Booting and Flashing the TMS320DM6467
[image: image9.wmf]User's Guide

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Products
	Applications

	Amplifiers
	amplifier.ti.com
	Audio
	www.ti.com/audio

	Data Converters
	dataconverter.ti.com
	Automotive
	www.ti.com/automotive

	DSP
	dsp.ti.com
	Broadband
	www.ti.com/broadband

	Interface
	interface.ti.com
	Digital Control
	www.ti.com/digitalcontrol

	Logic
	logic.ti.com
	Military
	www.ti.com/military

	Power Mgmt
	power.ti.com
	Optical Networking
	www.ti.com/opticalnetwork

	Microcontrollers
	microcontroller.ti.com
	Security
	www.ti.com/security

	
	
	Telephony
	www.ti.com/telephony

	
	
	Video & Imaging
	www.ti.com/video

	
	
	Wireless
	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

Table Of Contents
51
TMS320DM6467 Boot Overview

72
Target Application Used as a UBL

72.1
General Description of UBL Code

82.2
UBL Usage for different Boot Modes

82.2.1
NAND boot mode

102.2.2
PCI boot mode

103
User Boot Loader Details

113.1
UBL Directory Structure

113.2
Compilation Notes

123.3
Compilation Notes

123.3.1
Compiling UBL for PCI Boot Mode

124
Tools Support

134.1
Conversion of UBL to Binary Image & Binary to AIS

134.2
I2C / SPI / NAND Flash Writer

145
Supported and Unsupported Features

146
Notes on Application Image Script (AIS)

156.1
Section Load Command

166.2
Jump_Close Command

166.3
CRC Options

176.3.1
Enable/Disable CRC Commands

176.3.2
Request CRC Command

List Of Tables

3Abbreviations

5Table 1. Boot Modes for DM6467 Device

7Table 2. Overview of UBL Source Code Files and Structure

15Table 3. AIS Version 2.0 Supported OpCodes

Abbreviations

	Abbreviation
	Description

	AIS
	Application Image Script

	ARM
	Advanced RISC Machines

	CCS
	Code Composer Studio

	DDR
	Double Data Rate

	EEPROM
	Electronically Erasable Programmable Read Only Memory

	ELF
	Executable and Linkable Format

	EVM
	Evaluation Module

	I2C
	Inter Integrated Circuit

	IDE
	Integrated Development Environment

	IVT
	Interrupt Vector Table

	PCI
	Peripheral Component Interconnect

	PSC
	Power Supply Control

	RAM
	Random Access Memory

	RBL
	ROM Boot Loader

	ROM
	Read Only Memory

	SPI
	Serial Peripheral Interface

	TCM
	Tightly Coupled Memory

	UBL
	User Boot Loader

Booting and Flashing the TMS320DM6467

[image: image1.wmf]
ABSTRACT

This application report describes the software used to boot the ARM core of the DM6467 device via the various serial interfaces available on the EVM. Additionally, this report explains the software tools that allow the user to write the needed files to EEPROM devices using I2C or SPI interfaces, or to the NAND flash, such that the ARM core can boot from these external memories. The software consists of a host application, which runs on the user's PC, and a user boot loader (UBL), which runs on the DM6467 ARM core.
[image: image10.wmf]User's Guide

1 TMS320DM6467 Boot Overview
This section gives an overview of the boot process of the DM6467 device. Upon reset or power up, the DM6467 begins executing code from its ROM boot loader (RBL). The RBL determines how to boot based on the logic levels at pins BOOTMODE[3..0]. These values are latched into the BOOTCFG register bits at reset, and the RBL reads this register to determine the intended boot mode. Table 1 shows the available boot modes for the DM6467.

In this application report, particular attention is paid to the I2C/SPI/NAND boot mode. The intention is that a secondary boot loader, referred to as a User Boot Loader (UBL) in the TMS320DM6467 DMSoC ARM Subsystem Reference Guide would be downloaded by the RBL. This UBL would then be used to initialize certain subsystems of the chip, such as the DDR2 memory controller, and then download a tertiary boot loader or application. An example would be the U-boot boot loader, which has been written with the objective of loading the Linux kernel onto embedded systems. Details of how the UBL is structured and used are given in Section 2
Table 1. Boot Modes for DM6467 Device

