
TMS320C55x DSP/BIOS 5.x
Application Programming Interface (API)

Reference Guide

Literature Number: SPRU404Q
August 2012

Preface
SPRU404Q—August 2012

Read This First

About This Manual

DSP/BIOS gives developers of mainstream applications on Texas Instruments TMS320C5000TM DSP
devices the ability to develop embedded real-time software. DSP/BIOS provides a small firmware real-
time library and easy-to-use tools for real-time tracing and analysis.

You should read and become familiar with the TMS320 DSP/BIOS User’s Guide, a companion volume
to this API reference guide.

Before you read this manual, you may use the Code Composer Studio online tutorial and the DSP/BIOS
section of the online help to get an overview of DSP/BIOS. This manual discusses various aspects of
DSP/BIOS in depth and assumes that you have at least a basic understanding of DSP/BIOS.

Notational Conventions

This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special typeface.
Examples use a bold version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you enter from items that the
system displays (such as prompts, command output, error messages, etc.).

Here is a sample program listing:

Void copy(HST_Obj *input, HST_Obj *output)

{

 PIP_Obj *in, *out;

 Uns *src, *dst;

 Uns size;

}

• Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you
specify the information within the brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

Related Documentation From Texas Instruments

The following books describe TMS320 devices and related support tools. To obtain a copy of any of these
TI documents, call the Texas Instruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

TMS320 DSP/BIOS User's Guide (literature number SPRU423) provides an overview and description of the
DSP/BIOS real-time operating system.
SPRU404Q—August 2012 Read This First 2
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

Related Documentation www.ti.com
TMS320C55x Optimizing C Compiler User’s Guide (literature number SPRU281) describes the C55x C
compiler. This C compiler accepts ANSI standard C source code and produces TMS320 assembly language
source code for the C55x generation of devices.

TMS320C55x Programmer's Guide (literature number SPRU376) describes ways to optimize C and assembly
code for the TMS320C55x DSPs and
includes application program examples.

TMS320C55x Code Composer Studio Tutorial Online Help (literature number SPRH097) introduces the
Code Composer Studio integrated development environment and software tools. Of special interest to
DSP/BIOS users are the Using DSP/BIOS lessons.

Related Documentation

You can use the following books to supplement this reference guide:

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie,
published by Prentice-Hall, Englewood Cliffs, New Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by
O'Reilly & Associates; ISBN: 1565923545, February 1999

Real-Time Systems, by Jane W. S. Liu, published by Prentice Hall; ISBN: 013099651, June 2000

Principles of Concurrent and Distributed Programming (Prentice Hall International Series in
Computer Science), by M. Ben-Ari, published by Prentice Hall; ISBN: 013711821X, May 1990

American National Standard for Information Systems-Programming Language C X3.159-1989,
American National Standards Institute (ANSI standard for C); (out of print)

Trademarks

MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation.

The Texas Instruments logo and Texas Instruments are registered trademarks of Texas Instruments.
Trademarks of Texas Instruments include: TI, XDS, Code Composer, Code Composer Studio, Probe
Point, Code Explorer, DSP/BIOS, RTDX, Online DSP Lab, BIOSuite, SPOX, TMS320, TMS320C28x,
TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x, TMS320C67x, TMS320C5000, and
TMS320C6000.

All other brand or product names are trademarks or registered trademarks of their respective companies
or organizations.

August 29, 2012
3 Read This First SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Contents

1 API Functional Overview . 8
1.1 DSP/BIOS Modules . 8
1.2 Naming Conventions . 9
1.3 Assembly Language Interface Overview . 9
1.4 DSP/BIOS Tconf Overview. 10
1.5 List of Operations . 11

2 Application Program Interface . 22
2.1 ATM Module . 23
2.2 BUF Module . 36
2.3 C55 Module . 46
2.4 CLK Module . 59
2.5 DEV Module . 77
2.6 GBL Module . 119
2.7 GIO Module . 128
2.8 HOOK Module . 144
2.9 HST Module . 149
2.10 HWI Module . 153
2.11 IDL Module . 173
2.12 LCK Module . 177
2.13 LOG Module . 183
2.14 MBX Module . 195
2.15 MEM Module. 201
2.16 MSGQ Module . 224
2.17 PIP Module . 259
2.18 POOL Module . 277
2.19 PRD Module . 281
2.20 PWRM Module . 288
2.21 QUE Module . 323
2.22 RTDX Module . 338
2.23 SEM Module . 354
2.24 SIO Module . 365
2.25 STS Module . 390
2.26 SWI Module . 399
2.27 SYS Module . 426
2.28 TRC Module . 442
2.29 TSK Module . 446
2.30 std.h and stdlib.h functions . 482

A Function Callability and Error Tables . 484
A.1 Function Callability Table . 484
A.2 DSP/BIOS Error Codes . 491

B C55x DSP/BIOS Register Usage . 493
B.1 Overview. 493
SPRU404Q—August 2012 Contents 4
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

Contents www.ti.com
B.2 Register Conventions . 493
B.3 Status Register Conventions . 495

C DSP/BIOS for OMAP 2320 . 497
C.1 Overview. 497
C.2 OMAP 2320 and the CLK Module . 497
C.3 OMAP 2320 and the HWI Module . 498
C.4 OMAP 2320 and the C55 Module . 501
C.5 Building DSP/BIOS Applications for OMAP 2320. 501
C.6 Usage Examples. 502

D DSP/BIOS for OMAP 2420 . 507
D.1 Overview. 507
D.2 OMAP 2420 and the CLK Module . 507
D.3 OMAP 2420 and the HWI Module . 510
D.4 OMAP 2420 and the C55 Module . 512
D.5 Building DSP/BIOS Applications for OMAP 2420. 513
D.6 Usage Examples. 514

E DSP/BIOS for ‘C55x Devices with Three Timers . 519
E.1 Overview. 519
E.2 CLK Module Support for Three Timers . 519
5 Contents SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

6 Figures SPRU404Q—August 2012
Submit Documentation Feedback

Figures www.ti.com

Figures

2-1 MYSEG Heap Initial Memory Map . 212
2-2 MYSEG Memory Map After Allocation . 213
2-3 MYSEG Memory Map After Modified Allocation . 214
2-4 Writers and Reader of a Message Queue . 227
2-5 Components of the MSGQ Architecture . 227
2-6 MSGQ Function Calling Sequence. 228
2-7 Pipe Schematic . 260
2-8 Allocators and Message Pools . 278
2-9 Buffer Layout as Defined by STATICPOOL_Params . 280
2-10 PRD Tick Cycles . 285
2-11 Statistics Accumulation on the Host . 392

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SPRU404Q—August 2012 Tables 7
Submit Documentation Feedback

www.ti.com Tables

Tables

1-2 DSP/BIOS Operations . 11
2-1 Timer Counter Rates, Targets, and Resets. 61
2-2 High-Resolution Time Determination . 62
2-3 HWI interrupts for the ‘C55x . 160
2-4 Conversion Characters for LOG_printf . 191
2-5 Typical Memory Segments for C5000 Boards . 210
2-6 Statistics Units for HWI, PIP, PRD, and SWI Modules . 391
2-7 Conversion Characters Recognized by SYS_printf . 433
2-8 Conversion Characters Recognized by SYS_sprintf . 435
2-9 Conversion Characters Recognized by SYS_vprintf . 437
2-10 Conversion Characters Recognized by SYS_vsprintf . 439
2-11 Events and Statistics Traced by TRC . 442
A-1 Function Callability . 484
A-2 RTS Function Calls . 491
A-3 Error Codes . 491

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Chapter 1
SPRU404Q—August 2012

API Functional Overview

This chapter provides an overview to the TMS320C55x DSP/BIOS API functions.

1.1 DSP/BIOS Modules

Table 1–1. DSP/BIOS Modules

Module Description

ATM Module Atomic functions written in assembly language

BUF Module Maintains buffer pools of fixed size buffers

C55 Module Target-specific functions

CLK Module System clock manager

DEV Module Device driver interface

GBL Module Global setting manager

GIO Module I/O module used with IOM mini-drivers

HOOK Module Hook function manager

HST Module Host channel manager

HWI Module Hardware interrupt manager

IDL Module Idle function and processing loop manager

LCK Module Resource lock manager

LOG Module Event Log manager

MBX Module Mailboxes manager

MEM Module Memory manager

MSGQ Module Variable-length message manager

1.1 DSP/BIOS Modules . 8

1.2 Naming Conventions . 9

1.3 Assembly Language Interface Overview . 9

1.4 DSP/BIOS Tconf Overview . 10

1.5 List of Operations . 11

Topic Page
SPRU404Q—August 2012 API Functional Overview 8
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

www.ti.com Naming Conventions
1.2 Naming Conventions

The format for a DSP/BIOS operation name is a 3- or 4-letter prefix for the module that contains the
operation, an underscore, and the action.

1.3 Assembly Language Interface Overview

The assembly interface that was provided for some of the DSP/BIOS APIs has been deprecated. They
are no longer documented.

Assembly functions can call C functions. Remember that the C compiler adds an underscore prefix to
function names, so when calling a C function from assembly, add an underscore to the beginning of the
C function name. For example, call _myfunction instead of myfunction. See the TMS320C55x Optimizing
Compiler User’s Guide for more details.

When you are using the DSP/BIOS Configuration Tool, use a leading underscore before the name of any
C function you configure. (The DSP/BIOS Configuration Tool generates assembly code, but does not add
the underscore automatically.) If you are using Tconf, do not add an underscore before the function
name; Tconf internally adds the underscore needed to call a C function from assembly.

All DSP/BIOS APIs follow standard C calling conventions as documented in the C programmer’s guide
for the device you are using.

DSP/BIOS APIs save and restore context for each thread during a context switch. Your code should
simply follow standard C register usage conventions. Code written in assembly language should be
written to conform to the register usage model specified in the C compiler manual for your device. When
writing assembly language, take special care to make sure the C context is preserved. For example, if
you change the AMR register on the ‘C6000, you should be sure to change it back before returning from
your assembly language routine. See the Register Usage appendix in this book to see how DSP/BIOS
uses specific registers.

PIP Module Buffered pipe manager

POOL Module Allocator interface module

PRD Module Periodic function manager

PWRM Module Reduce application’s power consumption

QUE Module Queue manager

RTDX Module Real-time data exchange manager

SEM Module Semaphores manager

SIO Module Stream I/O manager

STS Module Statistics object manager

SWI Module Software interrupt manager

SYS Module System services manager

TRC Module Trace manager

TSK Module Multitasking manager

std.h and stdlib.h functions Standard C library I/O functions

Module Description
SPRU404Q—August 2012 API Functional Overview 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DSP/BIOS Tconf Overview www.ti.com
1.4 DSP/BIOS Tconf Overview

The section describing each modules in this manual lists properties that can be configured in Tconf
scripts, along with their types and default values. The sections on manager properties and instance
properties also provide Tconf examples that set each property.

For details on Tconf scripts, see the DSP/BIOS Tconf User’s Guide (SPRU007). The language used is
JavaScript with an object model specific to the needs of DSP/BIOS configuration.

In general, property names of Module objects are in all uppercase letters. For example, "STACKSIZE".
Property names of Instance objects begin with a lowercase word. Subsequent words have their first letter
capitalized. For example, "stackSize".

Default values for many properties are dependent on the values of other properties. The defaults shown
are those that apply if related property values have not been modified. Default values for many HWI
properties are different for each instance.

The data types shown for the properties are not used as syntax in Tconf scripts. However, they do
indicate the type of values that are valid for each property. The types used are as follows:

• Arg. Arg properties hold arguments to pass to program functions. They may be strings, integers,
labels, or other types as needed by the program function.

• Bool. You may assign a value of either true or 1 to set a Boolean property to true. You may assign
a value of either false or 0 (zero) to set a Boolean property to false. Do not set a Boolean property to
the quoted string "true" or "false".

• EnumInt. Enumerated integer properties accept a set of valid integer values. These values are
displayed in a drop-down list in the DSP/BIOS Configuration Tool.

• EnumString. Enumerated string properties accept certain string values. These values are displayed
in a drop-down list in the DSP/BIOS Configuration Tool.

• Extern. Properties that hold function names use the Extern type. In order to specify a function Extern,
use the prog.extern() method as shown in the examples to refer to objects defined as asm, C, or C++
language symbols. The default language is C.

• Int16. Integer properties hold 16-bit unsigned integer values. The value range accepted for a
property may have additional limits.

• Int32. Long integer properties hold 32-bit unsigned integer values. The value range accepted for a
property may have additional limits.

• Numeric. Numeric properties hold either 32-bit signed or unsigned values or decimal values, as
appropriate for the property.

• Reference. Properties that reference other configures objects contain an object reference. Use the
prog.get() method to specify a reference to another object.

• String. String properties hold text strings.
10 API Functional Overview SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com List of Operations
1.5 List of Operations

Table 1-2: DSP/BIOS Operations

ATM module operations

BUF module operations

C55 operations

Function Operation

ATM_andi, ATM_andu Atomically AND memory location with mask and return previous value

ATM_cleari, ATM_clearu Atomically clear memory location and return previous value

ATM_deci, ATM_decu Atomically decrement memory and return new value

ATM_inci, ATM_incu Atomically increment memory and return new value

ATM_ori, ATM_oru Atomically OR memory location with mask and return previous value

ATM_seti, ATM_setu Atomically set memory and return previous value

Function Operation

BUF_alloc Allocate a fixed memory buffer out of the buffer pool

BUF_create Dynamically create a buffer pool

BUF_delete Delete a dynamically created buffer pool

BUF_free Free a fixed memory buffer into the buffer pool

BUF_maxbuff Check the maximum number of buffers used from the buffer pool

BUF_stat Determine the status of a buffer pool (buffer size, number of free buffers, total
number of buffers in the pool)

Function Operation

C55_disableIER0,
C55_disableIER1,
C55_disableInt

Disable certain maskable interrupts

C55_enableIER0,
C55_enableIER1,
C55_enableInt

Enable certain maskable interrupts

C55_l2AckInt Acknowledge an L2 interrupt (OMAP 2320/2420 only)

C55_l2DisableMIR,
C55_l2DisableMIR1

Disable certain level 2 interrupts (OMAP 2320/2420 only)

C55_l2EnableMIR,
C55_l2EnableMIR1

Enable certain level 2 interrupts (OMAP 2320/2420 only)

C55_l2SetIntPriority Set the priority of an L2 interrupt (OMAP 2320/2420 only)

C55_plug C function to plug an interrupt vector
SPRU404Q—August 2012 API Functional Overview 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

List of Operations www.ti.com
CLK module operations

DEV module operations

Function Operation

CLK_countspms Number of hardware timer counts per millisecond

CLK_cpuCyclesPerHtime Return multiplier for converting high-res time to CPU cycles

CLK_cpuCyclesPerLtime Return multiplier for converting low-res time to CPU cycles

CLK_gethtime Get high-resolution time

CLK_getltime Get low-resolution time

CLK_getprd Get period register value

CLK_reconfig Reset timer period and registers

CLK_setTimerFunc Assign function to a timer (C5505, C5515, C5517, C5535 only)

CLK_start Restart the low-resolution timer

CLK_stop Halt the low-resolution timer

Function Operation

DEV_createDevice Dynamically creates device with user-defined parameters

DEV_deleteDevice Deletes the dynamically created device

DEV_match Match a device name with a driver

Dxx_close Close device

Dxx_ctrl Device control operation

Dxx_idle Idle device

Dxx_init Initialize device

Dxx_issue Send a buffer to the device

Dxx_open Open device

Dxx_ready Check if device is ready for I/O

Dxx_reclaim Retrieve a buffer from a device

DGN Driver Software generator driver

DGS Driver Stackable gather/scatter driver

DHL Driver Host link driver

DIO Driver Class driver

DNL Driver Null driver

DOV Driver Stackable overlap driver
12 API Functional Overview SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com List of Operations
GBL module operations

GIO module operations

HOOK module operations

HST module operations

DPI Driver Pipe driver

DST Driver Stackable split driver

DTR Driver Stackable streaming transformer driver

Function Operation

GBL_getClkin Get configured value of board input clock in KHz

GBL_getFrequency Get current frequency of the CPU in KHz

GBL_getProcId Get configured processor ID used by MSGQ

GBL_getVersion Get DSP/BIOS version information

GBL_setFrequency Set frequency of CPU in KHz for DSP/BIOS

GBL_setProcId Set configured value of processor ID used by MSGQ

Function Operation

GIO_abort Abort all pending input and output

GIO_control Device-specific control call

GIO_create Allocate and initialize a GIO object

GIO_delete Delete underlying IOM mini-drivers and free GIO object and its structure

GIO_flush Drain output buffers and discard any pending input

GIO_new Initialize a pre-allocated GIO object

GIO_read Synchronous read command

GIO_submit Submit a GIO packet to the mini-driver

GIO_write Synchronous write command

Function Operation

HOOK_getenv Get environment pointer for a given HOOK and TSK combination

HOOK_setenv Set environment pointer for a given HOOK and TSK combination

Function Operation

HST_getpipe Get corresponding pipe object

Function Operation
SPRU404Q—August 2012 API Functional Overview 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

List of Operations www.ti.com
HWI module operations

IDL module operations

LCK module operations

LOG module operations

MBX module operations

Function Operation

HWI_disable Globally disable hardware interrupts

HWI_dispatchPlug Plug the HWI dispatcher

HWI_enable Globally enable hardware interrupts

HWI_enter Hardware interrupt service routine prolog

HWI_exit Hardware interrupt service routine epilog

HWI_isHWI Check to see if called in the context of an HWI

HWI_restore Restore global interrupt enable state

Function Operation

IDL_run Make one pass through idle functions

Function Operation

LCK_create Create a resource lock

LCK_delete Delete a resource lock

LCK_pend Acquire ownership of a resource lock

LCK_post Relinquish ownership of a resource lock

Function Operation

LOG_disable Disable a log

LOG_enable Enable a log

LOG_error/LOG_message Write a message to the system log

LOG_event Append an unformatted message to a log

LOG_printf Append a formatted message to a message log

LOG_reset Reset a log

Function Operation

MBX_create Create a mailbox

MBX_delete Delete a mailbox
14 API Functional Overview SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com List of Operations
MEM module operations

MSGQ module operations

MBX_pend Wait for a message from mailbox

MBX_post Post a message to mailbox

Function Operation

MEM_alloc, MEM_valloc,
MEM_calloc

Allocate from a memory heap

MEM_define Define a new memory heap

MEM_free Free a block of memory

MEM_getBaseAddress Get base address of a memory heap

MEM_increaseTableSize Increase the internal MEM table size

MEM_redefine Redefine an existing memory heap

MEM_stat Return the status of a memory heap

MEM_undefine Undefine an existing memory segment

Function Operation

MSGQ_alloc Allocate a message. Performed by writer.

MSGQ_close Closes a message queue. Performed by reader.

MSGQ_count Return the number of messages in a message queue

MSGQ_free Free a message. Performed by reader.

MSGQ_get Receive a message from the message queue. Performed by reader.

MSGQ_getAttrs Get attributes of a message queue.

MSGQ_getDstQueue Get destination message queue field in a message.

MSGQ_getMsgId Return the message ID from a message.

MSGQ_getMsgSize Return the message size from a message.

MSGQ_getSrcQueue Extract the reply destination from a message.

MSGQ_isLocalQueue Return whether queue is local.

MSGQ_locate Synchronously find a message queue. Performed by writer.

MSGQ_locateAsync Asynchronously find a message queue. Performed by writer.

MSGQ_open Opens a message queue. Performed by reader.

MSGQ_put Place a message on a message queue. Performed by writer.

Function Operation
SPRU404Q—August 2012 API Functional Overview 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

List of Operations www.ti.com
PIP module operations

PRD module operations

PWRM module operations (‘C5509 devices)

MSGQ_release Release a located message queue. Performed by writer.

MSGQ_setErrorHandler Set up handling of internal MSGQ errors.

MSGQ_setMsgId Sets the message ID in a message.

MSGQ_setSrcQueue Sets the reply destination in a message.

Function Operation

PIP_alloc Get an empty frame from a pipe

PIP_free Recycle a frame that has been read back into a pipe

PIP_get Get a full frame from a pipe

PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe

PIP_getReaderNumFrames Get the number of pipe frames available for reading

PIP_getReaderSize Get the number of words of data in a pipe frame

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe

PIP_getWriterNumFrames Get the number of pipe frames available to be written to

PIP_getWriterSize Get the number of words that can be written to a pipe frame

PIP_peek Get the pipe frame size and address without actually claiming the pipe frame

PIP_put Put a full frame into a pipe

PIP_reset Reset all fields of a pipe object to their original values

PIP_setWriterSize Set the number of valid words written to a pipe frame

Function Operation

PRD_getticks Get the current tick counter

PRD_start Arm a periodic function for one-time execution

PRD_stop Stop a periodic function from execution

PRD_tick Advance tick counter, dispatch periodic functions

Function Operation

PWRM_changeSetpoint Initiate a change to the V/F setpoint

PWRM_configure Set new configuration parameters for PWRM

PWRM_getCapabilities Get information on PWRM’s capabilities on the current platform

PWRM_getCurrentSetpoint Get the current setpoint in effect

Function Operation
16 API Functional Overview SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com List of Operations
QUE module operations

RTDX module operations

PWRM_getDependencyCount Get count of dependencies currently declared on a resource

PWRM_getNumSetpoints Get the number of setpoints supported for the current platform

PWRM_getSetpointInfo Get the corresponding frequency and CPU core voltage for a setpoint

PWRM_getTransitionLatency Get the latency to scale between setpoints

PWRM_idleClocks Immediately idle the clock domains

PWRM_registerNotify Register a function to be called on a specific power event

pwrmNotifyFxn Function to be called on a registered power event

PWRM_releaseDependency Release a dependency that has been previously declared

PWRM_setDependency Declare a dependency upon a resource

PWRM_sleepDSP Transition the DSP to a new sleep state

PWRM_unregisterNotify Unregister for an event notification from PWRM

Function Operation

QUE_create Create an empty queue

QUE_delete Delete an empty queue

QUE_dequeue Remove from front of queue (non-atomically)

QUE_empty Test for an empty queue

QUE_enqueue Insert at end of queue (non-atomically)

QUE_get Get element from front of queue (atomically)

QUE_head Return element at front of queue

QUE_insert Insert in middle of queue (non-atomically)

QUE_new Set a queue to be empty

QUE_next Return next element in queue (non-atomically)

QUE_prev Return previous element in queue (non-atomically)

QUE_put Put element at end of queue (atomically)

QUE_remove Remove from middle of queue (non-atomically)

Function Operation

RTDX_channelBusy Return status indicating whether a channel is busy

RTDX_CreateInputChannel Declare input channel structure

Function Operation
SPRU404Q—August 2012 API Functional Overview 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

List of Operations www.ti.com
SEM module operations

SIO module operations

RTDX_CreateOutputChannel Declare output channel structure

RTDX_disableInput Disable an input channel

RTDX_disableOutput Disable an output channel

RTDX_enableInput Enable an input channel

RTDX_enableOutput Enable an output channel

RTDX_isInputEnabled Return status of the input data channel

RTDX_isOutputEnabled Return status of the output data channel

RTDX_read Read from an input channel

RTDX_readNB Read from an input channel without blocking

RTDX_sizeofInput Return the number of bytes read from an input channel

RTDX_write Write to an output channel

Function Operation

SEM_count Get current semaphore count

SEM_create Create a semaphore

SEM_delete Delete a semaphore

SEM_new Initialize a semaphore

SEM_pend Wait for a counting semaphore

SEM_pendBinary Wait for a binary semaphore

SEM_post Signal a counting semaphore

SEM_postBinary Signal a binary semaphore

SEM_reset Reset semaphore

Function Operation

SIO_bufsize Size of the buffers used by a stream

SIO_create Create stream

SIO_ctrl Perform a device-dependent control operation

SIO_delete Delete stream

SIO_flush Idle a stream by flushing buffers

SIO_get Get buffer from stream

Function Operation
18 API Functional Overview SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com List of Operations
STS module operations

SWI module operations

SIO_idle Idle a stream

SIO_issue Send a buffer to a stream

SIO_put Put buffer to a stream

SIO_ready Determine if device for stream is ready

SIO_reclaim Request a buffer back from a stream

SIO_reclaimx Request a buffer and frame status back from a stream

SIO_segid Memory section used by a stream

SIO_select Select a ready device

SIO_staticbuf Acquire static buffer from stream

Function Operation

STS_add Add a value to a statistics object

STS_delta Add computed value of an interval to object

STS_reset Reset the values stored in an STS object

STS_set Store initial value of an interval to object

Function Operation

SWI_andn Clear bits from SWI’s mailbox and post if becomes 0

SWI_andnHook Specialized version of SWI_andn

SWI_create Create a software interrupt

SWI_dec Decrement SWI’s mailbox and post if becomes 0

SWI_delete Delete a software interrupt

SWI_disable Disable software interrupts

SWI_enable Enable software interrupts

SWI_getattrs Get attributes of a software interrupt

SWI_getmbox Return SWI’s mailbox value

SWI_getpri Return an SWI’s priority mask

SWI_inc Increment SWI’s mailbox and post

SWI_isSWI Check to see if called in the context of a SWI

SWI_or Set or mask in an SWI’s mailbox and post

SWI_orHook Specialized version of SWI_or

Function Operation
SPRU404Q—August 2012 API Functional Overview 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

List of Operations www.ti.com
SYS module operations

TRC module operations

TSK module operations

SWI_post Post a software interrupt

SWI_raisepri Raise an SWI’s priority

SWI_restorepri Restore an SWI’s priority

SWI_self Return address of currently executing SWI object

SWI_setattrs Set attributes of a software interrupt

Function Operation

SYS_abort Abort program execution

SYS_atexit Stack an exit handler

SYS_error Flag error condition

SYS_exit Terminate program execution

SYS_printf, SYS_sprintf,
SYS_vprintf, SYS_vsprintf

Formatted output

SYS_putchar Output a single character

Function Operation

TRC_disable Disable a set of trace controls

TRC_enable Enable a set of trace controls

TRC_query Test whether a set of trace controls is enabled

Function Operation

TSK_checkstacks Check for stack overflow

TSK_create Create a task ready for execution

TSK_delete Delete a task

TSK_deltatime Update task STS with time difference

TSK_disable Disable DSP/BIOS task scheduler

TSK_enable Enable DSP/BIOS task scheduler

TSK_exit Terminate execution of the current task

TSK_getenv Get task environment

TSK_geterr Get task error number

TSK_getname Get task name

TSK_getpri Get task priority

TSK_getsts Get task STS object

Function Operation
20 API Functional Overview SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com List of Operations
C library stdlib.h

DSP/BIOS std.h special utility C macros

TSK_isTSK Check to see if called in the context of a TSK

TSK_itick Advance system alarm clock (interrupt only)

TSK_self Returns a handle to the current task

TSK_setenv Set task environment

TSK_seterr Set task error number

TSK_setpri Set a task execution priority

TSK_settime Set task STS previous time

TSK_sleep Delay execution of the current task

TSK_stat Retrieve the status of a task

TSK_tick Advance system alarm clock

TSK_time Return current value of system clock

TSK_yield Yield processor to equal priority task

Function Operation

atexit Registers one or more exit functions used by exit

calloc Allocates memory block initialized with zeros

exit Calls the exit functions registered in atexit

free Frees memory block

getenv Searches for a matching environment string

malloc Allocates memory block

realloc Resizes previously allocated memory block

Function Operation

ArgToInt(arg) Casting to treat Arg type parameter as integer (Int) type on the given target

ArgToPtr(arg) Casting to treat Arg type parameter as pointer (Ptr) type on the given target

Function Operation
SPRU404Q—August 2012 API Functional Overview 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Chapter 2
SPRU404Q—August 2012

Application Program Interface

This chapter describes the DSP/BIOS API modules and functions.

2.1 ATM Module . 23
2.2 BUF Module . 36
2.3 C55 Module . 46
2.4 CLK Module . 59
2.5 DEV Module . 77
2.6 GBL Module . 119
2.7 GIO Module . 128
2.8 HOOK Module . 144
2.9 HST Module . 149
2.10 HWI Module . 153
2.11 IDL Module . 173
2.12 LCK Module . 177
2.13 LOG Module . 183
2.14 MBX Module . 195
2.15 MEM Module . 201
2.16 MSGQ Module . 224
2.17 PIP Module . 259
2.18 POOL Module. 277
2.19 PRD Module . 281
2.20 PWRM Module . 288
2.21 QUE Module . 323
2.22 RTDX Module . 338
2.23 SEM Module . 354
2.24 SIO Module. 365
2.25 STS Module . 390
2.26 SWI Module . 399
2.27 SYS Module . 426
2.28 TRC Module . 442
2.29 TSK Module . 446
2.30 std.h and stdlib.h functions . 482

Topic Page
SPRU404Q—August 2012 Application Program Interface 22
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

www.ti.com ATM Module
2.1 ATM Module

The ATM module includes assembly language functions.

Functions

• ATM_andi, ATM_andu. AND memory and return previous value

• ATM_cleari, ATM_clearu. Clear memory and return previous value

• ATM_deci, ATM_decu. Decrement memory and return new value

• ATM_inci, ATM_incu. Increment memory and return new value

• ATM_ori, ATM_oru. OR memory and return previous value

• ATM_seti, ATM_setu. Set memory and return previous value

Description
ATM provides a set of assembly language functions that are used to manipulate variables with interrupts
disabled. These functions can therefore be used on data shared between tasks, and on data shared
between tasks and interrupt routines.
SPRU404Q—August 2012 Application Program Interface 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

ATM_andi www.ti.com
C Interface

Syntax
ival = ATM_andi(idst, isrc);

Parameters
volatile Int *idst; /* pointer to integer */
Int isrc; /* integer mask */

Return Value
Int ival; /* previous value of *idst */

Description
ATM_andi atomically ANDs the mask contained in isrc with a destination memory location and overwrites
the destination value *idst with the result as follows:

`interrupt disable`

ival = *idst;

*idst = ival & isrc;

`interrupt enable`

return(ival);

ATM_andi is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

See Also
ATM_andu
ATM_ori

ATM_andi Atomically AND Int memory location and return previous value
24 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com ATM_andu
C Interface

Syntax
uval = ATM_andu(udst, usrc);

Parameters
volatile Uns *udst; /* pointer to unsigned */
Uns usrc; /* unsigned mask */

Return Value
Uns uval; /* previous value of *udst */

Description
ATM_andu atomically ANDs the mask contained in usrc with a destination memory location and
overwrites the destination value *udst with the result as follows:

`interrupt disable`

uval = *udst;

*udst = uval & usrc;

`interrupt enable`

return(uval);

ATM_andu is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

See Also
ATM_andi
ATM_oru

ATM_andu Atomically AND Uns memory location and return previous value
SPRU404Q—August 2012 Application Program Interface 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

ATM_cleari www.ti.com
C Interface

Syntax
ival = ATM_cleari(idst);

Parameters
volatile Int *idst; /* pointer to integer */

Return Value
Int ival; /* previous value of *idst */

Description
ATM_cleari atomically clears an Int memory location and returns its previous value as follows:

`interrupt disable`

ival = *idst;

*dst = 0;

`interrupt enable`

return (ival);

ATM_cleari is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

See Also
ATM_clearu
ATM_seti

ATM_cleari Atomically clear Int memory location and return previous value
26 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com ATM_clearu
C Interface

Syntax
uval = ATM_clearu(udst);

Parameters
volatile Uns *udst; /* pointer to unsigned */

Return Value
Uns uval; /* previous value of *udst */

Description
ATM_clearu atomically clears an Uns memory location and returns its previous value as follows:

`interrupt disable`

uval = *udst;

*udst = 0;

`interrupt enable`

return (uval);

ATM_clearu is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

See Also
ATM_cleari
ATM_setu

ATM_clearu Atomically clear Uns memory location and return previous value
SPRU404Q—August 2012 Application Program Interface 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

ATM_deci www.ti.com
C Interface

Syntax
ival = ATM_deci(idst);

Parameters
volatile Int *idst; /* pointer to integer */

Return Value
Int ival; /* new value after decrement */

Description
ATM_deci atomically decrements an Int memory location and returns its new value as follows:

`interrupt disable`

ival = *idst - 1;

*idst = ival;

`interrupt enable`

return (ival);

ATM_deci is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

Decrementing a value equal to the minimum signed integer results in a value equal to the maximum
signed integer.

See Also
ATM_decu
ATM_inci

ATM_deci Atomically decrement Int memory and return new value
28 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com ATM_decu
C Interface

Syntax
uval = ATM_decu(udst);

Parameters
volatile Uns *udst; /* pointer to unsigned */

Return Value
Uns uval; /* new value after decrement */

Description
ATM_decu atomically decrements a Uns memory location and returns its new value as follows:

`interrupt disable`

uval = *udst - 1;

*udst = uval;

`interrupt enable`

return (uval);

ATM_decu is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

Decrementing a value equal to the minimum unsigned integer results in a value equal to the maximum
unsigned integer.

See Also
ATM_deci
ATM_incu

ATM_decu Atomically decrement Uns memory and return new value
SPRU404Q—August 2012 Application Program Interface 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

ATM_inci www.ti.com
C Interface

Syntax
ival = ATM_inci(idst);

Parameters
volatile Int *idst; /* pointer to integer */

Return Value
Int ival; /* new value after increment */

Description
ATM_inci atomically increments an Int memory location and returns its new value as follows:

`interrupt disable`

ival = *idst + 1;

*idst = ival;

`interrupt enable`

return (ival);

ATM_inci is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

Incrementing a value equal to the maximum signed integer results in a value equal to the minimum signed
integer.

See Also
ATM_deci
ATM_incu

ATM_inci Atomically increment Int memory and return new value
30 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com ATM_incu
C Interface

Syntax
uval = ATM_incu(udst);

Parameters
volatile Uns *udst; /* pointer to unsigned */

Return Value
Uns uval; /* new value after increment */

Description
ATM_incu atomically increments an Uns memory location and returns its new value as follows:

`interrupt disable`

uval = *udst + 1;

*udst = uval;

`interrupt enable`

return (uval);

ATM_incu is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

Incrementing a value equal to the maximum unsigned integer results in a value equal to the minimum
unsigned integer.

See Also
ATM_decu
ATM_inci

ATM_incu Atomically increment Uns memory and return new value
SPRU404Q—August 2012 Application Program Interface 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

ATM_ori www.ti.com
C Interface

Syntax
ival = ATM_ori(idst, isrc);

Parameters
volatile Int *idst; /* pointer to integer */
Int isrc; /* integer mask */

Return Value
Int ival; /* previous value of *idst */

Description
ATM_ori atomically ORs the mask contained in isrc with a destination memory location and overwrites
the destination value *idst with the result as follows:

`interrupt disable`

ival = *idst;

*idst = ival | isrc;

`interrupt enable`

return(ival);

ATM_ori is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

See Also
ATM_andi
ATM_oru

ATM_ori Atomically OR Int memory location and return previous value
32 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com ATM_oru
C Interface

Syntax
uval = ATM_oru(udst, usrc);

Parameters
volatile Uns *udst; /* pointer to unsigned */
Uns usrc; /* unsigned mask */

Return Value
Uns uva; /* previous value of *udst */

Description
ATM_oru atomically ORs the mask contained in usrc with a destination memory location and overwrites
the destination value *udst with the result as follows:

`interrupt disable`

uval = *udst;

*udst = uval | usrc;

`interrupt enable`

return(uval);

ATM_oru is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

See Also
ATM_andu
ATM_ori

ATM_oru Atomically OR Uns memory location and return previous value
SPRU404Q—August 2012 Application Program Interface 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

ATM_seti www.ti.com
C Interface

Syntax
iold = ATM_seti(idst, inew);

Parameters
volatile Int *idst; /* pointer to integer */
Int inew; /* new integer value */

Return Value
Int iold; /* previous value of *idst */

Description
ATM_seti atomically sets an Int memory location to a new value and returns its previous value as follows:

`interrupt disable`

ival = *idst;

*idst = inew;

`interrupt enable`

return (ival);

ATM_seti is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

See Also
ATM_setu
ATM_cleari

ATM_seti Atomically set Int memory and return previous value
34 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com ATM_setu
C Interface

Syntax
uold = ATM_setu(udst, unew);

Parameters
volatile Uns *udst; /* pointer to unsigned */
Uns unew; /* new unsigned value */

Return Value
Uns uold; /* previous value of *udst */

Description
ATM_setu atomically sets an Uns memory location to a new value and returns its previous value as
follows:

`interrupt disable`

uval = *udst;

*udst = unew;

`interrupt enable`

return (uval);

ATM_setu is written in assembly language, efficiently disabling interrupts on the target processor during
the call.

See Also
ATM_clearu
ATM_seti

ATM_setu Atomically set Uns memory and return previous value
SPRU404Q—August 2012 Application Program Interface 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

BUF Module www.ti.com
2.2 BUF Module

The BUF module maintains buffer pools of fixed-size buffers.

Functions

• BUF_alloc. Allocate a fixed-size buffer from the buffer pool

• BUF_create. Dynamically create a buffer pool

• BUF_delete. Delete a dynamically-created buffer pool

• BUF_free. Free a fixed-size buffer back to the buffer pool

• BUF_maxbuff. Get the maximum number of buffers used in a pool

• BUF_stat. Get statistics for the specified buffer pool

Constants, Types, and Structures
typedef unsigned long MEM_sizep;

#define BUF_ALLOCSTAMP 0xcafe

#define BUF_FREESTAMP 0xbeef

typedef struct BUF_Obj {

 Ptr startaddr; /* Start addr of buffer pool */

 MEM_sizep size; /* Size before alignment */

 MEM_sizep postalignsize; /* Size after align */

 Ptr nextfree; /* Ptr to next free buffer */

 Uns totalbuffers; /* # of buffers in pool*/

 Uns freebuffers; /* # of free buffers in pool */

 Int segid; /* Mem seg for buffer pool */

} BUF_Obj, *BUF_Handle;

typedef struct BUF_Attrs {

 Int segid; /* segment for element allocation */

} BUF_Attrs;

BUF_Attrs BUF_ATTRS = {/* default attributes */

 0,

};

typedef struct BUF_Stat {

 MEM_sizep postalignsize; /* Size after align */

 MEM_sizep size; /* Original size of buffer */

 Uns totalbuffers; /* Total buffers in pool */

 Uns freebuffers; /* # of free buffers in pool */

} BUF_Stat;

Configuration Properties
The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the BUF Manager Properties and BUF Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Name Type Default (Enum Options)

OBJMEMSEG Reference prog.get("DARAM")
36 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com BUF Module
Instance Configuration Parameters

Description
The BUF module maintains pools of fixed-size buffers. These buffer pools can be created statically or
dynamically. Dynamically-created buffer pools are allocated from a dynamic memory heap managed by
the MEM module. Applications typically allocate buffer pools statically when size and alignment
constraints are known at design time. Run-time allocation is used when these constraints vary during
execution.

Within a buffer pool, all buffers have the same size and alignment. Although each frame has a fixed
length, the application can put a variable amount of data in each frame, up to the length of the frame. You
can create multiple buffer pools, each with a different buffer size.

Buffers can be allocated and freed from a pool as needed at run-time using the BUF_alloc and BUF_free
functions.

The advantages of allocating memory from a buffer pool instead of from the dynamic memory heaps
provided by the MEM module include:

• Deterministic allocation times. The BUF_alloc and BUF_free functions require a constant amount
of time. Allocating and freeing memory through a heap is not deterministic.

• Callable from all thread types. Allocating and freeing buffers is atomic and non-blocking. As a
result, BUF_alloc and BUF_free can be called from all types of DSP/BIOS threads: HWI, SWI, TSK,
and IDL. In contrast, HWI and SWI threads cannot call MEM_alloc.

• Optimized for fixed-length allocation. In contrast MEM_alloc is optimized for variable-length
allocation.

• Less fragmentation. Since the buffers are of fixed-size, the pool does not become fragmented.

BUF Manager Properties

The following global properties can be set for the BUF module in the BUF Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment to contain all BUF objects. (A BUF object may be stored in
a different location than the buffer pool memory itself.)

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.BUF.OBJMEMSEG = prog.get("myMEM");

Name Type Default (Enum Options)

comment String "<add comments here>"

bufSeg Reference prog.get("DARAM")

bufCount Int32 1

size Int32 4 (’C55x)

align Int32 2 (’C55x)

len Int32 4 (’C55x)

postalignsize Int32 4 (’C55x)
SPRU404Q—August 2012 Application Program Interface 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

BUF Module www.ti.com
BUF Object Properties

The following properties can be set for a buffer pool object in the BUF Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script. To create an BUF object in a configuration script, use
the following syntax:

var myBuf = bios.BUF.create("myBUF");

The Tconf examples that follow assume the object has been created as shown.

• comment. Type a comment to identify this BUF object.

Tconf Name: comment Type: String

Example: myBuf.comment = "my BUF";

• Memory segment for buffer pool. Select the memory segment in which the buffer pool is to be
created. The linker decides where in the segment the buffer pool starts.

Tconf Name: bufSeg Type: Reference

Example: myBuf.bufSeg = prog.get("myMEM");

• Buffer count. Specify the number of fixed-length buffers to create in this pool.

Tconf Name: bufCount Type: Int32

Example: myBuf.bufCount = 128;

• Buffer size. Specify the size (in MADUs) of each fixed-length buffer inside this buffer pool. The
default size shown is the minimum valid value for that platform. This size may be adjusted to
accommodate the alignment in the "Buffer size after alignment" property.

Tconf Name: size Type: Int32

Example: myBuf.size = 4;

• Buffer alignment. Specify the alignment boundary for fixed-length buffers in the pool. Each buffer is
aligned on boundaries with a multiple of this number. The default size shown is the minimum valid
value for that platform. The value must be a power of 2.

Tconf Name: align Type: Int32

Example: myBuf.align = 2;

• Buffer pool length. The actual length of the buffer pool (in MADUs) is calculated by multiplying the
Buffer count by the Buffer size after alignment. You cannot modify this value directly.

Tconf Name: len Type: Int32

Example: myBuf.len = 4;

• Buffer size after alignment. This property shows the modified Buffer size after applying the
alignment. For example, if the Buffer size is 9 and the alignment is 4, the Buffer size after alignment
is 12 (the next whole number multiple of 4 after 9).

Tconf Name: postalignsize Type: Int32

Example: myBuf.postalignsize = 4;
38 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com BUF_alloc
C Interface

Syntax
bufaddr = BUF_alloc(buf);

Parameters
BUF_Handle buf; /* buffer pool object handle */

Return Value
Ptr bufaddr; /* pointer to free buffer */

Reentrant
yes

Description
BUF_alloc allocates a fixed-size buffer from the specified buffer pool and returns a pointer to the buffer.
BUF_alloc does not initialize the allocated buffer space.

The buf parameter is a handle to identify the buffer pool object, from which the fixed size buffer is to be
allocated. If the buffer pool was created dynamically, the handle is the one returned by the call to
BUF_create. If the buffer pool was created statically, the handle can be referenced as shown in the
example that follows.

If buffers are available in the specified buffer pool, BUF_alloc returns a pointer to the buffer. If no buffers
are available, BUF_alloc returns NULL.

The BUF module manages synchronization so that multiple threads can share the same buffer pool for
allocation and free operations.

The time required to successfully execute BUF_alloc is deterministic (constant over multiple calls).

Example

extern BUF_Obj bufferPool;

BUF_Handle buffPoolHandle = &bufferPool;

Ptr buffPtr;

/* allocate a buffer */

buffPtr = BUF_alloc(buffPoolHandle);

if (buffPtr == NULL) {

 SYS_abort("BUF_alloc failed");

}

See Also
BUF_free
MEM_alloc

BUF_alloc Allocate a fixed-size buffer from a buffer pool
SPRU404Q—August 2012 Application Program Interface 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

BUF_create www.ti.com
C Interface

Syntax
buf = BUF_create(numbuff, size, align, attrs);

Parameters
Uns numbuff; /* number of buffers in the pool */
MEM_sizep size; /* size of a single buffer in the pool */
Uns align; /* alignment for each buffer in the pool */
BUF_Attrs *attrs; /* pointer to buffer pool attributes */

Return Value
BUF_Handle buf; /* buffer pool object handle */

Reentrant
no

Description
BUF_create creates a buffer pool object dynamically. The parameters correspond to the properties
available for statically-created buffer pools, which are described in the BUF Object Properties topic.

The numbuff parameter specifies how many fixed-length buffers the pool should contain. This must be a
non-zero number.

The size parameter specifies how long each fixed-length buffer in the pool should be in MADUs. This
must be a non-zero number. The size you specify is adjusted as needed to meet the alignment
requirements, so the actual buffer size may be larger. The MEM_sizep type is defined as follows:

typedef unsigned long MEM_sizep;

The align parameter specifies the alignment boundary for buffers in the pool. Each buffer is aligned on a
boundary with an address that is a multiple of this number. The value must be a power of 2. The size of
buffers created in the pool is automatically increased to accommodate the alignment you specify.

BUF_create ensures that the size and alignment are set to at least the minimum values permitted for the
platform. The minimum size permitted is 4 (’C55x) MADUs. The minimum alignment permitted is 2 (’C55x).

The attrs parameter points to a structure of type BUF_Attrs, which is defined as follows:

typedef struct BUF_Attrs {

 Int segid; /* segment for element allocation*/

} BUF_Attrs;

The segid element can be used to specify the memory segment in which buffer pool should be created.
If attrs is NULL, the new buffer pool is created the default attributes specified in BUF_ATTRS, which uses
the default memory segment.

BUF_create calls MEM_alloc to dynamically create the BUF object's data structure and the buffer pool.

BUF_create returns a handle to the buffer pool of type BUF_Handle. If the buffer pool cannot be created,
BUF_create returns NULL. The pool may not be created if the numbuff or size parameter is zero or if the
memory available in the specified heap is insufficient.

The time required to successfully execute BUF_create is not deterministic (that is, the time varies over
multiple calls).

BUF_create Dynamically create a buffer pool
40 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com BUF_create
Constraints and Calling Context

• BUF_create cannot be called from a SWI or HWI.

• The product of the size (after adjusting for the alignment) and numbuff parameters should not exceed
the maximum Uns value.

• The alignment should be greater than the minimum value and must be a power of 2. If it is not, proper
creation of buffer pool is not guaranteed.

Example

BUF_Handle myBufpool;

BUF_Attrs myAttrs;

myAttrs = BUF_ATTRS;

myBufpool=BUF_create(5, 4, 2, &myAttrs);

if(myBufpool == NULL){

 LOG_printf(&trace,"BUF_create failed!");

}

See Also
BUF_delete
SPRU404Q—August 2012 Application Program Interface 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

BUF_delete www.ti.com
C Interface

Syntax
status = BUF_delete(buf);

Parameters
BUF_Handle buf; /* buffer pool object handle */

Return Value
Uns status; /* returned status */

Reentrant
no

Description
BUF_delete frees the buffer pool object and the buffer pool memory referenced by the handle provided.

The buf parameter is the handle that identifies the buffer pool object. This handle is the one returned by
the call to BUF_create. BUF_delete cannot be used to delete statically created buffer pool objects.

BUF_delete returns 1 if it has successfully freed the memory for the buffer object and buffer pool. It
returns 0 (zero) if it was unable to delete the buffer pool.

BUF_delete calls MEM_free to delete the BUF object and to free the buffer pool memory. MEM_free must
acquire a lock to the memory before proceeding. If another task already holds a lock on the memory,
there is a context switch.

The time required to successfully execute BUF_delete is not deterministic (that is, the time varies over
multiple calls).

Constraints and Calling Context

• BUF_delete cannot be called from a SWI or HWI.

• BUF_delete cannot be used to delete statically created buffer pool objects. No check is performed to
ensure that this is the case.

• BUF_delete assumes that all the buffers allocated from the buffer pool have been freed back to the
pool.

Example

BUF_Handle myBufpool;

Uns delstat;

delstat = BUF_delete(myBufpool);

if(delstat == 0){

 LOG_printf(&trace,"BUF_delete failed!");

}

See Also
BUF_create

BUF_delete Delete a dynamically-created buffer pool
42 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com BUF_free
C Interface

Syntax
status = BUF_free(buf, bufaddr);

Parameters
BUF_Handle buf; /* buffer pool object handle */
Ptr bufaddr; /* address of buffer to free */

Return Value
Bool status; /* returned status */

Reentrant
yes

Description
BUF_free frees the specified buffer back to the specified buffer pool. The newly freed buffer is then
available for further allocation by BUF_alloc.

The buf parameter is the handle that identifies the buffer pool object. This handle is the one returned by
the call to BUF_create.

The bufaddr parameter is the pointer returned by the corresponding call to BUF_alloc.

BUF_free always returns TRUE if DSP/BIOS real-time analysis is disabled (in the GBL Module
Properties). If real-time analysis is enabled, BUF_free returns TRUE if the bufaddr parameter is within
the range of the specified buffer pool; otherwise it returns FALSE.

The BUF module manages synchronization so that multiple threads can share the same buffer pool for
allocation and free operations.

The time required to successfully execute BUF_free is deterministic (constant over multiple calls).

Example

extern BUF_Obj bufferPool;

BUF_Handle buffPoolHandle = &bufferPool;

Ptr buffPtr;

...

BUF_free(buffPoolHandle, buffPtr);

See Also
BUF_alloc
MEM_free

BUF_free Free a fixed memory buffer into the buffer pool
SPRU404Q—August 2012 Application Program Interface 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

BUF_maxbuff www.ti.com
C Interface

Syntax
count = BUF_maxbuff(buf);

Parameters
BUF_Handle buf; /* buffer pool object Handle */

Return Value
Uns count; /*maximum number of buffers used */

Reentrant
no

Description
BUF_maxbuff returns the maximum number of buffers that have been allocated from the specified buffer
pool at any time. The count measures the number of buffers in use, not the total number of times buffers
have been allocated.

The buf parameter is the handle that identifies the buffer pool object. This handle is the one returned by
the call to BUF_create.

BUF_maxbuff distinguishes free and allocated buffers via a stamp mechanism. Allocated buffers are
marked with the BUF_ALLOCSTAMP stamp (0xcafe). If the application happens to change this stamp to
the BUF_FREESTAMP stamp (0xbeef), the count may be inaccurate. Note that this is not an application
error. This stamp is only used for BUF_maxbuff, and changing it does not affect program execution.

The time required to successfully execute BUF_maxbuff is not deterministic (that is, the time varies over
multiple calls).

Constraints and Calling Context

• BUF_maxbuff cannot be called from a SWI or HWI.

• The application must implement synchronization to ensure that other threads do not perform
BUF_alloc during the execution of BUF_maxbuff. Otherwise, the count returned by BUF_maxbuff
may be inaccurate.

Example

extern BUF_Obj bufferPool;

BUF_Handle buffPoolHandle = &bufferPool;

Int maxbuff;

maxbuff = BUF_maxbuff(buffPoolHandle);

LOG_printf(&trace, "Max buffers used: %d", maxbuff);

See Also

BUF_maxbuff Check the maximum number of buffers from the buffer pool
44 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com BUF_stat
C Interface

Syntax
BUF_stat(buf,statbuf);

Parameters
BUF_Handle buf; /* buffer pool object handle */
BUF_Stat *statbuf; /* pointer to buffer status structure */

Return Value
none

Reentrant
yes

Description

BUF_stat returns the status of the specified buffer pool.

The buf parameter is the handle that identifies the buffer pool object. This handle is the one returned by
the call to BUF_create.

The statbuf parameter must be a structure of type BUF_Stat. The BUF_stat function fills in all the fields
of the structure. The BUF_Stat type has the following fields:

typedef struct BUF_Stat {

 MEM_sizep postalignsize; /* Size after align */

 MEM_sizep size; /* Original size of buffer */

 Uns totalbuffers; /* Total # of buffers in pool */

 Uns freebuffers; /* # of free buffers in pool */

} BUF_Stat;

Size values are expressed in Minimum Addressable Data Units (MADUs). BUF_stat collects statistics
with interrupts disabled to ensure the correctness of the statistics gathered.

The time required to successfully execute BUF_stat is deterministic (constant over multiple calls).

Example

extern BUF_Obj bufferPool;

BUF_Handle buffPoolHandle = &bufferPool;

BUF_Stat stat;

BUF_stat(buffPoolHandle, &stat);

LOG_printf(&trace, "Free buffers Available: %d",

 stat.freebuffers);

See Also
MEM_stat

BUF_stat Determine the status of a buffer pool
SPRU404Q—August 2012 Application Program Interface 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

C55 Module www.ti.com
2.3 C55 Module

The C55 module include target-specific functions for the TMS320C5000 family

Functions

• C55_disableIER0, C55_disableIER1. ASM macros to disable selected interrupts in the IER0/IER1,
respectively

• C55_disableInt. Disable an individual interrupt.

• C55_enableIER0, C55_enableIER1. ASM macros to enable selected interrupts in the IER0/IER1,
respectively

• C55_enableInt. Enable an individual interrupt.

• C55_l2AckInt. Explicitly acknowledge an L2 interrupt

• C55_l2DisableMIR, C55_l2DisableMIR1. Disable a set of L2 interrupts

• C55_l2EnableMIR, C55_l2EnableMIR1. Enable a set of L2 interrupts

• C55_l2SetIntPriority. Set the priority of a L2 interrupt

• C55_plug. Plug interrupt vector

Description
The C55 module provide certain target-specific functions and definitions for the TMS320C5000 family of
processors.

See the c55.h file for a complete list of definitions for hardware flags for C. The c55.h file contain C
language macros, #defines for various TMS320C5000 registers, and structure definitions. The c55.h55
file also contain assembly language macros for saving and restoring registers in HWIs.
46 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com C55_disableIER0, C55_disableIER1
C Interface

Syntax
oldmask = C55_disableIER0(mask);
oldmask = C55_disableIER1(mask);

Parameters
Uns mask; /* disable mask */

Return Value
Uns oldmask; /* actual bits cleared by disable mask */

Description
C55_disableIER0 and C55_disableIER1 disable interrupts by clearing the bits specified by mask in the
Interrupt Enable Register (IER0/IER1).

C55_disableIER0 and C55_disableIER1 return a mask of bits actually cleared. This return value should
be passed to C55_enableIER0 or C55_enableIER1 to re-enable interrupts.

See C55_enableIER0, C55_enableIER1 for a description and code examples for safely protecting a
critical section of code from interrupts.

See Also

C55_enableIER0, C55_enableIER1

C55_disableIER0,
C55_disableIER1 Disable certain maskable interrupts
SPRU404Q—August 2012 Application Program Interface 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

C55_disableInt www.ti.com
C Interface

Syntax
C55_disableInt(vecid);

Parameters
Uns vecid; /* vector ID for interrupt */

Return Value
Void

Description

This function disables an individual interrupt referenced by a vector ID. The vector ID can match a level
1 interrupt (vecids 0-31) or an OMAP 2320/2420 level 2 interrupt (vecids 32-63). For OMAP 2320, the
additional level 2 interrupts 32-63 can be disabled using vecids 64-95.

The c55.h header file provides some convenient interrupt ID definitions.

See Also
C55_enableInt

C55_disableInt Disable an individual interrupt
48 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com C55_enableIER0, C55_enableIER1
C Interface

Syntax
C55_enableIER0(oldmask);
C55_enableIER1(oldmask);

Parameters
Uns oldmask; /* enable mask */

Return Value
Void

Description
C55_disableIER0, C55_disableIER1, C55_enableIER0, and C55_enableIER1 disable and enable
specific internal interrupts by modifying the Interrupt Enable Register (IER0/IER1). C55_disableIER0 and
C55_disableIER1 clear the bits specified by the mask parameter in the Interrupt Mask Register and return
a mask of the bits it cleared. C55_enableIER0 and C55_enableIER1 set the bits specified by the oldmask
parameter in the Interrupt Mask Register.

C55_disableIER0 and C55_disableIER1 and C55_enableIER0 and C55_enableIER1 are usually used in
tandem to protect a critical section of code from interrupts. The following code examples show a region
protected from all maskable interrupts:

/* C example */

Uns oldmask;

oldmask0 = c55_disableIER0(~0);

 `do some critical operation; `

 `do not call TSK_sleep, SEM_post, etc.`

c55_enableIER0(oldmask0);

Note: DSP/BIOS kernel calls that can cause rescheduling of tasks (for example, SEM_post
and TSK_sleep) should be avoided within a C55_disableIER0, C55_disableIER1,
C55_enableIER0, and / C55_enableIER1 block since the interrupts can be disabled for
an indeterminate amount of time if a task switch occurs.

C55_enableIER0,
C55_enableIER1 Enable certain maskable interrupts
SPRU404Q—August 2012 Application Program Interface 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

C55_enableIER0, C55_enableIER1 www.ti.com
You can use C55_disableIER0, C55_disableIER1, C55_enableIER0, and C55_enableIER1 to disable
selected interrupts, while allowing other interrupts to occur. However, if another hardware interrupt occurs
during this region, it could cause a task switch. You can prevent this by enclosing it with TSK_disable /
TSK_enable to disable DSP/BIOS task scheduling.

Uns oldmask;

TSK_disable();

oldmask0 = C55_disableIER0(INTMASK0);

oldmask1 = C55_disableIER1(INTMASK1);

 `do some critical operation;`

 `NOT OK to call TSK_sleep, SEM_post, etc.`

C55_enableIER0(oldmask0);

C55_enableIER0(oldmask1);

TSK_enable();

Note: If you use C55_disableIER0, C55_disableIER1, C55_enableIER0, and
C55_enableIER1 to disable only some interrupts, you must surround this region with
SWI_disable / SWI_enable, to prevent an intervening HWI from causing a SWI or TSK
switch.

The second approach is preferable if it is important not to disable all interrupts in your system during the
critical operation.

See Also
C55_disableIER0, C55_disableIER1
50 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com C55_enableInt
C Interface

Syntax
C55_enableInt(vecid);

Parameters
Uns vecid; /* vector ID for interrupt */

Return Value
Void

Description

This function enables an individual interrupt referenced by a vector ID. The vector ID can match a level
1 interrupt (vecids 0-31) or an OMAP2320/2420 level 2 interrupt (vecids 32-63). For OMAP 2320, the
additional level 2 interrupts 32-63 can be enabled using vecids 64-95.

The c55.h header file provides some convenient interrupt ID definitions.

Example

Void main ()

{

 HWI_Attrs attrs = HWI_ATTRS;

 // pass vector ID to myIsr

 attrs.arg = (Arg)C55_L2_INT1;

 // Plug Level 2 Interrupt #1 Vector

 HWI_dispatchPlug(C55_L2_INT1, (Fxn)myIsr, &attrs);

 // Enable Level 2 interrupt

 C55_enableInt(C55_L2_INT1);

}

See Also
C55_disableInt

C55_enableInt Enable an individual interrupt
SPRU404Q—August 2012 Application Program Interface 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

C55_l2AckInt www.ti.com
C Interface

Syntax
C55_l2AckInt();

Parameters
Void

Return Value
Void

Description

This API applies to the OMAP 2320/2420 platforms only.

The L2IC requires the interrupts be explicitly acknowledged prior to returning from an ISR in order to allow
other L2 interrupts to be processed.

The DSP/BIOS HWI dispatcher handles this acknowledgement for HWI functions coded in C that use the
HWI dispatcher. The HWI_enter and HWI_exit macros provide this functionality for HWI functions coded
in assembly.

The C55_l2AckInt function is for use only in HWI functions that are coded in C but that do not use the
HWI dispatcher. Such functions are "interrupt" defined C code ISRs, which are dynamically plugged using
C55_plug or statically plugged using Tconf.

The C55_l2AckInt function is #defined so that inline code is generated in order to minimize the register
context saving code generated by the compiler when using the "interrupt" keyword.

Important: Recall that ISRs defined using the "interrupt" keyword are not allowed to call any DSP/BIOS
functions. The C55_l2AckInt function is an exception to this rule.

Constraints and
Calling Context

• This API must be called only in the context of a HWI function. That function must be coded in C using
the interrupt keyword. The HWI must not use the HWI dispatcher. In addition, the HWI function must
not call any DSP/BIOS functions other than C55_l2AckInt.

Example
interrupt void myIsr()

{

 // Acknowledge this level 2 interrupt to the L2IC

 C55_l2AckInt();

 // Your code here

}

See Also
C55_l2DisableMIR

C55_l2AckInt Explicitly acknowledge an L2 interrupt
52 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com C55_l2DisableMIR
C Interface

Syntax
C55_l2DisableMIR(mirmask);

Parameters
LgUns mirmask; /* disable mask */

Return Value
Void

Description

This API applies to OMAP 2320/2420 platforms only.

C55_l2DisableMIR disables level 2 interrupts by setting the bits specified by mirmask in the Interrupt
Mask Register (MIR). The MIR is a register in the Level 2 Interrupt Controller (L2IC) that defines which
level 2 interrupts (0-31) are enabled or disabled. (Set bits are disabled.)

This function provides the functionality of C55_disableIer0/1 for level 2 interrupts. The mirmask argument
is a 32-bit bitmask that defines which level 2 interrupts to disable.

See Also
C55_l2EnableMIR

C55_l2DisableMIR Disable certain level 2 interrupts
SPRU404Q—August 2012 Application Program Interface 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

C55_l2DisableMIR1 www.ti.com
C Interface

Syntax
C55_l2DisableMIR1(mir1mask);

Parameters
LgUns mir1mask; /* disable mask */

Return Value
Void

Description

This API applies to the OMAP 2320 platform only.

C55_l2DisableMIR1 disables level 2 interrupts by setting the bits specified by mir1mask in the Interrupt
Mask Register1 (MIR1). The MIR1 is a register in the Level 2 Interrupt Controller (L2IC) that defines
which level 2 interrupts (32-63) are enabled or disabled. (Set bits are disabled.)

This function provides the functionality of C55_disableIer0/1 for level 2 interrupts. The mir1mask
argument is a 32-bit bitmask that defines which level 2 interrupts to disable.

See Also
C55_l2EnableMIR1

C55_l2DisableMIR1 Disable certain level 2 interrupts
54 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com C55_l2EnableMIR
C Interface

Syntax
C55_l2EnableMIR(mirmask);

Parameters
LgUns mirmask; /* disable mask */

Return Value
Void

Description

This API applies to the OMAP 2320/2420 platforms only.

C55_l2EnableMIR enables level 2 interrupts by clearing the bits specified by mirmask in the Interrupt
Mask Register (MIR). The MIR is a register in the Level 2 Interrupt Controller (L2IC) that defines which
level 2 interrupts (0-31) are enabled or disabled. (Cleared bits are enabled.)

This function provides the functionality of C55_enableIer0/1 for level 2 interrupts. The mirmask argument
is a 32-bit bitmask that defines which level 2 interrupts to enable.

Example

// Enables L2 interrupts 10, 11, 12, 13

// 0x3c00 = 11110000000000 binary

C55_l2EnableMIR(0x00003c00);

See Also
C55_l2DisableMIR

C55_l2EnableMIR Enable certain level 2 interrupts
SPRU404Q—August 2012 Application Program Interface 55
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

C55_l2EnableMIR1 www.ti.com
C Interface

Syntax
C55_l2EnableMIR1(mir1mask);

Parameters
LgUns mir1mask; /* disable mask */

Return Value
Void

Description

This API applies to the OMAP 2320 platform only.

C55_l2EnableMIR1 enables level 2 interrupts by clearing the bits specified by mir1mask in the Interrupt
Mask Register1 (MIR1). The MIR1 is a register in the Level 2 Interrupt Controller (L2IC) that defines
which level 2 interrupts (32-63) are enabled or disabled. (Cleared bits are enabled.)

This function provides the functionality of C55_enableIer0/1 for level 2 interrupts. The mir1mask
argument is a 32-bit bitmask that defines which level 2 interrupts to enable.

Example

// Enables L2 interrupts 42, 43, 44, 45

// 0x3c00 = 11110000000000 binary

C55_l2EnableMIR1(0x00003c00);

See Also
C55_l2DisableMIR1

C55_l2EnableMIR1 Enable certain level 2 interrupts
56 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com C55_l2SetIntPriority
C Interface

Syntax
C55_l2SetIntPriority(vecid, priority);

Parameters
Uns vecid; /* vector ID of interrupt */
Uns priority; /* new priority of interrupt */

Return Value
Void

Description

This API applies to the OMAP 2320/2420 platforms only.

The Level 2 Interrupt Controller (L2IC) allows you to set the relative priority of each of the level 2
interrupts.

The default interrupt priorities match the interrupt number. That is, level 2 interrupts 0-31 (logical interrupt
IDs 32-63) have priorities 0-31 respectively. The additional OMAP 2320 L2 interrupts 32-63 (logical
interrupt IDs 64-95) have priorities 32-63 respectively.

The L2 controller defines level 0 to be the highest priority and level 31 the lowest (63 for the OMAP 2320).
Therefore the default priority settings give highest priority to L2 interrupt 0 and lowest to interrupt 31 (63
for the OMAP 2320).

The level 2 interrupt priority setting is independent of whether the interrupt is serviced by the dispatcher
or not.

Example
Void main()

{

 HWI_Attrs attrs;

 attrs = HWI_ATTRS;

 attrs.arg = (Arg)C55_L2_INT10;

 HWI_dispatchPlug(C55_L2_INT10, (Fxn)l2FiqFunc, &attrs);

 C55_l2SetIntPriority(C55_L2_INT10, 0);

 ...

}

See Also
C55_enableInt

C55_l2SetIntPriority Set the priority of a level 2 interrupt
SPRU404Q—August 2012 Application Program Interface 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

C55_plug www.ti.com
C Interface

Syntax
C55_plug(vecid, fxn);

Parameters
Int vecid; /* interrupt id */
Fxn fxn; /* pointer to HWI function */

Return Value
Void

Description
C55_plug hooks up the specified function as the branch target for a hardware interrupt (fielded by the
CPU) at the vector address corresponding to vecid. C55_plug does not enable the interrupt. Use
C55_enableIER0, C55_enableIER1 to enable specific interrupts.

Constraints and Calling Context

• vecid must be a valid interrupt ID in the range of 0-31. (The range is 0-95 for OMAP 2320. The range
is 0-63 for OMAP 2420.)

See Also
C55_enableIER0, C55_enableIER1

C55_plug C function to plug an interrupt vector
58 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com CLK Module
2.4 CLK Module

The CLK module is the clock manager.

Functions

• CLK_countspms. Timer counts per millisecond

• CLK_cpuCyclesPerHtime. Return high-res time to CPU cycles factor

• CLK_cpuCyclesPerLtime. Return low-res time to CPU cycles factor

• CLK_gethtime. Get high-resolution time

• CLK_getltime. Get low-resolution time

• CLK_getprd. Get period register value

• CLK_reconfig. Reset timer period and registers using CPU frequency

• CLK_setTimerFunc. Assign function to a timer (C5505, C5515, C5517, C5535 only)

• CLK_start. Restart low-resolution timer

• CLK_stop. Stop low-resolution timer

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the CLK Manager Properties and CLK Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

C55x Name Type Default (Enum Options)

OBJMEMSEG Reference prog.get("DARAM")

TIMERS_BASE Numeric 0x7000 (OMAP 2420 only)

TIMERS_BASE_DATAMEM Numeric 0x7ee000 (OMAP 2420 only)

TIMERSELECT String "Timer 0"
("Timer 5" for OMAP 2420)

ENABLECLK Bool true

HIRESTIME Bool true

ENABLEHTIME Bool true (C5501, 5502,
OMAP 2320/2420 only)

MICROSECONDS Int16 1000.0071

CONFIGURETIMER Bool false

FIXTDDR Bool false (not for OMAP 2320/2420)

LOAD_TIM Int16 2999 (1x10, 59xx only)

TCRTDDR EnumInt 0 (0 to 15)
(not for OMAP 2320/2420)

TCRPTV EnumInt 0 (0 to 7) (1x10, 59xx only)

PRD Int16 46666, 7499, or 59999
(varies by platform)
(not used for 1x10, 59xx)
SPRU404Q—August 2012 Application Program Interface 59
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

CLK Module www.ti.com
Instance Configuration Parameters

Description
The CLK module provides methods for gathering timing information and for invoking functions
periodically. The CLK module provides real-time clocks with functions to access the low-resolution and
high-resolution times. These times can be used to measure the passage of time in conjunction with STS
accumulator objects, as well as to add timestamp messages in event logs.

DSP/BIOS provides the following timing methods:

• Timer Counter. This DSP/BIOS counter changes at a relatively fast platform-specific rate that is
determined by your CLK Manager Property settings. This counter is used only if the Clock Manager
is enabled in the CLK Manager Properties.

• Low-Resolution Time. This time is incremented when the timer counter reaches its target value.
When this time is incremented, any functions defined for CLK objects are run.

• High-Resolution Time. For some platforms, the timer counter is also used to determine the high-
resolution time. For other platforms, a different timer is used for the high-resolution time.

• Periodic Rate. The PRD functions can be run at a multiple of the clock interrupt rate (the low-
resolution rate) if you enable the "Use CLK Manager to Drive PRD" in the PRD Manager Properties.

• System Clock. The PRD rate, in turn, can be used to run the system clock, which is used to measure
TSK-related timeouts and ticks. If you set the "TSK Tick Driven By" in the TSK Manager Properties
to "PRD", the system clock ticks at the specified multiple of the clock interrupt rate (the low-resolution
rate).

Timer Counter

The timer counter changes at a relatively fast rate until it reaches a target value. When the target value
is reached, the timer counter is reset, a timer interrupt occurs, the low-resolution time is incremented, and
any functions defined for CLK objects are run.

INPUTCLK Numeric 0.032 MHz (OMAP 2420 only)

HTIMECLK Numeric 12.0 MHz (OMAP 2420 only)

TIMER0FUNC to
TIMER2FUNC

Extern prog.extern("FXN_F_nop") (C5505, C5515, C5517, and C5535)

TIMER0ARG to
TIMER2ARG

Arg 0 (C5505, C5515, C5517, and C5535)

Name Type Default

comment String "<add comments here>"

fxn Extern prog.extern("FXN_F_nop")

order Int16 0

C55x Name Type Default (Enum Options)
60 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com CLK Module
Table 2-1 shows the rate at which the timer counter changes, its target value, and how the value is reset
once the target value has been reached.

Low-Resolution Time

When the value of the timer counter is reset to the value in the right-column of Table 2-1, the following
actions happen:

• A timer interrupt occurs

• As a result of the timer interrupt, the HWI object for the timer runs the CLK_F_isr function.

• The CLK_F_isr function causes the low-resolution time to be incremented by 1.

• The CLK_F_isr function causes all the CLK Functions to be performed in sequence in the context of
that HWI.

Therefore, the low-resolution clock ticks at the timer interrupt rate and returns the number of timer
interrupts that have occurred. You can use the CLK_getltime function to get the low-resolution time and
the CLK_getprd function to get the value of the period register property.

You can use GBL_setFrequency, CLK_stop, CLK_reconfig, and CLK_start to change the low-resolution
timer rate.

The low-resolution time is stored as a 32-bit value. Its value restarts at 0 when the maximum value is
reached.

Table 2-1: Timer Counter Rates, Targets, and Resets

Platform Timer Counter Rate
Target
Value Value Reset

’C5501, ’C5502 Incremented at CLKOUT / (PLLDIV1 * (TDDR+1)),
where CLKOUT is the DSP clock speed in MHz (see
GBL Module Properties), and TDDR is the value of the
timer divide-down register (see CLK Manager
Properties). PLLDIV1 is an additional divide-down
factor; DSP/BIOS assumes its value is 4. If you change
the value of PLLDIV1, timings will be incorrect.

PRD value Counter reset to 0.

’C5503, ’C5507,
’C5509, ’C5510,
’C5561

Decremented at CLKOUT / (TDDR+1), where CLKOUT
is the DSP clock speed in MHz (see GBL Module
Properties) and TDDR is the value of the timer divide-
down register (see CLK Manager Properties).

0 Counter reset to PRD
value.

1x10 and 59xx Decremented at: CLKOUT * (2^ (TCRPTV+1)), where
CLKOUT is the DSP clock speed in MHz (see GBL
Module Properties) and TCRPTV is the value in the
prescalar register (see CLK Manager Properties).

0 Counter reset to PRD
value.

OMAP 2320 Incremented at DSP clock speed Counter
register rolls
over.

Counter reset to 0.

OMAP 2420 Incremented at the INPUTCLK rate, which is usually
either 32 kHz or 12 MHz (see CLK Manager
Properties).

Counter
register rolls
over.

Counter reset to
period register value
of 0xFFFFFFFF
minus PRD value in
CLK Manager
Properties.
SPRU404Q—August 2012 Application Program Interface 61
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

CLK Module www.ti.com
High-Resolution Time

The high-resolution time is determined as follows for your platform:

You can use the CLK_gethtime function to get the high-resolution time and the CLK_countspms function
to get the number of hardware timer counter register ticks per millisecond.

The high-resolution time is stored as a 32-bit value. For platforms that use the same timer counter as the
low-resolution time, the 32-bit high-resolution time is actually calculated by multiplying the low-resolution
time by the value of the PRD property and adding number of timer counter increments or decrements
(depending on your platform) since the last timer counter reset.

The high-resolution value restarts at 0 when the maximum value is reached.

CLK Functions

The CLK functions performed when a timer interrupt occurs are performed in the context of the hardware
interrupt that caused the system clock to tick. Therefore, the amount of processing performed within CLK
functions should be minimized and these functions can only invoke DSP/BIOS calls that are allowable
from within an HWI.

Note: CLK functions should not call HWI_enter and HWI_exit as these are called internally
by DSP/BIOS when it runs CLK_F_isr. Additionally, CLK functions should not use the
interrupt keyword or the INTERRUPT pragma in C functions.

CLK Manager Properties

The following global properties can be set for the CLK module in the CLK Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the CLK objects created in the configuration.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.CLK.OBJMEMSEG = prog.get("myMEM");

• CPU Interrupt. Shows which HWI interrupt is used to drive the timer services. The value is changed
automatically when you change the Timer Selection. This is an informational property only.

Tconf Name: N/A

Table 2-2: High-Resolution Time Determination

Platform Description

’C5501, ’C5502 A separate DSP/BIOS counter for the high-resolution time runs at the following
rate: CLKOUT / PLLDIV1. This timer counter is stored in 64 bits.

’C5503, ’C5507,
’C5509, ’C5510,
’C5561

Number of times the timer counter has been decremented.

1x10 and 59xx Number of times the timer counter has been decremented.

OMAP 2320 Number of times the timer counter has been incremented.

OMAP 2420 The value of Timer 7 running at 12 MHz. This value is stored in 32 bits.
62 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com CLK Module
• Timer Selection. The on-device timer to use. Changing this setting also automatically changes the
CPU Interrupt used to drive the timer services and the function property of the relevant HWI objects.

Tconf Name: TIMERSELECT Type: String

Options: "Timer 0", "Timer 1" (exception: "Timer 5" and "Timer 6" for OMAP 2420)

Example: bios.CLK.TIMERSELECT = "Timer 0";

• Base Address of Timers in IO Space. This property points to the address of GP timer 5 within the
DSP address space. This location is set by the DSP MMU configuration shown in Section D.2.2, GEL
Configuration. The locations of timers 6 and 7 are determined by adding 0x0400 and 0x0800
respectively to the base address. (OMAP 2420 only)

Tconf Name: TIMERS_BASE Type: Numeric

Example: bios.CLK.TIMERS_BASE = 0x07000;

• Base Address of Timers in Data Space. This property points to the address of the OMAP 2420
timers as mapped in the Data space by the ARM. (OMAP 2420 only)

Tconf Name: TIMERS_BASE_DATAMEMType: Numeric

Example: bios.CLK.TIMERS_BASE_DATAMEM = 0x7ee000;

• Enable CLK Manager. If this property is set to true, the on-device timer hardware is used to drive
the high- and low-resolution times and to trigger execution of CLK functions. On platforms where the
separate ENABLEHTIME property is available, setting the ENABLECLK property to true and the
ENABLEHTIME property to false enables only the low-resolution timer.

Tconf Name: ENABLECLK Type: Bool

Example: bios.CLK.ENABLECLK = true;

• Use high resolution time for internal timings. If this property is set to true, the high-resolution timer
is used to monitor internal periods. Otherwise the less intrusive, low-resolution timer is used.

Tconf Name: HIRESTIME Type: Bool

Example: bios.CLK.HIRESTIME = true;

• Enable high resolution timer. If this property is set to true, this parameter enables the high-
resolution timer. This property is available only for the ’C5501, ’C5502, and OMAP 2320/2420. For
platforms that use only one timer, the high-resolution and low-resolution timers are both enabled and
disabled by the "Enable CLK Manager" property.

Tconf Name: ENABLEHTIME Type: Bool

Example: bios.CLK.ENABLEHTIME = true;

• Microseconds/Int. The number of microseconds between timer interrupts. The period register is set
to a value that achieves the desired period as closely as possible.

Tconf Name: MICROSECONDS Type: Int16

Example: bios.CLK.MICROSECONDS = 1000;

• Directly configure on-device timer registers. If this property is set to true, the timer’s hardware
registers, PRD and TDDR, can be directly set to the desired values. In this case, the
Microseconds/Int property is computed based on the values in PRD and TDDR and the CPU clock
speed in the GBL Module Properties.

Tconf Name: CONFIGURETIMER Type: Bool

Example: bios.CLK.CONFIGURETIMER = false;
SPRU404Q—August 2012 Application Program Interface 63
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

CLK Module www.ti.com
• Fix TDDR. If this property is set to true, the value in the TDDR property is not modified by changes
to the Microseconds/Int property. (Not available for OMAP 2320/2420.)

Tconf Name: FIXTDDR Type: Bool

Example: bios.CLK.FIXTDDR = false;

• TDDR register. The value of the on-device timer prescalar. (Not available for 1x10, 59xx, and OMAP
2320/2420.)

Tconf Name: TCRTDDR Type: EnumInt

Example: bios.CLK.TCRTDDR = 2;

• PRD Register. This value specifies the interrupt period and is used to configure the PRD register.
The default value varies depending on the platform.

Tconf Name: PRD Type: Int16

Example: bios.CLK.PRD = 33250;

• LOAD_TIM register. This value is used to configure the PRD register. This is supported only for the
1x10 (1510, 1610, and 1710) and 59xx (5905, 5910, and 5912).

Tconf Name: LOAD_TIM Type: Int16

Example: bios.CLK.LOAD_TIM = 2999;

• PTV register. Sets the prescalar register value of the timer. This value is used in calculating the rate
at which the timer counter is decremented. The valid values of 0 to 7 lead to prescale values from 02
hex to 100 hex. (1x10 and 59xx only.)

Tconf Name: TCRPTV Type: EnumInt

Options: 0 to 7

Example: bios.CLK.TCRPTV = 0;

• Clock Rate to ltime timer. Specify the rate in MHz for the low-resolution time. On the OMAP 2420,
this may be either the 0.032 MHz clock, the 12 MHz clock, or the external clock. (OMAP 2420 only.)

Tconf Name: INPUTCLK Type: Numeric

Example: bios.CLK.INPUTCLK = 0.032;

• Clock Rate to htime timer. Specify the rate in MHz for the high-resolution time. On the OMAP 2420,
this may be either the 0.032 MHz clock, the 12 MHz clock, or the external clock. (OMAP 2420 only.)

Tconf Name: HTIMECLK Type: Numeric

Example: bios.CLK.HTIMECLK = 12.0;

• Instructions/Int. The number of instruction cycles represented by the period specified above. This
is an informational property only.

Tconf Name: N/A

• Timer 0-2 Function. Specifies the function to be executed when the corresponding timer interrupt
occurs. (C5505, C5515, C5517, C5535 only)

Tconf Name: INPUTCLK Type: Numeric

Example: bios.CLK.TIMER0FUNC = prog.extern("timer0Fxn");

Platform Options Size Registers

’C5503, ’C5507, ’C5509,
’C5510, ’C5561

00h to 0fh 4 bits part of TCR

’C5501, ’C5502 00h to 0ffffffffh 32 bits PRD3:PRD4
64 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com CLK Module
• Timer 0-2 Argument. Specifies the argument to be passed to the timer function when the
corresponding timer interrupt occurs. (C5505, C5515, C5517, C5535 only)

Tconf Name: INPUTCLK Type: Numeric

Example: bios.CLK.TIMER0ARG = 0;

CLK Object Properties

The Clock Manager allows you to create an arbitrary number of CLK objects. Clock objects have
functions, which are executed by the Clock Manager every time a timer interrupt occurs. These functions
can invoke any DSP/BIOS operations allowable from within an HWI except HWI_enter or HWI_exit.

To create a CLK object in a configuration script, use the following syntax:

var myClk = bios.CLK.create("myClk");

The following properties can be set for a clock function object in the CLK Object Properties dialog in the
DSP/BIOS Configuration Tool or in a Tconf script. The Tconf examples assume the myClk object has
been created as shown.

• comment. Type a comment to identify this CLK object.

Tconf Name: comment Type: String

Example: myClk.comment = "Runs timeFxn";

• function. The function to be executed when the timer hardware interrupt occurs. This function must
be written like an HWI function; it must be written in C or assembly and must save and restore any
registers this function modifies. However, this function can not call HWI_enter or HWI_exit because
DSP/BIOS calls them internally before and after this function runs.

These functions should be very short as they are performed frequently.

Since all CLK functions are performed at the same periodic rate, functions that need to run at a
multiple of that rate should either count the number of interrupts and perform their activities when the
counter reaches the appropriate value or be configured as PRD objects.

If this function is written in C and you are using the DSP/BIOS Configuration Tool, use a leading
underscore before the C function name. (The DSP/BIOS Configuration Tool generates assembly
code, which must use leading underscores when referencing C functions or labels.) If you are using
Tconf, do not add an underscore before the function name; Tconf adds the underscore needed to call
a C function from assembly internally.

Tconf Name: fxn Type: Extern

Example: myClk.fxn = prog.extern("timeFxn");

• order. You can change the sequence in which CLK functions are executed by specifying the order
property of all the CLK functions.

Tconf Name: order Type: Int16

Example: myClk.order = 2;
SPRU404Q—August 2012 Application Program Interface 65
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

CLK_countspms www.ti.com
C Interface

Syntax
ncounts = CLK_countspms();

Parameters
Void

Return Value
LgUns ncounts;

Reentrant
yes

Description

CLK_countspms returns the number of high-resolution timer counts per millisecond. See Table 2-2 on
page 62 for information about how the high-resolution rate is set.

CLK_countspms can be used to compute an absolute length of time from the number of low resolution
timer interrupts. For example, the following code computes time in milliseconds.

 timeAbs = (CLK_getltime() * CLK_getprd()) / CLK_countspms();

The equation below computes time in milliseconds since the last wrap of the high-resolution timer
counter.

timeAbs = CLK_gethtime() / CLK_countspms();

See Also
CLK_gethtime
CLK_getprd
CLK_cpuCyclesPerHtime
CLK_cpuCyclesPerLtime
GBL_getClkin
STS_delta

CLK_countspms Number of hardware timer counts per millisecond
66 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com CLK_cpuCyclesPerHtime
C Interface

Syntax
ncycles = CLK_cpuCyclesPerHtime(Void);

Parameters
Void

Return Value
Float ncycles;

Reentrant
yes

Description
CLK_cpuCyclesPerHtime returns the multiplier required to convert from high-resolution time to CPU
cycles. High-resolution time is returned by CLK_gethtime.

For example, the following code returns the number of CPU cycles and the absolute time elapsed during
processing.

time1 = CLK_gethtime();

... processing ...

time2 = CLK_gethtime();

CPUcycles = (time2 - time1) * CLK_cpuCyclesPerHtime();

/* calculate absolute time in milliseconds */

TimeAbsolute = CPUCycles / GBL_getFrequency();

See Also
CLK_gethtime
CLK_getprd
GBL_getClkin

CLK_cpuCyclesPerHtime Return multiplier for converting high-res time to CPU cycles
SPRU404Q—August 2012 Application Program Interface 67
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

CLK_cpuCyclesPerLtime www.ti.com
C Interface

Syntax
ncycles = CLK_cpuCyclesPerLtime(Void);

Parameters
Void

Return Value
Float ncycles;

Reentrant
yes

Description
CLK_cpuCyclesPerLtime returns the multiplier required to convert from low-resolution time to CPU
cycles. Low-resolution time is returned by CLK_getltime.

For example, the following code returns the number of CPU cycles and milliseconds elapsed during
processing.

time1 = CLK_getltime();

... processing ...

time2 = CLK_getltime();

CPUcycles = (time2 - time1) * CLK_cpuCyclesPerLtime();

/* calculate absolute time in milliseconds */

TimeAbsolute = CPUCycles / GBL_getFrequency();

See Also
CLK_getltime
CLK_getprd
GBL_getClkin

CLK_cpuCyclesPerLtime Return multiplier for converting low-res time to CPU cycles
68 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com CLK_gethtime
C Interface

Syntax
currtime = CLK_gethtime();

Parameters
Void

Return Value
LgUns currtime /* high-resolution time */

Reentrant
no

Description
CLK_gethtime returns the number of high-resolution clock cycles that have occurred as a 32-bit value.
When the number of cycles reaches the maximum value that can be stored in 32 bits, the value wraps
back to 0. See “High-Resolution Time” on page 62 for information about how the high-resolution rate is
set.

CLK_gethtime provides a value with greater accuracy than CLK_getltime, but which wraps back to 0
more frequently. For example, if the timer tick rate is 200 MHz, then regardless of the period register
value, the CLK_gethtime value wraps back to 0 approximately every 86 seconds.

CLK_gethtime can be used in conjunction with STS_set and STS_delta to benchmark code.
CLK_gethtime can also be used to add a time stamp to event logs.

Constraints and Calling Context

• CLK_gethtime cannot be called from the program’s main() function.

Example
/* ======== showTime ======== */

 Void showTicks

 {

 LOG_printf(&trace, "time = %d", CLK_gethtime());

 }

See Also
CLK_getltime
PRD_getticks
STS_delta

CLK_gethtime Get high-resolution time
SPRU404Q—August 2012 Application Program Interface 69
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

CLK_getltime www.ti.com
C Interface

Syntax
currtime = CLK_getltime();

Parameters
Void

Return Value
LgUns currtime /* low-resolution time */

Reentrant
yes

Description
CLK_getltime returns the number of timer interrupts that have occurred as a 32-bit time value. When the
number of interrupts reaches the maximum value that can be stored in 32 bits, value wraps back to 0 on
the next interrupt.

The low-resolution time is the number of timer interrupts that have occurred. See “Low-Resolution Time”
on page 61 for information about how this rate is set.

The default low resolution interrupt rate is 1 millisecond/interrupt. By adjusting the period register, you
can set rates from less than 1 microsecond/interrupt to more than 1 second/interrupt.

CLK_gethtime provides a value with more accuracy than CLK_getltime, but which wraps back to 0 more
frequently. For example, if the timer tick rate is 80 MHz, and you use the default period register value of
40000, the CLK_gethtime value wraps back to 0 approximately every 107 seconds, while the
CLK_getltime value wraps back to 0 approximately every 49.7 days.

CLK_getltime is often used to add a time stamp to event logs for events that occur over a relatively long
period of time.

Constraints and Calling Context

• CLK_getltime cannot be called from the program’s main() function.

Example
/* ======== showTicks ======== */

 Void showTicks

 {

 LOG_printf(&trace, "time = 0x%x %x",

 (Int)(CLK_getltime() >> 16), (Int)CLK_getltime());

 }

See Also
CLK_gethtime
PRD_getticks
STS_delta

CLK_getltime Get low-resolution time
70 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com CLK_getprd
C Interface

Syntax
period = CLK_getprd();

Parameters
Void

Return Value
Uns period /* period register value */

Reentrant
yes

Description

CLK_getprd returns the number of high-resolution timer counts per low-resolution interrupt. See Table 2-
2 on page 62 for information about how the high-resolution rate is set.

CLK_getprd can be used to compute an absolute length of time from the number of low-resolution timer
interrupts. For example, the following code computes time in milliseconds.

 timeAbs = (CLK_getltime() * CLK_getprd()) / CLK_countspms();

See Also
CLK_countspms
CLK_gethtime
CLK_cpuCyclesPerHtime
CLK_cpuCyclesPerLtime
GBL_getClkin
STS_delta

CLK_getprd Get period register value
SPRU404Q—August 2012 Application Program Interface 71
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

CLK_reconfig www.ti.com
C Interface

Syntax
status = CLK_reconfig();

Parameters
Void

Return Value
Bool status /* FALSE if failed */

Reentrant
yes

Description

This function needs to be called after a call to GBL_setFrequency. It computes values for the timer period
and the prescalar registers using the new CPU frequency. The new values for the period and prescalar
registers ensure that the CLK interrupt runs at the statically configured interval in microseconds.

The return value is FALSE if the timer registers cannot accommodate the current frequency or if some
other internal error occurs.

