343x high speed USB support ***
 Driver Mode (USB Peripheral (gadget stack)) --->
 [] Disable DMA (always use PIO)
 [*] Use System DMA for Rx endpoints
 [*] Enable debugging messages

10.3.11.2. Installation of File Storage Gadget Driver

Let us assume that we are interested in exposing /dev/mmcblk0 block
device to the file storage gadget driver. To that effect we need to issue
the following command to load the file storage gadget driver.

$ insmod <g_file_storage.ko> file=/dev/mmcblk0 stall=0

USB Driver

CDC/RNDIS gadget

190 Platform Support Products Version 03.00.00.03

10.3.12. CDC/RNDIS gadget
The CDC RNDIS gadget driver that is used to send standard Ethernet
frames using USB. Please enable "Use System DMA for Rx endpoints" to
fix the flood ping hang issue with packet size of more than 16KB.

10.3.12.1. Configuration for USB controller and CDC/RNDIS Gadget

Device Drivers --->
 USB support --->
 <*> Support for USB Gadgets
 USB Peripheral Controller (Inventra HDRC Peripheral (TI, ...))
 --->
 <M> USB Gadget Drivers
 <M> Ethernet Gadget
 [*] RNDIS support (EXPERIMENTAL) (NEW)

 <*> Inventra Highspeed Dual Role Controller (TI, ...)
 *** OMAP 343x high speed USB support ***
 Driver Mode (USB Peripheral (gadget stack)) --->
 [] Disable DMA (always use PIO)
 [*] Use System DMA for Rx endpoints
 [*] Enable debugging messages

Please do not select RNDIS support for testing ethernet gadget with
Linux 2.4, IXIA and MACOS host machine.

 USB Peripheral Controller (Inventra HDRC Peripheral (TI, ...))
 --->
 <M> USB Gadget Drivers
 <M> Ethernet Gadget
 [] RNDIS support (EXPERIMENTAL) (NEW)

10.3.12.2. Installation of CDC/RNDIS Gadget Driver

Installing the CDC/RNDIS gadget driver is as follows:

$ insmod <path to g_ether.ko>

10.3.12.3. Setting up USBNet

The CDC/RNDIS Gadget driver will create a Ethernet device by the name
usb0. You need to assign an IP address to the device and bring up the
device. The typical command for that would be:

USB Driver

USB EHCI Electrical testing

Version 03.00.00.03 Platform Support Products 191

$ ifconfig usb0 <IP_ADDR> netmask 255.255.255.0 up

For details on usage of USBNet, refer this
url. [http://embedded.seattle.intel research.net/wiki/index.php?
title=Setting_up_USBnet]

10.3.13. USB EHCI Electrical testing
USB EHCI electrical test is supported in software. Please use below
command to perform various electrical tests.

 $ echo 'Options' > sys/devices/platform/ehci-omap.0/portN

Where 'options' can be,

• reset --> Reset Device

• t-j --> Send TEST_J on suspended port

• t-k --> Send TEST_K on suspended port

• t-pkt --> Send TEST_PACKET[53] on suspended port

• t-force --> Send TEST_FORCE_ENABLE on suspended port

• t-se0 --> Send TEST_SE0_NAK on suspended port

10.3.14. USB OTG (HNP/SRP) testing
Please choose the configuration as described in driver configuration
section for OTG and follow the steps below for testing.

1. Boot the OTG build image on two OMAP35x EVM.

2. If gadget driver is built as module then insert it to complete USB
initialization.

3. Connect mini-A side of the OTG cable to one of the EVM (say EVM-1)
and mini-B side on the other (say EVM-2).

In this scenario EVM-1 will become initial host or A-device and
EVM-2 will become initial device or B-device. A-device will provide
bus power throughout the bus communication even if it becomes
peripheral using HNP.

There will not be any connect event at this point of time as Vbus
power is not yet switched-on. Vbus power can be switched-on from
A-device or from B-device using SRP.

4. Request to switch-on the Vbus power using below command on any
EVM.

http://embedded.seattle.intel research.net/wiki/index.php?title=Setting_up_USBnet
http://embedded.seattle.intel research.net/wiki/index.php?title=Setting_up_USBnet
http://embedded.seattle.intel research.net/wiki/index.php?title=Setting_up_USBnet
http://embedded.seattle.intel research.net/wiki/index.php?title=Setting_up_USBnet

USB Driver

USB OTG (HNP/SRP) testing

192 Platform Support Products Version 03.00.00.03

 $ echo "F" > /proc/driver/musb_hdrc

If this command is executed on B-device then SRP protocol will be
used to request A-device to switch-on the Vbus power.

5. Now the connect event occurs, enumeration will complete and
gadget driver on B-device will be ready to use if this driver is in
"Targeted Peripheral List (TPL)" of A-device.

If TPL is disabled on A-device then gadget driver will be ready to
use soon after enumeration.

If TPL is enabled and gadget driver of B-device is not in TPL list of
A-device then there will be an automatic trial of HNP from usb core
by suspending the bus. This will cause a role switch and B-device
will enumerate A-device. Now the gadget driver of A-device will be
configured if it is on the TPL list of B-device.

Currently this is the only way possible for HNP testing but we have
added a suspend proc entry to start HNP in other than this scenario.

6. Complete all the communication between A-device and B-device.

7. Start HNP by executing below command on host side.

 $ echo "S" > /proc/driver/musb_hdrc

It will suspend the bus and role-switch will follow after that.

8. Repeat step 4, 5, 6 and 7 for further testing.

USB Driver

Software Interface

Version 03.00.00.03 Platform Support Products 193

10.4. Software Interface
The USB driver exposes its state/control through the sysfs and the procfs
interfaces. The following sections talks about these.

