
Dec 2009

Document Version 02.10.00.XX

EDMA3 Driver

U s e r ' s G u i d e

User Guide

Read This First

ii

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design and
operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published
by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a
license from a third party under the patents or other intellectual property of the third party, or a
license from TI under the patents or other intellectual property of TI

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2009, Texas Instruments Incorporated

LICENSE

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United
States License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

iii

Preface

Read This First

About This Manual

This User’s Manual serves as a software programmer’s handbook for
working with the EDMA3 Driver Version 02.10.00.XX. This manual
provides necessary information regarding how to effectively install, build
and use EDMA3 Driver in user systems and applications.

This manual provides details regarding how the EDMA3 Driver is
Architected, its composition, its functionality, the requirements it places on
the hardware and software environment where it can be deployed, how to
customize/configure it to specific requirements, how to leverage the
supported run-time interfaces in user’s own application etc.,

This manual also provides supplementary information regarding steps to
be followed for proper installation/ un-installation of the EDMA3 Driver.
Also included are appendix sections on related Glossary, Web sites and
Pointers for gathering further information on the EDMA3 Driver.

Read This First

iv

Terms and Abbreviations

Add any longer explanations for terms before the table.

Add any abbreviations and short explanations to the table.

Term/Abbreviation Description

EDMA Enhanced Direct Memory Access

EDMA3 Controller Consists of the EDMA3 channel controller (EDMA3CC) and
EDMA3 transfer memory access controller(s) (EDMA3TC). Is
referred to as EDMA3 in this document.

DMA Direct Memory Access

QDMA Quick DMA

TCC Transfer Completion Code (basically Interrupt Channel)

ISR Interrupt Service Routine

CC Channel Controller

TC Transfer Controller

RM Resource Manager

TR Transfer Request.
A command for data movement that is issued from the
EDMA3CC to the EDMA3TC. A TR includes source and
destination addresses, counts, indexes, options, etc.

Read This First

v

Notations

Explain any special notations or typefaces used (such as for API
guides, special typefaces for functions, variables, etc.)

Information about Cautions and Warnings

This book may contain cautions and warnings.

CAUTION

WARNING
The information in a caution or a warning is provided for your
protection. Please read each caution and warning carefully.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

Read This First

vi

Related Documentation

Internal

 EDMA3 Channel Controller (TPCC), version 3.0.2 (Available at
PDS)

 EDMA3 Transfer Controller (TPTC), version 3.0.1 (Available at
PDS)

Trademarks

The TI logo design is a trademark of Texas Instruments
Incorporated. All other brand and product names may be
trademarks of their respective companies.

Read This First

vii

Revision History

Date Author Revision History Version

October 16,
2008

Anuj
Aggarwal

First release supporting platform
DA830 on BIOS 6.

02.00.00.XX

June 3, 2009 Anuj
Aggarwal

Patch release for DA830 platform on
BIOS 6.

02.00.01.XX

December 7,
2009

Anuj
Aggarwal

a) Migration to new BSD license
b) Added support for TCI6498
platform.
See release notes for more details.

02.10.00.XX

Contents

viii

Contents

Read This First .. iii
About This Manual..iii
This manual also provides supplementary information regarding steps to be
followed for proper installation/ un-installation of the EDMA3 Driver. Also
included are appendix sections on related Glossary, Web sites and Pointers for
gathering further information on the EDMA3 Driver. Terms and Abbreviations .iii
Terms and Abbreviations ... iv
Notations v
Information about Cautions and Warnings .. v
Related Documentation .. vi
Internal vi
Trademarks vi
Revision History ...vii
Contents.. viii
Tables.. x
EDMA3 Driver Introduction...0-1-1
1.1 Overview ...0-1-2

1.1.1 System Partitioning ...0-1-2
1.1.2 Supported Services ...0-1-6

Installation Guide...1-2-1
2.1 Component Folder ...1-2-2
2.2 Development Tools Environment(s) ...1-2-4

2.2.1 Development Tools ..1-2-4
2.3 Installation Guide...1-2-5

2.3.1 Installation and Usage Procedure..1-2-5
2.3.2 Un-installation ..1-2-5

2.4 Integration Guide...1-2-6
2.4.1 Building EDMA3 Libraries..1-2-6
2.4.2 Building the EDMA3 Driver Stand-alone Applications.........................1-2-8
2.4.3 Building the DAT Example ..1-2-9
2.4.4 Build Options ..1-2-10

Run-Time Interfaces/Integration Guide ... 2-A-1
3.1 Symbolic Constants and Enumerated Data types 2-A-2
3.2 Data Structures... 2-A-13

3.2.1 EDMA3_DRV_GblConfigParams .. 2-A-13
3.2.2 EDMA3_DRV_InstanceInitConfig .. 2-A-16
3.2.3 EDMA3_DRV_InitConfig ... 2-A-18
3.2.4 EDMA3_DRV_MiscParam.. 2-A-19
3.2.5 EDMA3_DRV_ChainOptions ... 2-A-20
3.2.6 EDMA3_DRV_PaRAMRegs.. 2-A-21
3.2.7 EDMA3_DRV_EvtQuePriority ... 2-A-23

3.3 API Specification ... 2-A-24
3.4 EDMA3 Driver Initialization ... 2-A-25
3.5 API Flow Diagram ... 2-A-26

3.5.1 EDMA3 Driver Creation .. 2-A-27

Contents

ix

3.5.2 EDMA3 Open.. 2-A-27
3.5.3 EDMA3 Request Channel (DMA / QDMA Channel) 2-A-28
3.5.4 EDMA3 Request Channel (LINK Channel) ... 2-A-29
3.5.5 EDMA3 Close ... 2-A-30
3.5.6 EDMA3 Delete.. 2-A-31

3.6 API Usage Example .. 2-A-32
EDMA3 Driver Porting .. 3-A-37
3.7 Getting Started.. 3-A-38
3.8 Step-by-Step procedure for porting .. 3-A-40

3.8.1 edma3_<PLATFORM_NAME>_cfg.c:.. 3-A-40
3.8.2 Package.bld file for the Resource Manager....................................... 3-A-41
3.8.3 OS-dependent (sample) Implementation ... 3-A-42

Tables

x

Tables

Table 1: Development Tools/components...1-2-4
Table 2: Build Options...1-2-10
Table 3: Symbolic Constants and Enumerated Data types Table for

common header file edma3_common.h... 2-A-2
Table 4: Symbolic Constants and Enumerated Data types Table for

EDMA3 Driver header file edma3_drv.h... 2-A-4

1-1

Chapter 1

EDMA3 Driver Introduction

This chapter introduces the EDMA3 Driver to the user by providing a brief
overview of the purpose and construction of the EDMA3 Driver along with
hardware and software environment specifics in the context of EDMA3
Driver Deployment.

EDMA3 Driver Introduction

1-2

1.1 Overview

This section describes the functional scope of the EDMA3 Driver and its
feature set.

A brief definition of the component is provided at this point – its main
characteristics and purpose.

1.1.1 System Partitioning
EDMA3 peripheral supports data transfers between two memory mapped
devices. It supports EDMA as well as QDMA channels for data transfer.
This peripheral IP is being re-used in different SoCs with only a few
configuration changes like number of DMA and QDMA channels supported,
number of PARAM sets available, number of event queues and transfer
controllers etc.

The EDMA3 peripheral is used by other peripherals for their DMA needs
thus the EDMA3 Driver needs to cater to the requirements of device
drivers of these peripherals as well as other application software that may
need to use the 3rd party DMA services.

The EDMA3 Driver provides functionality that allows device drivers and
applications for submitting and synchronizing with EDMA3 based DMA
transfers. In order to simplify the usage, this component internally uses
the services of the EDMA3 Resource Manager and provides one
consistent interface for applications or device drivers.

The EDMA3 Resource Manager comprises of the following two parts:

 Physical Driver: This component is responsible for the management
of several resources within the EDMA3 peripheral like DMA and QDMA
channels, TCC codes, PARAM entry, all global EDMA3 registers, queues
etc.

 Interrupt Manager: This module provides the different interrupt
handlers (ISRs) for various EDMA3 interrupts like transfer completion
interrupt, CC error interrupt and TC error interrupt. Since interrupts
could be associated with TCC codes in EDMA3, this module also
provides the functionality of accepting application registration callbacks
for TCC codes and calls the callback functions upon receipt of the given
interrupt (TCC).

Moreover, these ISRs are NOT registered with the underlying OS, since
Resource Manager is an OS-agnostic module. The user application has
to do the registration / un-registration of ISRs by itself.

EDMA3 Driver Introduction

I-1-3

Figure 1: EDMA3 Related Software Product and Packages Structure

Dependency

PSP Drivers CSL/DAT

Framework Components

DMAN
3

ACPY
3

EDMA3 Resource Manager

PaRAMsDMA/QDMA
Channels

TCCs EDMA3
ISRs

EDMA3 Driver

Internally calls

EDMA3 Product

Applications

EDMA3 Driver Introduction

1-4

Typically, each master (ARM, DSP etc.) within the SoC shall open an instance of
EDMA3 Driver, which internally will open a Resource Manager Instance. Resources
could be allocated statically or dynamically to the EDMA3 Driver Instance. This

Figure 2: EDMA3 Related Software Product and Packages Structure

EDMA3 Driver Instance should be used by the users (device drivers or
applications) to call all other EDMA3 Driver APIs. This instance will use the
appropriate shadow region registers (specific to its master) to program EDMA3
hardware. Please note that the shadow region registers are master specific and
there is only and only one set of shadow region registers for each master. If a
master tries to program EDMA3 using other sets of shadow region registers (tied
to other masters in the system), it could result in unexpected behavior with the
possible loss of EDMA3 interrupts and EDMA3 resources’ conflict. So it should be
avoided in normal circumstances.

EDMA3 Driver doesn’t allow multiple instances for a single master on the
respective shadow region. It permits only one instance for each master which will
be tied to its specific shadow region. This is done to prevent any potential
problem which could arise due to EDMA3 resources’ conflict among these different
instances.

However, it is possible to have multiple EDMA3 Driver Instances, running on the
same processor. These different EDMA3 Driver instances would be tied to
different masters (and hence different shadow regions) to cater their specific
requests. The EDMA3 resources should be carefully allocated among all those
instances to avoid any possible conflict.

All software entities intending to use the services of the EDMA3 peripheral on the
given processor shall use the services of the EDMA3 Product (Resource manager
OR EDMA3 Driver) as desired.

Callback Notification Service Call Link between EDMA3 instances

SoC

Processor 1 (e.g. ARM)

Driver 1... NApp NApp 1

EDMA3
Driver

EDMA3 Product

EDMA3 Res Mgr

Phy Res
Mgr

Int
Mgr

Processor 2 (e.g. DSP)

Driver 1.. NApp NApp 1

EDMA3
Driver

EDMA3 Product

EDMA3 Res Mgr

Phy Res
Mgr

Int
Mgr

EDMA3 Driver Introduction

I-1-5

EDMA3 Driver Introduction

1-6

1.1.2 Supported Services

Following are the services provided by the EDMA3 Driver:

1.1.2.1 Request and Free DMA channel: It provides an interface that applications or
device drivers can use to request and free DMA channels. Channels in EDMA3
module are categorized as:

 DMA Channel (mapped to a hardware sync event),

 DMA Channel (NOT mapped to a hardware sync event),

 QDMA Channel, and

 Link Channel (a PARAM Set in EDMA3).

1.1.2.2 Programs DMA channel: It provides an interface that applications or device
drivers can use to program a DMA transaction. This typically involves setting the
DMA source and destination parameters.

Following types of transactions are supported:

• Event triggered (peripheral driven transfers),

• Chain triggered (issuing a chain of transfers initiated by single
event),

• Manual triggered (CPU generated sync-event), and

• QDMA transfer (triggered on a write to the QDMA Trigger word).

An API is also provided to get the current status of the DMA/QDMA channel.

EDMA3 Driver Introduction

I-1-7

1.1.2.3 Start and Synchronize with DMA transfers: It provides an interface that
applications or device drivers can use to start and synchronize with a DMA
transaction.

1.1.2.4 Provides DMA transaction completion callback to applications: It
provides an interface that applications or device drivers can use to register a
transaction completion (final or intermediate) callback or error interrupt
callback. EDMA3 driver calls this application or device driver specifc callback
routine, with the appropriate status message.

1.1.2.5 Supports Linking and chaining feature: EDMA3 peripheral provides linking
and chaining capabilities. EDMA driver provides an interface that applications or
device drivers can use to use this functionality.

1.1.2.6 Supports multiple instances of EDMA driver on a single processor: It
supports multiple instances of itself, running on the same processor, but tied to
different masters (and hence different shadow regions). These different
instances will run on the same processor but manage same/different set of
EDMA3 resources and are tied to different shadow regions. Please note that
EDMA3 Driver doesn’t allow multiple instances for a single master on the
respective shadow region.

1.1.2.7 Read/Write a specific CC register: It also provides an interface which
enables users to read/write any EDMA3 Channel Controller register. These APIs
are for advanced users and could be used for debugging purposes.

1.1.2.8 Support for Polled Mode DMA Transfers: It provides an interface which
enables the application or device driver to use it in an interrupt-less (and further
in an OS-less) environment. In this scenario, the application does not register
the callback function with the resource manager and itself polls the EDMA3
hardware for the completion interrupt, using the specific APIs.

1.1.2.9 Non-RTSC Environment Support: EDMA3 Driver module should gets built in
non-RTSC environment also. All the CCS PJT files should come for non-RTSC
environment too.

1.1.2.10 IOCTL interface support: EDMA3 Driver shall provide an IOCTL
interface for toggling the option whether PaRAM Sets should be cleared during
allocation or not. This interface could also be extended in future for other misc
requirements.

1.1.2.11 Registration and Un-registration of TCC callbacks: It provides an
interface that can be called by applications to register/un-register for TCC
callbacks. It handles EDMA3 interrupts and calls the respective TCC callback
function with appropriate status.

1.1.2.12 Big Endian platforms support: EDMA3 driver can also be used for
big endian platforms.

EDMA3 Driver Introduction

1-8

1.1.2.13 Enable/diable transfer controller error interrupts: It provides an
interface that can be used to enable or disable specific transfer controller error
interrupts.