When calling CLK_reconfig outside of main(), you must also call CLK_stop and CLK_start to stop and
restart the timer. Use the following call sequence:

/* disable interrupts if an interrupt could lead to

 another call to CLK_reconfig or if interrupt

 processing relies on having a running timer */

HWI_disable() or SWI_disable()

GBL_setFrequency(cpuFreqInKhz);

CLK_stop();

CLK_reconfig();

CLK_start();

HWI_restore() or SWI_enable()

When calling CLK_reconfig from main(), the timer has not yet been started. (The timer is started as part
of BIOS_startup(), which is called internally after main.) As a result, you can use the following simplified
call sequence in main():

GBL_setFrequency(cpuFreqInKhz);

CLK_reconfig(Void);

Note that GBL_setFrequency does not affect the PLL, and therefore has no effect on the actual frequency
at which the DSP is running. It is used only to make DSP/BIOS aware of the DSP frequency you are
using.

Constraints and Calling Context

• When calling CLK_reconfig from anywhere other than main(), you must also use CLK_stop and
CLK_start.

CLK_reconfig Reset timer period and registers using current CPU frequency
72 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com CLK_reconfig
• Call HWI_disable/HWI_restore or SWI_disable/SWI_enable around a block that stops, configures,
and restarts the timer as needed to prevent re-entrancy or other problems. That is, you must disable
interrupts if an interrupt could lead to another call to CLK_reconfig or if interrupt processing relies on
having a running timer to ensure that these non-reentrant functions are not interrupted.

• If you use the PWRM module for V/F scaling and the "Reprogram BIOS clock after frequency scaling"
PWRM property is configured as "true", do not call CLK_reconfig. This is because the PWRM module
internally calls this API.

• If you do not stop and restart the timer, CLK_reconfig can only be called from the program’s main()
function.

• If you use CLK_reconfig, you should also use GBL_setFrequency.

See Also
GBL_getFrequency
GBL_setFrequency
CLK_start
CLK_stop
SPRU404Q—August 2012 Application Program Interface 73
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

CLK_setTimerFunc www.ti.com
C Interface

Syntax
CLK_setTimerFunc(timerId, *func, arg);

Parameters
Uns timerId; /* timer ID number */
Void (*func)(Arg); /* function for timer to run */
Arg arg; /* argument to pass to timer function */

Return Value
Void

Description

Certain C55x devices include three 32-bit general-purpose timers. Currently, the devices that provide
such timers are the C5505, C5515, C5517, and C5535.

This function dynamically sets a timer interrupt function for one of the three timers. See Appendix E for
details.

The timerId should be 0, 1, or 2 to correspond to the timer being used. By default, the DSP/BIOS CLK
manager uses timer 0.

The timer interrupt function you specify should have the following signature:

Void timerfunc(Arg arg);

Your timer function must acknowledge the timer's interrupt and clear the timer's interrupt pending status
in the timer’s "interrupt" register as well as its corresponding status in the "Timer Interrupt Aggregation
Flag Register" at IO address 0x1c14.

For example, the following statement dynamically sets timer 1's interrupt handler:

CLK_setTimerFunc(1, myTimer1Func, 4);

When timer 1's interrupt occurs, the CLK interrupt dispatcher calls the configured handler as follows:

myTimer1Func(4);

In addition to specifying a user function using this API, you must fully configure the timer specified by
timerId.

See Also
C55_enableInt

CLK_setTimerFunc Set the function for a special timer
74 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com CLK_start
C Interface

Syntax
CLK_start();

Parameters
Void

Return Value
Void

Reentrant
no

Description

This function starts the low-resolution timer if it has been halted by CLK_stop. The period and prescalar
registers are updated to reflect any changes made by a call to CLK_reconfig. This function then resets
the timer counters and starts the timer.

CLK_start should only be used in conjunction with CLK_reconfig and CLK_stop. See the section on
CLK_reconfig for details and the allowed calling sequence.

Note that all ’C55x platforms except the ’C5501, ’C5502, and OMAP 2320/2420 use the same timer to
drive low-resolution and high-resolution times. On such platforms, both times are affected by this API.

Constraints and Calling Context

• Call HWI_disable/HWI_restore or SWI_disable/SWI_enable around a block that stops, configures,
and restarts the timer as needed to prevent re-entrancy or other problems. That is, you must disable
interrupts if an interrupt could lead to another call to CLK_start or if interrupt processing relies on
having a running timer to ensure that these non-reentrant functions are not interrupted

• This function cannot be called from main().

• If you use the PWRM module for V/F scaling and the "Reprogram BIOS clock after frequency scaling"
PWRM property is "true", do not call CLK_start. This is because the PWRM module internally calls
this API.

See Also
CLK_reconfig
CLK_stop
GBL_setFrequency

CLK_start Restart the low-resolution timer
SPRU404Q—August 2012 Application Program Interface 75
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

CLK_stop www.ti.com
C Interface

Syntax
CLK_stop();

Parameters
Void

Return Value
Void

Reentrant
no

Description

This function stops the low-resolution timer. It can be used in conjunction with CLK_reconfig and
CLK_start to reconfigure the timer at run-time.

Note that all ’C55x platforms except the ’C5501, ’C5502, and OMAP 2320/2420 use the same timer to
drive low-resolution and high-resolution times. On such platforms, both times are affected by this API.

CLK_stop should only be used in conjunction with CLK_reconfig and CLK_start, and only in the required
calling sequence. See the section on CLK_reconfig for details.

Constraints and Calling Context

• Call HWI_disable/HWI_restore or SWI_disable/SWI_enable around a block that stops, configures,
and restarts the timer as needed to prevent re-entrancy or other problems. That is, you must disable
interrupts if an interrupt could lead to another call to CLK_stop or if interrupt processing relies on
having a running timer to ensure that these non-reentrant functions are not interrupted

• This function cannot be called from main().

• If you use the PWRM module for V/F scaling and the "Reprogram BIOS clock after frequency scaling"
PWRM property is "true", do not call CLK_stop. This is because the PWRM module internally calls
this API.

See Also
CLK_reconfig
CLK_start
GBL_setFrequency

CLK_stop Halt the low-resolution timer
76 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DEV Module
2.5 DEV Module

The DEV module provides the device interface.

Functions

• DEV_createDevice. Dynamically create device

• DEV_deleteDevice. Delete dynamically-created device

• DEV_match. Match device name with driver

• Dxx_close. Close device

• Dxx_ctrl. Device control

• Dxx_idle. Idle device

• Dxx_init. Initialize device

• Dxx_issue. Send frame to device

• Dxx_open. Open device

• Dxx_ready. Device ready

• Dxx_reclaim. Retrieve frame from device

Description
DSP/BIOS provides two device driver models that enable applications to communicate with DSP
peripherals: IOM and SIO/DEV.

The components of the IOM model are illustrated in the following figure. It separates hardware-
independent and hardware-dependent layers. Class drivers are hardware independent; they manage
device instances, synchronization and serialization of I/O requests. The lower-level mini-driver is
hardware-dependent. See the DSP/BIOS Driver Developer’s Guide (SPRU616) for more information on
the IOM model.

The SIO/DEV model provides a streaming I/O interface. In this model, the application indirectly invokes
DEV functions implemented by the driver managing the physical device attached to the stream, using
generic functions provided by the SIO module. See the DSP/BIOS User’s Guide (SPRU423) for more
information on the SIO/DEV model.

Application / Framework

SIO APIsPIP APIs

PIO Adapter DIO Adapter

GIO APIs

IOM Mini-Driver(s)

Device
Driver

On-Chip Peripheral Hardware

Chip Support Library (CSL)

Off-Chip Peripheral Hardware

Class
Driver

Mini-
Driver
SPRU404Q—August 2012 Application Program Interface 77
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DEV Module www.ti.com
The model used by a device is identified by its function table type. A type of IOM_Fxns is used with the
IOM model. A type of DEV_Fxns is used with the DEV/SIO model.

The DEV module provides the following capabilities:

• Device object creation. You can create device objects through static configuration or dynamically
through the DEV_createDevice function. The DEV_deleteDevice and DEV_match functions are also
provided for managing device objects.

• Driver function templates. The Dxx functions listed as part of the DEV module are templates for
driver functions. These are the functions you create for drivers that use the DEV/SIO model.

Constants, Types, and Structures
#define DEV_INPUT 0
#define DEV_OUTPUT 1

typedef struct DEV_Frame { /* frame object */

 QUE_Elem link; /* queue link */

 Ptr addr; /* buffer address */

 size_t size; /* buffer size */

 Arg misc; /* reserved for driver */

 Arg arg; /* user argument */

 Uns cmd; /* mini-driver command */

 Int status; /* status of command */

} DEV_Frame;

typedef struct DEV_Obj { /* device object */

 QUE_Handle todevice; /* downstream frames here */
 QUE_Handle fromdevice; /* upstream frames here */
 size_t bufsize; /* buffer size */
 Uns nbufs; /* number of buffers */
 Int segid; /* buffer segment ID */
 Int mode; /* DEV_INPUT/DEV_OUTPUT */
#if (defined(_54_) && defined(_FAR_MODE)) || defined(_55_)

 LgInt devid; /* device ID */

#else

 Int devid; /* device ID */

#endif

 Ptr params; /* device parameters */

 Ptr object; /* ptr to dev instance obj */

 DEV_Fxns fxns; /* driver functions */

 Uns timeout; /* SIO_reclaim timeout value */

 Uns align; /* buffer alignment */

 DEV_Callback *callback; /* pointer to callback */

} DEV_Obj;

typedef struct DEV_Fxns { /* driver function table */

 Int (*close)(DEV_Handle);
 Int (*ctrl)(DEV_Handle, Uns, Arg);
 Int (*idle)(DEV_Handle, Bool);
 Int (*issue)(DEV_Handle);
 Int (*open)(DEV_Handle, String);
78 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DEV Module
 Bool (*ready)(DEV_Handle, SEM_Handle);
 size_t (*reclaim)(DEV_Handle);
} DEV_Fxns;

typedef struct DEV_Callback {

 Fxn fxn; /* function */

 Arg arg0; /* argument 0 */

 Arg arg1; /* argument 1 */

} DEV_Callback;

typedef struct DEV_Device { /* device specifier */

 String name; /* device name */

 Void * fxns; /* device function table*/

#if (defined(_54_) && defined(_FAR_MODE)) || defined(_55_)
 LgInt devid; /* device ID */

#else

 Int devid; /*device ID */

#endif

 Ptr params; /* device parameters */

 Uns type; /* type of the device */

 Ptr devp; /* pointer to device handle */

} DEV_Device;

typedef struct DEV_Attrs {

#if (defined(_54_) && defined(_FAR_MODE)) || defined(_55_)
 LgInt devid; /* device id */

#else

 Int devid; /* device id */

#endif

 Ptr params; /* device parameters */

 Uns type; /* type of the device */

 Ptr devp; /* device global data ptr */

} DEV_Attrs;

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the DEV Manager Properties and DEV Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Instance Configuration Parameters

DEV Manager Properties

The default configuration contains managers for the following built-in device drivers:

Name Type Default (Enum Options)

comment String "<add comments here>"

initFxn Arg 0x00000000

fxnTable Arg 0x00000000

fxnTableType EnumString "DEV_Fxns" ("IOM_Fxns")

deviceId Arg 0x00000000

params Arg 0x00000000

deviceGlobalDataPtr Arg 0x00000000
SPRU404Q—August 2012 Application Program Interface 79
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DEV Module www.ti.com
• DGN Driver (software generator driver). pseudo-device that generates one of several data
streams, such as a sin/cos series or white noise. This driver can be useful for testing applications that
require an input stream of data.

• DHL Driver (host link driver). Driver that uses the HST interface to send data to and from the Host
Channel Control Analysis Tool.

• DIO Adapter (class driver). Driver used with the device driver model.

• DPI Driver (pipe driver). Software device used to stream data between DSP/BIOS tasks.

To configure devices for other drivers, use Tconf to create a User-defined Device (UDEV) object. There
are no global properties for the user-defined device manager.

The following additional device drivers are supplied with DSP/BIOS:

• DGS Driver. Stackable gather/scatter driver

• DNL Driver. Null driver

• DOV Driver. Stackable overlap driver

• DST Driver. Stackable “split” driver

• DTR Driver. Stackable streaming transformer driver

DEV Object Properties

The following properties can be set for a user-defined device in the UDEV Object Properties dialog in the
DSP/BIOS Configuration Tool or in a Tconf script. To create a user-defined device object in a
configuration script, use the following syntax:

var myDev = bios.UDEV.create("myDev");

The Tconf examples assume the myDev object is created as shown.

• comment. Type a comment to identify this object.

Tconf Name: comment Type: String

Example: myDev.comment = "My device";

• init function. Specify the function to run to initialize this device.
Use a leading underscore before the function name if the function is written in C and you are using
the DSP/BIOS Configuration Tool. If you are using Tconf, do not add an underscore before the
function name; Tconf adds the underscore needed to call a C function from assembly internally.

Tconf Name: initFxn Type: Arg

Example: myDev.initFxn = prog.extern("myInit");

• function table ptr. Specify the name of the device functions table for the driver or mini-driver. This
table is of type DEV_Fxns or IOM_Fxns depending on the setting for the function table type property.

Tconf Name: fxnTable Type: Arg

Example: myDev.fxnTable = prog.extern("mydevFxnTable");

• function table type. Choose the type of function table used by the driver to which this device
interfaces. Use the IOM_Fxns option if you are using the DIO class driver to interface to a mini-driver
with an IOM_Fxns function table. Otherwise, use the DEV_Fxns option for other drivers that use a
DEV_Fxns function table and Dxx functions. You can create a DIO object only if a UDEV object with
the IOM_Fxns function table type exists.

Tconf Name: fxnTableType Type: EnumString

Options: "DEV_Fxns", "IOM_Fxns"

Example: myDev.fxnTableType = "DEV_Fxns";
80 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DEV Module
• device id. Specify the device ID. If the value you provide is non-zero, the value takes the place of a
value that would be appended to the device name in a call to SIO_create. The purpose of such a
value is driver-specific.

Tconf Name: deviceId Type: Arg

Example: myDev.deviceId = prog.extern("devID");

• device params ptr. If this device uses additional parameters, provide the name of the parameter
structure. This structure should have a name with the format DXX_Params where XX is the two-letter
code for the driver used by this device.

Use a leading underscore before the structure name if the structure is declared in C and you are
using the DSP/BIOS Configuration Tool.

Tconf Name: params Type: Arg

Example: myDev.params = prog.extern("myParams");

• device global data ptr. Provide a pointer to any global data to be used by this device. This value
can be set only if the function table type is IOM_Fxns.

Tconf Name: deviceGlobalDataPtr Type: Arg

Example: myDev.deviceGlobalDataPtr = 0x00000000;
SPRU404Q—August 2012 Application Program Interface 81
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DEV_createDevice www.ti.com
C Interface

Syntax
status = DEV_createDevice(name, fxns, initFxn, attrs);

Parameters
String name; /* name of device to be created */
Void *fxns; /* pointer to device function table */
Fxn initFxn; /* device init function */
DEV_Attrs *attrs; /* pointer to device attributes */

Return Value
Int status; /* result of operation */

Reentrant
no

Description
DEV_createDevice allows an application to create a user-defined device object at run-time. The object
created has parameters similar to those defined statically for the DEV Object Properties. After being
created, the device can be used as with statically-created DEV objects.

The name parameter specifies the name of the device. The device name should begin with a slash (/) for
consistency with statically-created devices and to permit stacking drivers. For example "/codec" might be
the name. The name must be unique within the application. If the specified device name already exists,
this function returns failure.

The fxns parameter points to the device function table. The function table may be of type DEV_Fxns or
IOM_Fxns.

The initFxn parameter specifies a device initialization function. The function passed as this parameter is
run if the device is created successfully. The initialization function is called with interrupts disabled. If
several devices may use the same driver, the initialization function (or a function wrapper) should ensure
that one-time initialization actions are performed only once.

The attrs parameter points to a structure of type DEV_Attrs. This structure is used to pass additional
device attributes to DEV_createDevice. If attrs is NULL, the device is created with default attributes.
DEV_Attrs has the following structure:

typedef struct DEV_Attrs {

#if (defined(_54_) && defined(_FAR_MODE)) || defined(_55_)
 LgInt devid; /* device id */

#else

 Int devid; /* device id */

#endif

 Ptr params; /* device parameters */

 Uns type; /* type of the device */

 Ptr devp; /* device global data ptr */

} DEV_Attrs;

The devid item specifies the device ID. If the value you provide is non-zero, the value takes the place of
a value that would be appended to the device name in a call to SIO_create. The purpose of such a value
is driver-specific. The default value is NULL.

DEV_createDevice Dynamically create device
82 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DEV_createDevice
The params item specifies the name of a parameter structure that may be used to provide additional
parameters. This structure should have a name with the format DXX_Params where XX is the two-letter
code for the driver used by this device. The default value is NULL.

The type item specifies the type of driver used with this device. The default value is DEV_IOMTYPE. The
options are:

The devp item specifies the device global data pointer, which points to any global data to be used by this
device. This value can be set only if the table type is IOM_Fxns.The default value is NULL.

If an initFxn is specified, that function is called as a result of calling DEV_createDevice. In addition, if the
device type is DEV_IOMTYPE, the mdBindDev function in the function table pointed to by the fxns
parameter is called as a result of calling DEV_createDevice. Both of these calls are made with interrupts
disabled.

DEV_createDevice returns one of the following status values:

DEV_createDevice calls SYS_error if mdBindDev returns a failure condition. The device is not created if
mdBindDev fails, and DEV_createDevice returns the IOM error returned by the mdBindDev failure.

Constraints and Calling Context

• This function cannot be called from a SWI or HWI.

• This function can only be used if dynamic memory allocation is enabled.

• The device function table must be consistent with the type specified in the attrs structure. DSP/BIOS
does not check to ensure that the types are consistent.

Type Use With

DEV_IOMTYPE Mini-drivers used in the IOM model.

DEV_SIOTYPE DIO adapter with SIO streams or other DEV/SIO drivers

Constant Description

SYS_OK Success.

SYS_EINVAL A device with the specified name already exists.

SYS_EALLOC The heap is not large enough to allocate the device.
SPRU404Q—August 2012 Application Program Interface 83
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DEV_createDevice www.ti.com
Example

Int status;

/* Device attributes of device "/pipe0" */

DEV_Attrs dpiAttrs = {

 NULL,

 NULL,

 DEV_SIOTYPE,

 0

};

status = DEV_createDevice("/pipe0", &DPI_FXNS,

 (Fxn)DPI_init, &dpiAttrs);

if (status != SYS_OK) {

 SYS_abort("Unable to create device");

}

See Also
SIO_create
84 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DEV_deleteDevice
C Interface

Syntax
status = DEV_deleteDevice(name);

Parameters
String name; /* name of device to be deleted */

Return Value
Int status; /* result of operation */

Reentrant
no

Description
DEV_deleteDevice deallocates the specified dynamically-created device and deletes it from the list of
devices in the application.

The name parameter specifies the device to delete. This name must match a name used with
DEV_createDevice.

Before deleting a device, delete any SIO streams that use the device. SIO_delete cannot be called after
the device is deleted.

If the device type is DEV_IOMTYPE, the mdUnBindDev function in the function table pointed to by the
fxns parameter of the device is called as a result of calling DEV_deleteDevice. This call is made with
interrupts disabled.

DEV_createDevice returns one of the following status values:

DEV_deleteDevice calls SYS_error if mdUnBindDev returns a failure condition. The device is deleted
even if mdUnBindDev fails, but DEV_deleteDevice returns the IOM error returned by mdUnBindDev.

Constraints and Calling Context

• This function cannot be called from a SWI or HWI.

• This function can be used only if dynamic memory allocation is enabled.

• The device name must match a dynamically-created device. DSP/BIOS does not check that the
device was not created statically.

Example

status = DEV_deleteDevice("/pipe0");

See Also
SIO_delete

DEV_deleteDevice Delete a dynamically-created device

Constant Description

SYS_OK Success.

SYS_ENODEV No device with the specified name exists.
SPRU404Q—August 2012 Application Program Interface 85
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DEV_match www.ti.com
C Interface

Syntax
substr = DEV_match(name, device);

Parameters
String name; /* device name */
DEV_Device **device; /* pointer to device table entry */

Return Value
String substr; /* remaining characters after match */

Description
DEV_match searches the device table for the first device name that matches a prefix of name. The output
parameter, device, points to the appropriate entry in the device table if successful and is set to NULL on
error. The DEV_Device structure is defined in dev.h.

The substr return value contains a pointer to the characters remaining after the match. This string is used
by stacking devices to specify the name(s) of underlying devices (for example, /scale10/sine might match
/scale10, a stacking device, which would, in turn, use /sine to open the underlying generator device).

See Also
SIO_create

DEV_match Match a device name with a driver
86 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Dxx_close
Important: This API will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

C Interface

Syntax
status = Dxx_close(device);

Parameters
DEV_Handle device; /* device handle */

Return Value
Int status; /* result of operation */

Description
Dxx_close closes the device associated with device and returns an error code indicating success
(SYS_OK) or failure. device is bound to the device through a prior call to Dxx_open.

SIO_delete first calls Dxx_idle to idle the device. Then it calls Dxx_close.

Once device has been closed, the underlying device is no longer accessible via this descriptor.

Constraints and Calling Context

• device must be bound to a device by a prior call to Dxx_open.

See Also
Dxx_idle
Dxx_open
SIO_delete

Dxx_close Close device
SPRU404Q—August 2012 Application Program Interface 87
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Dxx_ctrl www.ti.com
Important: This API will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

C Interface

Syntax
status = Dxx_ctrl(device, cmd, arg);

Parameters
DEV_Handle device /* device handle */
Uns cmd; /* driver control code */
Arg arg; /* control operation argument */

Return Value
Int status; /* result of operation */

Description
Dxx_ctrl performs a control operation on the device associated with device and returns an error code
indicating success (SYS_OK) or failure. The actual control operation is designated through cmd and arg,
which are interpreted in a driver-dependent manner.

Dxx_ctrl is called by SIO_ctrl to send control commands to a device.

Constraints and Calling Context

• device must be bound to a device by a prior call to Dxx_open.

See Also
SIO_ctrl

Dxx_ctrl Device control operation
88 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Dxx_idle
Important: This API will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

C Interface

Syntax
status = Dxx_idle(device, flush);

Parameters
DEV_Handle device; /* device handle */
Bool flush; /* flush output flag */

Return Value
Int status; /* result of operation */

Description
Dxx_idle places the device associated with device into its idle state and returns an error code indicating
success (SYS_OK) or failure. Devices are initially in this state after they are opened with Dxx_open.

Dxx_idle returns the device to its initial state. Dxx_idle should move any frames from the device-
>todevice queue to the device->fromdevice queue. In SIO_ISSUERECLAIM mode, any outstanding
buffers issued to the stream must be reclaimed in order to return the device to its true initial state.

Dxx_idle is called by SIO_idle, SIO_flush, and SIO_delete to recycle frames to the appropriate queue.

flush is a boolean parameter that indicates what to do with any pending data of an output stream. If flush
is TRUE, all pending data is discarded and Dxx_idle does not block waiting for data to be processed. If
flush is FALSE, the Dxx_idle function does not return until all pending output data has been rendered. All
pending data in an input stream is always discarded, without waiting.

Constraints and Calling Context

• device must be bound to a device by a prior call to Dxx_open.

See Also
SIO_delete
SIO_idle
SIO_flush

Dxx_idle Idle device
SPRU404Q—August 2012 Application Program Interface 89
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Dxx_init www.ti.com
Important: This API will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

C Interface

Syntax
Dxx_init();

Parameters
Void

Return Value
Void

Description
Dxx_init is used to initialize the device driver module for a particular device. This initialization often
includes resetting the actual device to its initial state.

Dxx_init is called at system startup, before the application’s main() function is called.

Dxx_init Initialize device
90 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Dxx_issue
Important: This API will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

C Interface

Syntax
status = Dxx_issue(device);

Parameters
DEV_Handle device; /* device handle */

Return Value
Int status; /* result of operation */

Description
Dxx_issue is used to notify a device that a new frame has been placed on the device->todevice queue.
If the device was opened in DEV_INPUT mode, Dxx_issue uses this frame for input. If the device was
opened in DEV_OUTPUT mode, Dxx_issue processes the data in the frame, then outputs it. In either
mode, Dxx_issue ensures that the device has been started and returns an error code indicating success
(SYS_OK) or failure.

Dxx_issue does not block. In output mode it processes the buffer and places it in a queue to be rendered.
In input mode, it places a buffer in a queue to be filled with data, then returns.

Dxx_issue is used in conjunction with Dxx_reclaim to operate a stream. The Dxx_issue call sends a
buffer to a stream, and the Dxx_reclaim retrieves a buffer from a stream. Dxx_issue performs processing
for output streams, and provides empty frames for input streams. The Dxx_reclaim recovers empty
frames in output streams, retrieves full frames, and performs processing for input streams.

SIO_issue calls Dxx_issue after placing a new input frame on the device->todevice. If Dxx_issue fails, it
should return an error code. Before attempting further I/O through the device, the device should be idled,
and all pending buffers should be flushed if the device was opened for DEV_OUTPUT.

In a stacking device, Dxx_issue must preserve all information in the DEV_Frame object except link and
misc. On a device opened for DEV_INPUT, Dxx_issue should preserve the size and the arg fields. On a
device opened for DEV_OUTPUT, Dxx_issue should preserve the buffer data (transformed as
necessary), the size (adjusted as appropriate by the transform) and the arg field. The DEV_Frame
objects themselves do not need to be preserved, only the information they contain.

Dxx_issue must preserve and maintain buffers sent to the device so they can be returned in the order
they were received, by a call to Dxx_reclaim.

Constraints and Calling Context

• device must be bound to a device by a prior call to Dxx_open.

See Also
Dxx_reclaim
SIO_issue

Dxx_issue Send a buffer to the device
SPRU404Q—August 2012 Application Program Interface 91
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Dxx_open www.ti.com
Important: This API will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

C Interface

Syntax
status = Dxx_open(device, name);

Parameters
DEV_Handle device; /* driver handle */
String name; /* device name */

Return Value
Int status; /* result of operation */

Description
Dxx_open is called by SIO_create to open a device. Dxx_open opens a device and returns an error code
indicating success (SYS_OK) or failure.

The device parameter points to a DEV_Obj whose fields have been initialized by the calling function (that
is, SIO_create). These fields can be referenced by Dxx_open to initialize various device parameters.
Dxx_open is often used to attach a device-specific object to device->object. This object typically contains
driver-specific fields that can be referenced in subsequent Dxx driver calls.

name is the string remaining after the device name has been matched by SIO_create using DEV_match.

See Also
Dxx_close
SIO_create

Dxx_open Open device
92 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Dxx_ready
Important: This API will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

C Interface

Syntax
status = Dxx_ready(device, sem);

Parameters
DEV_Handle device; /* device handle */
SEM_Handle sem; /* semaphore to post when ready */

Return Value
Bool status; /* TRUE if device is ready */

Description
Dxx_ready is called by SIO_select and SIO_ready to determine if the device is ready for an I/O operation.
In this context, ready means a call that retrieves a buffer from a device does not block. If a frame exists,
Dxx_ready returns TRUE, indicating that the next SIO_get, SIO_put, or SIO_reclaim operation on the
device does not cause the calling task to block. If there are no frames available, Dxx_ready returns
FALSE. This informs the calling task that a call to SIO_get, SIO_put, or SIO_reclaim for that device would
result in blocking.

Dxx_ready registers the device’s ready semaphore with the SIO_select semaphore sem. In cases where
SIO_select calls Dxx_ready for each of several devices, each device registers its own ready semaphore
with the unique SIO_select semaphore. The first device that becomes ready calls SEM_post on the
semaphore.

SIO_select calls Dxx_ready twice; the second time, sem = NULL. This results in each device’s ready
semaphore being set to NULL. This information is needed by the Dxx HWI that normally calls SEM_post
on the device’s ready semaphore when I/O is completed; if the device ready semaphore is NULL, the
semaphore should not be posted.

SIO_ready calls Dxx_ready with sem = NULL. This is equivalent to the second Dxx_ready call made by
SIO_select, and the underlying device driver should just return status without registering a semaphore.

See Also
SIO_select

Dxx_ready Check if device is ready for I/O
SPRU404Q—August 2012 Application Program Interface 93
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Dxx_reclaim www.ti.com
Important: This API will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

C Interface

Syntax
status = Dxx_reclaim(device);

Parameters
DEV_Handle device; /* device handle */

Return Value
Int status; /* result of operation */

Description
Dxx_reclaim is used to request a buffer back from a device. Dxx_reclaim does not return until a buffer is
available for the client in the device->fromdevice queue. If the device was opened in DEV_INPUT mode
then Dxx_reclaim blocks until an input frame has been filled with the number of MADUs requested, then
processes the data in the frame and place it on the device->fromdevice queue. If the device was opened
in DEV_OUTPUT mode, Dxx_reclaim blocks until an output frame has been emptied, then place the
frame on the device->fromdevice queue. In either mode, Dxx_reclaim blocks until it has a frame to place
on the device->fromdevice queue, or until the stream’s timeout expires, and it returns an error code
indicating success (SYS_OK) or failure.

If device->timeout is not equal to SYS_FOREVER or 0, the task suspension time can be up to 1 system
clock tick less than timeout due to granularity in system timekeeping.

If device->timeout is SYS_FOREVER, the task remains suspended until a frame is available on the
device’s fromdevice queue. If timeout is 0, Dxx_reclaim returns immediately.

If timeout expires before a buffer is available on the device’s fromdevice queue, Dxx_reclaim returns
SYS_ETIMEOUT. Otherwise Dxx_reclaim returns SYS_OK for success, or an error code.

If Dxx_reclaim fails due to a time out or any other reason, it does not place a frame on the
device->fromdevice queue.

Dxx_reclaim is used in conjunction with Dxx_issue to operate a stream. The Dxx_issue call sends a
buffer to a stream, and the Dxx_reclaim retrieves a buffer from a stream. Dxx_issue performs processing
for output streams, and provides empty frames for input streams. The Dxx_reclaim recovers empty
frames in output streams, and retrieves full frames and performs processing for input streams.

SIO_reclaim calls Dxx_reclaim, then it gets the frame from the device->fromdevice queue.

In a stacking device, Dxx_reclaim must preserve all information in the DEV_Frame object except link and
misc. On a device opened for DEV_INPUT, Dxx_reclaim should preserve the buffer data (transformed as
necessary), the size (adjusted as appropriate by the transform), and the arg field. On a device opened
for DEV_OUTPUT, Dxx_reclaim should preserve the size and the arg field. The DEV_Frame objects
themselves do not need to be preserved, only the information they contain.

Dxx_reclaim Retrieve a buffer from a device
94 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Dxx_reclaim
Dxx_reclaim must preserve buffers sent to the device. Dxx_reclaim should never return a buffer that was
not received from the client through the Dxx_issue call. Dxx_reclaim always preserves the ordering of
the buffers sent to the device, and returns with the oldest buffer that was issued to the device.

Constraints and Calling Context

• device must be bound to a device by a prior call to Dxx_open.

See Also
Dxx_issue
SIO_issue
SIO_get
SIO_put
SPRU404Q—August 2012 Application Program Interface 95
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DGN Driver www.ti.com
Important: This driver will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

Description

The DGN driver manages a class of software devices known as generators, which produce an input
stream of data through successive application of some arithmetic function. DGN devices are used to
generate sequences of constants, sine waves, random noise, or other streams of data defined by a user
function.The number of active generator devices in the system is limited only by the availability of
memory.

Configuring a DGN Device

To create a DGN device object in a configuration script, use the following syntax:

var myDgn = bios.DGN.create("myDgn");

See the DGN Object Properties for the device you created.

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the DGN Object Properties heading. For descriptions of data types, see
Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Instance Configuration Parameters

DGN Driver Software generator driver

Name Type Default (Enum Options)

comment String "<add comments here>"

device EnumString "user" ("sine", "random", "constant",
"printHex", "printInt")

useDefaultParam Bool false

deviceId Arg prog.extern("DGN_USER", "asm")

constant Numeric 1

seedValue Int32 1

lowerLimit Numeric -32767

upperLimit Numeric 32767

gain Numeric 32767

frequency Numeric 1

phase Numeric 0

rate Int32 256

fxn Extern prog.extern("FXN_F_nop")

arg Arg 0x00000000
96 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DGN Driver
Data Streaming

The DGN driver places no inherent restrictions on the size or memory segment of the data buffers used
when streaming from a generator device. Since generators are fabricated entirely in software and do not
overlap I/O with computation, no more than one buffer is required to attain maximum performance.

Since DGN generates data “on demand,” tasks do not block when calling SIO_get, SIO_put, or
SIO_reclaim on a DGN data stream. High-priority tasks must, therefore, be careful when using these
streams since lower- or even equal-priority tasks do not get a chance to run until the high-priority task
suspends execution for some other reason.

DGN Driver Properties
There are no global properties for the DGN driver manager.

DGN Object Properties

The following properties can be set for a DGN device on the DGN Object Properties dialog in the
DSP/BIOS Configuration Tool or in a Tconf script. To create a DGN device object in a script, use the
following syntax:

var myDgn = bios.DGN.create("myDgn");

The Tconf examples assume the myDgn object is created as shown.

• comment. Type a comment to identify this object.

Tconf Name: comment Type: String

Example: myDgn.comment = "DGN device";

• Device category. The device category—user, sine, random, constant, printHex, printInt—
determines the type of data stream produced by the device. A sine, random, or constant device can
be opened for input data streaming only. A printHex or printInt device can be opened for output data
streaming only.

— user. Uses custom function to produce/consume a data stream.

— sine. Produce a stream of sine wave samples.

— random. Produces a stream of random values.

— constant. Produces a constant stream of data.

— printHex. Writes the stream data buffers to the trace buffer in hexadecimal format.

— printInt. Writes the stream data buffers to the trace buffer in integer format.

Tconf Name: device Type: EnumString

Options: "user", "sine", "random", "constant", "printHex", "printInt"

Example: myDgn.device = "user";

• Use default parameters. Set this property to true if you want to use the default parameters for the
Device category you selected.

Tconf Name: useDefaultParam Type: Bool

Example: myDgn.useDefaultParam = false;

• Device ID. This property is set automatically when you select a Device category.

Tconf Name: deviceId Type: Arg

Example: myDgn.deviceId = prog.extern("DGN_USER", "asm");
SPRU404Q—August 2012 Application Program Interface 97
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DGN Driver www.ti.com
• Constant value. The constant value to be generated if the Device category is constant.

Tconf Name: constant Type: Numeric

Example: myDgn.constant = 1;

• Seed value. The initial seed value used by an internal pseudo-random number generator if the
Device category is random. Used to produce a uniformly distributed sequence of numbers ranging
between Lower limit and Upper limit.

Tconf Name: seedValue Type: Int32

Example: myDgn.seedValue = 1;

• Lower limit. The lowest value to be generated if the Device category is random.

Tconf Name: lowerLimit Type: Numeric

Example: myDgn.lowerLimit = -32767;

• Upper limit. The highest value to be generated if the Device category is random.

Tconf Name: upperLimit Type: Numeric

Example: myDgn.upperLimit = 32767;

• Gain. The amplitude scaling factor of the generated sine wave if the Device category is sine. This
factor is applied to each data point. To improve performance, the sine wave magnitude (maximum
and minimum) value is approximated to the nearest power of two. This is done by computing a shift
value by which each entry in the table is right-shifted before being copied into the input buffer. For
example, if you set the Gain to 100, the sine wave magnitude is 128, the nearest power of two.

Tconf Name: gain Type: Numeric

Example: myDgn.gain = 32767;

• Frequency. The frequency of the generated sine wave (in cycles per second) if the Device category
is sine. DGN uses a static (256 word) sine table to approximate a sine wave. Only frequencies that
divide evenly into 256 can be represented exactly with DGN. A “step” value is computed at open time
for stepping through this table:

 step = (256 * Frequency / Rate)

Tconf Name: frequency Type: Numeric

Example: myDgn.frequency = 1;

• Phase. The phase of the generated sine wave (in radians) if the Device category is sine.

Tconf Name: phase Type: Numeric

Example: myDgn.phase = 0;

• Sample rate. The sampling rate of the generated sine wave (in sample points per second) if the
Device category is sine.

Tconf Name: rate Type: Int32

Example: myDgn.rate = 256;

• User function. If the Device category is user, specifies the function to be used to compute the
successive values of the data sequence in an input device, or to be used to process the data stream,
in an output device. If this function is written in C and you are using the DSP/BIOS Configuration Tool,
use a leading underscore before the C function name. If you are using Tconf, do not add an
underscore before the function name; Tconf adds the underscore needed to call a C function from
assembly internally.

Tconf Name: fxn Type: Extern

Example: myDgn.fxn = prog.extern("usrFxn");
98 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DGN Driver
• User function argument. An argument to pass to the User function.

A user function must have the following form:

 fxn(Arg arg, Ptr buf, Uns nmadus)

where buf contains the values generated or to be processed. buf and nmadus correspond to the
buffer address and buffer size (in MADUs), respectively, for an SIO_get operation.

Tconf Name: arg Type: Arg

Example: myDgn.arg = prog.extern("myArg");
SPRU404Q—August 2012 Application Program Interface 99
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DGS Driver www.ti.com
Important: This driver will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

Description

The DGS driver manages a class of stackable devices which compress or expand a data stream by
applying a user-supplied function to each input or output buffer. This driver might be used to pack data
buffers before writing them to a disk file or to unpack these same buffers when reading from a disk file.
All (un)packing must be completed on frame boundaries as this driver (for efficiency) does not maintain
remainders across I/O operations.

On opening a DGS device by name, DGS uses the unmatched portion of the string to recursively open
an underlying device.

This driver requires a transform function and a packing/unpacking ratio which are used when
packing/unpacking buffers to/from the underlying device.

Configuring a DGS Device

To create a DGS device object in a configuration script, use the following syntax:

var myDgs = bios.UDEV.create("myDgs");

Modify the myDgs properties as follows.

• init function. Type 0 (zero).

• function table ptr. Type _DGS_FXNS

• function table type. DEV_Fxns

• device id. Type 0 (zero).

• device params ptr. Type 0 (zero) to use the default parameters. To use different values, you must
declare a DGS_Params structure (as described after this list) containing the values to use for the
parameters.

DGS_Params is defined in dgs.h as follows:

/* ======== DGS_Params ======== */

typedef struct DGS_Params { /* device parameters */

 Fxn createFxn;

 Fxn deleteFxn;

 Fxn transFxn;

 Arg arg;

 Int num;

 Int den;

} DGS_Params;

DGS Driver Stackable gather/scatter driver
100 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DGS Driver
The device parameters are:

• create function. Optional, default is NULL. Specifies a function that is called to create and/or
initialize a transform specific object. If non-NULL, the create function is called in DGS_open upon
creating the stream with argument as its only parameter. The return value of the create function is
passed to the transform function.

• delete function. Optional, default is NULL. Specifies a function to be called when the device is
closed. It should be used to free the object created by the create function.

• transform function. Required, default is localcopy. Specifies the transform function that is called
before calling the underlying device's output function in output mode and after calling the underlying
device’s input function in input mode. Your transform function should have the following interface:

dstsize = myTrans(Arg arg, Void *src, Void *dst, Int srcsize)

where arg is an optional argument (either argument or created by the create function), and *src and
*dst specify the source and destination buffers, respectively. srcsize specifies the size of the source
buffer and dstsize specifies the size of the resulting transformed buffer (srcsize *
numerator/denominator).

• arg. Optional argument, default is 0. If the create function is non-NULL, the arg parameter is passed
to the create function and the create function's return value is passed as a parameter to the transform
function; otherwise, argument is passed to the transform function.

• num and den (numerator and denominator). Required, default is 1 for both parameters. These
parameters specify the size of the transformed buffer. For example, a transformation that
compresses two 32-bit words into a single 32-bit word would have numerator = 1 and denominator
= 2 since the buffer resulting from the transformation is 1/2 the size of the original buffer.

Transform Functions

The following transform functions are already provided with the DGS driver:

• u32tou8/u8tou32. These functions provide conversion to/from packed unsigned 8-bit integers to
unsigned 32-bit integers. The buffer must contain a multiple of 4 number of 32-bit/8-bit unsigned
values.

• u16tou32/u32tou16. These functions provide conversion to/from packed unsigned 16-bit integers to
unsigned 32-bit integers. The buffer must contain an even number of 16-bit/32-bit unsigned values.

• i16toi32/i32toi16. These functions provide conversion to/from packed signed 16-bit integers to
signed 32-bit integers. The buffer must contain an even number of 16-bit/32-bit integers.

• u8toi16/i16tou8. These functions provide conversion to/from a packed 8-bit format (two 8-bit words
in one 16-bit word) to a one word per 16 bit format.

• i16tof32/f32toi16. These functions provide conversion to/from packed signed 16-bit integers to 32-
bit floating point values. The buffer must contain an even number of 16-bit integers/32-bit floats.

• localcopy. This function simply passes the data to the underlying device without packing or
compressing it.

Data Streaming

DGS devices can be opened for input or output. DGS_open allocates buffers for use by the underlying
device. For input devices, the size of these buffers is (bufsize * numerator) / denominator. For output
devices, the size of these buffers is (bufsize * denominator) / numerator. Data is transformed into or out
of these buffers before or after calling the underlying device’s output or input functions respectively.
SPRU404Q—August 2012 Application Program Interface 101
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DGS Driver www.ti.com
You can use the same stacking device in more that one stream, provided that the terminating device
underneath it is not the same. For example, if u32tou8 is a DGS device, you can create two streams
dynamically as follows:

stream = SIO_create("/u32tou8/codec", SIO_INPUT, 128, NULL);

...

stream = SIO_create("/u32tou8/port", SIO_INPUT, 128, NULL);

You can also create the streams with Tconf. To do that, add two new SIO objects. Enter /codec (or any
other configured terminal device) as the Device Control String for the first stream. Then select the DGS
device configured to use u32tou8 in the Device property. For the second stream, enter /port as the Device
Control String. Then select the DGS device configured to use u32tou8 in the Device property.

Example

The following code example declares DGS_PRMS as a DGS_Params structure:

#include <dgs.h>

DGS_Params DGS_PRMS {

 NULL, /* optional create function */

 NULL, /* optional delete function */

 u32tou8, /* required transform function */

 0, /* optional argument */

 4, /* numerator */

 1 /* denominator */

}

By typing _DGS_PRMS for the Parameters property of a device, the values above are used as the
parameters for this device.

See Also

DTR Driver
102 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DHL Driver
Important: This driver will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

Description

The DHL driver manages data streaming between the host and the DSP. Each DHL device has an
underlying HST object. The DHL device allows the target program to send and receive data from the host
through an HST channel using the SIO streaming API rather than using pipes. The DHL driver copies
data between the stream’s buffers and the frames of the pipe in the underlying HST object.

Configuring a DHL Device

To add a DHL device you must first create an HST object and make it available to the DHL driver. To do
this, use the following syntax:

var myHst = bios.HST.create("myHst");

myHst.availableForDHL = true;

Also be sure to set the mode property to "output" or "input" as needed by the DHL device. For example:

myHst.mode = "output";

Once there are HST channels available for DHL, you can create a DHL device object in a configuration
script using the following syntax:

var myDhl = bios.DHL.create("myDhl");

Then, you can set this object’s properties to select which HST channel, of those available for DHL, is used
by this DHL device. If you plan to use the DHL device for output to the host, be sure to select an HST
channel whose mode is output. Otherwise, select an HST channel with input mode.

Note that once you have selected an HST channel to be used by a DHL device, that channel is now
owned by the DHL device and is no longer available to other DHL channels.

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the DHL Driver Properties and DHL Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

DHL Driver Host link driver

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

hstChannel Reference prog.get("myHST")

mode EnumString "output" ("input")
SPRU404Q—August 2012 Application Program Interface 103
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DHL Driver www.ti.com
Data Streaming

DHL devices can be opened for input or output data streaming. A DHL device used by a stream created
in output mode must be associated with an output HST channel. A DHL device used by a stream created
in input mode must be associated with an input HST channel. If these conditions are not met, a
SYS_EBADOBJ error is reported in the system log during startup when the BIOS_start routine calls the
DHL_open function for the device.

To use a DHL device in a statically-created stream, set the deviceName property of the SIO object to
match the name of the DHL device you configured.

mySio.deviceName = prog.get("myDhl");

To use a DHL device in a stream created dynamically with SIO_create, use the DHL device name (as it
appears in your Tconf script) preceded by “/” (forward slash) as the first parameter of SIO_create:

stream = SIO_create(“/dhl0”, SIO_INPUT, 128, NULL);

To enable data streaming between the target and the host through streams that use DHL devices, you
must bind and start the underlying HST channels of the DHL devices from the Host Channels Control in
Code Composer Studio, just as you would with other HST objects.

DHL devices copy the data between the frames in the HST channel’s pipe and the stream’s buffers. In
input mode, it is the size of the frame in the HST channel that drives the data transfer. In other words,
when all the data in a frame has been transferred to stream buffers, the DHL device returns the current
buffer to the stream’s fromdevice queue, making it available to the application. (If the stream buffers can
hold more data than the HST channel frames, the stream buffers always come back partially full.) In
output mode it is the opposite: the size of the buffers in the stream drives the data transfer so that when
all the data in a buffer has been transferred to HST channel frames, the DHL device returns the current
frame to the channel’s pipe. In this situation, if the HST channel’s frames can hold more data than the
stream’s buffers, the frames always return to the HST pipe partially full.

The maximum performance in a DHL device is obtained when you configure the frame size of its HST
channel to match the buffer size of the stream that uses the device. The second best alternative is to
configure the stream buffer (or HST frame) size to be larger than, and a multiple of, the size of the HST
frame (or stream buffer) size for input (or output) devices. Other configuration settings also work since
DHL does not impose restrictions on the size of the HST frames or the stream buffers, but performance
is reduced.

Constraints

• HST channels used by DHL devices are not available for use with PIP APIs.

• Multiple streams cannot use the same DHL device. If more than one stream attempts to use the same
DHL device, a SYS_EBUSY error is reported in the system LOG during startup when the BIOS_start
routing calls the DHL_open function for the device.

DHL Driver Properties

The following global property can be set for the DHL - Host Link Driver on the DHL Properties dialog in
the DSP/BIOS Configuration Tool or in a Tconf script:
104 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DHL Driver
• Object memory. Enter the memory segment from which to allocate DHL objects. Note that this does
not affect the memory segments from where the underlying HST object or its frames are allocated.
The memory segment for HST objects and their frames can be set using HST Manager Properties
and HST Object Properties.

Tconf Name: OBJMEMSEG Type: Reference

Example: DHL.OBJMEMSEG = prog.get("myMEM");

DHL Object Properties

The following properties can be set for a DHL device using the DHL Object Properties dialog in the
DSP/BIOS Configuration Tool or in a Tconf script. To create a DHL device object in a configuration script,
use the following syntax:

var myDhl = bios.DHL.create("myDhl");

The Tconf examples assume the myDhl object has been created as shown.

• comment. Type a comment to identify this object.

Tconf Name: comment Type: String

Example: myDhl.comment = "DHL device";

• Underlying HST Channel. Select the underlying HST channel from the drop-down list. The "Make
this channel available for a new DHL device" property in the HST Object Properties must be set to
true for that HST object to be known here.

Tconf Name: hstChannel Type: Reference

Example: myDhl.hstChannel = prog.get("myHST");

• Mode. This informational property shows the mode (input or output) of the underlying HST channel.
This becomes the mode of the DHL device.

Tconf Name: mode Type: EnumString

Options: "input", "output"

Example: myDhl.mode = "output";
SPRU404Q—August 2012 Application Program Interface 105
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DIO Adapter www.ti.com
Description

The DIO adapter allows GIO-compliant mini-drivers to be used through SIO module functions. Such mini-
drivers are described in the DSP/BIOS Device Driver Developer's Guide (SPRU616).

Configuring a DIO Device

To create a DIO device object in a configuration script, first use the following syntax:

var myUdev = bios.UDEV.create("myUdev");

Set the DEV Object Properties for the device as follows.

• init function. Type 0 (zero).

• function table ptr. Type _DIO_FXNS

• function table type. IOM_Fxns

• device id. Type 0 (zero).

• device params ptr. Type 0 (zero).

Once there is a UDEV object with the IOM_Fxns function table type in the configuration, you can create
a DIO object with the following syntax and then set properties for the object:

var myDio = bios.Dio.create("myDio");

DIO Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the DIO Driver Properties and DIO Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

DIO Adapter SIO Mini-driver adapter

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

STATICCREATE Bool false

Name Type Default

comment String "<add comments here>"

useCallBackFxn Bool false

deviceName Reference prog.get("UDEV0")

chanParams Arg 0x00000000
106 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DIO Adapter
Description

The mini-drivers described in the DSP/BIOS Device Driver Developer's Guide (SPRU616) are intended
for use with the GIO module. However, the DIO driver allows them to be used with the SIO module
instead of the GIO module.

The following figure summarizes how modules are related in an application that uses the DIO driver and
a mini-driver:

DIO Driver Properties

The following global properties can be set for the DIO - Class Driver on the DIO Properties dialog in the
DSP/BIOS Configuration Tool or in a Tconf script:

• Object memory. Enter the memory segment from which to allocate DIO objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.DIO.OBJMEMSEG = prog.get("myMEM");

• Create All DIO Objects Statically. Set this property to true if you want DIO objects to be created
completely statically. If this property is false (the default), MEM_calloc is used internally to allocate
space for DIO objects. If this property is true, you must create all SIO and DIO objects using the
DSP/BIOS Configuration Tool or Tconf. Any calls to SIO_create fail. Setting this property to true
reduces the application’s code size (so long as the application does not call MEM_alloc or its related
functions elsewhere).

Tconf Name: STATICCREATE Type: Bool

Example: bios.DIO.STATICCREATE = false;

Application
TSK or SW I threads

SIO Module API

DIO adapter

IOM mini-driver
(IOM_Fxns function table)

DEV module
(DEV_match, DEV_Fxns,

DEV_Handle, DEV_Callback)
SPRU404Q—August 2012 Application Program Interface 107
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DIO Adapter www.ti.com
DIO Object Properties

The following properties can be set for a DIO device using the DIO Object Properties dialog in the
DSP/BIOS Configuration Tool or in a Tconf script. To create a DIO device object in a configuration script,
use the following syntax:

var myDio = bios.DIO.create("myDio");

The Tconf examples assume the myDio object has been created as shown.

• comment. Type a comment to identify this object.

Tconf Name: comment Type: String

Example: myDio.comment = "DIO device";

• use callback version of DIO function table. Set this property to true if you want to use DIO with a
callback function. Typically, the callback function is SWI_andnHook or a similar function that posts a
SWI. Do not set this property to true if you want to use DIO with a TSK thread.

Tconf Name: useCallBackFxn Type: Bool

Example: myDio.useCallBackFxn = false;

• fxnsTable. This informational property shows the DIO function table used as a result of the settings
in the "use callback version of DIO function table" and "Create ALL DIO Objects Statically" properties.
The four possible setting combinations of these two properties correspond to the four function tables:
DIO_tskDynamicFxns, DIO_tskStaticFxns, DIO_cbDynamicFxns, and DIO_cbStaticFxns.

Tconf Name: N/A

• device name. Name of the device to use with this DIO object.

Tconf Name: deviceName Type: Reference

Example: myDio.deviceName = prog.get("UDEV0");

• channel parameters. This property allows you to pass an optional argument to the mini-driver create
function. See the chanParams parameter of the GIO_create function.

Tconf Name: chanParams Type: Arg

Example: myDio.chanParams = 0x00000000;
108 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DNL Driver
Important: This driver will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

Description

The DNL driver manages “empty” devices which nondestructively produce or consume data streams.
The number of empty devices in the system is limited only by the availability of memory; DNL instantiates
a new object representing an empty device on opening, and frees this object when the device is closed.

The DNL driver does not define device ID values or a params structure which can be associated with the
name used when opening an empty device. The driver also ignores any unmatched portion of the name
declared in the system configuration file when opening a device.

Configuring a DNL Device

To create a DNL device object in a configuration script, use the following syntax:

var myDnl = bios.UDEV.create("myDnl");

Set DEV Object Properties for the device you created as follows.

• init function. Type 0 (zero).

• function table ptr. Type _DNL_FXNS

• function table type. DEV_Fxns

• device id. Type 0 (zero).

• device params ptr. Type 0 (zero).

Data Streaming

DNL devices can be opened for input or output data streaming. Note that these devices return buffers of
undefined data when used for input.

The DNL driver places no inherent restrictions on the size or memory segment of the data buffers used
when streaming to or from an empty device. Since DNL devices are fabricated entirely in software and
do not overlap I/O with computation, no more that one buffer is required to attain maximum performance.

Tasks do not block when using SIO_get, SIO_put, or SIO_reclaim with a DNL data stream.

DNL Driver Null driver
SPRU404Q—August 2012 Application Program Interface 109
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DOV Driver www.ti.com
Important: This driver will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

Description

The DOV driver manages a class of stackable devices that generate an overlapped stream by retaining
the last N minimum addressable data units (MADUs) of each buffer input from an underlying device.
These N points become the first N points of the next input buffer. MADUs are equivalent to a 16-bit word
in the data address space of the processor on C54x and C55x platforms.

Configuring a DOV Device

To create a DOV device object in a configuration script, use the following syntax:

var myDov = bios.UDEV.create("myDov");

Set the DEV Object Properties for the device you created as follows.

• init function. Type 0 (zero).

• function table ptr. Type _DOV_FXNS

• function table type. DEV_Fxns

• device id. Type 0 (zero).

• device params ptr. Type 0 (zero) or the length of the overlap as described after this list.

If you enter 0 for the Device ID, you need to specify the length of the overlap when you create the stream
with SIO_create by appending the length of the overlap to the device name. If you statically create the
stream (with Tconf) instead, enter the length of the overlap in the Device Control String for the stream.

For example, if you statically create a device called overlap, and use 0 as its Device ID, you can open a
stream with:

stream = SIO_create("/overlap16/codec",SIO_INPUT,128,NULL);

This causes SIO to open a stack of two devices. /overlap16 designates the device called overlap, and 16
tells the driver to use the last 16 MADUs of the previous frame as the first 16 MADUs of the next frame.
codec specifies the name of the physical device which corresponds to the actual source for the data.

If, on the other hand you add a device called overlap and enter 16 as its Device ID, you can open the
stream with:

stream = SIO_create("/overlap/codec", SIO_INPUT, 128, NULL);

This causes the SIO Module to open a stack of two devices. /overlap designates the device called
overlap, which you have configured to use the last 16 MADUs of the previous frame as the first 16
MADUs of the next frame. As in the previous example, codec specifies the name of the physical device
that corresponds to the actual source for the data.

If you create the stream statically and enter 16 as the Device ID property, leave the Device Control String
blank.

DOV Driver Stackable overlap driver
110 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DOV Driver
In addition to the configuration properties, you need to specify the value that DOV uses for the first
overlap, as in the example:

#include <dov.h>

static DOV_Config DOV_CONFIG = {

 (Char) 0

}

DOV_Config *DOV = &DOV_CONFIG;

If floating point 0.0 is required, the initial value should be set to (Char) 0.0.

Data Streaming
DOV devices can only be opened for input. The overlap size, specified in the string passed to SIO_create,
must be greater than 0 and less than the size of the actual input buffers.

DOV does not support any control calls. All SIO_ctrl calls are passed to the underlying device.

You can use the same stacking device in more that one stream, provided that the terminating device
underneath it is not the same. For example, if overlap is a DOV device with a Device ID of 0:

stream = SIO_create("/overlap16/codec", SIO_INPUT, 128, NULL);

...

stream = SIO_create("/overlap4/port", SIO_INPUT, 128, NULL);

or if overlap is a DOV device with positive Device ID:

stream = SIO_create("/overlap/codec", SIO_INPUT, 128, NULL);

...

stream = SIO_create("/overlap/port", SIO_INPUT, 128, NULL);

To create the same streams statically (rather than dynamically with SIO_create), add SIO objects with
Tconf. Enter the string that identifies the terminating device preceded by “/” (forward slash) in the SIO
object’s Device Control Strings (for example, /codec, /port). Then select the stacking device (overlap,
overlapio) from the Device property.

See Also

DTR Driver
DGS Driver
SPRU404Q—August 2012 Application Program Interface 111
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DPI Driver www.ti.com
Important: This driver will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

Description

The DPI driver is a software device used to stream data between tasks on a single processor. It provides
a mechanism similar to that of UNIX named pipes; a reader and a writer task can open a named pipe
device and stream data to/from the device. Thus, a pipe simply provides a mechanism by which two tasks
can exchange data buffers.

Any stacking driver can be stacked on top of DPI. DPI can have only one reader and one writer task.

It is possible to delete one end of a pipe with SIO_delete and recreate that end with SIO_create without
deleting the other end.

Configuring a DPI Device

To add a DPI device, right-click on the DPI - Pipe Driver folder, and select Insert DPI. From the Object
menu, choose Rename and type a new name for the DPI device.

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the DPI Object Properties heading. For descriptions of data types, see
Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Instance Configuration Parameters

Data Streaming

After adding a DPI device called pipe0 in the configuration, you can use it to establish a communication
pipe between two tasks. You can do this dynamically, by calling in the function for one task:

inStr = SIO_create("/pipe0", SIO_INPUT, bufsize, NULL);
...

SIO_get(inStr, bufp);

And in the function for the other task:

outStr = SIO_create("/pipe0", SIO_OUTPUT, bufsize, NULL);

...

SIO_put(outStr, bufp, nmadus);

DPI Driver Pipe driver

Name Type Default

comment String "<add comments here>"

allowVirtual Bool false
112 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DPI Driver
or by adding with Tconf two streams that use pipe0, one in output mode (outStream) and the other one
in input mode(inStream). Then, from the reader task call:

extern SIO_Obj inStream;

SIO_handle inStr = &inStream

...

SIO_get(inStr, bufp);

and from the writer task call:

extern SIO_Obj outStream;

SIO_handle outStr = &outStream

...

SIO_put(outStr, bufp, nmadus);

The DPI driver places no inherent restrictions on the size or memory segments of the data buffers used
when streaming to or from a pipe device, other than the usual requirement that all buffers be the same
size.

Tasks block within DPI when using SIO_get, SIO_put, or SIO_reclaim if a buffer is not available.
SIO_select can be used to guarantee that a call to one of these functions do not block. SIO_select can
be called simultaneously by both the input and the output sides.

DPI and the SIO_ISSUERECLAIM Streaming Model

In the SIO_ISSUERECLAIM streaming model, an application reclaims buffers from a stream in the same
order as they were previously issued. To preserve this mechanism of exchanging buffers with the stream,
the default implementation of the DPI driver for ISSUERECLAIM copies the full buffers issued by the
writer to the empty buffers issued by the reader.

A more efficient version of the driver that exchanges the buffers across both sides of the stream, rather
than copying them, is also provided. To use this variant of the pipe driver for ISSUERECLAIM, edit the C
source file dpi.c provided in the <bios_install_dir>\packages\ti\bios\src\drivers folder. Comment out the
following line:

#define COPYBUFS

Rebuild dpi.c. Link your application with this version of dpi.obj instead of the default one. To do this, add
this version of dpi.obj to your project explicitly. This buffer exchange alters the way in which the streaming
mechanism works. When using this version of the DPI driver, the writer reclaims first the buffers issued
by the reader rather than its own issued buffers, and vice versa.

This version of the pipe driver is not suitable for applications in which buffers are broadcasted from a
writer to several readers. In this situation it is necessary to preserve the ISSUERECLAIM model original
mechanism, so that the buffers reclaimed on each side of a stream are the same that were issued on that
side of the stream, and so that they are reclaimed in the same order that they were issued. Otherwise,
the writer reclaims two or more different buffers from two or more readers, when the number of buffers it
issued was only one.

Converting a Single Processor Application to a Multiprocessor Application

It is trivial to convert a single-processor application using tasks and pipes into a multiprocessor
application using tasks and communication devices. If using SIO_create, the calls in the source code
would change to use the names of the communication devices instead of pipes. (If the communication
devices were given names like /pipe0, there would be no source change at all.) If the streams were
SPRU404Q—August 2012 Application Program Interface 113
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DPI Driver www.ti.com
created statically with Tconf instead, you would need to change the Device property for the stream in the
configuration template, save and rebuild your application for the new configuration. No source change
would be necessary.

Constraints

Only one reader and one writer can open the same pipe.

DPI Driver Properties

There are no global properties for the DPI driver manager.

DPI Object Properties

The following property can be set for a DPI device in the DPI Object Properties dialog in the DSP/BIOS
Configuration Tool or in a Tconf script. To create a DPI device object in a configuration script, use the
following syntax:

var myDpi = bios.DPI.create("myDpi");

The Tconf examples assume the myDpi object has been created as shown.

• comment. Type a comment to identify this object.

Tconf Name: comment Type: String

Example: myDpi.comment = "DPI device";

• Allow virtual instances of this device. Set this property to true if you want to be able to use
SIO_create to dynamically create multiple streams to use this DPI device. DPI devices are used by
SIO stream objects, which you create with Tconf or the SIO_create function.

If this property is set to true, when you use SIO_create, you can create multiple streams that use the
same DPI driver by appending numbers to the end of the name. For example, if the DPI object is
named "pipe", you can call SIO_create to create pipe0, pipe1, and pipe2. Only integer numbers can
be appended to the name.

If this property is set to false, when you use SIO_create, the name of the SIO object must exactly
match the name of the DPI object. As a result, only one open stream can use the DPI object. For
example, if the DPI object is named "pipe", an attempt to use SIO_create to create pipe0 fails.

Tconf Name: allowVirtual Type: Bool

Example: myDpi.allowVirtual = false;
114 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DST Driver
Important: This driver will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

Description

This stacking driver can be used to input or output buffers that are larger than the physical device can
actually handle. For output, a single (large) buffer is split into multiple smaller buffers which are then sent
to the underlying device. For input, multiple (small) input buffers are read from the device and copied into
a single (large) buffer.

Configuring a DST Device

To create a DST device object in a configuration script, use the following syntax:

var myDst = bios.UDEV.create("myDst");

Set the DEV Object Properties for the device you created as follows.

• init function. Type 0 (zero).

• function table ptr. Type _DST_FXNS

• function table type. DEV_Fxns

• device id. Type 0 (zero) or the number of small buffers corresponding to a large buffer as described
after this list.

• device params ptr. Type 0 (zero).

If you enter 0 for the Device ID, you need to specify the number of small buffers corresponding to a large
buffer when you create the stream with SIO_create, by appending it to the device name.

Example 1:

For example, if you create a user-defined device called split with Tconf, and enter 0 as its Device ID
property, you can open a stream with:

stream = SIO_create("/split4/codec", SIO_INPUT, 1024, NULL);

This causes SIO to open a stack of two devices: /split4 designates the device called split, and 4 tells the
driver to read four 256-word buffers from the codec device and copy the data into 1024-word buffers for
your application. codec specifies the name of the physical device which corresponds to the actual source
for the data.

Alternatively, you can create the stream with Tconf (rather than by calling SIO_create at run-time). To do
so, first create and configure two user-defined devices called split and codec. Then, create an SIO object.
Type 4/codec as the Device Control String. Select split from the Device list.

DST Driver Stackable split driver
SPRU404Q—August 2012 Application Program Interface 115
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DST Driver www.ti.com
Example 2:

Conversely, you can open an output stream that accepts 1024-word buffers, but breaks them into 256-
word buffers before passing them to /codec, as follows:

stream = SIO_create("/split4/codec",SIO_OUTPUT,1024, NULL);

To create this output stream with Tconf, you would follow the steps for example 1, but would select output
for the Mode property of the SIO object.

Example 3:

If, on the other hand, you add a device called split and enter 4 as its Device ID, you need to open the
stream with:

stream = SIO_create("/split/codec", SIO_INPUT, 1024, NULL);

This causes SIO to open a stack of two devices: /split designates the device called split, which you have
configured to read four buffers from the codec device and copy the data into a larger buffer for your
application. As in the previous example, codec specifies the name of the physical device that
corresponds to the actual source for the data.

When you type 4 as the Device ID, you do not need to type 4 in the Device Control String for an SIO
object created with Tconf. Type only/codec for the Device Control String.

Data Streaming

DST stacking devices can be opened for input or output data streaming.

Constraints

• The size of the application buffers must be an integer multiple of the size of the underlying buffers.

• This driver does not support any SIO_ctrl calls.
116 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DTR Driver
Important: This driver will no longer be supported in the next major release of DSP/BIOS. We
recommend that you use the IOM driver interface instead. See the DSP/BIOS Driver
Developer’s Guide (SPRU616).

Description
The DTR driver manages a class of stackable devices known as transformers, which modify a data
stream by applying a function to each point produced or consumed by an underlying device. The number
of active transformer devices in the system is limited only by the availability of memory; DTR instantiates
a new transformer on opening a device, and frees this object when the device is closed.

Buffers are read from the device and copied into a single (large) buffer.

Configuring a DTR Device

To create a DTR device object in a configuration script, use the following syntax:

var myDtr = bios.UDEV.create("myDtr");

Set the DEV Object Properties for the device you created as follows.

• init function. Type 0 (zero).

• function table ptr. Type _DTR_FXNS

• function table type. DEV_Fxns

• device id. Type 0 (zero), _DTR_multiply, or _DTR_multiplyInt16.

If you type 0, you need to supply a user function in the device parameters. This function is called by
the driver as follows to perform the transformation on the data stream:

 if (user.fxn != NULL) {

 (*user.fxn)(user.arg, buffer, size);

 }

If you type _DTR_multiply, a built-in data scaling operation is performed on the data stream to
multiply the contents of the buffer by the scale.value of the device parameters.

If you type _DTR_multiplyInt16, a built-in data scaling operation is performed on the data stream to
multiply the contents of the buffer by the scale.value of the device parameters. The data stream is
assumed to contain values of type Int16.

• device params ptr. Enter the name of a DTR_Params structure declared in your C application code.
See the information following this list for details.

DTR Driver Stackable streaming transformer driver
SPRU404Q—August 2012 Application Program Interface 117
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DTR Driver www.ti.com
The DTR_Params structure is defined in dtr.h as follows:

/* ======== DTR_Params ======== */

typedef struct { /* device parameters */

 struct {

 DTR_Scale value; /* scaling factor */

 } scale;

 struct {

 Arg arg; /* user-defined argument */

 Fxn fxn; /* user-defined function */

 } user;

} DTR_Params;

In the following code example, DTR_PRMS is declared as a DTR_Params structure:

#include <dtr.h>

...

struct DTR_Params DTR_PRMS = {

 10.0,

 NULL,

 NULL

};

By typing _DTR_PRMS as the Parameters property of a DTR device, the values above are used as the
parameters for this device.

You can also use the default values that the driver assigns to these parameters by entering
_DTR_PARAMS for this property. The default values are:

DTR_Params DTR_PARAMS = {

 { 1 }, /* scale.value */

 { (Arg)NULL, /* user.arg */

 (Fxn)NULL }, /* user.fxn */

};

scale.value is a floating-point quantity multiplied with each data point in the input or output stream.

If you do not configure one of the built-in scaling functions for the device ID, use user.fxn and user.arg in
the DTR_Params structure to define a transformation that is applied to inbound or outbound blocks of
data, where buffer is the address of a data block containing size points; if the value of user.fxn is NULL,
no transformation is performed at all.

if (user.fxn != NULL) {

 (*user.fxn)(user.arg, buffer, size);

}

Data Streaming
DTR transformer devices can be opened for input or output and use the same mode of I/O with the
underlying streaming device. If a transformer is used as a data source, it inputs a buffer from the
underlying streaming device and then transforms this data in place. If the transformer is used as a data
sink, it outputs a given buffer to the underlying device after transforming this data in place.

The DTR driver places no inherent restrictions on the size or memory segment of the data buffers used
when streaming to or from a transformer device; such restrictions, if any, would be imposed by the
underlying streaming device.

Tasks do not block within DTR when using the SIO Module. A task can, of course, block as required by
the underlying device.
118 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GBL Module
2.6 GBL Module

This module is the global settings manager.

Functions

• GBL_getClkin. Gets configured value of board input clock in KHz.

• GBL_getFrequency. Gets current frequency of the CPU in KHz.

• GBL_getProcId. Gets configured processor ID used by MSGQ.

• GBL_getVersion. Gets DSP/BIOS version information.

• GBL_setFrequency. Set frequency of CPU in KHz for DSP/BIOS.

• GBL_setProcId. Set configured value of processor ID.

Configuration Properties

The following list shows the properties for this module that can be configured in a Tconf script, along with
their types and default values. For details, see the GBL Module Properties heading. For descriptions of
data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Description
This module does not manage any individual objects, but rather allows you to control global or system-
wide settings used by other modules.

C55x Name Type Default (Enum Options)

BOARDNAME String "c55xx"

PROCID Int16 0

CLKIN Uint32 20000 KHz

CLKOUT Int16 ’C5502, etc: 300
’C5510, etc: 140
’C5561: 60
’C59xx: 12
1x10 (1510, 1610, and 1710): 12
OMAP 2320/2420: 12

SPECIFYRTSLIB Bool false

RTSLIB String ""

MEMORYMODEL EnumString "LARGE" ("HUGE")

CALLUSERINITFXN Bool false

USERINITFXN Extern prog.extern("FXN_F_nop")

ENABLEINST Bool true

INSTRUMENTED Bool true

ENABLEALLTRC Bool true

DCRPOSTEDERITE Bool true (OMAP 2320/2420 only)
SPRU404Q—August 2012 Application Program Interface 119
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GBL Module www.ti.com
GBL Module Properties

The following Global Settings can be made:

• Target Board Name. The name of the board or board family.

Tconf Name: BOARDNAME Type: String

Example: bios.GBL.BOARDNAME = "c55xx";

• Processor ID (PROCID). ID used to communicate with other processors using the MSGQ Module.
The procId is also defined in the MSGQ_TransportObj array that is part of the MSGQ_Config
structure. This value can be obtained with GBL_getProcId and modified by GBL_setProcId (but only
within the User Init Function).

Tconf Name: PROCID Type: Int16

Example: bios.GBL.PROCID = 0;

• Board Clock In KHz (Informational Only). Frequency of the input clock in KHz. You should set this
property to match the actual board clock rate. This property does not change the rate of the board; it
is informational only. The configured value can be obtained at run-time using the GBL_getClkin API.
This property is used on the ’C5503 to compute the USB PLL settings. The default value is 20000 KHz.

Tconf Name: CLKIN Type: Uint32

Example: bios.GBL.CLKIN = 20000;

• DSP Speed In MHz (CLKOUT). This number, times 1000000, is the number of instructions the
processor can execute in 1 second. You should set this property to match the actual rate. This
property does not change the rate of the board. This value is used by the CLK manager to calculate
register settings for the on-device timers.

Tconf Name: CLKOUT Type: Int16

Example: bios.GBL.CLKOUT = 100.0000;

• Specify RTS Library. Determines whether a user can specify the run-time support library to which
the application is linked. The RTS library contains the printf, malloc, and other standard C library
functions. For information about using this library, see “std.h and stdlib.h functions” on page 482. If
you do not choose to specify a library, the default library for your platform is used.

Tconf Name: SPECIFYRTSLIB Type: Bool

Example: bios.GBL.SPECIFYRTSLIB = false;

• Run-Time Support Library. The name of the run-time support (RTS) library to which the application
is linked. These libraries are located in the appropriate
<ccs_install_dir>\ccsv5\tools\compiler\<target>\lib folder for your target. The library you select is
used in the linker command file generated from the Tconf script when you build your application.

Tconf Name: RTSLIB Type: String

Example: bios.GBL.RTSLIB = "";

• Modify CLKMD. Set this property to true if you want to modify the value of the Clock Mode Register,
which is used to program the PLL (phase-locked loop).

Tconf Name: MODIFYCLKMD Type: Bool

Example: bios.GBL.MODIFYCLKMD = false;

• CLKMD - (PLL) Clock Mode Register. The value of the Clock Mode Register.

Tconf Name: CLKMD Type: Numeric

Example: bios.GBL.CLKMD = 0x0000;
120 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GBL Module
• Memory Model. This specifies the address reach within the ’C55x program. The options are large
and huge. In the large and huge models, data addressing uses the full 23-bit range. Program space
addressing always uses the full 24-bit range.

Both the large and huge models support the same address range. However, the huge model allows
buffers to cross 64K page boundaries. For the large model, size_t is 16 bits (64K). For the huge
model, size_t is 23 bits, which requires 32 bits of storage since the minimum storage unit is 16 bits.

Tconf Name: MEMORYMODEL Type: EnumString

Options: "LARGE", "HUGE"

Example: bios.GBL.MEMORYMODEL = "LARGE";

• Call User Init Function. Set this property to true if you want an initialization function to be called early
during program initialization, after .cinit processing and before the main() function.

Tconf Name: CALLUSERINITFXN Type: Bool

Example: bios.GBL.CALLUSERINITFXN = false;

• User Init Function. Type the name of the initialization function. This function runs early in the
initialization process and is intended to be used to perform hardware setup that needs to run before
DSP/BIOS is initialized. The code in this function should not use any DSP/BIOS API calls, unless
otherwise specified for that API, since a number of DSP/BIOS modules have not been initialized
when this function runs. In contrast, the Initialization function that may be specified for HOOK Module
objects runs later and is intended for use in setting up data structures used by other functions of the
same HOOK object.

Tconf Name: USERINITFXN Type: Extern

Example: bios.GBL.USERINITFXN = prog.extern("FXN_F_nop");

• Enable Real Time Analysis. If this property is true, target-to-host communication is enabled by the
addition of IDL objects to run the IDL_cpuLoad, LNK_dataPump, and RTA_dispatch functions. If this
property is false, these IDL objects are removed and target-to-host communications are not
supported. As a result, support for DSP/BIOS implicit instrumentation is removed.

Tconf Name: ENABLEINST Type: Bool

Example: bios.GBL.ENABLEINST = true;

• Use Instrumented BIOS Library. Specifies whether to link with the instrumented or non-
instrumented version of the DSP/BIOS library. The non-instrumented versions are somewhat smaller
but do not provide support for LOG, STS, and TRC instrumentation. The libraries are located in
appropriate <ccs_install_dir>\ccsv5\tools\compiler\<target>\lib folder for your target. By default, the
instrumented version of the library for your platform is used.

Tconf Name: INSTRUMENTED Type: Bool

Example: bios.GBL.INSTRUMENTED = true;

• Enable All TRC Trace Event Classes. Set this property to false if you want all types of tracing to be
initially disabled when the program is loaded. If you disable tracing, you can still use the RTA Control
Panel or the TRC_enable function to enable tracing at run-time.

Tconf Name: ENABLEALLTRC Type: Bool

Example: bios.GBL.ENABLEALLTRC = true;

• DPORT write in posted mode. D-port write operations are set to posted or non-posted mode via
the data port configuration register DCR.WPE bit. The default for this parameter is true, and all D-
port writes are posted. Set this parameter to false if you want the D-port operations to be non-posted.
(OMAP 2320/2420 only)

Tconf Name: DCRPOSTEDERITE Type: Bool

Example: bios.GBL.DCRPOSTEDERITE = true;
SPRU404Q—August 2012 Application Program Interface 121
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GBL_getClkin www.ti.com
C Interface

Syntax
clkin = GBL_getClkin(Void);

Parameters
Void

Return Value
Uint32 clkin; /* CLKIN frequency */

Reentrant
yes

Description
Returns the configured value of the board input clock (CLKIN) frequency in KHz. For example, on the
’C5509, CLKIN is used to compute the settings of the USB PLL.

See Also
CLK_countspms
CLK_getprd

GBL_getClkin Get configured value of board input clock in KHz
122 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GBL_getFrequency
C Interface

Syntax
frequency = GBL_getFrequency(Void);

Parameters
Void

Return Value
Uint32 frequency; /* CPU frequency in KHz */

Reentrant
yes

Description
Returns the current frequency of the DSP CPU in an integer number of KHz. This is the frequency set by
GBL_setFrequency, which must also be an integer. The default value is the value of the CLKOUT
property, which is configured as one of the GBL Module Properties.

See Also
GBL_getClkin
GBL_setFrequency

GBL_getFrequency Get current frequency of the CPU in KHz
SPRU404Q—August 2012 Application Program Interface 123
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GBL_getProcId www.ti.com
C Interface

Syntax
procid = GBL_getProcId(Void);

Parameters
Void

Return Value
Uint16 procid; /* processor ID */

Reentrant
yes

Description
Returns the configured value of the processor ID (PROCID) for this processor. This numeric ID value is
used by the MSGQ module when determining which processor to communicate with.

The procId is also defined in the MSGQ_TransportObj array that is part of the MSGQ_Config structure.
The same processor ID should be defined for this processor in both locations.

During the User Init Function, the application may modify the statically configured processor ID by calling
GBL_setProcId. In this case, the User Init Function may need to call GBL_getProcId first to get the
statically configured processor ID.

See Also
MSGQ Module: Static Configuration
GBL_setProcId

GBL_getProcId Get configured value of processor ID
124 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GBL_getVersion
C Interface

Syntax
version = GBL_getVersion(Void);

Parameters
Void

Return Value
Uint16 version; /* version data */

Reentrant
yes

Description
Returns DSP/BIOS kernel version information as a 4-digit hex number. For example: 0x5100. Note that
the kernel version is different from the DSP/BIOS product version.

When comparing versions, compare the highest digits that are different. The digits in the version
information are as follows:

The version returned by GBL_getVersion matches the version in the DSP/BIOS header files. (For
example, tsk.h.) If the header file version is as follows, GBL_getVersion returns 0x5001. If there are three
items, the last item uses two digits (for example, 01) in the returned hex number.

* @(#) DSP/BIOS_Kernel 5,0,1 05-30-2004 (cuda-l06)

GBL_getVersion Get DSP/BIOS version information

Bits Compatibility with Older DSP/BIOS Versions

12-15
(first hex digit)

Not compatible. Changes to application C, assembly, or configuration
(Tconf) code may be required. For example, moving from 0x5100 to
0x6100 may require code changes.

8-11
(second hex digit)

No code changes required but you should recompile. For example,
moving from 0x5100 to 0x5200 requires recompilation.

0-7
(third and fourth hex digits)

No code changes or recompile required. You should re-link if either of
these digits are different. For example, moving from 0x5100 to 0x5102
requires re-linking.
SPRU404Q—August 2012 Application Program Interface 125
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GBL_setFrequency www.ti.com
C Interface

Syntax
GBL_setFrequency(frequency);

Parameters
Uint32 frequency; /* CPU frequency in KHz */

Return Value
Void

Reentrant
yes

Description
This function sets the value of the CPU frequency known to DSP/BIOS.

Note that GBL_setFrequency does not affect the PLL, and therefore has no effect on the actual frequency
at which the DSP is running. It is used only to make DSP/BIOS aware of the DSP frequency you are
using.

If you call GBL_setFrequency to update the CPU frequency known to DSP/BIOS, you should follow the
sequence shown in the CLK_reconfig topic to reconfigure the timer.

The frequency must be an integer number of KHz.

If you enable the PWRM module, do not call GBL_setFrequency. When you use frequency scaling, the
PWRM module internally calls this API to update the value known to DSP/BIOS.

Constraints and Calling Context

• If you change the frequency known to DSP/BIOS, you should also reconfigure the timer (with
CLK_reconfig) so that the actual frequency is the same as the frequency known to DSP/BIOS.

• Do not call this function if you use the PWRM module.

See Also
CLK_reconfig
GBL_getClkin
GBL_getFrequency
PWRM_changeSetpoint

GBL_setFrequency Set frequency of the CPU in KHz
126 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GBL_setProcId
C Interface

Syntax
GBL_setProcId(procId);

Parameters
Uint16 procId; /* processor ID */

Return Value
Void

Reentrant
no

Description
Sets the processor ID (PROCID) for this processor. This numeric ID value is used by the MSGQ module
to determine which processor to communicate with.

The procId is also defined in the MSGQ_TransportObj array that is part of the MSGQ_Config structure.

This function can only be called in the User Init Function configured as part of the GBL Module Properties.
That is, this function may only be called at the beginning of DSP/BIOS initialization.

The application may determine the true processor ID for the device during the User Init Function and call
GBL_setProcId with the correct processor ID. This is useful in applications that run a single binary image
on multiple DSP processors.

How the application determines the correct processor ID is application- or board-specific. For example,
you might use GPIO. You can call GBL_getProcId from the User Init Function to get the statically
configured processor ID.

Constraints and Calling Context

• This function can only be called in the User Init Function configured as part of the GBL Module
Properties.

See Also
MSGQ Manager Properties
GBL_getProcId

GBL_setProcId Set configured value of processor ID
SPRU404Q—August 2012 Application Program Interface 127
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GIO Module www.ti.com
2.7 GIO Module

The GIO module is the Input/Output Module used with IOM mini-drivers as described in DSP/BIOS
Device Driver Developer's Guide (SPRU616).

Functions

• GIO_abort. Abort all pending input and output.

• GIO_control. Device specific control call.

• GIO_create. Allocate and initialize a GIO object.

• GIO_delete. Delete underlying mini-drivers and free up the GIO object and any associated IOM
packet structures.

• GIO_flush. Drain output buffers and discard any pending input.

• GIO_new. Initialize a GIO object using pre-allocated memory.

• GIO_read. Synchronous read command.

• GIO_submit. Submits a packet to the mini-driver.

• GIO_write. Synchronous write command.

Constants, Types, and Structures
/* Modes for GIO_create */

#define IOM_INPUT 0x0001

#define IOM_OUTPUT 0x0002

#define IOM_INOUT (IOM_INPUT | IOM_OUTPUT)

/* IOM Status and Error Codes */

#define IOM_COMPLETED SYS_OK /* I/O successful */

#define IOM_PENDING 1 /* I/O queued and pending */

#define IOM_FLUSHED 2 /* I/O request flushed */

#define IOM_ABORTED 3 /* I/O aborted */

#define IOM_EBADIO -1 /* generic failure */

#define IOM_ETIMEOUT -2 /* timeout occurred */

#define IOM_ENOPACKETS -3 /* no packets available */

#define IOM_EFREE -4 /* unable to free resources */

#define IOM_EALLOC -5 /* unable to alloc resource */

#define IOM_EABORT -6 /* I/O aborted uncompleted*/

#define IOM_EBADMODE -7 /* illegal device mode */

#define IOM_EOF -8 /* end-of-file encountered */

#define IOM_ENOTIMPL -9 /* operation not supported */

#define IOM_EBADARGS -10 /* illegal arguments used */

#define IOM_ETIMEOUTUNREC -11

 /* unrecoverable timeout occurred */

#define IOM_EINUSE -12 /* device already in use */

/* Command codes for IOM_Packet */

#define IOM_READ 0

#define IOM_WRITE 1

#define IOM_ABORT 2

#define IOM_FLUSH 3

#define IOM_USER 128 /* 0-127 reserved for system */
128 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GIO Module
/* Command codes reserved for control */

#define IOM_CHAN_RESET 0 /* reset channel only */

#define IOM_CHAN_TIMEDOUT 1

 /* channel timeout occurred */

#define IOM_DEVICE_RESET 2 /* reset entire device */

#define IOM_CNTL_USER 128

 /* 0-127 reserved for system */

/* Structure passed to GIO_create */

typedef struct GIO_Attrs {

 Int nPackets; /* number of asynch I/O packets */

 Uns timeout; /* for blocking (SYS_FOREVER) */

} GIO_Attrs;

/* Struct passed to GIO_submit for synchronous use*/

typedef struct GIO_AppCallback {

 GIO_TappCallback fxn;

 Ptr arg;

} GIO_AppCallback;

typedef struct GIO_Obj {

 IOM_Fxns *fxns; /* ptr to function table */

 Uns mode; /* create mode */

 Uns timeout; /* timeout for blocking */

 IOM_Packet syncPacket; /* for synchronous use */

 QUE_Obj freeList; /* frames for asynch I/O */

 Ptr syncObj; /* ptr to synchro. obj */

 Ptr mdChan; /* ptr to channel obj */

} GIO_Obj, *GIO_Handle;

typedef struct IOM_Fxns

{

 IOM_TmdBindDev mdBindDev;

 IOM_TmdUnBindDev mdUnBindDev;

 IOM_TmdControlChan mdControlChan;

 IOM_TmdCreateChan mdCreateChan;

 IOM_TmdDeleteChan mdDeleteChan;

 IOM_TmdSubmitChan mdSubmitChan;

} IOM_Fxns;

typedef struct IOM_Packet { /* frame object */

 QUE_Elem link; /* queue link */

 Ptr addr; /* buffer address */

 size_t size; /* buffer size */

 Arg misc; /* reserved for driver */

 Arg arg; /* user argument */

 Uns cmd; /* mini-driver command */

 Int status; /* status of command */

} IOM_Packet;

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the GIO Manager Properties heading. For descriptions of data types, see
Section 1.4, DSP/BIOS Tconf Overview, page 1-10.
SPRU404Q—August 2012 Application Program Interface 129
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GIO Module www.ti.com
Module Configuration Parameters

Description

The GIO module provides a standard interface to mini-drivers for devices such as UARTs, codecs, and
video capture/display devices. The creation of such mini-drivers is not covered in this manual; it is
described in DSP/BIOS Device Driver Developer's Guide (SPRU616).

The GIO module is independent of the actual mini-driver being used. It allows the application to use a
common interface for I/O requests. It also handles response synchronization. It is intended as common
"glue" to bind applications to device drivers.

The following figure shows how modules are related in an application that uses the GIO module and an
IOM mini-driver:

The GIO module is the basis of communication between applications and mini-drivers. The DEV module
is responsible for maintaining the table of device drivers that are present in the system. The GIO module
obtains device information by using functions such as DEV_match.

GIO Manager Properties

The following global properties can be set for the GIO module in the GIO Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Enable General Input/Output Manager. Set this property to true to enable use of the GIO module.
If your application does not use GIO, you should leave it disabled to prevent additional modules (such
as SEM) from being linked into your application.

Tconf Name: ENABLEGIO Type: Bool

Example: bios.GIO.ENABLEGIO = false;

Name Type Default

ENABLEGIO Bool false

CREATEFXN Extern prog.extern("FXN_F_nop")

DELETEFXN Extern prog.extern("FXN_F_nop")

PENDFXN Extern prog.extern("FXN_F_nop"

POSTFXN Extern prog.extern("FXN_F_nop")

Application
typically TSK threads;

SW I threads possible with customization

GIO Module API DEV module
(device driver table)

IOM mini-driver
(IOM_Fxns function table)
130 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GIO Module
• Create Function.The function the GIO module should use to create a synchronization object. This
function is typically SEM_create. If you use another function, that function should have a prototype
that matches that of SEM_create: Ptr CREATEFXN(Int count, Ptr attrs);

Tconf Name: CREATEFXN Type: Extern

Example: bios.GIO.CREATEFXN = prog.extern("SEM_create");

• Delete Function.The function the GIO module should use to delete a synchronization object. This
function is typically SEM_delete. If you use another function, that function should have a prototype
that matches that of SEM_delete: Void DELETEFXN(Ptr semHandle);

Tconf Name: DELETEFXN Type: Extern

Example: bios.GIO.DELETEFXN = prog.extern("SEM_delete");

• Pend Function.The function the GIO module should use to pend on a synchronization object. This
function is typically SEM_pend. If you use another function, that function should have a prototype
that matches that of SEM_pend: Bool PENDFXN(Ptr semHandle, Uns timeout);

Tconf Name: PENDFXN Type: Extern

Example: bios.GIO.PENDFXN = prog.extern("SEM_pend");

• Post Function.The function the GIO module should use to post a synchronization object. This
function is typically SEM_post. If you use another function, that function should have a prototype that
matches that of SEM_post: Void POSTFXN(Ptr semHandle);

Tconf Name: POSTFXN Type: Extern

Example: bios.GIO.POSTFXN = prog.extern("SEM_post");

GIO Object Properties

GIO objects cannot be created statically. In order to create a GIO object, the application should call
GIO_create or GIO_new.
SPRU404Q—August 2012 Application Program Interface 131
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GIO_abort www.ti.com
C Interface

Syntax
status = GIO_abort(gioChan);

Parameters
GIO_Handle gioChan; /* handle to an instance of the device */

Return Value
Int status; /* returns IOM_COMPLETED if successful */

Description
An application calls GIO_abort to abort all input and output from the device. When this call is made, all
pending calls are completed with a status of GIO_ABORTED. An application uses this call to return the
device to its initial state. Usually this is done in response to an unrecoverable error at the device level.

GIO_abort returns IOM_COMPLETED upon successfully aborting all input and output requests. If an
error occurs, the device returns a negative value. For a list of error values, see “Constants, Types, and
Structures” on page 128.

A call to GIO_abort results in a call to the mdSubmit function of the associated mini-driver. The
IOM_ABORT command is passed to the mdSubmit function. The mdSubmit call is typically a blocking
call, so calling GIO_abort can result in the thread blocking.

Constraints and Calling Context

• This function can be called only after the device has been loaded and initialized. The handle supplied
should have been obtained with a prior call to GIO_create or GIO_new.

• GIO_abort cannot be called from a SWI or HWI unless the underlying mini-driver is a non-blocking
driver and the GIO Manager properties are set to use non-blocking synchronization methods.

Example
/* abort all I/O requests given to the device*/
gioStatus = GIO_abort(gioChan);

GIO_abort Abort all pending input and output
132 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GIO_control
C Interface

Syntax
status = GIO_control(gioChan, cmd, args);

Parameters
GIO_Handle gioChan; /* handle to an instance of the device */
Int cmd; /* control functionality to perform */
Ptr args; /* data structure to pass control information */

Return Value
Int status; /* returns IOM_COMPLETED if successful */

Description

An application calls GIO_control to configure or perform control functionality on the communication
channel.