10.4.1. sysfs

SYSFS attribute Description

mode The entry /sys/devices/platform/
musb_hdrc.0/mode is a read-only entry. It will
show the state of the OTG (though this feature
is not supported) state machine. This will be true
even if the driver has been compiled without
OTG support. Only the states like A_HOST,
B_PERIPHERAL, that makes sense for non-OTG
will show up.

vbus The entry /sys/devices/platform/
musb_hdrc.0/vbus is a write-only entry. It is used
to set the VBUS timeout value during OTG. If the
current OTG state is a_wait_bcon then then urb
submission is disabled.

Table 10.1. USB Driver: sysfs attributes

10.4.2. procfs
The procfs entry /proc/driver/musb_hdrc is used to control the driver
behaviour as well as check the status of the driver.

The following command will show the usage of this proc entry

$ echo "?" > /proc/driver/musb_hdrc

Specifically the most important usage of this entry would be to start an
USB session(host mode) by issuing the following command:

$ echo "F" > /proc/driver/musb_hdrc

USB Driver

Revision history

194 Platform Support Products Version 03.00.00.03

10.5. Revision history
02.00.00.00Initial release.

03.00.00.02Update for OTG and EHCI support.

Version 03.00.00.03 Platform Support Products 195

MMC Driver

Abstract

This chapter provides detailed description of feature set and software interface for the MMC driver.

Table of Contents

11.1. Introduction ... 196

11.1.1. References .. 196

11.1.2. Acronyms & Definitions .. 196

11.2. Features .. 197

MMC Driver

Introduction

196 Platform Support Products Version 03.00.00.03

11.1. Introduction
TI OMAP 35x has an multimedia card high-speed/secure data/secure
digital I/O (MMC/SD/SDIO) host controller, which provides an interface
between microprocessor and either MMC, SD memory cards, or SDIO
cards. The current version of the user guide talks about the MMC/SD
controller. The MMC driver is implemented on top of host controller as
a HS-MMC controller driver and supports MMC, SD, SD High Speed and
SDHC cards. The salient features of the aforementioned HS-MMC host
controller are:

• Full compliance with MMC/SD command/response sets as defined in
the Specification.

• Support:

• 1-bit or 4-bit transfer mode specifications for SD and SDIO cards

• 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards

• Built-in 1024-byte buffer for read or write

• 32-bit-wide access bus to maximize bus throughput

• Single interrupt line for multiple interrupt source events

• Two slave DMA channels (1 for TX, 1 for RX)

• Designed for low power and Programmable clock generation

11.1.1. References
1. MMCA Homepage [http://www.mmca.org/home]

2. SD ORG Homepage [http://www.sdcard.org/home]

11.1.2. Acronyms & Definitions

Acronym Definition

MMC Multimedia card

HS-MMC High Speed MMC

SD Secure Digital

SDHC SD High Capacity

SDIO SD Input/Output

Table 11.1. MMC Driver Acronyms

http://www.mmca.org/home
http://www.mmca.org/home
http://www.sdcard.org/home
http://www.sdcard.org/home

MMC Driver

Features

Version 03.00.00.03 Platform Support Products 197

11.2. Features
The Driver supports the following features:

• The driver is built in-kernel (part of vmlinux).

• MMC cards including High Speed cards.

• SD cards including SD High Speed and SDHC cards.

• Uses block bounce buffer to aggregate scattered blocks

Version 03.00.00.03 Platform Support Products 198

Version 03.00.00.03 Platform Support Products 199

Power Management

Abstract

Get to know the power management infrastructure available. This chapter also provides brief
introduction to cpuidle framework as implemented in this release.

Table of Contents

12.1. Introduction ... 201

12.1.1. References .. 201

12.2. Features .. 202

12.3. Architecture ... 203

12.3.1. cpuidle ... 203

12.3.2. Dynamic Tick Suppression 205

12.3.3. Suspend & Resume .. 205

12.4. Configuration .. 206

Power Management

200 Platform Support Products Version 03.00.00.03

12.4.1. cpuidle ... 206

12.4.2. cpufreq .. 208

12.4.3. SmartReflex .. 208

12.5. Software Interface .. 210

12.5.1. cpuidle ... 210

12.5.2. Suspend & Resume .. 211

12.5.3. SmartReflex .. 211

12.6. Revision History .. 213

Power Management

Introduction

Version 03.00.00.03 Platform Support Products 201

12.1. Introduction
OMAP35x silicon provides a rich set of power management features.
These features are described in detail in the OMAP35x TRM.

In summary:

• Clock control at the module and clock domain level.

• 16 power domains i.e. 16 sets of one or more hardware modules
sharing same power source.

• Control of scalable voltage domains.

• Independent scaling of OPPs for the VDD1 and VDD2.

MPU and IVA (in case of OMAP3530) share the voltage domain VDD1.
Other modules are located in VDD2.

• Support for transitioning power and voltage domains to retention/
off and wakeup on event.

12.1.1. References
1. Proceedings of the Linux Symposium, June 27-30, 2007 [http://

ols.108.redhat.com/2007/Reprints/pallipadi-Reprint.pdf]

Authors: Venkatesh Pallipadi, Shaohua Li, Adam Belay

2. OMAP Power Management [http://elinux.org/
OMAP_Power_Management]

Power Management features are being developed on pm branch of
the linux-omap git tree. This page provides latest status of PM
features on this branch.

http://ols.108.redhat.com/2007/Reprints/pallipadi-Reprint.pdf
http://ols.108.redhat.com/2007/Reprints/pallipadi-Reprint.pdf
http://ols.108.redhat.com/2007/Reprints/pallipadi-Reprint.pdf
http://elinux.org/OMAP_Power_Management
http://elinux.org/OMAP_Power_Management
http://elinux.org/OMAP_Power_Management

Power Management

Features

202 Platform Support Products Version 03.00.00.03

12.2. Features
The power management features available in this release are based on
the proposed PM interface for OMAP. This interface is described in the
file Documentation/arm/OMAP/omap_pm in the Linux kernel sources.

