
IPC Install Guide QNX 1

IPC Install Guide QNX

Introduction
Inter/Intra Processor Communication (IPC) is a product designed to enable communication between processors in a
multi-processor environment. Features of IPC include message passing, multi-processor gates, shared memory
primitives, and more.
IPC is designed for use with processors running SYS/BIOS applications. This is typically an ARM or DSP. IPC
includes support for High Level Operating Systems (HLOS) like Linux, as well as the SYS/BIOS RTOS. The
breadth of IPC features supported in an HLOS environment is reduced in an effort to simplify the product.

Install
IPC is released as a zip file. To install, simply extract the file.

buildhost$ unzip ipc_<version>.zip

This will extract the IPC product in a directory with its product name and version information (e.g.
c:\ipc_3_xx_xx_xx or /home/<user>/ipc_3_xx_xx_xx)
NOTE

• This document assumes the IPC install path to be the user's home directory on a Linux host machine
(/home/<user>) or the user's main drive on a Windows host machine (C:\). The variable IPC_INSTALL_DIR
will be used throughout the document. If IPC was installed at a different location, make appropriate changes to
commands.

• Some customers find value in archiving the released sources in a configuration management system. This can
help in identifying any changes made to the original sources - often useful when updating to newer releases.

Build
The IPC product often comes with prebuilt SYS/BIOS-side libraries, so rebuilding them isn't necessary. The
QNX-side libraries/binaries may also be provided prebuilt by SDK programs, but the standalone IPC release does
not currently pre-build them.
IPC provides GNU makefile(s) to rebuild all its libraries at the base of the product, details are below.
NOTE

GNU make version 3.81 or greater is required. The XDC tools (provided with most SDKs and CCS distributions)
includes a pre-compiled version of GNU make 3.81 in $(XDC_INSTALL_DIR)/gmake.

products.mak
IPC contains a products.mak file at the root of the product that specifies the necessary paths and options to build
IPC for the various OS support.
Edit products.mak and set the following variables:
• QNX

• QNX_INSTALL_DIR - Path to your QNX installation directory.
• DESTDIR - Path to which target binaries will be exported when running the 'make install' goal.
• DEVICE - which device are you building for.

• SYS/BIOS

IPC Install Guide QNX 2

• XDC_INSTALL_DIR - Path to TI's XDCTools installation
• BIOS_INSTALL_DIR - Path to TI's SYS/BIOS installation
• ti.targets.<device target and file format> - Path to TI toolchain for the device.
• gnu.targets.arm.<device target and file format> - Path to GNU toolchain for the device.

• Set only the variables to the targets your device supports to minimize build time.
NOTE

The dependencies applicable for each supported device can be found in the IPC Release Notes provided in the
product.

ipc-qnx.mak
The QNX-side build is performed using QNX makefiles. To build using the components paths set in the
products.mak file, issue the following command:

<buildhost> make -f ipc-qnx.mak all

ipc-bios.mak
The SYS/BIOS-side IPC is built with a GNU makefile. After editing products.mak, issue the following command:

<buildhost> make -f ipc-bios.mak all

Based on the number of targets you're building for, this may take some time.
Note for Windows users: If you are building with a Windows host machine and it has the QNX tools installed, you
will instead need to run the following in a separate command prompt window (cmd.exe) to build the SYS/BIOS side
outside of the QNX build environment:

<buildhost> set

PATH=C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem

<buildhost> <XDC_INSTALL_DIR>\gmake -f ipc-bios.mak all

where <XDC_INSTALL_DIR> should be replaced with the installation directory of your XDC tools, same as the
path you have used in products.mak.

Run
The IPC product provides a way to install (copy) the necessary IPC executables and libraries onto the device's target
file-system to simplify the execution of the applications. The details can vary across OS's, so this description has
been separated into OS-specific sections.