The cmd parameter may be one of the command code constants listed in “Constants, Types, and
Structures” on page 128. A mini-driver may add command codes for additional functionality.

The args parameter points to a data structure defined by the device to allow control information to be
passed between the device and the application. This structure can be generic across a domain or specific
to a mini-driver. In some cases, this argument may point directly to a buffer holding control data. In other
cases, there may be a level of indirection if the mini-driver expects a data structure to package many
components of data required for the control operation. In the simple case where no data is required, this
parameter may just be a predefined command value.

GIO_control returns IOM_COMPLETED upon success. If an error occurs, the device returns a negative
value. For a list of error values, see “Constants, Types, and Structures” on page 128.

A call to GIO_control results in a call to the mdControl function of the associated mini-driver. The
mdControl call is typically a blocking call, so calling GIO_control can result in blocking.

Constraints and Calling Context

• This function can be called only after the device has been loaded and initialized. The handle supplied
should have been obtained with a prior call to GIO_create or GIO_new.

• GIO_control cannot be called from a SWI or HWI unless the underlying mini-driver is a non-blocking
driver and the GIO Manager properties are set to use non-blocking synchronization methods.

Example
/* Carry out control/configuration on the device*/
gioStatus = GIO_control(gioChan, XXX_RESET, &args);

GIO_control Device specific control call
SPRU404Q—August 2012 Application Program Interface 133
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GIO_create www.ti.com
C Interface

Syntax
gioChan = GIO_create(name, mode, *status, chanParams, *attrs)

Parameters
String name /* name of the device to open */
Int mode /* mode in which the device is to be opened */
Int *status /* address to place driver return status */
Ptr chanParams /* optional */
GIO_Attrs *attrs /* pointer to a GIO_Attrs structure */

Return Value
GIO_Handle gioChan; /* handle to an instance of the device */

Description
An application calls GIO_create to create a GIO_Obj object and open a communication channel. This
function initializes the I/O channel and opens the lower-level device driver channel. The GIO_create call
also creates the synchronization objects it uses and stores them in the GIO_Obj object.

The name argument is the name specified for the device when it was created in the configuration or at
runtime.

The mode argument specifies the mode in which the device is to be opened. This may be IOM_INPUT,
IOM_OUTPUT, or IOM_INOUT.

If the status returned by the device is non-NULL, a status value is placed at the address specified by the
status parameter.

The chanParams parameter is a pointer that may be used to pass device or domain-specific arguments
to the mini-driver. The contents at the specified address are interpreted by the mini-driver in a device-
specific manner.

The attrs parameter is a pointer to a structure of type GIO_Attrs.

typedef struct GIO_Attrs {

 Int nPackets; /* number of asynch I/O packets */

 Uns timeout; /* for blocking calls (SYS_FOREVER) */

} GIO_Attrs;

If attrs is NULL, a default set of attributes is used. The default for nPackets is 2. The default for timeout
is SYS_FOREVER.

The GIO_create call allocates a list of IOM_Packet items as specified by the nPackets member of the
GIO_Attrs structure and stores them in the GIO_Obj object it creates.

GIO_create returns a handle to the GIO_Obj object created upon a successful open. The handle returned
by this call should be used by the application in subsequent calls to GIO functions. This function returns
a NULL handle if the device could not be opened. For example, if a device is opened in a mode not
supported by the device, this call returns a NULL handle.

A call to GIO_create results in a call to the mdCreateChan function of the associated mini-driver.

GIO_create Allocate and initialize a GIO object
134 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GIO_create
Constraints and Calling Context

• A GIO stream can only be used by one task simultaneously. Catastrophic failure can result if more
than one task calls GIO_read on the same input stream, or more than one task calls GIO_write on
the same output stream.

• GIO_create cannot be called from the context of a SWI or HWI thread.

• This function can be called only after the device has been loaded and initialized.

Example
/* Create a device instance */
gioAttrs = GIO_ATTRS;
gioChan = GIO_create("\Codec0", IOM_INPUT, NULL, NULL,

 &gioAttrs);

GIO_new
SPRU404Q—August 2012 Application Program Interface 135
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GIO_delete www.ti.com
C Interface

Syntax
status = GIO_delete(gioChan);

Parameters
GIO_Handle gioChan; /* handle to device instance to be closed */

Return Value
Int status; /* returns IOM_COMPLETED if successful */

Description
An application calls GIO_delete to close a communication channel opened prior to this call with
GIO_create. This function deallocates all memory allocated for this channel and closes the underlying
device. All pending input and output are cancelled and the corresponding interrupts are disabled.

The gioChan parameter is the handle returned by GIO_create or GIO_new.

This function returns IOM_COMPLETED if the channel is successfully closed. If an error occurs, the
device returns a negative value. For a list of error values, see “Constants, Types, and Structures” on
page 128.

A call to GIO_delete results in a call to the mdDelete function of the associated mini-driver.

Constraints and Calling Context

• This function can be called only after the device has been loaded and initialized. The handle supplied
should have been obtained with a prior call to GIO_create or GIO_new.

Example
/* close the device instance */
GIO_delete(gioChan);

GIO_delete Delete underlying mini-drivers and free GIO object and its structures
136 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GIO_flush
C Interface

Syntax
status = GIO_flush(gioChan);

Parameters
GIO_Handle gioChan; /* handle to an instance of the device */

Return Value
Int status; /* returns IOM_COMPLETED if successful */

Description

An application calls GIO_flush to flush the input and output channels of the device. All input data is
discarded; all pending output requests are completed. When this call is made, all pending input calls are
completed with a status of IOM_FLUSHED, and all output calls are completed routinely.

The gioChan parameter is the handle returned by GIO_create or GIO_new.

This call returns IOM_COMPLETED upon successfully flushing all input and output. If an error occurs,
the device returns a negative value. For a list of error values, see “Constants, Types, and Structures” on
page 128.

A call to GIO_flush results in a call to the mdSubmit function of the associated mini-driver. The
IOM_FLUSH command is passed to the mdSubmit function. The mdSubmit call is typically a blocking
call, so calling GIO_flush can result in the thread blocking while waiting for output calls to be completed.

Constraints and Calling Context

• This function can be called only after the device has been loaded and initialized. The handle supplied
should have been obtained with a prior call to GIO_create or GIO_new.

• GIO_flush cannot be called from a SWI or HWI unless the underlying mini-driver is a non-blocking
driver and the GIO Manager properties are set to use non-blocking synchronization methods.

Example
/* Flush all I/O given to the device*/
GIO_flush(gioChan);

GIO_flush Drain output buffers and discard any pending input
SPRU404Q—August 2012 Application Program Interface 137
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GIO_new www.ti.com
C Interface

Syntax
gioChan = GIO_new(gioChan, name, mode, *status, optArgs,
packetBuf[], syncObject, *attrs);

Parameters
GIO_Handle gioChan /* Handle to GIO Obj */
String name /* name of the device to open */
Int mode /* mode in which the device is to be opened */
Int *status /* address to place driver return status */
Ptr optArgs /* optional args to mdCreateChan */
IOM_packet packetBuf[] /* to be initialized to zero */
Ptr syncObject /* sync Object */
GIO_Attrs *attrs /* pointer to a GIO_Attrs structure */

Return Value
GIO_Handle gioChan; /* handle to the initialized GIO object */

Description
An application calls GIO_new to initialize a GIO_Obj object and open a communication channel. This
function initializes the I/O channel and opens the lower-level device driver channel. The GIO_new call
does not allocate any memory. It requires pre-allocated memory.

The "gioChan" parameter is a handle to a structure of type GIO_Obj that your program has declared.
GIO_new initializes this structure.

typedef struct GIO_Obj {

 IOM_Fxns *fxns; /* ptr to function table */

 Uns mode; /* create mode */

 Uns timeout; /* timeout for blocking */

 IOM_Packet syncPacket; /* for synchronous use */

 QUE_Obj freeList; /* frames for asynch I/O */

 Ptr syncObj; /* ptr to synchro. obj */

 Ptr mdChan; /* ptr to channel obj */

} GIO_Obj, *GIO_Handle;

The "name" parameter is the name previously specified for the device. It is used to find a matching name
in the device table.

The "mode" parameter specifies the mode in which the device is to be opened. This may be IOM_INPUT,
IOM_OUTPUT, or IOM_INOUT.

If the status returned by the device is non-NULL, a status value is placed at the address specified by the
"status" parameter.

The "optArgs" parameter is a pointer that may be used to pass device or domain-specific arguments to
the mini-driver. The contents at the specified address are interpreted by the mini-driver in a device-
specific manner.

Use the "packetBuf[]" array to pass a list of IOM_Packet items. The number of items should match the
nPackets member of the GIO_Attrs structure passed to the "attrs" parameter. GIO_new initializes these
IOM_Packet items.

GIO_new Initialize a GIO object with pre-allocated memory
138 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GIO_new
The "syncObject" parameter is usually a SEM handle.

The "attrs" parameter is a pointer to a structure of type GIO_Attrs.

typedef struct GIO_Attrs {

 Int nPackets; /* number of asynch I/O packets */

 Uns timeout; /* for blocking calls (SYS_FOREVER) */

} GIO_Attrs;

If attrs is NULL, a default set of attributes is used. The default for nPackets is 2. The default for timeout
is SYS_FOREVER. GIO_new initializes the packets, but does not allocate them.

GIO_new returns the non-NULL handle to the GIO_Obj when initialization is successful. The handle
returned by this call should be used by the application in subsequent calls to GIO functions. Usually, this
is the same handle passed to GIO_new. However, GIO_new returns a NULL handle if the device could
not be initialized. For example, if a device is opened in a mode not supported by the device, this call
returns a NULL handle.

A call to GIO_new results in a call to the mdCreateChan function of the associated mini-driver.

Constraints and Calling Context

• This function can be called only after the device has been loaded and initialized.

Example
/* Initialize a device object */

output = GIO_new(&outObj, "/printf", IOM_OUTPUT,

 &status, NULL, outPacketBuf, outSem, &attrs);

GIO_create
SPRU404Q—August 2012 Application Program Interface 139
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GIO_read www.ti.com
C Interface

Syntax
status = GIO_read(gioChan, bufp, *pSize);

Parameters
GIO_Handle gioChan; /* handle to an instance of the device */
Ptr bufp /* pointer to data structure for buffer data */
size_t *pSize /* pointer to size of bufp structure */

Return Value
Int status; /* returns IOM_COMPLETED if successful */

Description
An application calls GIO_read to read a specified number of MADUs (minimum addressable data units)
from the communication channel.

The gioChan parameter is the handle returned by GIO_create or GIO_new.

The bufp parameter points to a device-defined data structure for passing buffer data between the device
and the application. This structure may be generic across a domain or specific to a single mini-driver. In
some cases, this parameter may point directly to a buffer that holds the read data. In other cases, this
parameter may point to a structure that packages buffer information, size, offset to be read from, and
other device-dependent data. For example, for video capture devices this structure may contain pointers
to RGB buffers, their sizes, video format, and a host of data required for reading a frame from a video
capture device. Upon a successful read, this argument points to the returned data.

The pSize parameter points to the size of the buffer or data structure pointed to by the bufp parameter.
When the function returns, this parameter points to the number of MADUs read from the device. This
parameter is relevant only if the bufp parameter points to a raw data buffer. In cases where it points to a
device-defined structure it is redundant—the size of the structure is known to the mini-driver and the
application. At most, it can be used for error checking.

GIO_read returns IOM_COMPLETED upon successfully reading the requested number of MADUs from
the device. If an error occurs, the device returns a negative value. For a list of error values, see
“Constants, Types, and Structures” on page 128.

A call to GIO_read results in a call to the mdSubmit function of the associated mini-driver. The
IOM_READ command is passed to the mdSubmit function. The mdSubmit call is typically a blocking call,
so calling GIO_read can result in the thread blocking.

Constraints and Calling Context

• This function can be called only after the device has been loaded and initialized. The handle supplied
should have been obtained with a prior call to GIO_create or GIO_new.

• GIO_read cannot be called from a SWI, HWI, or main() unless the underlying mini-driver is a non-
blocking driver and the GIO Manager properties are set to use non-blocking synchronization
methods.

Example
/* Read from the device */
size = sizeof(readStruct);
status = GIO_read(gioChan, &readStruct, &size);

GIO_read Synchronous read command
140 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GIO_submit
C Interface

Syntax
status = GIO_submit(gioChan, cmd, bufp, *pSize, *appCallback);

Parameters
GIO_Handle gioChan; /* handle to an instance of the device */
Uns cmd /* specified mini-driver command */
Ptr bufp /* pointer to data structure for buffer data */
size_t *pSize /* pointer to size of bufp structure */
GIO_AppCallback *appCallback /* pointer to callback structure */

Return Value
Int status; /* returns IOM_COMPLETED if successful */

Description

GIO_submit is not typically called by applications. Instead, it is used internally and for user-defined
extensions to the GIO module.

GIO_read and GIO_write are macros that call GIO_submit with appCallback set to NULL. This causes
GIO to complete the I/O request synchronously using its internal synchronization object (by default, a
semaphore). If appCallback is non-NULL, the specified callback is called without blocking. This API is
provided to extend GIO functionality for use with SWI threads without changing the GIO implementation.

The gioChan parameter is the handle returned by GIO_create or GIO_new.

The cmd parameter is one of the command code constants listed in “Constants, Types, and Structures”
on page 128. A mini-driver may add command codes for additional functionality.

The bufp parameter points to a device-defined data structure for passing buffer data between the device
and the application. This structure may be generic across a domain or specific to a single mini-driver. In
some cases, this parameter may point directly to a buffer that holds the data. In other cases, this
parameter may point to a structure that packages buffer information, size, offset to be read from, and
other device-dependent data.

The pSize parameter points to the size of the buffer or data structure pointed to by the bufp parameter.
When the function returns, this parameter points to the number of MADUs transferred to or from the
device. This parameter is relevant only if the bufp parameter points to a raw data buffer. In cases where
it points to a device-defined structure it is redundant—the size of the structure is known to the mini-driver
and the application. At most, it can be used for error checking.

The appCallback parameter points to either a callback structure that contains the callback function to be
called when the request completes, or it points to NULL, which causes the call to be synchronous. When
a queued request is completed, the callback routine (if specified) is invoked (i.e. blocking).

GIO_submit returns IOM_COMPLETED upon successfully carrying out the requested functionality. If the
request is queued, then a status of IOM_PENDING is returned. If an error occurs, the device returns a
negative value. For a list of error values, see “Constants, Types, and Structures” on page 128.

A call to GIO_submit results in a call to the mdSubmit function of the associated mini-driver. The specified
command is passed to the mdSubmit function.

GIO_submit Submit a GIO packet to the mini-driver
SPRU404Q—August 2012 Application Program Interface 141
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

GIO_submit www.ti.com
Constraints and Calling Context

• This function can be called only after the device has been loaded and initialized. The handle supplied
should have been obtained with a prior call to GIO_create or GIO_new.

• This function can be called within the program’s main() function only if the GIO channel is
asynchronous (non-blocking).

Example
/* write asynchronously to the device*/
size = sizeof(userStruct);
status = GIO_submit(gioChan, IOM_WRITE, &userStruct,

 &size, &callbackStruct);

/* write synchronously to the device */

size = sizeof(userStruct);

status = GIO_submit(gioChan, IOM_WRITE, &userStruct,

 &size, NULL);
142 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com GIO_write
C Interface

Syntax
status = GIO_write(gioChan, bufp, *pSize);

Parameters
GIO_Handle gioChan; /* handle to an instance of the device */
Ptr bufp /* pointer to data structure for buffer data */
size_t *pSize /* pointer to size of bufp structure */

Return Value
Int status; /* returns IOM_COMPLETED if successful */

Description
The application uses this function to write a specified number of MADUs to the communication channel.

The gioChan parameter is the handle returned by GIO_create or GIO_new.

The bufp parameter points to a device-defined data structure for passing buffer data between the device
and the application. This structure may be generic across a domain or specific to a single mini-driver. In
some cases, this parameter may point directly to a buffer that holds the write data. In other cases, this
parameter may point to a structure that packages buffer information, size, offset to be written to, and other
device-dependent data. For example, for video capture devices this structure may contain pointers to
RGB buffers, their sizes, video format, and a host of data required for reading a frame from a video
capture device. Upon a successful read, this argument points to the returned data.

The pSize parameter points to the size of the buffer or data structure pointed to by the bufp parameter.
When the function returns, this parameter points to the number of MADUs written to the device. This
parameter is relevant only if the bufp parameter points to a raw data buffer. In cases where it points to a
device-defined structure it is redundant—the size of the structure is known to the mini-driver and the
application. At most, it can be used for error checking.

GIO_write returns IOM_COMPLETED upon successfully writing the requested number of MADUs to the
device. If an error occurs, the device returns a negative value. For a list of error values, see “Constants,
Types, and Structures” on page 128.

A call to GIO_write results in a call to the mdSubmit function of the associated mini-driver. The
IOM_WRITE command is passed to the mdSubmit function. The mdSubmit call is typically a blocking
call, so calling GIO_write can result in blocking.

Constraints and Calling Context

• This function can be called only after the device has been loaded and initialized. The handle supplied
should have been obtained with a prior call to GIO_create or GIO_new.

• This function can be called within the program’s main() function only if the GIO channel is
asynchronous (non-blocking).

• GIO_write cannot be called from a SWI or HWI unless the underlying mini-driver is a non-blocking
driver and the GIO Manager properties are set to use non-blocking synchronization methods.

Example
/* write synchronously to the device*/
size = sizeof(writeStruct);
status = GIO_write(gioChan, &writeStrct, &size);

GIO_write Synchronous write command
SPRU404Q—August 2012 Application Program Interface 143
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HOOK Module www.ti.com
2.8 HOOK Module

The HOOK module is the Hook Function manager.

Functions

• HOOK_getenv. Get environment pointer for a given HOOK and TSK combination.

• HOOK_setenv. Set environment pointer for a given HOOK and TSK combination.

Constants, Types, and Structures
typedef Int HOOK_Id; /* HOOK instance id */

typedef Void (*HOOK_InitFxn)(HOOK_Id id);

typedef Void (*HOOK_CreateFxn)(TSK_Handle task);

typedef Void (*HOOK_DeleteFxn)(TSK_Handle task);

typedef Void (*HOOK_ExitFxn)(Void);

typedef Void (*HOOK_ReadyFxn)(TSK_Handle task);

typedef Void (*HOOK_SwitchFxn)(TSK_Handle prev,
 TSK_Handle next);

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the HOOK Object Properties heading. For descriptions of data types, see
Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Instance Configuration Parameters

 Description
The HOOK module is an extension to the TSK function hooks defined in the TSK Manager Properties. It
allows multiple sets of hook functions to be performed at key execution points. For example, an
application that integrates third-party software may need to perform both its own hook functions and the
hook functions required by the third-party software.

In addition, each HOOK object can maintain private data environments for each task for use by its hook
functions.

The key execution points at which hook functions can be executed are during program initialization and
at several TSK execution points.

Name Type Default

comment String "<add comments here>"

initFxn Extern prog.extern("FXN_F_nop")

createFxn Extern prog.extern("FXN_F_nop")

deleteFxn Extern prog.extern("FXN_F_nop")

exitFxn Extern prog.extern("FXN_F_nop")

callSwitchFxn Bool false

switchFxn Extern prog.extern("FXN_F_nop")

callReadyFxn Bool false

readyFxn Extern prog.extern("FXN_F_nop")

order Int16 2
144 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HOOK Module
The HOOK module manages objects that reference a set of hook functions. Each HOOK object is
assigned a numeric identifier during DSP/BIOS initialization. If your program calls HOOK API functions,
you must implement an initialization function for the HOOK instance that records the identifier in a
variable of type HOOK_Id. DSP/BIOS passes the HOOK object’s ID to the initialization function as the
lone parameter.

The following function, myInit, could be configured as the Initialization function for a HOOK object using
Tconf.

#include <hook.h>

HOOK_Id myId;

Void myInit(HOOK_Id id)

{

 myId = id;

}

The HOOK_setenv function allows you to associate an environment pointer to any data structure with a
particular HOOK object and TSK object combination.

There is no limit to the number of HOOK objects that can be created. However, each object requires a
small amount of memory in the .bss section to contain the object.

A HOOK object initially has all of its functions set to FXN_F_nop. You can set some hook functions and
use this no-op function for the remaining events. Since the switch and ready events occur frequently
during real-time processing, a separate property controls whether any function is called.

When you create a HOOK object, any TSK module hook functions you have specified are automatically
placed in a HOOK object called HOOK_KNL. To set any properties of this object other than the
Initialization function, use the TSK module. To set the Initialization function property of the HOOK_KNL
object, use the HOOK module.

When an event occurs, all HOOK functions for that event are called in the order set by the order property
in the configuration. When you select the HOOK manager in the DSP/BIOS Configuration Tool, you can
change the execution order by dragging objects within the ordered list.

HOOK Manager Properties
There are no global properties for the HOOK manager. HOOK objects are placed in the C Variables
Section (.bss).

HOOK Object Properties

The following properties can be set for a HOOK object in the DPI Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script. To create a HOOK object in a configuration script, use
the following syntax:

var myHook = bios.HOOK.create("myHook");

The Tconf examples that follow assume the object has been created as shown.

• comment. A comment to identify this HOOK object.

Tconf Name: comment Type: String

Example: myHook.comment = "HOOK funcs";

• Initialization function. The name of a function to call during program initialization. Such functions
run during the BIOS_init portion of application startup, which runs before the program’s main()
function. Initialization functions can call most functions that can be called from the main() function.
SPRU404Q—August 2012 Application Program Interface 145
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HOOK Module www.ti.com
However, they should not call TSK module functions, because the TSK module is initialized after
initialization functions run. In addition to code specific to the module hook, this function should be
used to record the object’s ID, if it is needed in a subsequent hook function. This initialization function
is intended for use in setting up data structures used by other functions of the same HOOK object.
In contrast, the User Init Function property of the GBL Module Properties runs early in the
initialization process and is intended to be used to perform hardware setup that needs to run before
DSP/BIOS is initialized.

Tconf Name: initFxn Type: Extern

Example: myHook.initFxn = prog.extern("myInit");

• Create function. The name of a function to call when any task is created. This includes tasks that
are created statically and those created dynamically using TSK_create. The TSK_create topic
describes the prototype required for the Create function. If this function is written in C and you are
using the DSP/BIOS Configuration Tool, use a leading underscore before the C function name. If you
are using Tconf, do not add an underscore before the function name; Tconf adds the underscore
needed to call a C function from assembly internally.

Tconf Name: createFxn Type: Extern

Example: myHook.createFxn = prog.extern("myCreate");

• Delete function. The name of a function to call when any task is deleted at run-time with TSK_delete.

Tconf Name: deleteFxn Type: Extern

Example: myHook.deleteFxn = prog.extern("myDelete");

• Exit function. The name of a function to call when any task exits. The TSK_exit topic describes the
Exit function.

Tconf Name: exitFxn Type: Extern

Example: myHook.exitFxn = prog.extern("myExit");

• Call switch function. Set this property to true if you want a function to be called when any task
switch occurs.

Tconf Name: callSwitchFxn Type: Bool

Example: myHook.callSwitchFxn = false;

• Switch function. The name of a function to call when any task switch occurs. This function can give
the application access to both the current and next task handles. The TSK Module topic describes
the Switch function.

Tconf Name: switchFxn Type: Extern

Example: myHook.switchFxn = prog.extern("mySwitch");

• Call ready function. Set this property to true if you want a function to be called when any task
becomes ready to run.

Tconf Name: callReadyFxn Type: Bool

Example: myHook.callReadyFxn = false;

• Ready function. The name of a function to call when any task becomes ready to run. The TSK
Module topic describes the Ready function.

Tconf Name: readyFxn Type: Extern

Example: myHook.readyFxn = prog.extern("myReady");

• order. Set this property for all HOOK function objects match the order in which HOOK functions
should be executed.

Tconf Name: order Type: Int16

Example: myHook.order = 2;
146 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HOOK_getenv
C Interface

Syntax
environ = HOOK_getenv(task, id);

Parameters
TSK_Handle task; /* task object handle */
HOOK_Id id; /* HOOK instance id */

Return Value
Ptr environ; /* environment pointer */

Reentrant
yes

Description
HOOK_getenv returns the environment pointer associated with the specified HOOK and TSK objects.
The environment pointer, environ, references the data structure specified in a previous call to
HOOK_setenv.

See Also
HOOK_setenv
TSK_getenv

HOOK_getenv Get environment pointer for a given HOOK and TSK combination
SPRU404Q—August 2012 Application Program Interface 147
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HOOK_setenv www.ti.com
C Interface

Syntax
HOOK_setenv(task, id, environ);

Parameters
TSK_Handle task; /* task object handle */
HOOK_Id id; /* HOOK instance id */
Ptr environ; /* environment pointer */

Return Value
Void

Reentrant
yes

Description
HOOK_setenv sets the environment pointer associated with the specified HOOK and TSK objects to
environ. The environment pointer, environ, should reference an data structure to be used by the hook
functions for a task or tasks.

Each HOOK object may have a separate environment pointer for each task. A HOOK object may also
point to the same data structure for all tasks, depending on its data sharing needs.

The HOOK_getenv function can be used to get the environ pointer for a particular HOOK and TSK object
combination.

See Also
HOOK_getenv
TSK_setenv

HOOK_setenv Set environment pointer for a given HOOK and TSK combination
148 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HST Module
2.9 HST Module

Important: This module is being deprecated and will no longer be supported in the next major
release of DSP/BIOS.

The HST module is the host channel manager.

Functions

• HST_getpipe. Get corresponding pipe object

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the HST Manager Properties and HST Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
The HST module manages host channel objects, which allow an application to stream data between the
target and the host. Host channels are statically configured for input or output. Input channels (also called
the source) read data from the host to the target. Output channels (also called the sink) transfer data from
the target to the host.

Note: HST channel names cannot begin with a leading underscore (_).

Name Type Default (Enum Options)

OBJMEMSEG Reference prog.get("DARAM")

HOSTLINKTYPE EnumString "RTDX" ("NONE")

Name Type Default (Enum Options)

comment String "<add comments here>"

mode EnumString "output" ("input")

bufSeg Reference prog.get("DARAM")

bufAlign Int16 4

frameSize Int16 128

numFrames Int16 2

statistics Bool false

availableForDHL Bool false

notifyFxn Extern prog.extern("FXN_F_nop")

arg0 Arg 3
SPRU404Q—August 2012 Application Program Interface 149
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HST Module www.ti.com
Each host channel is internally implemented using a data pipe (PIP) object. To use a particular host
channel, the program uses HST_getpipe to get the corresponding pipe object and then transfers data by
calling the PIP_get and PIP_free operations (for input) or PIP_alloc and PIP_put operations (for output).

During early development, especially when testing SWI processing algorithms, programs can use host
channels to input canned data sets and to output the results. Once the algorithm appears sound, you can
replace these host channel objects with I/O drivers for production hardware built around DSP/BIOS pipe
objects. By attaching host channels as probes to these pipes, you can selectively capture the I/O
channels in real time for off-line and field-testing analysis.

The notify function is called in the context of the code that calls PIP_free or PIP_put. This function can
be written in C or assembly. The code that calls PIP_free or PIP_put should preserve any necessary
registers.

The other end of the host channel is managed by the LNK_dataPump IDL object. Thus, a channel can
only be used when some CPU capacity is available for IDL thread execution.

HST Manager Properties

The following global properties can be set for the HST module in the HST Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment containing HST objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.HST.OBJMEMSEG = prog.get("myMEM");

• Host Link Type. The underlying physical link to be used for host-target data transfer. If None is
selected, no instrumentation or host channel data is transferred between the target and host in real
time. The Analysis Tool windows are updated only when the target is halted (for example, at a
breakpoint). The program code size is smaller when the Host Link Type is set to None because RTDX
code is not included in the program.

Tconf Name: HOSTLINKTYPE Type: EnumString

Options: "RTDX", "NONE"

Example: bios.HST.HOSTLINKTYPE = "RTDX";

HST Object Properties

A host channel maintains a buffer partitioned into a fixed number of fixed length frames. All I/O operations
on these channels deal with one frame at a time; although each frame has a fixed length, the application
can put a variable amount of data in each frame.

The following properties can be set for a host file object in the HST Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script. To create an HST object in a configuration script, use
the following syntax:

var myHst = bios.HST.create("myHst");

The Tconf examples that follow assume the object has been created as shown.

• comment. A comment to identify this HST object.

Tconf Name: comment Type: String

Example: myHst.comment = "my HST";
150 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HST Module
• mode. The type of channel: input or output. Input channels are used by the target to read data from
the host; output channels are used by the target to transfer data from the target to the host.

Tconf Name: mode Type: EnumString

Options: "output", "input"

Example: myHst.mode = "output";

• bufseg. The memory segment from which the buffer is allocated; all frames are allocated from a
single contiguous buffer (of size framesize x numframes).

Tconf Name: bufSeg Type: Reference

Example: myHst.bufSeg = prog.get("myMEM");

• bufalign. The alignment (in words) of the buffer allocated within the specified memory segment.

Tconf Name: bufAlign Type: Int16

Options: must be >= 4 and a power of 2

Example: myHst.bufAlign = 4;

• framesize. The length of each frame (in words)

Tconf Name: frameSize Type: Int16

Example: myHst.frameSize = 128;

• numframes. The number of frames

Tconf Name: numFrames Type: Int16

Example: myHst.numFrames = 2;

• statistics. Set this property to true if you want to monitor this channel with an STS object. You can
display the STS object for this channel to see a count of the number of frames transferred with the
Statistics View Analysis Tool.

Tconf Name: statistics Type: Bool

Example: myHst.statistics = false;

• Make this channel available for a new DHL device. Set this property to true if you want to use this
HST object with a DHL device. DHL devices allow you to manage data I/O between the host and
target using the SIO module, rather than the PIP module. See the DHL Driver topic for more details.

Tconf Name: availableForDHL Type: Bool

Example: myHst.availableForDHL = false;

• notify. The function to execute when a frame of data for an input channel (or free space for an output
channel) is available. To avoid problems with recursion, this function should not directly call any of
the PIP module functions for this HST object.

Tconf Name: notifyFxn Type: Extern

Example: myHst.notifyFxn = prog.extern("hstNotify");

• arg0, arg1. Two Arg type arguments passed to the notify function.

Tconf Name: arg0 Type: Arg

Tconf Name: arg1 Type: Arg

Example: myHst.arg0 = 3;
SPRU404Q—August 2012 Application Program Interface 151
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HST_getpipe www.ti.com
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS.

C Interface

Syntax
pipe = HST_getpipe(hst);

Parameters
HST_Handle hst /* host object handle */

Return Value
PIP_Handle pip /* pipe object handle*/

Reentrant
yes

Description
HST_getpipe gets the address of the pipe object for the specified host channel object.

Example

Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

 in = HST_getpipe(input);
 out = HST_getpipe(output);
 if (PIP_getReaderNumFrames == 0 ||
 PIP_getWriterNumFrames == 0) {
 error;
 }

 /* get input data and allocate output frame */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output frame */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);
 size = PIP_getReaderSize();
 out->writerSize = size;

 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input frame */
 PIP_put(out);
 PIP_free(in);
}

See Also
PIP_alloc

HST_getpipe Get corresponding pipe object
152 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI Module
2.10 HWI Module

The HWI module is the hardware interrupt manager.

Functions

• HWI_disable. Disable hardware interrupts

• HWI_dispatchPlug. Plug the HWI dispatcher

• HWI_enable. Enable hardware interrupts

• HWI_enter. Hardware ISR prolog

• HWI_exit. Hardware ISR epilog

• HWI_isHWI. Check current thread calling context.

• HWI_restore. Restore hardware interrupt state

Constants, Types, and Structures

typedef struct HWI_Attrs {

 Uns ier0mask; /* IER0 bitmask */

 Uns ier1mask; /* IER1 bitmask */

 Arg arg; /* fxn arg (default = 0) */

 LgUns mirmask; /* OMAP 2320/2420 only */

 LgUns mir1mask; /* OMAP 2320 only */

} HWI_Attrs;

HWI_Attrs HWI_ATTRS = {

 1, /* IER0 mask (1 => self) */

 1, /* IER1 mask (1 => self) */

 0 /* argument to ISR */

};

/* If ier0mask and ier1mask are both '1',

 mask to disable "self" is created. */

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the HWI Manager Properties and HWI Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

C55x Name Type Default (Enum Options)

STACKMODE EnumString "C54X_STK"
("USE_RETA", "NO_RETA")

INTC_BASE Numeric 0x7e4800
(OMAP 2320/2420 only)
SPRU404Q—August 2012 Application Program Interface 153
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI Module www.ti.com
Instance Configuration Parameters

HWI instances are provided as a default part of the configuration and cannot be created. In the items that
follow, HWI_INT* may be any provided instance. Default values for many HWI properties are different for
each instance

* Depends on interrupt ID

Description
The HWI module manages hardware interrupts. Using Tconf, you can assign routines that run when
specific hardware interrupts occur. Some routines are assigned to interrupts automatically by the HWI
module. For example, the interrupt for the timer that you select for the CLK global properties is
automatically configured to run a function that increments the low-resolution time. See the CLK Module
for more details.

You can also dynamically assign routines to interrupts at run-time using the HWI_dispatchPlug function
or the C55_plug function.

Interrupt routines can be written completely in assembly, completely in C, or in a mix of assembly and C.
In order to support interrupt routines written completely in C, an HWI dispatcher is provided that performs
the requisite prolog and epilog for an interrupt routine.

C55x Name Type Default (Enum Options)

comment String "<add comments here>"

fxn Extern prog.extern("HWI_unused", "asm")

monitor EnumString "Nothing" ("Data Value", "xsp", "ac0g", "ac0h", "ac0l", "ac1g", "ac1h",
"ac1l", "ac2g", "ac2h", "ac2l", "ac3g", "ac3h", "ac3l", "xar0", "xar1",
"xar2", "xar3", "xar4", "xar5", "xar6", "xar7", "t0", "t1", "t2", "t3", "xssp",
"tim", "st0_55", "st1_55", "st2_55", "st3_55", "trn0", "bk03", "brc0",
"xdp", "xcdp", "dph", "mdp05", "mdp67", "pdp", "bk47", "bkc", "bsa01",
"bsa23", "bsa45", "bsa67", "bsac", "trn1", "brc1", "csr", "rptc")

addr Arg 0x00000000

dataType EnumString "signed" ("unsigned")

operation EnumString "STS_add(*addr)" ("STS_delta(*addr)", "STS_add(-*addr)",
"STS_delta(-*addr)", "STS_add(|*addr|)", "STS_delta(|*addr|)")

useDispatcher Bool false

arg Arg 0

interruptMask0 EnumString "self" ("all", "none", "bitmask")

interruptMask1 EnumString "self" ("all", "none", "bitmask")

interruptBitMask0 Numeric 0x0010 *

interruptBitMask1 Numeric 0x0010 *

iMirMask EnumString "self" ("all", "none", "bitmask") (OMAP 2320/2420 only)

mirmask Numeric 0x00000000 * (OMAP 2320/2420 only)

mir1mask Numeric 0x00000000 * (OMAP 2320 only)

priority Numeric 0 (0-31 or 0-63) (OMAP 2320/2420 only)
154 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI Module
Note: RTS Functions Callable from TSK Threads Only. Many runtime support (RTS)
functions use lock and unlock functions to prevent reentrancy. However, DSP/BIOS
SWI and HWI threads cannot call LCK_pend and LCK_post. As a result, RTS functions
that call LCK_pend or LCK_post must not be called in the context of a SWI or HWI
thread. For a list or RTS functions that should not be called from a SWI or an HWI
function, see “LCK_pend” on page 181.

The C++ "new" operator calls malloc, which in turn calls LCK_pend. As a result, the "new" operator
cannot be used in the context of a SWI or HWI thread.

HWI Dispatcher vs. HWI_enter/exit

The HWI dispatcher is the preferred method for handling an interrupt.

When an HWI object does not use the dispatcher, the HWI_enter assembly macro must be called prior
to any DSP/BIOS API calls that affect other DSP/BIOS objects, such as posting a SWI or a semaphore,
and the HWI_exit assembly macro must be called at the very end of the function’s code.

When an HWI object is configured to use the dispatcher, the dispatcher handles the HWI_enter prolog
and HWI_exit epilog, and the HWI function can be completely written in C. It would, in fact, cause a
system crash for the dispatcher to call a function that contains the HWI_enter/HWI_exit macro pair. Using
the dispatcher allows you to save code space by including only one instance of the HWI_enter/HWI_exit
code.

Note: CLK functions should not call HWI_enter and HWI_exit as these are called internally
by DSP/BIOS when it runs CLK_F_isr. Additionally, CLK functions should not use the
interrupt keyword or the INTERRUPT pragma in C functions.

Notes

In the following notes, references to the usage of HWI_enter/HWI_exit also apply to usage of the HWI
dispatcher since, in effect, the dispatcher calls HWI_enter/HWI_exit.

• Do not call SWI_disable or SWI_enable within an HWI function.

• Do not call HWI_enter, HWI_exit, or any other DSP/BIOS functions from a non-maskable interrupt
(NMI) service routine. In addition, the HWI dispatcher cannot be used with the NMI service routine.

• Do not call HWI_enter/HWI_exit from a HWI function that is invoked by the dispatcher.

• The DSP/BIOS API calls that require an HWI function to use HWI_enter and HWI_exit are:
— SWI_andn
— SWI_andnHook
— SWI_dec
— SWI_inc
— SWI_or
— SWI_orHook
— SWI_post
— PIP_alloc
— PIP_free
— PIP_get
— PIP_put
— PRD_tick
SPRU404Q—August 2012 Application Program Interface 155
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI Module www.ti.com
— SEM_post
— MBX_post
— TSK_yield
— TSK_tick

Any PIP API call can cause the pipe’s notifyReader or notifyWriter function to run. If an HWI function
calls a PIP function, the notification functions run as part of the HWI function.

An HWI function must use HWI_enter and HWI_exit or must be dispatched by the HWI dispatcher if
it indirectly runs a function containing any of the API calls listed above.

If your HWI function and the functions it calls do not call any of these API operations, you do not need
to disable SWI scheduling by calling HWI_enter and HWI_exit.

DSP/BIOS and NMI Support

You should use the NMI interrupt only if tasking is disabled (that is, in a SWI-only system) or if tasking is
enabled but all the task stacks and the ISR stack are in the same memory page. This is because it is not
possible to atomically modify SP, SSP, and the page register such that the whole operation is protected
from an NMI (non-maskable interrupt). When tasking is enabled, DSP/BIOS modifies these registers
whenever an interrupt occurs, whenever a SWI is executed, and whenever a task context switch takes
place. Thus it is possible for an NMI to occur when the state of these registers is not internally consistent.
This could result in unpredictable behavior when the DSP tries to push the processor state onto the stack
on its way to the NMI vector.

Registers and Stack

Whether a hardware interrupt is dispatched by the HWI dispatcher or handled with the
HWI_enter/HWI_exit macros, a common interrupt stack (called the system stack) is used for the duration
of the HWI. This same stack is also used by all SWI routines.

The register mask argument to HWI_enter and HWI_exit allows you to save and restore registers used
within the function. Other arguments, for example, allow the HWI to control the settings of the IMR or, in
the case of the C55x device, the IER0[IER1].

Note: By using HWI_enter and HWI_exit as an HWI function’s prolog and epilog, an HWI
function can be interrupted; that is, a hardware interrupt can interrupt another interrupt.
For the c55x device, you can use the IER0DISABLEMASK and IER1DISABLEMASK
parameters to prevent this from occurring.

HWI Manager Properties

DSP/BIOS manages the hardware interrupt vector table and provides basic hardware interrupt control
functions; for example, enabling and disabling the execution of hardware interrupts.

The following global properties can be set for the HWI module in the HWI Manager Properties dialog of
Gconf or in a Tconf script:

• Stack Mode. Select the Stack Mode used for the application: C54X_STK, USE_RETA or NO_RETA.
The stack mode selected here takes effect only if the program address 0xffff00 (the hardware reset
vector location) is programmable and the linker is configured to place the vector table (.hwi_vec
156 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI Module
section) at address 0xffff00. If this address is located in ROM space, it is not programmable.
DSP/BIOS does not report an error if it is unable to modify the value at this address to set the
specified stack mode.

Tconf Name: STACKMODE Type: EnumString

Options: "C54X_STK", "USE_RETA", "NO_RETA"

Example: bios.HWI.STACKMODE = "C54X_STK";

To set the ’C55x stackmode, perform all of the following steps:

— Set the stackmode configuration property to the mode you want to use in your configuration using
a statement similar to the preceding example.

— Add the following arguments to your linker command line. These arguments force a soft reset
using the RAM-based interrupt vector table.

 -u C55_c_int00 -e C55_c_int00

— Make sure the .hwi_vec memory section (the interrupt vector table) is located in RAM. By default,
this section is automatically located at the top of RAM.

• Interrupt Controller Base. By default, the OMAP 2420 Level 2 Interrupt Controller (L2IC) resides at
data memory address 0x7e4800. This coincides with the reset IOMA value of 0x3f. For OMAP 2320,
the default base address is 0x7c4800, which coincides with the reset IOMA value of 0x3e. The IO
MAP (IOMA) base address is the page index used to access DSP I/O space addresses from DSP
memory space. If you modify IOMA for any reason, you need to use this property to tell DSP/BIOS
the new base address for the L2IC. (OMAP 2320/2420 only)

Tconf Name: INTC_BASE Type: Numeric

Example: bios.HWI.INTC_BASE = 0x7e4800;

HWI Object Properties

The following properties can be set for an HWI object in the HWI Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script. The HWI objects for the platform are provided in the
default configuration and cannot be created.

• comment. A comment is provided to identify each HWI object.

Tconf Name: comment Type: String

Example: bios.HWI_INT2.comment = "myISR";

• function. The function to execute. Interrupt routines that use the dispatcher can be written
completely in C or any combination of assembly and C but must not call the HWI_enter/HWI_exit
macro pair. Interrupt routines that don’t use the dispatcher must be written at least partially in
assembly language. Within an HWI function that does not use the dispatcher, the HWI_enter
assembly macro must be called prior to any DSP/BIOS API calls that affect other DSP/BIOS objects,
such as posting a SWI or a semaphore. HWI functions can post SWIs, but they do not run until your
HWI function (or the dispatcher) calls the HWI_exit assembly macro, which must be the last
statement in any HWI function that calls HWI_enter.

Tconf Name: fxn Type: Extern

Example: bios.HWI_INT2.fxn = prog.extern("myHWI", "asm");

• monitor. If set to anything other than Nothing, an STS object is created for this HWI that is passed
the specified value on every invocation of the HWI function. The STS update occurs just before
entering the HWI routine.
SPRU404Q—August 2012 Application Program Interface 157
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI Module www.ti.com
Be aware that when the monitor property is enabled for a particular HWI object, a code preamble is
inserted into the HWI routine to make this monitoring possible. The overhead for monitoring is 20 to
30 instructions per interrupt, per HWI object monitored. Leaving this instrumentation turned on after
debugging is not recommended, since HWI processing is the most time-critical part of the system.

Options: "Nothing", "Data Value", "xsp", "ac0g", "ac0h", "ac0l", "ac1g", "ac1h", "ac1l", "ac2g",
"ac2h", "ac2l", "ac3g", "ac3h", "ac3l", "xar0", "xar1", "xar2", "xar3", "xar4", "xar5", "xar6",
"xar7", "t0", "t1", "t2", "t3", "xssp", "tim", "st0_55", "st1_55", "st2_55", "st3_55", "trn0", "bk03",
"brc0", "xdp", "xcdp", "dph", "mdp05", "mdp67", "pdp", "bk47", "bkc", "bsa01", "bsa23",
"bsa45", "bsa67", "bsac", "trn1", "brc1", "csr", "rptc"

Example: bios.HWI_INT2.monitor = "Nothing";

• addr. If the monitor property above is set to Data Address, this property lets you specify a data
memory address to be read; the word-sized value is read and passed to the STS object associated
with this HWI object.

Tconf Name: addr Type: Arg

Example: bios.HWI_INT2.addr = 0x00000000;

• type. The type of the value to be monitored: unsigned or signed. Signed quantities are sign extended
when loaded into the accumulator; unsigned quantities are treated as word-sized positive values.

Tconf Name: dataType Type: EnumString

Options: "signed", "unsigned"

Example: bios.HWI_INT2.dataType = "signed";

• operation. The operation to be performed on the value monitored. You can choose one of several
STS operations.

Tconf Name: operation Type: EnumString

Options: "STS_add(*addr)", "STS_delta(*addr)", "STS_add(-*addr)", "STS_delta(-*addr)",
"STS_add(|*addr|)", "STS_delta(|*addr|)"

Example: bios.HWI_INT2.operation = "STS_add(*addr)";

• Use Dispatcher. A check box that controls whether the HWI dispatcher is used. The HWI dispatcher
cannot be used for the non-maskable interrupt (NMI) service routine.

Tconf Name: useDispatcher Type: Bool

Example: bios.HWI_INT2.useDispatcher = false;

• Arg. This argument is passed to the function as its only parameter. You can use either a literal integer
or a symbol defined by the application. This property is available only when using the HWI dispatcher.

Tconf Name: arg Type: Arg

Example: bios.HWI_INT2.arg = 3;

• Interrupt Mask. Specifies which interrupts the dispatcher should disable before calling the function.
This property is available only when using the HWI dispatcher.

— The "self" option causes the dispatcher to disable only the current interrupt and causes the
appropriate interruptBitMask0, interruptBitMask1, and mirmask/mir1mask values to be
generated for the interrupt being configured. When using "self", set both interruptMask0 and
interruptMask1 (and iMirMask if the platform is OMAP 2320/2420) to "self".

— The "all" option disables all interrupts.

— The "none" option disables no interrupts.

— The "bitmask" option causes the interruptBitMask[0/1] property to be used to specify which
interrupts to disable.
158 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI Module
(For ’C55x, separate interruptMasks are provided for IER0 and IER1.) (For OMAP 2320/2420, these
properties control only the level 1 interrupts. The iMirMask property controls the level 2 interrupts.)

Tconf Name: interruptMask0 Type: EnumString

Tconf Name: interruptMask1 Type: EnumString

Options: "self", "all", "none", "bitmask"

Example: bios.HWI_INT2.interruptMask0 = "self";

• Interrupt Bit Mask. An integer property that is writable when the interrupt mask is set to "bitmask".
This should be a hexadecimal integer bitmask specifying the interrupts to disable. (For ’C55x,
separate properties are provided for IER0 and IER1.) For OMAP 2320/2420, these properties disable
only level 1 interrupts. The mirmask property (and mir1mask for OMAP 2320) controls the level 2
interrupts.

Tconf Name: interruptBitMask0 Type: Numeric

Tconf Name: interruptBitMask1 Type: Numeric

Example: bios.HWI_INT2.interruptBitMask0 = 0x0010;

• L2 Interrupt Mask MIR (and MIR1). This property is valid for both level 1 and 2 interrupts. It specifies
which level 2 interrupts the dispatcher should disable before calling this HWI function. This property
is writeable only if the useDispatcher property is set to true.

— The "self" option causes the dispatcher to disable only the current interrupt and causes the
appropriate interruptBitMask0, interruptBitMask1, mirmask, and mir1mask values to be
generated for the interrupt being configured. When using "self", set all of interruptMask0,
interruptMask1, and iMirMask to "self".

— The "all" option disables all level 2 interrupts.

— The "none" option disables no level 2 interrupts.

— The "bitmask" option causes the mirmask (and mir1mask for OMAP 2320) property to be used
to specify which level 2 interrupts to disable.

This property is similar to interruptMask0 and interruptMask1, which deal with level 1 interrupts.
(OMAP 2320/2420 only)

Tconf Name: iMirMask Type: EnumString

Options: "self", "all", "none", "bitmask"

Example: bios.HWI_INT2.iMirMask = "self";

• L2 Interrupt Bit Mask MIR. This property is valid for both level 1 and 2 interrupts. It defines a bitmask
of level 2 interrupts 0-31 to be disabled by the DSP/BIOS HWI dispatcher when executing this HWI
function. This property is writeable only when the useDispatcher property is set to true and iMirMask
is set to "bitmask". This property is similar to interruptBitMask0 and interruptBitMask1, which mask
level 1 interrupts. The default value is to disable only the current level 2 interrupt. (OMAP 2320/2420
only)

Tconf Name: mirmask Type: Numeric

Example: bios.HWI_INT2.mirmask = 0x00000000;

• L2 Interrupt Bit Mask MIR1. This property is similar to the previous one, except that it defines a
bitmask of level 2 interrupts 32-63 for OMAP 2320 only.

Tconf Name: mir1mask Type: Numeric

Example: bios.HWI_INT2.mir1mask = 0x00000000;
SPRU404Q—August 2012 Application Program Interface 159
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI Module www.ti.com
• L2 Interrupt Priority. For OMAP 2320, sets a priority from 0 to 63 for a level 2 interrupt. For OMAP
2420, sets a priority from 0 to 31 for a level 2 interrupt. Zero is the highest priority. The default priority
for a level 2 interrupt matches its interrupt number. Although this field exists for all HWI interrupt
objects, it cannot be configured for level 1 interrupts. You can change the priority at run-time using
the C55_l2SetIntPriority API. (OMAP 2320/2420 only)

Tconf Name: priority Type: Numeric

Example: bios.HWI_INT2.priority = 0;

Although it is not possible to create new HWI objects, most interrupts supported by the device
architecture have a precreated HWI object. Your application can require that you select interrupt sources
other than the default values in order to rearrange interrupt priorities or to select previously unused
interrupt sources.

In addition to the precreated HWI objects, some HWI objects are preconfigured for use by certain
DSP/BIOS modules. For example, the CLK module configures an HWI object.

Table Table 2-3 list these precreated objects and their default interrupt sources. The HWI object names
are the same as the interrupt names.

Table 2-3: HWI interrupts for the ‘C55x

Name Interrupt Type

HWI_RESET Reset interrupt.

HWI_NMI Non-maskable interrupt. (See page 2–156)

HWI_INT2 Maskable (IER0, bit2) hardware interrupt.

HWI_INT3 Maskable (IER0, bit3) hardware interrupt.

HWI_TINT Timer interrupt. (IER, bit4)

HWI_INT5
 through
HWI_INT15

Maskable (IER0, bit5) hardware interrupt
through
Maskable (IER0, bit15) hardware interrupt.

HWI_INT16
 through
HWI_INT23

Maskable (IER1, bit0) hardware interrupt
though
Maskable (IER1, bit7) hardware interrupt.

HWI_BERR Maskable (IER1, bit8) bus error interrupt.

HWI_DLOG Maskable (IER1, bit9) data log interrupt.

HWI_RTOS Maskable (IER1, bit10) RTOS interrupt.

HWI_SINT27
 through
HWI_SINT31

Non-maskable software interrupt.

HWI_L2_INT0
 through
HWI_L2_INT31

Level 2 interrupts (OMAP 2320/2420 only)

HWI_L2_INT32
 through
HWI_L2_INT63

Level 2 interrupts (OMAP 2320 only)
160 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI_disable
C Interface

Syntax
oldST1 = HWI_disable();

Parameters
Void

Return Value
Uns oldST1;

Reentrant
yes

Description
HWI_disable disables hardware interrupts by setting the intm bit in the status register. Call HWI_disable
before a portion of a function that needs to run without interruption. When critical processing is complete,
call HWI_restore or HWI_enable to reenable hardware interrupts.

Interrupts that occur while interrupts are disabled are postponed until interrupts are reenabled. However,
if the same type of interrupt occurs several times while interrupts are disabled, the interrupt’s function is
executed only once when interrupts are reenabled.

A context switch can occur when calling HWI_enable or HWI_restore if an enabled interrupt occurred
while interrupts are disabled.

HWI_disable may be called from main(). However, since HWI interrupts are already disabled in main(),
such a call has no effect.

Example
old = HWI_disable();
 'do some critical operation'

HWI_restore(old);

See Also
HWI_enable
HWI_restore
SWI_disable
SWI_enable

HWI_disable Disable hardware interrupts
SPRU404Q—August 2012 Application Program Interface 161
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI_dispatchPlug www.ti.com
C Interface

Syntax
HWI_dispatchPlug(vecid, fxn, attrs);

Parameters
Int vecid; /* interrupt id */
Fxn fxn; /* pointer to HWI function */
HWI_Attrs *attrs /*pointer to HWI dispatcher attributes */

Return Value
Void

Reentrant
yes

Description

HWI_dispatchPlug fills the HWI dispatcher table with the function specified by the fxn parameter and the
attributes specified by the attrs parameter.

HWI_dispatchPlug also writes four instruction words into the Interrupt-Vector Table, at the address
corresponding to vecid. The instructions written in the Interrupt-Vector Table create a call to the HWI
dispatcher.

HWI_dispatchPlug does not enable the interrupt. Use C54_enableIMR or
C55_enableIER0/C55_enableIER1 to enable specific interrupts.

If attrs is NULL, the HWI’s dispatcher properties are assigned a default set of attributes. Otherwise, the
HWI’s dispatcher properties are specified by a structure of type HWI_Attrs defined as follows.

typedef struct HWI_Attrs {

 Uns ier0mask; /* IER0 bitmask */

 Uns ier1mask; /* IER1 bitmask */

 Arg arg; /* fxn arg (default = 0) */

 LgUns mirmask; /* OMAP 2320/2420 only */

 LgUns mir1mask; /* OMAP 2320 only */

} HWI_Attrs;

The ier0mask is a bitmask that specifies the ier0 interrupts to mask while executing the HWI. The bit
positions in ier0mask correspond to those of IER0.

The ier1mask is a bitmask that specifies the ier1 interrupts to mask while executing the HWI. The bit
positions in ier1mask correspond to those of IER1. If ier0mask and ier1mask are both 1, then a mask to
disable "self" is created.

The mirmask is a bitmask that specifies which level 2 interrupts to mask while executing the HWI. This
field contains a 32-bit mask in which each bit corresponds to level 2 interrupts 0-31. The default value for
each interrupt is to mask only the current level 2 interrupt. (OMAP 2320/2420 only)

The mir1mask is a bitmask that specifies which level 2 interrupts to mask while executing the HWI. This
field contains a 32-bit mask in which each bit corresponds to level 2 interrupts 32-63. The default value
for each interrupt is to mask only the current level 2 interrupt. (OMAP 2320 only)

HWI_dispatchPlug Plug the HWI dispatcher
162 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI_dispatchPlug
The default values are defined as follows:

HWI_Attrs HWI_ATTRS = {

 1, /* IER0 mask (1 => self) */

 1, /* IER1 mask (1 => self) */

 0 /* argument to ISR */

};

The arg element is a generic argument that is passed to the plugged function as its only parameter. The
default value is 0.

Constraints and Calling Context

• vecid must be a valid interrupt ID in the range of 0-31 (0-95 for OMAP 2320, 0-63 for OMAP 2420).

See Also

HWI_enable
HWI_restore
SWI_disable
SWI_enable
SPRU404Q—August 2012 Application Program Interface 163
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI_enable www.ti.com
C Interface

Syntax
HWI_enable();

Parameters
Void

Return Value
Void

Reentrant
yes

Description
HWI_enable enables hardware interrupts by clearing the intm bit in the status register.

Hardware interrupts are enabled unless a call to HWI_disable disables them. DSP/BIOS enables
hardware interrupts after the program’s main() function runs. Your main() function can enable individual
interrupt mask bits, but it should not call HWI_enable to globally enable interrupts.

Interrupts that occur while interrupts are disabled are postponed until interrupts are reenabled. However,
if the same type of interrupt occurs several times while interrupts are disabled, the interrupt’s function is
executed only once when interrupts are reenabled. A context switch can occur when calling
HWI_enable/HWI_restore if an enabled interrupt occurs while interrupts are disabled.

Any call to HWI_enable enables interrupts, even if HWI_disable has been called several times.

Constraints and Calling Context

• HWI_enable cannot be called from the program’s main() function.

Example
HWI_disable();
"critical processing takes place"

HWI_enable();
"non-critical processing"

See Also
HWI_disable
HWI_restore
SWI_disable
SWI_enable

HWI_enable Enable interrupts
164 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI_enter
C Interface

Syntax
none

Parameters
none

Return Value
none

Assembly Interface

Syntax
HWI_enter C55_AR_DR_X_MASK, C55_ACC_X_MASK, \
C55_MISC1_X_MASK, C55_MISC2_X_MASK, C55_MISC3_X_MASK, \
IER0DISABLEMASK, IER1DISABLEMASK

OMAP 2320 only:
HWI_enter C55_AR_DR_X_MASK, C55_ACC_X_MASK, \
C55_MISC1_X_MASK, C55_MISC2_X_MASK, C55_MISC3_X_MASK, \
IER0DISABLEMASK, IER1DISABLEMASK, MIRDISABLEMASK, \
MIR1DISABLEMASK

OMAP 2420 only:
HWI_enter C55_AR_DR_X_MASK, C55_ACC_X_MASK, \
C55_MISC1_X_MASK, C55_MISC2_X_MASK, C55_MISC3_X_MASK, \
IER0DISABLEMASK, IER1DISABLEMASK, MIRDISABLEMASK

Preconditions
intm = 1

Postconditions
intm=0, braf=0, cpl=1, m40=0, satd=0, sxmd=0, c16=0, frct=0, c54cm=0, arms=1, rdm=0, cdplc=0,
ar[0...7]lc=0, sata=0, smul=0, sst=0
Both the user stack pointer (XSP and the system stack pointer (XSSP) are left aligned to even address
boundaries in compliance with standard C conventions.

Modifies
xar0, xar1, ac0g, ac0h, ier0, ier1, ac1, ac2

Reentrant
yes

Description
HWI_enter is an API (assembly macro) used to save the appropriate context for a DSP/BIOS hardware
interrupt (HWI).

The arguments to HWI_enter are bitmasks that define the set of registers to be saved and bitmasks that
define which interrupts are to be masked during the execution of the HWI.

HWI_enter is used by HWIs that are user-dispatched, as opposed to HWIs that are handled by the HWI
dispatcher. HWI_enter must not be issued by HWIs that are handled by the HWI dispatcher.

HWI_enter Hardware ISR prolog
SPRU404Q—August 2012 Application Program Interface 165
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI_enter www.ti.com
If the HWI dispatcher is not used by an HWI object, HWI_enter must be used in the HWI before any
DSP/BIOS API calls that could trigger other DSP/BIOS objects, such as posting a SWI or semaphore.
HWI_enter is used in tandem with HWI_exit to ensure that the DSP/BIOS SWI or TSK manager is called
at the appropriate time. Normally, HWI_enter and HWI_exit must surround all statements in any
DSP/BIOS assembly language HWIs that call C functions.

The following list shows the mask families available for the HWI_enter and HWI_exit API syntax. For each
family, several masks are defined where the "X" indicates which registers are saved. (That is, "X" can be
SAVE_BY_CALLER, SAVE_BY_CALLEE, or BIOS_CONTEXT). For example, the
"C55_ACC_SAVE_BY_CALLEE_MASK" is in the C55_ACC_X_MASK family. See the c55.h55 file for a
complete list of masks and the example later in this section for a clearer understanding. Typically
"SAVE_BY_CALLER" is used for ISRs written in C.

• C55_AR_DR_X_MASK. Mask of registers belonging to ar0-7, t0-3, sp-ssp

• C55_ACC_X_MASK. Mask of registers belonging to ac0-3

• C55_MISC1_X_MASK. Mask of registers ier0, ifr0, dbier0, ier1, ifr, dbier1, st0, st1, st2, st3, trn0,
bk03, brc0

• C55_MISC2_X_MASK. Mask of registers dp, cdp, mdp, mdp05, mdp67, pdp, bk47, bkc, bof01,
bof23, bof45, bof67, bofc, ivpd, ivph, trn1

• C55_MISC3_X_MASK. Mask of registers brc1, csr, rsa0_h_addr, rsa0, rea0_h_addr, rea0,
rsa1_h_addr, rsa1, rea1_h_addr, rea1, rptc

• IER0DISABLEMASK / IER0RESTOREMASK. The IER0 and IER1 masks define which interrupts
are to be masked while the HWI is executing and restored a the end of execution. These arguments
mask ier0 bits to turn off (and to restore).

• IER1DISABLEMASK / IER1RESTOREMASK. These arguments mask ier1 bits to turn off (and to
restore).

• MIRDISABLEMASK / MIRRESTOREMASK. These arguments mask level 2 interrupt bits (0-31) to
turn off (and to restore). (OMAP 2320/2420 only)

• MIR1DISABLEMASK / MIR1RESTOREMASK. These arguments mask level 2 interrupt bits (32-63)
to turn off (and to restore). (OMAP 2320 only)

See c55.h55 for constants defined for working with these masks. If your HWI is coded in C, it is
recommended that you use the SAVE_BY_CALLER masks provided in c55.h55.

Note: The C55_saveCcontext, C55_restoreCcontext C55_saveBiosContext and
C55_restoreBiosContext macros preserve processor register context per C and
DSP/BIOS requirements, respectively.

Constraints and Calling Context

• This API should not be used in the NMI HWI function.

• This API must not be called if the HWI object that runs this function uses the HWI dispatcher.

• This API cannot be called from the program’s main() function.

• This API cannot be called from a SWI, TSK, or IDL function.

• This API cannot be called from a CLK function.
166 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI_enter
• Unless the HWI dispatcher is used, this API must be called within any hardware interrupt function
(except NMI’s HWI function) before the first operation in an HWI that uses any DSP/BIOS API calls
that might post or affect a SWI or semaphore. Such functions must be written in assembly language.
Alternatively, the HWI dispatcher can be used instead of this API, allowing the function to be written
completely in C and allowing you to reduce code size.

• If an interrupt function calls HWI_enter, it must end by calling HWI_exit.

• Do not use the interrupt keyword or the INTERRUPT pragma in C functions that run in the context of
an HWI.

•

Examples
Example #1:
Calling a C function from within an HWI_enter/HWI_exit block. Specify all registers in the C convention
class, save-by-caller. Use the appropriate register save masks with the HWI_enter macro. See the
c55.h55 file for definitions of the masks used in this example.

HWI_enter C55_AR_DR_SAVE_BY_CALLER_MASK, \
C55_ACC_SAVE_BY_CALLER_MASK, \
C55_MISC1_SAVE_BY_CALLER_MASK, \
C55_MISC2_SAVE_BY_CALLER_MASK, \
C55_MISC3_SAVE_BY_CALLER_MASK, \
user_ier0_mask, user_ier1_mask

The HWI_enter macro:

• preserves the specified set of registers that are being declared as trashable by the called function

• places the processor status register bit settings as required by C compiler conventions

• aligns stack pointers to even address boundaries, as well as remembering any such adjustments
made to SP and SSP registers

• masks those interrupts defined by the interrupt masks

• enables interrupts

The user’s C function must have a leading underscore as in this example:

call _myCfunction;

When exiting the hardware interrupt, you need to call HWI_exit with the following macro:

HWI_exit C55_AR_DR_SAVE_BY_CALLER_MASK, \
C55_ACC_SAVE_BY_CALLER_MASK, \
C55_MISC1_SAVE_BY_CALLER_MASK, \
C55_MISC2_SAVE_BY_CALLER_MASK, \
C55_MISC3_SAVE_BY_CALLER_MASK, \
user_ier0_mask, user_ier1_mask

The HWI_exit macro restores the CPU state that was originally set by the HWI_enter macro. It alerts the
SWI scheduler to attend to any kernel scheduling activity that is required.

See Also
HWI_exit
SPRU404Q—August 2012 Application Program Interface 167
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI_exit www.ti.com
C Interface

Syntax
none

Parameters
none

Return Value
none

Assembly Interface

Syntax
HWI_exit C55_AR_DR_X_MASK, C55_ACC_X_MASK, \
C55_MISC1_X_MASK, C55_MISC2_X_MASK, \
C55_MISC3_X_MASK, \
IER0RESTOREMASK, IER1RESTOREMASK

OMAP 2320 only:

HWI_enter C55_AR_DR_X_MASK, C55_ACC_X_MASK, \
C55_MISC1_X_MASK, C55_MISC2_X_MASK, C55_MISC3_X_MASK, \
IER0RESTOREMASK, IER1RESTOREMASK, MIRRESTOREMASK, \
MIR1RESTOREMASK

OMAP 2420 only:

HWI_enter C55_AR_DR_X_MASK, C55_ACC_X_MASK, \
C55_MISC1_X_MASK, C55_MISC2_X_MASK, C55_MISC3_X_MASK, \
IER0RESTOREMASK, IER1RESTOREMASK, MIRRESTOREMASK

Preconditions
none

Postconditions
intm=0

Modifies

Restores all registers saved with the HWI_enter mask

Reentrant
yes

Description
HWI_exit is an API (assembly macro) which is used to restore the context that existed before a
DSP/BIOS hardware interrupt (HWI) was invoked.

HWI_exit is used by HWIs that are user-dispatched, as opposed to HWIs that are handled by the HWI
dispatcher. HWI_exit must not be issued by HWIs that are handled by the HWI dispatcher.

HWI_exit Hardware ISR epilog
168 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI_exit
If the HWI dispatcher is not used by an HWI object, HWI_exit must be the last statement in an HWI that
uses DSP/BIOS API calls which could trigger other DSP/BIOS objects, such as posting a SWI or
semaphore.

HWI_exit restores the registers specified by C55_AR_DR_X_MASK, C55_ACC_X_MASK,
C55_MISC1_X_MASK, C55_MISC2_X_MASK, and C55_MISC3_X_MASK. These masks are used to
specify the set of registers that were saved by HWI_enter.

HWI_enter and HWI_exit must surround all statements in any DSP/BIOS assembly language HWIs that
call C functions only for HWIs that are not dispatched by the HWI dispatcher.

HWI_exit calls the DSP/BIOS SWI manager if DSP/BIOS itself is not in the middle of updating critical data
structures, or if no currently interrupted HWI is also in a HWI_enter/HWI_exit region. The DSP/BIOS SWI
manager services all pending SWI handlers (functions).

Of the interrupts in IER0[IER1]RESTOREMASK, HWI_exit only restores those that were disabled upon
entering the HWI. HWI_exit does not affect the status of interrupt bits that are not in
IER0[IER1]RESTOREMASK.

• If upon exiting an HWI you do not want to restore an interrupt that was disabled with HWI_enter, do
not set that interrupt bit in the IER0[IER1]RESTOREMASK in HWI_exit.

• If upon exiting an HWI you do want to enable an interrupt that was disabled upon entering the HWI,
set the corresponding bit in IER0[IER1]RESTOREMASK before calling HWI_exit. (Setting bits in
IER0[IER1]RESTOREMASK passed to HWI_exit does not enable the corresponding interrupts if
they were not originally disabled by the HWI_enter macro.)

This same logic applies to the OMAP 2320/2420 MIRRESTOREMASK argument and the OMAP 2320
MIR1RESTOREMASK.

For a list of parameters and constants available for use with HWI_exit, see the description of HWI_enter.
In addition, see the c55.h55 file.

Constraints and Calling Context

• This API should not be used for the NMI HWI function.

• This API must not be called if the HWI object that runs the function uses the HWI dispatcher.

• If the HWI dispatcher is not used, this API must be the last operation in an HWI that uses any
DSP/BIOS API calls that might post or affect a SWI or semaphore. The HWI dispatcher can be used
instead of this API, allowing the function to be written completely in C and allowing you to reduce
code size.

• For ’C55x, the C55_AR_DR_X_MASK, C55_ACC_X_MASK, C55_MISC1_X_MASK,
C55_MISC2_X_MASK, and C55_MISC3_X_MASK parameters must match the corresponding
parameters used for HWI_enter.

• This API cannot be called from the program’s main() function.

• This API cannot be called from a SWI, TSK, or IDL function.

• This API cannot be called from a CLK function.

Examples
Example #1:
Calling a C function from within an HWI_enter/HWI_exit:
SPRU404Q—August 2012 Application Program Interface 169
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI_exit www.ti.com
Specify all registers in the C convention class, save-by-caller. Use the appropriate register save masks
with the HWI_enter macro:

HWI_enter C55_AR_DR_SAVE_BY_CALLER_MASK, \
C55_ACC_SAVE_BY_CALLER_MASK, \
C55_MISC1_SAVE_BY_CALLER_MASK, \
C55_MISC2_SAVE_BY_CALLER_MASK, \
C55_MISC3_SAVE_BY_CALLER_MASK, \
user_ier0_mask, user_ier1_mask

The HWI_enter macro:

• preserves the specified set of registers that are being declared as trashable by the called function

• places the processor status register bit settings as required by C compiler conventions

• aligns stack pointers to even address boundaries, as well as remembering any such adjustments
made to SP and SSP registers

The user’s C function must have a leading underscore as in this example:

call _myCfunction;

When exiting the hardware interrupt, you need to call HWI_exit with the following macro:

HWI_exit C55_AR_DR_SAVE_BY_CALLER_MASK, \
C55_ACC_SAVE_BY_CALLER_MASK, \
C55_MISC1_SAVE_BY_CALLER_MASK, \
C55_MISC2_SAVE_BY_CALLER_MASK, \
C55_MISC3_SAVE_BY_CALLER_MASK, \
user_ier0_mask, user_ier1_mask

The HWI_exit macro restores the CPU state that was originally set by the HWI_enter macro. It alerts the
SWI scheduler to attend to any kernel scheduling activity that is required.

See Also
HWI_enter
170 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com HWI_isHWI
C Interface

Syntax
result = HWI_isHWI(Void);

Parameters
Void

Return Value
Bool result; /* TRUE if in HWI context, FALSE otherwise */

Reentrant
yes

Description
This macro returns TRUE when it is called within the context of an HWI or CLK function. This macro
returns FALSE in all other contexts.

In previous versions of DSP/BIOS, calling HWI_isHWI() from main() resulted in TRUE. This is no longer
the case; main() is identified as part of the TSK context.

See Also

SWI_isSWI
TSK_isTSK

HWI_isHWI Check to see if called in the context of an HWI
SPRU404Q—August 2012 Application Program Interface 171
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

HWI_restore www.ti.com
C Interface

Syntax
HWI_restore(oldST1);

Parameters
Uns oldST1;

Returns
Void

Reentrant
yes

Description
HWI_restore sets the intm bit in the st1 register using bit 11 of the oldst1 parameter. If bit 11 is 1, the intm
bit is not modified. If bit 11 is 0, the intm bit is set to 0, which enables interrupts.

When you call HWI_disable, the previous contents of the st1 register are returned. You can use this
returned value with HWI_restore.

A context switch may occur when calling HWI_restore if HWI_restore reenables interrupts and if a higher-
priority HWI occurred while interrupts were disabled.

HWI_restore may be called from main(). However, since HWI_enable cannot be called from main(),
interrupts are always disabled in main(), and a call to HWI_restore has no effect.

Constraints and Calling Context

• HWI_restore must be called with interrupts disabled. The parameter passed to HWI_restore must be
the value returned by HWI_disable.

Example
oldST1 = HWI_disable(); /* disable interrupts */
 'do some critical operation'

HWI_restore(oldST1);
 /* re-enable interrupts if they
 were enabled at the start of the
 critical section */

See Also
HWI_enable
HWI_disable

HWI_restore Restore global interrupt enable state
172 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com IDL Module
2.11 IDL Module

The IDL module is the idle thread manager.

Functions

• IDL_run. Make one pass through idle functions.

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the IDL Manager Properties and IDL Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
The IDL module manages the lowest-level threads in the application. In addition to user-created
functions, the IDL module executes DSP/BIOS functions that handle host communication and CPU load
calculation.

There are four kinds of threads that can be executed by DSP/BIOS programs: hardware interrupts (HWI
Module), software interrupts (SWI Module), tasks (TSK Module), and background threads (IDL module).
Background threads have the lowest priority, and execute only if no hardware interrupts, software
interrupts, or tasks need to run.

An application’s main() function must return before any DSP/BIOS threads can run. After the return,
DSP/BIOS runs the idle loop. Once an application is in this loop, HWI hardware interrupts, SWI software
interrupts, PRD periodic functions, TSK task functions, and IDL background threads are all enabled.

The functions for IDL objects registered with the configuration are run in sequence each time the idle loop
runs. IDL functions are called from the IDL context. IDL functions can be written in C or assembly and
must follow the C calling conventions described in the compiler manual.

When RTA is enabled (see page 2–121), an application contains an IDL_cpuLoad object, which runs a
function that provides data about the CPU utilization of the application. In addition, the LNK_dataPump
function handles host I/O in the background, and the RTA_dispatch function handles run-time analysis
communication.

The IDL Function Manager allows you to insert additional functions that are executed in a loop whenever
no other processing (such as HWIs or higher-priority tasks) is required.

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

AUTOCALCULATE Bool true

LOOPINSTCOUNT Int32 1000

Name Type Default

comment String "<add comments here>"

fxn Extern prog.extern("FXN_F_nop")

calibration Bool true

order Int16 0
SPRU404Q—August 2012 Application Program Interface 173
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

IDL Module www.ti.com
IDL Manager Properties

The following global properties can be set for the IDL module in the IDL Manager Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the IDL objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.IDL.OBJMEMSEG = prog.get("myMEM");

• Auto calculate idle loop instruction count. When this property is set to true, the program runs the
IDL functions one or more times at system startup to get an approximate value for the idle loop
instruction count. This value, saved in the global variable CLK_D_idletime, is read by the host and
used in the CPU load calculation. By default, the instruction count includes all IDL functions, not just
LNK_dataPump, RTA_dispatcher, and IDL_cpuLoad. You can remove an IDL function from the
calculation by setting the "Include in CPU load calibration" property for an IDL object to false.

Remember that functions included in the calibration are run before the main() function runs. These
functions should not access data structures that are not initialized before the main() function runs. In
particular, functions that perform any of the following actions should not be included in the idle loop
calibration:

— enabling hardware interrupts or the SWI or TSK schedulers

— using CLK APIs to get the time

— accessing PIP objects

— blocking tasks

— creating dynamic objects

Tconf Name: AUTOCALCULATE Type: Bool

Example: bios.IDL.AUTOCALCULATE = true;

• Idle Loop Instruction Count. This is the number of instruction cycles required to perform the IDL
loop and the default IDL functions (LNK_dataPump, RTA_dispatcher, and IDL_cpuLoad) that
communicate with the host. Since these functions are performed whenever no other processing is
needed, background processing is subtracted from the CPU load before it is displayed.

Tconf Name: LOOPINSTCOUNT Type: Int32

Example: bios.IDL.LOOPINSTCOUNT = 1000;

IDL Object Properties

Each idle function runs to completion before another idle function can run. It is important, therefore, to
ensure that each idle function completes (that is, returns) in a timely manner.

To create an IDL object in a configuration script, use the following syntax. The Tconf examples assume
the object is created as shown here.

var myIdl = bios.IDL.create("myIdl");

The following properties can be set for an IDL object:

• comment. Type a comment to identify this IDL object.

Tconf Name: comment Type: String

Example: myIdl.comment = "IDL function";
174 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com IDL Module
• function. The function to execute. If this function is written in C and you use the DSP/BIOS
Configuration Tool, use a leading underscore before the C function name. (The DSP/BIOS
Configuration Tool generates assembly code, which must use leading underscores when referencing
C functions or labels.) If you use Tconf, do not add an underscore before the function name; Tconf
adds the underscore to call a C function from assembly internally.

Tconf Name: fxn Type: Extern

Example: myIdl.fxn = prog.extern("myIDL");

• Include in CPU load calibration. You can remove an individual IDL function from the CPU load
calculation by setting this property to false. The CPU load calibration is performed only if the "Auto
calculate idle loop instruction count" property is true in the IDL Manager Properties. You should
remove a function from the calculation if it blocks or depends on variables or structures that are not
initialized until the main() function runs.

Tconf Name: calibration Type: Bool

Example: myIdl.calibration = true;

• order. Set this property for all IDL objects so that the numbers match the sequence in which IDL
functions should be executed.

Tconf Name: order Type: Int16

Example: myIdl.order = 2;
SPRU404Q—August 2012 Application Program Interface 175
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

IDL_run www.ti.com
C Interface

Syntax
IDL_run();

Parameters
Void

Return Value
Void

Description
IDL_run makes one pass through the list of configured IDL objects, calling one function after the next.
IDL_run returns after all IDL functions have been executed one time. IDL_run is not used by most
DSP/BIOS applications since the IDL functions are executed in a loop when the application returns from
main. IDL_run is provided to allow easy integration of the real-time analysis features of DSP/BIOS (for
example, LOG and STS) into existing applications.

IDL_run must be called to transfer the real-time analysis data to and from the host computer. Though not
required, this is usually done during idle time when no HWI or SWI threads are running.

Note: BIOS_init and BIOS_start must be called before IDL_run to ensure that DSP/BIOS has
been initialized. For example, the DSP/BIOS boot file contains the following system
calls around the call to main:

BIOS_init(); /* initialize DSP/BIOS */
main();
BIOS_start() /* start DSP/BIOS */
IDL_loop(); /* call IDL_run in an infinite loop */

Constraints and Calling Context

• IDL_run cannot be called by an HWI or SWI function.

IDL_run Make one pass through idle functions
176 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com LCK Module
2.12 LCK Module

The LCK module is the resource lock manager.

Functions

• LCK_create. Create a resource lock

• LCK_delete. Delete a resource lock

• LCK_pend. Acquire ownership of a resource lock

• LCK_post. Relinquish ownership of a resource lock

Constants, Types, and Structures
typedef struct LCK_Obj *LCK_Handle; /* resource handle */

/* lock object */
typedef struct LCK_Attrs LCK_Attrs;

struct LCK_Attrs {
 Int dummy;
};

LCK_Attrs LCK_ATTRS = {0}; /* default attribute values */

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the LCK Manager Properties and LCK Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameter.

Description
The lock module makes available a set of functions that manipulate lock objects accessed through
handles of type LCK_Handle. Each lock implicitly corresponds to a shared global resource, and is used
to arbitrate access to this resource among several competing tasks.

The LCK module contains a pair of functions for acquiring and relinquishing ownership of resource locks
on a per-task basis. These functions are used to bracket sections of code requiring mutually exclusive
access to a particular resource.

LCK lock objects are semaphores that potentially cause the current task to suspend execution when
acquiring a lock.

LCK Manager Properties

The following global property can be set for the LCK module on the LCK Manager Properties dialog in
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the LCK objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.LCK.OBJMEMSEG = prog.get("myMEM");

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")
SPRU404Q—August 2012 Application Program Interface 177
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

LCK Module www.ti.com
LCK Object Properties

To create a LCK object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var myLck = bios.LCK.create("myLck");

The following property can be set for a LCK object in the LCK Object Properties dialog of the DSP/BIOS
Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this LCK object.

Tconf Name: comment Type: String

Example: myLck.comment = "LCK object";
178 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com LCK_create
C Interface

Syntax
lock = LCK_create(attrs);

Parameters
LCK_Attrs attrs; /* pointer to lock attributes */

Return Value
LCK_Handle lock; /* handle for new lock object */

Description
LCK_create creates a new lock object and returns its handle. The lock has no current owner and its
corresponding resource is available for acquisition through LCK_pend.

If attrs is NULL, the new lock is assigned a default set of attributes. Otherwise the lock’s attributes are
specified through a structure of type LCK_Attrs.

Note: At present, no attributes are supported for lock objects.

All default attribute values are contained in the constant LCK_ATTRS, which can be assigned to a
variable of type LCK_Attrs prior to calling LCK_create.

LCK_create calls MEM_alloc to dynamically create the object’s data structure. MEM_alloc must acquire
a lock to the memory before proceeding. If another thread already holds a lock to the memory, then there
is a context switch. The segment from which the object is allocated is described by the DSP/BIOS objects
property in the MEM Module, page 2–204.

Constraints and Calling Context

• LCK_create cannot be called from a SWI or HWI.

• You can reduce the size of your application program by creating objects with Tconf rather than using
the XXX_create functions.

See Also
LCK_delete
LCK_pend
LCK_post

LCK_create Create a resource lock
SPRU404Q—August 2012 Application Program Interface 179
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

LCK_delete www.ti.com
C Interface

Syntax
LCK_delete(lock);

Parameters
LCK_Handle lock; /* lock handle */

Return Value
Void

Description
LCK_delete uses MEM_free to free the lock referenced by lock.

LCK_delete calls MEM_free to delete the LCK object. MEM_free must acquire a lock to the memory
before proceeding. If another task already holds a lock to the memory, then there is a context switch.

Constraints and Calling Context

• LCK_delete cannot be called from a SWI or HWI.

• No task should be awaiting ownership of the lock.

• No check is performed to prevent LCK_delete from being used on a statically-created object. If a
program attempts to delete a lock object that was created using Tconf, SYS_error is called.

See Also
LCK_create
LCK_pend
LCK_post

LCK_delete Delete a resource lock
180 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com LCK_pend
C Interface

Syntax
status = LCK_pend(lock, timeout);

Parameters
LCK_Handle lock; /* lock handle */
Uns timeout; /* return after this many system clock ticks */

Return Value
Bool status; /* TRUE if successful, FALSE if timeout */

Description
LCK_pend acquires ownership of lock, which grants the current task exclusive access to the
corresponding resource. If lock is already owned by another task, LCK_pend suspends execution of the
current task until the resource becomes available.

The task owning lock can call LCK_pend any number of times without risk of blocking, although
relinquishing ownership of the lock requires a balancing number of calls to LCK_post.

LCK_pend results in a context switch if this LCK timeout is greater than 0 and the lock is already held by
another thread.

LCK_pend returns TRUE if it successfully acquires ownership of lock, returns FALSE if a timeout occurs
before it can acquire ownership. LCK_pend returns FALSE if it is called from the context of a SWI or HWI,
even if the timeout is zero.

Note: RTS functions callable from TSK threads only. Many run-time support (RTS)
functions use lock and unlock functions to prevent reentrancy. However, DSP/BIOS
SWI and HWI threads cannot call LCK_pend and LCK_post. As a result, RTS functions
that call LCK_pend or LCK_post must not be called in the context of a SWI or HWI.

To determine whether a particular RTS function uses LCK_pend or LCK_post, refer to the source code
for that function shipped with Code Composer Studio. The following table lists some RTS functions that
call LCK_pend and LCK_post in certain versions of Code Composer Studio:

The C++ new operator calls malloc, which in turn calls LCK_pend. As a result, the new operator cannot
be used in the context of a SWI or HWI thread.

Constraints and Calling Context

• The lock must be a handle for a resource lock object created through a prior call to LCK_create.

• LCK_pend should not be called from a SWI or HWI thread.

• LCK_pend should not be called from main().

See Also
LCK_create
LCK_delete
LCK_post

LCK_pend Acquire ownership of a resource lock

fprintf printf vfprintf sprintf

vprintf vsprintf clock strftime

minit malloc realloc free

calloc rand srand getenv
SPRU404Q—August 2012 Application Program Interface 181
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

LCK_post www.ti.com
C Interface

Syntax
LCK_post(lock);

Parameters
LCK_Handle lock; /* lock handle */

Return Value
Void

Description
LCK_post relinquishes ownership of lock, and resumes execution of the first task (if any) awaiting
availability of the corresponding resource. If the current task calls LCK_pend more than once with lock,
ownership remains with the current task until LCK_post is called an equal number of times.

LCK_post results in a context switch if a higher priority thread is currently pending on the lock.

Constraints and Calling Context

• lock must be a handle for a resource lock object created through a prior call to LCK_create.

• LCK_post should not be called from a SWI or HWI thread.

• LCK_post should not be called from main().

See Also
LCK_create
LCK_delete
LCK_pend

LCK_post Relinquish ownership of a resource LCK
182 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com LOG Module
2.13 LOG Module

The LOG module captures events in real time.

Functions

• LOG_disable. Disable the system log.

• LOG_enable. Enable the system log.

• LOG_error. Write a user error event to the system log.

• LOG_event. Append unformatted message to message log.

• LOG_message. Write a user message event to the system log.

• LOG_printf. Append formatted message to message log.

• LOG_reset. Reset the system log.

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the LOG Manager Properties and LOG Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
The Event Log is used to capture events in real time while the target program executes. You can use the
system log, or create user-defined logs. If the logtype is circular, the log buffer of size buflen contains the
last buflen elements. If the logtype is fixed, the log buffer contains the first buflen elements.

The system log stores messages about system events for the types of log tracing you have enabled. See
the TRC Module, page 2–442, for a list of events that can be traced in the system log.

You can add messages to user logs or the system log by using LOG_printf or LOG_event. To reduce
execution time, log data is always formatted on the host.

LOG_error writes a user error event to the system log. This operation is not affected by any TRC trace
bits; an error event is always written to the system log. LOG_message writes a user message event to
the system log, provided that both TRC_GBLHOST and TRC_GBLTARG (the host and target trace bits,
respectively) traces are enabled.

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

bufSeg Reference prog.get("DARAM")

bufLen EnumInt 64 (0, 8, 16, 32, 64, ..., 32768)

logType EnumString "circular" ("fixed)

dataType EnumString "printf" ("raw data")

format String "0x%x, 0x%x, 0x%x"
SPRU404Q—August 2012 Application Program Interface 183
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

LOG Module www.ti.com
When a problem is detected on the target, it is valuable to put a message in the system log. This allows
you to correlate the occurrence of the detected event with the other system events in time. LOG_error
and LOG_message can be used for this purpose.

Log buffers are of a fixed size and reside in data memory. Each log event buffer uses eight words in both
the large and huge memory models. Individual events hold four elements (two words per element) in the
log’s buffer. The first element holds a sequence number that allows the Event Log to display logs in the
correct order. The remaining three elements contain data specified by the call that wrote the message to
the log.

See the Code Composer Studio online tutorialfor examples of how to use the LOG Manager.

LOG Manager Properties

The following global property can be set for the LOG module in the LOG Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the LOG objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.LOG.OBJMEMSEG = prog.get("myMEM");

LOG Object Properties

To create a LOG object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var myLog = bios.LOG.create("myLog");

The following properties can be set for a log object on the LOG Object Properties dialog in the DSP/BIOS
Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this LOG object.

Tconf Name: comment Type: String

Example: myLog.comment = "trace LOG";

• bufseg. The name of a memory segment to contain the log buffer.

Tconf Name: bufSeg Type: Reference

Example: myLog.bufSeg = prog.get("myMEM");

• buflen. The length of the log buffer (in words).

Tconf Name: bufLen Type: EnumInt

Options: 0, 8, 16, 32, 64, ..., 32768

Example: myLog.bufLen = 64;

• logtype. The type of the log: circular or fixed. Events added to a full circular log overwrite the oldest
event in the buffer, whereas events added to a full fixed log are dropped.

— Fixed. The log stores the first messages it receives and stops accepting messages when its
message buffer is full.

— Circular. The log automatically overwrites earlier messages when its buffer is full. As a result, a
circular log stores the last events that occur.

Tconf Name: logType Type: EnumString

Options: "circular", "fixed"

Example: myLog.logType = "circular";
184 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com LOG Module
• datatype. Choose printf if you use LOG_printf to write to this log and provide a format string.

Choose raw data if you want to use LOG_event to write to this log and have the Event Log apply a
printf-style format string to all records in the log.

Tconf Name: dataType Type: EnumString

Options: "printf", "raw data"

Example: myLog.dataType = "printf";

• format. If you choose raw data as the datatype, type a printf-style format string for this property.
Provide up to three (3) conversion characters (such as %d) to format words two, three, and four in
all records in the log. Do not put quotes around the format string. The format string can use %d, %u,
%x, %o, %s, %r, and %p conversion characters; it cannot use other types of conversion characters.
See LOG_printf, page 2–191, and LOG_event, page 2–189, for information about the structure of a
log record.

Tconf Name: format Type: String

Example: myLog.format = "0x%x, 0x%x, 0x%x";
SPRU404Q—August 2012 Application Program Interface 185
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

LOG_disable www.ti.com
C Interface

Syntax
LOG_disable(log);

Parameters
LOG_Handle log; /* log object handle */

Return Value
Void

Reentrant
no

Description
LOG_disable disables the logging mechanism and prevents the log buffer from being modified.

Example
LOG_disable(&trace);

See Also
LOG_enable
LOG_reset

LOG_disable Disable a message log
186 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com LOG_enable
C Interface

Syntax
LOG_enable(log);

Parameters
LOG_Handle log; /* log object handle */

Return Value
Void

Reentrant
no

Description
LOG_enable enables the logging mechanism and allows the log buffer to be modified.

Example
LOG_enable(&trace);

See Also
LOG_disable
LOG_reset

LOG_enable Enable a message log
SPRU404Q—August 2012 Application Program Interface 187
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

LOG_error www.ti.com
C Interface

Syntax
LOG_error(format, arg0);

Parameters
String format; /* printf-style format string */
Arg arg0; /* copied to second word of log record */

Return Value
Void

Reentrant
yes

Description
LOG_error writes a program-supplied error message to the system log, which is defined in the default
configuration by the LOG_system object. LOG_error is not affected by any TRC bits; an error event is
always written to the system log.