The features supported in this release are:

• Dynamic Tick (NO_HZ) framework.

• The cpuidle framework with MPU and Core transition to retention
(RET) and OFF states.

The menu governor is supported.

• Static selection of VDD1 OPP via bootarg - mpurate.

• VDD1 OPP can be scaled (if silicon supports) upto 720MHz.

• When OPP1 is selected for VDD1, the VDD2 is set at OPP2.

• Basic implementation for cpufreq.

• Support SmartReflex with automatic (hardware-controlled) mode of
operation.

Power Management

Architecture

Version 03.00.00.03 Platform Support Products 203

12.3. Architecture

12.3.1. cpuidle
The cpuidle framework consists of two key components:

• A governor that decides the target C-state of the system.

• A driver that implements the functions to transition to target C-state.

12.3.1.1. System Diagram

Figure 12.1. cpuidle overview

The idle loop is executed when the Linux scheduler has no thread to run.
When the idle loop is executed, current 'governor' is called to decide the
target C-state. Governor decides whether to continue in current state/
transition to a different state. Current 'driver' is called to transition to
the selected state.

12.3.1.2. C-states

A C-state is used to identify the power state supported through the cpu
idle loop. Each C-state is characterized by its:

• Power consumption

• Wakeup latency

• Preservation of processor state while in 'the' state.

The definition of C-states in the OMAP3 are a combination of the MPU
and CORE states. Currently these C-states have been defined:

Power Management

cpuidle

204 Platform Support Products Version 03.00.00.03

State Description

C1 MPU WFI + Core active

C2 MPU WFI + Core inactive

C3 MPU RET + Core inactive

C4 MPU OFF + Core inactive

C5 MPU RET + CORE RET

C6 MPU OFF + CORE RET

C7 MPU OFF + CORE OFF

Table 12.1. C-states in OMAP3

12.3.1.3. CPU Idle Governor

The current implementation supports the 'menu' governor to decide the
target C-state of the system.

12.3.1.4. CPU Idle Driver

The cpuidle driver registers itself with the framework during boot-up
and populates the C-sates with exit latency, target residency (minimum
period for which the state should be maintained for it to be useful) and
flag to check the bus activity.

In ACPI implementation, flag CPUIDLE_FLAG_CHECK_BM is used to specify
the states requiring bus monitoring interface to be checked. In the
OMAP3 implementation, this flag is used to identify the C-states that
require CORE domain activity to be checked.

Once the governor has decided the target C-state, the control reaches
the function omap3_enter_idle(). Here, the C-state is adjusted based
on the value of valid flag corresponding to the chosen state.

Note

The value of valid flag for the idle states relates to the flag
enable_off_mode. If transition to OFF mode is disabled, the idle
states that require MPU to be turned OFF are made valid.

12.3.1.5. Performance considerations

Once idle power management is enabled, the system will transition
across sleep states of varying latency. This transition can impact the
runtime performance of the drivers.

The flags sleep_while_idle and enable_off_mode can be used to
control the run-time behavior of the cpuidle driver. are now accessible
via debugfs.

Power Management

Dynamic Tick Suppression

Version 03.00.00.03 Platform Support Products 205

Important

In previous kernel versions, these flags were accessible via sysfs. In
this kernel version, they are accessible via sysfs.

In this kernel version, these flags can be accessed via debugfs, if
configuration options CONFIG_PM_DEBUG and CONFIG_DEBUG_FS.

See Section 12.4, “Configuration” for steps to enables these
configuration options.

12.3.2. Dynamic Tick Suppression
The dynamic tick suppression is achieved through generic Linux
framework for the same.

A 32K timer (HZ=128) is used by the tick suppression algorithm.

12.3.3. Suspend & Resume
The suspend operation results in the system transitioning to the lowest
power state being supported.

The drivers implement the suspend() function defined in the LDM. When
the suspend for the system is asserted, the suspend() function is called
for all drivers. The drivers release the clocks to reach the desired low
power state.

The actual transition to suspend is implemented in the function
omap3_pm_suspend().

Power Management

Configuration

206 Platform Support Products Version 03.00.00.03

12.4. Configuration
To enable/ disable power management start the Linux Kernel
Configuration tool.

$ make menuconfig

Select Power management options from the main menu.

 ...
 ...
 Boot options --->
 CPU Power Management --->
 Floating point emulation --->
 Userspace binary formats --->
 Power management options --->
[*] Networking support --->
 Device Drivers --->
 ...
 ...

Select Power Management support to toggle the power management
support.

[*] Power Management support
[] Power Management Debug Support
[*] Suspend to RAM and standby
< > Advanced Power Management Emulation

12.4.1. cpuidle
Start the Linux Kernel Configuration tool.

$ make menuconfig

Select CPU Power Management from the main menu.

 ...
 ...
 System Type --->
 Bus support --->
 Kernel Features --->
 Boot options --->

Power Management

cpuidle

Version 03.00.00.03 Platform Support Products 207

 CPU Power Management --->
 Floating point emulation --->
 Userspace binary formats --->
 ...
 ...

Select CPU idle PM support to enable the cpuidle driver.

[] CPU Frequency scaling
[*] CPU idle PM support

12.4.1.1. Enabling debug filesystem

Start the Linux Kernel Configuration tool.

$ make menuconfig

Select Kernel hacking from the main menu.