2-1

Chapter 2

Installation Guide

This chapter discusses the EDMA3 Driver installation, how and what
software and hardware components to be availed in order to complete a
successful installation of EDMA3 Driver.

Installation Guide

2-2

2.1 Component Folder

Upon installing the EDMA3 LLD package, the following directory
structure is found in the main directory. A viewgraph of the actual
directory tree (as seen in the final deployed environment) is
inserted here for clarity.

Figure 3: EDMA3 Driver Directory Structure

The sections below describe the folder contents:

edma3_lld_<<version_number>>

Top level installation directory. Contains the source code,
examples and the documents.

docs

Contains release notes for EDMA3 Driver and Resource
Manager.

examples

Contains the stand-alone applications for EDMA3 Driver (for
all the supported platforms) and the DAT example.

Installation Guide

I-2-3

packages

All components (Driver, Resource Manager, sample OS-abstraction layers
etc) fall under packages/ti/sdo/edma3 directory, under their individual
directories. For e.g., EDMA3 driver lies under packages/ti/sdo/edma3/drv
folder, sample initialization library for EDMA3 Driver lies under
packages/ti/sdo/edma3/drv/sample folder etc.

a) drv -> Top level folder for the EDMA3 Driver.

b) drv\docs -> User guide, datasheet etc.

c) drv\lib -> EDMA3 Driver libraries for all the supported platforms.

d) drv\sample -> Sample code for how to use the EDMA3 Driver,
along-with the pre-built libraries for the same.

e) drv\src -> Source files for EDMA3 Driver.

Just to clarify, the sample folder inside the edma3/drv folder DOESN’T
contain the sample applications. It provides the:

a) Sample initialization code to properly configure the EDMA3 hardware,
and,

b) Sample OS abstraction layer to provide the OS-specific hooks to the
EDMA3 package.

This sample code is provided for reference purpose only. To start with, the
user is advised to use the sample code/library as it is, and later
modify/create his own initialization code, as per the requirements.

The stand-alone applications are provided in the top level examples folder
as mentioned above. Please note that these examples use the above
mentioned sample initialization/OS abstraction libraries and the EDMA3
Driver libraries.

Installation Guide

2-4

2.2 Development Tools Environment(s)

This section describes the development tools environment(s) for
software development with EDMA3 Driver. It describes the tools
used and their setup, for each supported environment.

2.2.1 Development Tools

Describe here the tools that need to be installed, the installation
order and specific configuration. Including: 3rd party components/
libraries, Operating System and auxiliary Tools.

Table 1: Development Tools/components

Development
tool/ component Version Comments

Code Composer
Studio (CCS)

4.0.0.16000 IDE

Code Gen Tools 6.1.12 Code generation utilities
DSP BIOS 6.21.00.13 Operating System
XDC tool chain 3.16.00.18 XDC tools
TCI6498 Simulator 0.7.1 Simulator

Installation Guide

I-2-5

2.3 Installation Guide

This section describes the EDMA3 LLD installation and un-installation.

2.3.1 Installation and Usage Procedure

1) Install the products mentioned in the development tools requirements section, as
per instructions provided along with the products.

2) Install the EDMA3 package using the self-extracting installer into preferred
drive/folder. It is recommended to install the EDMA3 LLD into the default
drive/folder as indicated by the self-extracting installer.

3) As a part of installation process, an environment variable
“EDMA3LLD_BIOS6_INSTALLDIR” is created with its value as the current EDMA3
installation directory. Moreover, in case the variable exists prior to this
installation, the same will be updated with the current (latest) EDMA3 installation
directory. This environment variable can be used by other users of EDMA3
package for e.g. BIOS PSP drivers package.

4) For building the downloadable images, refer to section 2.4 – Integration Guide.

5) Download the image (.out) onto the platform using CCS.

6) Run the program.

2.3.2 Un-installation

1) Uninstall the EDMA3 package by using the uninstall.exe in the install directory.

2) Un-install the products mentioned in the development tools requirements section
as per the instructions provided with the product.

Installation Guide

2-6

2.4 Integration Guide

This section describes the EDMA3 LLD package usage. The package provides pre-
built libraries for all the different components: EDMA3 Driver, Resource Manager
along with their sample initialization libraries. Moreover, demo applications are
also provided to check the basic functionality for the supported components.

2.4.1 Building EDMA3 Libraries

The EDMA3 package contains pre-built libraries for all EDMA3 components. But user
can also build them by following the below mentioned steps in case of source code
modification or some other specific use cases described below.

1) Install the products mentioned in the development tools requirements section
(section 2.2), as per instructions provided along with the products. See note 1
below for more details.

2) Build the required libraries using the xdc command at the command prompt:

a. Example:

Z:\edma3_lld_<<version_number>>\packages\ti\sdo\edma3\drv> xdc

3) All EDMA3 public APIs provide a mechanism to disable input parameter checking.
This is intended to reduce the number of CPU cycles spent in the parameter
checking and hence provide more efficient libraries. To do that, user has to
modify the “package.bld” file, found in the component base folder itself, and re-
build the libraries. By default, the parameter checking is enabled for all the public
APIs.

For e.g., following code snippet in the edma3\drv\package.bld file is used to
create the EDMA3 Driver libraries:

Pkg.addLibrary("lib/Debug/" + Pkg.name, targ,

{ defs:"", profile: "debug"}

).addObjects(objList);

Pkg.addLibrary("lib/Release/" + Pkg.name, targ,

{ defs:"", profile: "release"}

).addObjects(objList);

By default, parameter checking is enabled in both Debug and Release modes for
all the public APIs. If user wants to disable the same in Release mode (for
example), he has to modify the above code as:

Pkg.addLibrary("lib/Debug/" + Pkg.name, targ,

{ defs:"", profile: "debug"}

).addObjects(objList);

Pkg.addLibrary("lib/Release/" + Pkg.name, targ,

{defs:"-DEDMA3_DRV_PARAM_CHECK_DISABLE",profile:
"release"}

).addObjects(objList);

Installation Guide

I-2-7

The Release mode library generated now will have input parameter check
disabled for all the public APIs. User is advised to use this configuration option
with caution.

4) All EDMA3 private functions use the standard C assert mechanism to
enable/disable input parameter checking. This is intended to reduce the number
of CPU cycles spent in the parameter checking and hence provide more efficient
libraries. To do that, user has to modify the “package.bld” file, found in the
component base folder itself, and re-build the libraries. By default, the parameter
checking is enabled for all the private functions.

For e.g., following code snippet in the edma3\drv\package.bld file is used to
create the EDMA3 Driver libraries:

Pkg.addLibrary("lib/Debug/" + Pkg.name, targ,

{ defs:"", profile: "debug"}

).addObjects(objList);

Pkg.addLibrary("lib/Release/" + Pkg.name, targ,

{ defs:"", profile: "release"}

).addObjects(objList);

By default, parameter checking is enabled in both Debug and Release modes for
all the private functions. If user wants to disable the same in Release mode (for
example), he has to modify the above code as:

Pkg.addLibrary("lib/Debug/" + Pkg.name, targ,

{ defs:"", profile: "debug"}

).addObjects(objList);

Pkg.addLibrary("lib/Release/" + Pkg.name, targ,

{ defs:"-DNDEBUG", profile: "release"}

).addObjects(objList);

The Release mode library generated now will have input parameter check
disabled for all the private functions. User is advised to use this configuration
option with caution.

5) The event queue number registers for DMA/QDMA channels are programmed
during run-time, depending on the application requirements. User has to specify
the desired queue number for the specific channel while calling the
EDMA3_DRV_requestChannel () API.

This behavior can be changed by re-compiling the EDMA3 Driver libraries and
passing “EDMA3_PROGRAM_QUEUE_NUM_REGISTER_INIT_TIME” to the
compiler. Now the EDMA3 driver will pre-allocate the event queues for the
DMA/QDMA channels present in the system and program the appropriate
registers during the EDMA3 initialization; it will not program the same registers at
run-time anymore.

The mapping between DMA/QDMA channels and different queue numbers should
be provided by the system integrator using the structure
edma3DmaQdmaQueueNumConfig in file
“packages\ti\sdo\edma3\drv\src\edma3_drv_init.c”.

Installation Guide

2-8

For e.g., following code snippet in the edma3\drv\package.bld file is used to
create the EDMA3 Driver libraries:

Pkg.addLibrary("lib/Debug/" + Pkg.name, targ,

{ defs:"", profile: "debug"}

).addObjects(objList);

Pkg.addLibrary("lib/Release/" + Pkg.name, targ,

{ defs:"", profile: "release"}

).addObjects(objList);

By default, event queue registers will be programmed at run-time. If user wants
to disable the same and instead program the registers at init-time itself, he has
to modify the above code as:

Pkg.addLibrary("lib/Debug/" + Pkg.name, targ,

{defs:"-DEDMA3_PROGRAM_QUEUE_NUM_REGISTER_INIT_TIME",

profile: "debug"}).addObjects(objList);

Pkg.addLibrary("lib/Release/" + Pkg.name, targ,

{defs:"-DEDMA3_PROGRAM_QUEUE_NUM_REGISTER_INIT_TIME",

profile: "release"}).addObjects(objList);

2.4.2 Building the EDMA3 Driver Stand-alone Applications

The EDMA3 package contains separate sample applications for EDMA3 Driver for each
of the supported platforms. Following steps are required to build the same:

1) Install the products mentioned in the development tools requirements section
(section 2.2), as per instructions provided along with the products. See note 1
below for more details.

2) Build the required libraries using the xdc command at the command prompt:

a. Example:

Z:\edma3_lld_<<version_number>>\packages\ti\sdo\edma3\drv> xdc

This step is required only if the source code is modified and new libraries need to
be generated.

3) Setup the CCS4 to set the underlying platform and use the appropriate DSP gel
file, if required.

4) Load CCS project.
a. Open C/C++ perspective: Window -> Open Perspective -> C/C++.
b. CCS v4 uses “Linked Resources” to create portable paths. This is required

to link different source files into the CCS project without making copies of
the source files. To enable proper linking of the source files, user must
modify the path variable “EDMA3LLD_BIOS6_INSTALLDIR” to point it to
the EDMA3 installation directory. The value of this variable can also be
fetched from the environment variable “EDMA3LLD_BIOS6_INSTALLDIR”.

i. Go to Window -> Preferences.

Installation Guide

I-2-9

ii. Modify the path variable “EDMA3LLD_BIOS6_INSTALLDIR” under
General -> Workspace -> Linked Resources section, as suggested
above.

c. Go to “Project -> Import Existing CCS Eclipse Project” menu item.
d. Point to the directory of the sample application needed to run.

o Example:
Z:\edma3_lld_<<version_number>>\examples\edma3_driver\<<your

_platform>>\
e. Set required Debug/Release configuration.
f. “Project -> Rebuild Active Project” will build the .out executable. E.g.

edma3_drv_bios6_<<your_platform>>_st_sample.out.

5) Target -> Launch TI Debugger for your platform.

6) Use “Target -> Advanced -> Connect target” to connect to DSP target. The GEL
would configure and setup the DSP to be used by the DSP window.

7) Use “Target -> Load Program” to download the .out executable.

NOTES:

1. edma3_lld_<<version_number>>\packages\config.bld

a. It uses an environment variable CGTOOLS to locate the right codegen tool
chain version. Make sure that this variable is set in your environment and
points to the desired toolchain version.

Example: If the code generation tools are installed in “C:\Program Files\C6000Code
Generation Tools 6.1.11”, then CGTOOLS should point to:

CGTOOLS=D:/Program Files/Texas Instruments/C6000 Code Generation Tools
6.1.11

2. The following environmental variables must be set

a. XDCPATH – Should include BIOS v6 package installation directory.

Example:

XDCPATH= D:/Program Files/Texas Instruments/bios_6_21_00_06_eng/packages

2.4.3 Building the DAT Example

The EDMA3 package contains CSL 2.0 DAT Adapter Reference Implementation
using EDMA3 Low Level Driver. The same can be built using the steps shown in
the previous section. The application can be located at
“edma3_lld_<<version_number>>\examples\CSL2_DAT_DEMO\demo\” in the
platform specific folder.

Installation Guide

2-10

2.4.4 Build Options

This section enumerates and describes alongside each of the allowed build options. It
also tells the default configurations available.

Build option Reference Default Configuration Description

EDMA3_INSTRUMENTATIO
N_ENABLED

Instrumentation disabled
To enable/disable Real
Time Instrumentation
support.

EDMA3_DRV_PARAM_CHE
CK_DISABLE

Parameter checking enabled
(public APIs)

Disable parameter
checking for public APIs, if
required. See note 1
below.

NDEBUG Parameter checking enabled
(private functions)

Disable parameter
checking for private
functions, if required. See
note 2 below.

_BIG_ENDIAN NA
Used while building
libraries for Big Endian
platforms.

Table 2: Build Options

Note 1: All EDMA3 public APIs provide a mechanism to disable input parameter
checking. This is intended to reduce the number of CPU cycles spent in the parameter
checking and hence provide more efficient libraries. To do that, user has to modify the
build environment (for e.g. the package.bld file), and re-build the libraries. By default,
the parameter checking is enabled for all the public APIs.

Note 2: All EDMA3 private functions use the standard C assert mechanism to
enable/disable input parameter checking. This is intended to reduce the number of CPU
cycles spent in the parameter checking and hence provide more efficient libraries. To do
that, user has to modify the build environment (for e.g. the package.bld file), and re-
build the libraries. By default, the parameter checking is enabled for all the private
functions.

A-1

Chapter 3

Run-Time Interfaces/Integration
Guide

This chapter discusses the EDMA3 Driver run-time interfaces that
comprise the API specification & usage scenarios, in association
with its data types and structure definitions.

Run-Time Interfaces/Integration Guide

A-2

3.1 Symbolic Constants and Enumerated Data types

This section summarizes all the symbolic constants specified as
either #define macros and/or enumerated C data types. Described
alongside the macro or enumeration is the semantics or
interpretation of the same in terms of what value it stands for and
what it means.

Table 3: Symbolic Constants and Enumerated Data types Table for common
header file edma3_common.h

Group or
Enumeration Class

Symbolic Constant Name Description or Evaluation

Driver Global
Defines

EDMA3_DRV_DEBUG This define is used to
enable/disable EDMA3 Driver
debug messages

EDMA3_DRV_PRINTF If EDMA3_DRV_DEBUG is defined,
EDMA3_DRV_PRINTF will be used
to print the debug messages on
the user specified output.