The format argument can contain any of the conversion characters supported for LOG_printf. See
LOG_printf for details.

Example
Void UTL_doError(String s, Int errno)

{

 LOG_error("SYS_error called: error id = 0x%x", errno);

 LOG_error("SYS_error called: string = '%s'", s);

}

See Also
LOG_event
LOG_message
LOG_printf
TRC_disable
TRC_enable

LOG_error Write an error message to the system log
188 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com LOG_event
C Interface

Syntax
LOG_event(log, arg0, arg1, arg2);

Parameters
LOG_Handle log; /* log objecthandle */
Arg arg0; /* copied to second word of log record */
Arg arg1; /* copied to third word of log record */
Arg arg2; /* copied to fourth word of log record */

Return Value
Void

Reentrant
yes

Description
LOG_event copies a sequence number and three arguments to the specified log buffer. Each log
message uses four words (eight words for ’C55x large and huge models). The contents of the four words
written by LOG_event are shown here:

You can format the log by using LOG_printf instead of LOG_event.

If you want the Event Log to apply the same printf-style format string to all records in the log, use Tconf
to choose raw data for the datatype property and type a format string for the format property (see “LOG
Object Properties” on page 184).

If the logtype is circular, the log buffer of size buflen contains the last buflen elements. If the logtype is
fixed, the log buffer contains the first buflen elements.

Any combination of threads can write to the same log. Internally, hardware interrupts are temporarily
disabled during a call to LOG_event. Log messages are never lost due to thread preemption.

Example
LOG_event(&trace, (Arg)value1, (Arg)value2,
 (Arg)CLK gethtime());

See Also
LOG_error
LOG_printf
TRC_disable
TRC_enable

LOG_event Append an unformatted message to a message log
SPRU404Q—August 2012 Application Program Interface 189
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

LOG_message www.ti.com
C Interface

Syntax
LOG_message(format, arg0);

Parameters
String format; /* printf-style format string */
Arg arg0; /* copied to second word of log record */

Return Value
Void

Reentrant
yes

Description

LOG_message writes a program-supplied message to the system log, provided that both the host and
target trace bits are enabled.

The format argument passed to LOG_message can contain any of the conversion characters supported
for LOG_printf. See LOG_printf, page 2–191, for details.

Example
Void UTL_doMessage(String s, Int errno)

{

 LOG_message("SYS_error called: error id = 0x%x", errno);

 LOG_message("SYS_error called: string = '%s'", s);

}

See Also

LOG_error
LOG_event
LOG_printf
TRC_disable
TRC_enable

LOG_message Write a program-supplied message to the system log
190 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com LOG_printf
C Interface

Syntax
LOG_printf(log, format);
 or
LOG_printf(log, format,arg0);
 or
LOG_printf(log, format, arg0, arg1);

Parameters
LOG_Handle log; /* log object handle */
String format; /* printf format string */
Arg arg0; /* value for first format string token */
Arg arg1; /* value for second format string token */

Return Value
Void

Reentrant
yes

Description
As a convenience for C (as well as assembly language) programmers, the LOG module provides a
variation of the ever-popular printf. LOG_printf copies a sequence number, the format address, and two
arguments to the specified log buffer.

To reduce execution time, log data is always formatted on the host. The format string is stored on the host
and accessed by the Event Log.

The arguments passed to LOG_printf must be integers, strings, or a pointer (if the special %r or %p
conversion character is used).

Casting arg0 and arg1 using the Arg type causes an erroneous value to be printed. To print the value
correctly, do not cast these parameters. This constraint applies even though the LOG_printf function
defines arg0 and arg1 as Arg type.

The format string can use any conversion character found in Table Table 2-4.

Table 2-4: Conversion Characters for LOG_printf

LOG_printf Append a formatted message to a message log

Conversion Character Description

%d Signed integer

%u Unsigned integer

%x Unsigned hexadecimal integer

%o Unsigned octal integer
SPRU404Q—August 2012 Application Program Interface 191
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

LOG_printf www.ti.com
LOG_printf does not provide a conversion character for code pointers. If you are using the ’C55x large
model, you can use the %p character to print code pointers.

Since LOG_printf does not provide a conversion character for long integers, you may want to use 0x%p
instead. Another solution is to use bitwise shifting and ANDing to break a 32-bit number into its 16-bit
counterparts. In following example, (Int)(maincount >> 16) is the upper 16 bits of maincount shifted
into the 16-bits of an Int. And, (Int)(maincount & 0xffff) is the lower 16 bits of maincount.

LOG_printf(&trace, "total count = 0x%04x%04x",

 (Int)(maincount >> 16),

 (Int)(maincount & 0xffff));

The 0x%04x%04x format string used in this example causes a literal string of "0x" to precede the value
to indicate that it is a hex value. Then, each %04x tells LOG_printf to display the value as hex, padding
to 4 characters with leading zeros.

If you want the Event Log to apply the same printf-style format string to all records in the log, use Tconf
to choose raw data for the datatype property of this LOG object and typing a format string for the format
property.

%s Character string
This character can only be used with constant string pointers. That is, the
string must appear in the source and be passed to LOG_printf. For
example, the following is supported:

char *msg = "Hello world!";

LOG_printf(&trace, "%s", msg);

However, the following example is not supported:

char msg[100];

strcpy(msg, "Hello world!");

LOG_printf(&trace, "%s", msg);

If the string appears in the COFF file and a pointer to the string is passed to
LOG_printf, then the string in the COFF file is used by the Event Log to
generate the output.
If the string can not be found in the COFF file, the format string is replaced
with *** ERROR: 0x%x 0x%x ***\n, which displays all arguments in
hexadecimal.

%r Symbol from symbol table
This is an extension of the standard printf format tokens. This character
treats its parameter as a pointer to be looked up in the symbol table of the
executable and displayed. That is, %r displays the symbol (defined in the
executable) whose value matches the value passed to %r. For example:

Int testval = 17;

LOG_printf("%r = %d", &testval, testval);

displays:

testval = 17

If no symbol is found for the value passed to %r, the Event Log uses the
string <unknown symbol>.

%p data pointer

Conversion Character Description
192 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com LOG_printf
Each log message uses words (eight words for ’C55x large and huge models). The contents of the
message written by LOG_printf are shown here:

You configure the characteristics of a log in Tconf. If the logtype is circular, the log buffer of size buflen
contains the last buflen elements. If the logtype is fixed, the log buffer contains the first buflen elements.

Any combination of threads can write to the same log. Internally, hardware interrupts are temporarily
disabled during a call to LOG_printf. Log messages are never lost due to thread preemption.

Constraints and Calling Context

• LOG_printf supports only 0, 1, or 2 arguments after the format string.

• No compilation error is reported if a call to LOG_printf casts an parameter as Arg or attempts to print
a code pointer using a single parameter. These actions cause erroneous output on ’C55x.

Example
LOG_printf(&trace, "hello world");

LOG_printf(&trace, "Size of Int is: %d", sizeof(Int));

See Also
LOG_error
LOG_event
TRC_disable
TRC_enable
SPRU404Q—August 2012 Application Program Interface 193
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

LOG_reset www.ti.com
C Interface

Syntax
LOG_reset(log);

Parameters
LOG_Handle log /* log object handle */

Return Value
Void

Reentrant
no

Description
LOG_reset enables the logging mechanism and allows the log buffer to be modified starting from the
beginning of the buffer, with sequence number starting from 0.

LOG_reset does not disable interrupts or otherwise protect the log from being modified by an HWI or
other thread. It is therefore possible for the log to contain inconsistent data if LOG_reset is preempted by
an HWI or other thread that uses the same log.

Example
LOG_reset(&trace);

See Also
LOG_disable
LOG_enable

LOG_reset Reset a message log
194 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MBX Module
2.14 MBX Module

The MBX module is the mailbox manager.

Functions

• MBX_create. Create a mailbox

• MBX_delete. Delete a mailbox

• MBX_pend. Wait for a message from mailbox

• MBX_post. Post a message to mailbox

Constants, Types, and Structures
typedef struct MBX_Obj *MBX_Handle;
 /* handle for mailbox object */

struct MBX_Attrs { /* mailbox attributes */
 Int segid;
};

MBX_Attrs MBX_ATTRS = {/* default attribute values */
 0,
};

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the MBX Manager Properties and MBX Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
The MBX module makes available a set of functions that manipulate mailbox objects accessed through
handles of type MBX_Handle. Mailboxes can hold up to the number of messages specified by the
Mailbox Length property in Tconf.

MBX_pend waits for a message from a mailbox. Its timeout parameter allows the task to wait until a
timeout. A timeout value of SYS_FOREVER causes the calling task to wait indefinitely for a message. A
timeout value of zero (0) causes MBX_pend to return immediately. MBX_pend’s return value indicates
whether the mailbox was signaled successfully.

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

Name Type Default

comment String "<add comments here>"

messageSize Int16 1

length Int16 1

elementSeg Reference prog.get("DARAM")
SPRU404Q—August 2012 Application Program Interface 195
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MBX Module www.ti.com
MBX_post is used to send a message to a mailbox. The timeout parameter to MBX_post specifies the
amount of time the calling task waits if the mailbox is full. If a task is waiting at the mailbox, MBX_post
removes the task from the queue and puts it on the ready queue. If no task is waiting and the mailbox is
not full, MBX_post simply deposits the message and returns.

MBX Manager Properties

The following global property can be set for the MBX module on the MBX Manager Properties dialog in
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the MBX objects created with Tconf.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.MBX.OBJMEMSEG = prog.get("myMEM");

MBX Object Properties

To create an MBX object in a configuration script, use the following syntax. The Tconf examples that
follow assume the object has been created as shown here.

var myMbx = bios.MBX.create("myMbx");

The following properties can be set for an MBX object in the MBX Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this MBX object.

Tconf Name: comment Type: String

Example: myMbx.comment = "my MBX";

• Message Size. The size (in MADUs) of the messages this mailbox can contain.

Tconf Name: messageSize Type: Int16

Example: myMbx.messageSize = 1;

• Mailbox Length. The number of messages this mailbox can contain.

Tconf Name: length Type: Int16

Example: myMbx.length = 1;

• Element memory segment. The memory segment to contain the mailbox data buffers.

Tconf Name: elementSeg Type: Reference

Example: myMbx.elementSeg = prog.get("myMEM");
196 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MBX_create
C Interface

Syntax
mbx = MBX_create(msgsize, mbxlength, attrs);

Parameters
size_t msgsize; /* size of message */
Uns mbxlength; /* length of mailbox */
MBX_Attrs *attrs; /* pointer to mailbox attributes */

Return Value
MBX_Handle mbx; /* mailbox object handle */

Description
MBX_create creates a mailbox object which is initialized to contain up to mbxlength messages of size
msgsize. If successful, MBX_create returns the handle of the new mailbox object. If unsuccessful,
MBX_create returns NULL unless it aborts (for example, because it directly or indirectly calls SYS_error,
and SYS_error causes an abort).

If attrs is NULL, the new mailbox is assigned a default set of attributes. Otherwise, the mailbox’s attributes
are specified through a structure of type MBX_Attrs.

All default attribute values are contained in the constant MBX_ATTRS, which can be assigned to a
variable of type MBX_Attrs prior to calling MBX_create.

MBX_create calls MEM_alloc to dynamically create the object’s data structure. MEM_alloc must acquire
a lock to the memory before proceeding. If another thread already holds a lock to the memory, then there
is a context switch. The segment from which the object is allocated is described by the DSP/BIOS objects
property in the MEM Module, page 2–204.

Constraints and Calling Context

• MBX_create cannot be called from a SWI or HWI.

• You can reduce the size of your application program by creating objects with Tconf rather than using
the XXX_create functions.

See Also
MBX_delete
SYS_error

MBX_create Create a mailbox
SPRU404Q—August 2012 Application Program Interface 197
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MBX_delete www.ti.com
C Interface

Syntax
MBX_delete(mbx);

Parameters
MBX_Handle mbx; /* mailbox object handle */

Return Value
Void

Description
MBX_delete frees the mailbox object referenced by mbx.

MBX_delete calls MEM_free to delete the MBX object. MEM_free must acquire a lock to the memory
before proceeding. If another task already holds a lock to the memory, then there is a context switch.

Constraints and Calling Context

• No tasks should be pending on mbx when MBX_delete is called.

• MBX_delete cannot be called from a SWI or HWI.

• No check is performed to prevent MBX_delete from being used on a statically-created object. If a
program attempts to delete a mailbox object that was created using Tconf, SYS_error is called.

See Also
MBX_create

MBX_delete Delete a mailbox
198 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MBX_pend
C Interface

Syntax
status = MBX_pend(mbx, msg, timeout);

Parameters
MBX_Handle mbx; /* mailbox object handle */
Ptr msg; /* message pointer */
Uns timeout; /* return after this many system clock ticks */

Return Value
Bool status; /* TRUE if successful, FALSE if timeout */

Description
If the mailbox is not empty, MBX_pend copies the first message into msg and returns TRUE. Otherwise,
MBX_pend suspends the execution of the current task until MBX_post is called or the timeout expires.
The actual time of task suspension can be up to 1 system clock tick less than timeout due to granularity
in system timekeeping.

If timeout is SYS_FOREVER, the task remains suspended until MBX_post is called on this mailbox. If
timeout is 0, MBX_pend returns immediately.

If timeout expires (or timeout is 0) before the mailbox is available, MBX_pend returns FALSE. Otherwise
MBX_pend returns TRUE.

A task switch occurs when calling MBX_pend if the mailbox is empty and timeout is not 0, or if a higher
priority task is blocked on MBX_post.

Constraints and Calling Context

• This API can be called from a TSK with any timeout value, but if called from an HWI or SWI the
timeout must be 0.

• If you need to call MBX_pend within a TSK_disable/TSK_enable block, you must use a timeout of 0.

• MBX_pend cannot be called from the program’s main() function.

See Also
MBX_post

MBX_pend Wait for a message from mailbox
SPRU404Q—August 2012 Application Program Interface 199
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MBX_post www.ti.com
C Interface

Syntax
status = MBX_post(mbx, msg, timeout);

Parameters
MBX_Handle mbx; /* mailbox object handle */
Ptr msg; /* message pointer */
Uns timeout; /* return after this many system clock ticks */

Return Value
Bool status; /* TRUE if successful, FALSE if timeout */

Description
MBX_post checks to see if there are any free message slots before copying msg into the mailbox.
MBX_post readies the first task (if any) waiting on mbx.

If the mailbox is full and timeout is SYS_FOREVER, the task remains suspended until MBX_pend is
called on this mailbox. If timeout is 0, MBX_post returns immediately. Otherwise, the task is suspended
for timeout system clock ticks. The actual time of task suspension can be up to 1 system clock tick less
than timeout due to granularity in system timekeeping.

If timeout expires (or timeout is 0) before the mailbox is available, MBX_post returns FALSE. Otherwise
MBX_post returns TRUE.

A task switch occurs when calling MBX_post if a higher priority task is made ready to run, or if there are
no free message slots and timeout is not 0.

Constraints and Calling Context

• If you need to call MBX_post within a TSK_disable/TSK_enable block, you must use a timeout of 0.

• This API can be called from a TSK with any timeout value, but if called from an HWI or SWI the
timeout must be 0.

• MBX_post can be called from the program’s main() function. However, the number of calls should
not be greater than the number of messages the mailbox can hold. Additional calls have no effect.

See Also
MBX_pend

MBX_post Post a message to mailbox
200 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM Module
2.15 MEM Module

The MEM module is the memory segment manager.

Functions

• MEM_alloc. Allocate from a memory segment.

• MEM_calloc. Allocate and initialize to 0.

• MEM_define. Define a new memory segment.

• MEM_free. Free a block of memory.

• MEM_getBaseAddress. Get base address of memory heap.

• MEM_increaseTableSize. Increase the internal MEM table size.

• MEM_redefine. Redefine an existing memory segment.

• MEM_stat. Return the status of a memory segment.

• MEM_undefine. Undefine an existing memory segment.

• MEM_valloc. Allocate and initialize to a value.

Constants, Types, and Structures
MEM->MALLOCSEG = 0; /* segid for malloc, free */

#define MEM_HEADERSIZE /* free block header size */
#define MEM_HEADERMASK /* mask to align on
 MEM_HEADERSIZE */
#define MEM_ILLEGAL /* illegal memory address */

MEM_Attrs MEM_ATTRS ={ /* default attribute values */
 0
};

typedef struct MEM_Segment {
 Ptr base; /* base of the segment */
 MEM_sizep length; /* size of the segment */
 Uns space; /* memory space */
} MEM_Segment;

typedef struct MEM_Stat {
 MEM_sizep size; /* original size of segment */
 MEM_sizep used; /* MADUs used in segment */
 size_t length; /* largest contiguous block */
} MEM_Stat;

typedef unsigned long MEM_sizep;

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the MEM Manager Properties and MEM Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

C55x Name Type Default

REUSECODESPACE Bool false

ARGSSIZE Numeric x0008

STACKSIZE Numeric 0x0400
SPRU404Q—August 2012 Application Program Interface 201
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM Module www.ti.com
SYSSTACKSIZE Numeric 0x0100

NOMEMORYHEAPS Bool false

BIOSOBJSEG Reference prog.get("DARAM")

MALLOCSEG Reference prog.get("DARAM")

ARGSSEG Reference prog.get("DARAM")

STACKSEG Reference prog.get("DARAM")

SYSSTACKSEG Reference prog.get("DARAM")

GBLINITSEG Reference prog.get("SARAM")

TRCDATASEG Reference prog.get("SARAM")

SYSDATASEG Reference prog.get("DARAM")

OBJSEG Reference prog.get("DARAM")

BIOSSEG Reference prog.get("SARAM")

SYSINITSEG Reference prog.get("SARAM")

HWISEG Reference prog.get("SARAM")

HWIVECSEG Reference prog.get("VECT")

RTDXTEXTSEG Reference prog.get("SARAM")

USERCOMMANDFILE Bool false

TEXTSEG Reference prog.get("SARAM")

SWITCHSEG Reference prog.get("SARAM")

BSSSEG Reference prog.get("DARAM")

CINITSEG Reference prog.get("SARAM")

PINITSEG Reference prog.get("SARAM")

CONSTSEG Reference prog.get("DARAM")

DATASEG Reference prog.get("DARAM")

CIOSEG Reference prog.get("DARAM")

ENABLELOADADDR Bool false

LOADBIOSSEG Reference prog.get("SARAM")

LOADSYSINITSEG Reference prog.get("SARAM")

LOADGBLINITSEG Reference prog.get("SARAM")

LOADTRCDATASEG Reference prog.get("SARAM")

LOADTEXTSEG Reference prog.get("SARAM")

LOADSWITCHSEG Reference prog.get("SARAM")

LOADCINITSEG Reference prog.get("SARAM")

LOADPINITSEG Reference prog.get("SARAM")

LOADCONSTSEG Reference prog.get("DARAM")

LOADHWISEG Reference prog.get("SARAM")

LOADHWIVECSEG Reference prog.get("VECT")

LOADRTDXTEXTSEG Reference prog.get("SARAM")

C55x Name Type Default
202 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM Module
Instance Configuration Parameters

Description
The MEM module provides a set of functions used to allocate storage from one or more disjointed
segments of memory. These memory segments are specified with Tconf.

MEM always allocates an even number of MADUs and always aligns buffers on an even boundary. This
behavior is used to insure that free buffers are always at least two MADUs in length. This behavior does
not preclude you from allocating two 512 buffers from a 1K region of on-device memory, for example. It
does, however, mean that odd allocations consume one more MADU than expected.

If small code size is important to your application, you can reduce code size significantly by removing the
capability to dynamically allocate and free memory. To do this, set the "No Dynamic Memory Heaps"
property for the MEM manager to true. If you remove this capability, your program cannot call any of the
MEM functions or any object creation functions (such as TSK_create). You need to create all objects to
be used by your program statically (with Tconf). You can also create or remove the dynamic memory heap
from an individual memory segment in the configuration.

Software modules in DSP/BIOS that allocate storage at run-time use MEM functions; DSP/BIOS does
not use the standard C function malloc. DSP/BIOS modules use MEM to allocate storage in the segment
selected for that module with Tconf.

The MEM Manager property, Segment for malloc()/free(), is used to implement the standard C malloc,
free, and calloc functions. These functions actually use the MEM functions (with segid = Segment for
malloc/free) to allocate and free memory.

Note: The MEM module does not set or configure hardware registers associated with a DSP’s
memory subsystem. Such configuration is the responsibility of the user and is typically
handled by software loading programs, or in the case of Code Composer Studio, the
startup or menu options. For example, to access external memory on a c6000 platform,
the External Memory Interface (EMIF) registers must first be set appropriately before
any access. The earliest opportunity for EMIF initialization within DSP/BIOS would be
during the user initialization hook (see Global Settings in the API Reference Guide).

MEM Manager Properties

The DSP/BIOS Memory Section Manager allows you to specify the memory segments required to locate
the various code and data sections of a DSP/BIOS application.

Name Type Default (Enum Options)

comment String "<add comments here>"

base Numeric 0x000000

len Numeric 0x000000

createHeap Bool true

heapSize Numeric 0x03f80

enableHeapLabel Bool false

heapLabel Extern prog.extern("segment_name","asm")

space EnumString "code/data" ("io")
SPRU404Q—August 2012 Application Program Interface 203
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM Module www.ti.com
The following global properties can be set for the MEM module in the MEM Manager Properties dialog
of the DSP/BIOS Configuration Tool or in a Tconf script:

General tab

• Reuse Startup Code Space. If this property is set to true, the startup code section (.sysinit) can be
reused after startup is complete.

Tconf Name: REUSECODESPACE Type: Bool

Example: bios.MEM.REUSECODESPACE = false;

• Argument Buffer Size. The size of the .args section. The .args section contains the argc, argv, and
envp arguments to the program's main() function. Code Composer loads arguments for the main()
function into the .args section. The .args section is parsed by the boot file.

Tconf Name: ARGSSIZE Type: Numeric

Example: bios.MEM.ARGSSIZE = 0x0004;

• Stack Size. The size of the data stack in MADUs. The upper-left corner of the DSP/BIOS
Configuration Tool window shows the estimated minimum global stack size required for this
application (as a decimal number).

This size is shown as a hex value in Minimum Addressable Data Units (MADUs). An MADU is the
smallest unit of data storage that can be read or written by the CPU. For the c5000 this is a 16-bit
word.

Tconf Name: STACKSIZE Type: Numeric

Example: bios.MEM.STACKSIZE = 0x0400;

• System Stack Size (MADUs). The size of the system stack in MADUs, applicable only on the C55x
device.

Tconf Name: SYSSTACKSIZE Type: Numeric

Example: bios.MEM.SYSSTACKSIZE = 0x0100;

• No Dynamic Memory Heaps. Put a checkmark in this box to completely disable the ability to
dynamically allocate memory and the ability to dynamically create and delete objects. If this property
is set to true, the program may not call the MEM_alloc, MEM_valloc, MEM_calloc, and malloc or the
XXX_create function for any DSP/BIOS module. If this property is set to true, the Segment For
DSP/BIOS Objects, Segment for malloc()/free(), and Stack segment for dynamic tasks properties are
set to MEM_NULL.

When you set this property to true, heaps already specified in MEM segments are removed from the
configuration. If you later reset this property to false, recreate heaps by configuring properties for
individual MEM objects as needed.

Tconf Name: NOMEMORYHEAPS Type: Bool

Example: bios.MEM.NOMEMORYHEAPS = false;

• Segment For DSP/BIOS Objects. The default memory segment to contain objects created at run-
time with an XXX_create function. The XXX_Attrs structure passed to the XXX_create function can
override this default. If you select MEM_NULL for this property, creation of DSP/BIOS objects at run-
time via the XXX_create functions is disabled.

Tconf Name: BIOSOBJSEG Type: Reference

Example: bios.MEM.BIOSOBJSEG = prog.get("myMEM");
204 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM Module
• Segment For malloc() / free(). The memory segment from which space is allocated when a program
calls malloc and from which space is freed when a program calls free. If you select MEM_NULL for
this property, dynamic memory allocation at run-time is disabled.

Tconf Name: MALLOCSEG Type: Reference

Example: bios.MEM.MALLOCSEG = prog.get("myMEM");

BIOS Data tab

• Argument Buffer Section (.args). The memory segment containing the .args section.

Tconf Name: ARGSSEG Type: Reference

Example: bios.MEM.ARGSSEG = prog.get("myMEM");

• Stack Section (.stack). The memory segment containing the data stack. This segment should be
located in RAM. The platform architecture requires that both the user and system stacks (pointed to
by the XSP and XSSP registers, respectively) reside in the same 64K page of memory, that is, the
upper 7 bits of the stack address (SPH) are shared.

Tconf Name: STACKSEG Type: Reference

Example: bios.MEM.STACKSEG = prog.get("myMEM");

• System Stack Section (.sysstack). The memory segment containing the system stack, applicable
only on the C55x device.

Tconf Name: SYSSTACKSEG Type: Reference

Example: bios.MEM.SYSSTACKSEG = prog.get("myMEM");

• DSP/BIOS Init Tables (.gblinit). The memory segment containing the DSP/BIOS global initialization
tables.

Tconf Name: GBLINITSEG Type: Reference

Example: bios.MEM.GBLINITSEG = prog.get("myMEM");

• TRC Initial Value (.trcdata). The memory segment containing the TRC mask variable and its initial
value. This segment must be placed in RAM.

Tconf Name: TRCDATASEG Type: Reference

Example: bios.MEM.TRCDATASEG = prog.get("myMEM");

• DSP/BIOS Kernel State (.sysdata). The memory segment containing system data about the
DSP/BIOS kernel state.

Tconf Name: SYSDATASEG Type: Reference

Example: bios.MEM.SYSDATASEG = prog.get("myMEM");

• DSP/BIOS Conf Sections (.obj). The memory segment containing configuration properties that can
be read by the target program.

Tconf Name: OBJSEG Type: Reference

Example: bios.MEM.OBJSEG = prog.get("myMEM");

BIOS Code tab

• BIOS Code Section (.bios). The memory segment containing the DSP/BIOS code.

Tconf Name: BIOSSEG Type: Reference

Example: bios.MEM.BIOSSEG = prog.get("myMEM");
SPRU404Q—August 2012 Application Program Interface 205
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM Module www.ti.com
• Startup Code Section (.sysinit). The memory segment containing DSP/BIOS startup initialization
code; this memory can be reused after main starts executing.

Tconf Name: SYSINITSEG Type: Reference

Example: bios.MEM.SYSINITSEG = prog.get("myMEM");

• Function Stub Memory (.hwi). The memory segment containing dispatch code for HWIs that are
configured to be monitored in the HWI Object Properties.

Tconf Name: HWISEG Type: Reference

Example: bios.MEM.HWISEG = prog.get("myMEM");

• Interrupt Service Table Memory (.hwi_vec). The memory segment containing the Interrupt Service
Table (IST).

Tconf Name: HWIVECSEG Type: Reference

Example: bios.MEM.HWIVECSEG = prog.get("myMEM");

• RTDX Text Segment (.rtdx_text). The memory segment containing the code sections for the RTDX
module.

Tconf Name: RTDXTEXTSEG Type: Reference

Example: bios.MEM.RTDXTEXTSEG = prog.get("myMEM");

Compiler Sections tab

• User .cmd File For Compiler Sections. Put a checkmark in this box if you want to have full control
over the memory used for the sections that follow. You must then create a linker command file that
begins by including the linker command file created by the configuration. Your linker command file
should then assign memory for the items normally handled by the following properties. See the
TMS320C54x Optimizing Compiler User’s Guide, (literature number SPRU103E) for more details.

Tconf Name: USERCOMMANDFILE Type: Bool

Example: bios.MEM.USERCOMMANDFILE = false;

• Text Section (.text). The memory segment containing the executable code, string literals, and
compiler-generated constants. This segment can be located in ROM or RAM.

Tconf Name: TEXTSEG Type: Reference

Example: bios.MEM.TEXTSEG = prog.get("myMEM");

• Switch Jump Tables (.switch). The memory segment containing the jump tables for switch
statements. This segment can be located in ROM or RAM.

Tconf Name: SWITCHSEG Type: Reference

Example: bios.MEM.SWITCHSEG = prog.get("myMEM");

• C Variables Section (.bss). The memory segment containing global and static C variables. At boot
or load time, the data in the .cinit section is copied to this segment. This segment should be located
in RAM.

Tconf Name: BSSSEG Type: Reference

Example: bios.MEM.BSSSEG = prog.get("myMEM");

• Data Initialization Section (.cinit). The memory segment containing tables for explicitly initialized
global and static variables and constants. This segment can be located in ROM or RAM.

Tconf Name: CINITSEG Type: Reference

Example: bios.MEM.CINITSEG = prog.get("myMEM");
206 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM Module
• C Function Initialization Table (.pinit). The memory segment containing the table of global object
constructors. Global constructors must be called during program initialization. The C/C++ compiler
produces a table of constructors to be called at startup. The table is contained in a named section
called .pinit. The constructors are invoked in the order that they occur in the table. This segment can
be located in ROM or RAM.

Tconf Name: PINITSEG Type: Reference

Example: bios.MEM.PINITSEG = prog.get("myMEM");

• Constant Sections (.const, .printf). These sections can be located in ROM or RAM. The .const
section contains string constants and data defined with the const C qualifier. The DSP/BIOS .printf
section contains other constant strings used by the Real-Time Analysis tools. The .printf section is
not loaded onto the target. Instead, the (COPY) directive is used for this section in the .cmd file. The
.printf section is managed along with the .const section, since it must be grouped with the .const
section to make sure that no addresses overlap. If you specify these sections in your own .cmd file,
you’ll need to do something like the following:

 GROUP {

 .const: {}

 .printf (COPY): {}

 } > IRAM

Tconf Name: CONSTSEG Type: Reference

Example: bios.MEM.CONSTSEG = prog.get("myMEM");

• Data Section (.data). This memory segment contains program data. This segment can be located
in ROM or RAM.

Tconf Name: DATASEG Type: Reference

Example: bios.MEM.DATASEG = prog.get("myMEM");

• Data Section (.cio). This memory segment contains C standard I/O buffers.

Tconf Name: CIOSEG Type: Reference

Example: bios.MEM.CIOSEG = prog.get("myMEM");

Load Address tab

• Specify Separate Load Addresses. If you put a checkmark in this box, you can select separate load
addresses for the sections listed on this tab.

Load addresses are useful when, for example, your code must be loaded into ROM, but would run
faster in RAM. The linker allows you to allocate sections twice: once to set a load address and again
to set a run address.

If you do not select a separate load address for a section, the section loads and runs at the same
address.

If you do select a separate load address, the section is allocated as if it were two separate sections
of the same size. The load address is where raw data for the section is placed. References to items
in the section refer to the run address. The application must copy the section from its load address
to its run address. For details, see the topics on Runtime Relocation and the .label Directive in the
Code Generation Tools help or manual.

Tconf Name: ENABLELOADADDR Type: Bool

Example: bios.MEM.ENABLELOADADDR = false;
SPRU404Q—August 2012 Application Program Interface 207
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM Module www.ti.com
• Load Address - BIOS Code Section (.bios). The memory segment containing the load allocation
of the section that contains DSP/BIOS code.

Tconf Name: LOADBIOSSEG Type: Reference

Example: bios.MEM.LOADBIOSSEG = prog.get("myMEM");

• Load Address - Startup Code Section (.sysinit). The memory segment containing the load
allocation of the section that contains DSP/BIOS startup initialization code.

Tconf Name: LOADSYSINITSEG Type: Reference

Example: bios.MEM.LOADSYSINITSEG = prog.get("myMEM");

• Load Address - DSP/BIOS Init Tables (.gblinit). The memory segment containing the load
allocation of the section that contains the DSP/BIOS global initialization tables.

Tconf Name: LOADGBLINITSEG Type: Reference

Example: bios.MEM.LOADGBLINITSEG = prog.get("myMEM");

• Load Address - TRC Initial Value (.trcdata). The memory segment containing the load allocation
of the section that contains the TRC mask variable and its initial value.

Tconf Name: LOADTRCDATASEG Type: Reference

Example: bios.MEM.LOADTRCDATASEG = prog.get("myMEM");

• Load Address - Text Section (.text). The memory segment containing the load allocation of the
section that contains the executable code, string literals, and compiler-generated constants.

Tconf Name: LOADTEXTSEG Type: Reference

Example: bios.MEM.LOADTEXTSEG = prog.get("myMEM");

• Load Address - Switch Jump Tables (.switch). The memory segment containing the load
allocation of the section that contains the jump tables for switch statements.

Tconf Name: LOADSWITCHSEG Type: Reference

Example: bios.MEM.LOADSWITCHSEG = prog.get("myMEM");

• Load Address - Data Initialization Section (.cinit). The memory segment containing the load
allocation of the section that contains tables for explicitly initialized global and static variables and
constants.

Tconf Name: LOADCINITSEG Type: Reference

Example: bios.MEM.LOADCINITSEG = prog.get("myMEM");

• Load Address - C Function Initialization Table (.pinit). The memory segment containing the load
allocation of the section that contains the table of global object constructors.

Tconf Name: LOADPINITSEG Type: Reference

Example: bios.MEM.LOADPINITSEG = prog.get("myMEM");

• Load Address - Constant Sections (.const, .printf). The memory segment containing the load
allocation of the sections that contain string constants, data defined with the const C qualifier, and
other constant strings used by the Real-Time Analysis tools. The .printf section is managed along
with the .const section to make sure that no addresses overlap.

Tconf Name: LOADCONSTSEG Type: Reference

Example: bios.MEM.LOADCONSTSEG = prog.get("myMEM");

• Load Address - Function Stub Memory (.hwi). The memory segment containing the load allocation
of the section that contains dispatch code for HWIs configured to be monitored.

Tconf Name: LOADHWISEG Type: Reference

Example: bios.MEM.LOADHWISEG = prog.get("myMEM");
208 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM Module
• Load Address - Interrupt Service Table Memory (.hwi_vec). The memory segment containing the
load allocation of the section that contains the Interrupt Service Table.

Tconf Name: LOADHWIVECSEG Type: Reference

Example: bios.MEM.LOADHWIVECSEG = prog.get("myMEM");

• Load Address - RTDX Text Segment (.rtdx_text). The memory segment containing the load
allocation of the section that contains the code sections for the RTDX module.

Tconf Name: LOADRTDXTEXTSEG Type: Reference

Example: bios.MEM.LOADRTDXTEXTSEG = prog.get("myMEM");

MEM Object Properties

A memory segment represents a contiguous length of code or data memory in the address space of the
processor.

To create a MEM object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var myMem = bios.MEM.create("myMem");

The following properties can be set for a MEM object in the MEM Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this MEM object.

Tconf Name: comment Type: String

Example: myMem.comment = "my MEM";

• base. The address at which this memory segment begins. This value is shown in hex.

Tconf Name: base Type: Numeric

Example: myMem.base = 0x000000;

• len. The length of this memory segment in MADUs. This value is shown in hex.

Tconf Name: len Type: Numeric

Example: myMem.len = 0x000000;

• create a heap in this memory. If this property is set to true, a heap is created in this memory
segment. Memory can by allocated dynamically from a heap. In order to remove the heap from a
memory segment, you can select another memory segment that contains a heap for properties that
dynamically allocate memory in this memory segment. The properties you should check are in the
Memory Section Manager (the Segment for DSP/BIOS objects and Segment for malloc/free
properties) and the Task Manager (the Default stack segment for dynamic tasks property). If you
disable dynamic memory allocation in the Memory Section Manager, you cannot create a heap in any
memory segment.

Tconf Name: createHeap Type: Bool

Example: myMem.createHeap = true;

• heap size. The size of the heap in MADUs to be created in this memory segment. You cannot control
the location of the heap within its memory segment except by making the segment and heap the
same sizes. Note that if the base of the heap ends up at address 0x0, the base address of the heap
is offset by MEM_HEADERSIZE and the heap size is reduced by MEM_HEADERSIZE.
SPRU404Q—August 2012 Application Program Interface 209
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM Module www.ti.com
A heap can potentially be sized to cross a 64K page boundary. See the MEM_alloc topic for
information about the effects of page boundaries on heaps.

Tconf Name: heapSize Type: Numeric

Example: myMem.heapSize = 0x03f80;

• enter a user defined heap identifier. If this property is set to true, you can define your own identifier
label for this heap.

Tconf Name: enableHeapLabel Type: Bool

Example: myMem.enableHeapLabel = false;

• heap identifier label. If the property above is set to true, type a name for this segment’s heap.

Tconf Name: heapLabel Type: Extern

Example: myMem.heapLabel = prog.extern("seg_name", "asm");

• space. Type of memory segment. This is set to code for memory segments that store programs, and
data for memory segments that store program data.

Tconf Name: space Type: EnumString

Options: "code/data", "io"

Example: myMem.space = "code/data";

The predefined memory segments in a configuration file, particularly those for external memory, are
dependent on the board template you select. In general, Table 2-5 lists segments that can be defined for
the c5000:

Table 2-5: Typical Memory Segments for C5000 Boards

Name Memory Segment Type

USERREGS User scratchpad memory

BIOSREGS Scratchpad memory reserved for use by
DSP/BIOS

VECT Interrupt vector table

IDATA Internal data RAM

IPROG Internal program RAM

EDATA External data memory

EPROG External program memory
210 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM_alloc
C Interface

Syntax
addr = MEM_alloc(segid, size, align);

Parameters
Int segid; /* memory segment identifier */
size_t size; /* block size in MADUs */
size_t align; /* block alignment */

Return Value
Void *addr; /* address of allocated block of memory */

Description
MEM_alloc allocates a contiguous block of storage from the memory segment identified by segid and
returns the address of this block.

The segid parameter identifies the memory segment to allocate memory from. This identifier can be an
integer or a memory segment name defined in the configuration. Files created by the configuration define
each configured segment name as a variable with an integer value.

The block contains size MADUs and starts at an address that is a multiple of align. If align is 0 or 1, there
is no alignment constraint.

MEM_alloc does not initialize the allocated memory locations.

If the memory request cannot be satisfied, MEM_alloc calls SYS_error with SYS_EALLOC and returns
MEM_ILLEGAL.

MEM functions that allocate and deallocate memory internally lock the memory by calling the LCK_pend
and LCK_post functions. If another task already holds a lock to the memory, there is a context switch. For
this reason, MEM_alloc cannot be called from the context of a SWI or HWI. MEM_alloc checks the
context from which it is called. It calls SYS_error and returns MEM_ILLEGAL if it is called from the wrong
context.

A number of other DSP/BIOS APIs call MEM_alloc internally, and thus also cannot be called from the
context of a SWI or HWI. See the “Function Callability Table” on page 484 for a detailed list of calling
contexts for each DSP/BIOS API.

Page Boundary Issues on the ’C55x

On the ’C55x using the large memory model, MEM objects can configure heaps larger than 64K MADUs
(16-bit words for 'C55x). However, memory blocks that cross a 64K page boundary cause C compiler
errors. (See the TMS320C55x Optimizing C Compiler User’s Guide for details.)

To prevent such errors, you can use the huge memory model. If you use the large memory model, the
remainder of this section applies.

When using the large memory model, the MEM module divides heaps that cross page boundaries into
memory blocks that do not cross boundaries. As a result, MEM_alloc and MEM_free can only allocate
and free memory within a single memory block, and the largest block that MEM_alloc can allocate in any
case is 64K words (0x10000).

MEM_alloc Allocate from a memory segment
SPRU404Q—August 2012 Application Program Interface 211
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM_alloc www.ti.com
For example, suppose you create a RAM segment called MYRAM that is 100K words in length. MYRAM
has a base address of 2:F000 and a length of 0x19000. The heap within MYRAM is also 100K words and
has a heap identifier label of MYSEG. So this heap also has a base address of 2:F000 and ends at
4:7FFF.

To prevent a memory block from crossing a page boundary, the MEM Module separates this heap into
the following memory blocks, which are aligned along 64K page boundaries:

Figure 2-1. MYSEG Heap Initial Memory Map

Suppose your program calls MEM_alloc in the following sequence:

P3 = MEM_alloc(MYSEG, 0xFF80, 0);

P1 = MEM_alloc(MYSEG, 0x6000, 0);

P2 = MEM_alloc(MYSEG, 0x1800, 0);

P4 = MEM_alloc(MYSEG, 0x800, 0);

MEM_alloc allocates memory from the first available memory block that is large enough. The memory
block with the lowest address is the first available. In our example, the memory block with base address
2:F000 and length 0x1000 is the first available memory block. MEM_alloc gets memory sections from the
bottom of a memory block. If the heap does not have enough memory for a particular call to MEM_alloc,
that call returns an error and the next call to MEM_alloc is executed.

The results of these calls to MEM_alloc are shown in the figure and list that follow.

2:F000

3:0000

3:FFFF
4:0000

4:7FFF

2:FFFF

Block 1
Length 0x1000 (4K words)

Block 2
Length 0x10000 (64K words)

Block 3
Length 0x8000 (32K words)
212 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM_alloc
Figure 2-2. MYSEG Memory Map After Allocation

• P3 = MEM_alloc(MYSEG, 0xFF80, 0);

This call requests 0xFF80 words. The first available block (at 2:F000) has a size of 0x1000; it is too
small for 0xFF80. The next block (at 3:0000) has a size of 0x10000; it is large enough to allocate
0xFF80 words. So, P3 points to a block from 3:0080 to 3:FFFF (because MEM_alloc takes memory
from the bottom of a memory block).

• P1 = MEM_alloc(MYSEG, 0x6000, 0);

This call requests 0x6000 words. The first block has a size of 0x1000, which is still too small. The
next block now has only 0x80 words available because of the previous memory allocation. The last
memory block has a size of 0x8000, and is large enough for this allocation. So, P1 points to a block
from 4:2000 to 4:7FFF.

• P2 = MEM_alloc(MYSEG, 0x1800, 0);

This call requests 0x1800 words. Blocks 1 and 2 are again too small. The last block has 0x2000
words remaining, and can accommodate this allocation. So, P2 points to a block from 4:0800 to
4:1FFF.

• P4 = MEM_alloc(MYSEG, 0x800, 0);

This call requests 0x800 words. This time, the first block is large enough. So, P4 points to a block
from 2:F800 to 2:FFFF.

Consider how this memory map would change if the same MEM_alloc calls were made in the following
sequence:

P1 = MEM_alloc(MYSEG, 0x6000, 0);

P2 = MEM_alloc(MYSEG, 0x1800, 0);

P3 = MEM_alloc(MYSEG, 0xFF80, 0);

P4 = MEM_alloc(MYSEG, 0x800, 0);

The results of this modified call sequence are as follows and are shown in Figure 2-3.

2:F800
2:F000

3:0000

3:FFFF
4:0000

4:7FFF

3:0080

4:0800

4:2000

2:FFFF

P1

P3

P2

P4 0x0800

0xFF80

0x1800

0x6000
SPRU404Q—August 2012 Application Program Interface 213
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM_alloc www.ti.com
Figure 2-3. MYSEG Memory Map After Modified Allocation

• P1 is allocated from 3:A000 to 3:FFFF.

• P2 is allocated from 3:8800 to 3:9FFF.

• P3 is not allocated because no unallocated memory blocks are large enough to hold 0xFF80.

• P4 is allocated from 2:F800 to 2:FFFF.

As a result of page boundary limitations on MEM_alloc, you should follow these guidelines when using
large heaps and multiple MEM_alloc calls:

• Create a memory segment specifically for a heap. Give the heap the same size as the memory
segment so that the base of the memory segment is at the same location as the base of the heap.
(You cannot specify the location of the heap within a memory segment if the memory segment is
larger than the heap.) If possible, align the memory segment with a page boundary to maximize the
size of memory blocks within the heap.

• If possible, allocate larger blocks of memory from the heap first. Previous allocations of small memory
blocks can reduce the size of the memory blocks available for large memory allocations.

• Realize that MEM_alloc can fail and call SYS_error even if the heap contain a sufficient absolute
amount of unallocated space. This is because the largest free memory block within the heap may be
much smaller than the total amount of unallocated memory.

• If your application allocates memory in an unpredictable sequence, use a heap that is much larger
than the amount of memory needed.

Constraints and Calling Context

• segid must identify a valid memory segment.

• MEM_alloc cannot be called from a SWI or HWI.

• MEM_alloc cannot be called if the TSK scheduler is disabled.

• align must be 0, or a power of 2 (for example, 1, 2, 4, 8).

See Also
MEM_calloc
MEM_free
MEM_valloc

2:F800
2:F000

3:0000

3:FFFF
4:0000

4:7FFF

3:8800

3:A000

2:FFFF

P3

P4 0x0800

No Space
for P3

(0xFF80)

0x1800

0x6000

P2

P1
214 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM_calloc
C Interface

Syntax
addr = MEM_calloc(segid, size, align)

Parameters
Int segid; /* memory segment identifier */
size_t size; /* block size in MADUs */
size_t align; /* block alignment */

Return Value
Void *addr; /* address of allocated block of memory */

Description
MEM_calloc is functionally equivalent to calling MEM_valloc with value set to 0. MEM_calloc allocates a
contiguous block of storage from the memory segment identified by segid and returns the address of this
block.

The segid parameter identifies the memory segment from which memory is to be allocated. This identifier
can be an integer or a memory segment name defined in the configuration. The files created by the
configuration define each configured segment name as a variable with an integer value.

The block contains size MADUs and starts at an address that is a multiple of align. If align is 0 or 1, there
is no alignment constraint.

If the memory request cannot be satisfied, MEM_calloc calls SYS_error with SYS_EALLOC and returns
MEM_ILLEGAL.

MEM functions that allocate and deallocate memory internally lock the memory by calling the LCK_pend
and LCK_post functions. If another task already holds a lock to the memory, there is a context switch. For
this reason, MEM_calloc cannot be called from the context of a SWI or HWI.

Constraints and Calling Context

• segid must identify a valid memory segment.

• MEM_calloc cannot be called from a SWI or HWI.

• MEM_calloc cannot be called if the TSK scheduler is disabled.

• align must be 0, or a power of 2 (for example, 1, 2, 4, 8).

See Also
MEM_alloc
MEM_free
MEM_valloc
SYS_error
std.h and stdlib.h functions

MEM_calloc Allocate from a memory segment and set value to 0
SPRU404Q—August 2012 Application Program Interface 215
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM_define www.ti.com
C Interface

Syntax
segid = MEM_define(base, length, attrs);

Parameters
Ptr base; /* base address of new segment */
MEM_sizep length; /* length (in MADUs) of new segment */
MEM_Attrs *attrs; /* segment attributes */

Return Value
Int segid; /* ID of new segment */

Reentrant

yes

Description
MEM_define defines a new memory segment for use by the DSP/BIOS MEM Module.

The new segment contains length MADUs starting at base. A new table entry is allocated to define the
segment, and the entry’s index into this table is returned as the segid.

The new block should be aligned on a MEM_HEADERSIZE boundary, and the length should be a
multiple of MEM_HEADERSIZE.

If attrs is NULL, the new segment is assigned a default set of attributes. Otherwise, the segment’s
attributes are specified through a structure of type MEM_Attrs.

Note: No attributes are supported for segments, and the type MEM_Attrs is defined as a
dummy structure.

If there are undefined slots available in the internal table of memory segment identifiers, one of those
slots is (re)used for the new segment. If there are no undefined slots available in the internal table, the
table size is increased via MEM_alloc. See MEM_increaseTableSize to manage performance in this
situation.

Constraints and Calling Context

• At least one segment must exist at the time MEM_define is called.

• MEM_define internally locks the memory by calling LCK_pend and LCK_post. If another task already
holds a lock to the memory, there is a context switch. For this reason, MEM_define cannot be called
from the context of a SWI or HWI. It can be called from main() or a TSK. The duration that the API
holds the memory lock is variable.

• The length parameter must be a multiple of MEM_HEADERSIZE and must be at least equal to
MEM_HEADERSIZE.

• The base Ptr cannot be NULL.

See Also
MEM_redefine
MEM_undefine

MEM_define Define a new memory segment
216 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM_free
C Interface

Syntax
status = MEM_free(segid, addr, size);

Parameters
Int segid; /* memory segment identifier */
Ptr addr; /* block address pointer */
size_t size; /* block length in MADUs*/

Return Value
Bool status; /* TRUE if successful */

Description
MEM_free places the memory block specified by addr and size back into the free pool of the segment
specified by segid. The newly freed block is combined with any adjacent free blocks. This space is then
available for further allocation by MEM_alloc. The segid can be an integer or a memory segment name
defined in the configuration.

MEM functions that allocate and deallocate memory internally lock the memory by calling the LCK_pend
and LCK_post functions. If another task already holds a lock to the memory, there is a context switch. For
this reason, MEM_free cannot be called from the context of a SWI or HWI.

Although MEM_free combines newly freed blocks with adjacent free blocks, it does not combine blocks
that cross a 64K page boundary. See the MEM_alloc topic for information about the effects of page
boundaries on heaps.

Constraints and Calling Context

• addr must be a valid pointer returned from a call to MEM_alloc.

• segid and size are those values used in a previous call to MEM_alloc.

• MEM_free cannot be called by HWI or SWI functions.

• MEM_free cannot be called if the TSK scheduler is disabled.

See Also
MEM_alloc
std.h and stdlib.h functions

MEM_free Free a block of memory
SPRU404Q—August 2012 Application Program Interface 217
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM_getBaseAddress www.ti.com
C Interface

Syntax
addr = MEM_getBaseAddress(segid);

Parameters
Int segid; /* memory segment identifier */

Return Value
Ptr addr; /* heap base address pointer */

Description
MEM_getBaseAddress returns the base address of the memory heap with the segment ID specified by
the segid parameter.

Constraints and Calling Context

• The segid can be an integer or a memory segment name defined in the configuration.

See Also
MEM Object Properties

MEM_getBaseAddress Get base address of a memory heap
218 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM_increaseTableSize
C Interface

Syntax
status = MEM_increaseTableSize(numEntries);

Parameters
Uns numEntries; /* number of segments to increase table by */

Return Value
Int status; /* TRUE if successful */

Reentrant
yes

Description

MEM_increaseTableSize allocates numEntries of undefined memory segments. When MEM_define is
called, undefined memory segments are re-used. If no undefined memory segments exist, one is
allocated. By using MEM_increaseTableSize, the application can avoid the use of MEM_alloc (thus
improving performance and determinism) within the MEM_define call.

MEM_increaseTableSize internally locks memory by calling LCK_pend and LCK_post. If another task
already holds a lock to the memory, there is a context switch. For this reason, MEM_increaseTableSize
cannot be called from the context of a SWI or HWI. It can be called from main() or a TSK. The duration
that the API holds the memory lock is variable.

MEM_increaseTableSize returns SYS_OK to indicate success and SYS_EALLOC if an allocation error
occurred.

Constraints and Calling Context

• Do not call from the context of a SWI or HWI.

See Also
MEM_define
MEM_undefine

MEM_increaseTableSize Increase the internal MEM table size
SPRU404Q—August 2012 Application Program Interface 219
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM_redefine www.ti.com
C Interface

Syntax
MEM_redefine(segid, base, length);

Parameters
Int segid; /* segment to redefine */
Ptr base; /* base address of new block */
MEM_sizep length; /* length (in MADUs) of new block */

Return Value
Void

Reentrant

yes

Description
MEM_redefine redefines an existing memory segment managed by the DSP/BIOS MEM Module. All
pointers in the old segment memory block are automatically freed, and the new segment block is
completely available for allocations.

The new block should be aligned on a MEM_HEADERSIZE boundary, and the length should be a
multiple of MEM_HEADERSIZE.

Constraints and Calling Context

• MEM_redefine internally locks the memory by calling LCK_pend and LCK_post. If another task
already holds a lock to the memory, there is a context switch. For this reason, MEM_redefine cannot
be called from the context of a SWI or HWI. It can be called from main() or a TSK. The duration that
the API holds the memory lock is variable.

• The length parameter must be a multiple of MEM_HEADERSIZE and must be at least equal to
MEM_HEADERSIZE.

• The base Ptr cannot be NULL.

See Also
MEM_define
MEM_undefine

MEM_redefine Redefine an existing memory segment
220 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM_stat
C Interface

Syntax
status = MEM_stat(segid, statbuf);

Parameters
Int segid; /* memory segment identifier */
MEM_Stat *statbuf; /* pointer to stat buffer */

Return Value
Bool status; /* TRUE if successful */

Description
MEM_stat returns the status of the memory segment specified by segid in the status structure pointed to
by statbuf.

typedef struct MEM_Stat {
 MEM_sizep size; /* original size of segment */
 MEM_sizep used; /* MADUs used in segment */
 size_t length; /* largest contiguous block */
} MEM_Stat;

All values are expressed in terms of minimum addressable units (MADUs).

MEM_stat returns TRUE if segid corresponds to a valid memory segment, and FALSE otherwise. If
MEM_stat returns FALSE, the contents of statbuf are undefined. If the segment has been undefined with
MEM_undefine, this function returns FALSE.

MEM functions that access memory internally lock the memory by calling the LCK_pend and LCK_post
functions. If another task already holds a lock to the memory, there is a context switch. For this reason,
MEM_stat cannot be called from the context of a SWI or HWI.

Constraints and Calling Context

• MEM_stat cannot be called from a SWI or HWI.

• MEM_stat cannot be called if the TSK scheduler is disabled.

MEM_stat Return the status of a memory segment
SPRU404Q—August 2012 Application Program Interface 221
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MEM_undefine www.ti.com
C Interface

Syntax
MEM_undefine(segid);

Parameters
Int segid; /* segment to undefine */

Return Value
Void

Reentrant
yes

Description
MEM_undefine removes a memory segment from the internal memory tables. Once a memory segment
has been undefined, the segid cannot be used in any of the MEM APIs (except MEM_stat). Note: The
undefined segid might later be returned by a subsequent MEM_define call.

MEM_undefine internally locks the memory by calling LCK_pend and LCK_post. If another task already
holds a lock to the memory, there is a context switch. For this reason, MEM_undefine cannot be called
from the context of a SWI or HWI. It can be called from main() or a TSK. The duration that the API holds
the memory lock is variable.

Constraints and Calling Context

• Do not call from the context of a SWI or HWI.

• MEM_undefine does not free the actual memory buffer managed by the memory segment.

See Also
MEM_define
MEM_redefine

MEM_undefine Undefine an existing memory segment
222 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MEM_valloc
C Interface

Syntax
addr = MEM_valloc(segid, size, align, value);

Parameters
Int segid; /* memory segment identifier */
size_t size; /* block size in MADUs */
size_t align; /* block alignment */
Char value; /* character value */

Return Value
Void *addr; /* address of allocated block of memory */

Description
MEM_valloc uses MEM_alloc to allocate the memory before initializing it to value.

The segid parameter identifies the memory segment from which memory is to be allocated. This identifier
can be an integer or a memory segment name defined in the configuration. The files created by the
configuration define each configured segment name as a variable with an integer value.

The block contains size MADUs and starts at an address that is a multiple of align. If align is 0 or 1, there
is no alignment constraint.

If the memory request cannot be satisfied, MEM_valloc calls SYS_error with SYS_EALLOC and returns
MEM_ILLEGAL.

MEM functions that allocate and deallocate memory internally lock the memory by calling the LCK_pend
and LCK_post functions. If another task already holds a lock to the memory, there is a context switch. For
this reason, MEM_valloc cannot be called from the context of a SWI or HWI.

Constraints and Calling Context

• segid must identify a valid memory segment.

• MEM_valloc cannot be called from a SWI or HWI.

• MEM_valloc cannot be called if the TSK scheduler is disabled.

• align must be 0, or a power of 2 (for example, 1, 2, 4, 8).

See Also
MEM_alloc
MEM_calloc
MEM_free
SYS_error
std.h and stdlib.h functions

MEM_valloc Allocate from a memory segment and set value
SPRU404Q—August 2012 Application Program Interface 223
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ Module www.ti.com
2.16 MSGQ Module

The MSGQ module allows for the structured sending and receiving of variable length messages. This
module can be used for homogeneous or heterogeneous multi-processor messaging.

Functions

• MSGQ_alloc. Allocate a message. Performed by writer.

• MSGQ_close. Closes a message queue. Performed by reader.

• MSGQ_count. Return the number of messages in a message queue.

• MSGQ_free. Free a message. Performed by reader.

• MSGQ_get. Receive a message from the message queue. Performed by reader.

• MSGQ_getAttrs: Returns the attributes of a local message queue.

• MSGQ_getDstQueue. Get destination message queue.

• MSGQ_getMsgId. Return the message ID from a message.

• MSGQ_getMsgSize. Return the message size from a message.

• MSGQ_getSrcQueue. Extract the reply destination from a message.

• MSGQ_isLocalQueue. Returns TRUE if local message queue.

• MSGQ_locate. Synchronously find a message queue. Performed by writer.

• MSGQ_locateAsync. Asynchronously find a message queue. Performed by writer.

• MSGQ_open. Opens a message queue. Performed by reader.

• MSGQ_put. Place a message on a message queue. Performed by writer.

• MSGQ_release. Release a located message queue. Performed by writer.

• MSGQ_setErrorHandler. Set up handling of internal MSGQ errors.

• MSGQ_setMsgId. Sets the message ID in a message.

• MSGQ_setSrcQueue. Sets the reply destination in a message.
224 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ Module
Constants, Types, and Structures
/* Attributes used to open message queue */

typedef struct MSGQ_Attrs {

 Ptr notifyHandle;

 MSGQ_Pend pend;

 MSGQ_Post post;

} MSGQ_Attrs;

MSGQ_Attrs MSGQ_ATTRS = {

 NULL, /* notifyHandle */

 (MSGQ_Pend)SYS_zero, /* NOP pend */

 FXN_F_nop /* NOP post */

};

/* Attributes for message queue location */

typedef struct MSGQ_LocateAttrs {

 Uns timeout;

} MSGQ_LocateAttrs;

MSGQ_LocateAttrs MSGQ_LOCATEATTRS = {SYS_FOREVER};

/* Attrs for asynchronous message queue location */

typedef struct MSGQ_LocateAsyncAttrs {

 Uint16 poolId;

 Arg arg;

} MSGQ_LocateAttrs;

MSGQ_LocateAsyncAttrs MSGQ_LOCATEASYNCATTRS = {0, 0};

/* Configuration structure */

typedef struct MSGQ_Config {

 MSGQ_Obj *msgqQueues; /* Array of MSGQ handles */

 MSGQ_TransportObj *transports; /* Transport array */

 Uint16 numMsgqQueues; /* Number of MSGQ handles */

 Uint16 numProcessors; /* Number of processors */

 Uint16 startUninitialized; /* 1st MSGQ to init */

 MSGQ_Queue errorQueue; /* Receives transport err */

 Uint16 errorPoolId; /* Alloc errors from poolId */

} MSGQ_Config;

/* Asynchronous locate message */

typedef struct MSGQ_AsyncLocateMsg {

 MSGQ_MsgHeader header;

 MSGQ_Queue msgqQueue;

 Arg arg;

} MSGQ_AsyncLocateMsg;

/* Asynchronous error message */

typedef struct MSGQ_AsyncErrorMsg {

 MSGQ_MsgHeader header;

 MSGQ_MqtError errorType;

 Uint16 mqtId;

 Uint16 parameter;

} MSGQ_AsyncErrorMsg;

/* Transport object */
SPRU404Q—August 2012 Application Program Interface 225
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ Module www.ti.com
typedef struct MSGQ_TransportObj {

 MSGQ_MqtInit initFxn; /* Transport init func */

 MSGQ_TransportFxns *fxns; /* Interface funcs */

 Ptr params; /* Setup parameters */

 Ptr object; /* Transport-specific object */

 Uint16 procId; /* Processor Id talked to */

} MSGQ_TransportObj;

Configuration Properties
The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the MSGQ Manager Properties heading. For descriptions of data types,
see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Description
The MSGQ module allows for the structured sending and receiving of variable length messages. This
module can be used for homogeneous or heterogeneous multi-processor messaging. The MSGQ
module with a substantially similar API is implemented in DSP/BIOS Link for certain TI general-purpose
processors (GPPs), particularly those used in OMAP devices.

MSGQ provides more sophisticated messaging than other modules. It is typically used for complex
situations such as multi-processor messaging. The following are key features of the MSGQ module:

• Writers and readers can be relocated to another processor with no runtime code changes.

• Timeouts are allowed when receiving messages.

• Readers can determine the writer and reply back.

• Receiving a message is deterministic when the timeout is zero.

• Sending a message is non-blocking.

• Messages can reside on any message queue.

• Supports zero-copy transfers.

• Can send and receive from HWIs, SWIs and TSKs.

• Notification mechanism is specified by application.

• Allows QoS (quality of service) on message buffer pools. For example, using specific buffer pools for
specific message queues.

Messages are sent and received via a message queue. A reader is a thread that gets (reads) messages
from a message queue. A writer is a thread that puts (writes) a message to a message queue. Each

Name Type Default (Enum Options)

ENABLEMSGQ Bool false
226 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ Module
message queue has one reader and can have many writers. A thread may read from or write to multiple
message queues.

Figure 2-4. Writers and Reader of a Message Queue

Conceptually, the reader thread owns a message queue. The processor where the reader resides opens
a message queue. Writer threads locate existing message queues to get access to them.

Messages must be allocated from the MSGQ module. Once a message is allocated, it can be sent on
any message queue. Once a message is sent, the writer loses ownership of the message and should not
attempt to modify the message. Once the reader receives the message, it owns the message. It may
either free the message or re-use the message.

Messages in a message queue can be of variable length. The only requirement is that the first field in the
definition of a message must be a MSGQ_MsgHeader element.

typedef struct MyMsg {

 MSGQ_MsgHeader header;

 ...

} MyMsg;

The MSGQ API uses the MSGQ_MsgHeader internally. Your application should not modify or directly
access the fields in the MSGQ_MsgHeader.

The MSGQ module has the following components:

• MSGQ API. Applications call the MSGQ functions to open and use a message queue object to send
and receive messages. For an overview, see “MSGQ APIs” on page 228. For details, see the
sections on the individual APIs.

• Allocators. Messages sent via MSGQ must be allocated by an allocator. The allocator determines
where and how the memory for the message is allocated. For more about allocators, see the
DSP/BIOS User’s Guide (SPRU423F).

• Transports. Transports are responsible for locating and sending messages with other processors.
For more about transports, see the DSP/BIOS User’s Guide (SPRU423F).

Figure 2-5. Components of the MSGQ Architecture

MSGQ
object

W riter 1

Reader

W riter 2

MSGQ APIs

Allocators

Drivers

Transports
SPRU404Q—August 2012 Application Program Interface 227
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ Module www.ti.com
For more about using the MSGQ module—including information about multi-processor issues and a
comparison of data transfer modules—see the DSP/BIOS User’s Guide (SPRU423F).

MSGQ APIs

The MSGQ APIs are used to open and close message queues and to send and receive messages. The
MSGQ APIs shield the application from having to contain any knowledge about transports and allocators.

The following figure shows the call sequence of the main MSGQ functions:

Figure 2-6. MSGQ Function Calling Sequence

The reader calls the following APIs:

• MSGQ_open

• MSGQ_get

• MSGQ_free

• MSGQ_close

A writer calls the following APIs:

• MSGQ_locate or MSGQ_locateAsync

• MSGQ_alloc

• MSGQ_put

• MSGQ_release

Wherever possible, the MSGQ APIs have been written to have a deterministic execution time. This allows
application designers to be certain that messaging will not consume an unknown number of cycles.

In addition, the MSGQ functions support use of message queues from all types of DSP/BIOS threads:
HWIs, SWIs, and TSKs. That is, calls that may be synchronous (blocking) have an asynchronous (non-
blocking) alternative.

Static Configuration

In order to use the MSGQ module and the allocators it depends upon, you must statically configure the
following:

• ENABLEMSGQ property of the MSGQ module using Tconf (see “MSGQ Manager Properties” on
page 232)

• MSGQ_config variable in application code (see below)

MSGQ_open()
MSGQ_locate()

MSGQ_alloc()

MSGQ_close()
MSGQ_release()

MSGQ_free()

MSGQ_get()
MSGQ_put()

startup
run
termination
228 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ Module
• PROCID property of the GBL module using Tconf (see “GBL Module Properties” on page 120)

• ENABLEPOOL property of the POOL module using Tconf (see “POOL Manager Properties” on
page 280)

• POOL_config variable in application code (see “Static Configuration” on page 278)

An application must provide a filled in MSGQ_config variable in order to use the MSGQ module.

MSGQ_Config MSGQ_config;

The MSGQ_Config type has the following structure:

typedef struct MSGQ_Config {

 MSGQ_Obj *msgqQueues; /* Array of message queue handles */

 MSGQ_TransportObj *transports; /* Array of transports */

 Uint16 numMsgqQueues; /* Number of message queue handles*/

 Uint16 numProcessors; /* Number of processors */

 Uint16 startUninitialized; /* First msgq to init */

 MSGQ_Queue errorQueue; /* Receives async transport errors*/

 Uint16 errorPoolId; /* Alloc error msgs from poolId */

} MSGQ_Config;

The fields in the MSGQ_Config structure are described in the following table:

Internally, MSGQ references its configuration via the MSGQ_config variable. If the MSGQ module is
enabled (via Tconf) but the application does not provide the MSGQ_config variable, the application
cannot be linked successfully.

Field Type Description

msgqQueues MSGQ_Obj * Array of message queue objects. The fields of each object do
not need to be initialized.

transports MSGQ_TransportObj * Array of transport objects. The fields of each object must be
initialized.

numMsgqQueues Uint16 Length of the msgqQueues array.

numProcessors Uint16 Length of the transports array.

startUninitialized Uint16 Index of the first message queue to initialize in the
msgqQueue array. This should be set to 0.

errorQueue MSGQ_Queue Message queue to receive transport errors. Initialize to
MSGQ_INVALIDMSGQ.

errorPoolId Uint16 Allocator to allocate transport errors. Initialize to
POOL_INVALIDID.
SPRU404Q—August 2012 Application Program Interface 229
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ Module www.ti.com
In the MSGQ_Config structure, an array of MSGQ_TransportObj items defines transport objects with the
following structure:

typedef struct MSGQ_TransportObj {

 MSGQ_MqtInit initFxn; /* Transport init func */

 MSGQ_TransportFxns *fxns; /* Interface funcs */

 Ptr params; /* Setup parameters */

 Ptr object; /* Transport-specific object */

 Uint16 procId; /* Processor Id talked to */

} MSGQ_TransportObj;

The following table describes the fields in the MSGQ_TransportObj structure:

If no parameter structure is specified (that is, NULL is used) for the MSGQ_TransportObj, the transport
uses its default parameters.

Field Type Description

initFxn MSGQ_MqtInit Initialization function for this transport. This function is called during
DSP/BIOS startup. More explicitly it is called before main().

fxns MSGQ_TransportFxns * Pointer to the transport's interface functions.

params Ptr Pointer to the transport's parameters. This field is transport-specific.
Please see documentation provided with your transport for a
description of this field.

info Ptr State information needed by the transport. This field is initialized
and managed by the transport. Refer to the specific transport imple-
mentation to determine how to use this field

procId Uint16 Numeric ID of the processor that this transport communicates with.
The current processor must have a procId field that matches the
GBL.PROCID property.
230 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ Module
The order of the transports array is by processor. The first entry communicates with processor 0, the next
entry with processor 1, and so on. On processor n, the nth entry in the transport array should be
MSGQ_NOTRANSPORT, since there is no transport to itself. The following example shows a
configuration for a single-processor application (that is, processor 0). Note that the 0th entry is
MSGQ_NOTRANSPORT

#define NUMMSGQUEUES 4 /* # of local message queues*/

#define NUMPROCESSORS 1 /* Single processor system */

static MSGQ_Obj msgQueues[NUMMSGQUEUES];

static MSGQ_TransportObj transports[NUMPROCESSOR] =

 {MSGQ_NOTRANSPORT};

MSGQ_Config MSGQ_config = {

 msgQueues,

 transports,

 NUMMSGQUEUES,

 NUMPROCESSORS,

 0,

 MSGQ_INVALIDMSGQ,

 POOL_INVALIDID

};

Managing Transports at Run-Time

As described in the previous section, MSGQ uses an array of transports of type MSGQ_TransportObj in
the MSGQ_config variable. This array is processor ID based. For example, MSGQ_config->transports[0]
is the transport to processor 0. Therefore, if a single binary is used on multiple processors, the array must
be changed at run-time.

As with the GBL_setProcId API, the transports array can be managed in the User Init Function (see GBL
Module Properties). DSP/BIOS only uses MSGQ_config and the transports array after the User Init
Function returns.

There are several ways to manage the transports array. Two common ways are as follows:

• Create a static two-dimensional transports array and select the correct one. Assume a single
image will be used for two processors (procId 0 and 1) in a system with NUMPROCESSORS (3 in
this example) processors. The transports array in the single image might look like this:

 MSGQ_TransportObj transports[2][NUMPROCESSORS] =

 { { MSGQ_NOTRANSPORT, // proc 0 talk to proc 0

 {...}, // proc 0 talk to proc 1

 {...}, // proc 0 talk to proc 2

 },

 { {...}, // proc 1 talk to proc 0

 MSGQ_NOTRANSPORT, // proc 1 talk to proc 1

 {...}, // proc 1 talk to proc 2

 }

 }

In the User Init Function, the application would call GBL_setProcId with the correct processor ID.
Then it would assign the correct transport array to MSGQ_config. For example, for processor 1, it
would do the following:

 MSGQ_config.transports = transports[1];
SPRU404Q—August 2012 Application Program Interface 231
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ Module www.ti.com
Note that this approach does not scale well as the number of processors in the system increases.

• Fill in the transports array in the User Init Function. In the User Init Function, you can fill in the
contents of the transports array. You would still statically define a 1-dimensional transports array as
follows:

 MSGQ_TransportObj transports[NUMPROCESSORS];

This array would not be initialized. The initialization would occur in the User Init Function. For
example on processor 1, it would fill in the transports array as follows.

 transports[0].initFxn = ...

 transports[0].fxns = ...

 transports[0].object = ...

 transports[0].params = ...

 transports[0].procId = 0;

 transports[1] = MSGQ_NOTRANSPORT;//no self-transport

 transports[2].initFxn = ...

 transports[2].fxns = ...

 ...

 transports[2].procId = 2;

 MSGQ_config.transport = transports;

Note that some of the parameters may not be able to be determined easily at run-time, therefore you may
need to use a mixture of these two options.

Message Queue Management

When a message queue is closed, the threads that located the closing message queue are not notified.
No messages should be sent to a closed message queue. Additionally, there should be no active call to
MSGQ_get or MSGQ_getAttrs to a message queue that is being closed. When a message queue is
closed, all unread messages in the message queue are freed.

MSGQ Manager Properties

To configure the MSGQ manager, the MSGQ_Config structure must be defined in the C code. See “Static
Configuration” on page 228.

The following global property must also be set in order to use the MSGQ module:

• Enable Message Queue Manager. If ENABLEMSGQ is TRUE, each transport and message queue
specified in the MSGQ_config structure (see “Static Configuration” on page 228) is initialized.

Tconf Name: ENABLEMSGQ Type: Bool

Example: bios.MSGQ.ENABLEMSGQ = true;
232 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_alloc
C Interface

Syntax
status = MSGQ_alloc(poolId, msg, size);

Parameters
Uint16 poolId; /* allocate the message from this allocator */
MSGQ_Msg *msg; /* pointer to the returned message */
Uint16 size; /* size of the requested message */

Return Value
Int status; /* status */

Reentrant
yes

Description
MSGQ_alloc returns a message from the specified allocator. The size is in minimum addressable data
units (MADUs).

This function is performed by a writer. This call is non-blocking and can be called from a HWI, SWI or
TSK.

All messages must be allocated from an allocator. Once a message is allocated it can be sent. Once a
message is received, it must either be freed or re-used.

The poolId must correspond to one of the allocators specified by the allocators field of the POOL_Config
structure specified by the application. (See “Static Configuration” on page 278.)

If a message is allocated, SYS_OK is returned. Otherwise, SYS_EINVAL is returned if the poolId is
invalid, and SYS_EALLOC is returned if no memory is available to meet the request.

Constraints and Calling Context

• All message definitions must have MSGQ_MsgHeader as its first field. For example:

 struct MyMsg {

 MSGQ_MsgHeader header; /* Required field */

 ... /* User fields */

 }

Example
/* Allocate a message */

status = MSGQ_alloc(STATICPOOLID, (MSGQ_Msg *)&msg,

 sizeof(MyMsg));

if (status != SYS_OK) {

 SYS_abort("Failed to allocate a message");

}

See Also
MSGQ_free

MSGQ_alloc Allocate a message
SPRU404Q—August 2012 Application Program Interface 233
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_close www.ti.com
C Interface

Syntax
status = MSGQ_close(msgqQueue);

Parameters
MSGQ_Queue msgqQueue; /* Message queue to close */

Return Value
Int status; /* status */

Reentrant
yes

Description
MSGQ_close closes a message queue. If any messages are in the message queue, they are deleted.

This function is performed by the reader.

Threads that have located (with MSGQ_locate or MSGQ_locateAsync) the message queue being closed
are not notified about the closure.

If successful, this function returns SYS_OK.

Constraints and Calling Context

• The message queue must have been returned from MSGQ_open.

See Also
MSGQ_open

MSGQ_close Close a message queue
234 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_count
C Interface

Syntax
status = MSGQ_count(msgqQueue, count);

Parameters
MSGQ_Queue msgqQueue; /* Message queue to count */
Uns *count; /* Pointer to returned count */

Return Value
Int status; /* status */

Reentrant
yes

Description
This API determines the number of messages in a specific message queue. Only the processor that
opened the message queue should call this API to determine the number of messages in the reader’s
message queue. This API is not thread safe with MSGQ_get when accessing the same message queue,
so the caller of MSGQ_count must prevent any calls to MSGQ_get.

If successful, this function returns SYS_OK.

Constraints and Calling Context

• The message queue must have been returned from a MSGQ_open call.

Example
status = MSGQ_count(readerMsgQueue, &count);

if (status != SYS_OK) {

 return;

}

LOG_printf(&trace, "There are %d messages.", count);

See Also
MSGQ_open

MSGQ_count Return the number of messages in a message queue
SPRU404Q—August 2012 Application Program Interface 235
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_free www.ti.com
C Interface

Syntax
status = MSGQ_free(msg);

Parameters
MSGQ_Msg msg; /* Message to be freed */

Return Value
Int status; /* status */

Reentrant
yes

Description
MSGQ_free frees a message back to the allocator.

If successful, this function returns SYS_OK.

This call is non-blocking and can be called from a HWI, SWI or TSK.

Constraints and Calling Context

• The message must have been allocated via MSGQ_alloc.

Example
status = MSGQ_get(readerMsgQueue, (MSGQ_Msg *)msg,

 SYS_FOREVER);

if (status != SYS_OK) {

 SYS_printf("MSGQ_get call failed.");

}

// process message

MSGQ_free(msg);

See Also
MSGQ_alloc

MSGQ_free Free a message
236 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_get
C Interface

Syntax
status = MSGQ_get(msgqQueue, msg, timeout);

Parameters
MSGQ_Queue msgqQueue; /* Message queue */
MSGQ_Msg *msg; /* Pointer to the returned message */
Uns timeout; /* Duration to block if no message */

Return Value
Int status; /* status */

Reentrant
yes

Description

MSGQ_get returns a message sent via MSGQ_put. The order of retrieval is FIFO.

This function is performed by the reader. Once a message has been received, the reader is responsible
for freeing or re-sending the message.

If no messages are present, the pend() function specified in the MSGQ_Attrs passed to MSGQ_open for
this message queue is called. The pend() function blocks up to the timeout value (SYS_FOREVER =
forever). The timeout units are system clock ticks.

This function is deterministic if timeout is zero. MSGQ_get can be called from a TSK with any timeout. It
can be called from a HWI or SWI if the timeout is zero.

If successful, this function returns SYS_OK. Otherwise, SYS_ETIMEOUT is returned if the timeout
expires before the message is received.

Constraints and Calling Context

• Only one reader of a message queue is allowed concurrently.

• The message queue must have been returned from a MSGQ_open call.

Example
status = MSGQ_get(readerMsgQueue, (MSGQ_Msg *)&msg, 0);

if (status != SYS_OK) {

 /* No messages to process */

 return;

}

See Also
MSGQ_put
MSGQ_open

MSGQ_get Receive a message from the message queue
SPRU404Q—August 2012 Application Program Interface 237
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_getAttrs www.ti.com
C Interface

Syntax
status = MSGQ_getAttrs(msgqQueue, attrs);

Parameters
MSGQ_Queue msgqQueue; /* Message queue */
MSGQ_Attrs *attrs; /* Attributes of message queue */

Return Value
Int status /* status */

Reentrant
yes

Description

MSGQ_getAttrs fills in the attrs structure passed to it with the attributes of a local message queue. These
attributes are set by MSGQ_open.

The API returns SYS_OK unless the message queue is not local (that is, it was opened on another
processor). If the message queue is not local, the API returns SYS_EINVAL and does not change the
contents of the passed in attrs structure.

Example
status = MSGQ_getAttrs (msgqQueue, &attrs);

if (status != SYS_OK) {

 return;

}

notifyHandle = attrs.notifyHandle;

Constraints and Calling Context

• The message queue must have been returned from a MSGQ_open call and must be valid.

• This function can be called from a HWI, SWI or TSK.

See Also
MSGQ_open

MSGQ_getAttrs Returns the attributes of a message queue
238 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_getDstQueue
C Interface

Syntax
MSGQ_getDstQueue(msg, msgqQueue);

Parameters
MSGQ_Msg msg; /* Message */
MSGQ_Queue *msgqQueue; /* Message queue */

Return Value
Void

Reentrant
yes

Description

This API allows the application to determine the destination message queue of a message. This API is
generally used by transports to determine the final destination of a message. This API can also be used
by the application once the message is received.

This function can be called from a HWI, SWI or TSK.

Constraints and Calling Context

• The message must have been sent via MSGQ_put.

MSGQ_getDstQueue Get destination message queue field in a message
SPRU404Q—August 2012 Application Program Interface 239
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_getMsgId www.ti.com
C Interface

Syntax
msgId = MSGQ_getMsgId(msg);

Parameters
MSGQ_Msg msg; /* Message */

Return Value
Uint16 msgId; /* Message ID */

Reentrant
yes

Description

MSGQ_getMsgId returns the message ID from a received message. This message ID is specified via the
MSGQ_setMsgId function.

This function can be called from a HWI, SWI or TSK.

Example
/* Make sure the message is the one expected */

if (MSGQ_getMsgId((MSGQ_Msg)msg) != MESSAGEID) {

 SYS_abort("Unexpected message");

}

See Also
MSGQ_setMsgId

MSGQ_getMsgId Return the message ID from a message
240 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_getMsgSize
C Interface

Syntax
size = MSGQ_getMsgSize(msg);

Parameters
MSGQ_Msg msg; /* Message */

Return Value
Uint16 size; /* Message size */

Reentrant
yes

Description

MSGQ_getMsgSize returns the size of the message buffer out of the received message. The size is in
minimum addressable data units (MADUs).

This function can be used to determine if a message can be re-used.

This function can be called from a HWI, SWI or TSK.

See Also
MSGQ_alloc

MSGQ_getMsgSize Return the message size from a message
SPRU404Q—August 2012 Application Program Interface 241
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_getSrcQueue www.ti.com
C Interface

Syntax
status = MSGQ_getSrcQueue(msg, msgqQueue);

Parameters
MSGQ_Msg msg; /* Received message */
MSGQ_Queue *msgqQueue; /* Message queue */

Return Value
Int status; /* status */

Reentrant
yes

Description

Many times a receiver of a message wants to reply to the sender of the message (for example, to send
an acknowledgement). When a valid msgqQueue is specified in MSGQ_setSrcQueue, the receiver of the
message can extract the message queue via MSGQ_getSrcQueue.

This is basically the same as a MSGQ_locate function without knowing the name of the message queue.
This function can be used even if the queueName used with MSGQ_open was NULL or non-unique.

Note: The msgqQueue may not be the sender's message queue handle. The sender is free to use any
created message queue handle.

This function can be called from a HWI, SWI or TSK.

If successful, this function returns SYS_OK.

Example
/* Get the handle and send the message back. */

status = MSGQ_getSrcQueue((MSGQ_Msg)msg, &replyQueue);

if (status != SYS_OK) {

 /* Free the message and abort */

 MSGQ_free((MSGQ_Msg)msg);

 SYS_abort("Failed to get handle from message");

}

status = MSGQ_put(replyQueue, (MSGQ_Msg)msg);

See Also
MSGQ_getAttrs
MSGQ_setSrcQueue

MSGQ_getSrcQueue Extract the reply destination from a message
242 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_isLocalQueue
C Interface

Syntax
flag = MSGQ_isLocalQueue(msgqQueue);

Parameters
MSGQ_Queue msgqQueue; /* Message queue */

Return Value
Bool flag; /* status */

Reentrant
yes

Description

This API determines whether the message queue is local (that is, opened on this processor) or remote
(that is, opened on a different processor).

If the message queue is local, the flag returned is TRUE. Otherwise, it is FALSE.

Constraints and Calling Context

• This function can be called from a HWI, SWI or TSK.

Example
flag = MSGQ_isLocalQueue(readerMsgQueue);

if (flag == TRUE) {

 /* Message queue is local */

 return;

}

See Also
MSGQ_open

MSGQ_isLocalQueue Return whether message queue is local or on other processor
SPRU404Q—August 2012 Application Program Interface 243
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_locate www.ti.com
C Interface

Syntax
status = MSGQ_locate(queueName, msgqQueue, locateAttrs);

Parameters
String queueName; /* Name of message queue to locate */
MSGQ_Queue *msgqQueue; /* Return located message queue here */
MSGQ_LocateAttrs *locateAttrs; /* Locate attributes */

Return Value
Int status; /* status */

Reentrant
yes

Description

The MSGQ_locate function is used to locate an opened message queue. This function is synchronous
(that is, it can block if timeout is non-zero).

This function is performed by a writer. The reader must have already called MSGQ_open for this
queueName.

MSGQ_locate firsts searches the local message queues for a name match. If a match is found, that
message queue is returned. If no match is found, the transports are queried one at a time. If a transport
locates the queueName, that message queue is returned. If the transport does not locate the message
queue, the next transport is queried. If no transport can locate the message queue, an error is returned.

In a multiple-processor environment, transports can block when they are queried if you call
MSGQ_locate. The timeout in the MSGQ_LocateAttrs structure specifies the maximum time each
transport can block. The default is SYS_FOREVER (that is, each transport can block forever).
Remember that if you specify 1000 clock ticks as the timeout, the total blocking time could be 1000 *
number of transports.

Note that timeout is not a fixed amount of time to wait. It is the maximum time each transport waits for a
positive or negative response. For example, suppose your timeout is 1000, but the response (found or
not found) comes back in 600 ticks. The transport returns the response then; it does not wait for another
400 ticks to recheck for a change.

If you do not want to allow blocking, call MSGQ_locateAsync instead of MSGQ_locate.

The locateAttrs parameter is of type MSGQ_LocateAttrs. This type has the following structure:

typedef struct MSGQ_LocateAttrs {

 Uns timeout;

} MSGQ_LocateAttrs;

The timeout is the maximum time a transport can block on a synchronous locate in system clock ticks.
The default attributes are as follows:

MSGQ_LocateAttrs MSGQ_LOCATEATTRS = {SYS_FOREVER};

MSGQ_locate Synchronously find a message queue
244 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_locate
If successful, this function returns SYS_OK. Otherwise, it returns SYS_ENOTFOUND to indicate that it
could not locate the specified message queue.

Constraints and Calling Context

• Cannot be called from main().

• Cannot be called in a SWI or HWI context.

Example

status = MSGQ_locate("reader", &readerMsgQueue, NULL);

 if (status != SYS_OK) {

 SYS_abort("Failed to locate reader message queue");

}

See Also
MSGQ_locateAsync
MSGQ_open
SPRU404Q—August 2012 Application Program Interface 245
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_locateAsync www.ti.com
C Interface

Syntax
status = MSGQ_locateAsync(queueName, replyQueue, locateAsyncAttrs);

Parameters
String queueName; /* Name of message queue to locate */
MSGQ_Queue replyQueue; /* Msgq to send locate message */
MSGQ_LocateAsyncAttrs *locateAsyncAttrs;/* Locate attributes */

Return Value
Int status; /* status */

Reentrant
yes

Description

MSGQ_locateAsync firsts searches the local message queues for a name match. If one is found, an
asynchronous locate message is sent to the specified message queue (in the replyQueue parameter). If
it is not, all transports are asked to start an asynchronous locate search. After all transports have been
asked to start the search, the API returns.

If a transport locates the message queue, an asynchronous locate message is sent to the specified
replyQueue. If no transport can locate the message queue, no message is sent.

This function is performed by a writer. The reader must have already called MSGQ_open for this
queueName. An asynchronous locate can be performed from a SWI or TSK. It cannot be performed in
main().

The message ID for an asynchronous locate message is:

/* Asynchronous locate message ID */

#define MSGQ_ASYNCLOCATEMSGID 0xFF00

The MSGQ_LocateAsyncAttrs structure has the following fields:

typedef struct MSGQ_LocateAsyncAttrs {

 Uint16 poolId;

 Arg arg;

} MSGQ_LocateAttrs;

The default attributes are as follows:

MSGQ_LocateAsyncAttrs MSGQ_LOCATEASYNCATTRS = {0, 0};

The locate message is allocated from the allocator specified by the locateAsyncAttrs->poolId field.

The locateAsyncAttrs->arg value is included in the asynchronous locate message. This field allows you
to correlate requests with the responses.

MSGQ_locateAsync Asynchronously find a message queue
246 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_locateAsync
Once the application receives an asynchronous locate message, it is responsible for freeing the
message. The asynchronous locate message received by the replyQueue has the following structure:

typedef struct MSGQ_AsyncLocateMsg {

 MSGQ_MsgHeader header;

 MSGQ_Queue msgqQueue;

 Arg arg;

} MSGQ_AsyncLocateMsg;

This function returns SYS_OK to indicated that an asynchronous locate was started. This status does not
indicate whether or not the locate will be successful. The SYS_EALLOC status is returned if the message
could not be allocated.

Constraints and Calling Context

• The allocator must be able to allocate an asynchronous locate message.

• Cannot be called in the context of main().

Example

The following example shows an asynchronous locate performed in a task. Time spent blocking is
dictated by the timeout specified in the MSGQ_get call. (Error handling statements were omitted for
brevity.)

status = MSGQ_open("myMsgQueue", &myQueue, &msgqAttrs);

locateAsyncAttrs = MSGQ_LOCATEATTRS;

locateAsyncAttrs.poolId = STATICPOOLID;

MSGQ_locateAsync("msgQ1", myQueue, &locateAsyncAttrs);

status = MSGQ_get(myQueue, &msg, SYS_FOREVER);

if (MSGQ_getMsgId((MSGQ_Msg)msg) ==

 MSGQ_ASYNCLOCATEMSGID) {

 readerQueue = msg->msgqQueue;

}

MSGQ_free((MSGQ_Msg)msg);

See Also
MSGQ_locate
MSGQ_free
MSGQ_open

Field Type Description

header MSGQ_MsgHeader Required field for every message.

msgqQueue MSGQ_Queue Located message queue handle.

Arg Arg Value specified in MSGQ_LocateAttrs for this asynchronous locate.
SPRU404Q—August 2012 Application Program Interface 247
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_open www.ti.com
C Interface

Syntax
status = MSGQ_open(queueName, msgqQueue, attrs);

Parameters
String queueName; /* Unique name of the message queue */
MSGQ_Queue *msgqQueue; /* Pointer to returned message queue */
MSGQ_Attrs *attrs; /* Attributes of the message queue */

Return Value
Int status; /* status */

Reentrant
yes

Description

MSGQ_open is the function to open a message queue. This function selects and returns a message
queue from the array provided in the static configuration (that is, MSGQ_config->msgqQueues).

This function is on the processor where the reader resides. The reader then uses this message queue to
receive messages.

If successful, this function returns SYS_OK. Otherwise, it returns SYS_ENOTFOUND to indicate that no
empty spot was available in the message queue array.

If the application will use MSGQ_locate or MSGQ_locateAsync to find this message queue, the
queueName must be unique. If the application will never need to use the locate APIs, the queueName
may be NULL or a non-unique name.

Instead of using a fixed notification mechanism, such as SEM_pend and SEM_post, the MSGQ
notification mechanism is supplied in the attrs parameter, which is of type MSGQ_Attrs. If attrs is NULL,
the new message queue is assigned a default set of attributes. The structure for MSGQ_Attrs is as
follows:

typedef struct MSGQ_Attrs {

 Ptr notifyHandle;

 MSGQ_Pend pend;

 MSGQ_Post post;

} MSGQ_Attrs;

The MSGQ_Attrs fields are as follows:

MSGQ_open Open a message queue

Field Type Description

notifyHandle Ptr Handle to use in the pend() and post() functions.

Pend MSGQ_Pend Function pointer to a user-specified pend function.