Configuring the BSP (OMAP5432 uEVM)
Some of the provided IPC tests that use the SharedMemoryAllocator require a carveout to be created in the
QNX-owned memory. To reserve this memory, you must make the following change in the file
bsp-TI-OMAP5432-uEVM-src\src\hardware\startup\boards\omap5432uevm\build in the QNX BSP:

 startup-omap5432uevm -r 0xBA300000,0x5A00000 -vvvvv -P2 -W

Save the file then rebuild the QNX OS image (ifs-omap5432-uevm.bin) and replace your existing one with the new
one.

IPC Install Guide QNX 3

Installing Tests in QNX
To assemble the IPC resource manager, shared libraries and test executables into a directory structure suitable for
running on the device's file-system, issue the following command in the IPC_INSTALL_DIR directory:

buildhost$ make -f ipc-qnx.mak install

This will install the binaries into the directory specified by DESTDIR in products.mak. It this assumed that
DESTDIR is a directory visible to the target filesystem. If not, you should copy its contents to such a location (e.g.
onto an SD card that can be accessed by the EVM).
When building in Windows, some users might get build messages that report a version mismatch in cygwin:

C:/QNX650/host/win32/x86/usr/bin/make -j 1 -Cle.v7 -fMakefile install

 1 [main] ? (5984)

C:\QNX650\host\win32\x86\usr\photon\bin\find.exe: *** fa

tal error - system shared memory version mismatch detected -

0x8A88009C/0x2D1E009C.

This problem is probably due to using incompatible versions of the

cygwin DLL.

Search for cygwin1.dll using the Windows Start->Find/Search facility

and delete all but the most recent version. The most recent version

should

reside in x:\cygwin\bin, where 'x' is the drive on which you have

installed the cygwin distribution. Rebooting is also suggested if you

are unable to find another cygwin DLL.

Based on what we observed the binaries are still exported correctly despite the messages. If you do want to eliminate
them, you should replace the file cygwin1.dll in <QNX_INSTALL_DIR>\host\win32\x86\usr\photon\bin with the
newest cygwin1.dll you can find on your host machine (do a search on your PC's filesystem in Windows).
Some of the tests rely on corresponding remote core applications to be run on the slave processor(s). The remote
processor's applications are loaded when launching the resource manager. See section #IPC_resource_manager for
details on launching the resource manager.
The location of the remote core applications within the IPC product varies based on device.

OMAP5432 uEVM remote core applications

The OMAP5432 remote core applications can be found in
<IPC_INSTALL_DIR>/packages/ti/ipc/tests/bin/ti_platform_omap54xx_* directories.
For example, copy the messageq_single.xem3 onto the devices target filesystem into the bin directory:

buildhost$ cp

packages/ti/ipc/tests/bin/ti_platform_omap54xx_ipu/messageq_single.xem3

 <DESTDIR>/armle-v7/bin

IPC Install Guide QNX 4

IPC resource manager
Much of the functionality of IPC is provided by the resource manager. It can be launched as follows:

target# cd <target directory corresponding to

DESTDIR>/armle-v7/bin

target# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<target directory

corresponding to DESTDIR>/armle-v7/usr/lib

target# syslink -f <IPU remote excutable>

When you are done running applications that use IPC and no longer need the resource manager, it can be terminated
as follows:

target# cd <target directory corresponding to

DESTDIR>/armle-v7/bin

target# slay syslink

Running Test Applications
The QNX-side of the test applications are already on the target's filesystem in <target directory corresponding to
DESTDIR>/armle-v7/bin and <target directory corresponding to DESTDIR>/armle-v7/bin/tests, assuming the
#Installing Tests in QNX and #IPC resource manager sections have been followed and that the resource manager has
loaded the remote core(s) with the executable corresponding to the test you'd like to run.
To find out the syntax to use for running the test (say MessageQApp), run

target# cd <target directory corresponding to

DESTDIR>/armle-v7/bin/tests

target# use MessageQApp

To run a test application, execute it on the target's filesystem:

target# cd <target directory corresponding to

DESTDIR>/armle-v7/bin/tests

target# ./MessageQApp 10

Here is a list of the main tests that are available in the IPC 3.00.00.14_eng release:
• MessageQApp: Test that creates a single thread that sends messages from host to IPU using MessageQ