	BOOTMODE[3:0]
	PCIEN
	gem_secure_en
	ARM Boot Mode
	Hardware

Boot
	Notes

	0000
	0 or 1
	0 or 1
	Emulation Boot
	ROM
	

	0001
	0 or 1
	0
	Reserved
	ROM
	Default to UART0 Boot

(Non-Secure)

	
	0 or 1
	1
	Reserved
	ROM
	Default to UART0 Boot

(Secure)

	0010
	0
	0
	UHPI Boot 16-bit

(Non-Secure)
	ROM
	

	
	0
	1
	UHPI Boot 16-bit

(Secure)
	ROM
	

	
	1
	0
	PCI Boot without

Auto-Initialization

(Non-Secure)
	ROM
	

	
	1
	1
	PCI Boot without

Auto-Initialization

(Secure)
	ROM
	

	0011
	0
	0
	UHPI Boot 32-bit

(Non-Secure)
	ROM
	

	
	0
	1
	UHPI Boot 32-bit

(Secure)
	ROM
	

	
	1
	0
	PCI Boot with

Auto-Initialization

(Non-Secure)
	ROM
	

	
	1
	1
	PCI Boot with

Auto-Initialization

(Secure)
	ROM
	

	0100
	0
	0
	AEMIF Direct Boot
	AEMIF
	

	
	0
	1
	AEMIF ROM Boot
	ROM
	Must Boot from ROM on

Secure Device

	
	1
	0
	Error
	ROM
	Default to UART0 Boot

(Non-Secure)

	
	1
	1
	
	ROM
	Default to UART0 Boot

(Secure)

	0101
	0
	0
	Reserved
	ROM
	Default to UART0 Boot

(Non-Secure)

	
	0
	1
	
	ROM
	Default to UART0 Boot

(Secure)

	
	1
	0
	
	ROM
	Default to UART0 Boot

(Non-Secure)

	
	1
	1
	
	ROM
	Default to UART0 Boot

(Secure)

	0110
	0
	0
	I2C Boot
	ROM
	DaVinci-HD is the I2C

master

	
	0
	1
	
	
	

	
	1
	0
	
	
	

	
	1
	1
	
	
	

	0111
	0
	0
	NAND Flash Boot

(Non-Secure)
	ROM
	

	
	0
	1
	NAND Flash Boot

(Secure)
	ROM
	

	
	1
	0
	Error
	ROM
	Default to UART0 Boot

(Non-Secure)

	
	1
	1
	
	
	Default to UART0 Boot

(Secure)

	1000
	0
	0
	UART0 Boot

(Non-Secure)
	ROM
	

	
	0
	1
	UART0 Boot

(Secure)
	ROM
	

	
	1
	0
	UART0 Boot

(Non-Secure)
	ROM
	

	
	1
	1
	UART0 Boot

(Secure)
	ROM
	

	1001
	0 or 1
	0 or 1
	Emulation Boot
	ROM
	

	1010

1011

1100

1101
	0
	0
	Reserved
	ROM
	Default to UART0 Boot

(Non-Secure)

	
	0
	1
	
	ROM
	Default to UART0 Boot

(Secure)

	
	1
	0
	
	ROM
	Default to UART0 Boot

(Non-Secure)

	
	1
	1
	
	ROM
	Default to UART0 Boot

(Secure)

	1110
	0 or 1
	0 or 1
	SPI Boot
	ROM
	DaVinci-HD is the SPI

master

	1111
	0
	0
	Reserved
	ROM
	Default to UART0 Boot

(Non-Secure)

	
	0
	1
	
	ROM
	Default to UART0 Boot

(Secure)

	
	1
	0
	
	ROM
	Default to UART0 Boot

(Non-Secure)

	
	1
	1
	
	ROM
	Default to UART0 Boot

(Secure)

This user guide describes the development of a target application that can act as a UBL for all three boot modes, and provides additional means, while in the I2C/SPI boot mode, to prepare the NAND flash for booting. Emphasis is placed on how host and target side software must be developed jointly.. Details of the host side tools used can be found in Section 4. The last section (Section 5) explains features that are supported and those that are not supported in this release. The reader should note that the UBL and host application presented here are more complex extensions of the target and host applications described in the Basic Application Loading Over the Serial Interface for the DaVinci-HD TMS320DM6467.