Post MSGQ_Post Function pointer to a user-specified post function.
248 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_open
The default attributes are:

MSGQ_Attrs MSGQ_ATTRS = {

 NULL, /* notifyHandle */

 (MSGQ_Pend)SYS_zero, /* NOP pend */

 FXN_F_nop /* NOP post */

};

The following typedefs are provided by the MSGQ module to allow easier casting of the pend and post
functions:

 typedef Bool (*MSGQ_Pend)(Ptr notifyHandle, Uns timeout);

 typedef Void (*MSGQ_Post)(Ptr notifyHandle);

The post() function you specify is always called within MSGQ_put when a writer sends a message.

A reader calls MSGQ_get to receive a message. If there is a message, it returns that message, and the
pend() function is not called. The pend() function is only called if there are no messages to receive.

The pend() and post() functions must act in a binary manner. For instance, SEM_pend and SEM_post
treat the semaphore as a counting semaphore instead of binary. So SEM_pend and SEM_post are an
invalid pend/post pair. The following example, in which the reader calls MSGQ_get with a timeout of
SYS_FOREVER, shows why:

1. A writer sends 10 messages, making the count 10 in the semaphore.

2. The reader then calls MSGQ_get 10 times. Each call returns a message without calling the pend()
function.

3. The reader then calls MSGQ_get again. Since there are no messages, the pend() function is called.
Since the semaphore count was 10, SEM_pend returns TRUE immediately from the pend(). MSGQ
would check for messages and there would still be none, so pend() would be called again. This would
repeat 9 more times until the count was zero.

If the pend() function were binary (for example, a binary semaphore), the pend() function would be called
at most two times in step 3.

So instead of using SEM_pend and SEM_post for synchronous (blocking) opens, you should use
SEM_pendBinary and SEM_postBinary.

The following notification attributes could be used if the reader is a SWI function (which cannot block):

MSGQ_Attrs attrs = MSGQ_ATTRS; // default attributes

// leave attrs.pend as a NOP

attrs.notifyHandle = (Ptr)swiHandle;

attrs.post = (MSGQ_Pend)SWI_post;

The following notification attributes could be used if the reader is a TSK function (which can block):

MSGQ_Attrs attrs = MSGQ_ATTRS; // default attributes

attrs.notifyHandle = (Ptr)semHandle;

attrs.pend = (MSGQ_Pend)SEM_pendBinary;

attrs.post = (MSGQ_Post)SEM_postBinary;

Constraints and Calling Context

• The message queue returned is to be used by the caller of MSGQ_get. It should not be used by
writers to that message queue (that is, callers of MSGQ_put). Writers should use the message queue
returned by MSGQ_locate, MSGQ_locateAsync, or MSGQ_getSrcQueue.
SPRU404Q—August 2012 Application Program Interface 249
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_open www.ti.com
• If a post() function is specified, the function must be non-blocking.

• If a pend() function is specified, the function must be non-blocking when timeout is zero.

• Each message queue must have a unique name if the application will use MSGQ_locate or
MSGQ_locateAsync.

• The queueName must be persistent. The MSGQ module references this name internally; that is, it
does not make a copy of the name.

Example
/* Open the reader message queue.

 * Using semaphores as notification mechanism */

msgqAttrs = MSGQ_ATTRS;

msgqAttrs.notifyHandle = (Ptr)readerSemHandle;

msgqAttrs.pend = (MSGQ_Pend)SEM_pendBinary;

msgqAttrs.post = (MSGQ_Post)SEM_postBinary;

status = MSGQ_open("reader", &readerMsgQueue,

 &msgqAttrs);

if (status != SYS_OK) {

 SYS_abort("Failed to open the reader message queue");

}

See Also
MSGQ_close
MSGQ_locate
MSGQ_locateAsync
SEM_pendBinary
SEM_postBinary
250 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_put
C Interface

Syntax
status = MSGQ_put(msgqQueue, msg);

Parameters
MSGQ_Queue msgqQueue; /* Destination message queue */
MSGQ_Msg msg; /* Message */

Return Value
Int status; /* status */

Reentrant
yes

Description

MSGQ_put places a message into the specified message queue.

This function is performed by a writer. This function is non-blocking, and can be called from a HWI, SWI
or TSK.

The post() function for the destination message queue is called as part of the MSGQ_put. The post()
function is specified MSGQ_open call in the MSGQ_Attrs parameter.

If successful, this function returns SYS_OK. Otherwise, it may return an error code returned by the
transport.

There are several features available when sending a message.

• A msgId passed to MSGQ_setMsgId can be used to indicate the type of message it is. Such a type
is completely application-specific, except for IDs defined for MSGQ_setMsgId. The reader of a
message can use MSGQ_getMsgId to get the ID from the message.

• The source message queue parameter to MSGQ_setSrcQueue allows the sender of the message to
specify a source message queue. The receiver of the message can use MSGQ_getSrcQueue to
extract the embedded message queue from the message. A client/server application might use this
mechanism because it allows the server to reply to a message without first locating the sender. For
example, each client would have its own message queue that it specifies as the source message
queue when it sends a message to the server. The server can use MSGQ_getSrcQueue to get the
message queue to reply back to.

If MSGQ_put returns an error, the user still owns the message and is responsible for freeing the message
(or re-sending it).

Constraints and Calling Context

• The msgqQueue must have been returned from MSGQ_locate, MSGQ_locateAsync or
MSGQ_getSrcQueue (or MSGQ_open if the reader of the message queue wants to send themselves
a message).

• If MSGQ_put does not return SYS_OK, the message is still owned by the caller and must either be
freed or re-used.

MSGQ_put Place a message on a message queue
SPRU404Q—August 2012 Application Program Interface 251
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_put www.ti.com
Example
/* Send the message back. */

status = MSGQ_put(replyMsgQueue, (MSGQ_Msg)msg);

if (status != SYS_OK) {

 /* Need to free the message */

 MSGQ_free((MSGQ_Msg)msg);

 SYS_abort("Failed to send the message");

}

See Also
MSGQ_get
MSGQ_open
MSGQ_setMsgId
MSGQ_getMsgId
MSGQ_setSrcQueue
MSGQ_getSrcQueue
252 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_release
C Interface

Syntax
status = MSGQ_release(msgqQueue);

Parameters
MSGQ_Queue msgqQueue; /* Message queue to release */

Return Value
Int status; /* status */

Reentrant
yes

Description

This function releases a located message queue. That is, it releases a message queue returned from
MSGQ_locate or MSGQ_locateAsync.

This function is performed by a writer.

If successful, this function returns SYS_OK. Otherwise, it may return an error code returned by the
transport.

Constraints and Calling Context

• The handle must have been returned from MSGQ_locate or MSGQ_locateAsync.

See Also
MSGQ_locate
MSGQ_locateAsync

MSGQ_release Release a located message queue
SPRU404Q—August 2012 Application Program Interface 253
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_setErrorHandler www.ti.com
C Interface

Syntax
status = MSGQ_setErrorHandler(errorQueue, poolId);

Parameters
MSGQ_Queue errorQueue; /* Message queue to receive errors */
Uint16 poolId; /* Allocator to allocate error messages */

Return Value
Int status; /* status */

Reentrant
yes

Description

Asynchronous errors that need to be communicated to the application may occur in a transport. If an
application calls MSGQ_setErrorHandler, all asynchronous errors are then sent to the message queue
specified.

The specified message queue receives asynchronous error messages (if they occur) via MSGQ_get.

poolId specifies the allocator the transport should use to allocate error messages. If the transports cannot
allocate a message, no action is performed.

If this function is not called or if errorHandler is set to MSGQ_INVALIDMSGQ, no error messages will be
allocated and sent.

This function can be called multiple times with only the last handler being active.

If successful, this function returns SYS_OK.

The message ID for an asynchronous error message is:

/* Asynchronous error message ID */

#define MSGQ_ASYNCERRORMSGID 0xFF01

The following is the structure for an asynchronous error message:

typedef struct MSGQ_AsyncErrorMsg {

 MSGQ_MsgHeader header;

 MSGQ_MqtError errorType;

 Uint16 mqtId;

 Uint16 parameter;

} MSGQ_AsyncErrorMsg;

The following table describes the fields in the MSGQ_AsyncErrorMsg structure:

MSGQ_setErrorHandler Set up handling of internal MSGQ errors

Field Type Description

header MSGQ_MsgHeader Required field for every message

errorType MSGQ_MqtError Error ID
254 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_setErrorHandler
The following table lists the valid errorType values and the meanings of their arg fields:

MSGQ_open
MSGQ_get

mqtId Uint16 ID of the transport that sent the error message

parameter Uint16 Error-specific field

errorType mqtId parameter

MSGQ_MQTERROREXIT ID of the transport that is exiting. Not used.

MSGQ_MQTFAILEDPUT ID of the transport that failed to
send a message.

ID of destination queue. The
parameter is 16 bits, so only the lower
16 bits of the msgqQueue is logged.
The top 16 bits of the msgQueue
contain the destination processor ID,
which is also the mqtId. You can OR
the mqtId shifted over by 16 bits with
the parameter to get the full desti-
nation msgqQueue.

MSGQ_MQTERRORINTERNAL Generic internal error. Transport defined.

MSGQ_MQTERRORPHYSICAL Problem with the physical link. Transport defined.

MSGQ_MQTERRORALLOC Transport could not allocate
memory.

Size of the requested memory.

Field Type Description
SPRU404Q—August 2012 Application Program Interface 255
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_setMsgId www.ti.com
C Interface

Syntax
MSGQ_setMsgId(msg, msgId);

Parameters
MSGQ_MSG msg; /* Message */
Uint16 msgId; /* Message id */

Return Value
Void

Reentrant
yes

Description

Inside each message is a message id field. This API sets this field. The value of msgId is application-
specific. MSGQ_getMsgId can be used to extract this field from a message.

When a message is allocated, the value of this field is MSGQ_INVALIDMSGID. When MSGQ_setMsgId
is called, it updates the field accordingly. This API can be called multiple times on a message.

If a message is sent to another processor, the message Id field is converted by the transports accordingly
(for example, endian conversion is performed).

The message IDs used when sending messages are application-specific. They can have any value
except values in the following ranges:

• Reserved for the MSGQ module messages: 0xFF00 - 0xFF7F

• Reserved for internal transport usage: 0xFF80 - 0xFFFE

• Used to signify an invalid message ID: 0xFFFF

The following table lists the message IDs currently used by the MSGQ module.

Constraints and Calling Context

• Message must have been allocated originally from MSGQ_alloc.

MSGQ_setMsgId Set the message ID in a message

Constant Defined in msgq.h Value Description

MSGQ_ASYNCLOCATEMSGID 0xFF00 Used to denote an asynchronous locate message.

MSGQ_ASYNCERRORMSGID 0xFF01 Used to denote an asynchronous transport error.

MSGQ_INVALIDMSGID 0xFFFF Used as initial value when message is allocated.
256 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com MSGQ_setMsgId
Example
/* Fill in the message */

msg->sequenceNumber = 0;

MSGQ_setMsgId((MSGQ_Msg)msg, MESSAGEID);

/* Send the message */

status = MSGQ_put(readerMsgQueue, (MSGQ_Msg)msg);

 if (status != SYS_OK) {

 SYS_abort("Failed to send the message");

}

See Also
MSGQ_getMsgId
MSGQ_setErrorHandler
SPRU404Q—August 2012 Application Program Interface 257
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

MSGQ_setSrcQueue www.ti.com
C Interface

Syntax
MSGQ_setSrcQueue(msg, msgqQueue);

Parameters
MSGQ_MSG msg; /* Message */
MSGQ_Queue msgqQueue; /* Message queue */

Return Value
Void

Reentrant
yes

Description

This API allows the sender to specify a message queue that the receiver of the message can reply back
to (via MSGQ_getSrcQueue). The msgqQueue must have been returned by MSGQ_open.

Inside each message is a source message queue field. When a message is allocated, the value of this
field is MSGQ_INVALIDMSGQ. When this API is called, it updates the field accordingly. This API can be
called multiple times on a message.

If a message is sent to another processor, the source message queue field is managed by the transports
accordingly.

Constraints and Calling Context

• Message must have been allocated originally from MSGQ_alloc.

• msgqQueue must have been returned from MSGQ_open.

Example
/* Fill in the message */

msg->sequenceNumber = 0;

MSGQ_setSrcQueue((MSGQ_Msg)msg, writerMsgQueue);

/* Send the message */

status = MSGQ_put(readerMsgQueue, (MSGQ_Msg)msg);

 if (status != SYS_OK) {

 SYS_abort("Failed to send the message");

}

See Also
MSGQ_getSrcQueue

MSGQ_setSrcQueue Set the reply destination in a message
258 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PIP Module
2.17 PIP Module

Important: The PIP module is being deprecated and will no longer be supported in the next major
release of DSP/BIOS. We recommend that you use the SIO module instead.

The PIP module is the buffered pipe manager.

Functions

• PIP_alloc. Get an empty frame from the pipe.

• PIP_free. Recycle a frame back to the pipe.

• PIP_get. Get a full frame from the pipe.

• PIP_getReaderAddr. Get the value of the readerAddr pointer of the pipe.

• PIP_getReaderNumFrames. Get the number of pipe frames available for reading.

• PIP_getReaderSize. Get the number of words of data in a pipe frame.

• PIP_getWriterAddr. Get the value of the writerAddr pointer of the pipe.

• PIP_getWriterNumFrames. Get the number of pipe frames available to write to.

• PIP_getWriterSize. Get the number of words that can be written to a pipe frame.

• PIP_peek. Get the pipe frame size and address without actually claiming the pipe frame.

• PIP_put. Put a full frame into the pipe.

• PIP_reset. Reset all fields of a pipe object to their original values.

• PIP_setWriterSize. Set the number of valid words written to a pipe frame.

PIP_Obj Structure
Members

• Ptr readerAddr. Pointer to the address to begin reading from after calling PIP_get.

• Uns readerSize. Number of words of data in the frame read with PIP_get.

• Uns readerNumFrames. Number of frames available to be read.

• Ptr writerAddr. Pointer to the address to begin writing to after calling PIP_alloc.

• Uns writerSize. Number of words available in the frame allocated with PIP_alloc.

• Uns writerNumFrames. Number of frames available to be written to.

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the PIP Manager Properties and PIP Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")
SPRU404Q—August 2012 Application Program Interface 259
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PIP Module www.ti.com
Instance Configuration Parameters

Description
The PIP module manages data pipes, which are used to buffer streams of input and output data. These
data pipes provide a consistent software data structure you can use to drive I/O between the DSP device
and all kinds of real-time peripheral devices.

Each pipe object maintains a buffer divided into a fixed number of fixed length frames, specified by the
numframes and framesize properties. All I/O operations on a pipe deal with one frame at a time; although
each frame has a fixed length, the application can put a variable amount of data in each frame up to the
length of the frame.

A pipe has two ends, as shown in Figure Figure 2-7. The writer end (also called the producer) is where
your program writes frames of data. The reader end (also called the consumer) is where your program
reads frames of data

Figure 2-7. Pipe Schematic

Internally, pipes are implemented as a circular list; frames are reused at the writer end of the pipe after
PIP_free releases them.

The notifyReader and notifyWriter functions are called from the context of the code that calls PIP_put or
PIP_free. These functions can be written in C or assembly. To avoid problems with recursion, the
notifyReader and notifyWriter functions normally should not directly call any of the PIP module functions

Name Type Default (Enum Options)

comment String "<add comments here>"

bufSeg Reference prog.get("DARAM")

bufAlign Int16 1

frameSize Int16 8

numFrames Int16 2

monitor EnumString "reader" ("writer", "none")

notifyWriterFxn Extern prog.extern("FXN_F_nop")

notifyWriterArg0 Arg 0

notifyWriterArg1 Arg 0

notifyReaderFxn Extern prog.extern("FXN_F_nop")

notifyReaderArg0 Arg 0

notifyReaderArg1 Arg 0
260 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PIP Module
for the same pipe. Instead, they should post a SWI that uses the PIP module functions. However, PIP
calls may be made from the notifyReader and notifyWriter functions if the functions have been protected
against re-entrancy.

Note: When DSP/BIOS starts up, it calls the notifyWriter function internally for each created
pipe object to initiate the pipe’s I/O.

The code that calls PIP_free or PIP_put should preserve any necessary registers.

Often one end of a pipe is controlled by an HWI and the other end is controlled by a SWI function, such
as SWI_andnHook.

HST objects use PIP objects internally for I/O between the host and the target. Your program only needs
to act as the reader or the writer when you use an HST object, because the host controls the other end
of the pipe.

Pipes can also be used to transfer data within the program between two application threads.

PIP Manager Properties

The pipe manager manages objects that allow the efficient transfer of frames of data between a single
reader and a single writer. This transfer is often between an HWI and a SWI, but pipes can also be used
to transfer data between two application threads.

The following global property can be set for the PIP module in the PIP Manager Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the PIP objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.PIP.OBJMEMSEG = prog.get("myMEM");

PIP Object Properties

A pipe object maintains a single contiguous buffer partitioned into a fixed number of fixed length frames.
All I/O operations on a pipe deal with one frame at a time; although each frame has a fixed length, the
application can put a variable amount of data in each frame (up to the length of the frame).

To create a PIP object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var myPip = bios.PIP.create("myPip");

The following properties can be set for a PIP object in the PIP Object Properties dialog of the DSP/BIOS
Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this PIP object.

Tconf Name: comment Type: String

Example: myPip.comment = "my PIP";

• bufseg. The memory segment that the buffer is allocated within; all frames are allocated from a
single contiguous buffer (of size framesize x numframes).

Tconf Name: bufSeg Type: Reference

Example: myPip.bufSeg = prog.get("myMEM");
SPRU404Q—August 2012 Application Program Interface 261
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PIP Module www.ti.com
• bufalign. The alignment (in words) of the buffer allocated within the specified memory segment.

Tconf Name: bufAlign Type: Int16

Example: myPip.bufAlign = 1;

• framesize. The length of each frame (in words)

Tconf Name: frameSize Type: Int16

Example: myPip.frameSize = 8;

• numframes. The number of frames

Tconf Name: numFrames Type: Int16

Example: myPip.numFrames = 2;

• monitor. The end of the pipe to be monitored by a hidden STS object. Can be set to reader, writer,
or nothing. In the Statistics View analysis tool, your choice determines whether the STS display for
this pipe shows a count of the number of frames handled at the reader or writer end of the pipe.

Tconf Name: monitor Type: EnumString

Options: "reader", "writer", "none"

Example: myPip.monitor = "reader";

• notifyWriter. The function to execute when a frame of free space is available. This function should
notify (for example, by calling SWI_andnHook) the object that writes to this pipe that an empty frame
is available.

The notifyWriter function is performed as part of the thread that called PIP_free or PIP_alloc. To avoid
problems with recursion, the notifyWriter function should not directly call any of the PIP module
functions for the same pipe.

Tconf Name: notifyWriterFxn Type: Extern

Example: myPip.notifyWriterFxn = prog.extern("writerFxn");

• nwarg0, nwarg1. Two Arg type arguments for the notifyWriter function.

Tconf Name: notifyWriterArg0 Type: Arg

Tconf Name: notifyWriterArg1 Type: Arg

Example: myPip.notifyWriterArg0 = 0;

• notifyReader. The function to execute when a frame of data is available. This function should notify
(for example, by calling SWI_andnHook) the object that reads from this pipe that a full frame is ready
to be processed.

The notifyReader function is performed as part of the thread that called PIP_put or PIP_get. To avoid
problems with recursion, the notifyReader function should not directly call any of the PIP module
functions for the same pipe.

Tconf Name: notifyReaderFxn Type: Extern

Example: myPip.notifyReaderFxn = prog.extern("readerFxn");

• nrarg0, nrarg1. Two Arg type arguments for the notifyReader function.

Tconf Name: notifyReaderArg0 Type: Arg

Tconf Name: notifyReaderArg1 Type: Arg

Example: myPip.notifyReaderArg0 = 0;
262 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PIP_alloc
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
PIP_alloc(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle */

Return Value
Void

Reentrant
no

Description
PIP_alloc allocates an empty frame from the pipe you specify. You can write to this frame and then use
PIP_put to put the frame into the pipe.

If empty frames are available after PIP_alloc allocates a frame, PIP_alloc runs the function specified by
the notifyWriter property of the PIP object. This function should notify (for example, by calling
SWI_andnHook) the object that writes to this pipe that an empty frame is available. The notifyWriter
function is performed as part of the thread that calls PIP_free or PIP_alloc. To avoid problems with
recursion, the notifyWriter function should not directly call any PIP module functions for the same pipe.

Constraints and Calling Context

• Before calling PIP_alloc, a function should check the writerNumFrames member of the PIP_Obj
structure by calling PIP_getWriterNumFrames to make sure it is greater than 0 (that is, at least one
empty frame is available).

• PIP_alloc can only be called one time before calling PIP_put. You cannot operate on two frames from
the same pipe simultaneously.

PIP_alloc Allocate an empty frame from a pipe
SPRU404Q—August 2012 Application Program Interface 263
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PIP_alloc www.ti.com
Example

Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

 in = HST_getpipe(input);
 out = HST_getpipe(output);

 if (PIP_getReaderNumFrames(in) == 0 ||
 PIP_getWriterNumFrames(out) == 0) {
 error;
 }

 /* get input data and allocate output frame */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output frame */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);
 size = PIP_getReaderSize(in);
 PIP_setWriterSize(out, size);
 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input frame */
 PIP_put(out);
 PIP_free(in);
}

The example for HST_getpipe, page 2–152, also uses a pipe with host channel objects.

See Also
PIP_free
PIP_get
PIP_put
HST_getpipe
264 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PIP_free
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
PIP_free(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle */

Return Value
Void

Reentrant
no

Description
PIP_free releases a frame after you have read the frame with PIP_get. The frame is recycled so that
PIP_alloc can reuse it.

After PIP_free releases the frame, it runs the function specified by the notifyWriter property of the PIP
object. This function should notify (for example, by calling SWI_andnHook) the object that writes to this
pipe that an empty frame is available. The notifyWriter function is performed as part of the thread that
called PIP_free or PIP_alloc. To avoid problems with recursion, the notifyWriter function should not
directly call any of the PIP module functions for the same pipe.

Constraints and Calling Context

• When called within an HWI, the code sequence calling PIP_free must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

Example
See the example for PIP_alloc, page 2–263. The example for HST_getpipe, page 2–152, also uses a
pipe with host channel objects.

See Also
PIP_alloc
PIP_get
PIP_put
HST_getpipe

PIP_free Recycle a frame that has been read to a pipe
SPRU404Q—August 2012 Application Program Interface 265
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PIP_get www.ti.com
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
PIP_get(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle */

Return Value
Void

Reentrant
no

Description
PIP_get gets a frame from the pipe after some other function puts the frame into the pipe with PIP_put.

If full frames are available after PIP_get gets a frame, PIP_get runs the function specified by the
notifyReader property of the PIP object. This function should notify (for example, by calling
SWI_andnHook) the object that reads from this pipe that a full frame is available. The notifyReader
function is performed as part of the thread that calls PIP_get or PIP_put. To avoid problems with
recursion, the notifyReader function should not directly call any PIP module functions for the same pipe.

Constraints and Calling Context

• Before calling PIP_get, a function should check the readerNumFrames member of the PIP_Obj
structure by calling PIP_getReaderNumFrames to make sure it is greater than 0 (that is, at least one
full frame is available).

• PIP_get can only be called one time before calling PIP_free. You cannot operate on two frames from
the same pipe simultaneously.

Example
See the example for PIP_alloc, page 2–263. The example for HST_getpipe, page 2–152, also uses a
pipe with host channel objects.

See Also
PIP_alloc
PIP_free
PIP_put
HST_getpipe

PIP_get Get a full frame from the pipe
266 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PIP_getReaderAddr
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
readerAddr = PIP_getReaderAddr(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle */

Return Value
Ptr readerAddr

Reentrant
yes

Description
PIP_getReaderAddr is a C function that returns the value of the readerAddr pointer of a pipe object. The
readerAddr pointer is normally used following a call to PIP_get, as the address to begin reading from.

Example
Void audio(PIP_Obj *in, PIP_Obj *out)

{

 Uns *src, *dst;

 Uns size;

 if (PIP_getReaderNumFrames(in) == 0 ||

 PIP_getWriterNumFrames(out) == 0) {

 error; }

 PIP_get(in); /* get input data */

 PIP_alloc(out); /* allocate output buffer */

 /* copy input data to output buffer */
 src = PIP_getReaderAddr(in);

 dst = PIP_getWriterAddr(out);

 size = PIP_getReaderSize(in);

 PIP_setWriterSize(out,size);

 for (; size > 0; size--) {

 *dst++ = *src++;

 }

 /* output copied data and free input buffer */

 PIP_put(out);

 PIP_free(in);

}

PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe
SPRU404Q—August 2012 Application Program Interface 267
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PIP_getReaderNumFrames www.ti.com
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
num = PIP_getReaderNumFrames(pipe);

Parameters
PIP_Handle pipe; /* pip object handle */

Return Value
Uns num; /* number of filled frames to be read */

Reentrant
yes

Description
PIP_getReaderNumFrames is a C function that returns the value of the readerNumFrames element of a
pipe object.

Before a function attempts to read from a pipe it should call PIP_getReaderNumFrames to ensure at least
one full frame is available.

Example
See the example for PIP_getReaderAddr, page 2–267.

PIP_getReaderNumFrames Get the number of pipe frames available for reading
268 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PIP_getReaderSize
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
num = PIP_getReaderSize(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle*/

Return Value
Uns num; /* number of words to be read from filled frame */

Reentrant
yes

Description
PIP_getReaderSize is a C function that returns the value of the readerSize element of a pipe object.

As a function reads from a pipe it should use PIP_getReaderSize to determine the number of valid words
of data in the pipe frame.

Example
See the example for PIP_getReaderAddr, page 2–267.

PIP_getReaderSize Get the number of words of data in a pipe frame
SPRU404Q—August 2012 Application Program Interface 269
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PIP_getWriterAddr www.ti.com
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
writerAddr = PIP_getWriterAddr(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle */

Return Value
Ptr writerAddr;

Reentrant
yes

Description
PIP_getWriterAddr is a C function that returns the value of the writerAddr pointer of a pipe object.

The writerAddr pointer is normally used following a call to PIP_alloc, as the address to begin writing to.

Example
See the example for PIP_getReaderAddr, page 2–267.

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe
270 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PIP_getWriterNumFrames
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
num = PIP_getWriterNumFrames(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle*/

Return Value
Uns num; /* number of empty frames to be written */

Reentrant
yes

Description
PIP_getWriterNumFrames is a C function that returns the value of the writerNumFrames element of a
pipe object.

Before a function attempts to write to a pipe, it should call PIP_getWriterNumFrames to ensure at least
one empty frame is available.

Example
See the example for PIP_getReaderAddr, page 2–267.

PIP_getWriterNumFrames Get number of pipe frames available to be written to
SPRU404Q—August 2012 Application Program Interface 271
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PIP_getWriterSize www.ti.com
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
num = PIP_getWriterSize(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle*/

Return Value
Uns num; /* num of words to be written in empty frame */

Reentrant
yes

Description
PIP_getWriterSize is a C function that returns the value of the writerSize element of a pipe object.

As a function writes to a pipe, it can use PIP_getWriterSize to determine the maximum number words
that can be written to a pipe frame.

Example
if (PIP_getWriterNumFrames(rxPipe) > 0) {

 PIP_alloc(rxPipe);

 DSS_rxPtr = PIP_getWriterAddr(rxPipe);

 DSS_rxCnt = PIP_getWriterSize(rxPipe);

}

PIP_getWriterSize Get the number of words that can be written to a pipe frame
272 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PIP_peek
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
framesize = PIP_peek(pipe, addr, rw);

Parameters
PIP_Handle pipe; /* pipe object handle */
Ptr *addr; /* address of variable with frame address */
Uns rw; /* flag to indicate the reader or writer side */

Return Value
Int framesize; /* the frame size */

Description
PIP_peek can be used before calling PIP_alloc or PIP_get to get the pipe frame size and address without
actually claiming the pipe frame.

The pipe parameter is the pipe object handle, the addr parameter is the address of the variable that keeps
the retrieved frame address, and the rw parameter is the flag that indicates what side of the pipe
PIP_peek is to operate on. If rw is PIP_READER, then PIP_peek operates on the reader side of the pipe.
If rw is PIP_WRITER, then PIP_peek operates on the writer side of the pipe.

PIP_getReaderNumFrames or PIP_getWriterNumFrames can be called to ensure that a frame exists
before calling PIP_peek, although PIP_peek returns –1 if no pipe frame exists.

PIP_peek returns the frame size, or –1 if no pipe frames are available. If the return value of PIP_peek in
frame size is not –1, then *addr is the location of the frame address.

See Also

PIP_alloc
PIP_free
PIP_get
PIP_put
PIP_reset

PIP_peek Get pipe frame size and address without actually claiming pipe frame
SPRU404Q—August 2012 Application Program Interface 273
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PIP_put www.ti.com
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
PIP_put(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle */

Return Value
Void

Reentrant
no

Description
PIP_put puts a frame into a pipe after you have allocated the frame with PIP_alloc and written data to the
frame. The reader can then use PIP_get to get a frame from the pipe.

After PIP_put puts the frame into the pipe, it runs the function specified by the notifyReader property of
the PIP object. This function should notify (for example, by calling SWI_andnHook) the object that reads
from this pipe that a full frame is ready to be processed. The notifyReader function is performed as part
of the thread that called PIP_get or PIP_put. To avoid problems with recursion, the notifyReader function
should not directly call any of the PIP module functions for the same pipe.

Constraints and Calling Context

• When called within an HWI, the code sequence calling PIP_put must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

Example
See the example for PIP_alloc, page 2–263. The example for HST_getpipe, page 2–152, also uses a
pipe with host channel objects.

See Also
PIP_alloc
PIP_free
PIP_get
HST_getpipe

PIP_put Put a full frame into the pipe
274 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PIP_reset
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
PIP_reset(pipe);

Parameters
PIP_Handle pipe; /* pipe object handle */

Return Value
Void

Description
PIP_reset resets all fields of a pipe object to their original values.

The pipe parameter specifies the address of the pipe object that is to be reset.

Constraints and Calling Context

• PIP_reset should not be called between the PIP_alloc call and the PIP_put call or between the
PIP_get call and the PIP_free call.

• PIP_reset should be called when interrupts are disabled to avoid the race condition.

See Also

PIP_alloc
PIP_free
PIP_get
PIP_peek
PIP_put

PIP_reset Reset all fields of a pipe object to their original values
SPRU404Q—August 2012 Application Program Interface 275
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PIP_setWriterSize www.ti.com
Important: This API is being deprecated and will no longer be supported in the next major release
of DSP/BIOS. We recommend that you use the SIO module instead.

C Interface

Syntax
PIP_setWriterSize(pipe, size);

Parameters
PIP_Handle pipe; /* pipe object handle */
Uns size; /* size to be set */

Return Value
Void

Reentrant
no

Description
PIP_setWriterSize is a C function that sets the value of the writerSize element of a pipe object.

As a function writes to a pipe, it can use PIP_setWriterSize to indicate the number of valid words being
written to a pipe frame.

Example
See the example for PIP_getReaderAddr, page 2–267.

PIP_setWriterSize Set the number of valid words written to a pipe frame
276 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com POOL Module
2.18 POOL Module

The POOL module describes the interface that allocators must provide.

Functions

None; this module describes an interface to be implemented by allocators

Constants, Types, and Structures

POOL_Config POOL_config;

typedef struct POOL_Config {

 POOL_Obj *allocators; /* Array of allocators */

 Uint16 numAllocators; /* Num of allocators */

} POOL_Config;

typedef struct POOL_Obj {

 POOL_Init initFxn; /* Allocator init function */

 POOL_Fxns *fxns; /* Interface functions */

 Ptr params; /* Setup parameters */

 Ptr object; /* Allocator’s object */

} POOL_Obj, *POOL_Handle;

Configuration Properties
The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the POOL Manager Properties heading. For descriptions of data types,
see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Description

The POOL module describes standard interface functions that allocators must provide. The allocator
interface functions are called internally by the MSGQ module and not by user applications. A simple static
allocator, called STATICPOOL, is provided with DSP/BIOS. Other allocators can be implemented by
following the standard interface.

Note: This document does not discuss how to write an allocator. Information about designing
allocators will be provided in a future document.

All messages sent via the MSGQ module must be allocated by an allocator. The allocator determines
where and how the memory for the message is allocated.

An allocator is an instance of an implementation of the allocator interface. An application may instantiate
one or more instances of an allocator.

Name Type Default (Enum Options)

ENABLEPOOL Bool false
SPRU404Q—August 2012 Application Program Interface 277
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

POOL Module www.ti.com
An application can use multiple allocators. The purpose of having multiple allocators is to allow an
application to regulate its message usage. For example, an application can allocate critical messages
from one pool of fast on-chip memory and non-critical messages from another pool of slower external
memory.

Figure 2-8. Allocators and Message Pools

Static Configuration

In order to use an allocator and the POOL module, you must statically configure the following:

• ENABLEPOOL property of the POOL module using Tconf (see “POOL Manager Properties” on
page 280)

• POOL_config variable in application code (see below)

An application must provide a filled in POOL_config variable if it uses one or more allocators.

POOL_Config POOL_config;

Where the POOL_Config structure has the following structure:

typedef struct POOL_Config {

 POOL_Obj *allocators; /* Array of allocators */

 Uint16 numAllocators; /* Num of allocators */

} POOL_Config;

The fields in this structure are as follows:

If the POOL module is enabled via Tconf and the application does not provide the POOL_config variable,
the application cannot be linked successfully.

The following is the POOL_Obj structure:

typedef struct POOL_Obj {

 POOL_Init initFxn; /* Allocator init function */

 POOL_Fxns *fxns; /* Interface functions */

 Ptr params; /* Setup parameters */

 Ptr object; /* Allocator’s object */

} POOL_Obj, *POOL_Handle;

Field Type Description

allocators POOL_Obj Array of allocator objects

numAllocators Uint16 Number of allocators in the allocator array.

MSGQ APIs

Allocator0 AllocatorN

Msg Pool Message PoolMessage Pool

. . . Transports
278 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com POOL Module
The fields in the POOL_Obj structure are as follows:

One allocator implementation (STATICPOOL) is shipped with DSP/BIOS. Additional allocator
implementations can be created by application writers.

STATICPOOL Allocator

The STATICPOOL allocator takes a user-specified buffer and allocates fixed-size messages from the
buffer. The following are its configuration parameters:

typedef struct STATICPOOL_Params {

 Ptr addr;

 size_t length;

 size_t bufferSize;

} STATICPOOL_Params;

The following table describes the fields in this structure:

The following figure shows how the fields in STATICPOOL_Params define the layout of the buffer:

Field Type Description

initFxn POOL_Init Initialization function for this allocator. This function will be called during
DSP/BIOS initialization. More explicitly it is called before main().

fxns POOL_Fxns * Pointer to the allocator's interface functions.

params Ptr Pointer to the allocator's parameters. This field is allocator-specific. Please
see the documentation provided with your allocator for a description of this
field.

object Ptr State information needed by the allocator. This field is initialized and
managed by the allocator. See the allocator documentation to determine
how to specify this field.

Field Type Description

addr Ptr User supplied block of memory for allocating messages from. The address will
be aligned on an 8 MADU boundary for correct structure alignment on all ISAs.
If there is a chance the buffer is not aligned, allow at least 7 extra MADUs of
space to allow room for the alignment. You can use the DATA_ALIGN pragma
to force alignment yourself.

length size_t Size of the block of memory pointed to by addr.

bufferSize size_t Size of the buffers in the block of memory. The bufferSize must be a multiple of
8 to allow correct structure alignment.

message

. . .

message

length (in MADUs)

bufferSize

addr
SPRU404Q—August 2012 Application Program Interface 279
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

POOL Module www.ti.com
Figure 2-9. Buffer Layout as Defined by STATICPOOL_Params

Since the STATICPOOL buffer is generally used in static systems, the application must provide the
memory for the STATICPOOL_Obj. So the object field of the POOL_Obj must be set to
STATICPOOL_Obj instead of NULL.

The following is an example of an application that has two allocators (two instances of the STATICPOOL
implementation).

#define NUMMSGS 8 /* Number of msgs per allocator */

/* Size of messages in the two allocators. Must be a

 * multiple of 8 as required by static allocator. */

#define MSGSIZE0 64

#define MSGSIZE1 128

enum { /* Allocator ID and number of allocators */

 MQASTATICID0 = 0,

 MQASTATICID1,

 NUMALLOCATORS

};

#pragma DATA_ALIGN(staticBuf0, 8) /* As required */

#pragma DATA_ALIGN(staticBuf1, 8) /* As required */

static Char staticBuf0[MSGSIZE0 * NUMMSGS];

static Char staticBuf1[MSGSIZE1 * NUMMSGS];

static MQASTATIC_Params poolParams0 = {staticBuf0,

 sizeof(staticBuf0), MSGSIZE0};

static MQASTATIC_Params poolParams1 = {staticBuf1,

 sizeof(staticBuf1), MSGSIZE1};

static STATICPOOL_Obj poolObj0, poolObj1;

static POOL_Obj allocators[NUMALLOCATORS] =

 {{STATICPOOL_init, (POOL_Fxns *)&STATICPOOL_FXNS,

 &poolParams0, &poolObj0}

 {{STATICPOOL_init, (POOL_Fxns *)&STATICPOOL_FXNS,

 &poolParams1, &poolObj1}};

POOL_Config POOL_config =

 {allocators, NUMALLOCATORS};

POOL Manager Properties

To configure the POOL manager, the POOL_Config structure must be defined in the application code.
See “Static Configuration” on page 278.

The following global property must also be set in order to use the POOL module:

• Enable POOL Manager. If ENABLEPOOL is TRUE, each allocator specified in the POOL_config
structure (see “Static Configuration” on page 278) is initialized and opened.

Tconf Name: ENABLEPOOL Type: Bool

Example: bios.POOL.ENABLEPOOL = true;
280 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PRD Module
2.19 PRD Module

The PRD module is the periodic function manager.

Functions

• PRD_getticks. Get the current tick count.

• PRD_start. Arm a periodic function for one-time execution.

• PRD_stop. Stop a periodic function from execution.

• PRD_tick. Advance tick counter, dispatch periodic functions.

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the PRD Manager Properties and PRD Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
While some applications can schedule functions based on a real-time clock, many applications need to
schedule functions based on I/O availability or some other programmatic event.

The PRD module allows you to create PRD objects that schedule periodic execution of program
functions. The period can be driven by the CLK module or by calls to PRD_tick whenever a specific event
occurs. There can be several PRD objects, but all are driven by the same period counter. Each PRD
object can execute its functions at different intervals based on the period counter.

• To schedule functions based on a real-time clock. Set the clock interrupt rate you want to use in
the CLK Object Properties. Set the "Use On-chip Clock (CLK)" property of the PRD Manager
Properties to true. Set the frequency of execution (in number of clock interrupt ticks) in the period
property for the individual period object.

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

USECLK Bool true

MICROSECONDS Int16 1000.0

Name Type Default (Enum Options)

comment String "<add comments here>"

period Int16 32767

mode EnumString "continuous" ("one-shot")

fxn Extern prog.extern("FXN_F_nop")

arg0 Arg 0

arg1 Arg 0

order Int16 0
SPRU404Q—August 2012 Application Program Interface 281
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PRD Module www.ti.com
• To schedule functions based on I/O availability or some other event. Set the "Use On-chip Clock
(CLK)" property of the PRD Manager Properties to false. Set the frequency of execution (in number
of ticks) in the period property for the individual period object. Your program should call PRD_tick to
increment the tick counter.

The function executed by a PRD object is statically defined in the configuration. PRD functions are called
from the context of the function run by the PRD_swi SWI object. PRD functions can be written in C or
assembly and must follow the C calling conventions described in the compiler manual.

The PRD module uses a SWI object (called PRD_swi by default) which itself is triggered on a periodic
basis to manage execution of period objects. Normally, this SWI object should have the highest SWI
priority to allow this SWI to be performed once per tick. This SWI is automatically created (or deleted) by
the configuration if one or more (or no) PRD objects exist. The total time required to perform all PRD
functions must be less than the number of microseconds between ticks. Any more lengthy processing
should be scheduled as a separate SWI, TSK, or IDL thread.

See the Code Composer Studio online tutorial for an example that demonstrates the interaction between
the PRD module and the SWI module.

When the PRD_swi object runs its function, the following actions occur:

for ("Loop through period objects") {

 if ("time for a periodic function")

 "run that periodic function";

}

PRD Manager Properties

The DSP/BIOS Periodic Function Manager allows the creation of an arbitrary number of objects that
encapsulate a function, two arguments, and a period specifying the time between successive invocations
of the function. The period is expressed in ticks, and a tick is defined as a single invocation of the
PRD_tick operation. The time between successive invocations of PRD_tick defines the period
represented by a tick.

The following global properties can be set for the PRD module in the PRD Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment containing the PRD objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.PRD.OBJMEMSEG = prog.get("myMEM");

• Use CLK Manager to drive PRD. If this property is set to true, the on-device timer hardware
(managed by the CLK Module) is used to advance the tick count; otherwise, the application must
invoke PRD_tick on a periodic basis. If the CLK module is used to drive PRDs, the ticks are equal to
the low-resolution time increment rate.

Tconf Name: USECLK Type: Bool

Example: bios.PRD.USECLK = true;

• Microseconds/Tick. The number of microseconds between ticks. If the "Use CLK Manager to drive
PRD field" property above is set to true, this property is automatically set by the CLK module;
otherwise, you must explicitly set this property. The total time required to perform all PRD functions
must be less than the number of microseconds between ticks.

Tconf Name: MICROSECONDS Type: Int16

Example: bios.PRD.MICROSECONDS = 1000.0;
282 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PRD Module
PRD Object Properties

To create a PRD object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var myPrd = bios.PRD.create("myPrd");

If you cannot create a new PRD object (an error occurs or the Insert PRD item is inactive in the DSP/BIOS
Configuration Tool), increase the Stack Size property in the MEM Manager Properties before adding a
PRD object.

The following properties can be set for a PRD object in the PRD Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this PRD object.

Tconf Name: comment Type: String

Example: myPrd.comment = "my PRD";

• period (ticks). The function executes after this number of ticks have elapsed.

Tconf Name: period Type: Int16

Example: myPrd.period = 32767;

• mode. If "continuous" is used, the function executes every "period" number of ticks. If "one-shot" is
used, the function executes just once after "period" ticks.

Tconf Name: mode Type: EnumString

Options: "continuous", "one-shot"

Example: myPrd.mode = "continuous";

• function. The function to be executed. The total time required to perform all PRD functions must be
less than the number of microseconds between ticks.

Tconf Name: fxn Type: Extern

Example: myPrd.fxn = prog.extern("prdFxn");

• arg0, arg1. Two Arg type arguments for the user-specified function above.

Tconf Name: arg0 Type: Arg

Tconf Name: arg1 Type: Arg

Example: myPrd.arg0 = 0;

• period (ms). The number of milliseconds represented by the period specified above. This is an
informational property only.

Tconf Name: N/A

• order. Set this property to all PRD objects so that the numbers match the sequence in which PRD
functions should be executed.

Tconf Name: order Type: Int16

Example: myPrd.order = 2;
SPRU404Q—August 2012 Application Program Interface 283
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PRD_getticks www.ti.com
C Interface

Syntax
num = PRD_getticks();

Parameters
Void

Return Value
LgUns num /* current tick counter */

Reentrant
yes

Description
PRD_getticks returns the current period tick count as a 32-bit value.

If the periodic functions are being driven by the on-device timer, the tick value is the number of low
resolution clock ticks that have occurred since the program started running. When the number of ticks
reaches the maximum value that can be stored in 32 bits, the value wraps back to 0. See the CLK Module,
page 2–59, for more details.

If the periodic functions are being driven programmatically, the tick value is the number of times PRD_tick
has been called.

Example
/* ======== showTicks ======== */

Void showTicks

{

 LOG_printf(&trace, "ticks = %d", PRD_getticks());
}

See Also
PRD_start
PRD_tick
CLK_gethtime
CLK_getltime
STS_delta

PRD_getticks Get the current tick count
284 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PRD_start
C Interface

Syntax
PRD_start(prd);

Parameters
PRD_Handle prd; /* prd object handle*/

Return Value
Void

Reentrant
no

Description
PRD_start starts a period object that has its mode property set to one-shot in the configuration. Unlike
PRD objects that are configured as continuous, one-shot PRD objects do not automatically continue to
run. A one-shot PRD object runs its function only after the specified number of ticks have occurred after
a call to PRD_start.

For example, you might have a function that should be executed a certain number of periodic ticks after
some condition is met.

When you use PRD_start to start a period object, the exact time the function runs can vary by nearly one
tick cycle. As Figure Figure 2-10 shows, PRD ticks occur at a fixed rate and the call to PRD_start can
occur at any point between ticks

Figure 2-10. PRD Tick Cycles

If PRD_start is called again before the period for the object has elapsed, the object’s tick count is reset.
The PRD object does not run until its "period" number of ticks have elapsed.

Example
/* ======== startPRD ======== */

Void startPrd(Int periodID)

 {

 if ("condition met") {

 PRD_start(&periodID);

 }

 }

See Also
PRD_tick
PRD_getticks

PRD_start Arm a periodic function for one-shot execution
SPRU404Q—August 2012 Application Program Interface 285
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PRD_stop www.ti.com
C Interface

Syntax
PRD_stop(prd);

Parameters
PRD_Handle prd; /* prd object handle*/

Return Value
Void

Reentrant
no

Description
PRD_stop stops a period object to prevent its function execution. In most cases, PRD_stop is used to
stop a period object that has its mode property set to one-shot in the configuration.

Unlike PRD objects that are configured as continuous, one-shot PRD objects do not automatically
continue to run. A one-shot PRD object runs its function only after the specified numbers of ticks have
occurred after a call to PRD_start.

PRD_stop is the way to stop those one-shot PRD objects once started and before their period counters
have run out.

Example
PRD_stop(&prd);

See Also
PRD_getticks
PRD_start
PRD_tick

PRD_stop Stop a period object to prevent its function execution
286 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PRD_tick
C Interface

Syntax
PRD_tick();

Parameters
Void

Return Value
Void

Reentrant
no

Description
PRD_tick advances the period counter by one tick. Unless you are driving PRD functions using the on-
device clock, PRD objects execute their functions at intervals based on this counter.

For example, an HWI could perform PRD_tick to notify a periodic function when data is available for
processing.

Constraints and Calling Context

• All the registers that are modified by this API should be saved and restored, before and after the API
is invoked, respectively.

• When called within an HWI, the code sequence calling PRD_tick must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

• Interrupts need to be disabled before calling PRD_tick.

See Also
PRD_start
PRD_getticks

PRD_tick Advance tick counter, enable periodic functions
SPRU404Q—August 2012 Application Program Interface 287
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM Module www.ti.com
2.20 PWRM Module

The PWRM module lets you reduce the power consumption of your DSP/BIOS application.

The PWRM module is currently available for the ’C5509A EVM. Partial support for other ’C55x devices
is also available. See the DSP/BIOS release notes to determine which features are supported on different
devices.

Functions

• PWRM_changeSetpoint. Initiate a change to the V/F setpoint.

• PWRM_configure. Set new configuration parameters for PWRM.

• PWRM_getCapabilities. Get information on PWRM’s capabilities on the current platform.

• PWRM_getCurrentSetpoint. Get the current V/F setpoint in effect.

• PWRM_getDependencyCount. Get count of dependencies currently declared on a resource.

• PWRM_getNumSetpoints. Get the number of V/F setpoints supported for the current platform.

• PWRM_getSetpointInfo. Get the corresponding frequency and CPU core voltage for a setpoint.

• PWRM_getTransitionLatency. Get the latency to scale from one setpoint to another setpoint.

• PWRM_idleClocks. Immediately idle clock domains.

• PWRM_registerNotify. Register a pwrmNotifyFxn function to be called on a specific power event.

• pwrmNotifyFxn. Function to be called on a registered power event.

• PWRM_releaseDependency. Release a dependency that has been previously declared.

• PWRM_setDependency. Declare a dependency upon a resource.

• PWRM_sleepDSP. Transition the DSP to a new sleep state.

• PWRM_unregisterNotify. Unregister for an event notification from PWRM.

Description

The DSP/BIOS Power Manager, PWRM, is a DSP/BIOS module that lets you reduce the power
consumption of your application in the following ways:

• You can idle specific clock domains to reduce active power consumption.

• You can specify a power-saving function to be called automatically at boot time. This function can
idle power-using peripherals and subsystems as desired.

• You can dynamically change the operating voltage and frequency of the CPU. This is called V/F
scaling. Since power usage is linearly proportional to the frequency and quadratically proportional to
the voltage, using the PWRM module can result in significant power savings.

• You can set custom sleep modes to save power during inactivity. These can be set statically or at
run-time.

• You can coordinate sleep modes and V/F scaling using registration and notification mechanisms
provided by the PWRM module.

• PWRM functions are designed to save and restore the users environment where appropriate. For
example, interrupt masks are saved before and restored after going to deep sleep.
288 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM Module
For further description of these features in DSP/BIOS, see the TMS320 DSP/BIOS User’s Guide
(SPRU423). For information about the Power Scaling Library, see Using the Power Scaling Library on
the TMS320C5509 (SPRA848).

Constants, Types, and Structures
typedef Void * PWRM_NotifyHandle;

typedef Uns PWRM_Status;

typedef struct PWRM_Config {

 Bool scaleVoltage;

 Bool waitForVoltageScale;

 Uns idleMask;

} PWRM_Config;

typedef struct PWRM_Attrs {

 Bool scaleVoltage; /* scale voltage */

 Bool waitForVoltageScale; /* wait on volt change */

 Uns idleMask; /* domains to idle */

} PWRM_Attrs;

The following constants are used as return codes by various PWRM functions:

Name Usage

PWRM_SOK The operation succeeded.

PWRM_EFAIL A general failure occurred.

PWRM_EINVALIDEVENT The specified PWRM event type is invalid.

PWRM_EINVALIDHANDLE The specified handle is invalid.

PWRM_EINVALIDPOINTER A pointer is invalid.

PWRM_EINVALIDVALUE A value is invalid.

PWRM_ENOTIMPLEMENTED The operation is not implemented by
PWRM on this platform.

PWRM_ENOTSUPPORTED The requested setting is not supported.
For example, a client has registered with
PWRM indicating that it cannot support the
requested V/F setpoint.

PWRM_EOUTOFRANGE The operation could not be completed
because a parameter was out of the range
supported by PWRM.

PWRM_ETIMEOUT A timeout occurred while trying to
complete the operation.

PWRM_ETOOMANYCALLS Indicates PWRM_releaseDependency has
been called more times for a resource than
PWRM_setDependency was called.

PWRM_EBUSY The requested operation cannot be
performed at this time; PWRM is busy
processing a previous request.

PWRM_EINITFAILURE A failure occurred while initializing V/F
scaling support; V/F scaling is unavailable.
SPRU404Q—August 2012 Application Program Interface 289
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM Module www.ti.com
The PWRM_configure and PWRM_idleClocks functions use the following constants to identify clock
domains to be idled:

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the PWRM Manager Properties topic. For descriptions of data types, see
Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Name Usage

PWRM_IDLECPU Idle the CPU clock domain

PWRM_IDLEDMA Idle the DMA clock domain

PWRM_IDLECACHE Idle the CACHE clock domain

PWRM_IDLEPERIPH Idle the PERIPH clock domain

PWRM_IDLECLKGEN Idle the CLKGEN clock domain

PWRM_IDLEEMIF Idle the EMIF clock domain

PWRM_IDLEIPORT Idle the IPORT clock domain (OMAP 2420 only)

PWRM_IDLEHWA Idle the HWA clock domain (OMAP 2420 only)

PWRM_IDLEMPORT Idle the MPORT clock domain (OMAP 2420 only)

PWRM_IDLEXPORT Idle the XPORT clock domain (OMAP 2420 only)

Name Type Default (Enum Options)

ENABLE Bool false

BOOTHOOK Bool false

BOOTHOOKFXN Extern prog.extern("FXN_F_nop")

ADAPTCLK Bool false

DEVICEINIT Bool false

RESOURCETRACKING Bool false

DEVICEDBMEMSEG Bool prog.get("DARAM")

IDLEDOMAINS Bool false

IDLEIPORT Bool false (OMAP 2420 only)

IDLEHWA Bool false (OMAP 2420 only)

IDLEMPORT Bool false (OMAP 2420 only)

IDLEXPORT Bool false (OMAP 2420 only)

IDLEEMIF Bool false

IDLECLKGEN Bool false

IDLEPERIPH Bool false

IDLECACHE Bool true

IDLEDMA Bool false

IDLECPU Bool true

SCALING Bool false
290 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM Module
Examples

An example demonstrating the use of the V/F scaling APIs of PWRM is located in the
<bios_install_dir>/ti/bios/examples/advanced/vfscale folder.

An example demonstrating the use of PWRM’s boot hook to call a developer-defined function to
implement power savings on boot, idle DSP clock domains to reduce active power consumption, and
invoke deep sleep is in the <bios_install_dir>/ti/bios/examples/advanced/sleep folder.

PWRM Manager Properties

The following global properties can be set for the PWRM module in the PWRM Manager Properties
dialog of Gconf or in a Tconf script:

General tab

• Enable PWRM Manager. Check this box if you want to enable the power manager. If you do not plan
to use the power manager, you should leave it disabled to reduce the size of your application.

Tconf Name: ENABLE Type: Bool

Example: bios.PWRM.ENABLE = false;

INITIALFREQ Numeric 15

INITVOLTS Numeric 1.6

SCALEVOLT Bool false

WAITVOLT Bool true

PSLCONFIGLIB String "PSL_cfg_c5509a.a55L"

ENABLESLEEP Bool true

SLEEPIPORT Bool true (OMAP 2420 only)

SLEEPHWA Bool true (OMAP 2420 only)

SLEEPMPORT Bool true (OMAP 2420 only)

SLEEPXPORT Bool true (OMAP 2420 only)

SLEEPEMIF Bool true

SLEEPCLKGEN Bool true

SLEEPPERIPH Bool true

SLEEPCACHE Bool true

SLEEPDMA Bool true

SLEEPCPU Bool true

WKUPIER0 Numeric 0

WKUPIER1 Numeric 0

SLEEPUNTILRESTART Bool true

ENABLESNOOZE Bool false

TIMERFORSNOOZE EnumString "Timer 1" ("Timer 0")

Name Type Default (Enum Options)
SPRU404Q—August 2012 Application Program Interface 291
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM Module www.ti.com
• Call user hook function at boot time. Check this box if you want to specify a function to be called
during application startup. Such a function is called before the main() function runs.

Tconf Name: BOOTHOOK Type: Bool

Example: bios.PWRM.BOOTHOOK = false;

• Function. Specify the function to be called during application startup if you set the property above to
true. The function may be used, for example to idle clock domains or to turn off or idle powered
resources.

Tconf Name: BOOTHOOKFXN Type: Extern

Example: bios.PWRM.BOOTHOOKFXN = prog.extern("FXN_F_nop");

• Reprogram BIOS clock after frequency scaling. This property specifies whether the DSP/BIOS
clock module should be reprogrammed after frequency scaling operations. If it is set to true (the
default), the CLK module registers for V/F frequency setpoint change notifications and is
reprogrammed after a setpoint change. If you do not use DSP timers for CLK functionality (that is, if
you use an external clock trigger), set this property to false to save code space and eliminate
unnecessary steps. If you set this property to true, do not use the CLK_reconfig, CLK_stop, or
CLK_start APIs in your application.

Tconf Name: ADAPTCLK Type: Bool

Example: bios.PWRM.ADAPTCLK = false;

• Enable device initialization by PWRM. Set this to true if you want PWRM to initialize the DSP
device to a low power state at boot time. This initialization happens before the main() function runs.
If PWRM does not support initialization for the device, this property is not writeable.

Tconf Name: DEVICEINIT Type: Bool

Example: bios.PWRM.DEVICEINIT = false;

• Enable resource tracking by PWRM. Set this to true if you want to enable the resource tracking
feature of PWRM. When enabled, calls to PWRM_setDependency and PWRM_releaseDependency
track application and OS dependencies on power-manageable resources, and appropriately power
them up or down as needed. If PWRM does not support resource tracking for the device, this property
is not writeable.

Tconf Name: RESOURCETRACKING Type: Bool

Example: bios.PWRM.RESOURCETRACKING = false;

• MEM section for device database. Select the memory segment where PWRM should locate the
resource database for the device. This property is writeable only if either "Enable device initialization
by PWRM" or "Enable resource tracking by PWRM" is set to true.

Tconf Name: DEVICEDBMEMSEG Type: Reference

Example: bios.PWRM.DEVICEDBMEMSEG = prog.get("myMEM");

Idling tab

• Idle DSP domains in the BIOS idle loop. This property specifies whether the PWRM module should
idle the specified clock domains within the DSP/BIOS idle loop. If it is set to true, an IDL object called
PWRM_idleDomains is created. This object runs a function that idles the clock domains selected by
this tab. This function treats the configured clock domains as a bitmask, and ORs these bits with
those currently set in the Idle Status Register (ISTR). It then writes the combined mask to the Idle
Configuration Register (ICR), and then invokes the IDLE instruction. When a HWI, SWI, or TSK
292 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM Module
thread is ready to run, the idled clock domains are restored to their previous configuration. If you want
to idle a specific domain indefinitely, use the PWRM_idleClocks function. To configure which clock
domains are idled in deep sleep mode, use the Sleep tab.

Tconf Name: IDLEDOMAINS Type: Bool

Example: bios.PWRM.IDLEDOMAINS = false;

• HWA. Checking this box causes the HWA clock domain to be idled during the DSP/BIOS idle loop.
This setting can be modified at runtime using the PWRM_configure function. (OMAP 2420 only)

Tconf Name: IDLEHWA Type: Bool

Example: bios.PWRM.IDLEHWA = false;

• IPORT. Checking this box causes the IPORT clock domain to be idled during the DSP/BIOS idle loop.
The CACHE and CPU domains must be idled before you can choose to idle the IPORT domain. This
setting can be modified at runtime using the PWRM_configure function. (OMAP 2420 only)

Tconf Name: IDLEIPORT Type: Bool

Example: bios.PWRM.IDLEIPORT = false;

• MPORT. Checking this box causes the MPORT clock domain to be idled during the DSP/BIOS idle
loop. The DMA domain must be idled before you can choose to idle the MPORT domain. This setting
can be modified at runtime using the PWRM_configure function. (OMAP 2420 only)

Tconf Name: IDLEMPORT Type: Bool

Example: bios.PWRM.IDLEMPORT = false;

• XPORT. Checking this box causes the XPORT clock domain to be idled during the DSP/BIOS idle
loop. The DMA and CPU domains must be idled before you can choose to idle the XPORT domain.
This setting can be modified at runtime using the PWRM_configure function. (OMAP 2420 only)

Tconf Name: IDLEXPORT Type: Bool

Example: bios.PWRM.IDLEXPORT = false;

• EMIF. Checking this box causes the EMIF clock domain to be idled during the DSP/BIOS idle loop.
This setting can be modified at runtime using the PWRM_configure function.

Tconf Name: IDLEEMIF Type: Bool

Example: bios.PWRM.IDLEEMIF = false;

• CLKGEN. Checking this box causes the CLKGEN clock domain to be idled during the DSP/BIOS idle
loop. The CACHE, DMA, and CPU domains must be idled before you can choose to idle the
CLKGEN domain. This setting can be modified at runtime using the PWRM_configure function.

Tconf Name: IDLECLKGEN Type: Bool

Example: bios.PWRM.IDLECLKGEN = false;

• PERIPHS. Checking this box causes the PERIPH clock domain to be idled during the DSP/BIOS idle
loop. This setting can be modified at runtime using the PWRM_configure function.

Checking this box does not ensure that every peripheral is idled during the idle loop. Several
peripherals can specify whether to idle when the peripheral domain is idled. For example, on the
’C5509A, the McBSP is specified via the IDLE_EN bit in the PCRs, timers via the IDLE_EN bit in the
TCRs, the ADC module via the IdleEn bit in the ADCCR, the I2C module via the IDLEEN bit in
ICMDR, USB via the IDLEEN bit in USBIDLECTL, and the MMC controller via the IDLEEN bit in the
SPRU404Q—August 2012 Application Program Interface 293
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM Module www.ti.com
MMCFCLK. Code that manages such peripherals may set the corresponding idle enable bit to ensure
the peripheral idles when the top-level peripheral domain is idled. For details, see the TMS320C55x
DSP Peripherals Reference Guide (SPRU317).

Tconf Name: IDLEPERIPH Type: Bool

Example: bios.PWRM.IDLEPERIPH = false;

• CACHE. Checking this box causes the CACHE clock domain to be idled during the DSP/BIOS idle
loop. The CACHE domain must remain idled if the CLKGEN domain is idled. This setting can be
modified at runtime using the PWRM_configure function.

Tconf Name: IDLECACHE Type: Bool

Example: bios.PWRM.IDLECACHE = true;

• DMA. Checking this box causes the DMA clock domain to be idled during the DSP/BIOS idle loop.
The DMA domain must remain idled if the CLKGEN domain is idled. This setting can be modified at
runtime using the PWRM_configure function.

Tconf Name: IDLEDMA Type: Bool

Example: bios.PWRM.IDLEDMA = false;

• CPU. Checking this box causes the CPU clock domain to be idled during the DSP/BIOS idle loop.
The CPU domain must remain idled if the CLKGEN domain is idled. This setting can be modified at
runtime using the PWRM_configure function.

Tconf Name: IDLECPU Type: Bool

Example: bios.PWRM.IDLECPU = true;

V/F Scaling tab

• Enable Voltage and Frequency Scaling. This property specifies whether voltage and frequency
scaling are to be enabled for the application. Setting this property to true causes the Power Scaling
Library (PSL) library specified by the PSLCONFIGLIB property to be linked with the application.

Tconf Name: SCALING Type: Bool

Example: bios.PWRM.SCALING = false;

• Initial frequency (index to frequency table). Specify the initial frequency of the DSP after booting.
This value is a setpoint from the Frequency Setpoint Table. For details, see “PWRM_changeSetpoint”
on page 297.

Tconf Name: INITIALFREQ Type: Numeric

Example: bios.PWRM.INITIALFREQ = 15;

• Initial voltage (volts). Specify the initial voltage of the DSP after it has been booted.

Tconf Name: INITVOLTS Type: Numeric

Example: bios.PWRM.INITVOLTS = 1.6;

• Scale voltage along with frequency. This property specifies whether voltage should be scaled
along with frequency. You may want to disable voltage scaling to reduce latency when changing the
frequency. If this property is set to true, a change to the frequency (via PWRM_changeSetpoint)
results in a voltage change when possible. For example, changing from setpoint 15 to setpoint 0
results in a frequency change from 200 to 6 MHz, as well as a voltage change from 1.6 to 1.1. If this
property is set to false, voltage is not scaled down along with frequency. The voltage is always scaled
up if the new setpoint frequency is higher than that supported at the current voltage. This setting can
be modified at runtime using the PWRM_configure function.

Tconf Name: SCALEVOLT Type: Bool

Example: bios.PWRM.SCALEVOLT = false;
294 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM Module
• Wait while voltage is being scaled down.This property specifies whether PWRM functions should
wait during down-voltage transitions. Such transition times can be long, as they typically depend
upon power supply load. Currently, it is recommended that this property remain set to false. (Note
that the PWRM module always waits during up-voltage transitions; this is required to avoid over-
clocking the DSP.) This setting can be modified at runtime using the PWRM_configure function.

Tconf Name: WAITVOLT Type: Bool

Example: bios.PWRM.WAITVOLT = true;

• PSL Configuration Library. Specify the PSL configuration library to link with. Specify only the
filename of the library to link with for this property. The include path to the PSL Configuration Library
should be added to the linker command file if it is not in the default path. An example library filename
is PSL_cfg_c5509a.a55L.

Tconf Name: PSLCONFIGLIB Type: String

Example: bios.PWRM.PSLCONFIGLIB = "PSL_cfg_c5509a.a55L"

Sleep tab

• Enable deep sleep. This property specifies whether to enable deep sleep. If it is set to false, you
cannot select the remaining items in this tab.

Tconf Name: ENABLESLEEP Type: Bool

Example: bios.PWRM.ENABLESLEEP = true;

• HWA. Checking this box causes the HWA clock domain to be idled during deep sleep. (OMAP 2420
only)

Tconf Name: SLEEPHWA Type: Bool

Example: bios.PWRM.SLEEPHWA = true;

• IPORT. Checking this box causes the IPORT clock domain to be idled during deep sleep. The
CACHE and CPU domains must be idled for deep sleep before you can choose to idle the IPORT
domain. (OMAP 2420 only)

Tconf Name: SLEEPIPORT Type: Bool

Example: bios.PWRM.SLEEPIPORT = true;

• MPORT. Checking this box causes the MPORT clock domain to be idled during deep sleep. The
DMA domain must be idled for deep sleep before you can choose to idle the MPORT domain. (OMAP
2420 only)

Tconf Name: SLEEPMPORT Type: Bool

Example: bios.PWRM.SLEEPMPORT = true;

• XPORT. Checking this box causes the XPORT clock domain to be idled during deep sleep. The DMA
and CPU domains must be idled for deep sleep before you can choose to idle the XPORT domain.
(OMAP 2420 only)

Tconf Name: SLEEPXPORT Type: Bool

Example: bios.PWRM.SLEEPXPORT = true;

• EMIF. Setting this property to true causes the EMIF clock domain to be idled during deep sleep.

Tconf Name: SLEEPEMIF Type: Bool

Example: bios.PWRM.SLEEPEMIF = true;

• CLKGEN. Checking this box causes the CLKGEN clock domain to be idled during deep sleep. The
CACHE, DMA, and CPU domains must be idled for deep sleep before you can choose to idle the
CLKGEN domain.

Tconf Name: SLEEPCLKGEN Type: Bool

Example: bios.PWRM.SLEEPCLKGEN = true;
SPRU404Q—August 2012 Application Program Interface 295
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM Module www.ti.com
• PERIPHS. Checking this box causes the PERIPH clock domain to be idled during deep sleep. See
the description of the PERIPHS box in the Idling tab for details on idling various peripherals when the
PERIPH clock domain is idled.

Tconf Name: SLEEPPERIPH Type: Bool

Example: bios.PWRM.SLEEPPERIPH = true;

• CACHE. Checking this box causes the CACHE clock domain to be idled during deep sleep. The
CACHE domain must remain idled if the CLKGEN domain is idled.

Tconf Name: SLEEPCACHE Type: Bool

Example: bios.PWRM.SLEEPCACHE = true;

• DMA. Checking this box causes the DMA clock domain to be idled during deep sleep. The DMA
domain must remain idled if the CLKGEN domain is idled.

Tconf Name: SLEEPDMA Type: Bool

Example: bios.PWRM.SLEEPDMA = true;

• CPU. Checking this box causes the CPU clock domain to be idled during deep sleep. The CPU
domain must remain idled if the CLKGEN domain is idled.

Tconf Name: SLEEPCPU Type: Bool

Example: bios.PWRM.SLEEPCPU = true;

• Wakeup interrupt mask, IER0. Specifies the wakeup interrupt mask for IER0. This mask is loaded
into the DSP's Interrupt Enable Register 0 (IER0) before the PWRM module causes the DSP to
sleep. The bits in IER0 and IER1 determine which interrupts are enabled. You can use these bits to
enable interrupts that can wake the DSP. For example, a button press by the user might cause an
interrupt that is enabled. The IER mappings for each DSP are defined in that DSP's data sheet.

Tconf Name: WKUPIER0 Type: Numeric

Example: bios.PWRM.WKUPIER0 = 0;

• Wakeup interrupt mask, IER1. Specifies the wakeup interrupt mask for IER1. This mask is loaded
into the DSP's Interrupt Enable Register 1 (IER1) before the PWRM module causes the DSP to
sleep.

Tconf Name: WKUPIER1 Type: Numeric

Example: bios.PWRM.WKUPIER1 = 0;

• Enable sleep until restart. This property specifies whether "sleep until restart" mode is enabled. In
this mode, the only way to wake the DSP is to perform a DSP reset.

Tconf Name: SLEEPUNTILRESTART Type: Bool

Example: bios.PWRM.SLEEPUNTILRESTART = true;

• Enable snooze mode. Because of the limited DSP timer resolution, this feature is not currently
implemented.

Tconf Name: ENABLESNOOZE Type: Bool

Example: bios.PWRM.ENABLESNOOZE = false;

• Timer to be used for snooze mode. Because of the limited DSP timer resolution, this feature is not
currently implemented.

Tconf Name: TIMERFORSNOOZE Type: EnumString

Options: "Timer 0", "Timer 1"

Example: bios.PWRM.TIMERFORSNOOZE = "Timer 1";
296 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_changeSetpoint
C Interface

Syntax
status = PWRM_changeSetpoint(newSetpoint, notifyTimeout);

Parameters
Uns newSetpoint; /* new V/F setpoint */
Uns notifyTimeout; /* maximum time to wait for notification */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_changeSetpoint changes the voltage and frequency of the DSP CPU. Reducing the clock rate
(frequency) results in a linear decrease in power consumption. Reducing the operating voltage results in
a quadratic reduction in power consumption. Note that there are issues you should be aware of when
reducing the clock frequency. For a discussion of these issues, see the TMS320 DSP/BIOS User’s Guide
(SPRA423).

The newSetpoint parameter is a numeric value that indexes into a table of frequency/voltage pairs, as
defined by the underlying PSL library. For example, the following table shows the setpoints for the
’C5509A EVM:

The notifyTimeout parameter is the maximum amount of time (in system clock ticks) to wait for registered
notification functions (set by PWRM_registerNotify) to respond to a delayed completion, before declaring
failure and returning PWRM_ETIMEOUT.

PWRM_changeSetpoint Initiate a change to the V/F setpoint

Setpoint ’C5509A EVM Frequency (MHz) ’C5509A EVM Voltage (volts)

15 192 1.6

14 180 1.6

13 168 1.6

12 156 1.6

11 144 1.4

10 132 1.4

9 120 1.4

8 108 1.2

7 96 1.2

6 84 1.2

5 72 1.2

4 60 1.2

3 48 1.2

2 12 1.2

1 6 1.2

0 3 1.2
SPRU404Q—August 2012 Application Program Interface 297
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_changeSetpoint www.ti.com
For example, if notifyTimeout is set to 200, PWRM_changeSetpoint waits up to 200 ticks (typically 200
milliseconds) before declaring that a function has failed to respond. PWRM uses notifyTimeout for each
notification. For example, if notification functions are registered for both before and after setpoint
changes, PWRM_changeSetpoint waits up to notifyTimeout on each notification. All registered
notification functions are called from the context of PWRM_changeSetpoint.

PWRM_changeSetpoint returns one of the following constants as a status value of type PWRM_Status:

The application should treat return values of PWRM_ETIMEOUT or PWRM_EFAIL as critical system
failures. These values indicate the notification client is unresponsive, and the system is in an unknown
state.

PWRM_changeSetpoint disables SWI and TSK scheduling when it begins making a change. However,
HWIs may run during the notification process. After the setpoint has been changed, SWI and TSK
scheduling is re-enabled, and a context switch occurs only if some other thread has since been made
ready to run.

Constraints and Calling Context

• PWRM_changeSetpoint cannot be called from an HWI.

• This API cannot be called from a program’s main() function.

• PWRM_changeSetpoint can be called from a SWI only if notifyTimeout is 0.

Name Usage

PWRM_SOK The operation succeeded and the new setpoint is in effect.

PWRM_EFAIL A general failure occurred. The requested setpoint transition did not occur.

PWRM_NOTIMPLEMENTED V/F scaling is not implemented by PWRM on this platform.

PWRM_ENOTSUPPORTED The operation could not be completed because a client registered with PWRM
indicating that it cannot support the requested setpoint.

PWRM_EOUTOFRANGE The operation could not be completed because newSetpoint is not a valid value
for the platform.

PWRM_ETIMEOUT A registered notification function did not respond within the specified
notifyTimeout.

PWRM_EBUSY The requested operation cannot be performed at this time; PWRM is busy
processing a previous request.

PWRM_EINITFAILURE A failure occurred while initializing V/F scaling support; V/F scaling is
unavailable.
298 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_changeSetpoint
Example

#define TIMEOUT 10 /* timeout for notifications */

PWRM_Status status;

Uns i = 5;

status = PWRM_changeSetpoint(i, TIMEOUT);

if (status == PWRM_SOK) {

 LOG_printf(TRACE, "New setpoint = %d", i);

}

else if (status == PWRM_ENOTSUPPORTED) {

 LOG_printf(TRACE, "Setpoint %d unsupported", i);

}

else {

 LOG_printf(TRACE, "Error: status = %x", status);

 return;

}

GBL_getFrequency
GBL_setFrequency
SPRU404Q—August 2012 Application Program Interface 299
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_configure www.ti.com
C Interface

Syntax
status = PWRM_configure(attrs);

Parameters
PWRM_Attrs attrs; /* configuration attributes */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_configure specifies new configuration properties for the PWRM module. It overrides those
specified in the static configuration.

Configuration parameters are specified via a PWRM_Attrs structure. This attribute structure can vary by
platform. For the ’C5509A, this structure contains the following:

typedef struct PWRM_Attrs {

 Bool scaleVoltage; /* scale voltage */

 Bool waitForVoltageScale; /* wait on volt change */

 Uns idleMask; /* domains to idle */

} PWRM_Attrs;

In this structure, scaleVoltage indicates whether PWRM should scale voltages during setpoint changes.
It corresponds to the "Scale voltage along with frequency" configuration property in the V/F Scaling tab.
If scaleVoltage is TRUE, the voltage is scaled down if possible when going to a lower frequency. If
scaleVoltage if FALSE, the voltage is not scaled lower. The voltage is always scaled up if the new
(destination) setpoint frequency is higher than that supported at the current voltage.

The waitForVoltageScale flag indicates whether PWRM should wait for a down-voltage transition to
complete before returning from PWRM_changeSetpoint. It corresponds to the "Wait while voltage is
being scaled down" configuration property in the V/F Scaling tab. Such transition times can be long, as
they typically depend upon power supply load. Currently, it is recommended that this item always be
TRUE. (The PWRM module always waits during up-voltage transitions; this is required to avoid over-
clocking the DSP.)

The idleMask is a bitmask that specifies additional clock domains to be idled in the DSP/BIOS idle loop.
This bitmask is ORed with the current Idle Status Register (ISTR) contents and then written to the Idle
Configuration Register (ICR) before idling the processor. When the processor is awoken by an interrupt,
the bits for the domains that were idled on entry to the DSP/BIOS idle loop are written to the ICR register
and the IDLE instruction is invoked again to restore the previous idle configuration.

See the Idling tab of the configuration properties for descriptions of required interactions between idled
clock domains. The bitmask can be formed using the following predefined mask constants:

PWRM_configure Set new configuration properties for PWRM

Name Usage

PWRM_IDLECPU Idle the CPU clock domain
300 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_configure
PWRM_configure returns one of the following constants as a status value of type PWRM_Status:

PWRM_IDLEDMA Idle the DMA clock domain

PWRM_IDLECACHE Idle the CACHE clock domain

PWRM_IDLEPERIPH Idle the PERIPH clock domain

PWRM_IDLECLKGEN Idle the CLKGEN clock domain

PWRM_IDLEEMIF Idle the EMIF clock domain

PWRM_IDLEIPORT Idle the IPORT clock domain (OMAP 2420 only)

PWRM_IDLEHWA Idle the HWA clock domain (OMAP 2420 only)

PWRM_IDLEMPORT Idle the MPORT clock domain (OMAP 2420 only)

PWRM_IDLEXPORT Idle the XPORT clock domain (OMAP 2420 only)

Name Usage

PWRM_SOK The operation succeeded.

PWRM_EFAIL A general failure occurred.

PWRM_EINVALIDPOINTER The operation failed because the attrs
parameter was NULL.

PWRM_EINVALIDVALUE The operation failed because the idleMask
is invalid. For example, if the CLKGEN
domain is to be idled, the CPU, DMA, and
CACHE domains must also be idled.

Name Usage
SPRU404Q—August 2012 Application Program Interface 301
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_getCapabilities www.ti.com
C Interface

Syntax
status = PWRM_getCapabilities(capsMask);

Parameters
Uns *capsMask; /* pointer to location for capabilities */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_getCapabilities returns information about the PWRM module’s capabilities on the current
platform.

The capsMask parameter should point to the location where PWRM_getCapabilities should write a
bitmask that defines the capabilities. You can use the following constants to check for capabilities in the
bitmask:

PWRM_getCapabilities returns one of the following constants as a status value of type PWRM_Status:

PWRM_getCapabilities Get information on PWRM capabilities on the current platform

Name Usage

PWRM_CDEEPSLEEP PWRM_sleepDSP supports deep sleep mode.

PWRM_CRESOURCETRACKING The PWRM module supports dynamic resource tracking.

PWRM_CSLEEPUNTILRESTART PWRM_sleepDSP supports sleep until restart.

PWRM_CSNOOZE PWRM_sleepDSP supports snooze mode.

PWRM_CVFSCALING The PWRM module supports voltage and frequency scaling.

Name Usage

PWRM_SOK The operation succeeded.

PWRM_EFAIL A general failure occurred.

PWRM_EINVALIDPOINTER The operation failed because the capsMask parameter was NULL.
302 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_getCapabilities
Example

PWRM_Status status;

Uns capsMask;

/* Query PWRM capabilities on this platform */

status = PWRM_getCapabilities(&capsMask);

LOG_printf(TRACE, "Returned mask=0x%X", capsMask);

if (status != PWRM_SOK) { /* exit on error */

 LOG_printf(TRACE, "Status = %x", status);

 return;

}

/* exit if V/F scaling not supported */

if ((capsMask & PWRM_CVFSCALING) == 0) {

 LOG_printf(TRACE, "V/F scaling not supported");

 return;

}

SPRU404Q—August 2012 Application Program Interface 303
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_getCurrentSetpoint www.ti.com
C Interface

Syntax
status = PWRM_getCurrentSetpoint(setpoint);

Parameters
Uns *setpoint; /* current V/F setpoint */

Return Value
PWRM_Status status; /* returned status */

Reentrant
no

Description

PWRM_getCurrentSetpoint returns the V/F scaling setpoint currently in use.

The setpoint parameter should point to the location where PWRM_getCurrentSetpoint should write the
current setpoint. See PWRM_changeSetpoint for a list of valid setpoints.

PWRM_getCurrentSetpoint returns one of the following constants as a status value of type
PWRM_Status:

Constraints and Calling Context

• If a call to PWRM_getCurrentSetpoint is preempted by a thread that changes the setpoint, the value
PWRM_getCurrentSetpoint returns is the old setpoint and not the new setpoint. If this may cause a
problem in your application, you can disable scheduling around the call to
PWRM_getCurrentSetpoint.

Example

PWRM_Status status;

Uns currSetpoint;

status = PWRM_getCurrentSetpoint(&currSetpoint);

LOG_printf(TRACE, "Setpoint: %d", currSetpoint);

if (status != PWRM_SOK) { /* exit on error */

 LOG_printf(TRACE, "Status = %x", status);

 return;

}

PWRM_getCurrentSetpoint Get the current setpoint

Name Usage

PWRM_SOK The operation succeeded.

PWRM_EFAIL A general failure occurred.

PWRM_EINVALIDPOINTER The operation failed because the setpoint parameter was NULL.

PWRM_EINITFAILURE A failure occurred while initializing V/F scaling support; V/F scaling is
unavailable.

PWRM_ENOTIMPLEMENTED The operation failed because V/F scaling is not supported.
304 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_getDependencyCount
C Interface

Syntax
status = PWRM_getDependencyCount(resourceID, count);

Parameters
Uns resourceID; /* resource ID */
Uns *count; /* pointer to where count is written */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_getDependencyCount returns the number of dependencies that are currently declared on a
resource. Normally this corresponds to the number of times PWRM_setDependency has been called for
the resource, minus the number of times PWRM_releaseDependency has been called for the same
resource.

Resource IDs are device-specific. They are defined in a PWRM_Resource enumeration in a device-
specific header file. For example, see pwrm5509a.h for the ’C5509A.

PWRM_getDependencyCount returns one of the following constants as a status value of type
PWRM_Status:

Example
/* Display some dependency counts */

LOG_printf(&trace, "Initial dependencies:");

PWRM_getDependencyCount(PWRM_5509A_CLKOUT, &count);

LOG_printf(&trace, "CLKOUT count = %d", count);

PWRM_getDependencyCount(PWRM_5509A_MCBSP0, &count);

LOG_printf(&trace, "McBSP0 count = %d", count);

PWRM_getDependencyCount(PWRM_5509A_DMA_DOMAIN,&count);

LOG_printf(&trace, "DMA domain count = %d", count);

PWRM_getDependencyCount Get count of dependencies declared on a resource

Name Usage

PWRM_SOK The operation succeeded, and the reference count was written to the
location pointed to by count.

PWRM_ENOTIMPLEMENTED The operation failed because resource tracking is not supported.
SPRU404Q—August 2012 Application Program Interface 305
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_getNumSetpoints www.ti.com
C Interface

Syntax
status = PWRM_getNumSetpoints(numberSetpoints);

Parameters
Uns *numberSetpoints;/* number of supported setpoints */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_getNumSetpoints returns the number of setpoints supported by the currently configured
platform.

The numberSetpoints parameter should point to the location where PWRM_getNumSetpoints should
write the number of setpoints. See PWRM_changeSetpoint for a list of valid setpoints. If V/F scaling is
supported, the number of setpoints is greater than or equal to 1.

PWRM_getNumSetpoints returns one of the following constants as a status value of type PWRM_Status:

Example

PWRM_Status status;

Uns numSetpoints;

status = PWRM_getNumSetpoints(&numSetpoints);

if (status == PWRM_SOK) {

 LOG_printf(TRACE, "NumSetpoints: %d", numSetpoints);

}

else {

 LOG_printf(TRACE, "Error: status = %x", status);

}

PWRM_getNumSetpoints Get number of setpoints supported by platform

Name Usage

PWRM_SOK The operation succeeded.

PWRM_EFAIL A general failure occurred.

PWRM_EINVALIDPOINTER The operation failed because the
numberSetpoints parameter was NULL.

PWRM_EINITFAILURE A failure occurred while initializing V/F scaling support; V/F scaling is
unavailable

PWRM_ENOTIMPLEMENT
ED

The operation failed because V/F scaling is not supported.
306 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_getSetpointInfo
C Interface

Syntax
status = PWRM_getSetpointInfo(setpoint, frequency, voltage);

Parameters
Uns setpoint; /* the setpoint to query */
float *frequency; /* DSP core frequency */
float *voltage; /* DSP voltage */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_getSetpointInfo returns the DSP CPU frequency and voltage for a given setpoint.

The setpoint parameter should specify the setpoint value for which you want to know the frequency and
voltage on this platform. See PWRM_changeSetpoint for a list of valid setpoints.

The frequency parameter should point to the location where PWRM_getSetpointInfo should write the
DSP core frequency for the specified setpoint.

The voltage parameter should point to the location where PWRM_getSetpointInfo should write the DSP
voltage for the specified setpoint.

PWRM_getSetpointInfo returns one of the following constants as a status value of type PWRM_Status:

PWRM_getSetpointInfo Get frequency and CPU core voltage for a setpoint

Name Usage

PWRM_SOK The operation succeeded.

PWRM_EFAIL A general failure occurred.

PWRM_EINVALIDVALUE The operation failed because the setpoint parameter is invalid.

PWRM_EINVALIDPOINTER The operation failed because the
frequency or voltage parameter was NULL.

PWRM_EINITFAILURE A failure occurred while initializing V/F scaling support; V/F scaling is
unavailable

PWRM_ENOTIMPLEMENTED The operation failed because V/F scaling is not supported.
SPRU404Q—August 2012 Application Program Interface 307
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_getSetpointInfo www.ti.com
Example

PWRM_Status status;

/* global arrays for saving setpoint info */

#define MAX_SETPOINTS 16

float freq[MAX_SETPOINTS];

float volts[MAX_SETPOINTS];

status = PWRM_getSetpointInfo(i, &freq[i], &volts[i]);

if (status != PWRM_SOK) { /* exit on error */

 LOG_printf(TRACE, "Error: status=%x", status);

 return;

}

308 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_getTransitionLatency
C Interface

Syntax
status = PWRM_getTransitionLatency(initialSetpoint, finalSetpoint, frequencyLatency, voltageLatency);

Parameters
Uns initialSetpoint; /* setpoint to be scaled from */
Uns finalSetpoint; /* setpoint to be scaled to */
Uns *frequencyLatency;/* frequency transition latency */
Uns *voltageLatency;/* voltage transition latency */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_getTransitionLatency retrieves the latencies (times required) in microseconds to scale from a
specific setpoint to another specific setpoint.

The initialSetpoint parameter should specify the setpoint from which the transition would start. The
finalSetpoint parameter should specify the setpoint at which the transition would end. See
PWRM_changeSetpoint for a list of valid setpoints.

The frequencyLatency parameter should point to the location where PWRM_getTransitionLatency
should write the time required to change the CPU frequency from that of the initialSetpoint to that of the
finalSetpoint in microseconds.

Similarly, the voltageLatency should point to the location where PWRM_getTransitionLatency should
write the time required to change the voltage from that of the initialSetpoint to that of the finalSetpoint in
microseconds.

When frequency and voltage are scaled together, the total latency is the sum of the frequency scaling
latency and the voltage scaling latency.

PWRM_getTransitionLatency returns one of the following constants as a status value of type
PWRM_Status:

PWRM_getTransitionLatency Get latency to scale between specific setpoints

Name Usage

PWRM_SOK The operation succeeded.

PWRM_EFAIL A general failure occurred.

PWRM_EINVALIDVALUE The operation failed because the
initialSetpoint or finalSetpoint value was invalid.

PWRM_EINVALIDPOINTER The operation failed because the frequencyLatency or voltageLatency
parameter was NULL.

PWRM_EINITFAILURE A failure occurred while initializing V/F scaling support; V/F scaling is
unavailable

PWRM_ENOTIMPLEMENTED The operation failed because V/F scaling is not supported.
SPRU404Q—August 2012 Application Program Interface 309
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_getTransitionLatency www.ti.com
The time required to change a setpoint may not be deterministic (depending on the hardware
characteristics, the underlying Power Scaling Library implementation, and the specific V/F swing), but it
is bounded by the value returned by PWRM_getTransitionLatency.

Example
PWRM_Status status;

Uns frequencyLatency;

Uns voltageLatency;

status = PWRM_getTransitionLatency(15, 0,

 &frequencyLatency, &voltageLatency);

if (status != PWRM_SOK) {

 LOG_printf(TRACE, "Error: status=%x", status);

}

else {

 LOG_printf(TRACE, "Frequency latency: %d, Voltage latency: %d",

 frequencyLatency, voltageLatency);

}

310 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_idleClocks
C Interface

Syntax
status = PWRM_idleClocks(domainMask, idleStatus);

Parameters
Uns domainMask; /* bitmask of clock domains to be idled */
Uns *idleStatus; /* contents of ISTR after idling */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_idleClocks immediately turns off the specified clock domains. This allows applications to idle
non-CPU domains at any point in the application.

The domainMask is a bitmask that specifies clock domains to be idled. This value is written to the ICR
register before idling the processor. See the Idling tab of the configuration properties for descriptions of
required interactions between idled clock domains. The bitmask can be formed using the following
predefined mask constants:

The idleStatus parameter should point to the location where PWRM_idleClocks should write the contents
of the Idle Status Register (ISTR) after idling clock domains. If PWRM_idleClocks returns PWRM_EFAIL,
this parameter can be used to determine which domains were idled and which were not. For example, if
a bit was set in the domainMask but is not set in idleStatus, the corresponding domain could not be idled.

PWRM_idleClocks returns one of the following constants as a status value of type PWRM_Status:

PWRM_idleClocks Immediately idle clock domains

Name Usage

PWRM_IDLEDMA Idle the DMA clock domain

PWRM_IDLECACHE Idle the CACHE clock domain

PWRM_IDLEPERIPH Idle the PERIPH clock domain

PWRM_IDLEEMIF Idle the EMIF clock domain

PWRM_IDLEIPORT Idle the IPORT clock domain (OMAP 2420 only)

PWRM_IDLEHWA Idle the HWA clock domain (OMAP 2420 only)

PWRM_IDLEMPORT Idle the MPORT clock domain (OMAP 2420 only)

PWRM_IDLEXPORT Idle the XPORT clock domain (OMAP 2420 only)

Name Usage

PWRM_SOK The operation succeeded.

PWRM_EFAIL A general failure occurred. One of the domains specified in domainMask did
not go idle.

PWRM_EINVALIDPOINTER Operation failed because the idleStatus parameter was NULL.