• messageq_single.xem3 needs to be loaded by the resource manager
• MessageQMulti: Test that creates multiple threads which send messages from host to IPU using MessageQ

• messageq_multi.xem3 needs to be loaded by the resource manager
• mmrpc_test: Test that exercises MMRPC

• test_omx_ipu_omap5.xem3 needs to be loaded by the resource manager
• Aside from the IPC resource manager, this test also needs the shmemallocator resource manager to be

launched beforehand:

 target# cd <target directory corresponding to

DESTDIR>/armle-v7/bin

 target# shmemallocator

 target# cd tests

 target# mmrpc_test

IPC Install Guide QNX 5

OMAP5432 uEVM

The expected output on the QNX-side should be:

Using numLoops: 10; procId : 1

Entered MessageQApp_execute

Local MessageQId: 0x1

Remote queueId [0x10000]

Exchanging 10 messages with remote processor CORE0...

MessageQ_get #0 Msg = 0x11c9f0

Exchanged 1 messages with remote processor CORE0

MessageQ_get #1 Msg = 0x11c9f0

Exchanged 2 messages with remote processor CORE0

MessageQ_get #2 Msg = 0x11c9f0

...

...

Exchanged 9 messages with remote processor CORE0

MessageQ_get #9 Msg = 0x11c9f0

Exchanged 10 messages with remote processor CORE0

Sample application successfully completed!

Leaving MessageQApp_execute

The output on the remote processor, can be obtained by running the following on the target filesystem:

target# cat /dev/syslink-trace1

The expected output on the remote processor should be:

[0][0.000] 16 Resource entries at 0x3000

[0][0.000] messageq_single.c:main: MultiProc id = 1

[0][0.000] [t=0x006c565d] ti.ipc.transports.TransportVirtioSetup:

 TransportVirtio

Setup_attach: remoteProcId: 0

[0][0.000] registering rpmsg-proto:rpmsg-proto service on 61 with

 HOST

[0][0.000] [t=0x0072625b] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_create: endPt c

reated: 61

[0][0.000] [t=0x0073e8d9] ti.ipc.rpmsg.MessageQCopy:

callback_availBufReady: virt

Queue_toHost kicked

[0][0.000] [t=0x00753771] ti.ipc.rpmsg.MessageQCopy:

callback_availBufReady: virt

Queue_fromHost kicked

[0][0.000] [t=0x0076cb49] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_swiFxn:

[0][0.000] Received msg: from: 0x5a, to: 0x35, dataLen: 72

[0][0.000] [t=0x007872e9] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_send: no object

for endpoint: 53

[0][0.000] tsk1Fxn: created MessageQ: SLAVE_CORE0; QueueID:

IPC Install Guide QNX 6

0x10000

[0][0.000] Awaiting sync message from host...

[0][51.992] [t=0x0c475268] ti.ipc.rpmsg.MessageQCopy:

callback_availBufReady: virt

Queue_fromHost kicked

[0][51.992] [t=0x0c48eb28] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_swiFxn:

[0][51.993] Received msg: from: 0x400, to: 0x3d, dataLen:

176

[0][51.993] [t=0x0c4ad220] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_send: calling c

allback with data len: 176, from: 1024

[0][51.993]

[0][52.995] [t=0x0c873ded] ti.ipc.rpmsg.MessageQCopy:

callback_availBufReady: virt

Queue_fromHost kicked

[0][52.996] [t=0x0c88b029] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_swiFxn:

[0][52.996] Received msg: from: 0x406, to: 0x3d, dataLen:

40

[0][52.996] [t=0x0c8a8a87] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_send: calling c

allback with data len: 40, from: 1030

[0][52.996]

[0][52.996] Received msg from (procId:remoteQueueId): 0x0:0x1

[0][52.996] payload: 8 bytes; loops: 10 with printing.