2 Target Application Used as a UBL

The target application is the binary executable that is downloaded via the I2C/SPI/NAND during the I2C/SPI/NAND boot process, i.e., the UBL. This UBL is downloaded to the ARM internal memory. Once located there, the UBL is verified and begins execution. The UBL is then responsible for initializing the system to a desired state. Usually this will involve turning on the DDR memory interface and other low level initialization. See the armboot_main.c and platform.asm files for more details.

The target application presented in this document has been written so that it also can be used as a boot loader for the NAND and I2C/SPI EEPROM boot mode. Consequently, the terms 'target application' and 'UBL' are used interchangeably for the remainder of the document. In this section, the discussion focuses on how the UBL code is written to act as a boot loader (i.e., downloading and executing an application or tertiary boot loader) for the three possible boot modes. Section 2.1 presents the overall structure of the code files that make up the UBL and their role in the various boot modes. Section 2.2 gives details of each of the boot modes and the use of the UBL in these modes.
2.1 General Description of UBL Code

The source code for the UBL, found in the “bootloader/src” directory, is divided logically into files by boot mode and function, with the exception of three general files. The filenames and their descriptions are shown in Table 2. The files armboot_main.c and platform.asm contain the necessary system initialization procedures. The file util.c contains some miscellaneous code used to allocate memory from the initialized RAM space, provide wait loops throughout the UBL, and decode Motorola S-record images downloaded over the I2C/SPI interfaces or loaded out of flash memory. The file armboot_main.c contains the entry point and exit point functions and the main function used to determine the selected boot mode, call the initialization routines, and branch to the correct boot code. The source files are supported by number of header file found in the “bootloader/include” directory. Further information about compiling the UBL sources can be found in Section3.2.

Table 2. Overview of UBL Source Code Files and Structure

	Source File
	Description of Contents

	armboot_main.c
	Contains the necessary system initialization code

	copy.asm
	Contains self copy algorithm for flash programming

	emifconfig.c
	Contains code to configure the EMIF

	nand.c
	Driver file for reading and writing to supported NAND flash devices

	nandboot.c
	UBL code for NAND boot mode - loads boot image into RAM

	nor.c
	Driver file for identifying and writing CFI-compliant NOR flash devices

	norboot.c
	UBL code for NOR boot mode - loads boot image into RAM

	pci.c
	This contains the code that performs the handshake with PCI driver during boot-up sequence. It also reads the start location of secondary loader from last 4 bytes of TCM to pass control to it

	platform.asm
	Code for DDR2 and PLL initialization

	srecord.c
	Motorola S-Record file parsing code

	uartboot.c
	UBL code for UART boot mode

	uartmenu.c
	UART menu to switch between flash writing.

	ublboot.asm
	Code to allocate and initialize the stack, initialize the clock controller and copy the IVT to the IVT location

	util.c
	Contains a collection of miscellaneous utilities, including code for rudimentary RAM memory allocation and S-Record decoding

The heart of the UBL functionality is found in the driver files - nand.c, nor.c, and uart.c - and boot files - nandboot.c, norboot.c, and uartboot.c. These files are discussed to some degree in the following sections, along with details of how the RBL hands control to the UBL in each boot mode. The UBL has also been updated to handle PCI-based booting and this code is handled in pci.c. These details will also be mentioned in the following section.
2.2 UBL Usage for different Boot Modes
The UBL may also be loaded into the ARM TCM memory using either the I2C, SPI, or NAND or PCI based interfaces. To do this using I2C, SPI or NAND interfaces, corresponding writers are provided on the Host side. These writers are used to copy the UBL image on the EEPROM/NAND. The RBL then copies the UBL from EEPROM/NAND to the ARM TCM. To achieve the same via the PCI interface, a PCI boot driver is provided to copy the UBL built for PCI boot mode to the TCM memory. Once copying of the data to ARM TCM is completed, the control is transferred to the start of the UBL. The UBL then initializes the DDR2 memory and loads a tertiary boot-loader as explained earlier into the DDR2 memory.
In case of SPI/I2C/NAND boot, the tertiary bootloader is typically present on the NAND flash. In this case, control passes to the NAND_copy() function in the file nandboot.c. The NAND_copy() function returns to the NAND device in the CS2 memory space and begins searching at page 0 of block 6 (because blocks 1 through 5 might contain the UBL) for the NAND application header. If the header is not found in block 6, the UBL tries each successive block up to block 50. The UBL, like the RBL, needs to have a NAND driver to access and read the NAND flash contents. The file nand.c contains all needed code to initialize, identify, read, write, and erase supported NAND memory devices.