PWRM_EINVALIDVALUE Operation failed because the domainMask is invalid.
SPRU404Q—August 2012 Application Program Interface 311
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_idleClocks www.ti.com
Example
PWRM_Status status;

Uns idleStatus;

status = PWRM_idleClocks(PWRM_IDLEEMIF | PWRM_IDLEDMA,

 &idleStatus);

if(idleStatus == (PWRM_IDLEEMIF | PWRM_IDLEDMA)) {

 LOG_printf(TRACE, "Idled domains successfully");

}

312 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_registerNotify
C Interface

Syntax
status = PWRM_registerNotify(eventType, eventMask, notifyFxn, clientArg, notifyHandle,
delayedCompletionFxn);

Parameters
PWRM_Event eventType; /* type of power event */
LgUns eventMask; /* event-specific mask */
Fxn notifyFxn; /* function to call on event */
Arg clientArg; /* argument to pass to notifyFxn */
PWRM_NotifyHandle *notifyHandle; /* handle for unregistering */
Fxn *delayedCompletionFxn;/* fxn to call if delay */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_registerNotify registers a function to be called when a specific power event occurs. Registrations
and the corresponding notifications are processed in FIFO order. The function registered must behave
as described in the pwrmNotifyFxn section.

The eventType parameter identifies the type of power event for which the notify function being registered
is to be called. The eventType parameter can vary by platform, and is enumerated as PWRM_Event. For
example, on the ’C5509 this parameter may have one of the following values:

Note: Snooze mode is currently not implemented.

The eventMask parameter is an event-specific mask. Currently eventMask is relevant only to setpoint
changes, but it may be used in the future for other power events. For V/F setpoint registrations, this mask
defines the setpoints the client supports. For example, if the client supports only one setpoint, it should
set only the single corresponding bit in eventMask. Using the eventMask allows PWRM_changeSetpoint
to immediately determine whether to begin the notification process or return
PWRM_ENOTSUPPORTED.

PWRM_registerNotify Register a function to be called on a specific power event

Value Meaning

PWRM_PENDINGSETPOINTCHANGE V/F setpoint is about to change.

PWRM_DONESETPOINTCHANGE The pending V/F setpoint change has now been made.

PWRM_GOINGTODEEPSLEEP The DSP is going to DEEPSLEEP state.

PWRM_AWAKEFROMDEEPSLEEP The DSP has awoken from DEEPSLEEP.

PWRM_GOINGTOSNOOZE The DSP is going to snooze mode.

PWRM_AWAKEFROMSNOOZE The DSP has awoken from snooze.

PWRM_GOINGTOSLEEPUNTILRESTART DSP going to deep sleep and must be restarted to resume.
SPRU404Q—August 2012 Application Program Interface 313
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_registerNotify www.ti.com
The notifyFxn parameter specifies the function to call when the specified power event occurs. The
notifyFunction must behave as described in the pwrmNotifyFxn section.

The clientArg parameter is an arbitrary argument to be passed to the client upon notification. This
argument may allow one notify function to be used by multiple instances of a driver (that is, the clientArg
can be used to identify the instance of the driver that is being notified).

The notifyHandle parameter should point to the location where PWRM_registerNotify should write a
notification handle. If the application later needs to unregister the notification function, the application
should pass this handle to PWRM_unregisterNotify.

The delayedCompletionFxn is a pointer to a function provided by the PWRM module to the client at
registration time. If a client cannot act immediately upon notification, its notify function should return
PWRM_NOTIFYNOTDONE. Later, when the action is complete, the client should call the
delayedCompletionFxn to signal PWRM that it has finished. The delayedCompletionFxn is a void
function, taking no arguments, and having no return value. If a client can and does act immediately on
the notification, it should return PWRM_NOTIFYDONE in response to notification, and should not call the
delayedCompletionFxn.

For example, if a DMA driver is to prepare for a setpoint change, it may need to wait for the current DMA
transfer to complete. When the driver finishes processing the event (for example, on the next hardware
interrupt), it calls the delayedCompletionFxn function provided when it registered for notification. This
completion function tells the PWRM module that the driver is finished. Meanwhile, the PWRM module
was able to continue notifying other clients, and was waiting for all clients to signal completion.

PWRM_registerNotify returns one of the following constants as a status value of type PWRM_Status:

Constraints and Calling Context

• PWRM_registerNotify cannot be called from a SWI or HWI. This is because PWRM_registerNotify
internally calls MEM_alloc, which may cause a context switch.

Name Usage

PWRM_SOK The function was successfully registered.

PWRM_EFAIL A general failure occurred.

PWRM_EINVALIDPOINTER The operation failed because the notifyFxn, notifyHandle, or delayedComple-
tionFxn parameter was NULL.

PWRM_EINVALIDEVENT Operation failed because eventType is invalid.
314 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_registerNotify
Example

/* client allows all setpoints */

#define ALLSETPOINTSALLOWED 0xFFFF

/* client doesn't allow lowest 4 setpoints */

#define SOMESETPOINTSALLOWED 0xFFF0

PWRM_NotifyHandle notifyHandle1;

PWRM_NotifyHandle notifyHandle2;

/* pointers to returned delayed completion fxns */

Fxn delayFxn1;

Fxn delayFxn2;

/* Client 1 registers pre-setpoint notification */

PWRM_registerNotify(PWRM_PENDINGSETPOINTCHANGE,

 ALLSETPOINTSALLOWED, (Fxn)myNotifyFxn1,

 (Arg)0x1111, ¬ifyHandle1, (Fxn *) &delayFxn1);

/* Client 2 registers post-setpoint notification */

PWRM_registerNotify(PWRM_DONESETPOINTCHANGE,

 SOMESETPOINTSALLOWED, (Fxn)myNotifyFxn2,

 (Arg)0x2222, ¬ifyHandle2, &delayFxn2);
SPRU404Q—August 2012 Application Program Interface 315
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

pwrmNotifyFxn www.ti.com
C Interface

Syntax

status = notifyFxn(eventType, eventArg1, eventArg2, clientArg);

Parameters
PWRM_Event eventType; /* type of power event */
Arg eventArg1; /* event-specific argument */
Arg eventArg2; /* event-specific argument */
Arg clientArg; /* arbitrary argument */

Return Value
PWRM_NotifyResponse status; /* returned status */

Description

PWRM_registerNotify registers a function to be called when a specific power event occurs. Clients, which
are typically drivers, register notification functions they need to run when a particular power event occurs.

This topic describes the required prototype and behavior of such notification functions. Your application
must provide and register these functions. Registered functions are called internally by the PWRM
module.

The eventType parameter identifies the type of power event for which the notify function is being called.
This parameter has an enumerated type of PWRM_Event. The values for this parameter are listed in the
PWRM_registerNotify topic.

The eventArg1 and eventArg2 parameters are event-specific arguments. Currently, eventArg1 and
eventArg2 are used only for V/F scaling events:

• Pending setpoint change (PWRM_PENDINGSETPOINTCHANGE). The eventArg1 holds the
current setpoint, and eventArg2 holds the pending setpoint.

• Done setpoint change (PWRM_DONESETPOINTCHANGE). The eventArg1 holds the previous
setpoint, and eventArg2 holds the new setpoint.

The clientArg parameter holds the arbitrary argument passed to PWRM_registerNotify when this function
was registered. This argument may allow one notify function to be used by multiple instances of a driver
(that is, the clientArg can be used to identify the instance of the driver that is being notified).

The notification function must return one of the following constants as a status value of type
PWRM_NotifyResponse:

pwrmNotifyFxn Function to be called on a registered power event

Name Usage

PWRM_NOTIFYDONE The client processed the notification function successfully.

PWRM_NOTIFYNOTDONE The client must wait for interrupt processing to occur before it can proceed. The
client must later call the delayedCompletionFxn specified when this function was
registered with PWRM_registerNotify.
316 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com pwrmNotifyFxn
Constraints and Calling Context

• The notification function should not call PWRM APIs that trigger a notification event
(PWRM_changeSetpoint and PWRM_sleepDSP). If such an API is called, the PWRM_EBUSY
status code is returned.

Example
/* notification function prototypes */

PWRM_NotifyResponse myNotifyFxn1(

 PWRM_Event eventType, Arg eventArg1, Arg eventArg2,

 Arg clientArg);

PWRM_NotifyResponse myNotifyFxn2(

 PWRM_Event eventType, Arg eventArg1, Arg eventArg2,

 Arg clientArg);

/* ======== myNotifyFxn1 ======== */

PWRM_NotifyResponse myNotifyFxn1(

 PWRM_Event eventType, Arg eventArg, Arg eventArg2,

 Arg clientArg)

{

#if VERBOSE

 LOG_printf(TRACE, "client #1 notify,

 PENDINGSETPOINTCHANGE");

 LOG_printf(TRACE, "eventArg=%p, eventArg2=%p",

 eventArg, eventArg2);

 LOG_printf(TRACE, "clientArg=%p", clientArg);

 LOG_printf(TRACE, "signal notify complete");

#endif

 return(PWRM_NOTIFYDONE); /* notify complete */

}

PWRM_NOTIFYERROR Notification cannot be processed. Either an internal client error occurred or the
client was notified of an event it could not process. (For V/F setpoint changes, the
client registers setpoints it can accommodate to avoid this error.) When a client
returns this error, the caller of the PWRM function that triggered the notification
receives a PWRM_EFAIL return status.

Name Usage
SPRU404Q—August 2012 Application Program Interface 317
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_releaseDependency www.ti.com
C Interface

Syntax
status = PWRM_releaseDependency(resourceID);

Parameters
Uns resourceID; /* resource ID */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
This function is the companion to PWRM_setDependency. It releases a resource dependency that was
previously set.

Resource IDs are device-specific. They are defined in a PWRM_Resource enumeration in a device-
specific header file. For example, see pwrm5509a.h for the ’C5509A.

PWRM_ETOOMANYCALLS is returned if you call PWRM_releaseDependency when there are no
dependencies currently declared for the specified resource (either because all have been released or
because none were set).

PWRM_releaseDependency returns one of the following constants as a status value of type
PWRM_Status:

Example
/* Release default dependency on CLKOUT to save power*/

PWRM_releaseDependency(PWRM_5509A_CLKOUT);

PWRM_releaseDependency Release a dependency that was previously declared

Name Usage

PWRM_SOK The operation succeeded, and dependency has been released.

PWRM_ETOOMANYCALLS A dependency was not previously set and was therefore not released.

PWRM_ENOTIMPLEMENTED The operation failed because resource tracking is not supported.
318 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_setDependency
C Interface

Syntax
status = PWRM_setDependency(resourceID);

Parameters
Uns resourceID; /* resource ID */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
This function sets a dependency on a resource. It is the companion to PWRM_releaseDependency.

Resource IDs are device-specific. They are defined in a PWRM_Resource enumeration in a device-
specific header file. For example, see pwrm5509a.h for the ’C5509A.

PWRM_setDependency returns one of the following constants as a status value of type PWRM_Status:

Example
/* Declare an application dependency upon McBSP0 */

PWRM_setDependency(PWRM_5509A_MCBSP0);

/* Declare application dependency upon DMA domain */

PWRM_setDependency(PWRM_5509A_DMA_DOMAIN);

PWRM_setDependency Declare a dependency upon a resource

Name Usage

PWRM_SOK The operation succeeded, and dependency has been set.

PWRM_ENOTIMPLEMENTED The operation failed because resource tracking is not supported.
SPRU404Q—August 2012 Application Program Interface 319
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_sleepDSP www.ti.com
C Interface

Syntax
status = PWRM_sleepDSP(sleepCode, sleepArg, notifyTimeout);

Parameters
Uns sleepCode; /* new sleep state */
LgUns sleepArg; /* sleepCode-specific argument */
Uns notifyTimeout; /* maximum time to wait for notification */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_sleepDSP transitions the DSP to a new sleep state.

The sleepCode parameter indicates the new sleep state for the DSP. The sleep states supported by
PWRM usually vary by device. (See the DSP/BIOS release notes to determine which sleep states are
available for your device.) For example, the following constants may be used to activate sleep states on
the ’C5509:

A call to PWRM_sleepDSP with PWRM_DEEPSLEEP or PWRM_SNOOZE returns when the DSP
awakes from deep sleep or snoozing (respectively). The interrupts that can wake the DSP from deep
sleep are specified by the following PWRM Manager Properties: Wakeup interrupt mask, IER0 and
Wakeup interrupt mask, IER1.

A call to PWRM_sleepDSP with PWRM_SLEEPUNTILRESTART never returns. The use of
PWRM_SLEEPUNTILRESTART indicates that the only way to wake up is a DSP reset.

Note: Snooze mode is currently not implemented.

The sleepArg parameter is a sleepCode-specific argument. Currently, it is used only for
PWRM_SNOOZE mode to indicate the duration (in milliseconds) for snoozing the DSP.

The notifyTimeout parameter is the maximum amount of time (in system clock ticks) to wait for registered
notification functions (set by PWRM_registerNotify) to respond to a delayed completion, before declaring
failure and returning PWRM_ETIMEOUT.

PWRM_sleepDSP Transition the DSP to a new sleep state

Name Usage

PWRM_DEEPSLEEP Put the DSP in deep sleep until a configured interrupt occurs to wake the
DSP.

PWRM_SLEEPUNTILRESTART Idle all DSP clock domains. The only way to wake up is a DSP reset.

PWRM_SNOOZE Sleep the DSP for the number of milliseconds specified by sleepArg.
320 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com PWRM_sleepDSP
PWRM_sleepDSP returns one of the following constants as a status value of type PWRM_Status:

Due to the critical system nature of sleep commands, clients that register for sleep notification should
make every effort to respond immediately to the sleep event.

The application should treat return values of PWRM_ETIMEOUT or PWRM_EFAIL as critical system
failures. These values indicate the notification client is unresponsive, and the system is in an unknown
state.

Constraints and Calling Context

• PWRM_sleepDSP cannot be called from an HWI.

• This API cannot be called from a program’s main() function.

• PWRM_sleepDSP can be called from a SWI only if notifyTimeout is 0.

Example

#define TIMEOUT 10 /* timeout after 10 ticks */

LOG_printf(TRACE, "Putting DSP to deep sleep...\n");

status = PWRM_sleepDSP(PWRM_DEEPSLEEP, 0, TIMEOUT);

LOG_printf(TRACE, "DSP awake from deep sleep");

LOG_printf(TRACE, "Returned sleep status 0x%x",

 status);

Name Usage

PWRM_SOK A successful sleep and wake occurred.

PWRM_EFAIL A general failure occurred. Could not sleep the DSP.

PWRM_ENOTIMPLEMENTED The requested sleep mode is not implemented on this platform.

PWRM_EOUTOFRANGE The operation could not be completed because sleepArg is out of range of the
capabilities of PWRM.

PWRM_ETIMEOUT A registered notification function did not respond within the specified
notifyTimeout.

PWRM_EBUSY The requested operation cannot be performed at this time; PWRM is busy
processing a previous request.
SPRU404Q—August 2012 Application Program Interface 321
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

PWRM_unregisterNotify www.ti.com
C Interface

Syntax
status = PWRM_unregisterNotify(notifyHandle);

Parameters
PWRM_NotifyHandle notifyHandle; /* handle to registered function */

Return Value
PWRM_Status status; /* returned status */

Reentrant
yes

Description
PWRM_unregisterNotify unregisters an event notification that was registered by PWRM_registerNotify.
For example, when an audio codec device is closed, it no longer needs to be notified, and should
unregister for event notification.

The notifyHandle parameter is the parameter that was provided by PWRM_registerNotify when the
function was registered.

PWRM_unregisterNotify returns one of the following constants as a status value of type PWRM_Status:

Constraints and Calling Context

• This API cannot be called from a program’s main() function.

Example
PWRM_NotifyHandle notifyHandle1;

PWRM_registerNotify(PWRM_PENDINGSETPOINTCHANGE,

 ALLSETPOINTSALLOWED, (Fxn)myNotifyFxn1,

 (Arg)0x1111, ¬ifyHandle1, (Fxn *) &delayFxn1);

...

PWRM_unregisterNotify(notifyHandle1);

PWRM_unregisterNotify Unregister for an event notification from PWRM

Name Usage

PWRM_SOK The function was successfully unregistered.

PWRM_EFAIL A general failure occurred.

PWRM_EINVALIDHANDLE Operation failed because notifyHandle is invalid.
322 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com QUE Module
2.21 QUE Module

The QUE module is the atomic queue manager.

Functions

• QUE_create. Create an empty queue.

• QUE_delete. Delete an empty queue.

• QUE_dequeue. Remove from front of queue (non-atomically).

• QUE_empty. Test for an empty queue.

• QUE_enqueue. Insert at end of queue (non-atomically).

• QUE_get. Remove element from front of queue (atomically)

• QUE_head. Return element at front of queue.

• QUE_insert. Insert in middle of queue (non-atomically).

• QUE_new. Set a queue to be empty.

• QUE_next. Return next element in queue (non-atomically).

• QUE_prev. Return previous element in queue (non-atomically).

• QUE_put. Put element at end of queue (atomically).

• QUE_remove. Remove from middle of queue (non-atomically).

Constants, Types, and Structures
typedef struct QUE_Obj *QUE_Handle; /* queue obj handle */
struct QUE_Attrs{ /* queue attributes */
 Int dummy; /* DUMMY */
};

QUE_Attrs QUE_ATTRS = { /* default attribute values */
 0,
};

typedef QUE_Elem; /* queue element */

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the QUE Manager Properties and QUE Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

Name Type Default

comment String "<add comments here>"
SPRU404Q—August 2012 Application Program Interface 323
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

QUE Module www.ti.com
Description
The QUE module makes available a set of functions that manipulate queue objects accessed through
handles of type QUE_Handle. Each queue contains an ordered sequence of zero or more elements
referenced through variables of type QUE_Elem, which are generally embedded as the first field within
a structure. The QUE_Elem item is used as an internal pointer.

For example, the DEV_Frame structure, which is used by the SIO Module and DEV Module to enqueue
and dequeue I/O buffers, contains a field of type QUE_Elem:

struct DEV_Frame { /* frame object */

 QUE_Elem link; /* must be first field! */

 Ptr addr; /* buffer address */

 size_t size; /* buffer size */

 Arg misc; /* reserved for driver */

 Arg arg; /* user argument */

 Uns cmd; /* mini-driver command */

 Int status; /* status of command */

} DEV_Frame;

Many QUE module functions either are passed or return a pointer to an element having the structure
defined for QUE elements.

The functions QUE_put and QUE_get are atomic in that they manipulate the queue with interrupts
disabled. These functions can therefore be used to safely share queues between tasks, or between tasks
and SWIs or HWIs. All other QUE functions should only be called by tasks, or by tasks and SWIs or HWIs
when they are used in conjunction with some mutual exclusion mechanism (for example, SEM_pend /
SEM_post, TSK_disable / TSK_enable).

Once a queue has been created, use MEM_alloc to allocate elements for the queue.

QUE Manager Properties

The following global property can be set for the QUE module in the QUE Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the QUE objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.QUE.OBJMEMSEG = prog.get("myMEM");

QUE Object Properties

To create a QUE object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var myQue = bios.QUE.create("myQue");

The following property can be set for a QUE object in the PRD Object Properties dialog of the DSP/BIOS
Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this QUE object.

Tconf Name: comment Type: String

Example: myQue.comment = "my QUE";
324 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com QUE_create
C Interface

Syntax
queue = QUE_create(attrs);

Parameters
QUE_Attrs *attrs; /* pointer to queue attributes */

Return Value
QUE_Handle queue; /* handle for new queue object */

Description
QUE_create creates a new queue which is initially empty. If successful, QUE_create returns the handle
of the new queue. If unsuccessful, QUE_create returns NULL unless it aborts (for example, because it
directly or indirectly calls SYS_error, and SYS_error is configured to abort).

If attrs is NULL, the new queue is assigned a default set of attributes. Otherwise, the queue’s attributes
are specified through a structure of type QUE_Attrs.

Note: At present, no attributes are supported for queue objects, and the type QUE_Attrs is
defined as a dummy structure.

All default attribute values are contained in the constant QUE_ATTRS, which can be assigned to a
variable of type QUE_Attrs prior to calling QUE_create.

You can also create a queue by declaring a variable of type QUE_Obj and initializing the queue with
QUE_new.

QUE_create calls MEM_alloc to dynamically create the object’s data structure. MEM_alloc must acquire
a lock to the memory before proceeding. If another thread already holds a lock to the memory, then there
is a context switch. The segment from which the object is allocated is described by the DSP/BIOS objects
property in the MEM Module, page 2–204.

Constraints and Calling Context

• QUE_create cannot be called from a SWI or HWI.

• You can reduce the size of your application program by creating objects with the Tconf rather than
using the XXX_create functions.

See Also
MEM_alloc
QUE_empty
QUE_delete
SYS_error

QUE_create Create an empty queue
SPRU404Q—August 2012 Application Program Interface 325
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

QUE_delete www.ti.com
C Interface

Syntax
QUE_delete(queue);

Parameters
QUE_Handle queue; /* queue handle */

Return Value
Void

Description
QUE_delete uses MEM_free to free the queue object referenced by queue.

QUE_delete calls MEM_free to delete the QUE object. MEM_free must acquire a lock to the memory
before proceeding. If another task already holds a lock to the memory, then there is a context switch.

Constraints and Calling Context

• queue must be empty.

• QUE_delete cannot be called from a SWI or HWI.

• No check is performed to prevent QUE_delete from being used on a statically-created object. If a
program attempts to delete a queue object that was created using Tconf, SYS_error is called.

See Also
QUE_create
QUE_empty

QUE_delete Delete an empty queue
326 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com QUE_dequeue
C Interface

Syntax
elem = QUE_dequeue(queue);

Parameters
QUE_Handle queue; /* queue object handle */

Return Value
Ptr elem; /* pointer to former first element */

Description
QUE_dequeue removes the element from the front of queue and returns elem.

The return value, elem, is a pointer to the element at the front of the QUE. Such elements have a structure
defined similarly to that in the example in the QUE Module topic. The first field in the structure must be
of type QUE_Elem and is used as an internal pointer.

Calling QUE_dequeue with an empty queue returns the queue itself. However, QUE_dequeue is non-
atomic. Therefore, the method described for QUE_get of checking to see if a queue is empty and
returning the first element otherwise is non-atomic.

Note: You should use QUE_get instead of QUE_dequeue if multiple threads share a queue.
QUE_get runs atomically and is never interrupted; QUE_dequeue performs the same
action but runs non-atomically. You can use QUE_dequeue if you disable interrupts or
use a synchronization mechanism such as LCK or SEM to protect the queue. An HWI
or task that preempts QUE_dequeue and operates on the same queue can corrupt the
data structure.

QUE_dequeue is somewhat faster than QUE_get, but you should not use it unless you
know your QUE operation cannot be preempted by another thread that operates on the
same queue.

See Also
QUE_get

QUE_dequeue Remove from front of queue (non-atomically)
SPRU404Q—August 2012 Application Program Interface 327
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

QUE_empty www.ti.com
C Interface

Syntax
empty = QUE_empty(queue);

Parameters
QUE_Handle queue; /* queue object handle */

Return Value
Bool empty; /* TRUE if queue is empty */

Description
QUE_empty returns TRUE if there are no elements in queue, and FALSE otherwise.

See Also
QUE_get

QUE_empty Test for an empty queue
328 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com QUE_enqueue
C Interface

Syntax
QUE_enqueue(queue, elem);

Parameters
QUE_Handle queue; /* queue object handle */
Ptr elem; /* pointer to queue element */

Return Value
Void

Description
QUE_enqueue inserts elem at the end of queue.

The elem parameter must be a pointer to an element to be placed in the QUE. Such elements have a
structure defined similarly to that in the example in the QUE Module topic. The first field in the structure
must be of type QUE_Elem and is used as an internal pointer.

Note: Use QUE_put instead of QUE_enqueue if multiple threads share a queue. QUE_put is
never interrupted; QUE_enqueue performs the same action but runs non-atomically.
You can use QUE_enqueue if you disable interrupts or use a synchronization
mechanism such as LCK or SEM to protect the queue.

QUE_enqueue is somewhat faster than QUE_put, but you should not use it unless you
know your QUE operation cannot be preempted by another thread that operates on the
same queue.

See Also
QUE_put

QUE_enqueue Insert at end of queue (non-atomically)
SPRU404Q—August 2012 Application Program Interface 329
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

QUE_get www.ti.com
C Interface

Syntax
elem = QUE_get(queue);

Parameters
QUE_Handle queue; /* queue object handle */

Return Value
Void *elem; /* pointer to former first element */

Description
QUE_get removes the element from the front of queue and returns elem.

The return value, elem, is a pointer to the element at the front of the QUE. Such elements have a structure
defined similarly to that in the example in the QUE Module topic. The first field in the structure must be
of type QUE_Elem and is used as an internal pointer.

Since QUE_get manipulates the queue with interrupts disabled, the queue can be shared by multiple
tasks, or by tasks and SWIs or HWIs.

Calling QUE_get with an empty queue returns the queue itself. This provides a means for using a single
atomic action to check if a queue is empty, and to remove and return the first element if it is not empty:

if ((QUE_Handle)(elem = QUE_get(q)) != q)

 ` process elem `

Note: Use QUE_get instead of QUE_dequeue if multiple threads share a queue. QUE_get is
never interrupted; QUE_dequeue performs the same action but runs non-atomically.
You can use QUE_dequeue if you disable interrupts or use a synchronization
mechanism such as LCK or SEM to protect the queue.

QUE_dequeue is somewhat faster than QUE_get, but you should not use it unless you
know your QUE operation cannot be preempted by another thread that operates on the
same queue.

See Also
QUE_create
QUE_empty
QUE_put

QUE_get Get element from front of queue (atomically)
330 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com QUE_head
C Interface

Syntax
elem = QUE_head(queue);

Parameters
QUE_Handle queue; /* queue object handle */

Return Value
QUE_Elem *elem; /* pointer to first element */

Description
QUE_head returns a pointer to the element at the front of queue. The element is not removed from the
queue.

The return value, elem, is a pointer to the element at the front of the QUE. Such elements have a structure
defined similarly to that in the example in the QUE Module topic. The first field in the structure must be
of type QUE_Elem and is used as an internal pointer.

Calling QUE_head with an empty queue returns the queue itself.

See Also
QUE_create
QUE_empty
QUE_put

QUE_head Return element at front of queue
SPRU404Q—August 2012 Application Program Interface 331
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

QUE_insert www.ti.com
C Interface

Syntax
QUE_insert(qelem, elem);

Parameters
Ptr qelem; /* element already in queue */
Ptr elem; /* element to be inserted in queue */

Return Value
Void

Description
QUE_insert inserts elem in the queue in front of qelem.

The qelem parameter is a pointer to an existing element of the QUE. The elem parameter is a pointer to
an element to be placed in the QUE. Such elements have a structure defined similarly to that in the
example in the QUE Module topic. The first field in the structure must be of type QUE_Elem and is used
as an internal pointer.

Note: If the queue is shared by multiple tasks, or tasks and SWIs or HWIs, QUE_insert should
be used in conjunction with some mutual exclusion mechanism (for example,
SEM_pend/SEM_post, TSK_disable/ TSK_enable).

See Also
QUE_head
QUE_next
QUE_prev
QUE_remove

QUE_insert Insert in middle of queue (non-atomically)
332 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com QUE_new
C Interface

Syntax
QUE_new(queue);

Parameters
QUE_Handle queue; /* pointer to queue object */

Return Value
Void

Description
QUE_new adjusts a queue object to make the queue empty. This operation is not atomic. A typical use
of QUE_new is to initialize a queue object that has been statically declared instead of being created with
QUE_create. Note that if the queue is not empty, the element(s) in the queue are not freed or otherwise
handled, but are simply abandoned.

If you created a queue by declaring a variable of type QUE_Obj, you can initialize the queue with
QUE_new.

 See Also
QUE_create
QUE_delete
QUE_empty

QUE_new Set a queue to be empty
SPRU404Q—August 2012 Application Program Interface 333
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

QUE_next www.ti.com
C Interface

Syntax
elem = QUE_next(qelem);

Parameters
Ptr qelem; /* element in queue */

Return Value
Ptr elem; /* next element in queue */

Description
QUE_next returns elem which points to the element in the queue after qelem.

The qelem parameter is a pointer to an existing element of the QUE. The return value, elem, is a pointer
to the next element in the QUE. Such elements have a structure defined similarly to that in the example
in the QUE Module topic. The first field in the structure must be of type QUE_Elem and is used as an
internal pointer.

Since QUE queues are implemented as doubly linked lists with a dummy node at the head, it is possible
for QUE_next to return a pointer to the queue itself. Be careful not to call QUE_remove(elem) in this case.

Note: If the queue is shared by multiple tasks, or tasks and SWIs or HWIs, QUE_next should
be used in conjunction with some mutual exclusion mechanism (for example,
SEM_pend/SEM_post, TSK_disable/ TSK_enable).

See Also
QUE_get
QUE_insert
QUE_prev
QUE_remove

QUE_next Return next element in queue (non-atomically)
334 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com QUE_prev
C Interface

Syntax
elem = QUE_prev(qelem);

Parameters
Ptr qelem; /* element in queue */

Return Value
Ptr elem; /* previous element in queue */

Description
QUE_prev returns elem which points to the element in the queue before qelem.

The qelem parameter is a pointer to an existing element of the QUE. The return value, elem, is a pointer
to the previous element in the QUE. Such elements have a structure defined similarly to that in the
example in the QUE Module topic. The first field in the structure must be of type QUE_Elem and is used
as an internal pointer.

Since QUE queues are implemented as doubly linked lists with a dummy node at the head, it is possible
for QUE_prev to return a pointer to the queue itself. Be careful not to call QUE_remove(elem) in this case.

Note: If the queue is shared by multiple tasks, or tasks and SWIs or HWIs, QUE_prev should
be used in conjunction with some mutual exclusion mechanism (for example,
SEM_pend/SEM_post, TSK_disable/ TSK_enable).

See Also
QUE_head
QUE_insert
QUE_next
QUE_remove

QUE_prev Return previous element in queue (non-atomically)
SPRU404Q—August 2012 Application Program Interface 335
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

QUE_put www.ti.com
C Interface

Syntax
QUE_put(queue, elem);

Parameters
QUE_Handle queue; /* queue object handle */
Void *elem; /* pointer to new queue element */

Return Value
Void

Description
QUE_put puts elem at the end of queue.

The elem parameter is a pointer to an element to be placed at the end of the QUE. Such elements have
a structure defined similarly to that in the example in the QUE Module topic. The first field in the structure
must be of type QUE_Elem and is used as an internal pointer.

Since QUE_put manipulates queues with interrupts disabled, queues can be shared by multiple tasks, or
by tasks and SWIs or HWIs.

Note: Use QUE_put instead of QUE_enqueue if multiple threads share a queue. QUE_put is
never interrupted; QUE_enqueue performs the same action but runs non-atomically.
You can use QUE_enqueue if you disable interrupts or use a synchronization
mechanism such as LCK or SEM to protect the queue.

QUE_enqueue is somewhat faster than QUE_put, but you should not use it unless you
know your QUE operation cannot be preempted by another thread that operates on the
same queue.

See Also
QUE_get
QUE_head

QUE_put Put element at end of queue (atomically)
336 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com QUE_remove
C Interface

Syntax
QUE_remove(qelem);

Parameters
Ptr qelem; /* element in queue */

Return Value
Void

Description
QUE_remove removes qelem from the queue.

The qelem parameter is a pointer to an existing element to be removed from the QUE. Such elements
have a structure defined similarly to that in the example in the QUE Module topic. The first field in the
structure must be of type QUE_Elem and is used as an internal pointer.

Since QUE queues are implemented as doubly linked lists with a dummy node at the head, be careful
not to remove the header node. This can happen when qelem is the return value of QUE_next or
QUE_prev. The following code sample shows how qelem should be verified before calling QUE_remove.

QUE_Elem *qelem;.

/* get pointer to first element in the queue */

qelem = QUE_head(queue);

/* scan entire queue for desired element */

while (qelem != queue) {

 if(‘ qelem is the elem we’re looking for ‘) {

 break;

 }

 qelem = QUE_next(qelem);

}

/* make sure qelem is not the queue itself */

if (qelem != queue) {

 QUE_remove(qelem);

}

Note: If the queue is shared by multiple tasks, or tasks and SWIs or HWIs, QUE_remove
should be used in conjunction with some mutual exclusion mechanism (for example,
SEM_pend/SEM_post, TSK_disable/ TSK_enable).

Constraints and Calling Context

QUE_remove should not be called when qelem is equal to the queue itself.

See Also
QUE_head
QUE_insert
QUE_next
QUE_prev

QUE_remove Remove from middle of queue (non-atomically)
SPRU404Q—August 2012 Application Program Interface 337
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

RTDX Module www.ti.com
2.22 RTDX Module

The RTDX modules manage the real-time data exchange settings.

RTDX Data Declaration Macros
• RTDX_CreateInputChannel
• RTDX_CreateOutputChannel

Function Macros
• RTDX_disableInput
• RTDX_disableOutput
• RTDX_enableInput
• RTDX_enableOutput
• RTDX_read
• RTDX_readNB
• RTDX_sizeofInput
• RTDX_write

Channel Test Macros
• RTDX_channelBusy
• RTDX_isInputEnabled
• RTDX_isOutputEnabled

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the RTDX Manager Properties and RTDX Object Properties headings.
For descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
The RTDX module provides the data types and functions for:

• Sending data from the target to the host.

• Sending data from the host to the target.

Name Type Default (Enum Options)

ENABLERTDX Bool true

MODE EnumString "JTAG" ("Simulator")

RTDXDATASEG Reference prog.get("DARAM")

BUFSIZE Int16 258

INTERRUPTMASK Int16 0x00000000

Name Type Default (Enum Options)

comment String "<add comments here>"

channelMode EnumString "output" ("input")
338 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com RTDX Module
Data channels are represented by global structures. A data channel can be used for input or output, but
not both. The contents of an input or output structure are not known to the user. A channel structure has
two states: enabled and disabled. When a channel is enabled, any data written to the channel is sent to
the host. Channels are initially disabled.

The RTDX assembly interface, rtdx.i, is a macro interface file that can be used to interface to RTDX at
the assembly level.

RTDX Manager Properties

The following target configuration properties can be set for the RTDX module in the RTDX Manager
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

• Enable Real-Time Data Exchange (RTDX). This property should be set to true if you want to link
RTDX support into your application.

Tconf Name: ENABLERTDX Type: Bool

Example: bios.RTDX.ENABLERTDX = true;

• RTDX Mode. Select the port configuration mode RTDX should use to establish communication
between the host and target. The default is JTAG for most targets. Set this to simulator if you use a
simulator. The HS-RTDX emulation technology is also available. If this property is set incorrectly, a
message says “RTDX target application does not match emulation protocol“ when you load the
program.

Tconf Name: MODE Type: EnumString

Options: "JTAG", "Simulator"

Example: bios.RTDX.MODE = "JTAG";

• RTDX Data Segment (.rtdx_data). The memory segment used for buffering target-to-host data
transfers. The RTDX message buffer and state variables are placed in this segment.

Tconf Name: RTDXDATASEG Type: Reference

Example: bios.RTDX.RTDXDATASEG = prog.get("myMEM");

• RTDX Buffer Size (MADUs). The size of the RTDX target-to-host message buffer, in minimum
addressable data units (MADUs). The default size is 1032 to accommodate a 1024-byte block and
two control words. HST channels using RTDX are limited by this value.

Tconf Name: BUFSIZE Type: Int16

Example: bios.RTDX.BUFSIZE = 258;

• RTDX Interrupt Mask. This mask interrupts to be temporarily disabled inside critical RTDX sections.
The default value of zero (0) disables all interrupts within critical RTDX sections. Such sections are
short (usually <100 cycles). Disabling interrupts also temporarily disables other RTDX clients and
prevents other RTDX function calls.

You should allow all interrupts to be disabled inside critical RTDX sections if your application makes
any RTDX calls from SWI or TSK threads. If your application does not make RTDX calls from SWI
or TSK threads, you may modify bits in this mask to enable specific high-priority interrupts. See the
RTDX documentation for details.

Tconf Name: INTERRUPTMASK Type: Int16

Example: bios.RTDX.INTERRUPTMASK = 0x00000000;
SPRU404Q—August 2012 Application Program Interface 339
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

RTDX Module www.ti.com
RTDX Object Properties

To create an RTDX object in a configuration script, use the following syntax. The Tconf examples that
follow assume the object has been created as shown here.

var myRtdx = bios.RTDX.create("myRtdx");

The following properties can be set for an RTDX object in the RTDX Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this RTDX object.

Tconf Name: comment Type: String

Example: myRtdx.comment = "my RTDX";

• Channel Mode. Select output if the RTDX channel handles output from the DSP to the host. Select
input if the RTDX channel handles input to the DSP from the host.

Tconf Name: channelMode Type: EnumString

Options: "input", "output"

Example: myRtdx.channelMode = "output";

Note: Programs must be linked with C run-time libraries and contain the symbol _main.
340 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com RTDX_channelBusy
C Interface

Syntax
int RTDX_channelBusy(RTDX_inputChannel *pichan);

Parameters
pichan /* Identifier for the input data channel */

Return Value
int /* Status: 0 = Channel is not busy. */

/* non-zero = Channel is busy. */

Reentrant
yes

Description
RTDX_channelBusy is designed to be used in conjunction with RTDX_readNB. The return value
indicates whether the specified data channel is currently in use or not. If a channel is busy reading, the
test/control flag (TC) bit of status register 0 (STO) is set to 1. Otherwise, the TC bit is set to O.

Constraints and Calling Context

• RTDX_channelBusy cannot be called by an HWI function.

See Also
RTDX_readNB

RTDX_channelBusy Return status indicating whether data channel is busy
SPRU404Q—August 2012 Application Program Interface 341
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

RTDX_CreateInputChannel www.ti.com
C Interface

Syntax
RTDX_CreateInputChannel(ichan);

Parameters
ichan /* Label for the input channel */

Return Value
none

Reentrant

no

Description
This macro declares and initializes to 0, the RTDX data channel for input.

Data channels must be declared as global objects. A data channel can be used either for input or output,
but not both. The contents of an input or output data channel are unknown to the user.

A channel can be in one of two states: enabled or disabled. Channels are initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They can also be enabled or disabled
remotely from Code Composer or its COM interface.

Constraints and Calling Context

• RTDX_CreateInputChannel cannot be called by an HWI function.

See Also
RTDX_CreateOutputChannel

RTDX_CreateInputChannel Declare input channel structure
342 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com RTDX_CreateOutputChannel
C Interface

Syntax
RTDX_CreateOutputChannel(ochan);

Parameters
ochan /* Label for the output channel */

Return Value
none

Reentrant

no

Description
This macro declares and initializes the RTDX data channels for output.

Data channels must be declared as global objects. A data channel can be used either for input or output,
but not both. The contents of an input or output data channel are unknown to the user.

A channel can be in one of two states: enabled or disabled. Channels are initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They can also be enabled or disabled
remotely from Code Composer Studio or its OLE interface.

Constraints and Calling Context

• RTDX_CreateOutputChannel cannot be called by an HWI function.

See Also
RTDX_CreateInputChannel

RTDX_CreateOutputChannel Declare output channel structure
SPRU404Q—August 2012 Application Program Interface 343
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

RTDX_disableInput www.ti.com
C Interface

Syntax
void RTDX_disableInput(RTDX_inputChannel *ichan);

Parameters
ichan /* Identifier for the input data channel */

Return Value
void

Reentrant
yes

Description
A call to a disable function causes the specified input channel to be disabled.

Constraints and Calling Context

• RTDX_disableInput cannot be called by an HWI function.

See Also
RTDX_disableOutput
RTDX_enableInput
RTDX_read

RTDX_disableInput Disable an input data channel
344 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com RTDX_disableOutput
C Interface

Syntax
void RTDX_disableOutput(RTDX_outputChannel *ochan);

Parameters
ochan /* Identifier for an output data channel */

Return Value
void

Reentrant
yes

Description
A call to a disable function causes the specified data channel to be disabled.

Constraints and Calling Context

• RTDX_disableOutput cannot be called by an HWI function.

See Also
RTDX_disableInput
RTDX_enableOutput
RTDX_read

RTDX_disableOutput Disable an output data channel
SPRU404Q—August 2012 Application Program Interface 345
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

RTDX_enableInput www.ti.com
C Interface

Syntax
void RTDX_enableInput(RTDX_inputChannel *ichan);

Parameters
ochan /* Identifier for an output data channel */
ichan /* Identifier for the input data channel */

Return Value
void

Reentrant
yes

Description
A call to an enable function causes the specified data channel to be enabled.

Constraints and Calling Context

• RTDX_enableInput cannot be called by an HWI function.

See Also
RTDX_disableInput
RTDX_enableOutput
RTDX_read

RTDX_enableInput Enable an input data channel
346 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com RTDX_enableOutput
C Interface

Syntax
void RTDX_enableOutput(RTDX_outputChannel *ochan);

Parameters
ochan /* Identifier for an output data channel */

Return Value
void

Reentrant
yes

Description
A call to an enable function causes the specified data channel to be enabled.

Constraints and Calling Context

• RTDX_enableOutput cannot be called by an HWI function.

See Also
RTDX_disableOutput
RTDX_enableInput
RTDX_write

RTDX_enableOutput Enable an output data channel
SPRU404Q—August 2012 Application Program Interface 347
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

RTDX_isInputEnabled www.ti.com
C Interface

Syntax
RTDX_isInputEnabled(ichan);

Parameter
ichan /* Identifier for an input channel. */

Return Value
0 /* Not enabled. */
non-zero /* Enabled. */

Reentrant

yes

Description
The RTDX_isInputEnabled macro tests to see if an input channel is enabled and sets the test/control flag
(TC bit) of status register 0 to 1 if the input channel is enabled. Otherwise, it sets the TC bit to 0.

Constraints and Calling Context

• RTDX_isInputEnabled cannot be called by an HWI function.

See Also
RTDX_isOutputEnabled

RTDX_isInputEnabled Return status of the input data channel
348 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com RTDX_isOutputEnabled
C Interface

Syntax
RTDX_isOutputEnabled(ohan);

Parameter
ochan /* Identifier for an output channel. */

Return Value
0 /* Not enabled. */
non-zero /* Enabled. */

Reentrant

yes

Description
The RTDX_isOutputEnabled macro tests to see if an output channel is enabled and sets the test/control
flag (TC bit) of status register 0 to 1 if the output channel is enabled. Otherwise, it sets the TC bit to 0.

Constraints and Calling Context

• RTDX_isOutputEnabled cannot be called by an HWI function.

See Also
RTDX_isInputEnabled

RTDX_isOutputEnabled Return status of the output data channel
SPRU404Q—August 2012 Application Program Interface 349
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

RTDX_read www.ti.com
C Interface

Syntax
int RTDX_read(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters
ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives the data */
bsize /* The size of the buffer in address units */

Return Value
> 0 /* The number of address units of data */

/* actually supplied in buffer. */
0 /* Failure. Cannot post read request */

/* because target buffer is full. */
RTDX_READ_ERROR /* Failure. Channel currently busy or

not enabled. */

Reentrant
yes

Description
RTDX_read causes a read request to be posted to the specified input data channel. If the channel is
enabled, RTDX_read waits until the data has arrived. On return from the function, the data has been
copied into the specified buffer and the number of address units of data actually supplied is returned. The
function returns RTDX_READ_ERROR immediately if the channel is currently busy reading or is not
enabled.

When RTDX_read is used, the target application notifies the RTDX Host Library that it is ready to receive
data and then waits for the RTDX Host Library to write data to the target buffer. When the data is received,
the target application continues execution.

The specified data is to be written to the specified output data channel, provided that channel is enabled.
On return from the function, the data has been copied out of the specified user buffer and into the RTDX
target buffer. If the channel is not enabled, the write operation is suppressed. If the RTDX target buffer is
full, failure is returned.

When RTDX_readNB is used, the target application notifies the RTDX Host Library that it is ready to
receive data, but the target application does not wait. Execution of the target application continues
immediately. Use RTDX_channelBusy and RTDX_sizeofInput to determine when the RTDX Host Library
has written data to the target buffer.

Constraints and Calling Context

• RTDX_read cannot be called by an HWI function.

See Also
RTDX_channelBusy
RTDX_readNB

RTDX_read Read from an input channel
350 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com RTDX_readNB
C Interface

Syntax
int RTDX_readNB(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters
ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives

the data */
bsize /* The size of the buffer in address units */

Return Value
RTDX_OK /* Success.*/
0 (zero) /* Failure. The target buffer is full. */
RTDX_READ_ERROR /*Channel is currently busy reading. */

Reentrant
yes

Description
RTDX_readNB is a nonblocking form of the function RTDX_read. RTDX_readNB issues a read request
to be posted to the specified input data channel and immediately returns. If the channel is not enabled or
the channel is currently busy reading, the function returns RTDX_READ_ERROR. The function returns
0 if it cannot post the read request due to lack of space in the RTDX target buffer.

When the function RTDX_readNB is used, the target application notifies the RTDX Host Library that it is
ready to receive data but the target application does not wait. Execution of the target application
continues immediately. Use the RTDX_channelBusy and RTDX_sizeofInput functions to determine when
the RTDX Host Library has written data into the target buffer.

When RTDX_read is used, the target application notifies the RTDX Host Library that it is ready to receive
data and then waits for the RTDX Host Library to write data into the target buffer. When the data is
received, the target application continues execution.

Constraints and Calling Context

• RTDX_readNB cannot be called by an HWI function.

See Also
RTDX_channelBusy
RTDX_read
RTDX_sizeofInput

RTDX_readNB Read from input channel without blocking
SPRU404Q—August 2012 Application Program Interface 351
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

RTDX_sizeofInput www.ti.com
C Interface

Syntax
int RTDX_sizeofInput(RTDX_inputChannel *pichan);

Parameters
pichan /* Identifier for the input data channel */

Return Value
int /* Number of sizeof units of data actually */

/* supplied in buffer */

Reentrant
yes

Description
RTDX_sizeofInput is designed to be used in conjunction with RTDX_readNB after a read operation has
completed. The function returns the number of sizeof units actually read from the specified data channel
into the accumulator (register A).

Constraints and Calling Context

• RTDX_sizeofInput cannot be called by an HWI function.

See Also
RTDX_readNB

RTDX_sizeofInput Return the number of MADUs read from a data channel
352 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com RTDX_write
C Interface

Syntax
int RTDX_write(RTDX_outputChannel *ochan, void *buffer, int bsize);

Parameters
ochan /* Identifier for the output data channel */
buffer /* A pointer to the buffer containing the data */
bsize /* The size of the buffer in address units */

Return Value
int /* Status: non-zero = Success. 0 = Failure. */

Reentrant
yes

Description
RTDX_write causes the specified data to be written to the specified output data channel, provided that
channel is enabled. On return from the function, the data has been copied out of the specified user buffer
and into the RTDX target buffer. If the channel is not enabled, the write operation is suppressed. If the
RTDX target buffer is full, Failure is returned.

Constraints and Calling Context

• RTDX_write cannot be called by an HWI function.

See Also
RTDX_read

RTDX_write Write to an output channel
SPRU404Q—August 2012 Application Program Interface 353
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SEM Module www.ti.com
2.23 SEM Module

The SEM module is the semaphore manager.

Functions

• SEM_count. Get current semaphore count

• SEM_create. Create a semaphore

• SEM_delete. Delete a semaphore

• SEM_new. Initialize a semaphore

• SEM_pend. Wait for a counting semaphore

• SEM_pendBinary. Wait for a binary semaphore

• SEM_post. Signal a counting semaphore

• SEM_postBinary. Signal a binary semaphore

• SEM_reset. Reset semaphore

Constants, Types, and Structures
typedef struct SEM_Obj *SEM_Handle;
 /* handle for semaphore object */

struct SEM_Attrs { /* semaphore attributes */
 String name; /* printable name */
};

SEM_Attrs SEM_ATTRS = { /* default attribute values */
 "", /* name */
};

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the SEM Manager Properties and SEM Object Properties topics. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
The SEM module provides a set of functions that manipulate semaphore objects accessed through
handles of type SEM_Handle. Semaphores can be used for task synchronization and mutual exclusion.

Semaphores can be counting semaphores or binary semaphores. The APIs for binary and counting
semaphores cannot be mixed for a single semaphore.

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

Name Type Default

comment String "<add comments here>"

count Int16 0
354 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SEM Module
• Counting semaphores keep track of the number of times the semaphore has been posted with
SEM_post. This is useful, for example, if you have a group of resources that are shared between
tasks. Such tasks might call SEM_pend to see if a resource is available before using one. SEM_pend
and SEM_post are for use with counting semaphores.

• Binary semaphores can have only two states: available and unavailable. They can be used to share
a single resource between tasks. They can also be used for a basic signaling mechanism, where the
semaphore can be posted multiple times and a subsequent call to SEM_pendBinary clears the count
and returns. Binary semaphores do not keep track of the count; they simply track whether the
semaphore has been posted or not. SEM_pendBinary and SEM_postBinary are for use with binary
semaphores.

The MBX module uses a counting semaphore internally to manage the count of free (or full) mailbox
elements. Another example of a counting semaphore is an ISR that might fill multiple buffers of data for
consumption by a task. After filling each buffer, the ISR puts the buffer on a queue and calls SEM_post.
The task waiting for the data calls SEM_pend, which simply decrements the semaphore count and
returns or blocks if the count is 0. The semaphore count thus tracks the number of full buffers available
for the task. The GIO and SIO modules follow this model and use counting semaphores.

The internal data structures used for binary and counting semaphores are the same; the only change is
whether semaphore values are incremented and decremented or simply set to zero and non-zero.

SEM_pend and SEM_pendBinary are used to wait for a semaphore. The timeout parameter allows the
task to wait until a timeout, wait indefinitely, or not wait at all. The return value is used to indicate if the
semaphore was signaled successfully.

SEM_post and SEM_postBinary are used to signal a semaphore. If a task is waiting for the semaphore,
SEM_post/SEM_postBinary removes the task from the semaphore queue and puts it on the ready queue.
If no tasks are waiting, SEM_post simply increments the semaphore count and returns. (SEM_postBinary
sets the semaphore count to non-zero and returns.)

SEM Manager Properties

The following global property can be set for the SEM module in the SEM Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the SEM objects created with Tconf.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.SEM.OBJMEMSEG = prog.get("myMEM");

SEM Object Properties

To create a SEM object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var mySem = bios.SEM.create("mySem");

The following properties can be set for a SEM object in the SEM Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this SEM object.

Tconf Name: comment Type: String

Example: mySem.comment = "my SEM";

• Initial semaphore count. Set this property to the desired initial semaphore count.

Tconf Name: count Type: Int16

Example: mySem.count = 0;
SPRU404Q—August 2012 Application Program Interface 355
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SEM_count www.ti.com
C Interface

Syntax
count = SEM_count(sem);

Parameters
SEM_Handle sem; /* semaphore handle */

Return Value
Int count; /* current semaphore count */

Description
SEM_count returns the current value of the semaphore specified by sem.

SEM_count Get current semaphore count
356 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SEM_create
C Interface

Syntax
sem = SEM_create(count, attrs);

Parameters
Int count; /* initial semaphore count */
SEM_Attrs *attrs; /* pointer to semaphore attributes */

Return Value
SEM_Handle sem; /* handle for new semaphore object */

Description
SEM_create creates a new semaphore object which is initialized to count. If successful, SEM_create
returns the handle of the new semaphore. If unsuccessful, SEM_create returns NULL unless it aborts (for
example, because it directly or indirectly calls SYS_error, and SYS_error is configured to abort).

If attrs is NULL, the new semaphore is assigned a default set of attributes. Otherwise, the semaphore’s
attributes are specified through a structure of type SEM_Attrs.

struct SEM_Attrs { /* semaphore attributes */
 String name; /* printable name */
};

Default attribute values are contained in the constant SEM_ATTRS, which can be assigned to a variable
of type SEM_Attrs before calling SEM_create.

SEM_Attrs SEM_ATTRS = { /* default attribute values */
 "", /* name */
};

SEM_create calls MEM_alloc to dynamically create the object’s data structure. MEM_alloc must acquire
a lock to the memory before proceeding. If another thread already holds a lock to the memory, there is a
context switch. The segment from which the object is allocated is described by the DSP/BIOS objects
property in the MEM Module.

Constraints and Calling Context

• count must be greater than or equal to 0.

• SEM_create cannot be called from a SWI or HWI.

• You can reduce the size of your application by creating objects with Tconf rather than XXX_create
functions.

See Also
MEM_alloc
SEM_delete

SEM_create Create a semaphore
SPRU404Q—August 2012 Application Program Interface 357
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SEM_delete www.ti.com
C Interface

Syntax
SEM_delete(sem);

Parameters
SEM_Handle sem; /* semaphore object handle */

Return Value
Void

Description
SEM_delete uses MEM_free to free the semaphore object referenced by sem.

SEM_delete calls MEM_free to delete the SEM object. MEM_free must acquire a lock to the memory
before proceeding. If another task already holds a lock to the memory, then there is a context switch.

Constraints and Calling Context

• No tasks should be pending on sem when SEM_delete is called.

• SEM_delete cannot be called from a SWI or HWI.

• No check is performed to prevent SEM_delete from being used on a statically-created object. If a
program attempts to delete a semaphore object that was created using Tconf, SYS_error is called.

See Also
SEM_create

SEM_delete Delete a semaphore
358 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SEM_new
C Interface

Syntax
Void SEM_new(sem, count);

Parameters
SEM_Handle sem; /* pointer to semaphore object */
Int count; /* initial semaphore count */

Return Value
Void

Description
SEM_new initializes the semaphore object pointed to by sem with count. The function should be used on
a statically created semaphore for initialization purposes only. No task switch occurs when calling
SEM_new.

Constraints and Calling Context

• count must be greater than or equal to 0

• no tasks should be pending on the semaphore when SEM_new is called

See Also
QUE_new

SEM_new Initialize semaphore object
SPRU404Q—August 2012 Application Program Interface 359
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SEM_pend www.ti.com
C Interface

Syntax
status = SEM_pend(sem, timeout);

Parameters
SEM_Handle sem; /* semaphore object handle */
Uns timeout; /* return after this many system clock ticks */

Return Value
Bool status; /* TRUE if successful, FALSE if timeout */

Description
SEM_pend and SEM_post are for use with counting semaphores, which keep track of the number of
times the semaphore has been posted. This is useful, for example, if you have a group of resources that
are shared between tasks. In contrast, SEM_pendBinary and SEM_postBinary are for use with binary
semaphores, which can have only an available or unavailable state. The APIs for binary and counting
semaphores cannot be mixed for a single semaphore.

If the semaphore count is greater than zero (available), SEM_pend decrements the count and returns
TRUE. If the semaphore count is zero (unavailable), SEM_pend suspends execution of the current task
until SEM_post is called or the timeout expires.

If timeout is SYS_FOREVER, a task stays suspended until SEM_post is called on this semaphore. If
timeout is 0, SEM_pend returns immediately. If timeout expires (or timeout is 0) before the semaphore is
available, SEM_pend returns FALSE. Otherwise SEM_pend returns TRUE.

If timeout is not equal to SYS_FOREVER or 0, the task suspension time can be up to 1 system clock tick
less than timeout due to granularity in system timekeeping.

A task switch occurs when calling SEM_pend if the semaphore count is 0 and timeout is not zero.

Constraints and Calling Context

• SEM_pend can be called from a TSK with any timeout value, but if called from an HWI or SWI the
timeout must be 0.

• SEM_pend cannot be called from the program’s main() function.

• If you need to call SEM_pend within a TSK_disable/TSK_enable block, you must use a timeout of 0.

• SEM_pend should not be called from within an IDL function. Doing so prevents analysis tools from
gathering run-time information.

See Also
SEM_pendBinary
SEM_post

SEM_pend Wait for a semaphore
360 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SEM_pendBinary
C Interface

Syntax
status = SEM_pendBinary(sem, timeout);

Parameters
SEM_Handle sem; /* semaphore object handle */
Uns timeout; /* return after this many system clock ticks */

Return Value
Bool status; /* TRUE if successful, FALSE if timeout */

Description
SEM_pendBinary and SEM_postBinary are for use with binary semaphores. These are semaphores that
can have only two states: available and unavailable. They can be used to share a single resource
between tasks. They can also be used for a basic signaling mechanism, where the semaphore can be
posted multiple times and a subsequent call to SEM_pendBinary clears the count and returns. Binary
semaphores do not keep track of the count; they simply track whether the semaphore has been posted
or not.

In contrast, SEM_pend and SEM_post are for use with counting semaphores, which keep track of the
number of times the semaphore has been posted. This is useful, for example, if you have a group of
resources that are shared between tasks. The APIs for binary and counting semaphores cannot be mixed
for a single semaphore.

If the semaphore count is non-zero (available), SEM_pendBinary sets the count to zero (unavailable) and
returns TRUE.

If the semaphore count is zero (unavailable), SEM_pendBinary suspends execution of this task until
SEM_post is called or the timeout expires.

If timeout is SYS_FOREVER, a task remains suspended until SEM_postBinary is called on this
semaphore. If timeout is 0, SEM_pendBinary returns immediately.

If timeout expires (or timeout is 0) before the semaphore is available, SEM_pendBinary returns FALSE.
Otherwise SEM_pendBinary returns TRUE.

If timeout is not equal to SYS_FOREVER or 0, the task suspension time can be up to 1 system clock tick
less than timeout due to granularity in system timekeeping.

A task switch occurs when calling SEM_pendBinary if the semaphore count is 0 and timeout is not zero.

Constraints and Calling Context

• This API can be called from a TSK with any timeout value, but if called from an HWI or SWI the
timeout must be 0.

• This API cannot be called from the program’s main() function.

• If you need to call this API within a TSK_disable/TSK_enable block, you must use a timeout of 0.

• This API should not be called from within an IDL function. Doing so prevents analysis tools from
gathering run-time information.

See Also
SEM_pend
SEM_postBinary

SEM_pendBinary Wait for a binary semaphore
SPRU404Q—August 2012 Application Program Interface 361
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SEM_post www.ti.com
C Interface

Syntax
SEM_post(sem);

Parameters
SEM_Handle sem; /* semaphore object handle */

Return Value
Void

Description
SEM_pend and SEM_post are for use with counting semaphores, which keep track of the number of
times the semaphore has been posted. This is useful, for example, if you have a group of resources that
are shared between tasks.

In contrast, SEM_pendBinary and SEM_postBinary are for use with binary semaphores, which can have
only an available or unavailable state. The APIs for binary and counting semaphores cannot be mixed for
a single semaphore.

SEM_post readies the first task waiting for the semaphore. If no task is waiting, SEM_post simply
increments the semaphore count and returns.

A task switch occurs when calling SEM_post if a higher priority task is made ready to run.

Constraints and Calling Context

• When called within an HWI, the code sequence calling SEM_post must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

• If SEM_post is called from within a TSK_disable/TSK_enable block, the semaphore operation is not
processed until TSK_enable is called.

See Also
SEM_pend
SEM_postBinary

SEM_post Signal a semaphore
362 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SEM_postBinary
C Interface

Syntax
SEM_postBinary(sem);

Parameters
SEM_Handle sem; /* semaphore object handle */

Return Value
Void

Description
SEM_pendBinary and SEM_postBinary are for use with binary semaphores. These are semaphores that
can have only two states: available and unavailable. They can be used to share a single resource
between tasks. They can also be used for a basic signaling mechanism, where the semaphore can be
posted multiple times and a subsequent call to SEM_pendBinary clears the count and returns. Binary
semaphores do not keep track of the count; they simply track whether the semaphore has been posted
or not.

In contrast, SEM_pend and SEM_post are for use with counting semaphores, which keep track of the
number of times the semaphore has been posted. This is useful, for example, if you have a group of
resources that are shared between tasks. The APIs for binary and counting semaphores cannot be mixed
for a single semaphore.

SEM_postBinary readies the first task in the list if one or more tasks are waiting. SEM_postBinary sets
the semaphore count to non-zero (available) if no tasks are waiting.

A task switch occurs when calling SEM_postBinary if a higher priority task is made ready to run.

Constraints and Calling Context

• When called within an HWI, the code sequence calling this API must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

• If this API is called from within a TSK_disable/TSK_enable block, the semaphore operation is not
processed until TSK_enable is called.

See Also
SEM_post
SEM_pendBinary

SEM_postBinary Signal a binary semaphore
SPRU404Q—August 2012 Application Program Interface 363
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SEM_reset www.ti.com
C Interface

Syntax
SEM_reset(sem, count);

Parameters
SEM_Handle sem; /* semaphore object handle */
Int count; /* semaphore count */

Return Value
Void

Description
SEM_reset resets the semaphore count to count.

No task switch occurs when calling SEM_reset.

Constraints and Calling Context

• count must be greater than or equal to 0.

• No tasks should be waiting on the semaphore when SEM_reset is called.

• SEM_reset cannot be called by an HWI or a SWI.

See Also
SEM_create

SEM_reset Reset semaphore count
364 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO Module
2.24 SIO Module

The SIO module is the stream input and output manager.

Functions

• SIO_bufsize. Size of the buffers used by a stream

• SIO_create. Create stream

• SIO_ctrl. Perform a device-dependent control operation

• SIO_delete. Delete stream

• SIO_flush. Idle a stream by flushing buffers

• SIO_get. Get buffer from stream

• SIO_idle. Idle a stream

• SIO_issue. Send a buffer to a stream

• SIO_put. Put buffer to a stream

• SIO_ready. Determine if device is ready

• SIO_reclaim. Request a buffer back from a stream

• SIO_reclaimx. Request a buffer and frame status back from a stream

• SIO_segid. Memory segment used by a stream

• SIO_select. Select a ready device

• SIO_staticbuf. Acquire static buffer from stream

Constants, Types, and Structures
#define SIO_STANDARD 0 /* open stream for */
 /* standard streaming model */
#define SIO_ISSUERECLAIM 1 /* open stream for */
 /* issue/reclaim streaming model */

#define SIO_INPUT 0 /* open for input */
#define SIO_OUTPUT 1 /* open for output */

typedef SIO_Handle; /* stream object handle */

typedef DEV_Callback SIO_Callback;

struct SIO_Attrs { /* stream attributes */

 Int nbufs; /* number of buffers */

 Int segid; /* buffer segment ID */

 size_t align; /* buffer alignment */

 Bool flush; /* TRUE->don't block in DEV_idle*/

 Uns model; /* SIO_STANDARD,SIO_ISSUERECLAIM*/

 Uns timeout; /* passed to DEV_reclaim */

 SIO_Callback *callback;

 /* initializes callback in DEV_Obj */

} SIO_Attrs;
SPRU404Q—August 2012 Application Program Interface 365
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO Module www.ti.com
SIO_Attrs SIO_ATTRS = {

 2, /* nbufs */

 0, /* segid */

 0, /* align */

 FALSE, /* flush */
 SIO_STANDARD, /* model */
 SYS_FOREVER /* timeout */
 NULL /* callback */
};

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the SIO Manager Properties and SIO Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
The stream manager provides efficient real-time device-independent I/O through a set of functions that
manipulate stream objects accessed through handles of type SIO_Handle. The device independence is
afforded by having a common high-level abstraction appropriate for real-time applications, continuous
streams of data, that can be associated with a variety of devices. All I/O programming is done in a high-
level manner using these stream handles to the devices and the stream manager takes care of
dispatching into the underlying device drivers.

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

USEISSUERECLAIM Bool false

Name Type Default (Enum Options)

comment String "<add comments here>"

deviceName Reference prog.get("dev-name")

controlParameter String ""

mode EnumString "input" ("output")

bufSize Int16 0x80

numBufs Int16 2

bufSegId Reference prog.get("SIO.OBJMEMSEG")

bufAlign EnumInt 1 (2, 4, 8, 16, 32, 64, ..., 32768)

flush Bool false

modelName EnumString "Standard" ("Issue/Reclaim")

allocStaticBuf Bool false

timeout Int16 -1

useCallBackFxn Bool false

callBackFxn Extern prog.extern("FXN_F_nop")

arg0 Arg 0

arg1 Arg 0
366 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO Module
For efficiency, streams are treated as sequences of fixed-size buffers of data rather than just sequences
of MADUs.

Streams can be opened and closed during program execution using the functions SIO_create and
SIO_delete, respectively.

The SIO_issue and SIO_reclaim function calls are enhancements to the basic DSP/BIOS device model.
These functions provide a second usage model for streaming, referred to as the issue/reclaim model. It
is a more flexible streaming model that allows clients to supply their own buffers to a stream, and to get
them back in the order that they were submitted. The SIO_issue and SIO_reclaim functions also provide
a user argument that can be used for passing information between the stream client and the stream
devices.

Both SWI and TSK threads can be used with the SIO module. However, SWI threads can be used only
with the issue/reclaim model, and only then if the timeout parameter is 0. TSK threads can be used with
either model.

SIO Manager Properties

The following global properties can be set for the SIO module in the SIO Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the SIO objects created with Tconf.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.SIO.OBJMEMSEG = prog.get("myMEM");

• Use Only Issue/Reclaim Model. Enable this option if you want the SIO module to use only the
issue/reclaim model. If this option is false (the default) you can also use the standard model.

Tconf Name: USEISSUERECLAIM Type: Bool

Example: bios.SIO.USEISSUERECLAIM = false;

SIO Object Properties

To create an SIO object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var mySio = bios.SIO.create("mySio");

The following properties can be set for an SIO object in the SIO Object Properties dialog of the DSP/BIOS
Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this SIO object.

Tconf Name: comment Type: String

Example: mySio.comment = "my SIO";

• Device. Select the device to which you want to bind this SIO object. User-defined devices are listed
along with DGN and DPI devices.

Tconf Name: deviceName Type: Reference

Example: mySio.deviceName = prog.get("UDEV0");

• Device Control String. Type the device suffix to be passed to any devices stacked below the device
connected to this stream.

Tconf Name: controlParameter Type: String

Example: mySio.controlParameter = "/split4/codec";
SPRU404Q—August 2012 Application Program Interface 367
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO Module www.ti.com
• Mode. Select input if this stream is to be used for input to the application program and output if this
stream is to be used for output.

Tconf Name: mode Type: EnumString

Options: "input", "output"

Example: mySio.mode = "input";

• Buffer size. If this stream uses the Standard model, this property controls the size of buffers (in
MADUs) allocated for use by the stream. If this stream uses the Issue/Reclaim model, the stream
can handle buffers of any size.

Tconf Name: bufSize Type: Int16

Example: mySio.bufSize = 0x80;

• Number of buffers. If this stream uses the Standard model, this property controls the number of
buffers allocated for use by the stream. If this stream uses the Issue/Reclaim model, the stream can
handle up to the specified Number of buffers.

Tconf Name: numBufs Type: Int16

Example: mySio.numBufs = 2;

• Place buffers in memory segment. Select the memory segment to contain the stream buffers if
Model is Standard.

Tconf Name: bufSegId Type: Reference

Example: mySio.bufSegId = prog.get("myMEM");

• Buffer alignment. Specify the memory alignment to use for stream buffers if Model is Standard. For
example, if you select 16, the buffer must begin at an address that is a multiple of 16. The default is
1, which means the buffer can begin at any address.

Tconf Name: bufAlign Type: EnumInt

Options: 1, 2, 4, 8, 16, 32, 64, ..., 32768

Example: mySio.bufAlign = 1;

• Flush. Check this box if you want the stream to discard all pending data and return without blocking
if this object is idled at run-time with SIO_idle.

Tconf Name: flush Type: Bool

Example: mySio.flush = false;

• Model. Select Standard if you want all buffers to be allocated when the stream is created. Select
Issue/Reclaim if your program is to allocate the buffers and supply them using SIO_issue. Both SWI
and TSK threads can be used with the SIO module. However, SWI threads can be used only with the
issue/reclaim model, and only then if the timeout parameter is 0. TSK threads can be used with either
model.

Tconf Name: modelName Type: EnumString

Options: "Standard", "Issue/Reclaim"

Example: mySio.modelName = "Standard";

• Allocate Static Buffer(s). If this property is set to true, the configuration allocates stream buffers for
the user. The SIO_staticbuf function is used to acquire these buffers from the stream. When the
Standard model is used, checking this box causes one buffer more than the Number of buffers
property to be allocated. When the Issue/Reclaim model is used, buffers are not normally allocated.
Checking this box causes the number of buffers specified by the Number of buffers property to be
allocated.

Tconf Name: allocStaticBuf Type: Bool

Example: mySio.allocStaticBuf = false;
368 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO Module
• Timeout for I/O operation. This parameter specifies the length of time the I/O operations SIO_get,
SIO_put, and SIO_reclaim wait for I/O. The device driver’s Dxx_reclaim function typically uses this
timeout while waiting for I/O. If the timeout expires before a buffer is available, the I/O operation
returns (-1 * SYS_ETIMEOUT) and no buffer is returned.

Tconf Name: timeout Type: Int16

Example: mySio.timeout = -1;

• use callback function. Check this box if you want to use this SIO object with a callback function. In
most cases, the callback function is SWI_andnHook or a similar function that posts a SWI. Checking
this box allows the SIO object to be used with SWI threads.

Tconf Name: useCallBackFxn Type: Bool

Example: mySio.useCallBackFxn = false;

• callback function. A function for the SIO object to call. In most cases, the callback function is
SWI_andnHook or a similar function that posts a SWI. This function gets called by the class driver
(see the DIO Adapter) in the class driver's callback function. This callback function in the class driver
usually gets called in the mini-driver code as a result of the HWI.

Tconf Name: callBackFxn Type: Extern

Example: mySio.callBackFxn = prog.extern("SWI_andnHook");

• argument 0. The first argument to pass to the callback function. If the callback function is
SWI_andnHook, this argument should be a SWI object handle.

Tconf Name: arg0 Type: Arg

Example: mySio.arg0 = prog.get("mySwi");

• argument 1. The second argument to pass to the callback function. If the callback function is
SWI_andnHook, this argument should be a value mask.

Tconf Name: arg1 Type: Arg

Example: mySio.arg1 = 2;
SPRU404Q—August 2012 Application Program Interface 369
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_bufsize www.ti.com
C Interface

Syntax
size = SIO_bufsize(stream);

Parameters
SIO_Handle stream;

Return Value
size_t size;

Description
SIO_bufsize returns the size of the buffers used by stream.

This API can be used only if the model is SIO_STANDARD.

See Also
SIO_segid

SIO_bufsize Return the size of the buffers used by a stream
370 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_create
C Interface

Syntax
stream = SIO_create(name, mode, bufsize, attrs);

Parameters
String name; /* name of device */
Int mode; /* SIO_INPUT or SIO_OUTPUT */
size_t bufsize; /* stream buffer size */
SIO_Attrs *attrs; /* pointer to stream attributes */

Return Value
SIO_Handle stream; /* stream object handle */

Description
SIO_create creates a new stream object and opens the device specified by name. If successful,
SIO_create returns the handle of the new stream object. If unsuccessful, SIO_create returns NULL
unless it aborts (for example, because it directly or indirectly calls SYS_error, and SYS_error is
configured to abort).

Internally, SIO_create calls Dxx_open to open a device.

The mode parameter specifies whether the stream is to be used for input (SIO_INPUT) or output
(SIO_OUTPUT).

If the stream is being opened in SIO_STANDARD mode, SIO_create allocates buffers of size bufsize for
use by the stream. Initially these buffers are placed on the device todevice queue for input streams, and
the device fromdevice queue for output streams.

If the stream is being opened in SIO_ISSUERECLAIM mode, SIO_create does not allocate any buffers
for the stream. In SIO_ISSUERECLAIM mode all buffers must be supplied by the client via the SIO_issue
call. It does, however, prepare the stream for a maximum number of buffers of the specified size.

If the attrs parameter is NULL, the new stream is assigned the default set of attributes specified by
SIO_ATTRS. The following stream attributes are currently supported:
struct SIO_Attrs { /* stream attributes */

 Int nbufs; /* number of buffers */

 Int segid; /* buffer segment ID */

 size_t align; /* buffer alignment */

 Bool flush; /* TRUE->don't block in DEV_idle */

 Uns model; /* SIO_STANDARD,SIO_ISSUERECLAIM */

 Uns timeout; /* passed to DEV_reclaim */

 SIO_Callback *callback;
 /* initialize callback in DEV_Obj */

} SIO_Attrs;

• nbufs. Specifies the number of buffers allocated by the stream in the SIO_STANDARD usage model,
or the number of buffers to prepare for in the SIO_ISSUERECLAIM usage model. The default value
of nbufs is 2. In the SIO_ISSUERECLAIM usage model, nbufs is the maximum number of buffers that
can be outstanding (that is, issued but not reclaimed) at any point in time.

• segid. Specifies the memory segment for stream buffers. Use the memory segment names defined
in the configuration. The default value is 0, meaning that buffers are to be allocated from the
"Segment for DSP/BIOS objects" property in the MEM Manager Properties.

SIO_create Open a stream
SPRU404Q—August 2012 Application Program Interface 371
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_create www.ti.com
• align. Specifies the memory alignment for stream buffers. The default value is 0, meaning that no
alignment is needed.

• flush. Indicates the desired behavior for an output stream when it is deleted. If flush is TRUE, a call
to SIO_delete causes the stream to discard all pending data and return without blocking. If flush is
FALSE, a call to SIO_delete causes the stream to block until all pending data has been processed.
The default value is FALSE.

• model. Indicates the usage model that is to be used with this stream. The two usage models are
SIO_ISSUERECLAIM and SIO_STANDARD. The default usage model is SIO_STANDARD.

• timeout. Specifies the length of time the device driver waits for I/O completion before returning an
error (for example, SYS_ETIMEOUT). timeout is usually passed as a parameter to SEM_pend by the
device driver. The default is SYS_FOREVER which indicates that the driver waits forever. If timeout
is SYS_FOREVER, the task remains suspended until a buffer is available to be returned by the
stream. The timeout attribute applies to the I/O operations SIO_get, SIO_put, and SIO_reclaim. If
timeout is 0, the I/O operation returns immediately. If the timeout expires before a buffer is available
to be returned, the I/O operation returns the value of (-1 * SYS_ETIMEOUT). Otherwise the I/O
operation returns the number of valid MADUs in the buffer, or -1 multiplied by an error code.

• callback. Specifies a pointer to channel-specific callback information. The SIO_Callback structure is
defined by the SIO module to match the DEV_Callback structure. This structure contains the callback
function and two function arguments. The callback function is typically SWI_andnHook or a similar
function that posts a SWI. Callbacks can only be used with the SIO_ISSUERECLAIM model.

Existing DEV drivers do not use this callback function. While DEV drivers can be modified to use this
callback, it is not recommended. Instead, the IOM device driver model is recommended for drivers
that need the SIO callback feature. IOM drivers use the DIO module to interface with the SIO
functions.

SIO_create calls MEM_alloc to dynamically create the object’s data structure. MEM_alloc must acquire
a lock to the memory before proceeding. If another thread already holds a lock to the memory, then there
is a context switch. The segment from which the object is allocated is set by the "Segment for DSP/BIOS
objects" property in the MEM Manager Properties.

Constraints and Calling Context

• A stream can only be used by one task simultaneously. Catastrophic failure can result if more than
one task calls SIO_get (or SIO_issue/ SIO_reclaim) on the same input stream, or more than one task
calls SIO_put (or SIO_issue / SIO_reclaim) on the same output stream.

• SIO_create creates a stream dynamically. Do not call SIO_create on a stream that was created with
Tconf.

• You can reduce the size of your application program by creating objects with Tconf rather than using
the XXX_create functions. However, streams that are to be used with stacking drivers must be
created dynamically with SIO_create.

• SIO_create cannot be called from a SWI or HWI.

See Also
Dxx_open
MEM_alloc
SEM_pend
SIO_delete
SIO_issue
SIO_reclaim
SYS_error
372 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_ctrl
C Interface

Syntax
status = SIO_ctrl(stream, cmd, arg);

Parameters
SIO_Handle stream; /* stream handle */
Uns cmd; /* command to device */
Arg arg; /* arbitrary argument */

Return Value
Int status; /* device status */

Description
SIO_ctrl causes a control operation to be issued to the device associated with stream. cmd and arg are
passed directly to the device.

SIO_ctrl returns SYS_OK if successful, and a non-zero device-dependent error value if unsuccessful.

Internally, SIO_ctrl calls Dxx_ctrl to send control commands to a device.

Constraints and Calling Context

• SIO_ctrl cannot be called from an HWI.

See Also
Dxx_ctrl

SIO_ctrl Perform a device-dependent control operation
SPRU404Q—August 2012 Application Program Interface 373
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_delete www.ti.com
C Interface

Syntax
status = SIO_delete(stream);

Parameters
SIO_Handle stream; /* stream object */

Return Value
Int status; /* result of operation */

Description
SIO_delete idles the device before freeing the stream object and buffers.

If the stream being deleted was opened for input, then any pending input data is discarded. If the stream
being deleted was opened for output, the method for handling data is determined by the value of the flush
field in the SIO_Attrs structure (passed in with SIO_create). If flush is TRUE, SIO_delete discards all
pending data and returns without blocking. If flush is FALSE, SIO_delete blocks until all pending data has
been processed by the stream.

SIO_delete returns SYS_OK if and only if the operation is successful.

SIO_delete calls MEM_free to delete a stream. MEM_free must acquire a lock to the memory before
proceeding. If another task already holds a lock to the memory, then there is a context switch.

Internally, SIO_delete first calls Dxx_idle to idle the device. Then it calls Dxx_close.

Constraints and Calling Context

• SIO_delete cannot be called from a SWI or HWI.

• No check is performed to prevent SIO_delete from being used on a statically-created object. If a
program attempts to delete a stream object that was created using Tconf, SYS_error is called.

• In SIO_ISSUERECLAIM mode, all buffers issued to a stream must be reclaimed before SIO_delete
is called. Failing to reclaim such buffers causes a memory leak.

See Also
SIO_create
SIO_flush
SIO_idle
Dxx_idle
Dxx_close

SIO_delete Close a stream and free its buffers
374 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_flush
C Interface

Syntax
status = SIO_flush(stream);

Parameters
SIO_Handle stream; /* stream handle */

Return Value
Int status; /* result of operation */

Description
SIO_flush causes all pending data to be discarded regardless of the mode of the stream. SIO_flush
differs from SIO_idle in that SIO_flush never suspends program execution to complete processing of
data, even for a stream created in output mode.

The underlying device connected to stream is idled as a result of calling SIO_flush. In general, the
interrupt is disabled for the device.

One of the purposes of this function is to provide synchronization with the external environment.

SIO_flush returns SYS_OK if and only if the stream is successfully idled.

Internally, SIO_flush calls Dxx_idle and flushes all pending data.

If a callback was specified in the SIO_Attrs structure used with SIO_create, then SIO_flush performs no
processing and returns SYS_OK.

Constraints and Calling Context

• SIO_flush cannot be called from an HWI.

• If SIO_flush is called from a SWI, no action is performed.

See Also
Dxx_idle
SIO_create
SIO_idle

SIO_flush Flush a stream
SPRU404Q—August 2012 Application Program Interface 375
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_get www.ti.com
C Interface

Syntax
nmadus = SIO_get(stream, bufp);

Parameters
SIO_Handle stream /* stream handle */
Ptr *bufp; /* pointer to a buffer */

Return Value
Int nmadus; /* number of MADUs read or error if negative */

Description
SIO_get exchanges an empty buffer with a non-empty buffer from stream. The bufp is an input/output
parameter which points to an empty buffer when SIO_get is called. When SIO_get returns, bufp points to
a new (different) buffer, and nmadus indicates success or failure of the call.

SIO_get blocks until a buffer can be returned to the caller, or until the stream's timeout attribute expires
(see SIO_create). If a timeout occurs, the value (-1 * SYS_ETIMEOUT) is returned. If timeout is not equal
to SYS_FOREVER or 0, the task suspension time can be up to 1 system clock tick less than timeout due
to granularity in system timekeeping.

To indicate success, SIO_get returns a positive value for nmadus. As a success indicator, nmadus is the
number of MADUs received from the stream. To indicate failure, SIO_get returns a negative value for
nmadus. As a failure indicator, nmadus is the actual error code multiplied by -1.

An inconsistency exists between the sizes of buffers in a stream and the return types corresponding to
these sizes. While all buffer sizes in a stream are of type size_t, APIs that return a buffer size return a
type of Int. The inconsistency is due to a change in stream buffer sizes and the need to retain the return
type for backward compatibility. Because of this inconsistency, it is not possible to return the correct buffer
size when the actual buffer size exceeds the size of an Int type. This issue has the following implications:

• If the actual buffer size is less than/equal to the maximum positive Int value (15 bits). Check
the return value for negative values, which should be treated as errors. Positive values reflect the
correct size.

• If the actual buffer size is greater than the maximum positive Int value. Ignore the return value.
There is little room for this situation on ’C55x large model since size_t is the same as unsigned int.
Since the sign in Int takes up one bit, the size_t type contains just one more bit than an Int. If you are
using the ’C55x huge model, size_t is 32 bits and Int allows positive integers only up to 15 bits.

For other architectures, size_t is:

• ’C28x - unsigned long

• ’C54x/’C55x/’C6x - unsigned int

Since this operation is generally accomplished by redirection rather than by copying data, references to
the contents of the buffer pointed to by bufp must be recomputed after the call to SIO_get.

A task switch occurs when calling SIO_get if there are no non-empty data buffers in stream.

Internally, SIO_get calls Dxx_issue and Dxx_reclaim for the device.

SIO_get Get a buffer from stream
376 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_get
Constraints and Calling Context

• The stream must not be created with attrs.model set to SIO_ISSUERECLAIM. The results of calling
SIO_get on a stream created for the issue/reclaim streaming model are undefined.

• SIO_get cannot be called from a SWI or HWI.

• This API is callable from the program’s main() function only if the stream's configured timeout
attribute is 0, or if it is certain that there is a buffer available to be returned.

See Also
Dxx_issue
Dxx_reclaim
SIO_put
SPRU404Q—August 2012 Application Program Interface 377
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_idle www.ti.com
C Interface

Syntax
status = SIO_idle(stream);

Parameters
SIO_Handle stream; /* stream handle */

Return Value
Int status; /* result of operation */

Description
If stream is being used for output, SIO_idle causes any currently buffered data to be transferred to the
output device associated with stream. SIO_idle suspends program execution for as long as is required
for the data to be consumed by the underlying device.

If stream is being used for input, SIO_idle causes any currently buffered data to be discarded. The
underlying device connected to stream is idled as a result of calling SIO_idle. In general, the interrupt is
disabled for this device.

If discarding of unrendered output is desired, use SIO_flush instead.

One of the purposes of this function is to provide synchronization with the external environment.

SIO_idle returns SYS_OK if and only if the stream is successfully idled.

Internally, SIO_idle calls Dxx_idle to idle the device.

If a callback was specified in the SIO_Attrs structure used with SIO_create, then SIO_idle performs no
processing and returns SYS_OK.

Constraints and Calling Context

• SIO_idle cannot be called from an HWI.

• If SIO_idle is called from a SWI, no action is performed.

See Also
Dxx_idle
SIO_create
SIO_flush

SIO_idle Idle a stream
378 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_issue
C Interface

Syntax
status = SIO_issue(stream, pbuf, nmadus, arg);

Parameters
SIO_Handle stream; /* stream handle */
Ptr pbuf; /* pointer to a buffer */
size_t nmadus; /* number of MADUs in the buffer */
Arg arg; /* user argument */

Return Value
Int status; /* result of operation */

Description
SIO_issue is used to send a buffer and its related information to a stream. The buffer-related information
consists of the logical length of the buffer (nmadus), and the user argument to be associated with that
buffer. SIO_issue sends a buffer to the stream and return to the caller without blocking. It also returns an
error code indicating success (SYS_OK) or failure of the call.

Internally, SIO_issue calls Dxx_issue after placing a new input frame on the driver’s device->todevice
queue.

Failure of SIO_issue indicates that the stream was not able to accept the buffer being issued or that there
was a device error when the underlying Dxx_issue was called. In the first case, the application is probably
issuing more frames than the maximum MADUs allowed for the stream, before it reclaims any frames. In
the second case, the failure reveals an underlying device driver or hardware problem. If SIO_issue fails,
SIO_idle should be called for an SIO_INPUT stream, and SIO_flush should be called for an
SIO_OUTPUT stream, before attempting more I/O through the stream.

The interpretation of nmadus, the logical size of a buffer, is direction-dependent. For a stream opened in
SIO_OUTPUT mode, the logical size of the buffer indicates the number of valid MADUs of data it
contains. For a stream opened in SIO_INPUT mode, the logical length of a buffer indicates the number
of MADUs being requested by the client. In either case, the logical size of the buffer must be less than or
equal to the physical size of the buffer.

The argument arg is not interpreted by DSP/BIOS, but is offered as a service to the stream client.
DSP/BIOS and all DSP/BIOS-compliant device drivers preserve the value of arg and maintain its
association with the data that it was issued with. arg provides a user argument as a method for a client
to associate additional information with a particular buffer of data.

SIO_issue is used in conjunction with SIO_reclaim to operate a stream opened in SIO_ISSUERECLAIM
mode. The SIO_issue call sends a buffer to a stream, and SIO_reclaim retrieves a buffer from a stream.
In normal operation each SIO_issue call is followed by an SIO_reclaim call. Short bursts of multiple
SIO_issue calls can be made without an intervening SIO_reclaim call, but over the life of the stream
SIO_issue and SIO_reclaim must be called the same number of times.

At any given point in the life of a stream, the number of SIO_issue calls can exceed the number of
SIO_reclaim calls by a maximum of nbufs. The value of nbufs is determined by the SIO_create call or by
setting the Number of buffers property for the object in the configuration.

SIO_issue Send a buffer to a stream
SPRU404Q—August 2012 Application Program Interface 379
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_issue www.ti.com
Note: An SIO_reclaim call should not be made without at least one outstanding SIO_issue
call. Calling SIO_reclaim with no outstanding SIO_issue calls has undefined results.

Constraints and Calling Context

• The stream must be created with attrs.model set to SIO_ISSUERECLAIM.

• SIO_issue cannot be called from an HWI.

See Also
Dxx_issue
SIO_create
SIO_reclaim
380 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_put
C Interface

Syntax
nmadus = SIO_put(stream, bufp, nmadus);

Parameters
SIO_Handle stream; /* stream handle */
Ptr *bufp; /* pointer to a buffer */
size_t nmadus; /* number of MADUs in the buffer */

Return Value
Int nmadus; /* number of MADUs, negative if error */

Description
SIO_put exchanges a non-empty buffer with an empty buffer. The bufp parameter is an input/output
parameter that points to a non-empty buffer when SIO_put is called. When SIO_put returns, bufp points
to a new (different) buffer, and nmadus indicates success or failure of the call.

SIO_put blocks until a buffer can be returned to the caller, or until the stream's timeout attribute expires
(see SIO_create). If a timeout occurs, the value (-1 * SYS_ETIMEOUT) is returned. If timeout is not equal
to SYS_FOREVER or 0, the task suspension time can be up to 1 system clock tick less than timeout due
to granularity in system timekeeping.

To indicate success, SIO_put returns a positive value for nmadus. As a success indicator, nmadus is the
number of valid MADUs in the buffer returned by the stream (usually zero). To indicate failure, SIO_put
returns a negative value (the actual error code multiplied by -1).

An inconsistency exists between the sizes of buffers in a stream and the return types corresponding to
these sizes. While all buffer sizes in a stream are of type size_t, APIs that return a buffer size return a
type of Int. The inconsistency is due to a change in stream buffer sizes and the need to retain the return
type for backward compatibility. Because of this inconsistency, it is not possible to return the correct buffer
size when the actual buffer size exceeds the size of an Int type. This issue has the following implications:

• If the actual buffer size is less than/equal to the maximum positive Int value (15 bits). Check
the return value for negative values, which should be treated as errors. Positive values reflect the
correct size.

• If the actual buffer size is greater than the maximum positive Int value. Ignore the return value.
There is little room for this situation on ’C55x large model since size_t is the same as unsigned int.
Since the sign in Int takes up one bit, the size_t type contains just one more bit than an Int. If you are
using the ’C55x huge model, size_t is 32 bits and Int allows positive integers only up to 15 bits.

Since this operation is generally accomplished by redirection rather than by copying data, references to
the contents of the buffer pointed to by bufp must be recomputed after the call to SIO_put.

A task switch occurs when calling SIO_put if there are no empty data buffers in the stream.

Internally, SIO_put calls Dxx_issue and Dxx_reclaim for the device.

Constraints and Calling Context

• The stream must not be created with attrs.model set to SIO_ISSUERECLAIM. The results of calling
SIO_put on a stream created for the issue/reclaim model are undefined.

SIO_put Put a buffer to a stream
SPRU404Q—August 2012 Application Program Interface 381
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_put www.ti.com
• SIO_put cannot be called from a SWI or HWI.

• This API is callable from the program’s main() function only if the stream's configured timeout
attribute is 0, or if it is certain that there is a buffer available to be returned.

See Also
Dxx_issue
Dxx_reclaim
SIO_get
382 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_ready
C Interface

Syntax
status = SIO_ready(stream);

Parameters
SIO_Handle stream;

Return Value
Int status; /* result of operation */

Description

SIO_ready returns TRUE if a stream is ready for input or output.

If you are using SIO objects with SWI threads, you may want to use SIO_ready to avoid calling
SIO_reclaim when it may fail because no buffers are available.

SIO_ready is similar to SIO_select, except that it does not block. You can prevent SIO_select from
blocking by setting the timeout to zero, however, SIO_ready is more efficient because SIO_select
performs SEM_pend with a timeout of zero. SIO_ready simply polls the stream to see if the device is
ready.