[0][52.997] [t=0x0c8eab7e] ti.ipc.rpmsg.MessageQCopy:

callback_availBufReady: virt

Queue_fromHost kicked

[0][52.997] [t=0x0c9031bc] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_swiFxn:

[0][52.997] Received msg: from: 0x406, to: 0x3d, dataLen:

40

[0][52.997] [t=0x0c9208fa] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_send: calling c

allback with data len: 40, from: 1030

[0][52.997]

[0][52.997] Got msg #0 (40 bytes) from procId 0

[0][52.997] Sending msg Id #0 to procId 0

[0][52.998] [t=0x0c959f33] ti.ipc.rpmsg.MessageQCopy:

callback_availBufReady: virt

Queue_fromHost kicked

[0][52.998] [t=0x0c971df7] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_swiFxn:

[0][52.998] Received msg: from: 0x406, to: 0x3d, dataLen:

40

[0][52.998] [t=0x0c98f3e7] ti.ipc.rpmsg.MessageQCopy:

IPC Install Guide QNX 7

MessageQCopy_send: calling c

allback with data len: 40, from: 1030

[0][52.998]

[0][52.999] Got msg #1 (40 bytes) from procId 0

[0][52.999] Sending msg Id #1 to procId 0

[0][52.999] [t=0x0c9c7a00] ti.ipc.rpmsg.MessageQCopy:

callback_availBufReady: virt

Queue_fromHost kicked

[0][52.999] [t=0x0c9df7fc] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_swiFxn:

[0][52.999] Received msg: from: 0x406, to: 0x3d, dataLen:

40

[0][52.999] [t=0x0c9fce5a] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_send: calling c

allback with data len: 40, from: 1030

[0][52.999]

[0][53.000] Got msg #2 (40 bytes) from procId 0

[0][53.000] Sending msg Id #2 to procId 0

[0][53.000] [t=0x0ca36e79] ti.ipc.rpmsg.MessageQCopy:

callback_availBufReady: virt

Queue_fromHost kicked

[0][53.000] [t=0x0ca4ea95] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_swiFxn:

[0][53.000] Received msg: from: 0x406, to: 0x3d, dataLen:

40

[0][53.001] [t=0x0ca6c975] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_send: calling c

allback with data len: 40, from: 1030

[0][53.001]

[0][53.001] Got msg #3 (40 bytes) from procId 0

[0][53.001] Sending msg Id #3 to procId 0

...

...

[0][53.007] Got msg #8 (40 bytes) from procId 0

[0][53.007] Sending msg Id #8 to procId 0

[0][53.007] [t=0x0cccd3d7] ti.ipc.rpmsg.MessageQCopy:

callback_availBufReady: virt

Queue_fromHost kicked

[0][53.007] [t=0x0cce50ed] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_swiFxn:

[0][53.007] Received msg: from: 0x406, to: 0x3d, dataLen:

40

[0][53.007] [t=0x0cd027bd] ti.ipc.rpmsg.MessageQCopy:

MessageQCopy_send: calling c

allback with data len: 40, from: 1030

[0][53.007]

[0][53.008] Got msg #9 (40 bytes) from procId 0

IPC Install Guide QNX 8

[0][53.008] Sending msg Id #9 to procId 0

[0][53.008] Awaiting sync message from host...

Article Sources and Contributors 9

Article Sources and Contributors
IPC Install Guide QNX Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=159717 Contributors: ChrisRing, VincentWan

	IPC Install Guide QNX
	Introduction
	Install
	Build
	products.mak
	ipc-qnx.mak
	ipc-bios.mak

	Run
	Configuring the BSP (OMAP5432 uEVM)
	Installing Tests in QNX
	OMAP5432 uEVM remote core applications

	IPC resource manager
	Running Test Applications
	OMAP5432 uEVM