2.2.1 NAND boot mode

The DM6467 has support for a limited number of NAND devices fixed in the RBL. When the NAND boot mode is selected, the RBL attempts to identify the NAND device attached to the EMIF CS2 memory region. The data width is determined by the value of the EM_WIDTH pin, which is latched into the BOOTCFG register at power-up. If the device is identified as supported, the RBL begins the attempt to boot from the NAND flash. It does this by looking for a UBL header and the UBL binary data starting in block 1 of the NAND flash. The RBL contains its own driver code to access the NAND device because such devices have multiplexed I/O pins for both address and data. This allows the RBL to read the NAND flash memory pages and inspect their contents. Figure 1 shows how the RBL's program flow for loading the UBL out of the NAND flash.

[image: image2.emf]
Figure 1: ROM Boot Loader NAND Mode Program Flow
As Figure-1 shows, the RBL attempts to find an acceptable magic number in the first four bytes of page 0 of the blocks 1 through 5 of the NAND memory. A list of valid magic numbers can be found in the TMS320DM6467 DMSoC ARM Subsystem Reference Guide. Different magic numbers enable certain features of the DM6467, such as cache and EDMA. Because the UBL code is small, in general it is safest to use UBL_MAGIC_SAFE without any noticeable performance penalty. If the other features are needed by the application or tertiary boot loader, they can be enabled as part of that code.

Note:
If the NAND boot process fails, the RBL automatically tries to boot using the UART. The BOOTCFG bits still reflect that the DM6467 boot pins are set for NAND boot mode. It may be important to consider what chip peripherals are enabled by default in the different boot modes.

When the RBL reads the NAND memory pages, it always verifies the data by checking ECC values. Users who write UBLs to the NAND device need to acutely aware of how the ECC checks are handled or the NAND boot process will fail.
Once a valid magic number is found, the RBL assumes that a valid UBL header has been found in the first 20 bytes of the page (with the magic number occupying the first four of those 20 bytes). The data in the header allows the RBL to locate the UBL image, copy it to the IRAM, and then begin executing it.

2.2.2 PCI boot mode

To set up the board to boot from the PCI boot mode, the following sequence needs to be followed–

1. Plug the DM6467 board into the PCI slot of the Host machine.

2. In the PCI Boot mode, the DM6467 board derives the power from the Host PCI slot. Hence no external power source should be connected to the board.

3. Connect the DM6467 board to the network using a Ethernet cable and to a serial-terminal using a RS-232 serial cable.
4. Change the SW3 dip-switch settings to 0010 as explained in Table-1.
5. As the host machine powers up, the DM6467 derives power from the host PCI interface and starts running the RBL code
6. The RBL then reads the boot mode being set to PCI and waits for the Boot Complete Flag to be set once the UBL is copied by PCI boot driver to the ARM TCM memory.
7. The UBL is then copied to the TCM memory by the PCI boot driver and then the PCI boot driver sets the Boot Complete flag to indicate completion of UBL transfer.

Additional details about the operation sequence can be found in the DM646x_PCI-Boot_UserManual.doc.

3 User Boot Loader Details
UBL can be used to load an application image to the DDR2 RAM of the DM6467 in the different boot modes. There are other commands available in the UBL to operate on the Flash devices. The following provides a brief description of the various jobs executed by the UBL to allow access to the DDR2 memory.

1. The UBL starts by setting up the IVT and caches

2. UBL sets up the PinMux settings

3. UBL also configures the PSC settings to ensure that the required modules are correctly powered ON

4. Next, the UBL sets up the PLLs to ensure the right clocks are generated at the required frequencies.

5. Finally, once the powering up of the required domains has been achieved and the PLLs are configured for the right clocks, the UBL configures the registers to enable the DDR2 memory at the required frequency.

3.1 UBL Directory Structure
The following structure indicates the directory structure used by the UBL source code.

[image: image3]
Figure 2: Directory Structure of UBL Source
The “src” directory contains the source code for the User Boot Loader.
As suggested by the name the “include” directory contains the entire code base for the header files required by the UBL.
The “tools” directory contains the various utilities to convert the ELF to Binary and from Binary to AIS file formats. It also contains the code base for the I2C EEPROM writer and the NAND flash writer.

The “docs” folder contains a copy of this User Guide document.