See Also
SIO_select

SIO_ready Determine if device for stream is ready
SPRU404Q—August 2012 Application Program Interface 383
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_reclaim www.ti.com
C Interface

Syntax
nmadus = SIO_reclaim(stream, pbufp, parg);

Parameters
SIO_Handle stream; /* stream handle */
Ptr *pbufp; /* pointer to the buffer */
Arg *parg; /* pointer to a user argument */

Return Value
Int nmadus; /* number of MADUs or error if negative */

Description
SIO_reclaim is used to request a buffer back from a stream. It returns a pointer to the buffer, the number
of valid MADUs in the buffer, and a user argument (parg). After the SIO_reclaim call parg points to the
same value that was passed in with this buffer using the SIO_issue call.

If you want to return a frame-specific status along with the buffer, use SIO_reclaimx instead of
SIO_reclaim.

Internally, SIO_reclaim calls Dxx_reclaim, then it gets the frame from the driver’s device->fromdevice
queue.

If a stream was created in SIO_OUTPUT mode, then SIO_reclaim returns an empty buffer, and nmadus
is zero, since the buffer is empty. If a stream was opened in SIO_INPUT mode, SIO_reclaim returns a
non-empty buffer, and nmadus is the number of valid MADUs of data in the buffer.

If SIO_reclaim is called from a TSK thread, it blocks (in either mode) until a buffer can be returned to the
caller, or until the stream’s timeout attribute expires (see SIO_create), and it returns a positive number or
zero (indicating success), or a negative number (indicating an error condition). If timeout is not equal to
SYS_FOREVER or 0, the task suspension time can be up to 1 system clock tick less than timeout due
to granularity in system timekeeping.

If SIO_reclaim is called from a SWI thread, it returns an error if it is called when no buffer is available.
SIO_reclaim never blocks when called from a SWI.

To indicate success, SIO_reclaim returns a positive value for nmadus. As a success indicator, nmadus
is the number of valid MADUs in the buffer. To indicate failure, SIO_reclaim returns a negative value for
nmadus. As a failure indicator, nmadus is the actual error code multiplied by -1.

Failure of SIO_reclaim indicates that no buffer was returned to the client. Therefore, if SIO_reclaim fails,
the client should not attempt to de-reference pbufp, since it is not guaranteed to contain a valid buffer
pointer.

An inconsistency exists between the sizes of buffers in a stream and the return types corresponding to
these sizes. While all buffer sizes in a stream are of type size_t, APIs that return a buffer size return a
type of Int. The inconsistency is due to a change in stream buffer sizes and the need to retain the return
type for backward compatibility. Because of this inconsistency, it is not possible to return the correct buffer
size when the actual buffer size exceeds the size of an Int type. This issue has the following implications:

SIO_reclaim Request a buffer back from a stream
384 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_reclaim
• If the actual buffer size is less than/equal to the maximum positive Int value (15 bits). Check
the return value for negative values, which should be treated as errors. Positive values reflect the
correct size.

• If the actual buffer size is greater than the maximum positive Int value. Ignore the return value.
There is little room for this situation on ’C55x large model since size_t is the same as unsigned int.
Since the sign in Int takes up one bit, the size_t type contains just one more bit than an Int. If you are
using the ’C55x huge model, size_t is 32 bits and Int allows positive integers only up to 15 bits.

SIO_reclaim is used in conjunction with SIO_issue to operate a stream opened in SIO_ISSUERECLAIM
mode. The SIO_issue call sends a buffer to a stream, and SIO_reclaim retrieves a buffer from a stream.
In normal operation each SIO_issue call is followed by an SIO_reclaim call. Short bursts of multiple
SIO_issue calls can be made without an intervening SIO_reclaim call, but over the life of the stream
SIO_issue and SIO_reclaim must be called the same number of times. The number of SIO_issue calls
can exceed the number of SIO_reclaim calls by a maximum of nbufs at any given time. The value of nbufs
is determined by the SIO_create call or by setting the Number of buffers property for the object in the
configuration.

Note: An SIO_reclaim call should not be made without at least one outstanding SIO_issue
call. Calling SIO_reclaim with no outstanding SIO_issue calls has undefined results.

SIO_reclaim only returns buffers that were passed in using SIO_issue. It also returns the buffers in the
same order that they were issued.

A task switch occurs when calling SIO_reclaim if timeout is not set to 0, and there are no data buffers
available to be returned.

Constraints and Calling Context

• The stream must be created with attrs.model set to SIO_ISSUERECLAIM.

• There must be at least one outstanding SIO_issue when an SIO_reclaim call is made.

• SIO_reclaim returns an error if it is called from a SWI when no buffer is available. SIO_reclaim does
not block if called from a SWI.

• All frames issued to a stream must be reclaimed before closing the stream.

• SIO_reclaim cannot be called from a HWI.

• This API is callable from the program’s main() function only if the stream's configured timeout
attribute is 0, or if it is certain that there is a buffer available to be returned.

See Also
Dxx_reclaim
SIO_issue
SIO_create
SIO_reclaimx
SPRU404Q—August 2012 Application Program Interface 385
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_reclaimx www.ti.com
C Interface

Syntax
nmadus = SIO_reclaimx(stream, *pbufp, *parg, *pfstatus);

Parameters
SIO_Handle stream; /* stream handle */
Ptr *pbufp; /* pointer to the buffer */
Arg *parg; /* pointer to a user argument */
Int *pfstatus; /* pointer to frame status */

Return Value
Int nmadus; /* number of MADUs or error if negative */

Description
SIO_reclaimx is identical to SIO_reclaim, except that is also returns a frame-specific status in the Int
pointed to by the pfstatus parameter.

The device driver can use the frame-specific status to pass frame-specific status information to the
application. This allows the device driver to fill in the status for each frame, and gives the application
access to that status.

The returned frame status is valid only if SIO_reclaimx() returns successfully. If the nmadus value
returned is negative, the frame status should not be considered accurate.

Constraints and Calling Context

• The stream must be created with attrs.model set to SIO_ISSUERECLAIM.

• There must be at least one outstanding SIO_issue when an SIO_reclaimx call is made.

• SIO_reclaimx returns an error if it is called from a SWI when no buffer is available. SIO_reclaimx does
not block if called from a SWI.

• All frames issued to a stream must be reclaimed before closing the stream.

• SIO_reclaimx cannot be called from a HWI.

• This API is callable from the program’s main() function only if the stream's configured timeout
attribute is 0, or if it is certain that there is a buffer available to be returned.

See Also
SIO_reclaim

SIO_reclaimx Request a buffer back from a stream, including frame status
386 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_segid
C Interface

Syntax
segid = SIO_segid(stream);

Parameters
SIO_Handle stream;

Return Value
Int segid; /* memory segment ID */

Description
SIO_segid returns the identifier of the memory segment that stream uses for buffers.

See Also
SIO_bufsize

SIO_segid Return the memory segment used by the stream
SPRU404Q—August 2012 Application Program Interface 387
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SIO_select www.ti.com
C Interface

Syntax
mask = SIO_select(streamtab, nstreams, timeout);

Parameters
SIO_Handle streamtab; /* stream table */
Int nstreams; /* number of streams */
Uns timeout; /* return after this many system clock ticks */

Return Value
Uns mask; /* stream ready mask */

Description
SIO_select waits until one or more of the streams in the streamtab[] array is ready for I/O (that is, it does
not block when an I/O operation is attempted).

streamtab[] is an array of streams where nstreams < 16. The timeout parameter indicates the number of
system clock ticks to wait before a stream becomes ready. If timeout is 0, SIO_select returns immediately.
If timeout is SYS_FOREVER, SIO_select waits until one of the streams is ready. Otherwise, SIO_select
waits for up to 1 system clock tick less than timeout due to granularity in system timekeeping.

The return value is a mask indicating which streams are ready for I/O. A 1 in bit position j indicates the
stream streamtab[j] is ready.

SIO_select results in a context switch if no streams are ready for I/O.

Internally, SIO_select calls Dxx_ready to determine if the device is ready for an I/O operation.

SIO_ready is similar to SIO_select, except that it does not block. You can prevent SIO_select from
blocking by setting the timeout to zero, however, SIO_ready is more efficient in this situation because
SIO_select performs SEM_pend with a timeout of zero. SIO_ready simply polls the stream to see if the
device is ready.

For the SIO_STANDARD model in SIO_INPUT mode only, if stream I/O has not been started (that is, if
SIO_get has not been called), SIO_select calls Dxx_issue for all empty frames to start the device.

Constraints and Calling Context

• streamtab must contain handles of type SIO_Handle returned from prior calls to SIO_create.

• streamtab[] is an array of streams; streamtab[i] corresponds to bit position i in mask.

• SIO_select cannot be called from an HWI.

• SIO_select can only be called from a SWI if the timeout value is zero.

See Also
Dxx_ready
SIO_get
SIO_put
SIO_ready
SIO_reclaim

SIO_select Select a ready device
388 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SIO_staticbuf
C Interface

Syntax
nmadus = SIO_staticbuf(stream, bufp);

Parameters
SIO_Handle stream; /* stream handle */
Ptr *bufp; /* pointer to a buffer */

Return Value
Int nmadus; /* number of MADUs in buffer */

Description
SIO_staticbuf returns buffers for static streams that were configured statically. Buffers are allocated for
static streams by checking the Allocate Static Buffer(s) check box for the related SIO object.

SIO_staticbuf returns the size of the buffer or 0 if no more buffers are available from the stream.

An inconsistency exists between the sizes of buffers in a stream and the return types corresponding to
these sizes. While all buffer sizes in a stream are of type size_t, APIs that return a buffer size return a
type of Int. This due to a change in stream buffer sizes and the need to retain the return type for backward
compatibility. Because of this inconsistency, it is not possible to return the correct buffer size when the
actual buffer size exceeds the size of an Int type. This issue has the following implications:

• If the actual buffer size is less than/equal to the maximum positive Int value (15 bits). Check
the return value for negative values, which indicate errors. Positive values reflect the correct size.

• If the actual buffer size is greater than the maximum positive Int value. Ignore the return value.
There is little room for this situation on ’C55x large model since size_t is the same as unsigned int.
Since the sign in Int takes up one bit, the size_t type contains just one more bit than an Int. If you are
using the ’C55x huge model, size_t is 32 bits and Int allows positive integers only up to 15 bits.

SIO_staticbuf can be called multiple times for SIO_ISSUERECLAIM model streams.

SIO_staticbuf must be called to acquire all static buffers before calling SIO_get, SIO_put, SIO_issue or
SIO_reclaim.

Constraints and Calling Context

• SIO_staticbuf should only be called for streams that are defined statically using Tconf.

• SIO_staticbuf should only be called for static streams whose "Allocate Static Buffer(s)" property has
been set to true.

• SIO_staticbuf cannot be called after SIO_get, SIO_put, SIO_issue or SIO_reclaim have been called
for the given stream.

• SIO_staticbuf cannot be called from an HWI.

See Also

SIO_get

SIO_staticbuf Acquire static buffer from stream
SPRU404Q—August 2012 Application Program Interface 389
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

STS Module www.ti.com
2.25 STS Module

The STS module is the statistics objects manager.

Functions

• STS_add. Update statistics using provided value

• STS_delta. Update statistics using difference between provided value and setpoint

• STS_reset. Reset values stored in STS object

• STS_set. Save a setpoint value

Constants, Types, and Structures
struct STS_Obj {
 LgInt num; /* count */
 LgInt acc; /* total value */
 LgInt max; /* maximum value */
}

Note: STS objects should not be shared across threads. Therefore, STS_add, STS_delta,
STS_reset, and STS_set are not reentrant.

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the STS Manager Properties and STS Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
The STS module manages objects called statistics accumulators. Each STS object accumulates the
following statistical information about an arbitrary 32-bit wide data series:

• Count. The number of values in an application-supplied data series

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

previousVal Int32 0

unitType EnumString "Not time based"
("High resolution time based",
"Low resolution time based")

operation EnumString "Nothing" ("A * x", "A * x + B",
"(A * x + B) / C")

numA Int32 1

numB Int32 0

numC Int32 1
390 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com STS Module
• Total. The sum of the individual data values in this series

• Maximum. The largest value already encountered in this series

Using the count and total, the Statistics View analysis tool calculates the average on the host.

Statistics are accumulated in 32-bit variables on the target and in 64-bit variables on the host. When the
host polls the target for real-time statistics, it resets the variables on the target. This minimizes space
requirements on the target while allowing you to keep statistics for long test runs.

Default STS Tracing
In the RTA Control Panel, you can enable statistics tracing for the following modules by marking the
appropriate checkbox. You can also set the HWI Object Properties to perform various STS operations on
registers, addresses, or pointers.

Except for tracing TSK execution, your program does not need to include any calls to STS functions in
order to gather these statistics. The default units for the statistics values are shown in Table Table 2-6.

Table 2-6: Statistics Units for HWI, PIP, PRD, and SWI Modules

Custom STS Objects
You can create custom STS objects using Tconf. The STS_add operation updates the count, total, and
maximum using the value you provide. The STS_set operation sets a previous value. The STS_delta
operation accumulates the difference between the value you pass and the previous value and updates
the previous value to the value you pass.

By using custom STS objects and the STS operations, you can do the following:

• Count the number of occurrences of an event. You can pass a value of 0 to STS_add. The count
statistic tracks how many times your program calls STS_add for this STS object.

• Track the maximum and average values for a variable in your program. For example, suppose
you pass amplitude values to STS_add. The count tracks how many times your program calls
STS_add for this STS object. The total is the sum of all the amplitudes. The maximum is the largest
value. The Statistics View calculates the average amplitude.

• Track the minimum value for a variable in your program. Negate the values you are monitoring
and pass them to STS_add. The maximum is the negative of the minimum value.

• Time events or monitor incremental differences in a value. For example, suppose you want to
measure the time between hardware interrupts. You would call STS_set when the program begins
running and STS_delta each time the interrupt routine runs, passing the result of CLK_gethtime each
time. STS_delta subtracts the previous value from the current value. The count tracks how many
times the interrupt routine was performed. The maximum is the largest number of clock counts
between interrupt routines. The Statistics View also calculates the average number of clock counts.

Module Units

HWI Gather statistics on monitored values within HWIs

PIP Number of frames read from or written to data pipe (count only)

PRD Number of ticks elapsed from time that the PRD object is ready to run to end of execution

SWI Instruction cycles elapsed from time posted to completion

TSK Instruction cycles elapsed from time TSK is made ready to run until the application calls
TSK_deltatime.
SPRU404Q—August 2012 Application Program Interface 391
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

STS Module www.ti.com
• Monitor differences between actual values and desired values. For example, suppose you want
to make sure a value stays within a certain range. Subtract the midpoint of the range from the value
and pass the absolute value of the result to STS_add. The count tracks how many times your
program calls STS_add for this STS object. The total is the sum of all deviations from the middle of
the range. The maximum is the largest deviation. The Statistics View calculates the average
deviation.

You can further customize the statistics data by setting the STS Object Properties to apply a printf format
to the Total, Max, and Average fields in the Statistics View window and choosing a formula to apply to the
data values on the host.

Statistics Data
Gathering by the
Statistics View
Analysis Tool

The statistics manager allows the creation of any number of statistics objects, which in turn can be used
by the application to accumulate simple statistics about a time series. This information includes the 32-
bit maximum value, the last 32-bit value passed to the object, the number of samples (up to 232 - 1
samples), and the 32-bit sum of all samples.

These statistics are accumulated on the target in real-time until the host reads and clears these values
on the target. The host, however, continues to accumulate the values read from the target in a host buffer
which is displayed by the Statistics View real-time analysis tool. Provided that the host reads and clears
the target statistics objects faster than the target can overflow the 32-bit wide values being accumulated,
no information loss occurs.

Using Tconf, you can select a Host Operation for an STS object. The statistics are filtered on the host
using the operation and variables you specify. Figure Figure 2-11 shows the effects of the (A x X + B) / C
operation.

Figure 2-11. Statistics Accumulation on the Host

STS Manager Properties

The following global property can be set for the STS module in the STS Manager Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains STS objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.STS.OBJMEMSEG = prog.get("myMEM");
392 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com STS Module
STS Object Properties

To create an STS object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var mySts = bios.STS.create("mySts");

The following properties can be set for an STS object in the STS Object Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this STS object.

Tconf Name: comment Type: String

Example: mySts.comment = "my STS";

• prev. The initial 32-bit history value to use in this object.

Tconf Name: previousVal Type: Int32

Example: mySts.previousVal = 0;

• unit type. The unit type property enables you to choose the type of time base units.

— Not time based. If you select this unit type, the values are displayed in the Statistics View without
applying any conversion.

— High-resolution time based. If you select this type, the Statistics View, by default, presents results
in units of instruction cycles.

— Low-resolution time based. If you select this unit type, the default Statistics View presents results
in timer interrupt units.

Tconf Name: unitType Type: EnumString

Options: "Not time based", "High resolution time based", "Low resolution time based"

Example: mySts.unitType = "Not time based";

• host operation. The expression evaluated (by the host) on the data for this object before it is
displayed by the Statistics View real-time analysis tool. The operation can be:

— A x X
— A x X + B
— (A x X + B) / C

Tconf Name: operation Type: EnumString

Options: "Nothing", "A * x", "A * x + B", "(A * x + B) / C"

Example: mySts.operation = "Nothing";

• A, B, C. The integer parameters used by the expression specified by the Host Operation property
above.

Tconf Name: numA Type: Int32
Tconf Name: numB Type: Int32
Tconf Name: numC Type: Int32
Example:mySts.numA = 1;

mySts.numB = 0;
mySts.numC = 1;
SPRU404Q—August 2012 Application Program Interface 393
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

STS_add www.ti.com
C Interface

Syntax
STS_add(sts, value);

Parameters
STS_Handle sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value
Void

Reentrant
no

Description
STS_add updates a custom STS object’s Total, Count, and Max fields using the data value you provide.

For example, suppose your program passes 32-bit amplitude values to STS_add. The Count field tracks
how many times your program calls STS_add for this STS object. The Total field tracks the total of all the
amplitudes. The Max field holds the largest value passed to this point. The Statistics View analysis tool
calculates the average amplitude.

You can count the occurrences of an event by passing a dummy value (such as 0) to STS_add and
watching the Count field.

You can view the statistics values with the Statistics View analysis tool by enabling statistics in the
DSP/BIOSRTA Control Panel window and choosing your custom STS object in the
DSP/BIOSStatistics View window.

See Also
STS_delta
STS_reset
STS_set
TRC_disable
TRC_enable

STS_add Update statistics using the provided value
394 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com STS_delta
C Interface

Syntax
STS_delta(sts,value);

Parameters
STS_Handle sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value
Void

Reentrant
no

Description
Each STS object contains a previous value that can be initialized with Tconf or with a call to STS_set. A
call to STS_delta subtracts the previous value from the value it is passed and then invokes STS_add with
the result to update the statistics. STS_delta also updates the previous value with the value it is passed.

STS_delta can be used in conjunction with STS_set to monitor the difference between a variable and a
desired value or to benchmark program performance. You can benchmark code by using paired calls to
STS_set and STS_delta that pass the value provided by CLK_gethtime.

STS_set(&sts, CLK_gethtime());
 "processing to be benchmarked"

STS_delta(&sts, CLK_gethtime());

Constraints and Calling Context

• Before the first call to STS_delta is made, the previous value of the STS object should be initialized
either with a call to STS_set or by setting the prev property of the STS object using Tconf.

Example
STS_set(&sts, targetValue);

 "processing"

STS_delta(&sts, currentValue);

 "processing"

STS_delta(&sts, currentValue);

See Also
STS_add
STS_reset
STS_set
CLK_gethtime
CLK_getltime
PRD_getticks
TRC_disable
TRC_enable

STS_delta Update statistics using difference between provided value & setpoint
SPRU404Q—August 2012 Application Program Interface 395
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

STS_reset www.ti.com
C Interface

Syntax
STS_reset(sts);

Parameters
STS_Handle sts; /* statistics object handle */

Return Value
Void

Reentrant
no

Description
STS_reset resets the values stored in an STS object. The Count and Total fields are set to 0 and the Max
field is set to the largest negative number. STS_reset does not modify the value set by STS_set.

After the Statistics View analysis tool polls statistics data on the target, it performs STS_reset internally.
This keeps the 32-bit total and count values from wrapping back to 0 on the target. The host accumulates
these values as 64-bit numbers to allow a much larger range than can be stored on the target.

Example
STS_reset(&sts);

STS_set(&sts, value);

See Also
STS_add
STS_delta
STS_set
TRC_disable
TRC_enable

STS_reset Reset the values stored in an STS object
396 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com STS_set
C Interface

Syntax
STS_set(sts, value);

Parameters
STS_Handle sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value
Void

Reentrant
no

Description
STS_set can be used in conjunction with STS_delta to monitor the difference between a variable and a
desired value or to benchmark program performance. STS_set saves a value as the previous value in an
STS object. STS_delta subtracts this saved value from the value it is passed and invokes STS_add with
the result.

STS_delta also updates the previous value with the value it was passed. Depending on what you are
measuring, you can need to use STS_set to reset the previous value before the next call to STS_delta.

You can also set a previous value for an STS object in the configuration. STS_set changes this value.

See STS_delta for details on how to use the value you set with STS_set.

Example
This example gathers performance information for the processing between STS_set and STS_delta.

STS_set(&sts, CLK_getltime());
 "processing to be benchmarked"

STS_delta(&sts, CLK_getltime());

This example gathers information about a value’s deviation from the desired value.

STS_set(&sts, targetValue);

 "processing"

STS_delta(&sts, currentValue);

 "processing"

STS_delta(&sts, currentValue);

 "processing"

STS_delta(&sts, currentValue);

This example gathers information about a value’s difference from a base value.

STS_set(&sts, baseValue);

 "processing"

STS_delta(&sts, currentValue);

STS_set(&sts, baseValue);

 "processing"

STS_delta(&sts, currentValue);

STS_set(&sts, baseValue);

STS_set Save a value for STS_delta
SPRU404Q—August 2012 Application Program Interface 397
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

STS_set www.ti.com
See Also
STS_add
STS_delta
STS_reset
TRC_disable
TRC_enable
398 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI Module
2.26 SWI Module

The SWI module is the software interrupt manager.

Functions

• SWI_andn. Clear bits from SWI's mailbox; post if becomes 0.

• SWI_andnHook. Specialized version of SWI_andn for use as hook function for configured DSP/BIOS
objects. Both its arguments are of type (Arg).

• SWI_create. Create a software interrupt.

• SWI_dec. Decrement SWI's mailbox value; post if becomes 0.

• SWI_delete. Delete a software interrupt.

• SWI_disable. Disable software interrupts.

• SWI_enable. Enable software interrupts.

• SWI_getattrs. Get attributes of a software interrupt.

• SWI_getmbox. Return the mailbox value of the SWI when it started running.

• SWI_getpri. Return a SWI’s priority mask.

• SWI_inc. Increment SWI's mailbox value and post the SWI.

• SWI_isSWI. Check current thread calling context.

• SWI_or. Or mask with value contained in SWI's mailbox and post the SWI.

• SWI_orHook. Specialized version of SWI_or for use as hook function for configured DSP/BIOS
objects. Both its arguments are of type (Arg).

• SWI_post. Post a software interrupt.

• SWI_raisepri. Raise a SWI’s priority.

• SWI_restorepri. Restore a SWI’s priority.

• SWI_self. Return address of currently executing SWI object.

• SWI_setattrs. Set attributes of a software interrupt.

Constants, Types, and Structures

typedef struct SWI_Obj SWI_Handle;

SWI_MINPRI = 1; /* Minimum execution priority */

SWI_MAXPRI = 14 /* Maximum execution priority */

struct SWI_Attrs { /* SWI attributes */

 SWI_Fxn fxn; /* address of SWI function */

 Arg arg0; /* first arg to function */

 Arg arg1; /* second arg to function */

 Int priority; /* Priority of SWI object */

 Uns mailbox; /* check for SWI posting */

};
SPRU404Q—August 2012 Application Program Interface 399
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI Module www.ti.com
SWI_Attrs SWI_ATTRS = { /* Default attribute values */

 (SWI_Fxn)FXN_F_nop, /* SWI function */

 0, /* arg0 */

 0, /* arg1 */

 1, /* priority */

 0 /* mailbox */

 };

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the SWI Manager Properties and SWI Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Instance Configuration Parameters

Description
The SWI module manages software interrupt service routines, which are patterned after HWI hardware
interrupt service routines.

DSP/BIOS manages four distinct levels of execution threads: hardware interrupt service routines,
software interrupt routines, tasks, and background idle functions. A software interrupt is an object that
encapsulates a function to be executed and a priority. Software interrupts are prioritized, preempt tasks,
and are preempted by hardware interrupt service routines.

Note: SWI functions are called after the processor register state has been saved. SWI
functions can be written in C or assembly and must follow the C calling conventions
described in the compiler manual.

Note: RTS Functions Callable from TSK Threads Only. Many runtime support (RTS)
functions use lock and unlock functions to prevent reentrancy. However, DSP/BIOS
SWI and HWI threads cannot call LCK_pend and LCK_post. As a result, RTS functions
that call LCK_pend or LCK_post must not be called in the context of a SWI or HWI
thread. For a list or RTS functions that should not be called from a SWI or an HWI
function, see “LCK_pend” on page 181.

Name Type Default

OBJMEMSEG Reference prog.get("DARAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

fxn Extern prog.extern("FXN_F_nop")

priority EnumInt 1 (0 to 14)

mailbox Int16 0

arg0 Arg 0

arg1 Arg 0
400 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI Module
The C++ new operator calls malloc, which in turn calls LCK_pend. As a result, the new operator cannot
be used in the context of a SWI or HWI thread.

Each software interrupt has a priority level. A software interrupt preempts any lower-priority software
interrupt currently executing.

A target program uses an API call to post a SWI object. This causes the SWI module to schedule
execution of the software interrupt’s function. When a SWI is posted by an API call, the SWI object’s
function is not executed immediately. Instead, the function is scheduled for execution. DSP/BIOS uses
the SWI’s priority to determine whether to preempt the thread currently running. Note that if a SWI is
posted several times before it begins running, (because HWIs and higher priority interrupts are running,)
when the SWI does eventually run, it will run only one time.

Software interrupts can be posted for execution with a call to SWI_post or a number of other SWI
functions. Each SWI object has a 16-bit mailbox which is used either to determine whether to post the
SWI or as a value that can be evaluated within the SWI’s function. SWI_andn and SWI_dec post the SWI
if the mailbox value transitions to 0. SWI_or and SWI_inc also modify the mailbox value. (SWI_or sets
bits, and SWI_andn clears bits.)

The SWI_disable and SWI_enable operations allow you to post several SWIs and enable them all for
execution at the same time. The SWI priorities then determine which SWI runs first.

All SWIs run to completion; you cannot suspend a SWI while it waits for something (for example, a
device) to be ready. So, you can use the mailbox to tell the SWI when all the devices and other conditions
it relies on are ready. Within a SWI function, a call to SWI_getmbox returns the value of the mailbox when
the SWI started running. Note that the mailbox is automatically reset to its original value when a SWI runs;
however, SWI_getmbox will return the saved mailbox value from when the SWI started execution.

Software interrupts can have up to 15 priority levels. The highest level is SWI_MAXPRI (14). The lowest
is SWI_MINPRI (0). The priority level of 0 is reserved for the KNL_swi object, which runs the task (TSK)
scheduler.

A SWI preempts any currently running SWI with a lower priority. If two SWIs with the same priority level
have been posted, the SWI that was posted first runs first. HWIs in turn preempt any currently running
SWI, allowing the target to respond quickly to hardware peripherals.

Interrupt threads (including HWIs and SWIs) are all executed using the same stack. A context switch is
performed when a new thread is added to the top of the stack. The SWI module automatically saves the
processor’s registers before running a higher-priority SWI that preempts a lower-priority SWI. After the
higher-priority SWI finishes running, the registers are restored and the lower-priority SWI can run if no
other higher-priority SWI has been posted. (A separate task stack is used by each task thread.)

See the Code Composer Studio online tutorial for more information on how to post SWIs and scheduling
issues for the Software Interrupt manager.
SPRU404Q—August 2012 Application Program Interface 401
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI Module www.ti.com
SWI Manager Properties

The following global property can be set for the SWI module in the SWI Manager Properties dialog of the
DSP/BIOS Configuration Tool or in a Tconf script:

• Object Memory. The memory segment that contains the SWI objects.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.SWI.OBJMEMSEG = prog.get("myMEM");

SWI Object Properties

To create a SWI object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var mySwi = bios.SWI.create("mySwi");

If you cannot create a new SWI object (an error occurs or the Insert SWI item is inactive in the DSP/BIOS
Configuration Tool), try increasing the Stack Size property in the MEM Manager Properties before adding
a SWI object or a SWI priority level.

The following properties can be set for a SWI object in the SWI Object Properties dialog of the DSP/BIOS
Configuration Tool or in a Tconf script:

• comment. Type a comment to identify this SWI object.

Tconf Name: comment Type: String

Example: mySwi.comment = "my SWI";

• function. The function to execute. If this function is written in C and you are using the DSP/BIOS
Configuration Tool, use a leading underscore before the C function name. (The DSP/BIOS
Configuration Tool generates assembly code, which must use leading underscores when referencing
C functions or labels.) If you are using Tconf, do not add an underscore before the function name;
Tconf adds the underscore needed to call a C function from assembly internally.

Tconf Name: fxn Type: Extern

Example: mySwi.fxn = prog.extern("swiFxn");

• priority. This property shows the numeric priority level for this SWI object. SWIs can have up to 15
priority levels. The highest level is SWI_MAXPRI (14). The lowest is SWI_MINPRI (0). The priority
level of 0 is reserved for the KNL_swi object, which runs the task scheduler. Instead of typing a
number in the DSP/BIOS Configuration Tool, you change the relative priority levels of SWI objects
by dragging the objects in the ordered collection view.

Tconf Name: priority Type: EnumInt

Options: 0 to 14

Example: mySwi.priority = 1;

• mailbox. The initial value of the 16-bit word used to determine if this SWI should be posted.

Tconf Name: mailbox Type: Int16

Example: mySwi.mailbox = 7;

• arg0, arg1. Two arbitrary pointer type (Arg) arguments to the above configured user function.

Tconf Name: arg0 Type: Arg

Tconf Name: arg1 Type: Arg

Example: mySwi.arg0 = 0;
402 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_andn
C Interface

Syntax
SWI_andn(swi, mask);

Parameters
SWI_Handle swi; /* SWI object handle*/
Uns mask /* inverse value to be ANDed */

Return Value
Void

Reentrant
yes

Description
SWI_andn is used to conditionally post a software interrupt. SWI_andn clears the bits specified by a mask
from SWI’s internal mailbox. If SWI’s mailbox becomes 0, SWI_andn posts the SWI. The bitwise logical
operation performed is:

mailbox = mailbox AND (NOT MASK)

For example, if multiple conditions that all be met before a SWI can run, you should use a different bit in
the mailbox for each condition. When a condition is met, clear the bit for that condition.

SWI_andn results in a context switch if the SWI's mailbox becomes zero and the SWI has higher priority
than the currently executing thread.

You specify a SWI’s initial mailbox value in the configuration. The mailbox value is automatically reset
when the SWI executes.

Note: Use the specialized version, SWI_andnHook, when SWI_andn functionality is required
for a DSP/BIOS object hook function.

SWI_andn Clear bits from SWI’s mailbox and post if mailbox becomes 0
SPRU404Q—August 2012 Application Program Interface 403
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_andn www.ti.com
The following figure shows an example of how a mailbox with an initial value of 3 can be cleared by two
calls to SWI_andn with values of 2 and 1. The entire mailbox could also be cleared with a single call to
SWI_andn with a value of 3.

Constraints and Calling Context

• If this function is invoked outside the context of an HWI, interrupts must be enabled.

• When called within an HWI, the code sequence calling SWI_andn must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

Example
/* ======== ioReady ======== */

 Void ioReady(unsigned int mask)

 {

 /* clear bits of "ready mask" */

 SWI_andn(©SWI, mask);

 }

See Also
SWI_andnHook
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_orHook
SWI_post
SWI_self
404 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_andnHook
C Interface

Syntax
SWI_andnHook(swi, mask);

Parameters
Arg swi; /* SWI object handle*/
Arg mask /* value to be ANDed */

Return Value
Void

Reentrant
yes

Description

SWI_andnHook is a specialized version of SWI_andn for use as hook function for configured DSP/BIOS
objects. SWI_andnHook clears the bits specified by a mask from SWI’s internal mailbox and also moves
the arguments to the correct registers for proper interface with low level DSP/BIOS assembly code. If
SWI’s mailbox becomes 0, SWI_andnHook posts the SWI. The bitwise logical operation performed is:

mailbox = mailbox AND (NOT MASK)

For example, if there are multiple conditions that must all be met before a SWI can run, you should use
a different bit in the mailbox for each condition. When a condition is met, clear the bit for that condition.

SWI_andnHook results in a context switch if the SWI's mailbox becomes zero and the SWI has higher
priority than the currently executing thread.

You specify a SWI’s initial mailbox value in the configuration. The mailbox value is automatically reset
when the SWI executes.

Constraints and Calling Context

• If this macro (API) is invoked outside the context of an HWI, interrupts must be enabled.

• When called within an HWI, the code sequence calling SWI_andnHook must be either wrapped
within an HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

Example
/* ======== ioReady ======== */

 Void ioReady(unsigned int mask)

 {

 /* clear bits of "ready mask" */

 SWI_andnHook(©SWI, mask);

 }

See Also
SWI_andn
SWI_orHook

SWI_andnHook Clear bits from SWI’s mailbox and post if mailbox becomes 0
SPRU404Q—August 2012 Application Program Interface 405
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_create www.ti.com
C Interface

Syntax
swi = SWI_create(attrs);

Parameters
SWI_Attrs *attrs; /* pointer to swi attributes */

Return Value
SWI_Handle swi; /* handle for new swi object */

Description
SWI_create creates a new SWI object. If successful, SWI_create returns the handle of the new SWI
object. If unsuccessful, SWI_create returns NULL unless it aborts. For example, SWI_create can abort if
it directly or indirectly calls SYS_error, and SYS_error is configured to abort.

The attrs parameter, which can be either NULL or a pointer to a structure that contains attributes for the
object to be created, facilitates setting the SWI object’s attributes. The SWI object’s attributes are
specified through a structure of type SWI_attrs defined as follows:

struct SWI_Attrs {

 SWI_Fxn fxn;

 Arg arg0;

 Arg arg1;

 Int priority;

 Uns mailbox;

};

If attrs is NULL, the new SWI object is assigned the following default attributes.

SWI_Attrs SWI_ATTRS = { /* Default attribute values */

 (SWI_Fxn)FXN_F_nop, /* SWI function */

 0, /* arg0 */

 0, /* arg1 */

 1, /* priority */

 0 /* mailbox */

 };

The fxn attribute, which is the address of the SWI function, serves as the entry point of the software
interrupt service routine.

The arg0 and arg1 attributes specify the arguments passed to the SWI function, fxn.

The priority attribute specifies the SWI object’s execution priority and must range from 0 to 14. The
highest level is SWI_MAXPRI (14). The lowest is SWI_MINPRI (0). The priority level of 0 is reserved for
the KNL_swi object, which runs the task scheduler.

The mailbox attribute is used either to determine whether to post the SWI or as a value that can be
evaluated within the SWI function.

All default attribute values are contained in the constant SWI_ATTRS, which can be assigned to a
variable of type SWI_Attrs prior to calling SWI_create.

SWI_create Create a software interrupt
406 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_create
SWI_create calls MEM_alloc to dynamically create the object’s data structure. MEM_alloc must acquire
a lock to the memory before proceeding. If another thread already holds a lock to the memory, then there
is a context switch. The segment from which the object is allocated is described by the DSP/BIOS objects
property in the MEM Module, page 2–204.

Constraints and Calling Context

• SWI_create cannot be called from a SWI or HWI.

• The fxn attribute cannot be NULL.

• The priority attribute must be less than or equal to 14 and greater than or equal to 1.

See Also

SWI_delete
SWI_getattrs
SWI_setattrs
SYS_error
SPRU404Q—August 2012 Application Program Interface 407
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_dec www.ti.com
C Interface

Syntax
SWI_dec(swi);

Parameters
SWI_Handle swi; /* SWI object handle*/

Return Value
Void

Reentrant
yes

Description
SWI_dec is used to conditionally post a software interrupt. SWI_dec decrements the value in SWI’s
mailbox by 1. If SWI’s mailbox value becomes 0, SWI_dec posts the SWI. You can increment a mailbox
value by using SWI_inc, which always posts the SWI.

For example, you would use SWI_dec if you wanted to post a SWI after a number of occurrences of an
event.

You specify a SWI’s initial mailbox value in the configuration. The mailbox value is automatically reset
when the SWI executes.

SWI_dec results in a context switch if the SWI's mailbox becomes zero and the SWI has higher priority
than the currently executing thread.

Constraints and Calling Context

• If this macro (API) is invoked outside the context of an HWI, interrupts must be enabled.

• When called within an HWI, the code sequence calling SWI_dec must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

Example
/* ======== strikeOrBall ======== */

 Void strikeOrBall(unsigned int call)

 {

 if (call == 1) {

 /* initial mailbox value is 3 */

 SWI_dec(&strikeoutSwi);

 }

 if (call == 2) {

 /* initial mailbox value is 4 */

 SWI_dec(&walkSwi);

 }

 }

See Also
SWI_inc

SWI_dec Decrement SWI’s mailbox value and post if mailbox becomes 0
408 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_delete
C Interface

Syntax
SWI_delete(swi);

Parameters
SWI_Handle swi; /* SWI object handle */

Return Value
Void

Description
SWI_delete uses MEM_free to free the SWI object referenced by swi.

SWI_delete calls MEM_free to delete the SWI object. MEM_free must acquire a lock to the memory
before proceeding. If another task already holds a lock to the memory, then there is a context switch.

Constraints and Calling Context

• swi cannot be the currently executing SWI object (SWI_self)

• SWI_delete cannot be called from a SWI or HWI.

• SWI_delete must not be used to delete a statically-created SWI object. No check is performed to
prevent SWI_delete from being used on a statically-created object. If a program attempts to delete a
SWI object that was created using Tconf, SYS_error is called.

See Also

SWI_create
SWI_getattrs
SWI_setattrs
SYS_error

SWI_delete Delete a software interrupt
SPRU404Q—August 2012 Application Program Interface 409
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_disable www.ti.com

C Interface

Syntax
SWI_disable();

Parameters
Void

Return Value
Void

Reentrant
yes

Description
SWI_disable and SWI_enable control software interrupt processing. SWI_disable disables all other SWI
functions from running until SWI_enable is called. Hardware interrupts can still run.

SWI_disable and SWI_enable let you ensure that statements that must be performed together during
critical processing are not interrupted. In the following example, the critical section is not preempted by
any SWIs.

SWI_disable();

 `critical section`

SWI_enable();

You can also use SWI_disable and SWI_enable to post several SWIs and have them performed in priority
order. See the following example.

SWI_disable calls can be nested. The number of nesting levels is stored internally. SWI handling is not
reenabled until SWI_enable has been called as many times as SWI_disable.

Constraints and Calling Context

• The calls to HWI_enter and HWI_exit required in any HWIs that schedule SWIs automatically disable
and reenable SWI handling. You should not call SWI_disable or SWI_enable within a HWI.

• SWI_disable cannot be called from the program’s main() function.

• Do not call SWI_enable when SWIs are already enabled. If you do, a subsequent call to SWI_disable
does not disable SWI processing.

Example
/* ======== postEm ======== */

 Void postEm

 {

 SWI_disable();
 SWI_post(&encoderSwi);

 SWI_andn(©Swi, mask);

 SWI_dec(&strikeoutSwi);

 SWI_enable();
 }

See Also
HWI_disable
SWI_enable

SWI_disable Disable software interrupts
410 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_enable
C Interface

Syntax
SWI_enable();

Parameters
Void

Return Value
Void

Reentrant
yes

Description
SWI_disable and SWI_enable control software interrupt processing. SWI_disable disables all other SWI
functions from running until SWI_enable is called. Hardware interrupts can still run. See the SWI_disable
section for details.

SWI_disable calls can be nested. The number of nesting levels is stored internally. SWI handling is not
be reenabled until SWI_enable has been called as many times as SWI_disable.

SWI_enable results in a context switch if a higher-priority SWI is ready to run.

Constraints and Calling Context

• The calls to HWI_enter and HWI_exit are required in any HWI that schedules SWIs. They
automatically disable and reenable SWI handling. You should not call SWI_disable or SWI_enable
within a HWI.

• SWI_enable cannot be called from the program’s main() function.

• Do not call SWI_enable when SWIs are already enabled. If you do so, the subsequent call to
SWI_disable will not disable SWI processing.

See Also
HWI_disable
HWI_enable
SWI_disable

SWI_enable Enable software interrupts
SPRU404Q—August 2012 Application Program Interface 411
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_getattrs www.ti.com
C Interface

Syntax
SWI_getattrs(swi, attrs);

Parameters
SWI_Handle swi; /* handle of the swi */
SWI_Attrs *attrs; /* pointer to swi attributes */

Return Value
Void

Description
SWI_getattrs retrieves attributes of an existing SWI object.

The swi parameter specifies the address of the SWI object whose attributes are to be retrieved. The attrs
parameter, which is the pointer to a structure that contains the retrieved attributes for the SWI object,
facilitates retrieval of the attributes of the SWI object.

The SWI object’s attributes are specified through a structure of type SWI_attrs defined as follows:

struct SWI_Attrs {

 SWI_Fxn fxn;

 Arg arg0;

 Arg arg1;

 Int priority;

 Uns mailbox;

};

The fxn attribute, which is the address of the SWI function, serves as the entry point of the software
interrupt service routine.

The arg0 and arg1 attributes specify the arguments passed to the SWI function, fxn.

The priority attribute specifies the SWI object’s execution priority and ranges from 0 to 14. The highest
level is SWI_MAXPRI (14). The lowest is SWI_MINPRI (0). The priority level of 0 is reserved for the
KNL_swi object, which runs the task scheduler.

The mailbox attribute is used either to determine whether to post the SWI or as a value that can be
evaluated within the SWI function.

The following example uses SWI_getattrs:

extern SWI_Handle swi;

SWI_Attrs attrs;

SWI_getattrs(swi, &attrs);

attrs.priority = 5;

SWI_setattrs(swi, &attrs);

SWI_getattrs Get attributes of a software interrupt
412 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_getattrs
Constraints and Calling Context

• SWI_getattrs cannot be called from a SWI or HWI.

• The attrs parameter cannot be NULL.

See Also

SWI_create
SWI_delete
SWI_setattrs
SPRU404Q—August 2012 Application Program Interface 413
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_getmbox www.ti.com
C Interface

Syntax
num = Uns SWI_getmbox();

Parameters
Void

Return Value
Uns num /* mailbox value */

Reentrant
yes

Description
SWI_getmbox returns the value that SWI’s mailbox had when the SWI started running. DSP/BIOS saves
the mailbox value internally so that SWI_getmbox can access it at any point within a SWI object’s
function. DSP/BIOS then automatically resets the mailbox to its initial value (defined with Tconf) so that
other threads can continue to use the SWI’s mailbox.

SWI_getmbox should only be called within a function run by a SWI object.

When called from with the context of a SWI, the value returned by SWI_getmbox is zero if the SWI was
posted by a call to SWI_andn, SWI_andnHook, or SWI_dec. Therefore, SWI_getmbox provides relevant
information only if the SWI was posted by a call to SWI_inc, SWI_or, SWI_orHook, or SWI_post.

Constraints and Calling Context

• SWI_getmbox cannot be called from the context of an HWI or TSK.

• SWI_getmbox cannot be called from a program’s main() function.

Example
This call could be used within a SWI object’s function to use the mailbox value within the function. For
example, if you use SWI_or or SWI_inc to post a SWI, different mailbox values can require different
processing.

swicount = SWI_getmbox();

See Also
SWI_andn
SWI_andnHook
SWI_dec
SWI_inc
SWI_or
SWI_orHook
SWI_post
SWI_self

SWI_getmbox Return a SWI’s mailbox value
414 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_getpri
C Interface

Syntax
key = SWI_getpri(swi);

Parameters
SWI_Handle swi; /* SWI object handle*/

Return Value
Uns key /* Priority mask of swi */

Reentrant
yes

Description
SWI_getpri returns the priority mask of the SWI passed in as the argument.

Example
/* Get the priority key of swi1 */

key = SWI_getpri(&swi1);

/* Get the priorities of swi1 and swi3 */

key = SWI_getpri(&swi1) | SWI_getpri(&swi3);

See Also
SWI_raisepri
SWI_restorepri

SWI_getpri Return a SWI’s priority mask
SPRU404Q—August 2012 Application Program Interface 415
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_inc www.ti.com
C Interface

Syntax
SWI_inc(swi);

Parameters
SWI_Handle swi; /* SWI object handle*/

Return Value
Void

Reentrant
no

Description
SWI_inc increments the value in SWI’s mailbox by 1 and posts the SWI regardless of the resulting
mailbox value. You can decrement a mailbox value using SWI_dec, which only posts the SWI if the
mailbox value is 0.

If a SWI is posted several times before it has a chance to begin executing, because HWIs and higher
priority SWIs are running, the SWI only runs one time. If this situation occurs, you can use SWI_inc to
post the SWI. Within the SWI’s function, you could then use SWI_getmbox to find out how many times
this SWI has been posted since the last time it was executed.

You specify a SWI’s initial mailbox value in the configuration. The mailbox value is automatically reset
when the SWI executes. To get the mailbox value, use SWI_getmbox.

SWI_inc results in a context switch if the SWI is higher priority than the currently executing thread.

Constraints and Calling Context

• If this macro (API) is invoked outside the context of an HWI, interrupts must be enabled.

• When called within an HWI, the code sequence calling SWI_inc must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

Example
extern SWI_ObjMySwi;

/* ======== AddAndProcess ======== */

Void AddAndProcess(int count)

 int i;

 for (i = 1; I <= count; ++i)

 SWI_inc(&MySwi);

}

See Also
SWI_dec
SWI_getmbox

SWI_inc Increment SWI’s mailbox value and post the SWI
416 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_isSWI
C Interface

Syntax
result = SWI_isSWI(Void);

Parameters
Void

Return Value
Bool result; /* TRUE if in SWI context, FALSE otherwise */

Reentrant
yes

Description
This macro returns TRUE when it is called within the context of a SWI or PRD function. This applies no
matter whether the SWI was posted by an HWI, TSK, or IDL thread. This macro returns FALSE in all other
contexts.

In previous versions of DSP/BIOS, calling SWI_isSWI() from a task switch hook resulted in TRUE. This
is no longer the case; task switch hooks are identified as part of the TSK context.

See Also

HWI_isHWI
TSK_isTSK

SWI_isSWI Check to see if called in the context of a SWI
SPRU404Q—August 2012 Application Program Interface 417
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_or www.ti.com
C Interface

Syntax
SWI_or(swi, mask);

Parameters
SWI_Handle swi; /* SWI object handle*/
Uns mask; /* value to be ORed */

Return Value
Void

Reentrant
no

Description
SWI_or is used to post a software interrupt. SWI_or sets the bits specified by a mask in SWI’s mailbox.
SWI_or posts the SWI regardless of the resulting mailbox value. The bitwise logical operation performed
on the mailbox value is:

mailbox = mailbox OR mask

You specify a SWI’s initial mailbox value in the configuration. The mailbox value is automatically reset
when the SWI executes. To get the mailbox value, use SWI_getmbox.

For example, you might use SWI_or to post a SWI if any of three events should cause a SWI to be
executed, but you want the SWI’s function to be able to tell which event occurred. Each event would
correspond to a different bit in the mailbox.

SWI_or results in a context switch if the SWI is higher priority than the currently executing thread.

Note: Use the specialized version, SWI_orHook, when SWI_or functionality is required for a
DSP/BIOS object hook function.

Constraints and Calling Context

• If this macro (API) is invoked outside the context of an HWI, interrupts must be enabled.

• When called within an HWI, the code sequence calling SWI_or must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

See Also
SWI_andn
SWI_orHook

SWI_or OR mask with the value contained in SWI’s mailbox field
418 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_orHook
C Interface

Syntax
SWI_orHook(swi, mask);

Parameters
Arg swi; /* SWI object handle*/
Arg mask; /* value to be ORed */

Return Value
Void

Reentrant
no

Description
SWI_orHook is used to post a software interrupt, and should be used when hook functionality is required
for DSP/BIOS hook objects. SWI_orHook sets the bits specified by a mask in SWI’s mailbox and also
moves the arguments to the correct registers for interfacing with low level DSP/BIOS assembly code.
SWI_orHook posts the SWI regardless of the resulting mailbox value. The bitwise logical operation
performed on the mailbox value is:

mailbox = mailbox OR mask

You specify a SWI’s initial mailbox value in the configuration. The mailbox value is automatically reset
when the SWI executes. To get the mailbox value, use SWI_getmbox.

For example, you might use SWI_orHook to post a SWI if any of three events should cause a SWI to be
executed, but you want the SWI’s function to be able to tell which event occurred. Each event would
correspond to a different bit in the mailbox.

SWI_orHook results in a context switch if the SWI is higher priority than the currently executing thread.

Note: Use the specialized version, SWI_orHook, when SWI_or functionality is required for a
DSP/BIOS object hook function.

Constraints and Calling Context

• If this macro (API) is invoked outside the context of an HWI, interrupts must be enabled.

• When called within an HWI, the code sequence calling SWI_orHook must be either wrapped within
an HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

See Also
SWI_andnHook
SWI_or

SWI_orHook OR mask with the value contained in SWI’s mailbox field
SPRU404Q—August 2012 Application Program Interface 419
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_post www.ti.com
C Interface

Syntax
SWI_post(swi);

Parameters
SWI_Handle swi; /* SWI object handle*/

Return Value
Void

Reentrant
yes

Description
SWI_post is used to post a software interrupt regardless of the mailbox value. No change is made to the
SWI object’s mailbox value.

To have a PRD object post a SWI object’s function, you can set _SWI_post as the function property of a
PRD object and the name of the SWI object you want to post its function as the arg0 property.

SWI_post results in a context switch if the SWI is higher priority than the currently executing thread.

Constraints and Calling Context

• If this macro (API) is invoked outside the context of an HWI, interrupts must be enabled.

• When called within an HWI, the code sequence calling SWI_post must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

See Also
SWI_andn
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_self

SWI_post Post a software interrupt
420 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_raisepri
C Interface

Syntax
key = SWI_raisepri(mask);

Parameters
Uns mask; /* mask of desired priority level */

Return Value
Uns key; /* key for use with SWI_restorepri */

Reentrant
yes

Description
SWI_raisepri is used to raise the priority of the currently running SWI to the priority mask passed in as
the argument. SWI_raisepri can be used in conjunction with SWI_restorepri to provide a mutual exclusion
mechanism without disabling SWIs.

SWI_raisepri should be called before a shared resource is accessed, and SWI_restorepri should be
called after the access to the shared resource.

A call to SWI_raisepri not followed by a SWI_restorepri keeps the SWI's priority for the rest of the
processing at the raised level. A SWI_post of the SWI posts the SWI at its original priority level.

A SWI object’s execution priority must range from 0 to 14. The highest level is SWI_MAXPRI (14). The
lowest is SWI_MINPRI (0). Priority zero (0) is reserved for the KNL_swi object, which runs the task
scheduler.

SWI_raisepri never lowers the current SWI priority.

Constraints and Calling Context

• SWI_raisepri cannot be called from an HWI or TSK level.

Example
/* raise priority to the priority of swi_1 */

key = SWI_raisepri(SWI_getpri(&swi_1));

--- access shared resource ---

SWI_restore(key);

See Also
SWI_getpri
SWI_restorepri

SWI_raisepri Raise a SWI’s priority
SPRU404Q—August 2012 Application Program Interface 421
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_restorepri www.ti.com
C Interface

Syntax
SWI_restorepri(key);

Parameters
Uns key; /* key to restore original priority level */

Return Value
Void

Reentrant

yes

Description
SWI_restorepri restores the priority to the SWI's priority prior to the SWI_raisepri call returning the key.
SWI_restorepri can be used in conjunction with SWI_raisepri to provide a mutual exclusion mechanism
without disabling all SWIs.

SWI_raisepri should be called right before the shared resource is referenced, and SWI_restorepri should
be called after the reference to the shared resource.

Constraints and Calling Context

• SWI_restorepri cannot be called from an HWI or TSK level.

• SWI_restorepri must be called with interrupts (HWI and SWI) enabled.

• SWI_restorepri cannot be called from the program’s main() function.

Example
/* raise priority to the priority of swi_1 */

key = SWI_raisepri(SWI_getpri(&swi_1));

--- access shared resource ---

SWI_restore(key);

See Also
SWI_getpri
SWI_raisepri

SWI_restorepri Restore a SWI’s priority
422 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_self
C Interface

Syntax
curswi = SWI_self();

Parameters
Void

Return Value
SWI_Handle swi; /* handle for current swi object */

Reentrant
yes

Description
SWI_self returns the address of the currently executing SWI.

Constraints and Calling Context

• SWI_self cannot be called from an HWI or TSK level.

• SWI_self cannot be called from the program’s main() function.

Example
You can use SWI_self if you want a SWI to repost itself:

SWI_post(SWI_self());

See Also
SWI_andn
SWI_getmbox
SWI_post

SWI_self Return address of currently executing SWI object
SPRU404Q—August 2012 Application Program Interface 423
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SWI_setattrs www.ti.com
C Interface

Syntax
SWI_setattrs(swi, attrs);

Parameters
SWI_Handle swi; /* handle of the swi */
SWI_Attrs *attrs; /* pointer to swi attributes */

Return Value
Void

Description
SWI_setattrs sets attributes of an existing SWI object.

The swi parameter specifies the address of the SWI object whose attributes are to be set.

The attrs parameter, which can be either NULL or a pointer to a structure that contains attributes for the
SWI object, facilitates setting the attributes of the SWI object. If attrs is NULL, the new SWI object is
assigned a default set of attributes. Otherwise, the SWI object’s attributes are specified through a
structure of type SWI_attrs defined as follows:

struct SWI_Attrs {

 SWI_Fxn fxn;

 Arg arg0;

 Arg arg1;

 Int priority;

 Uns mailbox;

};

The fxn attribute, which is the address of the swi function, serves as the entry point of the software
interrupt service routine.

The arg0 and arg1 attributes specify the arguments passed to the swi function, fxn.

The priority attribute specifies the SWI object’s execution priority and must range from 1 to 14. Priority 14
is the highest priority. You cannot use a priority of 0; that priority is reserved for the system SWI that runs
the TSK scheduler.

The mailbox attribute is used either to determine whether to post the SWI or as a value that can be
evaluated within the SWI function.

All default attribute values are contained in the constant SWI_ATTRS, which can be assigned to a
variable of type SWI_Attrs prior to calling SWI_setattrs.

The following example uses SWI_setattrs:

extern SWI_Handle swi;

SWI_Attrs attrs;

SWI_getattrs(swi, &attrs);

attrs.priority = 5;

SWI_setattrs(swi, &attrs);

SWI_setattrs Set attributes of a software interrupt
424 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SWI_setattrs
Constraints and Calling Context

• SWI_setattrs must not be used to set the attributes of a SWI that is preempted or is ready to run.

• The fxn attribute cannot be NULL.

• The priority attribute must be less than or equal to 14 and greater than or equal to 1.

See Also

SWI_create
SWI_delete
SWI_getattrs
SPRU404Q—August 2012 Application Program Interface 425
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SYS Module www.ti.com
2.27 SYS Module

The SYS modules manages system settings.

Functions

• SYS_abort. Abort program execution

• SYS_atexit. Stack an exit handler

• SYS_error. Flag error condition

• SYS_exit. Terminate program execution

• SYS_printf. Formatted output

• SYS_putchar. Output a single character

• SYS_sprintf. Formatted output to string buffer

• SYS_vprintf. Formatted output, variable argument list

• SYS_vsprintf. Output formatted data

Constants, Types, and Structures
#define SYS_FOREVER (Uns)-1 /* wait forever */
#define SYS_POLL (Uns)0 /* don’t wait */

#define SYS_OK 0 /* no error */
#define SYS_EALLOC 1 /* memory alloc error */
#define SYS_EFREE 2 /* memory free error */
#define SYS_ENODEV 3 /* dev driver not found */
#define SYS_EBUSY 4 /* device driver busy */
#define SYS_EINVAL 5 /* invalid parameter */
#define SYS_EBADIO 6 /* I/O failure */
#define SYS_EMODE 7 /* bad mode for driver */
#define SYS_EDOMAIN 8 /* domain error */
#define SYS_ETIMEOUT 9 /* call timed out */
#define SYS_EE0F 10 /* end-of-file */
#define SYS_EDEAD 11 /* deleted obj */
#define SYS_EBADOBJ 12 /* invalid object */
#define SYS_ENOTIMPL 13 /* action not implemented */

#define SYS_ENOTFOUND 14 /* resource not found */

#define SYS_EUSER 256 /* user errors start here */

#define SYS_NUMHANDLERS 8 /* # of atexit handlers */

extern String SYS_errors[]; /* error string array */

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the SYS Manager Properties heading. For descriptions of data types, see
Section 1.4, DSP/BIOS Tconf Overview, page 1-10.

Module Configuration Parameters

Name Type Default

TRACESIZE Numeric 512

TRACESEG Reference prog.get("DARAM")
426 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SYS Module
Description
The SYS module makes available a set of general-purpose functions that provide basic system services,
such as halting program execution and printing formatted text. In general, each SYS function is patterned
after a similar function normally found in the standard C library.

SYS does not directly use the services of any other DSP/BIOS module and therefore resides at the
bottom of the system. Other DSP/BIOS modules use the services provided by SYS in lieu of similar C
library functions. The SYS module provides hooks for binding system-specific code. This allows
programs to gain control wherever other DSP/BIOS modules call one of the SYS functions.

SYS Manager Properties

The following global properties can be set for the SYS module in the SYS Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script.

• Trace Buffer Size. The size of the buffer that contains system trace information. This system trace
buffer can be viewed only by looking for the SYS_PUTCBEG symbol in the CCS Memory view. For
example, by default the Putc function writes to the trace buffer.

Tconf Name: TRACESIZE Type: Numeric

Example: bios.SYS.TRACESIZE = 512;

• Trace Buffer Memory. The memory segment that contains system trace information.

Tconf Name: TRACESEG Type: Reference

Example: bios.SYS.TRACESEG = prog.get("myMEM");

• Abort Function. The function to run if the application aborts by calling SYS_abort. The default
function is _UTL_doAbort, which logs an error message and calls _halt. If you are using Tconf, do
not add an underscore before the function name; Tconf adds the underscore needed to call a C
function from assembly internally. The prototype for this function should be:

 Void myAbort(String fmt, va_list ap);

Tconf Name: ABORTFXN Type: Extern

Example: bios.SYS.ABORTFXN = prog.extern("myAbort");

• Error Function. The function to run if an error flagged by SYS_error occurs. The default function is
_UTL_doError, which logs an error message and returns. The prototype for this function should be:

 Void myError(String s, Int errno, va_list ap);

Tconf Name: ERRORFXN Type: Extern

Example: bios.SYS.ERRORFXN = prog.extern("myError");

• Exit Function. The function to run when the application exits by calling SYS_exit. The default
function is UTL_halt, which loops forever with interrupts disabled and prevents other processing. The
prototype for this function should be:

 Void myExit(Int status);

Tconf Name: EXITFXN Type: Extern

Example: bios.SYS.EXITFXN = prog.extern("myExit");

ABORTFXN Extern prog.extern("UTL_doAbort")

ERRORFXN Extern prog.extern("UTL_doError")

EXITFXN Extern prog.extern("UTL_halt")

PUTCFXN Extern prog.extern("UTL_doPutc")

Name Type Default
SPRU404Q—August 2012 Application Program Interface 427
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SYS Module www.ti.com
• Putc Function. The function to run if the application calls SYS_putchar, SYS_printf, or SYS_vprintf.
The default function is _UTL_doPutc, which writes a character to the system trace buffer. This system
trace buffer can be viewed only by looking for the SYS_PUTCBEG symbol in the CCS Memory view.
The prototype for this function should be:

 Void myPutc(Char c);

Tconf Name: PUTCFXN Type: Extern

Example: bios.SYS.PUTCFXN = prog.extern("myPutc");

SYS Object Properties

The SYS module does not support the creation of individual SYS objects.
428 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SYS_abort
C Interface

Syntax
SYS_abort(format, [arg,] ...);

Parameters
String format; /* format specification string */
Arg arg; /* optional argument */

Return Value
Void

Description
SYS_abort aborts program execution by calling the function bound to the configuration parameter Abort
function, where vargs is of type va_list (a void pointer which can be interpreted as an argument list) and
represents the sequence of arg parameters originally passed to SYS_abort.

(*(Abort_function))(format, vargs)

The function bound to Abort function can elect to pass the format and vargs parameters directly to
SYS_vprintf or SYS_vsprintf prior to terminating program execution.

The default Abort function for the SYS manager is _UTL_doAbort, which logs an error message and calls
UTL _halt, which is defined in the boot.c file. The UTL_halt function performs an infinite loop with all
processor interrupts disabled.

Constraints and Calling Context

• If the function bound to Abort function is not reentrant, SYS_abort must be called atomically.

See Also
SYS_exit
SYS_printf

SYS_abort Abort program execution
SPRU404Q—August 2012 Application Program Interface 429
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SYS_atexit www.ti.com
C Interface

Syntax
success = SYS_atexit(handler);

Parameters
Fxn handler /* exit handler function */

Return Value
Bool success /* handler successfully stacked */

Description
SYS_atexit pushes handler onto an internal stack of functions to be executed when SYS_exit is called.
Up to SYS_NUMHANDLERS(8) functions can be specified in this manner. SYS_exit pops the internal
stack until empty and calls each function as follows, where status is the parameter passed to SYS_exit:

(*handler)(status)

SYS_atexit returns TRUE if handler has been successfully stacked; FALSE if the internal stack is full.

The handlers on the stack are called only if either of the following happens:

• SYS_exit is called.

• All tasks for which the Don’t shut down system while this task is still running property is TRUE have
exited. (By default, this includes the TSK_idle task, which manages communication between the
target and analysis tools.)

Constraints and Calling Context

• handler cannot be NULL.

SYS_atexit Stack an exit handler
430 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SYS_error
C Interface

Syntax
SYS_error(s, errno, [arg], ...);

Parameters
String s; /* error string */
Int errno; /* error code */
Arg arg; /* optional argument */

Return Value
Void

Description
SYS_error is used to flag DSP/BIOS error conditions. Application programs should call SYS_error to
handle program errors. Internal functions also call SYS_error.

SYS_error calls a function to handle errors. The default error function for the SYS manager is
_UTL_doError, which logs an error message and returns. The default function can be replaced with your
own error function by setting the SYS.ERRORFXN configuration property.

The default error function or an alternate configured error function is called as follows, where vargs is of
type va_list (a void pointer which can be interpreted as an argument list) and represents the sequence of
arg parameters originally passed to SYS_error.

(*(Error_function))(s, errno, vargs)

Constraints and Calling Context

• The only valid error numbers are the error constants defined in sys.h (SYS_E*) or numbers greater
than or equal to SYS_EUSER. Passing any other error values to SYS_error can cause DSP/BIOS to
crash.

SYS_error Flag error condition
SPRU404Q—August 2012 Application Program Interface 431
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SYS_exit www.ti.com
C Interface

Syntax
SYS_exit(status);

Parameters
Int status; /* termination status code */

Return Value
Void

Description
SYS_exit first pops a stack of handlers registered through the function SYS_atexit, and then terminates
program execution by calling the function bound to the configuration parameter Exit function, passing on
its original status parameter.

(*handlerN)(status)

 ...

(*handler2)(status)

(*handler1)(status)

(*(Exit_function))(status)

The default Exit function for the SYS manager is UTL_halt, which performs an infinite loop with all
processor interrupts disabled.

Constraints and Calling Context

• If the function bound to Exit function or any of the handler functions is not reentrant, SYS_exit must
be called atomically.

See Also
SYS_abort
SYS_atexit

SYS_exit Terminate program execution
432 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SYS_printf
C Interface

Syntax
SYS_printf(format, [arg,] ...);

Parameters
String format; /* format specification string */
Arg arg; /* optional argument */

Return Value
Void

Description
SYS_printf provides a subset of the capabilities found in the standard C library function printf.

Note: SYS_printf and the related functions are code-intensive. If possible, applications
should use the LOG Module functions to reduce code size and execution time.

Conversion specifications begin with a % and end with a conversion character. The conversion
characters recognized by SYS_printf are limited to the characters shown in Table Table 2-7.

Table 2-7: Conversion Characters Recognized by SYS_printf

Between the % and the conversion character, the following symbols or specifiers contained in square
brackets can appear, in the order shown.

%[-][0][width]type

A dash (-) symbol causes the converted argument to be left-justified within a field of width characters with
blanks following. A 0 (zero) causes the converted argument to be right-justified within a field of size width
with leading 0s. If neither a dash nor 0 are given, the converted argument is right-justified in a field of size
width, with leading blanks. The width is a decimal integer. The converted argument is not modified if it
has more than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the corresponding argument is a long integer.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of arguments is replaced by a va_list
on which the standard C macro va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output is placed in a specified buffer.

SYS_printf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p data pointer
SPRU404Q—August 2012 Application Program Interface 433
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SYS_printf www.ti.com
Both SYS_printf and SYS_vprintf internally call the function SYS_putchar to output individual characters
via the Putc function configured in the SYS Manager Properties. The default Putc function is
_UTL_doPutc, which writes a character to the system trace buffer. The size and memory segment for the
system trace buffer can also be set in the SYS Manager Properties. This system trace buffer can be
viewed only by looking for the SYS_PUTCBEG symbol in the CCS Memory view.

Constraints and Calling Context

• The function bound to Exit function or any of the handler functions are not reentrant; SYS_exit must
be called atomically.

See Also
SYS_sprintf
SYS_vprintf
SYS_vsprintf
434 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SYS_sprintf
C Interface

Syntax
SYS_sprintf (buffer, format, [arg,] ...);

Parameters
String buffer; /* output buffer */
String format; /* format specification string */
Arg arg; /* optional argument */

Return Value
Void

Description
SYS_sprintf provides a subset of the capabilities found in the standard C library function printf.

Note: SYS_sprintf and the related functions are code-intensive. If possible, applications
should use LOG Module module functions to reduce code size and execution time.

Conversion specifications begin with a % and end with a conversion character. The conversion
characters recognized by SYS_sprintf are limited to the characters in Table Table 2-8.

Table 2-8: Conversion Characters Recognized by SYS_sprintf

Between the % and the conversion character, the following symbols or specifiers contained within square
brackets can appear, in the order shown.

%[-][0][width]type

A dash (-) symbol causes the converted argument to be left-justified within a field of width characters with
blanks following. A 0 (zero) causes the converted argument to be right-justified within a field of size width
with leading 0s. If neither a dash nor 0 are given, the converted argument is right-justified in a field of size
width, with leading blanks. The width is a decimal integer. The converted argument is not modified if it
has more than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the corresponding argument is a long integer.

SYS_sprintf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p data pointer
SPRU404Q—August 2012 Application Program Interface 435
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SYS_sprintf www.ti.com
SYS_vprintf is equivalent to SYS_printf, except that the optional set of arguments is replaced by a va_list
on which the standard C macro va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar to output individual characters
in a system-dependent fashion via the configuration parameter Putc function. This parameter is bound to
a function that displays output on a debugger if one is running, or places output in an output buffer
between PUTCEND and PUTCBEG.

Constraints and Calling Context

• The function bound to Exit function or any of the handler functions are not reentrant; SYS_exit must
be called atomically.

See Also
SYS_printf
SYS_vprintf
SYS_vsprintf
436 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SYS_vprintf
C Interface

Syntax
SYS_vprintf(format, vargs);

Parameters
String format; /* format specification string */
va_list vargs; /* variable argument list reference */

Return Value
Void

Description
SYS_vprintf provides a subset of the capabilities found in the standard C library function printf.

Note: SYS_vprintf and the related functions are code-intensive. If possible, applications
should use LOG Module functions to reduce code size and execution time.

Conversion specifications begin with a % and end with a conversion character. The conversion
characters recognized by SYS_vprintf are limited to the characters in Table Table 2-9.

Table 2-9: Conversion Characters Recognized by SYS_vprintf

Between the % and the conversion character, the following symbols or specifiers contained within square
brackets can appear, in the order shown.

%[-][0][width]type

A dash (-) symbol causes the converted argument to be left-justified within a field of width characters with
blanks following. A 0 (zero) causes the converted argument to be right-justified within a field of size width
with leading 0s. If neither a dash nor 0 are given, the converted argument is right-justified in a field of size
width, with leading blanks. The width is a decimal integer. The converted argument is not modified if it
has more than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the corresponding argument is a long integer.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of arguments is replaced by a va_list
on which the standard C macro va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output is placed in a specified buffer.

SYS_vprintf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p data pointer
SPRU404Q—August 2012 Application Program Interface 437
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SYS_vprintf www.ti.com
Both SYS_printf and SYS_vprintf internally call the function SYS_putchar to output individual characters
via the Putc function configured in the SYS Manager Properties. The default Putc function is
_UTL_doPutc, which writes a character to the system trace buffer. The size and memory segment for the
system trace buffer can also be set in the SYS Manager Properties. This system trace buffer can be
viewed only by looking for the SYS_PUTCBEG symbol in the CCS Memory view.

Constraints and Calling Context

• The function bound to Exit function or any of the handler functions are not reentrant; SYS_exit must
be called atomically.

See Also
SYS_printf
SYS_sprintf
SYS_vsprintf
438 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SYS_vsprintf
C Interface

Syntax
SYS_vsprintf(buffer, format, vargs);

Parameters
String buffer; /* output buffer */
String format; /* format specification string */
va_list vargs; /* variable argument list reference */

Return Value
Void

Description
SYS_vsprintf provides a subset of the capabilities found in the standard C library function printf.

Note: SYS_vsprintf and the related functions are code-intensive. If possible, applications
should use LOG Module functions to reduce code size and execution time.

Conversion specifications begin with a % and end with a conversion character. The conversion
characters recognized by SYS_vsprintf are limited to the characters in Table Table 2-10.

Table 2-10: Conversion Characters Recognized by SYS_vsprintf

Between the % and the conversion character, the following symbols or specifiers contained within square
brackets can appear, in the order shown.

%[-][0][width]type

A dash (-) symbol causes the converted argument to be left-justified within a field of width characters with
blanks following. A 0 (zero) causes the converted argument to be right-justified within a field of size width
with leading 0s. If neither a dash nor 0 are given, the converted argument is right-justified in a field of size
width, with leading blanks. The width is a decimal integer. The converted argument is not modified if it
has more than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the corresponding argument is a long integer.

SYS_vsprintf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p data pointer
SPRU404Q—August 2012 Application Program Interface 439
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SYS_vsprintf www.ti.com
SYS_vprintf is equivalent to SYS_printf, except that the optional set of arguments is replaced by a va_list
on which the standard C macro va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar to output individual characters
in a system-dependent fashion via the configuration parameter Putc function. This parameter is bound to
a function that displays output on a debugger if one is running, or places output in an output buffer
between PUTCEND and PUTCBEG.

Constraints and Calling Context

• The function bound to Exit function or any of the handler functions are not reentrant; SYS_exit must
be called atomically.

See Also
SYS_printf
SYS_sprintf
SYS_vprintf
440 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com SYS_putchar
C Interface

Syntax
SYS_putchar(c);

Parameters
Char c; /* next output character */

Return Value
Void

Description
SYS_putchar outputs the character c by calling the system-dependent function bound to the
configuration parameter Putc function.

((Putc function))(c)

For systems with limited I/O capabilities, the function bound to Putc function might simply place c into a
global buffer that can be examined after program termination.

The default Putc function for the SYS manager is _UTL_doPutc, which writes a character to the system
trace buffer. The size and memory segment for the system trace buffer can be set in the SYS Manager
Properties. This system trace buffer can be viewed only by looking for the SYS_PUTCBEG symbol in the
CCS Memory view.

SYS_putchar is also used internally by SYS_printf and SYS_vprintf when generating their output.

Constraints and Calling Context

• If the function bound to Putc function is not reentrant, SYS_putchar must be called atomically.

See Also
SYS_printf

SYS_putchar Output a single character
SPRU404Q—August 2012 Application Program Interface 441
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TRC Module www.ti.com
2.28 TRC Module

The TRC module is the trace manager.

Functions

• TRC_disable. Disable trace class(es)

• TRC_enable. Enable trace type(s)

• TRC_query. Query trace class(es)

Description
The TRC module manages a set of trace control bits which control the real-time capture of program
information through event logs and statistics accumulators. For greater efficiency, the target does not
store log or statistics information unless tracing is enabled.

Table Table 2-11 lists events and statistics that can be traced. The constants defined in trc.hand trc.h55
are shown in the left column.

Table 2-11: Events and Statistics Traced by TRC

All trace constants except TRC_GBLTARG are switched off initially. To enable tracing you can use calls
to TRC_enable or the DSP/BIOSRTA Control Panel, which uses the TRC module internally. You do not
need to enable tracing for messages written with LOG_printf or LOG_event and statistics added with
STS_add or STS_delta.

Your program can call the TRC_enable and TRC_disable operations to explicitly start and stop event
logging or statistics accumulation in response to conditions encountered during real-time execution. This
enables you to preserve the specific log or statistics information you need to see.

Constant Tracing Enabled/Disabled Default

TRC_LOGCLK Log timer interrupts off

TRC_LOGPRD Log periodic ticks and start of periodic functions off

TRC_LOGSWI Log events when a SWI is posted and completes off

TRC_LOGTSK Log events when a task is made ready, starts, becomes blocked, resumes execution, off

TRC_STSHWI Gather statistics on monitored values within HWIs off

TRC_STSPIP Count number of frames read from or written to data pipe off

TRC_STSPRD Gather statistics on number of ticks elapsed during execution off

TRC_STSSWI Gather statistics on length of SWI execution off

TRC_STSTSK Gather statistics on length of TSK execution. Statistics are gathered from the time TSK
is made ready to run until the application calls TSK_deltatime.

off

TRC_USER0
 and
TRC_USER1

Your program can use these bits to enable or disable sets of explicit instrumentation
actions. You can use TRC_query to check the settings of these bits and either perform
or omit instrumentation calls based on the result. DSP/BIOS does not use or set these
bits.

off

TRC_GBLHOST This bit must be set in order for any implicit instrumentation to be performed. Simultane-
ously starts or stops gathering of all enabled types of tracing. This can be important if
you are trying to correlate events of different types. This bit is usually set at run time on
the host in the RTA Control Panel.

off

TRC_GBLTARG This bit must also be set for any implicit instrumentation to be performed. This bit can
only be set by the target program and is enabled by default.

on

TRC_STSSWI Gather statistics on length of SWI execution off
442 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TRC_disable
C Interface

Syntax
TRC_disable(mask);

Parameters
Uns mask; /* trace type constant mask */

Return Value
Void

Reentrant
no

Description
TRC_disable disables tracing of one or more trace types. Trace types are specified with a 32-bit mask.
(See the TRC Module topic for a list of constants to use in the mask.)

The following C code would disable tracing of statistics for software interrupts and periodic functions:

TRC_disable(TRC_LOGSWI | TRC_LOGPRD);

Internally, DSP/BIOS uses a bitwise AND NOT operation to disable multiple trace types.

For example, you might want to use TRC_disable with a circular log and disable tracing when an
unwanted condition occurs. This allows test equipment to retrieve the log events that happened just
before this condition started.

See Also
TRC_enable
TRC_query
LOG_printf
LOG_event
STS_add
STS_delta

TRC_disable Disable trace class(es)
SPRU404Q—August 2012 Application Program Interface 443
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TRC_enable www.ti.com
C Interface

Syntax
TRC_enable(mask);

Parameters
Uns mask; /* trace type constant mask */

Return Value
Void

Reentrant
no

Description
TRC_enable enables tracing of one or more trace types. Trace types are specified with a 32-bit mask.
(See the TRC Module topic for a list of constants to use in the mask.)

The following C code would enable tracing of statistics for software interrupts and periodic functions:

TRC_enable(TRC_STSSWI | TRC_STSPRD);

Internally, DSP/BIOS uses a bitwise OR operation to enable multiple trace types.

For example, you might want to use TRC_enable with a fixed log to enable tracing when a specific
condition occurs. This allows test equipment to retrieve the log events that happened just after this
condition occurred.

See Also
TRC_disable
TRC_query
LOG_printf
LOG_event
STS_add
STS_delta

TRC_enable Enable trace type(s)
444 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TRC_query
C Interface

Syntax
result = TRC_query(mask);

Parameters
Uns mask; /* trace type constant mask */

Return Value
Int result /* indicates whether all trace types enabled */

Reentrant
yes

Description
TRC_query determines whether particular trace types are enabled. TRC_query returns 0 if all trace types
in the mask are enabled. If any trace types in the mask are disabled, TRC_query returns a value with a
bit set for each trace type in the mask that is disabled. (See the TRC Module topic for a list of constants
to use in the mask.)

Trace types are specified with a 16-bit mask. The full list of constants you can use is included in the
description of the TRC module.

For example, the following C code returns 0 if statistics tracing for the PRD class is enabled:

result = TRC_query(TRC_STSPRD);

The following C code returns 0 if both logging and statistics tracing for the SWI class are enabled:

result = TRC_query(TRC_LOGSWI | TRC_STSSWI);

Note that TRC_query does not return 0 unless the bits you are querying and the TRC_GBLHOST and
TRC_GBLTARG bits are set. TRC_query returns non-zero if either TRC_GBLHOST or TRC_GBLTARG
are disabled. This is because no tracing is done unless these bits are set.

For example, if the TRC_GBLHOST, TRC_GBLTARG, and TRC_LOGSWI bits are set, this C code
returns the results shown:

result = TRC_query(TRC_LOGSWI); /* returns 0 */

result = TRC_query(TRC_LOGPRD); /* returns non-zero */

However, if only the TRC_GBLHOST and TRC_LOGSWI bits are set, the same C code returns the
results shown:

result = TRC_query(TRC_LOGSWI); /* returns non-zero */

result = TRC_query(TRC_LOGPRD); /* returns non-zero */

See Also
TRC_enable
TRC_disable

TRC_query Query trace class(es)
SPRU404Q—August 2012 Application Program Interface 445
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK Module www.ti.com
2.29 TSK Module

The TSK module is the task manager.

Functions

• TSK_checkstacks. Check for stack overflow

• TSK_create. Create a task ready for execution

• TSK_delete. Delete a task

• TSK_deltatime. Update task STS with time difference

• TSK_disable. Disable DSP/BIOS task scheduler

• TSK_enable. Enable DSP/BIOS task scheduler

• TSK_exit. Terminate execution of the current task

• TSK_getenv. Get task environment

• TSK_geterr. Get task error number

• TSK_getname. Get task name

• TSK_getpri. Get task priority

• TSK_getsts. Get task STS object

• TSK_isTSK. Check current thread calling context

• TSK_itick. Advance system alarm clock (interrupt only)

• TSK_self. Get handle of currently executing task

• TSK_setenv. Set task environment

• TSK_seterr. Set task error number

• TSK_setpri. Set a task’s execution priority

• TSK_settime. Set task STS previous time

• TSK_sleep. Delay execution of the current task

• TSK_stat. Retrieve the status of a task

• TSK_tick. Advance system alarm clock

• TSK_time. Return current value of system clock

• TSK_yield. Yield processor to equal priority task

Task Hook Functions

Void TSK_createFxn(TSK_Handle task);

Void TSK_deleteFxn(TSK_Handle task);

Void TSK_exitFxn(Void);

Void TSK_readyFxn(TSK_Handle newtask);

Void TSK_switchFxn(TSK_Handle oldtask,
 TSK_Handle newtask);
446 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK Module
Constants, Types, and Structures
typedef struct TSK_OBJ *TSK_Handle; /* task object handle*/

struct TSK_Attrs { /* task attributes */
 Int priority; /* execution priority */
 Ptr stack; /* pre-allocated stack */
 size_t stacksize; /* stack size in MADUs */
#ifdef _55_
 size_t sysstacksize; /*C55x system stack in MADUs */

#endif
 Int stackseg; /* mem seg for stack allocation */
 Ptr environ; /* global environment data struct */
 String name; /* printable name */
 Bool exitflag; /* program termination requires */
 /* this task to terminate */
 Bool initstackflag; /* initialize task stack? */
};

Int TSK_pid; /* MP processor ID */

Int TSK_MAXARGS = 8; /* max number of task arguments */
Int TSK_IDLEPRI = 0; /* used for idle task */
Int TSK_MINPRI = 1; /* minimum execution priority */
Int TSK_MAXPRI = 15; /* maximum execution priority */
Int TSK_STACKSTAMP =
TSK_Attrs TSK_ATTRS = { /* default attribute values */
 TSK->PRIORITY, /* priority */
 NULL, /* stack */
 TSK->STACKSIZE, /* stacksize */
#ifdef _55_
 TSK->SYSSTACKSIZE, /* system stacksize in MADUs */
#endif
 TSK->STACKSEG, /* stackseg */
 NULL, /* environ */
 "", /* name */
 TRUE, /* exitflag */
 TRUE, /* initstackflag */
};

enum TSK_Mode { /* task execution modes */
 TSK_RUNNING, /* task currently executing */
 TSK_READY, /* task scheduled for execution */
 TSK_BLOCKED, /* task suspended from execution */
 TSK_TERMINATED, /* task terminated from execution */
};

struct TSK_Stat { /* task status structure */
 TSK_Attrs attrs; /* task attributes */
 TSK_Mode mode; /* task execution mode */
 Ptr sp; /* task stack pointer */
#ifdef _55_
 Ptr ssp; /* task system stack pointer */
#endif
 size_t used; /* task stack used */
#ifdef _55_
 size_t sysused; /* task system stack used */
#endif
};

Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their types and
default values. For details, see the TSK Manager Properties and TSK Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-10.
SPRU404Q—August 2012 Application Program Interface 447
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK Module www.ti.com
Module Configuration Parameters

Instance Configuration Parameters

Description
The TSK module makes available a set of functions that manipulate task objects accessed through
handles of type TSK_Handle. Tasks represent independent threads of control that conceptually execute
functions in parallel within a single C program; in reality, concurrency is achieved by switching the
processor from one task to the next.

Name Type Default (Enum Options)

ENABLETSK Bool true

OBJMEMSEG Reference prog.get("DARAM")

STACKSIZE Int16 1024

SYSSTACKSIZE Int16 256

STACKSEG Reference prog.get("DARAM")

PRIORITY EnumInt 1 (1 to 15)

DRIVETSKTICK EnumString "PRD" ("User")

CREATEFXN Extern prog.extern("FXN_F_nop")

DELETEFXN Extern prog.extern("FXN_F_nop")

EXITFXN Extern prog.extern("FXN_F_nop")

CALLSWITCHFXN Bool false

SWITCHFXN Extern prog.extern("FXN_F_nop")

CALLREADYFXN Bool false

READYFXN Extern prog.extern("FXN_F_nop")

Name Type Default (Enum Options)

comment String "<add comments here>"

autoAllocateStack Bool true

manualStack Extern prog.extern("null","asm")

stackSize Int16 1024

sysStackSize Int16 256

stackMemSeg Reference prog.get("DARAM")

priority EnumInt 0 (-1, 0, 1 to 15)

fxn Extern prog.extern("FXN_F_nop")

arg0 Arg 0

arg7 Arg 0

envPointer Arg 0x00000000

exitFlag Bool true

allocateTaskName Bool false

order Int16 0
448 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK Module
When you create a task, it is provided with its own run-time stack, used for storing local variables as well
as for further nesting of function calls. The TSK_STACKSTAMP value is used to initialize the run-time
stack. When creating a task dynamically, you need to initialize the stack with TSK_STACKSTAMP only if
the stack is allocated manually and TSK_checkstacks or TSK_stat is to be called. Each stack must be
large enough to handle normal subroutine calls as well as a single task preemption context. A task
preemption context is the context that gets saved when one task preempts another as a result of an
interrupt thread readying a higher-priority task. All tasks executing within a single program share a
common set of global variables, accessed according to the standard rules of scope defined for C
functions.

Each task is in one of four modes of execution at any point in time: running, ready, blocked, or terminated.
By design, there is always one (and only one) task currently running, even if it is a dummy idle task
managed internally by TSK. The current task can be suspended from execution by calling certain TSK
functions, as well as functions provided by other modules like the SEM Module and the SIO Module; the
current task can also terminate its own execution. In either case, the processor is switched to the next
task that is ready to run.

You can assign numeric priorities to tasks through TSK. Tasks are readied for execution in strict priority
order; tasks of the same priority are scheduled on a first-come, first-served basis. As a rule, the priority
of the currently running task is never lower than the priority of any ready task. Conversely, the running
task is preempted and re-scheduled for execution whenever there exists some ready task of higher
priority.

You can use Tconf to specify one or more sets of application-wide hook functions that run whenever a
task state changes in a particular way. For the TSK module, these functions are the Create, Delete, Exit,
Switch, and Ready functions. The HOOK module adds an additional Initialization function.

A single set of hook functions can be specified for the TSK module itself. To create additional sets of hook
functions, use the HOOK Module. When you create the first HOOK object, any TSK module hook
functions you have specified are automatically placed in a HOOK object called HOOK_KNL. To set any
properties of this object other than the Initialization function, use the TSK module properties. To set the
Initialization function property of the HOOK_KNL object, use the HOOK object properties. If you configure
only a single set of hook functions using the TSK module, the HOOK module is not used.

The TSK_create topic describes the Create function. The TSK_delete topic describes the Delete
function. The TSK_exit topic describes the Exit function.

If a Switch function is specified, it is invoked when a new task becomes the TSK_RUNNING task. The
Switch function gives the application access to both the current and next task handles at task switch time.
The function should use these argument types:

Void mySwitchFxn(TSK_Handle currTask,

 TSK_Handle nextTask);

This function can be used to save/restore additional task context (for example, external hardware
registers), to check for task stack overflow, to monitor the time used by each task, etc.
SPRU404Q—August 2012 Application Program Interface 449
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK Module www.ti.com
If a Ready function is specified, it is invoked whenever a task is made ready to run. Even if a higher-
priority thread is running, the Ready function runs. The Ready function is called with a handle to the task
being made ready to run as its argument. This example function prints the name of both the task that is
ready to run and the task that is currently running:

Void myReadyFxn(TSK_Handle task)

{

 String nextName, currName;

 TSK_Handle currTask = TSK_self();

 nextName = TSK_getname(task);

 LOG_printf(&trace, “Task %s Ready”, nextName);

 currName = TSK_getname(currTask);

 LOG_printf(&trace, “Task %s Running”, currName);

}

The Switch function and Ready function are called in such a way that they can use only functions allowed
within a SWI handler. See Appendix A, Function Callability Table, for a list of functions that can be called
by SWI handlers. There are no real constraints on what functions are called via the Create function,
Delete function, or Exit function.

TSK Manager Properties

The following global properties can be set for the TSK module in the TSK Manager Properties dialog of
the DSP/BIOS Configuration Tool or in a Tconf script:

• Enable TSK Manager. If no tasks are used by the program other than TSK_idle, you can optimize
the program by disabling the task manager. The program must then not use TSK objects created with
either Tconf or the TSK_create function. If the task manager is disabled, the idle loop still runs and
uses the system stack instead of a task stack.

Tconf Name: ENABLETSK Type: Bool

Example: bios.TSK.ENABLETSK = true;

• Object Memory. The memory segment that contains the TSK objects created with Tconf.

Tconf Name: OBJMEMSEG Type: Reference

Example: bios.TSK.OBJMEMSEG = prog.get("myMEM");

• Default stack size. The default size of the stack (in MADUs) used by tasks. You can override this
value for an individual task you create with Tconf or TSK_create. The estimated minimum task size
is shown in the status bar of the DSP/BIOS Configuration Tool. This property applies to TSK objects
created both with Tconf and with TSK_create.

Tconf Name: STACKSIZE Type: Int16

Example: bios.TSK.STACKSIZE = 1024;

• Default systack size. This property defines the size (in MADUs) of the system stack.

Tconf Name: SYSSTACKSIZE Type: Int16

Example: bios.TSK.SYSSTACKSIZE = 256;
450 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK Module
• Stack segment for dynamic tasks. The default memory segment to contain task stacks created at
run-time with the TSK_create function. The TSK_Attrs structure passed to the TSK_create function
can override this default. If you select MEM_NULL for this property, creation of task objects at run-
time is disabled.

Tconf Name: STACKSEG Type: Reference

Example: bios.TSK.STACKSEG = prog.get("myMEM");

• Default task priority. The default priority level for tasks that are created dynamically with
TSK_create. This property applies to TSK objects created both with Tconf and with TSK_create.

Tconf Name: PRIORITY Type: EnumInt

Options: 1 to 15

Example: bios.TSK.PRIORITY = 1;

• TSK tick driven by. Choose whether you want the system clock to be driven by the PRD module or
by calls to TSK_tick and TSK_itick. This clock is used by TSK_sleep and functions such as
SEM_pend that accept a timeout argument.