 File systems --->
 Kernel hacking --->
 Security options --->
-*- Cryptographic API --->

Select Debug Filesystem from the next menu.

[] Enable unused/obsolete exported symbols
[*] Debug Filesystem
[] Run 'make headers_check' when building vmlinux
[*] Kernel debugging

12.4.1.2. Debugging support in Power Management

Start the Linux Kernel Configuration tool.

$ make menuconfig

Select Power management options from the main menu.

 ...

Power Management

cpufreq

208 Platform Support Products Version 03.00.00.03

 ...
 Floating point emulation --->
 Userspace binary formats --->
 Power management options --->
[*] Networking support --->
 Device Drivers --->
 ...
 ...

Select Power Management support from the next menu.

[*] Power Management support
[*] Power Management Debug Support
[*] Suspend to RAM and standby
< > Advanced Power Management Emulation

12.4.2. cpufreq
Start the Linux Kernel Configuration tool.

$ make menuconfig

Select CPU Power Management from the main menu.

 ...
 ...
 System Type --->
 Bus support --->
 Kernel Features --->
 Boot options --->
 CPU Power Management --->
 Floating point emulation --->
 Userspace binary formats --->
 ...
 ...

Select CPU idle PM support to enable the cpuidle driver.

[*] CPU Frequency scaling
[] CPU idle PM support

12.4.3. SmartReflex
Start the Linux Kernel Configuration tool.

Power Management

SmartReflex

Version 03.00.00.03 Platform Support Products 209

$ make menuconfig

Select System Type from the main menu.

 ...
 ...
[*] Enable the block layer --->
 System Type --->
 Bus support --->
 Boot options --->
 CPU Power Management --->
 ...
 ...

Select TI OMAP Implementations from the menu.

 ARM system type (TI OMAP) --->
 TI OMAP Implementations --->
-*- OMAP34xx Based System
-*- OMAP3430 support
[*] OMAP35x Family
 ...
 ...

Select SmartReflex support from the menu.

 ...
 ...
[] Emit debug messages from clockdomain layer
[*] SmartReflex support
[] SmartReflex testing support
 ...
 ...

Power Management

Software Interface

210 Platform Support Products Version 03.00.00.03

12.5. Software Interface
The cpuidle framework defines a standard interface through /sys
interface.

12.5.1. cpuidle
The parameters controlling cpuidle can be viewed via via /sys interface.

$ ls -1 /sys/devices/system/cpu/cpuidle/
current_driver
current_governor_ro
$

current_governor_ro lists the current governor.

$ cat /sys/devices/system/cpu/cpuidle/current_governor_ro
menu
$

current_driver lists the current driver.

$ cat /sys/devices/system/cpu/cpuidle/current_driver
omap3_idle
$

The cpuidle interface also exports information about each idle state. This
information is organized in a directory corresponding to each idle state.

$ ls -1 /sys/devices/system/cpu/cpu0/cpuidle
state0
state1
state2
state3
state4
state5
state6
$

$ ls -1 /sys/devices/system/cpu/cpu0/cpuidle/state0
desc
latency
name

Power Management

Suspend & Resume

Version 03.00.00.03 Platform Support Products 211

power
time
usage

12.5.1.1. Mounting debug filesystem

To mount the filesystem, execute these commands:

$ mkdir /dbg
$ mount -t debugfs debugfs /dbg

Note

These commands assume /dbg as mount point. Appropriate changes
should be made if a different mount point is being used.

12.5.1.2. Idle state transition

To allow/prevent the processor to enter idle states, execute these
commands:

$ echo 1 > /dbg/pm_debug/sleep_while_idle
$ echo 0 > /dbg/pm_debug/sleep_while_idle

To allow/ prevent transition to OFF mode:

$ echo 1 > /dbg/pm_debug/enable_off_mode
$ echo 0 > /dbg/pm_debug/enable_off_mode

12.5.2. Suspend & Resume
The suspend for device can be asserted as follows:

$ echo -n "mem" > /sys/power/state

To wakeup, press a key on the OMAP3EVM keypad; or tap any on the
serial console.

12.5.3. SmartReflex
To enable/ disable SmartReflex for VDD1:

Power Management

SmartReflex

212 Platform Support Products Version 03.00.00.03

$ echo 1 > /sys/power/sr_vdd1_autocomp
$ echo 0 > /sys/power/sr_vdd1_autocomp

To enable/ disable SmartReflex for VDD2:

$ echo 1 > /sys/power/sr_vdd2_autocomp
$ echo 0 > /sys/power/sr_vdd2_autocomp

Power Management

Revision History

Version 03.00.00.03 Platform Support Products 213

12.6. Revision History
02.00.00 Initial version for this GIT based release.

02.01.00 Updated C-state definition.

02.01.01 Updated C-state definition.

Moved configuration information from DataSheet

Release specific updates.

03.00.00 Updated information based on the latest kernel and features
supported.

Version 03.00.00.03 Platform Support Products 214

Version 03.00.00.03 Platform Support Products 215

Power Management IC

Abstract

This chapter provides details on how to configure the PMIC driver, its interfaces and a simple
application code illustrating the use of this interface.

Table of Contents

13.1. Introduction ... 217

13.1.1. References .. 217

13.1.2. Acronyms & Definitions .. 218

13.2. Features .. 219

13.2.1. Features Supported ... 219

13.2.2. Constraints ... 219

13.3. Configuration .. 220

13.4. Application Interface .. 223

Power Management IC

216 Platform Support Products Version 03.00.00.03

13.4.1. Consumer driver interface 223

13.4.2. Sysfs interface .. 223

13.5. Writing a Consumer Driver ... 225

13.6. Revision History .. 227

Power Management IC

Introduction

Version 03.00.00.03 Platform Support Products 217

13.1. Introduction
A Power Management IC (PMIC) is a device that contains one or more
regulators (voltage or current) and often contains other susbsystems
like audio codec, keypad etc. From the power management perspective,
its main function is to regulate the output power from input power or
simply enable/disable the output as and when required.