EDMA3_DRV_SOK EDMA3 Driver Result OK

EDMA3_OSSEM_NO_TIMEOUT This define is used to specify a
blocking call without timeout while
requesting a semaphore.

EDMA3_MAX_
EDMA3_INSTANCES

Maximum EDMA3 Controllers on
the SoC

EDMA3_MAX_DMA_CH Maximum DMA channels supported
by the EDMA3 Controller

EDMA3_MAX_QDMA_CH Maximum QDMA channels
supported by the EDMA3
Controller

EDMA3_MAX_PARAM_SETS Maximum PaRAM Sets supported
by the EDMA3 Controller

EDMA3_MAX_LOGICAL_CH Maximum Logical channels
supported by the EDMA3 Package

EDMA3_MAX_TCC Maximum TCCs (Interrupt
Channels) supported by the
EDMA3 Controller

EDMA3_MAX_EVT_QUE Maximum Event Queues supported
by the EDMA3 Controller

EDMA3_MAX_TC Maximum Transfer Controllers
supported by the EDMA3
Controller

EDMA3_MAX_REGIONS Maximum Shadow Regions
supported by the EDMA3
Controller

Defines used to
support the maximum
resources supported

by the EDMA3
controller. These are
used to allocate the
maximum memory
for different data
structures of the

EDMA3 Driver and
Resource Manager.

EDMA3_MAX_DMA_CHAN_DWRDS Maximum Words (4-bytes region)

Run-Time Interfaces/Integration Guide

I-A-3

required for the book-keeping
information specific to the
maximum possible DMA channels.

EDMA3_MAX_QDMA_CHAN_DWRDS Maximum Words (4-bytes region)
required for the book-keeping
information specific to the
maximum possible QDMA
channels.

EDMA3_MAX_PARAM_DWRDS Maximum Words (4-bytes region)
required for the book-keeping
information specific to the
maximum possible PaRAM Sets.

EDMA3_MAX_TCC_DWRDS Maximum Words (4-bytes region)
required for the book-keeping
information specific to the
maximum possible TCCs.

EDMA3_OS_PROTECT_INTERRUPT Protection from All Interrupts
required

EDMA3_OS_PROTECT_SCHEDULER Protection from scheduling
required

EDMA3_OS_PROTECT_INTERRUPT_XFER_
COMPLETION

Protection from EDMA3 Transfer
Completion Interrupt required

EDMA3_OS_PROTECT_INTERRUPT_CC_E
RROR

Protection from EDMA3 CC Error
Interrupt required

Defines for the level
of OS protection

needed when calling
edma3OsProtectXXX()

EDMA3_OS_PROTECT_INTERRUPT_TC_E
RROR

Protection from EDMA3 TC Error
Interrupt required

Run-Time Interfaces/Integration Guide

A-4

Table 4: Symbolic Constants and Enumerated Data types Table for EDMA3 Driver
header file edma3_drv.h

Group or
Enumeration Class

Symbolic Constant Name Description or Evaluation

Driver Error Codes EDMA3_DRV_E_OBJ_NOT_DELETED Before a Driver Object could be
created, it must be in the ‘Deleted’
state. Since it is not yet ‘Deleted’,
it cannot be created.

EDMA3_DRV_E_OBJ_NOT_CLOSED Before a Driver Object could be
deleted, it must be in the ‘Closed’
state. Since it is not yet ‘Closed’, it
cannot be deleted.

EDMA3_DRV_E_OBJ_NOT_OPENED Before a Driver Object could be
closed, it must be in the ‘Opened’
state. Since it is not yet ‘Opened’,
it cannot be closed.

EDMA3_DRV_E_RM_CLOSE_FAIL While closing EDMA3 Driver
Object, Resource Manager Object
has to be closed. If the ‘Close’
fails, this error is returned.

EDMA3_DRV_E_DMA_CHANNEL_UNAVAIL DMA channel requested for
allocation is not available.

EDMA3_DRV_E_QDMA_CHANNEL_UNAVA
IL

QDMA channel requested for
allocation is not available.

EDMA3_DRV_E_PARAM_SET_UNAVAIL PARAM Set requested for
allocation is not available.

EDMA3_DRV_E_TCC_UNAVAIL TCC requested for allocation is not
available.

EDMA3_DRV_E_TCC_REGISTER_FAIL Registration of the callback
function against a specific TCC
failed.

EDMA3_DRV_E_CH_PARAM_BIND_FAIL The binding of Channel and PaRAM
Set failed.

EDMA3_DRV_E_ADDRESS_NOT_ALIGNED While in FIFO mode, the address
of the memory location passed as
argument is not properly aligned.
It should be 32 bytes aligned.

EDMA3_DRV_E_INVALID_PARAM Invalid Parameter passed to API.

EDMA3_DRV_E_INVALID_STATE Invalid State of EDMA3 Driver
Object.

EDMA3_DRV_E_INST_ALREADY_EXISTS EDMA3 Driver instance already
exists for the specified region.
Multiple EDMA3 Driver instances
on the same shadow region are
NOT allowed.

EDMA3_DRV_E_FIFO_WIDTH_NOT_SUPP
ORTED

FIFO width not supported by the
requested Transfer Controller.

EDMA3_DRV_E_SEMAPHORE Semaphore handling related error.

Run-Time Interfaces/Integration Guide

I-A-5

EDMA3_DRV_E_INST_NOT_OPENED EDMA3 Driver Instance does not
exist, it is not opened yet.

Driver Global
Defines

EDMA3_DRV_CH_NO_PARAM_MAP This define is used to say that the
DMA channel is not tied to any
PaRAM Set and hence any
available PaRAM Set could be used
for that DMA channel. It could be
used in dmaChannelPaRAMMap
[EDMA3_MAX_DMA_CH], in global
configuration structure
EDMA3_DRV_GblConfigParams.
This value should mandatorily
be used to mark DMA channels
with no initial mapping to a
specific PaRAM Set.

EDMA3_DRV_CH_NO_TCC_MAP This define is used to say that the
DMA/QDMA channel is not tied to
any TCC and hence any available
TCC could be used for that
DMA/QDMA channel. It could be
used in dmaChannelTccMap
[EDMA3_RM_NUM_DMA_CH], in
global configuration structure
EDMA3_DRV_GblConfigParams.
This value should mandatorily
be used to mark DMA channels
with no initial mapping to a
specific TCC.

EDMA3_DRV_DMA_CHANNEL_ANY Used to specify any available DMA
Channel while requesting one. It is
used in the API
EDMA3_DRV_requestChannel ().

DMA channel from the pool of
(owned && non_reserved &&
available_right_now) DMA
channels will be chosen and
returned.

EDMA3_DRV_QDMA_CHANNEL_ANY Used to specify any available
QDMA Channel while requesting
one. It is used in the API
EDMA3_DRV_requestChannel ().

QDMA channel from the pool of
(owned && non_reserved &&
available_right_now) QDMA
channels will be chosen and
returned.

EDMA3_DRV_TCC_ANY Used to specify any available TCC
while requesting one. Used in the
API EDMA3_DRV_requestChannel
(), for both DMA and QDMA
channels.

Interrupt channel (TCC) from the
pool of (owned && non_reserved
&& available_right_now) TCCs will
be chosen and returned.

Run-Time Interfaces/Integration Guide

A-6

EDMA3_DRV_LINK_CHANNEL Used to specify any PaRAM Set. It
is used as the channelId when
requesting ANY available PaRAM
set for linking. It is used in the API
EDMA3_DRV_requestChannel ().

PaRAM Set from the pool of
(owned && non_reserved &&
available_right_now) PaRAM Sets
will be chosen and returned.

EDMA3_DRV_LINK_CHANNEL_WITH_TCC Used to specify any available
PaRAM Set while requesting one.
Used in the API
EDMA3_DRV_requestChannel(),
for Link channels. TCC code should
also be specified and it will be
used to populate the LINK field of
the PaRAM Set. Without TCC code,
the call will fail. PaRAM Set from
the pool of (owned &&
non_reserved &&
available_right_now) PaRAM Sets
will be chosen and returned.

EDMA3_DRV_QDMA_CHANNEL_0 QDMA Channel 0 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_1 QDMA Channel 1 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_2 QDMA Channel 2 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_3 QDMA Channel 3 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_4 QDMA Channel 4 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_5 QDMA Channel 5 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_6 QDMA Channel 6 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_7 QDMA Channel 7 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_CHANNEL_CLEAN Channel status define: Channel is
clean; no pending event,
completion interrupt and event
miss interrupt.

EDMA3_DRV_CHANNEL_EVENT_PENDING Channel status define: Pending
event is detected on the DMA
channel.

Run-Time Interfaces/Integration Guide

I-A-7

EDMA3_DRV_CHANNEL_XFER_COMPLETE Channel status define: Transfer
completion interrupt is detected on
the DMA/QDMA channel.

EDMA3_DRV_CHANNEL_ERR Channel status define: Event miss
error interrupt is detected on the
DMA/QDMA channel.

Enum
EDMA3_DRV_HW_C
HANNEL_EVENT

EDMA3_DRV_HW_CHANNEL_EVENT_0 =
0,
EDMA3_DRV_HW_CHANNEL_EVENT_1,
EDMA3_DRV_HW_CHANNEL_EVENT_2,
.
.
.
.

DMA Channels assigned to
different Hardware Events. They
should be used while requesting a
specific DMA channel.
One possible usage is to maintain
a SoC specific file, which will
contain the mapping of these
hardware events to the respective
peripherals for better
understanding and lesser
probability of errors. Also, if any
event associated with a particular
peripheral gets changed, only that
SoC specific file needs to be
changed.

Enum
EDMA3_DRV_OptFi
eld

EDMA3_DRV_OPT_FIELD_SAM Source addressing mode (INCR /
FIFO)

EDMA3_DRV_OPT_FIELD_DAM Destination addressing mode
(INCR / FIFO)

EDMA3_DRV_OPT_FIELD_SYNCDIM Transfer synchronization
dimension (A-synchronized / AB-
synchronized)

EDMA3_DRV_OPT_FIELD_STATIC Static/non-static PaRAM set

EDMA3_DRV_OPT_FIELD_FWID FIFO Width. Applies if either SAM
or DAM is set to FIFO mode.

EDMA3_DRV_OPT_FIELD_TCCMODE Transfer complete code mode.
Indicates the point at which a
transfer is considered completed
for chaining and interrupt
generation.

EDMA3_DRV_OPT_FIELD_TCC Transfer complete code. This 6-bit
code is used to set the relevant bit
in chaining enable register
(CER[TCC]/CERH[TCC]) for
chaining or in interrupt pending
register (IPR[TCC]/IPRH[TCC]) for
interrupts.

EDMA3_DRV_OPT_FIELD_TCINTEN Transfer complete interrupt
enable/disable.

EDMA3_DRV_OPT_FIELD_ITCINTEN Intermediate transfer complete
interrupt enable/disable.

EDMA3_DRV_OPT_FIELD_TCCHEN Transfer complete chaining
enable/disable.

EDMA3_DRV_OPT_FIELD_ITCCHEN Intermediate transfer completion
chaining enable/disable.

Enum EDMA3_DRV_ADDR_MODE_INCR Increment (INCR) mode. Source

Run-Time Interfaces/Integration Guide

A-8

EDMA3_DRV_AddrMo
de

addressing within an array
increments. Source is not a FIFO.

EDMA3_DRV_ADDR_MODE_FIFO FIFO mode. Source addressing
within an array wraps around upon
reaching FIFO width.

Enum
EDMA3_DRV_SyncTyp
e

EDMA3_DRV_SYNC_A A-synchronized. Each array is
submitted as one TR.
(BCNT*CCNT) number of sync
events are needed to completely
service a PaRAM set (where BCNT
= Num of Arrays in a Frame;
CCNT = Num of Frames in a
Block). (S/D)CIDX = (Address of
First array in next frame) -
(Address of Last array in present
frame) (where CIDX is the Inter-
Frame index).

EDMA3_DRV_SYNC_AB AB-synchronized. Each frame is
submitted as one TR. Only CCNT
number of sync events are needed
to completely service a PaRAM set
(where CCNT = Num of Frames in
a Block). (S/D)CIDX = (Address of
First array in next frame) -
(Address of first array of present
frame) (where CIDX is the Inter-
Frame index).

Enum
EDMA3_DRV_StaticM
ode

EDMA3_DRV_STATIC_DIS PaRAM set is not Static. PaRAM set
is updated or linked after TR is
submitted. A value of 0 should be
used for DMA channels and for
non-final transfers in a linked list
of QDMA transfers.

EDMA3_DRV_STATIC_EN PaRAM set is Static. PaRAM set is
not updated or linked after TR is
submitted. A value of 1 should be
used for isolated QDMA transfers
or for the final transfer in a linked
list of QDMA transfers.

Enum
EDMA3_DRV_FifoWidt
h

EDMA3_DRV_W8BIT The user can set the width of the
FIFO as 8 bits using it. This is
done via the OPT register. This is
valid only if the
EDMA3_DRV_ADDR_MODE_FIFO
value is used for the enum
EDMA3_DRV_AddrMode.

EDMA3_DRV_16WBIT FIFO width is 16-bit.

EDMA3_DRV_32WBIT FIFO width is 32-bit.

EDMA3_DRV_64WBIT FIFO width is 64-bit.

EDMA3_DRV_128WBIT FIFO width is 128-bit.

EDMA3_DRV_256WBIT FIFO width is 256-bit.

Enum
EDMA3_DRV_TccMod
e

EDMA3_DRV_TCCMODE_NORMAL Normal completion: A transfer is
considered completed after the
data has been transferred.

Run-Time Interfaces/Integration Guide

I-A-9

EDMA3_DRV_TCCMODE_EARLY Early completion: A transfer is
considered completed after the
EDMA3CC submits a TR to the
EDMA3TC. TC may still be
transferring data when
interrupt/chain is triggered.

Enum
EDMA3_DRV_TcintEn

EDMA3_DRV_TCINTEN_DIS Transfer complete interrupt is
disabled.

EDMA3_DRV_TCINTEN_EN Transfer complete interrupt is
enabled.
When enabled, the interrupt
pending register (IPR/IPRH) bit is
set on transfer completion (upon
completion of the final TR in the
PaRAM set). The bit (position) set
in IPR or IPRH is the TCC value
specified. In order to generate a
completion interrupt to the CPU,
the corresponding IER [TCC] /
IERH [TCC] bit must be set to 1.