3.2 Compilation Notes

To compile the various projects, the Code Composer Studio is used as the IDE. The various projects are available as .PJT files.

1. To build the UBL project, open the project by opening the project file “ubldavinci.pjt” using Code Composer Studio. The project file can be found in “bootloader\build” directory shown in Figure 2. Compile the project in CCS to obtain the UBL ELF file.

2. Run “makeublrom.bat” utility to convert this ELF format file to convert the UBL ELF (.out) file into the corresponding flat binary file. This utility will generate the flat binary under the name – “ublDaVinci.bin” in the “bootloader\tools\util” directory itself. Run the above mentioned batch file in the same directory as the original executable .out file as follows
D:\BootLoader\tools\util> makeublrom.bat
3. For NAND/PCI boot mode, the flat binary file “ublDaVinci.bin” created above needs to be used.

4. For I2C/SPI boot mode, run the utility “makeUBLbin.exe” to convert the flat binary produced above into an AIS format file. The name of the AIS file format UBL image should be – “davinciUBLais.bin”. The “makeUBLbin.exe” requires the name of the binary file as an input. Run the command as indicated below
D:\BootLoader\tools\util> makeUBLbin.exe ublDavinci.bin
3.3 Compilation Notes

The extra functionality that is available in the UART boot mode increases code size. To support erasing and writing of all supported NAND devices adds significantly to the nand.c driver files. The uartboot.c file also increases in size due to the added command paths. All the additional code results in the size of the UBL growing larger than the 14KB limit, which the RBL cannot accept.

To accomplish UBL partitioning, the C code uses preprocessor directives to enable conditional compilation. The Makefile is written such that the UBL code is compiled twice with two different #defines passed via the gcc command-line. The code affected by the conditional #defines includes the following:

· NAND boot mode switch statement in the main() function of ubl.c
· nand.c and nandboot.c (only compiled for NAND UBL)

· NAND and NOR command cases of the command switch statement in the uartboot() function in uartboot.c

3.3.1 Compiling UBL for PCI Boot Mode

UBL supports for PCI based booting of plain binary images. For this, the UBL must be configured for PCI-booting. To do this a compilation macro has been introduced in the file “ublconfig.cfg”. This file can be found in the directory – “bootloader\build\”. This file contains information about the preprocessor macro definitions to be passed to the preprocessor.

· To build UBL for non-PCI booting turn on “UBL_USE_NAND_BOOT” option using “-d”

-d UBL_USE_NAND_BOOT

-d UBL_USE_PCI_BOOT

· To build UBL for PCI booting turn off the option UBL_USE_NAND_BOOT and turn on the option “UBL_USE_PCI_BOOT” using “-d” –

-d UBL_USE_NAND_BOOT
-d UBL_USE_PCI_BOOT
4 Tools Support

The package will also provide a number of tools that provide for the conversion executables from one format to another, namely, from ELF format to a plain binary format and from binary format to AIS format. These tools and their usage are explained in the following sections. Also, included are small sections explaining the usage of the NAND Flash writer and the I2C and SPI based EEPROM programming utilities.
4.1 Conversion of UBL to Binary Image & Binary to AIS

In I2C/SPI boot modes, the ROM Boot-Loader or RBL requires the UBL image to be present as an AIS format file. But when the UBL is compiled on the host system, the output file is generated in the ELF (.out) format. This ELF or (.out) format is required to be converted firstly into a binary image and in the second step this binary image is required to be converted into a TI specific AIS format file since the RBL expects the secondary boot-loader to be in the AIS format. The RBL parses this AIS format file prior to copying the same onto the ARM TCM for execution.
The conversion utilities are available in the “tools” directory as specified in the Section 3.1. These are

1. makeublrom.bat
 – This batch file converts the ELF file to corresponding binary file format

2. makeUBLbin.exe – This executable converts the flat binary file to AIS file format.
4.2 I2C / SPI / NAND Flash Writer

The projects for the SPI writer, I2C writer and NAND Flash writer are available in the “tools” directory as specified in “Section 3.1”. The following are the names of the corresponding CCS project files –

spi_eeprom_writer.pjt
This is the SPI EEPROM writer project and can be found in the sub-directory “tools/spi_eeprom_writer/build”

i2c_eeprom_writer.pjt
This is the I2C EEPROM writer project and can be found in the sub-directory “tools/i2c_eeprom_writer/build”
nand_flash_writer.pjt
This is the CCS project containing the source code for the NAND Flash writing utility. It can be found in the sub-directory “tools/nand_flash_writer/build”
Following is a brief overview of flash/EEPROM writer sources:
The I2C-writer utility has the source code divided over three main source files, namely,

main.c that provides the entry point to the utility,

eeprom_test.c that provides a test routine to read the file from the host environment and

davincihd_i2c.c file that eventually writes the UBL image to the EEPROM.