A PMIC can have two different types of regulators: voltage regulator
or current regulator. Voltage regulators are used to enable/disable the
output voltage and/ or regulate the output voltage. Current regulators
preform the same functions with the output current. PMICs from TI
contain two different types of voltage regulators:

• DCDC: Highly efficient and self-regulating step down DC to DC
converter.

• LDO (low-dropout): DC linear voltage regulator which can operate
with a very small input-output differential voltage.

The PMIC is controlled by internal registers that can be accessed by the
I2C control interface.

This user manual defines and describes the usage of user level and
platform level interfaces of the PMIC consumer driver.

13.1.1. References

1. Linux Voltage and Current Regulator Framework [http://
opensource.wolfsonmicro.com/node/15]

2. Linux kernel documentation: Documentation/power/regulator and
Documentation/ABI/testing/sysfs-class-regulator

3. TPS65950: Integrated Power Management IC with 3 DC/DC's, 11
LDO's, Audio Codec, USB HS Transceiver, Charger
TPS65950 [http://focus.ti.com/docs/prod/folders/print/
tps65950.html]

4. TPS65023 - 6-channel Power Mgmt IC with 3DC/DCs, 3 LDOs, I2C
Interface and DVS, Optimized for DaVinci DSPs

Literature Number: SLVS670G
TPS65023 [http://focus.ti.com/docs/prod/folders/print/
tps65023.html]

5. TPS65073 - 5-Channel Power Management IC with 3 DC/DCs, 2
LDOs in 6x6mm QFN
TPS65073 [http://focus.ti.com/docs/prod/folders/print/
tps65073.html]

http://opensource.wolfsonmicro.com/node/15
http://opensource.wolfsonmicro.com/node/15
http://opensource.wolfsonmicro.com/node/15
http://focus.ti.com/docs/prod/folders/print/tps65950.html
http://focus.ti.com/docs/prod/folders/print/tps65950.html
http://focus.ti.com/docs/prod/folders/print/tps65950.html
http://focus.ti.com/docs/prod/folders/print/tps65023.html
http://focus.ti.com/docs/prod/folders/print/tps65023.html
http://focus.ti.com/docs/prod/folders/print/tps65023.html
http://focus.ti.com/docs/prod/folders/print/tps65073.html
http://focus.ti.com/docs/prod/folders/print/tps65073.html
http://focus.ti.com/docs/prod/folders/print/tps65073.html

Power Management IC

Acronyms & Definitions

218 Platform Support Products Version 03.00.00.03

13.1.2. Acronyms & Definitions

Acronym Definition

PMIC Power Management IC

VRF Voltage Regulator Framework

LDO Low Drop-Out

Table 13.1. PMIC Driver: Acronyms

Power Management IC

Features

Version 03.00.00.03 Platform Support Products 219

13.2. Features
This section describes the supported features and constraints of the PMIC
drivers.

13.2.1. Features Supported
• Support for TPS65950, TPS65023 and TPS65073 PMICs in Linux

Voltage Regulator Framework.

• Enabling / disabling of voltage regulators.

• Changing the output voltage, if permitted by the voltage regulator.

• Reading the status (enabled/disabled) of the voltage regulator.

• Reading other useful information about the regulator via sysfs
interface.

13.2.2. Constraints
None

Power Management IC

Configuration

220 Platform Support Products Version 03.00.00.03

13.3. Configuration
To enable/disable VRF support, start the Linux Kernel Configuration tool.

$ make menuconfig

Check whether I2C support is enabled or not; it is required for the voltage
regulator. Select Device Drivers from the main menu:

 ...
 ...
 Power management options --->
[*] Networking support --->
 Device Drivers --->
 File systems --->
 Kernel hacking --->
 ...
 ...

Then select I2C support as shown here:

 ...
 ...
 Input device support --->
 Character devices --->
<*> I2C support --->
[] SPI support --->
-*- GPIO Support --->
 ...
 ...

Select I2C Hardware Bus support after selecting "I2C device interface"
from the menu, as shown here:

 ...
 ...
<*> I2C device interface
<*> Autoselect pertinent helper modules (NEW)
 I2C Hardware Bus support --->
 Miscellaneous I2C Chip support --->
[] I2C Core debugging messages (NEW)
 ...
 ...

Select OMAP I2C adapter as shown here:

Power Management IC

Configuration

Version 03.00.00.03 Platform Support Products 221

 ...
 ...
< > GPIO-based bitbanging I2C (NEW)
< > OpenCores I2C Controller (NEW)
<*> OMAP I2C adapter
< > Simtec Generic I2C interface (NEW)
 *** External I2C/SMBus adapter drivers ***
 ...
 ...

Now select System Type from the main menu.

 ...
 ...
[*] Enable loadable module support --->
[*] Enable the block layer --->
 System Type --->
 Bus support --->
 Kernel Features --->
 ...
 ...

Make sure that the PMIC present on the OMAP3530 EVM is selected here:

 ...
 ...
[] Gumstix Overo board
[*] OMAP3530 EVM board --->
[*] TWL4030/TPS65950 Power Module
[] OMAP3517/ AM3517 EVM board --->
[] OMAP3 Pandora --->
[] OMAP 3430 SDP board --->
 ...
 ...

Come back to the main menu now and select Device Drivers as shown
here:

 ...
 ...
 Power management options --->
[*] Networking support --->
 Device Drivers --->
 File systems --->
 Kernel hacking --->
 ...
 ...