Enum
EDMA3_DRV_ItcintEn

EDMA3_DRV_ITCINTEN_DIS Intermediate transfer complete
interrupt is disabled.

EDMA3_DRV_ITCINTEN_EN Intermediate transfer complete
interrupt is enabled. When
enabled, the interrupt pending
register (IPR/IPRH) bit is set on
every intermediate transfer
completion (upon completion of
every intermediate TR in the
PaRAM set, except the final TR in
the PaRAM set). The bit (position)
set in IPR or IPRH is the TCC value
specified. In order to generate a
completion interrupt to the CPU,
the corresponding IER [TCC] /
IERH [TCC] bit must be set to 1.

Enum
EDMA3_DRV_TcchEn

EDMA3_DRV_TCCHEN_DIS Transfer complete chaining is
disabled.

EDMA3_DRV_TCCHEN_EN Transfer complete chaining is
enabled. When enabled, the
chained event register
(CER/CERH) bit is set on final
chained transfer completion (upon
completion of the final / last TR in
the PaRAM set). The bit (position)
set in CER or CERH is the TCC
value specified.

Enum
EDMA3_DRV_ItcchEn

EDMA3_DRV_ITCCHEN_DIS Intermediate transfer complete
chaining is disabled.

EDMA3_DRV_ITCCHEN_EN Intermediate transfer complete
chaining is enabled.
When enabled, the chained event
register (CER/CERH) bit is set on
every intermediate chained
transfer completion (upon
completion of every intermediate
TR in the PaRAM set, except the

Run-Time Interfaces/Integration Guide

A-10

final TR in the
PaRAM set). The bit (position) set
in CER or CERH is the TCC value
specified.

Enum
EDMA3_DRV_TrigMod
e

EDMA3_DRV_TRIG_MODE_MANUAL EDMA Trigger Mode Selection: Set
the Trigger mode to Manual. The
CPU manually triggers a transfer
by writing a 1 to the
corresponding bit in the event set
register (ESR/ESRH).

EDMA3_DRV_TRIG_MODE_QDMA EDMA Trigger Mode Selection: Set
the Trigger mode to QDMA. A
QDMA transfer is triggered when a
CPU (or other EDMA3
programmer) writes to the trigger
word of the QDMA channel
parameter set (auto-triggered) or
when the EDMA3CC performs a
link update on a PaRAM set that
has been mapped to a QDMA
channel (link triggered).

EDMA3_DRV_TRIG_MODE_EVENT EDMA Trigger Mode Selection: Set
the Trigger mode to Event. Allows
for a peripheral, system, or
externally-generated event to
trigger a transfer request.

Enum
EDMA3_DRV_PaRAME
ntry

EDMA3_DRV_PARAM_ENTRY_OPT PaRAM Set Entry type: The OPT
field (Offset Address 0h Bytes)

EDMA3_DRV_PARAM_ENTRY_SRC PaRAM Set Entry type: The SRC
field (Offset Address 4h Bytes)

EDMA3_DRV_PARAM_ENTRY_ACNT_BCNT PaRAM Set Entry type: The
(ACNT+BCNT) field (Offset
Address 8h Bytes)

EDMA3_DRV_PARAM_ENTRY_DST PaRAM Set Entry type: The DST
field (Offset Address Ch Bytes)

EDMA3_DRV_PARAM_ENTRY_SRC_DST_B
IDX

PaRAM Set Entry type: The
(SRCBIDX+DSTBIDX) field (Offset
Address 10h Bytes)

EDMA3_DRV_PARAM_ENTRY_LINK_BCNT
RLD

PaRAM Set Entry type: The
(LINK+BCNTRLD) field (Offset
Address 14h Bytes)

EDMA3_DRV_PARAM_ENTRY_SRC_DST_C
IDX

PaRAM Set Entry type: The
(SRCCIDX+DSTCIDX) field (Offset
Address 18h Bytes)

EDMA3_DRV_PARAM_ENTRY_CCNT PaRAM Set Entry type: The
(CCNT+RSVD) field (Offset
Address 1Ch Bytes)

Enum
EDMA3_DRV_PaRAMFi
eld

EDMA3_DRV_PARAM_FIELD_OPT PaRAM Set Field type: OPT field of
PaRAM Set

EDMA3_DRV_PARAM_FIELD_SRCADDR PaRAM Set Field type: Starting
byte address of Source. For FIFO

Run-Time Interfaces/Integration Guide

I-A-11

mode, srcAddr must be a 256-bit
aligned address.

EDMA3_DRV_PARAM_FIELD_ACNT PaRAM Set Field type: Number of
bytes in each Array (ACNT)

EDMA3_DRV_PARAM_FIELD_BCNT PaRAM Set Field type: Number of
Arrays in each Frame (BCNT)

EDMA3_DRV_PARAM_FIELD_DESTADDR PaRAM Set Field type: Starting
byte address of destination. For
FIFO mode, destAddr must be a
256-bit aligned address.

EDMA3_DRV_PARAM_FIELD_SRCBIDX PaRAM Set Field type: Index
between consecutive arrays of a
Source Frame (SRCBIDX). If SAM
is set to 1 (via channelOptions),
then srcInterArrIndex should be
an even multiple of 32 bytes.

EDMA3_DRV_PARAM_FIELD_DESTBIDX PaRAM Set Field type: Index
between consecutive arrays of a
Destination Frame (DESTBIDX). If
DAM is set to 1 (via
channelOptions), then
destInterArrIndex should be an
even multiple of 32 bytes.

EDMA3_DRV_PARAM_FIELD_LINKADDR PaRAM Set Field type: Address for
linking (Auto-Reloading of a
PaRAM Set). This must point to a
valid aligned 32-byte PaRAM set. A
value of 0xFFFF means no linking.
Linking is especially useful for use
with ping-pong buffers and circular
buffers.

EDMA3_DRV_PARAM_FIELD_BCNTRELOA
D

PaRAM Set Field type: Reload
value of the numArrInFrame
(BCNT). Relevant only for A-sync
transfers.

EDMA3_DRV_PARAM_FIELD_SRCCIDX PaRAM Set Field type: Index
between consecutive frames of a
Source Block (SRCCIDX).

EDMA3_DRV_PARAM_FIELD_DESTCIDX PaRAM Set Field type: Index
between consecutive frames of a
Dest Block (DSTCIDX).

EDMA3_DRV_PARAM_FIELD_CCNT PaRAM Set Field type: Number of
Frames in a block (CCNT).

Enum
EDMA3_DRV_IoctlCm
d

EDMA3_DRV_IOCTL_MIN_IOCTL EDMA3 Driver IOCTL commands.
Min IOCTL.

EDMA3_DRV_IOCTL_SET_PARAM_CLEAR
_OPTION

PaRAM Sets will be cleared OR will
not be cleared during allocation,
depending upon this option.
For e.g., To clear the PaRAM Sets
during allocation,
cmdArg = (void *)1;

To NOT clear the PaRAM Sets

Run-Time Interfaces/Integration Guide

A-12

during allocation,
cmdArg = (void *)0;

For all other values, it will return
error.

By default, PaRAM Sets will be
cleared during allocation.

Note: Since this enum can change
the behavior how the resources
are initialized during their
allocation, user is adviced to not
use this command while allocating
the resources. User should first
change the behavior of resources'
initialization and then should use
start allocating resources.

EDMA3_DRV_IOCTL_GET_PARAM_CLEAR
_OPTION

To check whether PaRAM Sets will
be cleared or not during allocation.
If the value read is '1', it means
that PaRAM Sets are getting
cleared during allocation.
If the value read is '0', it means
that PaRAM Sets are NOT getting
cleared during allocation.
For e.g.,
unsigned short
isParamClearingDone;
cmdArg =
¶mClearingRequired;

EDMA3_DRV_IOCTL_MAX_IOCTL Max IOCTL.

Enum
EDMA3_DRV_Tc_Err

EDMA3_DRV_TC_ERR_BUSERR_DIS Interrupt disable for bus error

EDMA3_DRV_TC_ERR_BUSERR_EN Interrupt enable for bus error

EDMA3_DRV_TC_ERR_TRERR_DIS Interrupt disable for transfer
request error

EDMA3_DRV_TC_ERR_TRERR_EN Interrupt enable for transfer
request error

EDMA3_DRV_TC_ERR_MMRAERR_DIS Interrupt disable for MMR address
error

EDMA3_DRV_TC_ERR_MMRAERR_EN Interrupt enable for MMR address
error

EDMA3_DRV_TC_ERR_DIS Disable all TC error interrupts

EDMA3_DRV_TC_ERR_EN Enable all TC error interrupts

Run-Time Interfaces/Integration Guide

I-A-13

3.2 Data Structures

This section summarizes the entire user visible data structure
elements pertaining to the EDMA3 Driver run-time interfaces.

3.2.1 EDMA3_DRV_GblConfigParams

This configuration structure is used to specify the EDMA3 Resource
Manager global settings, specific to the SoC. For e.g. number of
DMA/QDMA channels, number of PaRAM sets, TCCs, event queues,
transfer controllers, base addresses of CC global registers and TC
registers, interrupt number for EDMA3 transfer completion, CC
error, event queues’ priority, watermark threshold level etc.

This configuration information is SoC specific and could be provided
by the user at run-time while creating the EDMA3 Driver Object. In
case user doesn’t provide it, this information could be taken from
the SoC specific configuration file edma3_<SOC_NAME>_cfg.c, in
case it is available.

Member Description

numDmaChannels Number of DMA Channels supported by the underlying
EDMA3 Controller

numQdmaChannels Number of QDMA Channels supported by the underlying
EDMA3 Controller

numTccs Number of Interrupt Channels supported by the
underlying EDMA3 Controller

numPaRAMSets Number of PaRAM Sets supported by the underlying
EDMA3 Controller

numEvtQueue Number of Event Queues in the underlying EDMA3
Controller

numTcs Number of Transfer Controllers (TCs) in the underlying
EDMA3 Controller

numRegions Number of Regions in the underlying EDMA3 controller

dmaChPaRAMMapExists Channel mapping existence:

A value of 0 (No channel mapping) implies that there is
fixed association between a DMA channel and a PaRAM
Set or, in other words, DMA channel n can ONLY use
PaRAM Set n (No availability of DCHMAP registers) for
transfers to happen.

A value of 1 implies the presence of DCHMAP registers
for the DMA channels and hence the flexibility of
associating any DMA channel to any PaRAM Set. In other
words, ANY PaRAM Set can be used for ANY DMA channel
(like QDMA Channels).

Run-Time Interfaces/Integration Guide

A-14

memProtectionExists Existence of memory protection feature

globalRegs Base address of EDMA3 CC memory mapped registers.

tcRegs[EDMA3_MAX_TC] Base address of EDMA3 TCs memory mapped registers.

xferCompleteInt EDMA3 transfer completion interrupt line (could be
different for ARM and DSP)

ccError EDMA3 CC error interrupt line (could be different for ARM
and DSP)

tcError[EDMA3_MAX_TC] EDMA3 TCs error interrupt line (could be different for
ARM and DSP)

evtQPri
[EDMA3_MAX_EVT_QUE]

User can program the priority of the Event Queues at a
system-wide level. This means that the user can set the
priority of an IO initiated by either of the TCs (Transfer
Controllers) relative to IO initiated by the other bus
masters on the device (ARM, DSP, USB, etc).

evtQueueWaterMarkLvl
[EDMA3_MAX_EVT_QUE]

To Configure the Threshold level of number of events
that can be queued up in the Event queues. EDMA3CC
error register (CCERR) will indicate whether or not at any
instant of time the number of events queued up in any of
the event queues exceeds or equals the
threshold/watermark value that is set in the queue
watermark threshold register (QWMTHRA).

tcDefaultBurstSize[EDMA3
_MAX_TC]

To Configure the Default Burst Size (DBS) of TCs. An
optimally-sized command is defined by the transfer
controller default burst size (DBS). Different TCs can
have different DBS values. It is defined in Bytes.

dmaChannelPaRAMMap
[EDMA3_MAX_DMA_CH]

If channel mapping exists (DCHMAP registers are
present), this array stores the respective PaRAM Set for
each DMA channel. User can initialize each array member
with a specific PaRAM Set or with
EDMA3_DRV_CH_NO_PARAM_MAP.

If channel mapping doesn’t exist, it is of no use as the
EDMA3 driver automatically uses the right PaRAM Set for
that DMA channel.

dmaChannelTccMap
[EDMA3_MAX_DMA_CH]

This array stores the respective TCC (interrupt channel)
for each DMA channel. User can initialize each array
member with a specific TCC or with
EDMA3_DRV_CH_NO_TCC_MAP. This specific TCC code
will be returned when the transfer is completed on the
mapped DMA channel.

dmaChannelHwEvtMap
[EDMA3_MAX_DMA_CHAN
_DWRDS]

Each bit in this array corresponds to one DMA channel
and tells whether this DMA channel is tied to any
peripheral. That is whether any peripheral can send the
synch event on this DMA channel or not.

1 means the channel is tied to some peripheral; 0 means
it is not.

Run-Time Interfaces/Integration Guide

I-A-15

DMA channels which are tied to some peripheral are
RESERVED for that peripheral only. They are not
allocated when user asks for ‘ANY’ DMA channel.

All channels need not be mapped, some can be free also.

Run-Time Interfaces/Integration Guide

A-16

3.2.2 EDMA3_DRV_InstanceInitConfig

This configuration structure is used to specify which EDMA3 resources are
owned and reserved by the EDMA3 driver instance. This configuration
structure is shadow region specific and will be provided by the user at run-
time while calling EDMA3_RM_open ().

Owned resources:

EDMA3 Driver Instances are tied to different shadow regions and hence
different masters. Regions could be:

a) ARM,

b) DSP,

c) IMCOP (Imaging Co-processor) etc.

User can assign each EDMA3 resource to a shadow region using this
structure. In this way, user specifies which resources are owned by the
specific EDMA3 Driver Instance.

This assignment should also ensure that the same resource is not assigned
to more than one shadow regions (unless desired in that way). Any
assignment not following the above mentioned approach may have
catastrophic consequences.