The main function or the entry point is written in a generic manner to provide for invocation of any routine with a pre-specified prototype and is used to invoke the routine eeprom_test defined in the eeprom_test.c file. This routine mainly initializes the I2C driver and secondly calls a routine to write the UBL image read from the host file-system.

The davincihd_i2c.c file is the basic driver that provides functionality for writing the EEPROM on the DM6467 device. To achieve this it has two routines namely, DAVINCIHD_I2C_write and DAVINCIHD_I2C_read. These two routines as the name suggests, write and read bytes to and from the EEPROM respectively over the I2C interface.
As is the case with the I2C writer, the SPI Writer has only three main source files, namely,

main.c that provides the entry point to the utility,

spirom_test.c that provides a test routine to read the file from the host environment and

spirom.c file that eventually writes the UBL image to the EEPROM

The basic operation is similar to the I2C writer. The main.c file simply provides for a generic routine to be invoked. The spirom.c file is the basic driver which contains the code for initializing the SPI controller and provides API for the basic reading and writing using the SPI protocol. Lastly, the spirom_test.c provides the intermediate code that reads the file to be written to the EEPROM and copies it using the underlying driver to the EEPROM.
The above provides the sequence of events to copy the UBL image onto the EEPROM device using the I2C writer and the SPI writer.
Unlike the above two cases, the NAND Flash writer requires an additional complexity since the protocol is not a serial based protocol. In case of the NAND flash writer, a NAND driver capable of operating the NAND flash has been provided. The NAND driver also provides for a similar external framework as was provided for the I2C EEPROM writers. The only difference being that in place of the above mentioned routines in the driver source code, in case of NAND Flash writing driver, a number of NAND specific routines are introduced. As is the case with the NAND flash, a single byte read or write is not supported and routines have been provided to write (or read) an entire page at a time. Using these routines, the NAND flash writer writes the UBL image to the NAND flash.

5 Supported and Unsupported Features

The following table describes the various features that are supported and the features not supported currently in the release.

1. I2C Boot Mode – This feature is currently supported and the I2C writer utility will be provided along with the release for writing the UBL image to the I2C EEPROM

2. SPI Boot Mode – The source code for the SPI EEPROM writer utility is provided with the current release.

3. NAND Boot Mode – This feature is supported on Silicon Revision 1.1 and later. The source code for the NAND Flash writer utility is provided with the current release.
4. Motorola S-Record file format – The current release of the UBL will NOT support decoding of the application built in the Motorola S-Record format.

6 Notes on Application Image Script (AIS)
The following note on AIS has been referred to from the following link. For additional information on the AIS format kindly refer to this link. Please note this link is not for DaVinci-HD. An extranet link would shortly be made available.

http://www.ti.com/litv/pdf/spraag0c
The bootloader accepts boot information in the form of a script, called application image script (AIS). Application image script is a Texas Instruments, Inc. proprietary application image transfer format. This script is a binary file consisting of a script header followed by various commands that can be interpreted and executed by the boot loader. Each command contains an op-code, followed by optional additional data required to execute the op-code. The bootloader currently supports AIS version 1.99; all commands and data are assumed to be 32 bits in width.

The AIS starts a header that consists of a magic word (041504954); the header is then followed by a series of commands as shown in Figure 3. Each command consists of an op-code followed by optional additional data. All AIS command streams are terminated with a JUMP_CLOSE command which causes transfer of control to the loaded application code and terminates execution of the ROM bootloader.