Power Management IC

Configuration

222 Platform Support Products Version 03.00.00.03

Select Voltage and Current Regulator Support as shown here:

[] DMA Engine support --->
[] Auxiliary Display support --->
[*] Voltage and Current Regulator Support --->
< > Userspace I/O drivers --->
[] Staging drivers --->

Driver for the PMIC selected earlier should have been automatically
selected, as shown here:

< > Maxim 1586/1587 voltage regulator
-*- TI TWL4030/TWL5030/TPS695x0 PMIC
< > National Semiconductors LP3971 PMIC regulator driver
< > TI TPS65023 Power regulators

Power Management IC

Application Interface

Version 03.00.00.03 Platform Support Products 223

13.4. Application Interface
This section provides the details of the application interface for the PMIC
regulator driver.

Client device drivers are the ones which use PMIC regulator drivers to
enable/ disable and/or regulate output voltage/current. Specifically, a
client driver uses:

• Consumer driver interface: This uses a similar API to the kernel clock
interface in that consumer drivers can get and put a regulator (like
they can with clocks) and get/set voltage, current limit, enable and
disable. This allows consumer complete control over their supply
voltage and current limit.

• Sysfs interface: The linux voltage regulator framework also exports
a lot of useful voltage/current/opmode data to userspace via sysfs.
This could be used to help monitor device power consumption and
status.

13.4.1. Consumer driver interface

As mentioned above, this interface provides complete control to the
consumer driver over their supply voltage and/or current limit. Some of
the commonly used APIs to achieve this are:

Name Description

regulator_get Get handle to a regulator

regulator_put Release a regulator

regulator_enable Enable a regulator

regulator_disable Disable a regulator

regulator_is_enabled Check status of the regulator

regulator_set_voltage Change the output voltage

regulator_get_voltage Fetch the current voltage

regulator_set_current_limit Change the current limit

regulator_get_current_limit Fetch the existing current limit

Table 13.2. Commonly Used APIs

13.4.2. Sysfs interface

The /sys/class/regulator interface can be used to read-back
information which the VRF exports to the user-space.

See the table below for different sysfs entries in /sys/class/regulator:

Power Management IC

Sysfs interface

224 Platform Support Products Version 03.00.00.03

Name Description

name string identifying the regulator,
may be empty

type regulator type (voltage, current)

state regulator enable status (enabled,
disabled)

microvolts regulator output voltage (in
microvolts)

microamps regulator output current limit (in
microamps)

min_microvolts minimum safe working output
voltage setting

max_microvolts maximum safe working output
voltage setting

min_microamps minimum safe working output
current setting

max_microamps maximum safe working output
current setting

Table 13.3. Sysfs interface

Power Management IC

Writing a Consumer Driver

Version 03.00.00.03 Platform Support Products 225

13.5. Writing a Consumer Driver
This chapter describes the steps required in writing a consumer driver
to regulate the output voltage and to enable/disable the regulator.
User should refer to "include/linux/regulator/consumer.h" for the
complete list of supported APIs.

Writing a consumer driver involves the following steps:

• Getting the required regulator handle: Consumer driver has to first
obtain a handle to the desired regulator, by passing the correct
supply.

 int ret;
 struct regulator *reg;
 const char *supply = "vdd1";
 int min_uV, max_uV;

 reg = regulator_get(NULL, supply);

• Enabling it, if not already enabled: A regulator needs to be enabled
before it can be used to change the output voltage. Regulator
handle, obtained in the previous step, should be used now to enable
it:

 ret = regulator_enable(reg);

After enabling it, user can check the status of the regulator by:

 printk (KERN_INFO "Regulator Enabled = %d\n",
 regulator_is_enabled(reg));

• Changing the existing voltage: Consumer driver has to pass the
appropriate minimum and maximum voltage levels, as desired by
the use-case, to change the output voltage.

 ret = regulator_set_voltage(reg, min_uV, max_uV);

• Reading the existing voltage: Consumer driver can read back the
existing voltage to check if the voltage was set properly or not.

 printk (KERN_INFO "Regulator Voltage = %d\n",
 regulator_get_voltage(reg));

• Disabling the regulator: Consumer driver can disable the regulator,
if required. The framework ensures that the regulator is not disabled
if other consumers are still using the same regulator.

 ret = regulator_disable(reg);

Power Management IC

Writing a Consumer Driver

226 Platform Support Products Version 03.00.00.03

• Releasing the regulator handle: Consumer driver can release the
regulator if it is no more required.

 regulator_put(reg);

After that, the handle becomes no more valid and should not be
used for any further operations.

Power Management IC

Revision History

Version 03.00.00.03 Platform Support Products 227

13.6. Revision History
03.00.00 Initial version

Version 03.00.00.03 Platform Support Products 228

Version 03.00.00.03 Platform Support Products 229

Appendix

Abstract

This chapter contains useful information referenced in the earlier sections of the document.

Table of Contents

14.1. Creating bootable partition on MMC/SD Card 230

Appendix

Creating bootable partition on MMC/SD Card

230 Platform Support Products Version 03.00.00.03

14.1. Creating bootable partition on MMC/SD Card
The MMC/SD card should have a valid bootable partition on the card
before it can be used as boot media.

Download and install HP USB Disk Storage Format Tool [http://
www.sysanalyser.com/sp27213.exe] on a Microsoft Windows host.

Follow these steps to format the card:

• Connect the card reader to the host machine where the formatting
tool was installed.

• Insert the MMC/SD card into the card reader.

• Launch the HP USB Disk Storage Format Tool.

• Select FAT32 as File System.

• Click on Start.