Reserved resources:

During EDMA3 driver initialization, user can reserve some of the EDMA3
resources for future use, by specifying which resources to reserve in the
configuration data structure. These (critical) resources are reserved in
advance so that they should not be allocated to someone else and thus
could be used in future for some specific purpose.

User can request different EDMA3 resources using two methods:

a) by passing the resource type and the actual resource id,

b) by passing the resource type and ANY as resource id

For e.g. to request DMA channel 31, user will pass 31 as the resource id.
But to request ANY available DMA channel (mainly used for memory-to-
memory data transfer operations), user will pass
EDMA3_DRV_DMA_CHANNEL_ANY as the resource id.

During initialization, user may have reserved some of the DMA channels
for some specific purpose (mainly for peripherals using EDMA). These
reserved DMA channels then will not be returned when user requests ANY
as the resource id.

Same logic applies for QDMA channels and TCCs.

Run-Time Interfaces/Integration Guide

I-A-17

For PaRAM Set, there is one difference. If the DMA channels are one-to-one tied
to their respective PaRAM Sets (i.e. user cannot ‘choose’ the PaRAM Set for a
particular DMA channel), EDMA3 Driver automatically reserves all those PaRAM
Sets which are tied to the DMA channels. Then those PaRAM Sets would not be
returned when user requests for ANY PaRAM Set (specifically for linking purpose).
This is done in order to avoid allocating the PaRAM Set, tied to a particular DMA
channel, for linking purpose. If this constraint is not there, that DMA channel thus
could not be used at all, because of the unavailability of the desired PaRAM Set.

Member Description

ownPaRAMSets
[EDMA3_MAX_PARAM_DWRDS]

PaRAM Sets owned by the EDMA3 Driver
Instance.

ownDmaChannels
[EDMA3_MAX_DMA_CHAN_DWRDS]

DMA channels owned by the EDMA3 Driver
Instance.

ownQdmaChannels
[EDMA3_MAX_QDMA_CHAN_DWRDS]

QDMA channels owned by the EDMA3 Driver
Instance.

ownTccs [EDMA3_MAX_TCC_DWRDS] TCCs owned by the EDMA3 Driver Instance.

resvdPaRAMSets
[EDMA3_MAX_PARAM_DWRDS]

PaRAM Sets reserved during initialization for
future use. These will not be given when user
requests for ANY available PaRAM Set using
'EDMA3_DRV_LINK_CHANNEL' as
resource/channel id.

resvdDmaChannels
[EDMA3_MAX_DMA_CHAN_DWRDS]

DMA channels reserved during initialization for
future use. These will not be given when user
requests for ANY available DMA channel using
'EDMA3_DRV_DMA_CHANNEL_ANY' as
resource/channel id.

resvdQdmaChannels
[EDMA3_MAX_QDMA_CHAN_DWRDS]

QDMA channels reserved during initialization
for future use. These will not be given when
user requests for ANY available QDMA channel
using 'EDMA3_DRV_QDMA_CHANNEL_ANY' as
resource/channel id.

resvdTccs
[EDMA3_MAX_TCC_DWRDS]

TCCs reserved during initialization for future
use. These will not be given when user
requests for ANY available TCC using
'EDMA3_DRV_TCC_ANY' as resource/TCC id.

Run-Time Interfaces/Integration Guide

A-18

3.2.3 EDMA3_DRV_InitConfig

This configuration structure is used to initialize the EDMA3 Driver Instance.
This configuration information is passed while opening the driver instance.

Member Description

regionId Shadow region identifier. Note that only one EDMA3 driver instance
can be opened for each shadow region.

isMaster It tells whether the EDMA3 driver instance is Master or not. Only the
shadow region associated with this master instance will receive the
EDMA3 interrupts (if enabled).

drvInstInitConfig EDMA3 resources related shadow region specific information. Which
all EDMA3 resources are owned and reserved by this particular
instance are told in this configuration structure.

User can also pass this structure as NULL. In that case, default static
configuration would be taken from the platform specific configuration
files (part of the Resource Manager), if available.

drvSemHandle Driver Instance specific semaphore handle. It is used to share EDMA3
resources (DMA/QDMA channels, PaRAM Sets, TCCs etc) among
different users.

gblerrCb Driver Instance wide global callback function to catch non-channel
specific errors from the Channel Controller. for e.g., TCC error, queue
threshold exceed error etc.

gblerrData Application data to be passed back to the global error callback
function

Run-Time Interfaces/Integration Guide

I-A-19

3.2.4 EDMA3_DRV_MiscParam

This configuration structure is used to specify some misc options while
creating the Driver object. New options may also be added into this
structure in future.

Member Description

isSlave In a multi-master system (for e.g. ARM + DSP), this option is used to
distinguish between Master and Slave. Only the Master is allowed to program
the global EDMA3 registers (like Queue priority, Queue water-mark level,
error registers etc).

param For future use

Run-Time Interfaces/Integration Guide

A-20

3.2.5 EDMA3_DRV_ChainOptions

This configuration structure is used to configure the interrupt (final
and intermediate) generation and chaining (final and intermediate)
options.

Member Description

tcchEn Transfer complete chaining enable.

When enabled, the chained event register (CER/CERH) bit is set on final
chained transfer completion (upon completion of the final/last TR in the
PaRAM set). The bit (position) set in CER or CERH is the TCC value specified.

itcchEn Intermediate transfer completion chaining enable.

When enabled, the chained event register (CER/CERH) bit is set on every
intermediate chained transfer completion (upon completion of every
intermediate TR in the PaRAM set, except the final TR in the PaRAM set). The
bit (position) set in CER or CERH is the TCC value specified.

tcintEn Transfer complete interrupt enable.

When enabled, the interrupt pending register (IPR/IPRH) bit is set on transfer
completion (upon completion of the final TR in the PaRAM set). The bit
(position) set in IPR or IPRH is the TCC value specified. In order to generate a
completion interrupt to the CPU, the corresponding Interrupt Enable Register:
TCC (IER [TCC]/IERH [TCC]) bit must be set to 1.

itcintEn Intermediate transfer completion interrupt enable.

When enabled, the interrupt pending register (IPR/IPRH) bit is set on every
intermediate transfer completion (upon completion of every intermediate TR
in the PaRAM set, except the final TR in the PaRAM set). The bit (position) set
in IPR or IPRH is the TCC value specified. In order to generate a completion
interrupt to the CPU, the corresponding Interrupt Enable Register: TCC
(IER[TCC]/IERH[TCC]) bit must be set to 1.

Run-Time Interfaces/Integration Guide

I-A-21

3.2.6 EDMA3_DRV_PaRAMRegs

This configuration structure is EDMA3 PaRAM Set in user
configurable format. This is a mapping of the EDMA3 PaRAM set
provided to the user for ease of modification of the individual fields.

Member Description

opt OPT field of PaRAM Set. It consists of various transfer related configuration
options. Like interrupt generation options, chaining options, FIFO related
options etc.

srcAddr The 32-bit source address parameter specifies the starting byte address of
the source.

For FIFO mode transfers, user must program the source address to be
aligned to a 256-bit aligned address (5 LSBs of address must be 0). The
EDMA3TC will signal an error if this rule is violated.

aCnt ACNT represents the number of bytes within the 1st dimension of a
transfer. ACNT is a 16-bit unsigned value with valid values between 0 and
65535. Therefore, the maximum number of bytes in an array is 65535
bytes. ACNT must be greater than or equal to 1 for a TR to be submitted to
EDMA3TC. An ACNT equal to 0 is considered either a null or dummy
transfer. A dummy or null transfer generates a completion code depending
on the settings of the completion bit fields in OPT.

bCnt BCNT is a 16-bit unsigned value that specifies the number of arrays of
length ACNT. For normal operation, valid values for BCNT are between 1
and 65535. Therefore, the maximum number of arrays in a frame is 65535.
A BCNT equal to 0 is considered either a null or dummy transfer. A dummy
or null transfer generates a completion code depending on the settings of
the completion bit fields in OPT.

destAddr The 32-bit destination address parameter specifies the starting byte
address of the destination.

For FIFO mode, user must program the destination address to be aligned to
a 256-bit aligned address (5 LSBs of address must be 0). The EDMA3TC
will signal an error if this rule is violated.

srcBIdx SRCBIDX is a 16-bit signed value (2s complement) used for source address
modification between each array in the 2nd dimension. Valid values for
SRCBIDX are between –32768 and 32767. It provides a byte address offset
from the beginning of the source array to the beginning of the next source
array. It applies to both A-synchronized and AB-synchronized transfers.

destBIdx DSTBIDX is a 16-bit signed value (2s complement) used for destination
address modification between each array in the 2nd dimension. Valid
values for DSTBIDX are between –32768 and 32767. It provides a byte
address offset from the beginning of the destination array to the beginning
of the next destination array within the current frame. It applies to both A-
synchronized and AB-synchronized transfers.

linkAddr The EDMA3CC provides a mechanism, called linking, to reload the current
PaRAM set upon its natural termination (that is, after the count fields are

Run-Time Interfaces/Integration Guide

A-22

decremented to 0) with a new PaRAM set. The 16-bit parameter LINK
specifies the byte address offset in the PaRAM from which the EDMA3CC
loads/reloads the next PaRAM set during linking.

User should make sure to program the LINK field correctly, so that link
update is requested from a PaRAM address that falls in the range of the
available PaRAM addresses on the device.

A LINK value of FFFFh is referred to as a NULL link that should cause the
EDMA3CC to perform an internal write of 0 to all entries of the current
PaRAM set, except for the LINK field that is set to FFFFh.

bCntReload BCNTRLD is a 16-bit unsigned value used to reload the BCNT field once the
last array in the 2nd dimension is transferred. This field is only used for A-
synchronized transfers. In this case, the EDMA3CC decrements the BCNT
value by 1 on each TR submission. When BCNT (conceptually) reaches 0,
the EDMA3CC decrements CCNT and uses the BCNTRLD value to reinitialize
the BCNT value.

For AB-synchronized transfers, the EDMA3CC submits the BCNT in the TR
and the EDMA3TC decrements BCNT appropriately. For AB-synchronized
transfers, BCNTRLD is not used.

srcCIdx SRCCIDX is a 16-bit signed value (2s complement) used for source address
modification in the 3rd dimension. Valid values for SRCCIDX are between –
32768 and 32767. It provides a byte address offset from the beginning of
the current array (pointed to by SRC address) to the beginning of the first
source array in the next frame. It applies to both A-synchronized and AB-
synchronized transfers.

destCIdx DSTCIDX is a 16-bit signed value (2s complement) used for destination
address modification in the 3rd dimension. Valid values are between –32768
and 32767. It provides a byte address offset from the beginning of the
current array (pointed to by DST address) to the beginning of the first
destination array TR in the next frame. It applies to both A-synchronized
and AB-synchronized transfers.

cCnt CCNT is a 16-bit unsigned value that specifies the number of frames in a
block. Valid values for CCNT are between 1 and 65 535. Therefore, the
maximum number of frames in a block is 65 535 (64K – 1 frames). A CCNT
equal to 0 is considered either a null or dummy transfer. A dummy or null
transfer generates a completion code depending on the settings of the
completion bit fields in OPT.

A CCNT value of 0 is considered either a null or dummy transfer.

Run-Time Interfaces/Integration Guide

I-A-23

3.2.7 EDMA3_DRV_EvtQuePriority

This configuration structure is used to set the event queues’
priorities. It allows to change the priority of the individual queues
and the priority of the transfer request (TR) associated with the
events queued in the queue.

Run-Time Interfaces/Integration Guide

A-24

3.3 API Specification

The application programming interface (API) for the EDMA3 Driver
can be found at:

EDMA3_Driver.chm

Run-Time Interfaces/Integration Guide

I-A-25

3.4 EDMA3 Driver Initialization

EDMA3 Driver should be initialized first before it can be used by the
peripheral drivers or application. During initialization, EDMA3 driver
object is created first and then a region specific EDMA3 driver
instance is opened. Following are the APIs which are used for the
initialization:

/* EDMA3 Driver Object Creation */

EDMA3_DRV_Result EDMA3_DRV_create (unsigned int
phyCtrllerInstId, const EDMA3_DRV_GblConfigParams
*gblCfgParams, const void *param)

/* EDMA3 Driver Instance Opening */

EDMA3_DRV_Result EDMA3_DRV_open (unsigned int
phyCtrllerInstId, const EDMA3_DRV_InitConfig *initCfg,
EDMA3_DRV_Result *errorCode)

These APIs should be mandatorily called once by the global
initialization routine or by the user itself, for EDMA3 driver
functioning. Also, they can be called further for other usage.

Note 1: During the initialization sequence, EDMA3 Driver, being an
OS independent module, doesn’t register various interrupt handlers
with the underlying OS. The application which is using the EDMA3
Driver should register the various Interrupt Handlers (ISRs in
Resource Manager) with the underlying OS on which it is running.
Similarly, the application should un-register the previously
registered Interrupt Handlers when the Driver instance is no more
required.

Note 2: While un-registering the interrupt handlers, it should be
taken care by the application that no other applications, using the
interrupt functionality, are functioning. Otherwise, the un-
registration done by one application may stop other applications.
The un-registration should be done only when no more
applications, using the interrupt functionality, are functioning.

Run-Time Interfaces/Integration Guide

A-26

3.5 API Flow Diagram

Below are the flow diagrams for some EDMA3 Driver APIs which
interact with the EDMA3 Resource Manager for their functioning.

Run-Time Interfaces/Integration Guide

I-A-27

3.5.1 EDMA3 Driver Creation

3.5.2 EDMA3 Open

App/Driver

EDMA3 Driver
EDMA3 Resource

Manager HW

EDMA3_DRV_create ()
EDMA3_RM_create ()

Reset all global info for
this EDMA3 instance

For each
EDMA3
instance

edma3GloablRegionInit () Program H/W Registers

App/Driver

EDMA3 Driver
EDMA3 Resource

Manager HW

EDMA3_DRV_open ()
EDMA3_RM_open ()

edma3ShadowRegionInit (),
If required Program H/W Registers

For each
EDMA3
instance

Run-Time Interfaces/Integration Guide

A-28

3.5.3 EDMA3 Request Channel (DMA / QDMA Channel)

HW

EDMA3_DRV_requestChannel () EDMA3_RM_allocResource ()

Program
Registers

Allocate a
DMA/QDMA channel.