[image: image4.emf]
Figure 3: Basic Structure of Application Image Script

The bootloader only accepts data in AIS format for all modes except HPI ad PCI. The following sections define each command with appropriate op-code, structure and placement in AIS. These are indicative of the supported commands only. There are additional commands that AIS as a file format also supports but those are not considered in this documentation since they are not supported by the AIS parser provided with this release. Table 3 lists the various opcodes that are supported by AIS 1.0 in this release.
Table 3. AIS Version 2.0 Supported OpCodes
	Opcode
	Value

	Section Load
	0x58535901

	Request CRC
	0x58535902

	Enable CRC
	0x58535903

	Disable CRC
	0x58535904

	Jump_Close
	0x58535906

6.1 Section Load Command
Section load command is used to load a chunk of code/data to DSP memory. All initialized sections of application are loaded to DSP memory using Section Load commands. These commands are placed after all SET commands in AIS. Figure 4 shows the structure of the section load command.

[image: image5.emf]
Figure 4: Structure of Section Load Command
Each section load command consists of SECTION_LOAD (058535901) op-code, followed by section’s start address, size and contents.
6.2 Jump_Close Command
This command is used at the end of the boot process to start execution of the loaded application. It instructs the DSP to terminate the boot process and jump to start address of loaded application. Figure 5 shows the structure of the Jump_Close command.

[image: image6.emf]
Figure 5: Structure of Jump_Close Command

This command is be placed at the end of AIS, after all other commands. It consists of JUMP_CLOSE (058535906) op-code, followed by the start address of the application where the boot loader should jump. In addition to the application entry point address, two words, the 1) total number of sections that should have been loaded during boot, and 2) the total number of bytes which should have been loaded during boot are placed as the last two words of the image.
6.3 CRC Options
There is a possibility of error in communication when the DSP is booting up. Execution of a corrupted application image may result in instability or malfunction. In order to avoid such problems, AIS supports opcodes to verify the validity of data loaded through section load/section fill commands. A proprietary 32-bit CRC computation algorithm is used for verification. The CRC options are implemented by invoking the AIS generation tool with the appropriate option. The tool inserts the CRC enable and CRC requests commands necessary to implement each of the following options:

No CRC—CRC computation is disabled and there is no way to detect or correct any error.

Single CRC—Single CRC is computed for all the sections. Verification is done at the end, just before Jump N Close command. In case of error, all the sections are loaded again; CRC is recalculated and re-verified again at the end.

Section-Wise CRC— CRC is computed for each section. Verification is done at the end of each section and attempt to reload the section is made in case of error.
6.3.1 Enable/Disable CRC Commands
These commands are used to enable/disable computation of the CRC for sections loaded through section load/section fill commands. Figure 6 shows the structure of the enable CRC/disable CRC commands.

[image: image7.emf]
Figure 6: Structure of Enable CRC/Disable CRC Commands

These commands consist of only a single ENABLE_CRC (058535903) or DISABLE_CRC (058535904) op-code. There is no additional data required.

6.3.2 Request CRC Command
This command is used to request and validate the current value of the CRC computed by the DSP. Using this command requires that the enable CRC command be issued earlier in AIS. This command consists of the REQUEST_CRC (058535902) op-code, followed by the expected CRC value and seek-value; the CRC of loaded/filled section(s) are compared with the expected CRC value. If the CRC is correct, seek-value is ignored and execution continues to next command.

A mismatch in the CRC indicates that the data loaded to the DSP memory using earlier section load/section fill commands is corrupted. AIS has to be re-executed from the last known error-free point to load the data again. In order to locate that point, a seek-value is made available as part of the request CRC command. This value is to be interpreted as a negative number and should be added to the current address in AIS. On doing this, the address points to the last error-free point in AIS; execution should be continued as normal from this updated address.

On receiving the start-over command, the DSP knows that the CRC error has occurred. It resets its CRC computation and becomes ready to accept more commands from the host.

Figure 7 shows the structure of the request CRC command.

[image: image8.emf]
Figure 7: Structure of Request CRC Command

For a single CRC option, this command appears only once in AIS, after the last section load/section fill command. The seek value is interpreted as a negative number, which when added to the current offset in AIS, makes offset point to the start of the first section load/section fill command as shown in Figure 7.
For section-wise CRC option, this command appears after each section load/section fill commands. The seek value is interpreted as a negative number, which when added to the current offset in AIS, makes offset point to the start of the previous section load/section fill command as shown in Figure 7.
util

bin

boot loader

spi_eeprom_writer

nand_flash_writer

i2c_eeprom_writer

bin

User Guide

� EMBED Word.Picture.8 ���

tools

src

include

docs

build

DM6467_Boot_Loader_UserGuide.doc

Page 18 of 18

_1049539699.doc

_1049192503.doc
User's Guide