• After formatting is done Click OK.

http://www.sysanalyser.com/sp27213.exe
http://www.sysanalyser.com/sp27213.exe
http://www.sysanalyser.com/sp27213.exe

	OMAP35x EVM Linux PSP
	Table of Contents
	Read This First
	Installation
	1.1. System Requirements
	1.2. Installation
	1.3. Installation Steps
	1.4. Environment Setup
	1.5. Setup NFS filesystem

	x-loader
	2.1. Introduction
	2.2. Compiling X-Loader
	2.2.1. Signing x-load.bin

	2.3. Saving x-loader on target media
	2.3.1. OneNAND
	2.3.2. NAND
	2.3.3. MMC/SD Card

	U-Boot
	3.1. Compiling U-Boot
	3.2. Flashing U-Boot
	3.2.1. OneNAND
	3.2.2. Micron NAND

	3.3. Configuring U-Boot
	3.3.1. Using ramdisk image
	3.3.2. Using NFS (Default U-Boot configuration)
	3.3.2.1. Using NFS without DHCP

	3.4. Managing OneNAND
	3.4.1. Marking a bad block
	3.4.2. Erasing OneNAND
	3.4.3. Writing to OneNAND
	3.4.4. Reading from OneNAND
	3.4.5. Scrubbing OneNAND

	3.5. Managing NAND
	3.5.1. Marking a bad block
	3.5.2. Viewing bad blocks
	3.5.3. Erasing NAND
	3.5.4. Writing to NAND
	3.5.5. Reading from NAND
	3.5.6. Unlocking NAND address space
	3.5.7. NAND ECC algorithm selection

	3.6. MUSB Host support

	Kernel
	4.1. Compiling Linux Kernel
	4.2. Configuring Linux Kernel
	4.3. Booting Linux Kernel
	4.3.1. Selecting boot mode
	4.3.1.1. EVM populated with Samsung OneNAND
	4.3.1.2. EVM populated with Micron NAND

	4.3.2. Boot from NAND/OneNAND
	4.3.3. Boot from MMC

	Audio Driver
	5.1. Introduction
	5.1.1. References
	5.1.2. Acronyms & Definitions

	5.2. Features
	5.3. ALSA SoC Architecture
	5.3.1. Introduction
	5.3.2. Design

	5.4. Configuration
	5.5. Application Interface
	5.5.1. Device Interface
	5.5.2. Proc Interface
	5.5.3. Commonly Used APIs
	5.5.4. User Space Interactions

	5.6. Sample Applications
	5.6.1. Introduction
	5.6.2. A minimal playback application
	5.6.2.1. Opening the audio device
	5.6.2.2. Setting the parameters of the device
	5.6.2.3. Writing data to the device
	5.6.2.4. Closing the device

	5.6.3. A minimal record application

	5.7. Revision History

	Display Driver
	6.1. Introduction
	6.1.1. References
	6.1.2. Acronyms & Definitions
	6.1.3. Hardware Overview

	6.2. Features
	6.2.1. Overview

	6.3. Architecture
	6.3.1. Driver Architecture
	6.3.2. Software Design Interfaces

	6.4. Usage
	6.4.1. Opening and Closing of Driver
	6.4.2. Command Line arguments
	6.4.3. Buffer Management
	6.4.4. Rotation
	6.4.5. Color Keying
	6.4.6. Alpha Blending
	6.4.7. Buffer Format
	6.4.8. Display Window
	6.4.9. Cropping
	6.4.10. Scaling
	6.4.11. Color look table
	6.4.12. Streaming

	6.5. Software Interfaces
	6.5.1. Frame-Buffer Driver Interface
	6.5.1.1. Application Interface
	6.5.1.2. Supported Standard IOCTLs
	6.5.1.3. Supported Custom IOCTLs
	6.5.1.4. Data Structures

	6.5.2. V4L2 Driver Interface
	6.5.2.1. Application Interface
	6.5.2.2. Supported Standard IOCTLs

	6.5.3. SYSFS Software Interfaces
	6.5.3.1. Frame-buffer Driver sysfs attributes
	6.5.3.2. DSS Library sysfs attributes
	6.5.3.2.1. DSS Library: display0/1/2
	6.5.3.2.2. DSS Library: Manager0/1
	6.5.3.2.3. DSS Library: Overlay0/1/2

	6.5.4. Miscellaneous Configurations
	6.5.4.1. Switching output from LCD to DVI
	6.5.4.2. Switching Overlay0 (GFX) output from LCD to TV

	6.6. Driver Configuration
	6.6.1. V4L2 video driver
	6.6.2. Framebuffer driver

	6.7. Sample Application Flow
	6.8. Revision History

	Resizer Driver
	7.1. Introduction
	7.1.1. References
	7.1.2. Acronyms
	7.1.3. Hardware Overview

	7.2. Features
	7.2.1. Overview of features supported
	7.2.2. Usage of Features
	7.2.2.1. Opening and Closing the Driver
	7.2.2.2. Buffer Management
	7.2.2.2.1. Memory map/Driver Allocated buffer
	7.2.2.2.2. User Pointer Exchange

	7.2.2.3. Parameter Configuration
	7.2.2.3.1. Resizing
	7.2.2.3.2. Chroma Algorithm
	7.2.2.3.3. Input/output image format
	7.2.2.3.4. Pixel Format
	7.2.2.3.5. Luma Enhancement
	7.2.2.3.6. Configuring the Read cycle for Resizer module

	7.2.3. Constraints

	7.3. Architecture
	7.4. Software Interface
	7.4.1. Application Programming Interface
	7.4.1.1. open
	7.4.1.2. close
	7.4.1.3. mmap
	7.4.1.4. munmap