EDMA3 Driver
EDMA3 Resource

Manager

EDMA3_RM_allocResource ()

EDMA3_RM_allocResource ()

Allocate a PaRAM
Set.

EDMA3_RM_registerTccCb ()

Allocate a TCC.

Registers the TCC
callback and Enable
Interrupts, if callback
is not NULL
.

Bind DMA/QDMA
channel to PARAM
Set.

EDMA3_RM_mapEdmaChannel()/
EDMA3_RM_mapQdmaChannel()

/* Make the LINK field of
PaRAM Set NULL */

/* For QDMA Channel, Enable
the Transfer */

/* Associate Channel to
Event Queue */

/* Bind PaRAM Set and TCC
*/

App

Run-Time Interfaces/Integration Guide

I-A-29

3.5.4 EDMA3 Request Channel (LINK Channel)

App HW

EDMA3_DRV_requestChannel ()

Program Registers

EDMA3 Driver
EDMA3 Resource

Manager

EDMA3_RM_allocResource () Allocate a PaRAM
Set.

/* Make the LINK field of
PaRAM Set NULL */

Run-Time Interfaces/Integration Guide

A-30

3.5.5 EDMA3 Close

App/Driver EDMA3 Driver
EDMA3 Resource

Manager HW

EDMA3_DRV_close ()
EDMA3_RM_close ()

Set Driver’s state as
EDMA3_DRV_CLOSED,
If no other Driver
Instance is there.

For each
EDMA3
instance

 Set the RM Instance specific
configuration as NULL.

Run-Time Interfaces/Integration Guide

I-A-31

3.5.6 EDMA3 Delete

App/Driver EDMA3 Driver
EDMA3 Resource

Manager HW

EDMA3_DRV_delete ()
EDMA3_RM_delete ()

Set Driver’s state as
EDMA3_DRV_DELETED,
If no other Driver
Instance is there.

For each
EDMA3
instance

Set Resource Manager’s state as
EDMA3_RM_DELETED, if no other RM
Instance is there.

Run-Time Interfaces/Integration Guide

A-32

3.6 API Usage Example

Below are the steps required to create the Driver Object and then initialize a
region specific Driver Instance. Afterwards, if required, the application has to
register the various interrupt handlers with the underlying OS.

After the successful opening, the Driver instance can be used to call other
EDMA3 Driver APIs.

Run-Time Interfaces/Integration Guide

I-A-33

/* Below are the steps required to create the Driver Object and then initialize a region specific
Driver Instance. Afterwards, if required, the application has to register the various interrupt
handlers with the underlying OS. */

/** EDMA3 Driver Instance specific Semaphore handle */
extern EDMA3_OS_Sem_Handle semHandle[];

EDMA3_DRV_Handle edma3init (unsigned int edma3Id, EDMA3_DRV_Result *errorCode)
 {
 EDMA3_DRV_InitConfig initCfg;
 EDMA3_DRV_Result edma3Result = EDMA3_DRV_SOK;
 Semaphore_Params semParams;
 EDMA3_RM_MiscParam miscParam;
 EDMA3_DRV_Handle hEdma = NULL;

 /* configuration structure for the Driver */
 initCfg.isMaster = TRUE;

 initCfg.regionId = (EDMA3_RM_RegionId)1u;
 initCfg.drvSemHandle = NULL;
 /* Driver instance specific config NULL */
 initCfg.drvInstInitConfig = NULL;
 initCfg.gblerrCb = NULL;
 initCfg.gblerrData = NULL;

 miscParam.isSlave = FALSE;

 /* Create EDMA3 Driver Object first. */
 edma3Result = EDMA3_DRV_create (edma3InstanceId, NULL, (void *)&miscParam);
 if (edma3Result != EDMA3_DRV_SOK)
 {

/* Report error */
return hEdma;

 }
 else
 {
 /**
 * Driver Object created successfully.
 * Create a semaphore now for driver instance.
 */

Semaphore_Params_init(&semParams);
 edma3Result = edma3OsSemCreate(1, & semParams, &initCfg.drvSemHandle);
 if (edma3Result != EDMA3_DRV_SOK)
 {

 /* Report error */
 return hEdma;

 }
 else
 {
 /* Save the semaphore handle for future use */
 semHandle[edma3Id] = initCfg.drvSemHandle;

 /* Open the Driver Instance */
 hEdma = EDMA3_DRV_open (edma3InstanceId, (void *) &initCfg, &edma3Result);
 if(NULL == hEdma)
 {

 /* Report error */
 return hEdma;

 }

Run-Time Interfaces/Integration Guide

A-34

 else
 {
 /**
 * Register Interrupt Handlers for various interrupts
 * like transfer completion interrupt, CC error
 * interrupt, TC error interrupts etc, if required.
 */

 /* registerEdma3Interrupts(edma3Id); */
 }
 }
 }
 }

 *errorCode = edma3Result;
 return hEdma;
 }

Run-Time Interfaces/Integration Guide

I-A-35

Below is the flow diagram for an application requesting a DMA channel to transfer data.
After the transfer completion, EDMA3 Resource Manager calls the application specific
call-back function, along with the status code.

HW

EDMA3_DRV_requestChannel ()

EDMA3_DRV_freeChannel ()

EDMA3 Driver EDMA3 Resource
ManagerApp

EDMA3_DRV_setTransferParams ()

EDMA3_DRV_setSrcParams ()

EDMA3_DRV_setDestParams ()

EDMA3_DRV_setDestIndex ()

EDMA3_DRV_setOptField ()

EDMA3_DRV_enableTransfer ()

EDMA3_DRV_setSrcIndex ()

Call Resource
Manager APIs Program Registers

edma3ComplHandler ()
tccCb (),
Application
specific callback
function

Run-Time Interfaces/Integration Guide

A-36

Below is the sample code describing the steps required to close the already
opened EDMA3 Driver Instance and then delete the EDMA3 Driver Object. It
should be done when EDMA3 driver functionality is no more required.

EDMA3_DRV_Result edma3deinit (unsigned int edma3Id, EDMA3_DRV_Handle hEdma)
 {
 EDMA3_DRV_Result edma3Result = EDMA3_DRV_E_INVALID_PARAM;

 /* Unregister Interrupt Handlers first, if required */
 /* unregisterEdma3Interrupts(edma3Id); */

 /* Delete the semaphore */
 edma3Result = edma3OsSemDelete(semHandle[edma3Id]);

 if (EDMA3_DRV_SOK == edma3Result)
 {
 /* Make the semaphore handle as NULL. */
 semHandle[edma3Id] = NULL;

 /* Now, close the EDMA3 Driver Instance */
 edma3Result = EDMA3_DRV_close (hEdma, NULL);
 }

 if (EDMA3_DRV_SOK == edma3Result)
 {
 /* Now, delete the EDMA3 Driver Object */
 edma3Result = EDMA3_DRV_delete (edma3Id, NULL);
 }

 return edma3Result;
 }

EDMA3 Driver Porting

I-A-37

Chapter 4

EDMA3 Driver Porting

This chapter discusses how to port EDMA3 Driver (and EDMA3
Resource Manager) to other supported target platforms and operating
systems.

EDMA3 Driver Porting

A-38

3.7 Getting Started

The EDMA3 Driver is based upon PSP Framework architecture making
portability and re-usability as prime requirements. Based upon the
architecture, the EDMA3 Driver is made like it can be ported to another
platform very easily. EDMA3 Driver itself is completely platform
independent. So for its proper functioning, user has to provide the
platform specific configuration, which will be used by the Resource
Manager internally for managing all the resources.

The platform specific configuration can be provided in two ways:

a) Provide the configuration during init time only while calling the APIs:
EDMA3_DRV_create () (for providing the global hardware specific
configuration) and EDMA3_DRV_open () (for providing the shadow
regions specific configuration), OR,

b) Create the platform specific configuration file
“edma3_<PLATFORM_NAME>_cfg.c” in
“edma3_lld_<VERSION_NUMBER>\packages\ti\sdo\edma3\rm\src\con
figs” folder, if it is not already there. Use this configuration file as input
and generate the required platform specific library.

Support is already provided for many platforms; please see the release
notes for more details. To port to a new platform, user is advised to look
the existing files.

Also, the EDMA3 Driver module is completely OS-agnostic, for make it’s
porting to a different OS completely hassle-free. It is designed in such a
way that the OS dependent part has to be provided by the user for its
proper functioning. This is done in order to make the EDMA3 Driver OS
independent.

The following OS dependent part of the EDMA3 Package has to be
provided by the user:

a) Critical section entry and exit functions: They should be
implemented by the application for proper linking with the EDMA3
Driver. The Driver uses these functions for proper sharing of resources
(among various users) and for other purposes and assumes the
implementation of these functions to be provided by the application.
Without the definitions being provided, the image won’t get linked
properly.

/** Entry to critical section */

extern void edma3OsProtectEntry (unsigned int edma3InstanceId,
int level, unsigned int *intState);

/** Exit from critical section */

extern void edma3OsProtectExit (unsigned int edma3InstanceId,
int level, unsigned int intState);

These APIs should be mandatorily implemented once by the global
initialization routine or by the user itself, for proper linking.

EDMA3 Driver Porting

I-A-39

b) Semaphore related functions: They should be implemented by the
application for proper linking with the EDMA3 Driver and Resource
Manager. The EDMA3 Resource Manager uses these functions for
proper sharing of resources (among various users) and assumes the
implementation of these functions to be provided by the application.
Without the definitions being provided, the image won’t get linked
properly.

/** EDMA3 OS Semaphore Take */

extern EDMA3_DRV_Result edma3OsSemTake
(EDMA3_OS_Sem_Handle hSem, int mSecTimeout);

/** EDMA3 OS Semaphore Give */

extern EDMA3_DRV_Result edma3OsSemGive
(EDMA3_OS_Sem_Handle hSem);

c) Interrupts registration and un-registration: It is not done by the
EDMA3 Driver or the Resource Manager. The application which is using
the EDMA3 Driver should register the various Interrupt Handlers (ISRs
in Resource Manager) with the underlying OS on which it is running.
Similarly, the application should un-register the previously registered
Interrupt Handlers when the Driver instance is no more required.

Public header file
“edma3_lld_<VERSION_NUMBER>\packages\ti\sdo\edma3\rm\edma3_co
mmon.h” contains all the OS dependent part which needs to be provided
by the user application.

Sample initialization libraries are already provided for multiple
platforms which provide the DSP/BIOS 6 side OS adaptation layer
implementation and platform specific configuration for proper
functioning of the EDMA3 Driver. User is encouraged to look at
them and use them in the porting activity.

EDMA3 Driver Porting

A-40

3.8 Step-by-Step procedure for porting

This section provides illustrative description on how to port the
EDMA3 Driver to the selected platform and the OS.

3.8.1 edma3_<PLATFORM_NAME>_cfg.c:

EDMA3_DRV_GblConfigParams is the initialization structure which is
used to specify the EDMA3 Hardware specific global settings,
specific to the SoC. For e.g. number of DMA/QDMA channels,
number of PaRAM sets, TCCs, event queues, transfer controllers,
base addresses of CC global registers and TC registers, interrupt
number for EDMA3 transfer completion, CC error, event queues’
priority, watermark threshold level etc. This configuration
information is SoC specific and could be provided by the user at
run-time also while creating the EDMA3 Driver object. In case user
doesn’t provide it, this information will be taken from the
configuration file, in case it is available for the specific SoC.

Similarly, EDMA3_DRV_InstanceInitConfig is the initialization
structure which is used to specify the EDMA3 Resource Manager
Region specific settings. For e.g. resources (DMA/QDMA channels,
PaRAM sets, TCCs) owned and reserved by this EDMA3 driver
instance. This configuration information is shadow region (or
master) specific and could be provided by the user at run-time
while creating the EDMA3 Driver instance. In case user doesn’t
provide it, this information will be taken from the configuration file,
in case it is available for the specific SoC for the specific shadow
region.

To summarize, this file contains the global and region specific
configuration information for EDMA3 for the specific platform. User
can create this file by adding the desired information for the new
SoC, or he/she can provide this info at init-time.

User can find the sample configuration files for different platforms
at:
“edma3_lld_<VERSION_NUMBER>\packages\ti\sdo\edma3\rm\src\
configs”. On the same lines, user can create different configuration
file for another platform.

EDMA3 Driver Porting

I-A-41

3.8.2 Package.bld file for the Resource Manager

Platform specific EDMA3 configuration file will be included as a
source file in the package.bld file. The bld file has variable arrays
which will be used to generate the platform specific Resource
Manager libraries.

User can find the package.bld file at
“edma3_lld_<VERSION_NUMBER>\packages\ti\sdo\edma3\rm\”
and modify it appropriately to add support for the desired platform.

EDMA3 Driver Porting

A-42

3.8.3 OS-dependent (sample) Implementation

Following is the sample implementation of OS dependent functions.

DSP/BIOS version 6.10.00.28 is the reference OS chosen here for
the DA830 platform.

/* Below is the sample configuration file which specifies EDMA3 hardware related information like
number of transfer controllers, various interrupt ids etc. It is used while interrupts enabling /
disabling, in the sample application. */

/* DA830 Specific EDMA3 Information */

#include <ti/sdo/edma3/drv/edma3_drv.h>

/** Number of PaRAM Sets available */
#define EDMA3_NUM_PARAMSET 128u
/** Number of TCCS available */
#define EDMA3_NUM_TCC 32u
/** Number of Event Queues available */
#define EDMA3_NUM_EVTQUE 2u
/** Number of Transfer Controllers available */
#define EDMA3_NUM_TC 2u

/** Interrupt no. for Transfer Completion */
#define EDMA3_CC_XFER_COMPLETION_INT 8u
/** Interrupt no. for CC Error */
#define EDMA3_CC_ERROR_INT 56u
/** Interrupt no. for TCs Error */
#define EDMA3_TC0_ERROR_INT 57u
#define EDMA3_TC1_ERROR_INT 58u
#define EDMA3_TC2_ERROR_INT 0u
#define EDMA3_TC3_ERROR_INT 0u
#define EDMA3_TC4_ERROR_INT 0u
#define EDMA3_TC5_ERROR_INT 0u
#define EDMA3_TC6_ERROR_INT 0u
#define EDMA3_TC7_ERROR_INT 0u

/**
* EDMA3 interrupts (transfer completion, CC error etc.) correspond to different
* ECM events (SoC specific). These ECM events come
* under ECM block XXX (handling those specific ECM events). Normally, block
* 0 handles events 4-31 (events 0-3 are reserved), block 1 handles events
* 32-63 and so on. This ECM block XXX (or interrupt selection number XXX)
* is mapped to a specific HWI_INT YYY in the tcf file.
* Define EDMA3_HWI_INT_XFER_COMP to specific HWI_INT, corresponding
* to transfer completion interrupt.
* Define EDMA3_HWI_INT_CC_ERR to specific HWI_INT, corresponding
* to CC error interrupts.
* Define EDMA3_HWI_INT_TC_ERR to specific HWI_INT, corresponding
* to TC error interrupts.
*/
#define EDMA3_HWI_INT_XFER_COMP (6u)
#define EDMA3_HWI_INT_CC_ERR (7u)
#define EDMA3_HWI_INT_TC_ERR (7u)

EDMA3 Driver Porting

I-A-43

/**
 * \brief Mapping of DMA channels 0-31 to Hardware Events from
 * various peripherals, which use EDMA for data transfer.
 * All channels need not be mapped, some can be free also.
 * 1: Mapped
 * 0: Not mapped
 *
 * This mapping will be used to allocate DMA channels when user passes
 * EDMA3_DRV_DMA_CHANNEL_ANY as dma channel id (for eg to do memory-to-memory
 * copy). The same mapping is used to allocate the TCC when user passes
 * EDMA3_DRV_TCC_ANY as tcc id (for eg to do memory-to-memory copy).
 *
 * To allocate more DMA channels or TCCs, one has to modify the event mapping.
 */

 /* 31 0 */
#define EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0 (0xCFFFFFFFu)

/**
 * \brief Mapping of DMA channels 32-63 to Hardware Events from
 * various peripherals, which use EDMA for data transfer.
 * All channels need not be mapped, some can be free also.
 * 1: Mapped
 * 0: Not mapped
 *
 * This mapping will be used to allocate DMA channels when user passes
 * EDMA3_DRV_DMA_CHANNEL_ANY as dma channel id (for eg to do memory-to-memory
 * copy). The same mapping is used to allocate the TCC when user passes
 * EDMA3_DRV_TCC_ANY as tcc id (for eg to do memory-to-memory copy).
 *
 * To allocate more DMA channels or TCCs, one has to modify the event mapping.
 */
/* DMA channels 32-63 DOES NOT exist in DA830. */
#define EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_1 (0x0u)

/* Variable which will be used internally for referring number of Event Queues. */
unsigned int numEdma3EvtQue = EDMA3_NUM_EVTQUE;

/* Variable which will be used internally for referring number of TCs. */
unsigned int numEdma3Tc = EDMA3_NUM_TC;

/**
 * Variable which will be used internally for referring transfer completion
 * interrupt.
 */
unsigned int ccXferCompInt = EDMA3_CC_XFER_COMPLETION_INT;

/**
 * Variable which will be used internally for referring channel controller's
 * error interrupt.
 */
unsigned int ccErrorInt = EDMA3_CC_ERROR_INT;

/**
 * Variable which will be used internally for referring transfer controllers'
 * error interrupts.
 */
unsigned int tcErrorInt[8] = {
 EDMA3_TC0_ERROR_INT, EDMA3_TC1_ERROR_INT,
 EDMA3_TC2_ERROR_INT, EDMA3_TC3_ERROR_INT,
 EDMA3_TC4_ERROR_INT, EDMA3_TC5_ERROR_INT,
 EDMA3_TC6_ERROR_INT, EDMA3_TC7_ERROR_INT
 };

EDMA3 Driver Porting

A-44

/**
 * Variables which will be used internally for referring the hardware interrupt
 * for various EDMA3 interrupts.
 */
unsigned int hwIntXferComp = EDMA3_HWI_INT_XFER_COMP;
unsigned int hwIntCcErr = EDMA3_HWI_INT_CC_ERR;
unsigned int hwIntTcErr = EDMA3_HWI_INT_TC_ERR;

/* Driver Object Initialization Configuration */
EDMA3_DRV_GblConfigParams sampleEdma3GblCfgParams =
 {
 /** Total number of DMA Channels supported by the EDMA3 Controller */
 32u,
 /** Total number of QDMA Channels supported by the EDMA3 Controller */
 8u,
 /** Total number of TCCs supported by the EDMA3 Controller */
 32u,
 /** Total number of PaRAM Sets supported by the EDMA3 Controller */
 128u,
 /** Total number of Event Queues in the EDMA3 Controller */
 2u,
 /** Total number of Transfer Controllers (TCs) in the EDMA3 Controller */
 2u,
 /** Number of Regions on this EDMA3 controller */
 4u,
 /**
 * \brief Channel mapping existence
 * A value of 0 (No channel mapping) implies that there is fixed association
 * for a channel number to a parameter entry number or, in other words,
 * PaRAM entry n corresponds to channel n.
 */
 0u,
 /** Existence of memory protection feature */
 0u,
 /** Global Register Region of CC Registers */
 (void *)0x01C00000u,
 /** Transfer Controller (TC) Registers */
 {
 (void *)0x01C10000u,
 (void *)0x01C10400u,
 (void *)NULL,
 (void *)NULL,
 (void *)NULL,
 (void *)NULL,
 (void *)NULL,
 (void *)NULL
 },
 /** Interrupt no. for Transfer Completion */
 EDMA3_CC_XFER_COMPLETION_INT,
 /** Interrupt no. for CC Error */
 EDMA3_CC_ERROR_INT,
 /** Interrupt no. for TCs Error */
 {
 EDMA3_TC0_ERROR_INT,
 EDMA3_TC1_ERROR_INT,
 EDMA3_TC2_ERROR_INT,
 EDMA3_TC3_ERROR_INT,
 EDMA3_TC4_ERROR_INT,
 EDMA3_TC5_ERROR_INT,
 EDMA3_TC6_ERROR_INT,
 EDMA3_TC7_ERROR_INT
 },

EDMA3 Driver Porting

I-A-45

 /**
 * \brief EDMA3 TC priority setting
 *
 * User can program the priority of the Event Queues
 * at a system-wide level. This means that the user can set the
 * priority of an IO initiated by either of the TCs (Transfer Controllers)
 * relative to IO initiated by the other bus masters on the
 * device (ARM, DSP, USB, etc)
 */
 {
 0u,
 1u,
 0u,
 0u,
 0u,
 0u,
 0u,
 0u
 },
 /**
 * \brief To Configure the Threshold level of number of events that can be queued up in the Event queues.
EDMA3CC error register (CCERR) will indicate whether or not at any instant of time the number of events queued
up in any of the event queues exceeds or equals the threshold/watermark value that is set in the queue
watermark threshold register (QWMTHRA).
 */
 {
 16u,
 16u,
 0u,
 0u,
 0u,
 0u,
 0u,
 0u
 },
 /**
 * \brief To Configure the Default Burst Size (DBS) of TCs.
 * An optimally-sized command is defined by the transfer controller
 * default burst size (DBS). Different TCs can have different
 * DBS values. It is defined in Bytes.
 */
 {
 16u,
 16u,
 0u,
 0u,
 0u,
 0u,
 0u,
 0u
 },
 /**
 * \brief Mapping from each DMA channel to a Parameter RAM set,
 * if it exists, otherwise of no use.
 */
 {
 0u, 1u, 2u, 3u,
 4u, 5u, 6u, 7u,
 8u, 9u, 10u, 11u,
 12u, 13u, 14u, 15u,
 16u, 17u, 18u, 19u,
 20u, 21u, 22u, 23u,
 24u, 25u, 26u, 27u,
 28u, 29u, 30u, 31u,

EDMA3 Driver Porting

A-46

 /* DMA channels 32-63 DOES NOT exist in DA830. */
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS
 },

 /**
 * \brief Mapping from each DMA channel to a TCC. This specific
 * TCC code will be returned when the transfer is completed
 * on the mapped channel.
 */
 {
 0u, 1u, 2u, 3u,
 4u, 5u, 6u, 7u,
 8u, 9u, 10u, 11u,
 12u, 13u, 14u, 15u,
 16u, 17u, 18u, 19u,
 20u, 21u, EDMA3_RM_CH_NO_TCC_MAP, EDMA3_RM_CH_NO_TCC_MAP,
 24u, 25u, 26u, 27u,
 EDMA3_RM_CH_NO_TCC_MAP, EDMA3_RM_CH_NO_TCC_MAP, 30, 31,
 /* DMA channels 32-63 DOES NOT exist in DA830. */
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC
 },

 /**
 * \brief Mapping of DMA channels to Hardware Events from
 * various peripherals, which use EDMA for data transfer.
 * All channels need not be mapped, some can be free also.
 */
 {
 EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0,
 EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_1
 }
 };

EDMA3 Driver Porting

I-A-47

/* Driver Instance Initialization Configuration */
EDMA3_DRV_InstanceInitConfig sampleInstInitConfig =
 {
 /* Resources owned by Region 1 */
 /* ownPaRAMSets */
 /* 31 0 63 32 95 64 127 96 */
 {0xFFFFFFFFu, 0xFFFFFFFFu, 0xFFFFFFFFu, 0xFFFFFFFFu,
 /* 159 128 191 160 223 192 255 224 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 287 256 319 288 351 320 383 352 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 415 384 447 416 479 448 511 480 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,},

 /* ownDmaChannels */
 /* 31 0 63 32 */
 {0xFFFFFFFFu, 0x00000000u},

 /* ownQdmaChannels */
 /* 31 0 */
 {0x000000FFu},

 /* ownTccs */
 /* 31 0 63 32 */
 {0xFFFFFFFFu, 0x00000000u},

 /* Resources reserved by Region 1 */
 /* resvdPaRAMSets */
 /* 31 0 63 32 95 64 127 96 */
 {0xFFFFFFFFu, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 159 128 191 160 223 192 255 224 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 287 256 319 288 351 320 383 352 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 415 384 447 416 479 448 511 480 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,},

 /* resvdDmaChannels */
 /* 31 0 */
 {EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0,
 /* 63 32 */
 EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0},

 /* resvdQdmaChannels */
 /* 31 0 */
 {0x00000000u},

 /* resvdTccs */
 /* 31 0 */
 {EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0,
 /* 63 32 */
 EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0},
 };

/* End of File */

EDMA3 Driver Porting

A-48

/** File: bios6_edma3_drv_sample.h
 *
 * Header file for the sample application of the EDMA3 Driver.
 */

#include <stdio.h>
#include <ti/sysbios/ipc/Semaphore.h>

/* Include EDMA3 Driver */
#include <ti/sdo/edma3/drv/edma3_drv.h>

/**
 * Cache line size on the underlying SoC. It needs to be modified
 * for different cache line sizes, if the Cache is Enabled.
 */
#define EDMA3_CACHE_LINE_SIZE_IN_BYTES (128u)

/* Error returned in case of buffers are not aligned on the cache boundary */
#define EDMA3_NON_ALIGNED_BUFFERS_ERROR (-1)

/* Error returned in case of data mismatch */
#define EDMA3_DATA_MISMATCH_ERROR (-2)

/**
 * \brief EDMA3 Initialization
 *
 * This function initializes the EDMA3 Driver for the given EDMA3 controller
 * and opens a EDMA3 driver instance. It internally calls EDMA3_DRV_create() and
 * EDMA3_DRV_open(), in that order.
 *
 * It also registers interrupt handlers for various EDMA3 interrupts like
 * transfer completion or error interrupts.
 *
 * \param edma3Id [IN] EDMA3 Controller Instance Id (Hardware
 * instance id, starting from 0)
 * \param errorCode [IN/OUT] Error code while opening DRV instance
 * \return EDMA3_DRV_Handle: If successfully opened, the API will return the
 * associated driver's instance handle.
 */
EDMA3_DRV_Handle edma3init (unsigned int edma3Id, EDMA3_DRV_Result *errorCode);

/**
 * \brief EDMA3 De-initialization
 *
 * This function de-initializes the EDMA3 Driver for the given EDMA3 controller
 * and closes the previously opened EDMA3 driver instance. It internally calls
 * EDMA3_DRV_close and EDMA3_DRV_delete(), in that order.
 *
 * It also un-registers the previously registered interrupt handlers for various
 * EDMA3 interrupts.
 *
 * \param edma3Id [IN] EDMA3 Controller Instance Id (Hardware
 * instance id, starting from 0)
 * \param hEdma [IN] EDMA3 Driver handle, returned while using
 * edma3init().
 * \return EDMA3_DRV_SOK if success, else error code
 */
EDMA3_DRV_Result edma3deinit (unsigned int edma3Id, EDMA3_DRV_Handle hEdma);

EDMA3 Driver Porting

I-A-49

/**
 * \brief EDMA3 Cache Invalidate
 *
 * This function invalidates the D cache.
 *
 * \param mem_start_ptr [IN] Starting address of memory.
 * Please note that this should be
 * aligned according to the cache line size.
 * \param num_bytes [IN] length of buffer
 * \return EDMA3_DRV_SOK if success, else error code in case of error
 * or non-alignment of buffers.
 *
 * Note: This function is required if the buffer is in DDR.
 * For other cases, where buffer is NOT in DDR, user
 * may or may not require the below implementation and
 * should modify it according to her need.
 */
EDMA3_DRV_Result Edma3_CacheInvalidate(unsigned int mem_start_ptr,
 unsigned int num_bytes);

/**
 * \brief EDMA3 Cache Flush
 *
 * This function flushes (cleans) the Cache
 *
 * \param mem_start_ptr [IN] Starting address of memory.
 * Please note that this should be
 * aligned according to the cache line size.
 * \param num_bytes [IN] length of buffer
 * \return EDMA3_DRV_SOK if success, else error code in case of error
 * or non-alignment of buffers.
 *
 * Note: This function is required if the buffer is in DDR.
 * For other cases, where buffer is NOT in DDR, user
 * may or may not require the below implementation and
 * should modify it according to her need.
 */
EDMA3_DRV_Result Edma3_CacheFlush(unsigned int mem_start_ptr,
 unsigned int num_bytes);

EDMA3 Driver Porting

A-50

/**
 * Counting Semaphore related functions (OS dependent) should be
 * called/implemented by the application. A handle to the semaphore
 * is required while opening the driver/resource manager instance.
 */