	7.4.2. IOCTLs
	7.4.2.1. RSZ_S_PARAMS
	7.4.2.2. RSZ_G_PARAMS
	7.4.2.3. RSZ_G_STATUS
	7.4.2.4. RSZ_S_EXP
	7.4.2.5. RSZ_RESIZE
	7.4.2.6. RSZ_REQBUF
	7.4.2.7. RSZ_QUERYBUF
	7.4.2.8. RSZ_QUEUEBUF

	7.4.3. Data Structures
	7.4.3.1. Resizer Parameters Configuration Structure
	7.4.3.2. Request Buffer Structure
	7.4.3.3. Buffer structure
	7.4.3.4. Luma enhancement structure
	7.4.3.5. Status structure
	7.4.3.6. Crop Size structure
	7.4.3.7. Input/Output image format
	7.4.3.8. Pixel Format

	7.5. Driver Configuration
	7.5.1. Configuration Steps

	7.6. Sample Application Flow
	7.7. Revision History

	Daughter Card Module
	8.1. Mass Market Daughter Card
	8.1.1. Acronyms & Definitions
	8.1.2. Introduction

	8.2. Block Diagram
	8.3. Board Illustration
	8.4. Features supported under software

	Capture Driver
	9.1. Introduction
	9.1.1. References
	9.1.2. Acronyms & Definitions

	9.2. Features
	9.3. Architecture
	9.3.1. System Diagram
	9.3.2. Software Design Interfaces
	9.3.2.1. Opening and Closing of driver
	9.3.2.2. Buffer Management
	9.3.2.3. Query Capabilities
	9.3.2.4. Input Enumeration
	9.3.2.5. Set Input
	9.3.2.6. Get Input
	9.3.2.7. Standard Enumeration
	9.3.2.8. Standard Detection
	9.3.2.9. Set Standard
	9.3.2.10. Get Standard
	9.3.2.11. Format Enumeration
	9.3.2.12. Set Format
	9.3.2.13. Get Format
	9.3.2.14. Try Format
	9.3.2.15. Query Control
	9.3.2.16. Set Control
	9.3.2.17. Get Control
	9.3.2.18. Queue Buffer
	9.3.2.19. Dequeue Buffer
	9.3.2.20. Stream On
	9.3.2.21. Stream Off

	9.4. Driver Configuration
	9.4.1. Configuration Steps
	9.4.2. Installation
	9.4.2.1. Driver built statically
	9.4.2.2. Driver built as loadable module

	9.5. Sample Applications
	9.5.1. Introduction
	9.5.2. Hardware Setup
	9.5.3. Sample Applications

	USB Driver
	10.1. Introduction
	10.1.1. References
	10.1.2. Hardware Overview

	10.2. Features
	10.3. Driver configuration
	10.3.1. USB phy selection for MUSB OTG port
	10.3.2. USB controller in host mode
	10.3.2.1. MUSB OTG Host Configuration
	10.3.2.2. EHCI Configuration

	10.3.3. MUSB OTG controller in gadget mode
	10.3.3.1. Configuration

	10.3.4. MUSB OTG controller in OTG mode
	10.3.4.1. OTG Configuration

	10.3.5. Host mode applications
	10.3.5.1. Mass Storage Driver

	10.3.6. USB Controller and USB MSC HOST
	10.3.6.1. Configuration
	10.3.6.2. Device nodes

	10.3.7. USB HID Class
	10.3.8. USB Controller and USB HID
	10.3.8.1. Configuration
	10.3.8.2. Device nodes

	10.3.9. USB Audio
	10.3.9.1. Configuration
	10.3.9.2. Resources

	10.3.10. USB Video
	10.3.10.1. Configuration
	10.3.10.2. Resources

	10.3.11. Gadget Mode Applications
	10.3.11.1. Configuration
	10.3.11.2. Installation of File Storage Gadget Driver

	10.3.12. CDC/RNDIS gadget
	10.3.12.1. Configuration for USB controller and CDC/RNDIS Gadget
	10.3.12.2. Installation of CDC/RNDIS Gadget Driver
	10.3.12.3. Setting up USBNet

	10.3.13. USB EHCI Electrical testing
	10.3.14. USB OTG (HNP/SRP) testing

	10.4. Software Interface
	10.4.1. sysfs
	10.4.2. procfs

	10.5. Revision history

	MMC Driver
	11.1. Introduction
	11.1.1. References
	11.1.2. Acronyms & Definitions

	11.2. Features

	Power Management
	12.1. Introduction
	12.1.1. References

	12.2. Features
	12.3. Architecture
	12.3.1. cpuidle
	12.3.1.1. System Diagram
	12.3.1.2. C-states
	12.3.1.3. CPU Idle Governor
	12.3.1.4. CPU Idle Driver
	12.3.1.5. Performance considerations

	12.3.2. Dynamic Tick Suppression
	12.3.3. Suspend & Resume

	12.4. Configuration
	12.4.1. cpuidle
	12.4.1.1. Enabling debug filesystem
	12.4.1.2. Debugging support in Power Management

	12.4.2. cpufreq
	12.4.3. SmartReflex

	12.5. Software Interface
	12.5.1. cpuidle
	12.5.1.1. Mounting debug filesystem
	12.5.1.2. Idle state transition

	12.5.2. Suspend & Resume
	12.5.3. SmartReflex

	12.6. Revision History

	Power Management IC
	13.1. Introduction
	13.1.1. References
	13.1.2. Acronyms & Definitions

	13.2. Features
	13.2.1. Features Supported
	13.2.2. Constraints

	13.3. Configuration
	13.4. Application Interface
	13.4.1. Consumer driver interface
	13.4.2. Sysfs interface

	13.5. Writing a Consumer Driver
	13.6. Revision History

	Appendix
	14.1. Creating bootable partition on MMC/SD Card