/**
 * \brief EDMA3 OS Semaphore Create
 *
 * This function creates a counting semaphore with specified
 * attributes and initial value. It should be used to create a semaphore
 * with initial value as '1'. The semaphore is then passed by the user
 * to the EDMA3 driver/RM for proper sharing of resources.
 * \param initVal [IN] is initial value for semaphore
 * \param semParams [IN] is the semaphore attributes.
 * \param hSem [OUT] is location to receive the handle to just created
 * semaphore
 * \return EDMA3_DRV_SOK if successful, else a suitable error code.
 */
EDMA3_DRV_Result edma3OsSemCreate(int initVal,
 const Semaphore_Params *semParams,
 EDMA3_OS_Sem_Handle *hSem);

/**
 * \brief EDMA3 OS Semaphore Delete
 *
 * This function deletes or removes the specified semaphore
 * from the system. Associated dynamically allocated memory
 * if any is also freed up.
* \param hSem [IN] handle to the semaphore to be deleted
 * \return EDMA3_DRV_SOK if successful else a suitable error code
 */
EDMA3_DRV_Result edma3OsSemDelete(EDMA3_OS_Sem_Handle hSem);

EDMA3 Driver Porting

I-A-51

/* Below is the sample code which show how to define the OS dependent critical section handling
routines. These functions should be mandatorily defined by the user. */

#include <ti/sysbios/family/c64p/EventCombiner.h>
#include <ti/sysbios/hal/Cache.h>
#include <ti/sysbios/hal/Hwi.h>
#include <ti/sysbios/knl/Task.h>
#include <ti/sysbios/ipc/Semaphore.h>

#include <ti/sdo/edma3/drv/sample/bios6_edma3_drv_sample.h>

/** Entry to critical section */
void edma3OsProtectEntry (unsigned int edma3InstanceId,

int level, unsigned int *intState)
 {
 if (((level == EDMA3_OS_PROTECT_INTERRUPT) || (level == EDMA3_OS_PROTECT_INTERRUPT_TC_ERROR))
 && (intState == NULL))
 {
 return;
 }
 else
 {
 switch (level)
 {
 /* Disable all (global) interrupts */
 case EDMA3_OS_PROTECT_INTERRUPT :
 *intState = Hwi_disable();
 break;

 /* Disable scheduler */
 case EDMA3_OS_PROTECT_SCHEDULER :

 Task_disable();
 break;

 /* Disable EDMA3 transfer completion interrupt only */
 case EDMA3_OS_PROTECT_INTERRUPT_XFER_COMPLETION :
 EventCombiner_disableEvent(ccXferCompInt[edma3InstanceId][dsp_num]);
 break;

 /* Disable EDMA3 CC error interrupt only */
 case EDMA3_OS_PROTECT_INTERRUPT_CC_ERROR :
 EventCombiner_disableEvent(ccErrorInt[edma3InstanceId]);
 break;

 /* Disable EDMA3 TC error interrupt only */
 case EDMA3_OS_PROTECT_INTERRUPT_TC_ERROR :
 switch (*intState)
 {
 case 0:
 case 1:
 case 2:
 case 3:
 case 4:
 case 5:
 case 6:
 case 7:
 /* Fall through... */
 /* Disable the corresponding interrupt */
 EventCombiner_disableEvent(tcErrorInt[edma3InstanceId][*intState]);
 break;

 default:
 break;
 }

 break;

 default:
 break;
 }
 }
 }

EDMA3 Driver Porting

A-52

/** Exit from critical section */

void edma3OsProtectExit (unsigned int edma3InstanceId,
 int level, unsigned int intState)
 {
 switch (level)
 {
 /* Enable all (global) interrupts */
 case EDMA3_OS_PROTECT_INTERRUPT :
 Hwi_restore(intState);
 break;

 /* Enable scheduler */
 case EDMA3_OS_PROTECT_SCHEDULER :
 Task_enable();
 break;

 /* Enable EDMA3 transfer completion interrupt only */
 case EDMA3_OS_PROTECT_INTERRUPT_XFER_COMPLETION :
 EventCombiner_enableEvent(ccXferCompInt[edma3InstanceId][dsp_num]);
 break;

 /* Enable EDMA3 CC error interrupt only */
 case EDMA3_OS_PROTECT_INTERRUPT_CC_ERROR :
 EventCombiner_enableEvent(ccErrorInt[edma3InstanceId]);
 break;

 /* Enable EDMA3 TC error interrupt only */
 case EDMA3_OS_PROTECT_INTERRUPT_TC_ERROR :
 switch (intState)
 {
 case 0:
 case 1:
 case 2:
 case 3:
 case 4:
 case 5:
 case 6:
 case 7:
 /* Fall through... */
 /* Enable the corresponding interrupt */
 EventCombiner_enableEvent(tcErrorInt[edma3InstanceId][intState]);
 break;

 default:
 break;
 }

 break;

 default:
 break;
 }
 }

EDMA3 Driver Porting

I-A-53

/**
 * \brief EDMA3 Cache Invalidate
 *
 * This function invalidates the D cache.
 *
 * \param mem_start_ptr [IN] Starting address of memory. Please note that this should be aligned according
* to the cache line size.
 * \param num_bytes [IN] length of buffer
 * \return EDMA3_DRV_SOK if success, else error code in case of error or non-alignment of buffers.
* Note: This function is required if the buffer is in DDR. For other cases, where buffer is NOT in DDR, user may *
or may not require the below implementation and should modify it according to her need.
 */
EDMA3_DRV_Result Edma3_CacheInvalidate(unsigned int mem_start_ptr,
 unsigned int num_bytes)
 {
 EDMA3_DRV_Result cacheInvResult = EDMA3_DRV_SOK;

 /* Verify whether the start address is cache aligned or not */
 if((mem_start_ptr & (EDMA3_CACHE_LINE_SIZE_IN_BYTES-1u)) != 0)
 {
#ifdef EDMA3_DRV_DEBUG
 EDMA3_DRV_PRINTF("\r\n Cache : Memory is not %d bytes alinged\r\n",
EDMA3_CACHE_LINE_SIZE_IN_BYTES);
#endif
 cacheInvResult = EDMA3_NON_ALIGNED_BUFFERS_ERROR;
 }
 else
 {
 Cache_inv((Ptr)mem_start_ptr, num_bytes, Cache_Type_ALL, TRUE);
 }
 return cacheInvResult;
}

/**
 * \brief EDMA3 Cache Flush
 *
 * This function flushes (cleans) the Cache
 *
 * \param mem_start_ptr [IN] Starting address of memory. Please note that this should be aligned according
* to the cache line size.
 * \param num_bytes [IN] length of buffer
 * \return EDMA3_DRV_SOK if success, else error code in case of error or non-alignment of buffers.
* Note: This function is required if the buffer is in DDR. For other cases, where buffer is NOT in DDR, user may
*or may not require the below implementation and should modify it according to her need.
 */
EDMA3_DRV_Result Edma3_CacheFlush(unsigned int mem_start_ptr,
 unsigned int num_bytes)
 {
 EDMA3_DRV_Result cacheFlushResult = EDMA3_DRV_SOK;

 /* Verify whether the start address is cache aligned or not */
 if((mem_start_ptr & (EDMA3_CACHE_LINE_SIZE_IN_BYTES-1u)) != 0)
 {
#ifdef EDMA3_DRV_DEBUG
 EDMA3_DRV_PRINTF("\r\n Cache : Memory is not %d bytes alinged\r\n",
 EDMA3_CACHE_LINE_SIZE_IN_BYTES);
#endif
 cacheFlushResult = EDMA3_NON_ALIGNED_BUFFERS_ERROR;
 }
 else
 {
 Cache_wb((Ptr)mem_start_ptr, num_bytes, Cache_Type_ALL, TRUE);
 }
 return cacheFlushResult;
}

EDMA3 Driver Porting

A-54

/* Below is the sample code demonstrating how to create and delete a semaphore with a specific
initial value. It also shows how to acquire and later release a semaphore. */

/* Function to create OS Semaphore */

EDMA3_DRV_Result edma3OsSemCreate(int initVal,
 const Semaphore_Params *semParams,
 EDMA3_OS_Sem_Handle *hSem)
 {
 EDMA3_DRV_Result semCreateResult = EDMA3_DRV_SOK;

 if(NULL == hSem)
 {
 semCreateResult = EDMA3_DRV_E_INVALID_PARAM;
 }
 else
 {
 *hSem = (EDMA3_OS_Sem_Handle)Semaphore_create(initVal, semParams, NULL);
 if ((*hSem) == NULL)
 {
 semCreateResult = EDMA3_DRV_E_SEMAPHORE;
 }
 }

 return semCreateResult;
 }

/* Function to delete OS Semaphore */

EDMA3_DRV_Result edma3OsSemDelete (EDMA3_OS_Sem_Handle hSem)
 {
 EDMA3_DRV_Result semDeleteResult = EDMA3_DRV_SOK;

 if(NULL == hSem)
 {
 semDeleteResult = EDMA3_DRV_E_INVALID_PARAM;
 }
 else
 {
 SEM_delete(hSem);
 }

 return semDeleteResult;
 }

EDMA3 Driver Porting

I-A-55

/* Function to take OS Semaphore */

EDMA3_DRV_Result edma3OsSemTake(EDMA3_OS_Sem_Handle hSem, int mSecTimeout)
 {
 EDMA3_DRV_Result semTakeResult = EDMA3_DRV_SOK;
 unsigned short semPendResult;

 if(NULL == hSem)
 {
 semTakeResult = EDMA3_DRV_E_INVALID_PARAM;
 }
 else
 {
 semPendResult = Semaphore_pend(hSem, mSecTimeout);
 if (semPendResult == FALSE)
 {
 semTakeResult = EDMA3_DRV_E_SEMAPHORE;
 }
 }

 return semTakeResult;
 }

/* Function to give OS Semaphore */

EDMA3_DRV_Result edma3OsSemGive(EDMA3_OS_Sem_Handle hSem)
 {
 EDMA3_DRV_Result semGiveResult = EDMA3_DRV_SOK;

 if(NULL == hSem)
 {
 semGiveResult = EDMA3_DRV_E_INVALID_PARAM;
 }
 else
 {
 Semaphore_post (hSem);
 }

 return semGiveResult;
 }

EDMA3 Driver Porting

A-56

/* Below is the sample code demonstrating how to register/un-register the various interrupt
handlers with the underlying OS. Here, application is registering interrupt handlers with the
DSP/BIOS OS. */

#include <ti/sysbios/hal/Hwi.h>
#include <ti/sysbios/ipc/Semaphore.h>
#include <ti/sysbios/family/c64p/EventCombiner.h> #include
<ti/sdo/edma3/drv/sample/bios6_edma3_drv_sample.h>

/**
 * EDMA3 TC ISRs which need to be registered with the underlying OS by the user
 * (Not all TC error ISRs need to be registered, register only for the
 * available Transfer Controllers).
 */
void (*ptrEdma3TcIsrHandler[EDMA3_MAX_TC])(unsigned int arg) =
 {
 &lisrEdma3TC0ErrHandler0,
 &lisrEdma3TC1ErrHandler0,
 &lisrEdma3TC2ErrHandler0,
 &lisrEdma3TC3ErrHandler0,
 &lisrEdma3TC4ErrHandler0,
 &lisrEdma3TC5ErrHandler0,
 &lisrEdma3TC6ErrHandler0,
 &lisrEdma3TC7ErrHandler0,
 };

/** To Register the ISRs with the underlying OS, if required. */
static void registerEdma3Interrupts(void)
 {
 static UInt32 cookie = 0;
 unsigned int numTc = 0;

 /* Disabling the global interrupts */
 cookie = Hwi_disable();

 /* Enable the Xfer Completion Event Interrupt */
 EventCombiner_dispatchPlug(ccXferCompInt, (EventCombiner_FuncPtr)(&lisrEdma3ComplHandler0),
 NULL, 0);
 EventCombiner_enableEvent(ccXferCompInt);

 /* Enable the CC Error Event Interrupt */
 EventCombiner_dispatchPlug(ccErrorInt, (EventCombiner_FuncPtr)(&lisrEdma3CCErrHandler0),
 NULL, 0);
 EventCombiner_enableEvent(ccErrorInt);

EDMA3 Driver Porting

I-A-57

 /* Enable the TC Error Event Interrupt, according to the number of TCs. */
 while (numTc < numEdma3Tc)

 {
 EventCombiner_dispatchPlug(tcErrorInt[numTc],
 (EventCombiner_FuncPtr)(ptrEdma3TcIsrHandler[numTc]),
 NULL, 0);
 EventCombiner_enableEvent(tcErrorInt[numTc]);
 numTc++;
 }

 /**
 * Enabling the HWI_ID.
 * EDMA3 interrupts (transfer completion, CC error etc.)
 * correspond to different ECM events (SoC specific). These ECM events come
 * under ECM block XXX (handling those specific ECM events). Normally, block
 * 0 handles events 4-31 (events 0-3 are reserved), block 1 handles events
 * 32-63 and so on. This ECM block XXX (or interrupt selection number XXX)
 * is mapped to a specific HWI_INT YYY in the tcf file. So to enable this
 * mapped HWI_INT YYY, one should use the corresponding bitmask in the
 * API C64_enableIER(), in which the YYY bit is SET.
 */

Hwi_enableInterrupt(hwIntXferComp);
Hwi_enableInterrupt(hwIntCcErr);
Hwi_enableInterrupt(hwIntTcErr);

 /* Restore interrupts */
 Hwi_restore(cookie);
 }

/** To Unregister the ISRs with the underlying OS, if previously registered. */
static void unregisterEdma3Interrupts(void)
 {
 static UInt32 cookie = 0;
 unsigned int numTc = 0;

 /* Disabling the global interrupts */
 cookie = Hwi_disable();

 /* Disable the Xfer Completion Event Interrupt */
EventCombiner_disableEvent(ccXferCompInt);

 /* Disable the CC Error Event Interrupt */
EventCombiner_disableEvent(ccErrorInt);

 /* Enable the TC Error Event Interrupt, according to the number of TCs. */
 while (numTc < numEdma3Tc)
 {
 EventCombiner_disableEvent(tcErrorInt[numTc]);
 numTc++;
 }

 /* Restore interrupts */
 Hwi_restore(cookie);
 }