Tconf Name: DRIVETSKTICK Type: EnumString

Options: "PRD", "User"

Example: bios.TSK.DRIVETSKTICK = "PRD";

• Create function. The name of a function to call when any task is created. This includes tasks that
are created statically and those created dynamically using TSK_create. If you are using Tconf, do not
add an underscore before the function name; Tconf adds the underscore needed to call a C function
from assembly internally. The TSK_create topic describes the Create function.

Tconf Name: CREATEFXN Type: Extern

Example: bios.TSK.CREATEFXN = prog.extern("tskCreate");

• Delete function. The name of a function to call when any task is deleted at run-time with TSK_delete.
The TSK_delete topic describes the Delete function.

Tconf Name: DELETEFXN Type: Extern

Example: bios.TSK.DELETEFXN = prog.extern("tskDelete");

• Exit function. The name of a function to call when any task exits. The TSK_exit topic describes the
Exit function.

Tconf Name: EXITFXN Type: Extern

Example: bios.TSK.EXITFXN = prog.extern("tskExit");

• Call switch function. Check this box if you want a function to be called when any task switch occurs.

Tconf Name: CALLSWITCHFXN Type: Bool

Example: bios.TSK.CALLSWITCHFXN = false;

• Switch function. The name of a function to call when any task switch occurs. This function can give
the application access to both the current and next task handles. The TSK Module topic describes
the Switch function.

Tconf Name: SWITCHFXN Type: Extern

Example: bios.TSK.SWITCHFXN = prog.extern("tskSwitch");

• Call ready function. Check this box if you want a function to be called when any task becomes ready
to run.

Tconf Name: CALLREADYFXN Type: Bool

Example: bios.TSK.CALLREADYFXN = false;
SPRU404Q—August 2012 Application Program Interface 451
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK Module www.ti.com
• Ready function. The name of a function to call when any task becomes ready to run. The TSK
Module topic describes the Ready function.

Tconf Name: READYFXN Type: Extern

Example: bios.TSK.READYFXN = prog.extern("tskReady");

TSK Object Properties

To create a TSK object in a configuration script, use the following syntax. The Tconf examples that follow
assume the object has been created as shown here.

var myTsk = bios.TSK.create("myTsk");

The following properties can be set for a TSK object in the TSK Object Properties dialog of the DSP/BIOS
Configuration Tool or in a Tconf script:

General tab

• comment. Type a comment to identify this TSK object.

Tconf Name: comment Type: String

Example: myTsk.comment = "my TSK";

• Automatically allocate stack. Check this box if you want the task’s private stack space to be
allocated automatically when this task is created. The task’s context is saved in this stack before any
higher-priority task is allowed to block this task and run.

Tconf Name: autoAllocateStack Type: Bool

Example: myTsk.autoAllocateStack = true;

• Manually allocated stack. If you did not check the box to Automatically allocate stack, type the
name of the manually allocated stack to use for this task.

For ’C55x, the manually allocated stack must be large enough to accommodate both the stack and
the system stack (sysstack) on the same page. Automatically allocating the stack is recommended,
since TSK_create makes sure this condition is satisfied.

Tconf Name: manualStack Type: Extern

Example: myTsk.manualStack = prog.extern("myStack");

• Stack size. Enter the size (in MADUs) of the stack space to allocate for this task. You must enter the
size whether the application allocates the stack manually or automatically. Each stack must be large
enough to handle normal subroutine calls as well as a single task preemption context. A task
preemption context is the context that gets saved when one task preempts another as a result of an
interrupt thread readying a higher priority task.

Tconf Name: stackSize Type: Int16

Example: myTsk.stackSize = 1024;

• System stack size. This specifies the size (in MADUs) of the task’s system stack. The stackSize +
sysStackSize must be less than or equal to 0xFFFF. That is, they should be on the same page
because the stack pointer and system stack pointer share the same register for their upper bits.

Tconf Name: sysStackSize Type: Int16

Example: myTsk.sysStackSize = 256;

• Stack Memory Segment. If you set the "Automatically allocate stack" property to true, specify the
memory segment to contain the stack space for this task.

Tconf Name: stackMemSeg Type: Reference

Example: myTsk.stackMemSeg = prog.get("myMEM");
452 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK Module
• Priority. The priority level for this task. A priority of -1 causes a task to be suspended until its priority
is raised programmatically.

Tconf Name: priority Type: EnumInt

Options: -1, 0, 1 to 15

Example: myTsk.priority = 1;

Function tab

• Task function. The function to be executed when the task runs. If this function is written in C and
you are using the DSP/BIOS Configuration Tool, use a leading underscore before the C function
name. (The DSP/BIOS Configuration Tool generates assembly code which must use the leading
underscore when referencing C functions or labels.) If you are using Tconf, do not add an underscore
before the function name; Tconf adds the underscore needed to call a C function from assembly
internally. If you compile C programs with the -pm or -op2 options, you should precede C functions
called by task threads with the FUNC_EXT_CALLED pragma. See the online help for the C compiler
for details.

Tconf Name: fxn Type: Extern

Example: myTsk.fxn = prog.extern("tskFxn");

• Task function argument 0-7. The arguments to pass to the task function. Arguments can be
integers or labels.

Tconf Name: arg0 to arg7 Type: Arg

Example: myTsk.arg0 = 0;

Advanced tab

• Environment pointer. A pointer to a globally-defined data structure this task can access. The task
can get and set the task environment pointer with the TSK_getenv and TSK_setenv functions. If your
program uses multiple HOOK objects, HOOK_setenv allows you to set individual environment
pointers for each HOOK and TSK object combination.

Tconf Name: envPointer Type: Arg

Example: myTsk.envPointer = 0;

• Don’t shut down system while this task is still running. Check this box if you do not want the
application to be able to end if this task is still running. The application can still abort. For example,
you might clear this box for a monitor task that collects data whenever all other tasks are blocked.
The application does not need to explicitly shut down this task.

Tconf Name: exitFlag Type: Bool

Example: myTsk.exitFlag = true;

• Allocate Task Name on Target. Check this box if you want the name of this TSK object to be
retrievable by the TSK_getname function. Clearing this box saves a small amount of memory. The
task name is available in analysis tools in either case.

Tconf Name: allocateTaskName Type: Bool

Example: myTsk.allocateTaskName = false;

• order. Set this property for all TSK objects so that the numbers match the sequence in which TSK
functions with the same priority level should be executed.

Tconf Name: order Type: Int16

Example: myTsk.order = 2;
SPRU404Q—August 2012 Application Program Interface 453
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_checkstacks www.ti.com
C Interface

Syntax
TSK_checkstacks(oldtask, newtask);

Parameters
TSK_Handle oldtask; /* handle of task switched from */
TSK_Handle newtask; /* handle of task switched to */

Return Value
Void

Description
TSK_checkstacks calls SYS_abort with an error message if either oldtask or newtask has a stack in
which the last location no longer contains the initial value TSK_STACKSTAMP. The presumption in one
case is that oldtask’s stack overflowed, and in the other that an invalid store has corrupted newtask’s
stack.

TSK_checkstacks requires that the stack was initialized by DSP/BIOS. For dynamically-created tasks,
initialization is controlled by the initstackflag attribute in the TSK_Attrs structure passed to TSK_create.
Statically configured tasks always initialize the stack.

You can call TSK_checkstacks directly from your application. For example, you can check the current
task’s stack integrity at any time with a call like the following:

TSK_checkstacks(TSK_self(), TSK_self());

However, it is more typical to call TSK_checkstacks in the task Switch function specified for the TSK
manager in your configuration file. This provides stack checking at every context switch, with no
alterations to your source code.

If you want to perform other operations in the Switch function, you can do so by writing your own function
(myswitchfxn) and then calling TSK_checkstacks from it.

Void myswitchfxn(TSK_Handle oldtask,

 TSK_Handle newtask)

{

 `your additional context switch operations`

 TSK_checkstacks(oldtask, newtask);

 ...

}

Constraints and Calling Context

• TSK_checkstacks cannot be called from an HWI or SWI.

TSK_checkstacks Check for stack overflow
454 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_create
C Interface

Syntax
task = TSK_create(fxn, attrs, [arg,] ...);

Parameters
Fxn fxn; /* pointer to task function */
TSK_Attrs *attrs; /* pointer to task attributes */
Arg arg; /* task arguments */

Return Value
TSK_Handle task; /* task object handle */

Description
TSK_create creates a new task object. If successful, TSK_create returns the handle of the new task
object. If unsuccessful, TSK_create returns NULL unless it aborts (for example, because it directly or
indirectly calls SYS_error, and SYS_error is configured to abort).

The fxn parameter uses the Fxn type to pass a pointer to the function the TSK object should run. For
example, if myFxn is a function in your program, you can create a TSK object to call that function as
follows:

task = TSK_create((Fxn)myFxn, NULL);

You can use Tconf to specify an application-wide Create function that runs whenever a task is created.
This includes tasks that are created statically and those created dynamically using TSK_create. The
default Create function is a no-op function.

For TSK objects created statically, the Create function is called during the BIOS_start portion of the
program startup process, which runs after the main() function and before the program drops into the idle
loop.

For TSK objects created dynamically, the Create function is called after the task handle has been
initialized but before the task has been placed on its ready queue.

Any DSP/BIOS function can be called from the Create function. DSP/BIOS passes the task handle of the
task being created to the Create function. The Create function declaration should be similar to this:

Void myCreateFxn(TSK_Handle task);

The new task is placed in TSK_READY mode, and is scheduled to begin concurrent execution of the
following function call:

(*fxn)(arg1, arg2, ... argN) /* N = TSK_MAXARGS = 8 */

As a result of being made ready to run, the task runs the application-wide Ready function if one has been
specified.

TSK_exit is automatically called if and when the task returns from fxn.

TSK_create Create a task ready for execution
SPRU404Q—August 2012 Application Program Interface 455
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_create www.ti.com
If attrs is NULL, the new task is assigned a default set of attributes. Otherwise, the task’s attributes are
specified through a structure of type TSK_Attrs, which is defined as follows.

struct TSK_Attrs { /* task attributes */
 Int priority; /* execution priority */
 Ptr stack; /* pre-allocated stack */
 size_t stacksize; /* stack size in MADUs */
#ifdef _55_
 size_t sysstacksize; /*C55x sysstack in MADUs */

#endif
 Int stackseg; /* mem seg for stack alloc */
 Ptr environ; /* global environ data struct */
 String name; /* printable name */
 Bool exitflag; /* prog termination requires */
 /* this task to terminate */
 Bool initstackflag; /* initialize task stack? */
};

The priority attribute specifies the task’s execution priority and must be less than or equal to
TSK_MAXPRI (15); this attribute defaults to the value of the configuration parameter Default task priority
(preset to TSK_MINPRI). If priority is less than 0, the task is barred from execution until its priority is
raised at a later time by TSK_setpri. A priority value of 0 is reserved for the TSK_idle task defined in the
default configuration. You should not use a priority of 0 for any other tasks.

The stack attribute specifies a pre-allocated block of stacksize MADUs to be used for the task’s private
stack; this attribute defaults to NULL, in which case the task’s stack is automatically allocated using
MEM_alloc from the memory segment given by the stackseg attribute. If you specify a pre-allocated stack
for ’C55x, the buffer must be attrs.stacksize plus attrs.sysstacksize in length.

The stacksize attribute specifies the number of MADUs to be allocated for the task’s private stack; this
attribute defaults to the value of the configuration parameter Default stack size. Each stack must be large
enough to handle normal subroutine calls as well as a single task preemption context. A task preemption
context is the context that gets saved when one task preempts another as a result of an interrupt thread
readying a higher priority task.

The sysstacksize attribute specifies a pre-allocated block of the specified number of MADUs to be used
for the task’s private system stack. This attribute defaults to NULL, in which case the task’s system stack
is automatically allocated using MEM_alloc from the memory segment given by the stackseg attribute.
The sysstacksize attribute specifies the number of MADUs to be allocated for the task’s private system
stack. This attribute defaults to the value of the configuration parameter Default system stack size (preset
to 256).

The stackseg attribute specifies the memory segment to use when allocating the task stack with
MEM_alloc; this attribute defaults to the value of the configuration parameter Default stack segment.

The environ attribute specifies the task’s global environment through a generic pointer that references an
arbitrary application-defined data structure; this attribute defaults to NULL.

The name attribute specifies the task’s printable name, which is a NULL-terminated character string; this
attribute defaults to the empty string "". This name can be returned by TSK_getname.

The exitflag attribute specifies whether the task must terminate before the program as a whole can
terminate; this attribute defaults to TRUE.
456 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_create
The initstackflag attribute specifies whether the task stack is initialized to enable stack depth checking by
TSK_checkstacks. This attribute applies both in cases where the stack attribute is NULL (stack is
allocated by TSK_create) and where the stack attribute is used to specify a pre-allocated stack. If your
application does not call TSK_checkstacks, you can reduce the time consumed by TSK_create by setting
this attribute to FALSE.

All default attribute values are contained in the constant TSK_ATTRS, which can be assigned to a
variable of type TSK_Attrs prior to calling TSK_create.

A task switch occurs when calling TSK_create if the priority of the new task is greater than the priority of
the current task.

TSK_create calls MEM_alloc to dynamically create an object’s data structure. MEM_alloc must lock the
memory before proceeding. If another thread already holds a lock to the memory, then there is a context
switch. The segment from which the object is allocated is described by the DSP/BIOS objects property
in the MEM Module, page 2–204.

Constraints and Calling Context

• TSK_create cannot be called from a SWI or HWI.

• The fxn parameter and the name attribute cannot be NULL.

• The priority attribute must be less than or equal to TSK_MAXPRI and greater than or equal to
TSK_MINPRI. The priority can be less than zero (0) for tasks that should not execute.

• The string referenced through the name attribute cannot be allocated locally.

• The stackseg attribute must identify a valid memory segment.

• You can reduce the size of your application program by creating objects with Tconf rather than using
the XXX_create functions.

See Also
MEM_alloc
SYS_error
TSK_delete
TSK_exit
SPRU404Q—August 2012 Application Program Interface 457
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_delete www.ti.com
C Interface

Syntax
TSK_delete(task);

Parameters
TSK_Handle task; /* task object handle */

Return Value
Void

Description
TSK_delete removes the task from all internal queues and calls MEM_free to free the task object and
stack. task should be in a state that does not violate any of the listed constraints.

If all remaining tasks have their exitflag attribute set to FALSE, DSP/BIOS terminates the program as a
whole by calling SYS_exit with a status code of 0.

You can use Tconf to specify an application-wide Delete function that runs whenever a task is deleted.
The default Delete function is a no-op function. The Delete function is called before the task object has
been removed from any internal queues and its object and stack are freed. Any DSP/BIOS function can
be called from the Delete function. DSP/BIOS passes the task handle of the task being deleted to your
Delete function. Your Delete function declaration should be similar to the following:

Void myDeleteFxn(TSK_Handle task);

TSK_delete calls MEM_free to delete the TSK object. MEM_free must acquire a lock to the memory
before proceeding. If another task already holds a lock to the memory, then there is a context switch.

Note: Unless the mode of the deleted task is TSK_TERMINATED, TSK_delete should be
called with care. For example, if the task has obtained exclusive access to a resource,
deleting the task makes the resource unavailable.

Constraints and Calling Context

• The task cannot be the currently executing task (TSK_self).

• TSK_delete cannot be called from a SWI or HWI.

• No check is performed to prevent TSK_delete from being used on a statically-created object. If a
program attempts to delete a task object that was created using Tconf, SYS_error is called.

See Also
MEM_free
TSK_create

TSK_delete Delete a task
458 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_deltatime
C Interface

Syntax
TSK_deltatime(task);

Parameters
TSK_Handle task; /* task object handle */

Return Value
Void

Description
This function accumulates the time difference from when a task is made ready to the time TSK_deltatime
is called. These time differences are accumulated in the task’s internal STS object and can be used to
determine whether or not a task misses real-time deadlines.

If TSK_deltatime is not called by a task, its STS object is never updated in the Statistics View, even if TSK
accumulators are enabled in the RTA Control Panel.

TSK statistics are handled differently than other statistics because TSK functions typically run an infinite
loop that blocks when waiting for other threads. In contrast, HWI and SWI functions run to completion
without blocking. Because of this difference, DSP/BIOS allows programs to identify the “beginning” of a
TSK function’s processing loop by calling TSK_settime and the “end” of the loop by calling
TSK_deltatime.

For example, if a task waits for data and then processes the data, you want to ensure that the time from
when the data is made available until the processing is complete is always less than a certain value. A
loop within the task can look something like the following:

Void task

{

 'do some startup work'

 /* Initialize time in task's

 STS object to current time */
 TSK_settime(TSK_self());

 for (;;) {

 /* Get data */

 SIO_get(...);

 'process data'

 /* Get time difference and

 add it to task's STS object */
 TSK_deltatime(TSK_self());

 }

}

TSK_deltatime Update task statistics with time difference
SPRU404Q—August 2012 Application Program Interface 459
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_deltatime www.ti.com
In the example above, the task blocks on SIO_get and the device driver posts a semaphore that readies
the task. DSP/BIOS sets the task’s statistics object with the current time when the semaphore becomes
available and the task is made ready to run. Thus, the call to TSK_deltatime effectively measures the
processing time of the task.

Constraints and Calling Context

• The results of calls to TSK_deltatime and TSK_settime are displayed in the Statistics View only if
Enable TSK accumulators is selected in the RTA Control Panel.

See Also
TSK_getsts
TSK_settime
460 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_disable
C Interface

Syntax
TSK_disable();

Parameters
Void

Return Value
Void

Description
TSK_disable disables the DSP/BIOS task scheduler. The current task continues to execute (even if a
higher priority task can become ready to run) until TSK_enable is called.

TSK_disable does not disable interrupts, but is instead used before disabling interrupts to make sure a
context switch to another task does not occur when interrupts are disabled.

TSK_disable maintains a count which allows nested calls to TSK_disable. Task switching is not
reenabled until TSK_enable has been called as many times as TSK_disable. Calls to TSK_disable can
be nested.

Since TSK_disable can prohibit ready tasks of higher priority from running it should not be used as a
general means of mutual exclusion. SEM Module semaphores should be used for mutual exclusion when
possible.

Constraints and Calling Context

• Do not call any function that can cause the current task to block or otherwise affect the state of the
scheduler within a TSK_disable/TSK_enable block. For example, SEM_pend (if timeout is non-zero),
TSK_sleep, TSK_yield, and MEM_alloc can all cause blocking. Similarly, any MEM module call and
any call that dynamically creates or deletes an object (XXX_create or XXX_delete) can affect the
state of the scheduler. For a complete list, see the "Possible Context Switch" column in Section A.1,
Function Callability Table.

• TSK_disable cannot be called from a SWI or HWI.

• TSK_disable cannot be called from the program’s main() function.

• Do not call TSK_enable when TSKs are already enabled. If you do so, the subsequent call to
TSK_disable will not disable TSK processing.

See Also
SEM Module
TSK_enable

TSK_disable Disable DSP/BIOS task scheduler
SPRU404Q—August 2012 Application Program Interface 461
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_enable www.ti.com
C Interface

Syntax
TSK_enable();

Parameters
Void

Return Value
Void

Description
TSK_enable is used to reenable the DSP/BIOS task scheduler after TSK_disable has been called. Since
TSK_disable calls can be nested, the task scheduler is not enabled until TSK_enable is called the same
number of times as TSK_disable.

A task switch occurs when calling TSK_enable only if there exists a TSK_READY task whose priority is
greater than the currently executing task.

Constraints and Calling Context

• Do not call any function that can cause the current task to block or otherwise affect the state of the
scheduler within a TSK_disable/TSK_enable block. For example, SEM_pend (if timeout is non-zero),
TSK_sleep, TSK_yield, and MEM_alloc can all cause blocking. Similarly, any MEM module call and
any call that dynamically creates or deletes an object (XXX_create or XXX_delete) can affect the
state of the scheduler. For a complete list, see the "Possible Context Switch" column in Section A.1,
Function Callability Table.

• TSK_enable cannot be called from a SWI or HWI.

• TSK_enable cannot be called from the program’s main() function.

• Do not call TSK_enable when TSKs are already enabled. If you do so, the subsequent call to
TSK_disable will not disable TSK processing.

See Also
SEM Module
TSK_disable

TSK_enable Enable DSP/BIOS task scheduler
462 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_exit
C Interface

Syntax
TSK_exit();

Parameters
Void

Return Value
Void

Description
TSK_exit terminates execution of the current task, changing its mode from TSK_RUNNING to
TSK_TERMINATED. If all tasks have been terminated, or if all remaining tasks have their exitflag attribute
set to FALSE, then DSP/BIOS terminates the program as a whole by calling the function SYS_exit with
a status code of 0.

TSK_exit is automatically called whenever a task returns from its top-level function.

You can use Tconf to specify an application-wide Exit function that runs whenever a task is terminated.
The default Exit function is a no-op function. The Exit function is called before the task has been blocked
and marked TSK_TERMINATED. Any DSP/BIOS function can be called from an Exit function. Calling
TSK_self within an Exit function returns the task being exited. Your Exit function declaration should be
similar to the following:

Void myExitFxn(Void);

A task switch occurs when calling TSK_exit unless the program as a whole is terminated.

Constraints and Calling Context

• TSK_exit cannot be called from a SWI or HWI.

• TSK_exit cannot be called from the program’s main() function.

See Also
MEM_free
TSK_create
TSK_delete

TSK_exit Terminate execution of the current task
SPRU404Q—August 2012 Application Program Interface 463
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_getenv www.ti.com
C Interface

Syntax
environ = TSK_getenv(task);

Parameters
TSK_Handle task; /* task object handle */

Return Value
Ptr environ; /* task environment pointer */

Description
TSK_getenv returns the environment pointer of the specified task. The environment pointer, environ,
references an arbitrary application-defined data structure.

If your program uses multiple HOOK objects, HOOK_getenv allows you to get environment pointers you
have set for a particular HOOK and TSK object combination.

See Also
HOOK_getenv
HOOK_setenv
TSK_setenv
TSK_seterr
TSK_setpri

TSK_getenv Get task environment pointer
464 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_geterr
C Interface

Syntax
errno = TSK_geterr(task);

Parameters
TSK_Handle task; /* task object handle */

Return Value
Int errno; /* error number */

Description
Each task carries a task-specific error number. This number is initially SYS_OK, but it can be changed
by TSK_seterr. TSK_geterr returns the current value of this number.

See Also
SYS_error
TSK_setenv
TSK_seterr
TSK_setpri

TSK_geterr Get task error number
SPRU404Q—August 2012 Application Program Interface 465
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_getname www.ti.com
C Interface

Syntax
name = TSK_getname(task);

Parameters
TSK_Handle task; /* task object handle */

Return Value
String name; /* task name */

Description
TSK_getname returns the task’s name.

For tasks created with Tconf, the name is available to this function only if the "Allocate Task Name on
Target" property is set to true for this task. For tasks created with TSK_create, TSK_getname returns the
attrs.name field value, or an empty string if this attribute was not specified.

See Also
TSK_setenv
TSK_seterr
TSK_setpri

TSK_getname Get task name
466 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_getpri
C Interface

Syntax
priority = TSK_getpri(task);

Parameters
TSK_Handle task; /* task object handle */

Return Value
Int priority; /* task priority */

Description
TSK_getpri returns the priority of task.

See Also
TSK_setenv
TSK_seterr
TSK_setpri

TSK_getpri Get task priority
SPRU404Q—August 2012 Application Program Interface 467
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_getsts www.ti.com
C Interface

Syntax
sts = TSK_getsts(task);

Parameters
TSK_Handle task; /* task object handle */

Return Value
STS_Handle sts; /* statistics object handle */

Description
This function provides access to the task’s internal STS object. For example, you can want the program
to check the maximum value to see if it has exceeded some value.

See Also
TSK_deltatime
TSK_settime

TSK_getsts Get the handle of the task’s STS object
468 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_isTSK
C Interface

Syntax
result = TSK_isTSK(Void);

Parameters
Void

Return Value
Bool result; /* TRUE if in TSK context, FALSE otherwise */

Reentrant
yes

Description
This macro returns TRUE when it is called within the context of a TSK or IDL function. It returns FALSE
in all other contexts.

TSK_isTSK() API returns TRUE when the current thread is neither a HWI nor a SWI. Thus, TSK_isTSK()
returns TRUE when it is invoked within a task thread, main(), or a task switch hook.

In previous versions of DSP/BIOS, calling the context checking functions from main() resulted in TRUE
for HWI_isHWI(). And, calling the context checking functions from a task switch hook resulted in TRUE
for SWI_isSWI(). This is no longer the case; they are identified as part of the TSK context.

In applications that contain no task threads, TSK_isTSK() now returns TRUE from main() and from the
IDL threads.

See Also

HWI_isHWI
SWI_isSWI

TSK_isTSK Check to see if called in the context of a TSK
SPRU404Q—August 2012 Application Program Interface 469
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_itick www.ti.com
C Interface

Syntax
TSK_itick();

Parameters
Void

Return Value
Void

Description
TSK_itick increments the system alarm clock, and readies any tasks blocked on TSK_sleep or
SEM_pend whose timeout intervals have expired.

Constraints and Calling Context

• TSK_itick cannot be called by a TSK object.

• TSK_itick cannot be called from the program’s main() function.

• When called within an HWI, the code sequence calling TSK_itick must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

See Also
SEM_pend
TSK_sleep
TSK_tick

TSK_itick Advance the system alarm clock (interrupt use only)
470 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_self
C Interface

Syntax
curtask = TSK_self();

Parameters
Void

Return Value
TSK_Handle curtask; /* handle for current task object */

Description
TSK_self returns the object handle for the currently executing task. This function is useful when
inspecting the object or when the current task changes its own priority through TSK_setpri.

No task switch occurs when calling TSK_self.

See Also
TSK_setpri

TSK_self Returns handle to the currently executing task
SPRU404Q—August 2012 Application Program Interface 471
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_setenv www.ti.com
C Interface

Syntax
TSK_setenv(task, environ);

Parameters
TSK_Handle task; /* task object handle */
Ptr environ; /* task environment pointer */

Return Value
Void

Description
TSK_setenv sets the task environment pointer to environ. The environment pointer, environ, references
an arbitrary application-defined data structure.

If your program uses multiple HOOK objects, HOOK_setenv allows you to set individual environment
pointers for each HOOK and TSK object combination.

See Also
HOOK_getenv
HOOK_setenv
TSK_getenv
TSK_geterr

TSK_setenv Set task environment
472 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_seterr
C Interface

Syntax
TSK_seterr(task, errno);

Parameters
TSK_Handle task; /* task object handle */
Int errno; /* error number */

Return Value
Void

Description
Each task carries a task-specific error number. This number is initially SYS_OK, but can be changed to
errno by calling TSK_seterr. TSK_geterr returns the current value of this number.

See Also
TSK_getenv
TSK_geterr

TSK_seterr Set task error number
SPRU404Q—August 2012 Application Program Interface 473
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_setpri www.ti.com
C Interface

Syntax
oldpri = TSK_setpri(task, newpri);

Parameters
TSK_Handle task; /* task object handle */
Int newpri; /* task’s new priority */

Return Value
Int oldpri; /* task’s old priority */

Description
TSK_setpri sets the execution priority of task to newpri, and returns that task’s old priority value. Raising
or lowering a task’s priority does not necessarily force preemption and re-scheduling of the caller: tasks
in the TSK_BLOCKED mode remain suspended despite a change in priority; and tasks in the
TSK_READY mode gain control only if their (new) priority is greater than that of the currently executing
task.

The maximum value of newpri is TSK_MAXPRI(15). If the minimum value of newpri is TSK_MINPRI(0).
If newpri is less than 0, the task is barred from further execution until its priority is raised at a later time
by another task; if newpri equals TSK_MAXPRI, execution of the task effectively locks out all other
program activity, except for the handling of interrupts.

The current task can change its own priority (and possibly preempt its execution) by passing the output
of TSK_self as the value of the task parameter.

A context switch occurs when calling TSK_setpri if a task makes its own priority lower than the priority of
another currently ready task, or if the currently executing task makes a ready task’s priority higher than
its own priority. TSK_setpri can be used for mutual exclusion.

Constraints and Calling Context

• newpri must be less than or equal to TSK_MAXPRI.

• The task cannot be TSK_TERMINATED.

• The new priority should not be zero (0). This priority level is reserved for the TSK_idle task.

See Also
TSK_self
TSK_sleep

TSK_setpri Set a task’s execution priority
474 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_settime
C Interface

Syntax
TSK_settime(task);

Parameters
TSK_Handle task; /* task object handle */

Return Value
Void

Description
Your application can call TSK_settime before a task enters its processing loop in order to ensure your
first call to TSK_deltatime is as accurate as possible and doesn’t reflect the time difference since the time
the task was created. However, it is only necessary to call TSK_settime once for initialization purposes.
After initialization, DSP/BIOS sets the time value of the task’s STS object every time the task is made
ready to run.

TSK statistics are handled differently than other statistics because TSK functions typically run an infinite
loop that blocks when waiting for other threads. In contrast, HWI and SWI functions run to completion
without blocking. Because of this difference, DSP/BIOS allows programs to identify the “beginning” of a
TSK function’s processing loop by calling TSK_settime and the “end” of the loop by calling
TSK_deltatime.

For example, a loop within the task can look something like the following:

Void task

{

 'do some startup work'

 /* Initialize task's STS object to current time */
 TSK_settime(TSK_self());

 for (;;) {

 /* Get data */

 SIO_get(...);

 'process data'

 /* Get time difference and

 add it to task's STS object */

 TSK_deltatime(TSK_self());
 }

}

In the previous example, the task blocks on SIO_get and the device driver posts a semaphore that
readies the task. DSP/BIOS sets the task’s statistics object with the current time when the semaphore
becomes available and the task is made ready to run. Thus, the call to TSK_deltatime effectively
measures the processing time of the task.

TSK_settime Reset task statistics previous value to current time
SPRU404Q—August 2012 Application Program Interface 475
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_settime www.ti.com
Constraints and Calling Context

• TSK_settime cannot be called from the program’s main() function.

• The results of calls to TSK_deltatime and TSK_settime are displayed in the Statistics View only if
Enable TSK accumulators is selected within the RTA Control Panel.

See Also
TSK_deltatime
TSK_getsts
476 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_sleep
C Interface

Syntax
TSK_sleep(nticks);

Parameters
Uns nticks; /* number of system clock ticks to sleep */

Return Value
Void

Description
TSK_sleep changes the current task’s mode from TSK_RUNNING to TSK_BLOCKED, and delays its
execution for nticks increments of the system clock. The actual time delayed can be up to 1 system clock
tick less than timeout due to granularity in system timekeeping.

After the specified period of time has elapsed, the task reverts to the TSK_READY mode and is
scheduled for execution.

A task switch always occurs when calling TSK_sleep if nticks > 0.

Constraints and Calling Context

• TSK_sleep cannot be called from a SWI or HWI, or within a TSK_disable / TSK_enable block.

• TSK_sleep cannot be called from the program’s main() function.

• TSK_sleep should not be called from within an IDL function. Doing so prevents analysis tools from
gathering run-time information.

• nticks cannot be SYS_FOREVER.

TSK_sleep Delay execution of the current task
SPRU404Q—August 2012 Application Program Interface 477
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_stat www.ti.com
C Interface

Syntax
TSK_stat(task, statbuf);

Parameters
TSK_Handle task; /* task object handle */
TSK_Stat *statbuf; /* pointer to task status structure */

Return Value
Void

Description
TSK_stat retrieves attribute values and status information about a task.

Status information is returned through statbuf, which references a structure of type TSK_Stat defined as
follows:

struct TSK_Stat { /* task status structure */
 TSK_Attrs attrs; /* task attributes */
 TSK_Mode mode; /* task execution mode */
 Ptr sp; /* task stack pointer */
#ifdef _55_
 Ptr ssp; /* task system stack pointer */
#endif
 size_t used; /* task stack used */
#ifdef _55_
 size_t sysused; /* task system stack used */
#endif
};

When a task is preempted by a software or hardware interrupt, the task execution mode returned for that
task by TSK_stat is still TSK_RUNNING because the task runs when the preemption ends.

The current task can inquire about itself by passing the output of TSK_self as the first argument to
TSK_stat. However, the task stack pointer (sp) in the TSK_Stat structure is the value from the previous
context switch. In addition, the task system stack pointer (ssp) provided for ’C55x is invalid when calling
TSK_stat for the current task.

TSK_stat has a non-deterministic execution time. As such, it is not recommended to call this API from
SWIs or HWIs.

Constraints and Calling Context

• statbuf cannot be NULL.

See Also
TSK_create

TSK_stat Retrieve the status of a task
478 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_tick
C Interface

Syntax
TSK_tick();

Parameters
Void

Return Value
Void

Description
TSK_tick increments the system clock, and readies any tasks blocked on TSK_sleep or SEM_pend
whose timeout intervals have expired. TSK_tick can be invoked by an HWI or by the currently executing
task. The latter is particularly useful for testing timeouts in a controlled environment.

A task switch occurs when calling TSK_tick if the priority of any of the readied tasks is greater than the
priority of the currently executing task.

Constraints and Calling Context

• When called within an HWI, the code sequence calling TSK_tick must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

See Also
CLK Module
SEM_pend
TSK_itick
TSK_sleep

TSK_tick Advance the system alarm clock
SPRU404Q—August 2012 Application Program Interface 479
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

TSK_time www.ti.com
C Interface

Syntax
curtime = TSK_time();

Parameters
Void

Return Value
Uns curtime; /* current time */

Description
TSK_time returns the current value of the system alarm clock.

Note that since the system clock is usually updated asynchronously via TSK_itick or TSK_tick, curtime
can lag behind the actual system time. This lag can be even greater if a higher priority task preempts the
current task between the call to TSK_time and when its return value is used. Nevertheless, TSK_time is
useful for getting a rough idea of the current system time.

TSK_time Return current value of system clock
480 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com TSK_yield
C Interface

Syntax
TSK_yield();

Parameters
Void

Return Value
Void

Description
TSK_yield yields the processor to another task of equal priority.

A task switch occurs when you call TSK_yield if there is an equal priority task ready to run.

Tasks of higher priority preempt the currently running task without the need for a call to TSK_yield. If only
lower-priority tasks are ready to run when you call TSK_yield, the current task continues to run. Control
does not pass to a lower-priority task.

Constraints and Calling Context

• When called within an HWI, the code sequence calling TSK_yield must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

• TSK_yield cannot be called from the program’s main() function.

See Also
 TSK_sleep

TSK_yield Yield processor to equal priority task
SPRU404Q—August 2012 Application Program Interface 481
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

std.h and stdlib.h functions www.ti.com
2.30 std.h and stdlib.h functions

This section contains descriptions of special utility macros found in std.h and DSP/BIOS standard library
functions found in stdlib.h.

Macros

• ArgToInt. Cast an Arg type parameter as an integer type.

• ArgToPtr. Cast an Arg type parameter as a pointer type.

Functions

• atexit. Register an exit function.

• *calloc. Allocate and clear memory.

• exit. Call the exit functions registered by atexit.

• free. Free memory.

• *getenv. Get environmental variable.

• *malloc. Allocate memory.

• *realloc. Reallocate a memory packet.

Syntax

#include <std.h>

ArgToInt(arg)

ArgToPtr(arg)

#include <stdlib.h>

int atexit(void (*fcn)(void));

void *calloc(size_t nobj, size_t size);

void exit(int status);

void free(void *p);

char *getenv(char *name);

void *malloc(size_t size);

void *realloc(void *p, size_t size);

Description
The DSP/BIOS library contains some C standard library functions which supersede the library functions
bundled with the C compiler. These functions follow the ANSI C specification for parameters and return
values. Consult Kernighan and Ritchie for a complete description of these functions.

The functions calloc, free, malloc, and realloc use MEM_alloc and MEM_free (with segid = Segment for
malloc/free) to allocate and free memory.

getenv uses the _environ variable defined and initialized in the boot file to search for a matching
environment string.

exit calls the exit functions registered by atexit before calling SYS_exit.
482 Application Program Interface SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com std.h and stdlib.h functions
Note: RTS Functions Callable from TSK Threads Only. Many runtime support (RTS)
functions use lock and unlock functions to prevent reentrancy. However, DSP/BIOS
SWI and HWI threads cannot call LCK_pend and LCK_post. As a result, RTS functions
that call LCK_pend or LCK_post must not be called in the context of a SWI or HWI
thread. For a list or RTS functions that should not be called from a SWI or an HWI
function, see “LCK_pend” on page 181.

To determine whether a particular RTS function uses LCK_pend, refer to the source code for that function
shipped with Code Composer Studio. The following table shows some of the RTS functions that call
LCK_pend in certain versions of Code Composer Studio:

The C++ new operator calls malloc, which in turn calls LCK_pend. As a result, the new operator cannot
be used in the context of a SWI or HWI thread.

fprintf printf vfprintf sprintf

vprintf vsprintf clock strftime

minit malloc realloc free

calloc rand srand getenv
SPRU404Q—August 2012 Application Program Interface 483
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Appendix A
SPRU404Q—August 2012

Function Callability and Error Tables

This appendix provides tables describing TMS320C55x errors and function callability.

A.1 Function Callability Table

The following table indicates what types of threads can call each of the DSP/BIOS functions. The
Possible Context Switch column indicates whether another thread may be run as a result of this function.
For example, the function may block on a resource or it may make another thread ready to run. The
Possible Context Switch column does not indicate whether the function disables interrupts that might
schedule higher-priority threads.

Table A-1 Function Callability

Function
Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?

ATM_andi Yes Yes Yes No Yes

ATM_andu Yes Yes Yes No Yes

ATM_cleari Yes Yes Yes No Yes

ATM_clearu Yes Yes Yes No Yes

ATM_deci Yes Yes Yes No Yes

ATM_decu Yes Yes Yes No Yes

ATM_inci Yes Yes Yes No Yes

ATM_incu Yes Yes Yes No Yes

ATM_ori Yes Yes Yes No Yes

ATM_oru Yes Yes Yes No Yes

ATM_seti Yes Yes Yes No Yes

ATM_setu Yes Yes Yes No Yes

BUF_alloc Yes Yes Yes No Yes

BUF_create Yes No No Yes Yes

BUF_delete Yes No No Yes Yes

BUF_free Yes Yes Yes No Yes

A.1 Function Callability Table . 484

A.2 DSP/BIOS Error Codes . 491

Topic Page
SPRU404Q—August 2012 Function Callability and Error Tables 484
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

www.ti.com Function Callability Table
BUF_maxbuff Yes No No No Yes

BUF_stat Yes Yes Yes No Yes

C55_disableIER0, C55_disableIER1 Yes Yes Yes No Yes

C55_disableInt Yes Yes Yes No Yes

C55_enableIER0, C55_enableIER1 Yes Yes Yes No Yes

C55_enableInt Yes Yes Yes No Yes

C55_l2AckInt No No Yes* No No

C55_l2DisableMIR,
C55_l2DisableMIR1

Yes Yes Yes No Yes

C55_l2EnableMIR,
C55_l2EnableMIR1

Yes Yes Yes No Yes

C55_l2SetIntPriority Yes Yes Yes No Yes

C55_plug Yes Yes Yes No Yes

CLK_countspms Yes Yes Yes No Yes

CLK_cpuCyclesPerHtime Yes Yes Yes No Yes

CLK_cpuCyclesPerLtime Yes Yes Yes No Yes

CLK_gethtime Yes Yes Yes No No

CLK_getltime Yes Yes Yes No No

CLK_getprd Yes Yes Yes No Yes

CLK_reconfig Yes Yes Yes No Yes

CLK_setTimerFunc Yes Yes Yes No Yes

CLK_start Yes Yes Yes No No

CLK_stop Yes Yes Yes No No

DEV_createDevice Yes No No Yes* Yes

DEV_deleteDevice Yes No No Yes* Yes

DEV_match Yes Yes Yes No Yes

GBL_getClkin Yes Yes Yes No Yes

GBL_getFrequency Yes Yes Yes No Yes

GBL_getProcId Yes Yes Yes No Yes

GBL_getVersion Yes Yes Yes No Yes

GBL_setFrequency No No No No Yes

GBL_setProcId No No No No No*

GIO_abort Yes No* No* Yes No

GIO_control Yes No* No* Yes Yes

GIO_create Yes No No No Yes

GIO_delete Yes No No Yes Yes

GIO_flush Yes No* No* Yes No

GIO_new Yes Yes Yes No Yes

GIO_read Yes No* No* Yes Yes*

GIO_submit Yes Yes* Yes* Yes Yes*

GIO_write Yes No* No* Yes Yes*

Function
Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
SPRU404Q—August 2012 Function Callability and Error Tables 485
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Function Callability Table www.ti.com
HOOK_getenv Yes Yes Yes No Yes

HOOK_setenv Yes Yes Yes No Yes

HST_getpipe Yes Yes Yes No Yes

HWI_disable Yes Yes Yes No Yes

HWI_dispatchPlug Yes Yes Yes No Yes

HWI_enable Yes Yes Yes Yes* No

HWI_enter No No Yes No No

HWI_exit No No Yes Yes No

HWI_isHWI Yes Yes Yes No Yes

HWI_restore Yes Yes Yes Yes* Yes

IDL_run Yes No No No No

LCK_create Yes No No Yes* Yes

LCK_delete Yes No No Yes* No

LCK_pend Yes No No Yes* No

LCK_post Yes No No Yes* No

LOG_disable Yes Yes Yes No Yes

LOG_enable Yes Yes Yes No Yes

LOG_error Yes Yes Yes No Yes

LOG_event Yes Yes Yes No Yes

LOG_message Yes Yes Yes No Yes

LOG_printf Yes Yes Yes No Yes

LOG_reset Yes Yes Yes No Yes

MBX_create Yes No No Yes* Yes

MBX_delete Yes No No Yes* No

MBX_pend Yes Yes* Yes* Yes* No

MBX_post Yes Yes* Yes* Yes* Yes*

MEM_alloc Yes No No Yes* Yes

MEM_calloc Yes No No Yes* Yes

MEM_define Yes No No Yes* Yes

MEM_free Yes No No Yes* Yes

MEM_getBaseAddress Yes Yes Yes No Yes

MEM_increaseTableSize Yes No No Yes* Yes

MEM_redefine Yes No No Yes* Yes

MEM_stat Yes No No Yes* Yes

MEM_undefine Yes No No Yes* Yes

MEM_valloc Yes No No Yes* Yes

MSGQ_alloc Yes Yes Yes No Yes

MSGQ_close Yes Yes Yes No Yes

MSGQ_count Yes Yes* Yes* No No

MSGQ_free Yes Yes Yes No Yes

Function
Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
486 Function Callability and Error Tables SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Function Callability Table
MSGQ_get Yes Yes* Yes* Yes* No

MSGQ_getAttrs Yes Yes Yes No Yes

MSGQ_getDstQueue Yes Yes Yes No No

MSGQ_getMsgId Yes Yes Yes No Yes

MSGQ_getMsgSize Yes Yes Yes No Yes

MSGQ_getSrcQueue Yes Yes Yes No No

MSGQ_isLocalQueue Yes Yes Yes No Yes

MSGQ_locate Yes No No Yes No

MSGQ_locateAsync Yes Yes Yes No No

MSGQ_open Yes Yes* Yes* Yes* Yes

MSGQ_put Yes Yes Yes No No

MSGQ_release Yes Yes Yes No No

MSGQ_setErrorHandler Yes Yes Yes No Yes

MSGQ_setMsgId Yes Yes Yes No Yes

MSGQ_setSrcQueue Yes Yes Yes No Yes

PIP_alloc Yes Yes Yes Yes Yes

PIP_free Yes Yes Yes Yes Yes

PIP_get Yes Yes Yes Yes Yes

PIP_getReaderAddr Yes Yes Yes No Yes

PIP_getReaderNumFrames Yes Yes Yes No Yes

PIP_getReaderSize Yes Yes Yes No Yes

PIP_getWriterAddr Yes Yes Yes No Yes

PIP_getWriterNumFrames Yes Yes Yes No Yes

PIP_getWriterSize Yes Yes Yes No Yes

PIP_peek Yes Yes Yes No Yes

PIP_put Yes Yes Yes Yes Yes

PIP_reset Yes Yes Yes Yes Yes

PIP_setWriterSize Yes Yes Yes No Yes

PRD_getticks Yes Yes Yes No Yes

PRD_start Yes Yes Yes No Yes

PRD_stop Yes Yes Yes No Yes

PRD_tick Yes Yes Yes Yes No

PWRM_changeSetpoint Yes Yes* No No No

PWRM_configure Yes Yes Yes No Yes

PWRM_getCapabilities Yes Yes Yes No Yes

PWRM_getCurrentSetpoint Yes Yes Yes No Yes

PWRM_getDependencyCount Yes Yes Yes No Yes

PWRM_getNumSetpoints Yes Yes Yes No Yes

PWRM_getSetpointInfo Yes Yes Yes No Yes

PWRM_getTransitionLatency Yes Yes Yes No Yes

Function
Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
SPRU404Q—August 2012 Function Callability and Error Tables 487
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Function Callability Table www.ti.com
PWRM_idleClocks Yes Yes Yes No Yes

PWRM_registerNotify Yes No No Yes* Yes

PWRM_releaseDependency Yes Yes Yes No Yes

PWRM_setDependency Yes Yes Yes No Yes

PWRM_sleepDSP Yes Yes* No No No

PWRM_unregisterNotify Yes Yes Yes No Yes

QUE_create Yes No No Yes* Yes

QUE_delete Yes No No Yes* Yes

QUE_dequeue Yes Yes Yes No Yes

QUE_empty Yes Yes Yes No Yes

QUE_enqueue Yes Yes Yes No Yes

QUE_get Yes Yes Yes No Yes

QUE_head Yes Yes Yes No Yes

QUE_insert Yes Yes Yes No Yes

QUE_new Yes Yes Yes No Yes

QUE_next Yes Yes Yes No Yes

QUE_prev Yes Yes Yes No Yes

QUE_put Yes Yes Yes No Yes

QUE_remove Yes Yes Yes No Yes

RTDX_channelBusy Yes Yes No No Yes

RTDX_CreateInputChannel Yes Yes No No Yes

RTDX_CreateOutputChannel Yes Yes No No Yes

RTDX_disableInput Yes Yes No No Yes

RTDX_disableOutput Yes Yes No No Yes

RTDX_enableInput Yes Yes No No Yes

RTDX_enableOutput Yes Yes No No Yes

RTDX_isInputEnabled Yes Yes No No Yes

RTDX_isOutputEnabled Yes Yes No No Yes

RTDX_read Yes Yes No No No

RTDX_readNB Yes Yes No No No

RTDX_sizeofInput Yes Yes No No Yes

RTDX_write Yes Yes No No No

SEM_count Yes Yes Yes No Yes

SEM_create Yes No No Yes* Yes

SEM_delete Yes Yes* No Yes* No

SEM_new Yes Yes Yes No Yes

SEM_pend Yes Yes* Yes* Yes* No

SEM_pendBinary Yes Yes* Yes* Yes* No

SEM_post Yes Yes Yes Yes* Yes

SEM_postBinary Yes Yes Yes Yes* Yes

Function
Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
488 Function Callability and Error Tables SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Function Callability Table
SEM_reset Yes No No No Yes

SIO_bufsize Yes Yes Yes No Yes

SIO_create Yes No No Yes* Yes

SIO_ctrl Yes Yes No No Yes

SIO_delete Yes No No Yes* Yes

SIO_flush Yes Yes* No No No

SIO_get Yes No No Yes* Yes*

SIO_idle Yes Yes* No Yes* No

SIO_issue Yes Yes No No Yes

SIO_put Yes No No Yes* Yes*

SIO_ready Yes Yes Yes No No

SIO_reclaim Yes Yes* No Yes* Yes*

SIO_reclaimx Yes Yes* No Yes* Yes*

SIO_segid Yes Yes Yes No Yes

SIO_select Yes Yes* No Yes* No

SIO_staticbuf Yes Yes No No Yes

STS_add Yes Yes Yes No Yes

STS_delta Yes Yes Yes No Yes

STS_reset Yes Yes Yes No Yes

STS_set Yes Yes Yes No Yes

SWI_andn Yes Yes Yes Yes* No

SWI_andnHook Yes Yes Yes Yes* No

SWI_create Yes No No Yes* Yes

SWI_dec Yes Yes Yes Yes* No

SWI_delete Yes No No Yes* Yes

SWI_disable Yes Yes No No No

SWI_enable Yes Yes No Yes* No

SWI_getattrs Yes Yes Yes No Yes

SWI_getmbox No Yes No No No

SWI_getpri Yes Yes Yes No Yes

SWI_inc Yes Yes Yes Yes* No

SWI_isSWI Yes Yes Yes No Yes

SWI_or Yes Yes Yes Yes* No

SWI_orHook Yes Yes Yes Yes* No

SWI_post Yes Yes Yes Yes* No

SWI_raisepri No Yes No No No

SWI_restorepri No Yes No Yes No

SWI_self No Yes No No No

SWI_setattrs Yes Yes Yes No Yes

SYS_abort Yes Yes Yes No Yes

Function
Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
SPRU404Q—August 2012 Function Callability and Error Tables 489
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Function Callability Table www.ti.com
Note: *See the appropriate API reference page for more information.

SYS_atexit Yes Yes Yes No Yes

SYS_error Yes Yes Yes No Yes

SYS_exit Yes Yes Yes No Yes

SYS_printf Yes Yes Yes No Yes

SYS_putchar Yes Yes Yes No Yes

SYS_sprintf Yes Yes Yes No Yes

SYS_vprintf Yes Yes Yes No Yes

SYS_vsprintf Yes Yes Yes No Yes

TRC_disable Yes Yes Yes No Yes

TRC_enable Yes Yes Yes No Yes

TRC_query Yes Yes Yes No Yes

TSK_checkstacks Yes No No No No

TSK_create Yes No No Yes* Yes

TSK_delete Yes No No Yes* No

TSK_deltatime Yes Yes Yes No No

TSK_disable Yes No No No No

TSK_enable Yes No No Yes* No

TSK_exit Yes No No Yes* No

TSK_getenv Yes Yes Yes No Yes

TSK_geterr Yes Yes Yes No Yes

TSK_getname Yes Yes Yes No Yes

TSK_getpri Yes Yes Yes No Yes

TSK_getsts Yes Yes Yes No Yes

TSK_isTSK Yes Yes Yes No Yes

TSK_itick No Yes Yes Yes No

TSK_self Yes Yes Yes No No

TSK_setenv Yes Yes Yes No Yes

TSK_seterr Yes Yes Yes No Yes

TSK_setpri Yes Yes Yes Yes* Yes

TSK_settime Yes Yes Yes No No

TSK_sleep Yes No No Yes* No

TSK_stat Yes Yes* Yes* No Yes

TSK_tick Yes Yes Yes Yes* No

TSK_time Yes Yes Yes No No

TSK_yield Yes Yes Yes Yes* No

Function
Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
490 Function Callability and Error Tables SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com DSP/BIOS Error Codes
Table A-2 RTS Function Calls

Note: *See Section 2.30, std.h and stdlib.h functions, page 2-482 for more information.

A.2 DSP/BIOS Error Codes

Table A-3 Error Codes

Function
Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

calloc Yes No No Yes*

clock Yes No No Yes*

fprintf Yes No No Yes*

free Yes No No Yes*

getenv Yes No No Yes*

malloc Yes No No Yes*

minit Yes No No Yes*

printf Yes No No Yes*

rand Yes No No Yes*

realloc Yes No No Yes*

sprintf Yes No No Yes*

srand Yes No No Yes*

strftime Yes No No Yes*

vfprintf Yes No No Yes*

vprintf Yes No No Yes*

vsprintf Yes No No Yes*

Name Value SYS_Errors[Value]

SYS_OK 0 "(SYS_OK)”

SYS_EALLOC 1 "(SYS_EALLOC): segid = %d, size = %u, align = %u"
Memory allocation error.

SYS_EFREE 2 "(SYS_EFREE): segid = %d, ptr = ox%x, size = %u"
The memory free function associated with the indicated memory segment was unable
to free the indicated size of memory at the address indicated by ptr.

SYS_ENODEV 3 "(SYS_ENODEV): device not found"
The device being opened is not configured into the system.

SYS_EBUSY 4 "(SYS_EBUSY): device in use"
The device is already opened by the maximum number of users.

SYS_EINVAL 5 "(SYS_EINVAL): invalid parameter"
An invalid parameter was passed.

SYS_EBADIO 6 "(SYS_EBADIO): device failure"
The device was unable to support the I/O operation.

SYS_EMODE 7 "(SYS_EMODE): invalid mode"
An attempt was made to open a device in an improper mode; e.g., an attempt to open
an input device for output.
SPRU404Q—August 2012 Function Callability and Error Tables 491
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

DSP/BIOS Error Codes www.ti.com
SYS_EDOMAIN 8 "(SYS_EDOMAIN): domain error"
Used by SPOX-MATH when type of operation does not match vector or filter type.

SYS_ETIMEOUT 9 "(SYS_ETIMEOUT): timeout error"
Used by device drivers to indicate that reclaim timed out.

SYS_EEOF 10 "(SYS_EEOF): end-of-file error"
Used by device drivers to indicate the end of a file.

SYS_EDEAD 11 "(SYS_EDEAD): previously deleted object"
An attempt was made to use an object that has been deleted.

SYS_EBADOBJ 12 "(SYS_EBADOBJ): invalid object"
An attempt was made to use an object that does not exist.

SYS_ENOTIMPL 13 "(SYS_ENOTIMPL): action not implemented"
An attempt was made to use an action that is not implemented.

SYS_ENOTFOUND 14 "(SYS_ENOTFOUND): resource not found"
An attempt was made to use a resource that could not be found.

SYS_EUSER >=256 "(SYS EUSER): <user-defined string>"
User-defined error.

Name Value SYS_Errors[Value]
492 Function Callability and Error Tables SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Appendix B
SPRU404Q—August 2012

C55x DSP/BIOS Register Usage

This appendix provides tables describing the TMS320C55x register conventions in terms of preservation
across multi-threaded context switching and preconditions.

B.1 Overview

In a multi-threaded application using DSP/BIOS, it is necessary to know which registers can or cannot
be modified. Furthermore, users need to understand which registers are preserved across task context
switches and interrupts.

B.2 Register Conventions

The following definitions describe the various possible register handling behaviors:

• H - HWI. These registers are saved/restored by the HWI dispatcher and HWI_enter/HWI_exit. In
general, the "child" function register set (as defined by the C compiler) is not preserved by the HWI
dispatcher or the HWI_enter macro since it is assumed that the HWI function called is written in C
and will therefore preserve any "child" registers it uses.

• T - TSK. These registers are saved/restored during a TSK context switch. In general, only the "child"
function register set is actively preserved in the task's execution context during a synchronous
context switch. This is because it is assumed that the function that invoked the task switch has
already saved its "parent" register set. Task context switches that result from preemption by an
interrupt will preserve the entire processor state so that execution can safely resume at the
instruction following the interrupted instruction.

• G - Global. These registers are shared across all threads in the system. They are not saved and
restored during interrupt handling nor during task context switching. To make a temporary change,
save the register, make the change, and then restore it.

• I - Initialized register. These registers are set to a particular value during HWI processing and are
restored to their incoming value upon return to the interrupted routine.

B.1 Overview . 493

B.2 Register Conventions . 493

B.3 Status Register Conventions . 495

Topic Page
SPRU404Q—August 2012 C55x DSP/BIOS Register Usage 493
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

Register Conventions www.ti.com
Table 2–12. Register Handling

Register Register Name Type Notes

AC0-AC3 Accumulators H

(X)AR0-(X)AR4 Auxiliary Registers H

(X)AR5-(X)AR7 Auxiliary Registers T These "child" registers are presumed to be
saved by an HWI that uses them.

BK03, BK47, BKC Circular Buffer Size Registers H

BRC0, BRC1 Block-repeat counters H

BRS1 BRC1 save register H

BSA01, BSA23,
BSA45, BSA67, BSAC

Circular Buffer Start Address
Registers

H

(X)CDP Coefficient Data Pointer H

CFCT Control-flow context register H,T

CSR Computed Single Repeat H

DBIER0, DBIER1 Debug Interrupt Enable Registers G DSP/BIOS does not touch these registers.

(X)DP Data Page Register H,T

IER0, IER1 Interrupt Enable Registers I Modified by interrupt handlers, and may not
be fully restored upon return.

IFR0, IFR1 Interrupt Flag Registers G Initialized by DSP/BIOS at boot time,
untouched thereafter.

IVPD, IVPH Interrupt Vector Table Pointers G Initialized by DSP/BIOS at boot time,
untouched thereafter.

PC Program Counter H, T

RPTC Single Repeat Counter H

RSA0, RSA1 Block-repeat start address registers H

REA0, REA1 Block-repeat end address registers H

RETA Return Address Register H,T

(X)SP Stack Pointer H,T Changed to ISR SP during HWI execution,
restored upon return.

(X)SSP System Stack Pointer H,T Changed to ISR SSP during HWI execution,
restored upon return.

T0, T1 Temporary Registers H,T

T2, T3 Temporary Registers T These "child" registers are presumed to be
saved by an HWI that uses them.

TRN0, TRN1 Transition Registers H
494 C55x DSP/BIOS Register Usage SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Status Register Conventions
B.3 Status Register Conventions

The status registers (ST0-ST2) are automatically preserved by hardware during interrupt processing
such that upon return from an HWI, these status registers are returned to the state they were in prior to
the interrupt. ST3 bits are generally propagated except as shown below.

At system boot time and prior to entering an HWI thread handled by the DSP/BIOS HWI dispatcher or
coded using HWI_enter/HWI_exit, some status bits are configured by DSP/BIOS in order to establish a
C-compatible and DSP/BIOS-compatible runtime context for DSP/BIOS functions and HWIs. These
settings are consistent with those presumed by the C/C++ compiler.

The following definitions describe the various possible status register bit handling behaviors:

• X - Untouched. DSP/BIOS does not manipulate these bits nor depend on their values.

• B-n - BIOS. DSP/BIOS sets the bit(s) to the value n at boot time and before entering a HWI that uses
the HWI dispatcher or HWI_enter/HWI_exit. Proper operation of DSP/BIOS is not guaranteed if an
application changes these status bit settings.

• P - Propagated. These bits are not restored upon returning from an interrupt or task context switch.
Instead, they are propagated through all context switches. (That is, once they are changed, they
remain changed through all contexts.)

Table 2–13. Status Bit Handling

Register Status Bit Status Bit Name Type Notes

ST0 AC0V2 AC2 overflow flag X Restored after int

AC0V3 AC3 overflow flag X Restored after int

TC1 Test/control flag 1 X Restored after int

TC2 Test/control flag 2 X Restored after int

CARRY Carry Bit X Restored after int

AC0V0 AC0 overflow flag X Restored after int

AC0V1 AC1 overflow flag X Restored after int

ST1 BRAF Block-repeat active flag X Restored after int

CPL Compiler mode B-1 Restored after int

XF External flag X,P

HM Hold mode X,P

INTM Interrupt Mask B-0 Restored after int

M40 Computation mode for the D unit B-0 Restored after int

SATD Saturation mode for the D unit B-0 Restored after int

SXMD Sign-extension mode for the D unit B-1 Restored after int

C16 Dual 16-bit arithmetic mode B-0 Restored after int

FRCT Fractional mode B-0 Restored after int

C54CM C54x-compatible mode B-0 Restored after int
SPRU404Q—August 2012 C55x DSP/BIOS Register Usage 495
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Status Register Conventions www.ti.com
ASM Accumulator shift mode X Restored after int

ST2 ARMS AR mode switch B-1 Restored after int

DBGM Debug mode X Restored after int

EALLOW Emulation access enable X Restored after int

RDM Rounding mode B-0 Restored after int

CDPLC CDP linear/circular configuration B-0 Restored after int

AR0-7LC ARn linear/circular configuration B-0 Restored after int

ST3 CAFRZ Cache freeze X,P

CAEN Cache enable X,P

CACLR Cache clear X,P

HINT Host interrupt X,P

CBERR CPU bus error X,P

MPNMC Microprocessor/Microcomputer mode X,P

SATA Saturation mode for A unit B-0 Restored after int

CLKOFF CLKOUT disable X,P

SMUL Saturation-on-multiplication mode B-1 Restored after int

SST Saturate-on-store mode X Restored after int

Register Status Bit Status Bit Name Type Notes
496 C55x DSP/BIOS Register Usage SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Appendix C
SPRU404Q—August 2012

DSP/BIOS for OMAP 2320

This appendix describes things you need to know about DSP/BIOS in order to use it with the OMAP 2320
platform.

C.1 Overview

DSP/BIOS has been enhanced to provide seamless support for the core timers and Level 2 Interrupt
Controller (L2IC) present within the OMAP 2320. The CLK module functionality is now driven by the core
timers. The HWI module APIs can define and manipulate level 2 interrupts in addition to level 1 interrupts.

The OMAP 2320 is part of a series of next generation "OMAP 4" devices. This series encompasses the
23xx and 24xx devices.

C.2 OMAP 2320 and the CLK Module

Changes and enhancements have been made to the DSP/BIOS CLK module to enable the use of OMAP
2320 core timers. The OMAP 2320 has 2 core timers, which can be use to drive the low- and high-
resolution DSP/BIOS clock functionality.

C.2.1 Static Configuration

By default, the low-resolution CLK function (see CLK_getltime) is enabled and assigned to core Timer 0.
Alternately, you can configure Timer 1 for this function. To change the configuration, add the following
line to your Tconf configuration file:

bios.CLK.TIMERSELECT = "Timer 1"; // "Timer 0" or "Timer 1"

C.1 Overview . 497

C.2 OMAP 2320 and the CLK Module . 497

C.3 OMAP 2320 and the HWI Module . 498

C.4 OMAP 2320 and the C55 Module . 501

C.5 Building DSP/BIOS Applications for OMAP 2320. 501

C.6 Usage Examples . 502

Topic Page
SPRU404Q—August 2012 DSP/BIOS for OMAP 2320 497
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

OMAP 2320 and the HWI Module www.ti.com
You can disable the low-resolution CLK function using the following Tconf script commands:

bios.CLK.ENABLECLK = 0;

bios.PRD.USECLK = 0;

By default, the high-resolution CLK function (see CLK_gethtime) is enabled and derived from the low-
resolution timer. You can disable this function with the following configuration script command:

bios.CLK.ENABLEHTIME = 0; // 0 (disabled) or 1 (enabled)

In the Gconf configuration tool, the CLK properties for the OMAP 2320 are as follows:

C.3 OMAP 2320 and the HWI Module

With the introduction of the OMAP family of dual-core ARM + ‘C55x devices, many more interrupt sources
have been defined than can be terminated on the legacy ‘C55x level 1 interrupt controller, which has a
limit of 32 interrupts. To accommodate additional interrupt sources, a new interrupt mechanism has been
provided in hardware: the "Level 2 Interrupt Controller" (L2IC).

The additional interrupts are prioritized and multiplexed by the Level 2 Interrupt Controller onto two
dedicated level 1 interrupts. DSP/BIOS internally configures all 32 level 2 interrupts to terminate on the
single level 1 FIQ interrupt. In the 23xx/24xx OMAP family, many peripherals that formerly interrupted the
DSP at level 1 have been moved to level 2.

The DSP/BIOS interface to this interrupt controller is called the Level 2 Interrupt Manager (L2IM). The
complexities of the L2IM are concealed by reusing and enhancing existing HWI module APIs. As a result,
very few new API elements are needed.
498 DSP/BIOS for OMAP 2320 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com OMAP 2320 and the HWI Module
The following sections describe extensions made to the HWI module to support the OMAP 2320.

C.3.1 Level 2 Interrupt Controller Base Address

By default, the Level 2 Interrupt Controller (L2IC) resides at data memory address 0x7c4800. This
coincides with the reset IOMA value of 0x3e. The IO MAP (IOMA) base address is the page index used
to access DSP I/O space addresses from DSP memory space.

If you modify IOMA for any reason, you need to tell DSP/BIOS the new base address for the L2IC. The
following Tconf configuration property is provided for this purpose:

bios.HWI.INTC_BASE = 0x7c4800; // 0x7c4800 is default

C.3.2 Level 2 Interrupt Objects and Properties

There are 64 new HWI interrupt objects defined to correspond to level 2 interrupts 0 through 63. These
objects are named HWI_L2_INT0 through HWI_L2_INT63.

The following parameters have been added to HWI interrupt objects to allow for static configuration of
the level 2 interrupt priorities, mirmask, and mir1mask:

• iMirMask. This property is valid for both level 1 and 2 interrupts. It specifies which level 2 interrupts
the dispatcher should disable before calling this HWI function. This property is writable only when the
useDispatcher property is set to true. (This property is similar to interruptMask0 and interruptMask1,
which deal with level 1 interrupts.)

— The "self" option causes the dispatcher to disable only the current interrupt and causes the
appropriate interruptBitMask0, interruptBitMask1, mirmask, and mir1mask values to be
generated for the interrupt being configured.

— The "all" option disables all level 2 interrupts.

— The "none" option disables no level 2 interrupts.

— The "bitmask" option causes the mirmask and mir1mask properties to be used to specify the level
2 interrupts to disable.

• mirmask. This property is valid for both level 1 and 2 interrupts. It defines a bitmask of level 2
interrupts 0-31 to be disabled by the DSP/BIOS HWI dispatcher when executing this HWI function.
This property is writable only when the useDispatcher property is set to true. (This property is similar
to interruptBitMask0, which masks level 1 interrupts.)

• mir1mask. This property is valid for both level 1 and 2 interrupts. It defines a bitmask of level 2
interrupts 32-63 to be disabled by the DSP/BIOS HWI dispatcher when executing this HWI function.
This property is writable only when the useDispatcher property is set to true. (This property is similar
to interruptBitMask1, which masks level 1 interrupts.)

• priority. Sets the priority from 0 to 63 of a level 2 interrupt. Zero is the highest priority. The default
priority for a level 2 interrupt matches its interrupt number. Although this field exists for all HWI
interrupt objects, it cannot be configured for level 1 interrupts. You can change the priority at run-time
using the C55_l2SetIntPriority API.
SPRU404Q—August 2012 DSP/BIOS for OMAP 2320 499
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

OMAP 2320 and the HWI Module www.ti.com
The following Tconf statements configure the level 2 interrupt 0 to have a priority of 63 (lowest priority)
and a mirmask of 0xffffffff (no other level 2 interrupts enabled while servicing this interrupt):

// valid priority values: 0-63

bios.HWI_L2_INT0.priority = 63;

// use dispatcher and enable setting iMirMask, mirmask

bios.HWI_L2_INT0.useDispatcher = true;

// "bitmask" enables writing to mirmask and mir1mask

bios.HWI_L2_INT0.iMirMask = "bitmask";

// no other L2 interrupts while servicing HWI_L2_INT0

bios.HWI_L2_INT0.mirmask = 0xffffffff;

// no other L2 interrupts while servicing HWI_L2_INT0

bios.HWI_L2_INT0.mir1mask = 0xffffffff;

C.3.3 HWI_dispatchPlug API

The range of vector IDs allowed is extended from 0-31 to 0-95. The IDs 32-95 correspond to level 2
interrupts 0-63 respectively. The c55.h file now includes definitions for C55_L2_INT0 through
C55_L2_INT63, which map to vector IDs 32-95.

The HWI_Attrs structure used by HWI_dispatchPlug has been expanded to include two additional fields:
mirmask and mir1mask. Each of these fields contains a 32-bit mask to specify which of the additional
level 2 interrupts to mask during the interrupt. The mirmask field controls L2 interrupts 0-31. The
mir1mask field controls L2 interrupts 32-63.

typedef struct HWI_Attrs {

 Uns ier0mask; // Level 1 interrupt masks

 Uns ier1mask;

 Arg arg; // fxn arg (default = 0)

 LgUns mirmask; // Level 2 interrupt mask 0-31

 LgUns mir1mask; // Level 2 interrupt mask 32-63

} HWI_Attrs;

The default values of mirmask and mir1mask (provided by HWI_ATTRS) for all interrupts is consistent
with the “self” setting.

C.3.4 HWI_enter and HWI_exit APIs

The HWI_enter and HWI_exit assembly language macros have been enhanced to support selective
interrupt nesting control of level 2 interrupts. This matches the way level 1 interrupts are controlled.

The argument lists for these macros have two additional interrupt mask arguments. In HWI_enter, these
32-bit bitmasks define which level 2 interrupts are to be masked while executing the HWI body. In
HWI_exit, these masks define which level 2 interrupts are to be restored to their prior state before
returning from the interrupt.
500 DSP/BIOS for OMAP 2320 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com OMAP 2320 and the C55 Module
The OMAP 2320 macro invocation syntax is shown below:

HWI_enter C55_AR_DR_X_MASK, C55_ACC_X_MASK, C55_MISC1_X_MASK, C55_MISC2_X_MASK,
C55_MISC3_X_MASK, IER0DISABLEMASK, IER1DISABLEMASK, MIRDISABLEMASK, MIR1DISABLEMASK

HWI_exit C55_AR_DR_X_MASK, C55_ACC_X_MASK, C55_MISC1_X_MASK, C55_MISC2_X_MASK,
C55_MISC3_X_MASK, IER0RESTOREMASK, IER1RESTOREMASK, MIRRESTOREMASK, MIR1RESTOREMASK

C.4 OMAP 2320 and the C55 Module

In addition to extensions to the HWI module, the following extensions have been made to the C55 module
to support the OMAP 2320 level 2 interrupts.

C.4.1 C55_plug API

For C55_plug, the range of vector IDs is extended from 0-31 to 0-95. The IDs 32-95 correspond to level
2 interrupts 0-63 respectively. The c55.h file now includes definitions C55_L2_INT0 through
C55_L2_INT63 which map to vector IDs 32-95.

C.4.2 New APIs

The following APIs have been added to the C55 module for use with OMAP 2320. For details, see the
topics for these APIs in the alphabetic reference in Chapter 2.

• C55_disableInt. Disable an individual interrupt.

• C55_enableInt. Enable an individual interrupt.

• C55_l2AckInt. Explicitly acknowledge an L2 interrupt

• C55_l2DisableMIR. Disable a mask of L2 interrupts

• C55_l2EnableMIR. Enable a mask of L2 interrupts

• C55_l2SetIntPriority. Set the priority of a L2 interrupt

C.5 Building DSP/BIOS Applications for OMAP 2320

In order for the proper DSP/BIOS header files to be used during the build process, you must define the
symbol "_2320_" at assembly time.

If you are building from the command line, add the following option to your assembler command line:

-d_2320_

If you are building with CCS, follow these steps:

1. Open the application's CCS project.

2. Choose Project->Build Options to open the Build Options dialog.

3. Go to the Compiler tab and choose the Assembly category

4. Add _2320_ to the “Pre-Define NAME (-ad)” field.

5. Click OK.
SPRU404Q—August 2012 DSP/BIOS for OMAP 2320 501
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Usage Examples www.ti.com
C.6 Usage Examples

The following examples provide examples that use the HWI and C55 APIs related to the OMAP 2320.

C.6.1 Installing and Enabling a Single Level 2 Interrupt

This C code example plugs and enables the 23xx Level 2 interrupt #1.

/*

 * ======== l2_example1.c ========

 * DSP/BIOS Level 2 interrupt example

 */

#include <std.h>

#include <hwi.h>

#include <log.h>

#include <c55.h>

extern LOG_Obj trace;

void myIsr (Arg id)

{

 LOG_printf(&trace, "My l2 ISR %d", ArgToInt(id));

}

Void main ()

{

 HWI_Attrs attrs = HWI_ATTRS;

 // pass vector ID to myIsr

 attrs.arg = (Arg)C55_L2_INT1;

 // Plug Level 2 Interrupt #1 Vector

 HWI_dispatchPlug(C55_L2_INT1, (Fxn)myIsr, &attrs);

 // Enable Level 2 interrupt

 C55_enableInt(C55_L2_INT1);

}

502 DSP/BIOS for OMAP 2320 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Usage Examples
C.6.2 Installing and Enabling Multiple Level 2 Interrupts

This C code example plugs and enables level 2 interrupts numbers 10, 11, 12, and 13 and sets their
priority levels to 0, 1, 2, 3 respectively (0 = highest priority). The default interrupt nesting behavior (all
other interrupts enabled while l2FiqFunc is called) is configured.

/*

 * ======== l2_example2.c ========

 * DSP/BIOS Level 2 interrupt example

 */

#include <std.h>

#include <hwi.h>

#include <log.h>

#include <c55.h>

extern LOG_Obj trace;

void l2FiqFunc(Arg id)

{

 LOG_printf(&trace, "l2_fiq %d\n", ArgToInt(id)%32);

}

Void main()

{

 HWI_Attrs attrs;

 attrs = HWI_ATTRS;

 attrs.arg = (Arg)C55_L2_INT10;

 HWI_dispatchPlug(C55_L2_INT10, (Fxn)l2FiqFunc, &attrs);

 C55_l2SetIntPriority(C55_L2_INT10, 0);

 attrs.arg = (Arg)C55_L2_INT11;

 HWI_dispatchPlug(C55_L2_INT11, (Fxn)l2FiqFunc, &attrs);

 C55_l2SetIntPriority(C55_L2_INT11, 1);

 attrs.arg = (Arg)C55_L2_INT12;

 HWI_dispatchPlug(C55_L2_INT12, (Fxn)l2FiqFunc, &attrs);

 C55_l2SetIntPriority(C55_L2_INT12, 2);

 attrs.arg = (Arg)C55_L2_INT13;

 HWI_dispatchPlug(C55_L2_INT13, (Fxn)l2FiqFunc, &attrs);

 C55_l2SetIntPriority(C55_L2_INT13, 3);

 C55_l2EnableMIR(0x00003c00);

}

SPRU404Q—August 2012 DSP/BIOS for OMAP 2320 503
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Usage Examples www.ti.com
C.6.3 Enabling an L2 Interrupt Using "interrupt" Keyword

This C code example plugs and enables OMAP 23xx level 2 interrupt number 1.

/*

 * ======== l2_example3.c ========

 * DSP/BIOS Level 2 interrupt example

 */

#include <std.h>

#include <hwi.h>

#include <log.h>

#include <c55.h>

extern LOG_Obj trace;

interrupt void myIsr ()

{

 // Acknowledge this level 2 interrupt to the L2IC

 C55_l2AckInt();

 // ...

 // Your code here

 // ...

}

Void main ()

{

 // Plug Level 2 Interrupt #1 Vector

 C55_plug(C55_L2_INT1, (Fxn)myIsr);

 // Enable Level 2 interrupt

 C55_enableInt(C55_L2_INT1);

}

504 DSP/BIOS for OMAP 2320 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Usage Examples
C.6.4 Assembly Language ISR Using HWI_enter, HWI_exit

This assembly code example uses the MIR mask arguments.

;#

;# DSP/BIOS Level 2 interrupt example

;#

; Include files

.include log.h55

.include hwi.h55

.include c55.h55

.global _l2FiqFunc

.global _intCount

.ref _trace

.ref _reportInfo

_myIsr:

HWI_enter C55_ALL_AR_DR_REGS, C55_ALL_ACC_REGS, C55_ALL_MISC1_REGS,
C55_ALL_MISC2_REGS, C55_ALL_MISC3_REGS,

0x0000, ; ier0 interrupt mask unchanged

0x0000, ; ier1 interrupt mask unchanged

0xffffffff ; all level 2 ints 0-31 masked

0xffffffff ; all level 2 ints 32-63 masked

;

; Your code here

;

HWI_exit C55_ALL_AR_DR_REGS, C55_ALL_ACC_REGS, C55_ALL_MISC1_REGS,
C55_ALL_MISC2_REGS, C55_ALL_MISC3_REGS,

0x0000, ; ier0 interrupt mask unchanged

0x0000, ; ier1 interrupt mask unchanged

0xffffffff ; all level 2 ints 0-31 restored

0xffffffff ; all level 2 ints 32-63 restored
SPRU404Q—August 2012 DSP/BIOS for OMAP 2320 505
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Usage Examples www.ti.com
C.6.5 Statically Configuring a Level 2 Interrupt

This example plugs and enables Level 2 interrupt number 43. All other level 1 and level 2 interrupts are
disabled by the DSP/BIOS dispatcher during the execution of "myIsr".

/*

 * ======== l2_example4.c ========

 * DSP/BIOS Level 2 interrupt example

 */

#include <std.h>

#include <hwi.h>

#include <log.h>

#include <c55.h>

extern LOG_Obj trace;

void myIsr (Arg id)

{

 LOG_printf(&trace, "My L2 ISR %d", ArgToInt(id));

}

Void main ()

{

 // Enable Level 2 interrupt number 43

 C55_enableInt(C55_L2_INT43);

}

 TCONF script

/* ========= l2_example4.tcf ======== */

bios.HWI_L2_INT43.useDispatcher = 1;

 // use HWI dispatcher

bios.HWI_L2_INT43.fxn = prog.extern("myIsr");

 // attach to "myIsr" C function

bios.HWI_L2_INT43.arg = 43;

 // pass interrupt ID as argument

bios.HWI_L2_INT43.iMirMask = "all";

 // mask all other L2 ints

bios.HWI_L2_INT43.interruptMask0 = "all";

 // mask L1 ints 0-15

bios.HWI_L2_INT43.interruptMask1 = "all";

 // mask L1 ints 16-31

bios.HWI_L2_INT43.priority = 15;
506 DSP/BIOS for OMAP 2320 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Appendix D
SPRU404Q—August 2012

DSP/BIOS for OMAP 2420

This appendix describes things you need to know about DSP/BIOS in order to use it with the OMAP 2420
platform.

D.1 Overview

DSP/BIOS has been enhanced to provide seamless support for the General Purpose Timers (GP Timers)
and Level 2 Interrupt Controller (L2IC) present within the OMAP 2420. The CLK module functionality is
now driven by GP Timers. The HWI module APIs can define and manipulate level 2 interrupts in addition
to level 1 interrupts.

The OMAP 2420 is the first in a series of next generation "OMAP 4" devices. This series may also be
referred to as OMAP24xx devices.

Documentation for the OMAP 2420 is provided in the OMAP 2410/2420 Technical Reference Manual
(SWPU064).

D.2 OMAP 2420 and the CLK Module

A number of changes and enhancements have been made to the DSP/BIOS CLK module to enable the
use of OMAP 2420 General Purpose (GP) timers. The OMAP 2420 has 12 General Purpose (GP) timers.
Four timers (5, 6, 7, and 8) are designed to be used by the DSP.

D.2.1 Static Configuration

For OMAP 2420, the high- and low-resolution DSP/BIOS clocks are completely independent of each
other. It is possible to disable the low-resolution CLK while still supporting the high-resolution CLK
features, and vice versa.

D.1 Overview . 507

D.2 OMAP 2420 and the CLK Module . 507

D.3 OMAP 2420 and the HWI Module . 510

D.4 OMAP 2420 and the C55 Module . 512

D.5 Building DSP/BIOS Applications for OMAP 2420. 513

D.6 Usage Examples . 514

Topic Page
SPRU404Q—August 2012 DSP/BIOS for OMAP 2420 507
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

OMAP 2420 and the CLK Module www.ti.com
The following CLK module properties have differences for OMAP 2420:

• TIMERSELECT. This property may be set to “Timer 5” or “Timer 6” to set the GP timer used for the
low-resolution time. The GP Timer 7 is used for the high-resolution time. Timer 5 (the default) runs
at 32 kHz. Timers 6 and 7 run at 12 MHz. For example:

 bios.CLK.TIMERSELECT = “Timer 5”;

• TIMERS_BASE. This property points to the address of GP timer 5 within the DSP address space.
This location is set by the DSP MMU configuration shown in Section D.2.2, GEL Configuration. The
locations of timers 6 and 7 are determined by adding 0x0400 and 0x0800 respectively to the base
address. For example, the following statement informs DSP/BIOS that the GP Timer 5 is mapped to
IO address 0x7000, the GP Timer 6 is mapped to IO address 0x7400, and the GP Timer 7 is mapped
to IO address 0x7800.

 bios.CLK.TIMERS_BASE = 0x7000;

• ENABLECLK. For OMAP 2420, this property enables/disables only the low-resolution timer. For
example, these statements disable the low-resolution clock:

 bios.PRD.USECLK = false;

 bios.CLK.ENABLECLK = false;

• ENABLEHTIME. For OMAP 2420, this property enables/disables the high-resolution clock
independent of the low-resolution clock. For example:

 bios.CLK.ENABLEHTIME = false;
508 DSP/BIOS for OMAP 2420 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com OMAP 2420 and the CLK Module
D.2.2 GEL Configuration

In order for the DSP to access the GP timers, you must configure the DSP MMU to map the GP timers
into the DSP address space. This can be done using the following ARM-side GEL commands (which are
also provided with CCS) or dedicated ARM code.

hotmenu ProgramMMU()

{

 /* DSP MMU_SYSCONFIG - Set bit 1 to perform a SOFTRESET */

 *(int *)0x5A000010 |= 0x2;

 /* TLB 0 - GPTIMER5 = 0x7000, Big Endian */

 *(int *)0x5A000050 = 0x00000000; /* DSP MMU_LOCK */

 *(int *)0x5A000058 = 0x00fdc00e; /* DSP MMU_CAM */

 *(int *)0x5A00005C = 0x4807c340; /* DSP MMU_RAM */

 *(int *)0x5A000054 = 0x00000001; /* DSP MMU_LD_TLB */

 /* TLB 1 - GPTIMER6 = 0x7400, Big Endian */

 *(int *)0x5A000050 = 0x00000010; /* DSP MMU_LOCK */

 *(int *)0x5A000058 = 0x00fdd00e; /* DSP MMU_CAM */

 *(int *)0x5A00005C = 0x4807e340; /* DSP MMU_RAM */

 *(int *)0x5A000054 = 0x00000001; /* DSP MMU_LD_TLB */

 /* TLB 2 - GPTIMER7 = 0x7c00, Big Endian */

 *(int *)0x5A000050 = 0x00000020; /* DSP MMU_LOCK */

 *(int *)0x5A000058 = 0x00fde00e; /* DSP MMU_CAM */

 *(int *)0x5A00005C = 0x48080340; /* DSP MMU_RAM */

 *(int *)0x5A000054 = 0x00000001; /* DSP MMU_LD_TLB */

 /* disable TLB updates, disable TWL, enable MMU */

 (int)0x5a000044 = 0x02;

}

SPRU404Q—August 2012 DSP/BIOS for OMAP 2420 509
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

OMAP 2420 and the HWI Module www.ti.com
In addition, you must route the appropriate clock sources to each GP timer (32KHz to the low-resolution
timer, SYSCLK to the high-resolution timer). This can also be done using the following ARM-side GEL
commands or dedicated ARM code.

hotmenu RouteGPTClocks() {

 /* CM_FCKLEN1_CORE */

 /* Enable functional clock to GPT 5,6,7 */

 (*(int*)0x48008200) = 0x380;

 /* CM_ICKLEN1_CORE */

 /* Enable interface clock to GPT 5,6,7 */

 (*(int*)0x48008210) = 0x380;

 /* CM_CLKSEL2_CORE */

 /* route 32kHz clock to gpt5,6 and sys_clk to gpt7 */

 (*(int*)0x48008244) = 0x1000;

 /* PRCM_CLKCFG_CTRL */

 /* Validate CLK config in previous step */

 (*(int*)0x48008080) = 1;

}

D.3 OMAP 2420 and the HWI Module

With the introduction of the OMAP family of dual-core ARM + ‘C55x devices, many more interrupt sources
have been defined than can be terminated on the legacy ‘C55x level 1 interrupt controller, which has a
limit of 32 interrupts. To accommodate additional interrupt sources, a new interrupt mechanism has been
provided in hardware: the "Level 2 Interrupt Controller" (L2IC).

The additional interrupts are prioritized and multiplexed by the Level 2 Interrupt Controller onto two
dedicated level 1 interrupts. DSP/BIOS internally configures all 32 level 2 interrupts to terminate on the
single level 1 FIQ interrupt. In the 24xx OMAP family, many peripherals that formerly interrupted the DSP
at level 1 have been moved out to level 2.

The L2IC contains a 32-bit Interrupt Mask Register (MIR), which defines which level 2 interrupts are
enabled or disabled.

The DSP/BIOS interface to the L2IC is implemented as part of the HWI module. The following sections
describe extensions made to the HWI module to support the OMAP 2420.

D.3.1 Level 2 Interrupt Controller Base Address

By default, the Level 2 Interrupt Controller (L2IC) resides at data memory address 0x7e4800. This
coincides with the reset IOMA value of 0x3f. The IO MAP (IOMA) base address is the page index used
to access DSP I/O space addresses from DSP memory space.

If you modify IOMA for any reason, you need to tell DSP/BIOS the new base address for the L2IC. The
following Tconf configuration property is provided for this purpose:

bios.HWI.INTC_BASE = 0x7e4800; // 0x7e4800 is default

See the OMAP 2410/2420 Technical Reference Manual (SWPU064) for details about programming
IOMA.
510 DSP/BIOS for OMAP 2420 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com OMAP 2420 and the HWI Module
D.3.2 Level 2 Interrupt Objects and Properties

There are 32 new HWI interrupt objects defined to correspond to level 2 interrupts 0 through 31. These
objects are named HWI_L2_INT0 through HWI_L2_INT31.

The following parameters have been added to HWI interrupt objects to allow for static configuration of
the level 2 interrupt priorities and mirmask:

• iMirMask. This property is valid for both level 1 and 2 interrupts. It specifies which level 2 interrupts
the dispatcher should disable before calling this HWI function. This property is writable only when the
useDispatcher property is set to true. (This property is similar to interruptMask0 and interruptMask1,
which deal with level 1 interrupts.)

— The "self" option causes the dispatcher to disable only the current interrupt and causes the
appropriate interruptBitMask0, interruptBitMask1, and mirmask values to be generated for the
interrupt being configured.

— The "all" option disables all level 2 interrupts.

— The "none" option disables no level 2 interrupts.

— The "bitmask" option causes the mirmask property to be used to specify which level 2 interrupts
to disable.

• mirmask. This property is valid for both level 1 and 2 interrupts. It defines a bitmask of the level 2
interrupts to be disabled by the DSP/BIOS HWI dispatcher when executing this HWI function. This
property is writable only when the useDispatcher property is set to true. (This property is similar to
interruptBitMask0 and interruptBitMask1, which mask level 1 interrupts.)

• priority. Sets the priority from 0 to 31 of a level 2 interrupt. Zero is the highest priority. The default
priority for a level 2 interrupt matches its interrupt number. Although this field exists for all HWI
interrupt objects, it cannot be configured for level 1 interrupts. You can change the priority at run-time
using the C55_l2SetIntPriority API.

The following Tconf statements configure the level 2 interrupt 0 to have a priority of 31 (lowest priority)
and a mirmask of 0xffffffff (no other level 2 interrupts enabled while servicing this interrupt):

// valid priority values: 0-31

bios.HWI_L2_INT0.priority = 31;

// use dispatcher and enable setting iMirMask, mirmask

bios.HWI_L2_INT0.useDispatcher = true;

// setting to "bitmask" enables writing to mirmask

bios.HWI_L2_INT0.iMirMask = "bitmask";

// no other L2 interrupts while servicing HWI_L2_INT0

bios.HWI_L2_INT0.mirmask = 0xffffffff;
SPRU404Q—August 2012 DSP/BIOS for OMAP 2420 511
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

OMAP 2420 and the C55 Module www.ti.com
D.3.3 HWI_dispatchPlug API

The range of vector IDs allowed is extended from 0-31 to 0-63. The IDs 32-63 correspond to level 2
interrupts 0-31 respectively. The c55.h file now includes definitions for C55_L2_INT0 through
C55_L2_INT31, which map to vector IDs 32-63.

The HWI_Attrs structure used by HWI_dispatchPlug has been expanded to include a mirmask field. This
field contains a 32-bit mask to specify which additional level 2 interrupts to mask during the interrupt.
Each bit in this mask corresponds to a level 2 interrupt. The default value of mirmask for all interrupts is
to mask only the current level 2 interrupt.

typedef struct HWI_Attrs {

 Uns ier0mask; // Level 1 interrupt masks

 Uns ier1mask;

 Arg arg; // fxn arg (default = 0)

 LgUns mirmask; // Level 2 interrupt mask

} HWI_Attrs;

D.3.4 HWI_enter and HWI_exit APIs

The HWI_enter and HWI_exit assembly language macros have been enhanced to support selective
interrupt nesting control of level 2 interrupts. This matches the way level 1 interrupts are controlled.

The argument lists for these macros have an additional interrupt mask argument. In HWI_enter, this 32-
bit bitmask defines which level 2 interrupts are to be masked while executing the HWI body. In HWI_exit,
the mask defines which level 2 interrupts are to be restored to their prior state before returning from the
interrupt.

The OMAP 2420 macro invocation syntax is shown below:

HWI_enter C55_AR_DR_X_MASK, C55_ACC_X_MASK, C55_MISC1_X_MASK, C55_MISC2_X_MASK,
C55_MISC3_X_MASK, IER0DISABLEMASK, IER1DISABLEMASK, MIRDISABLEMASK

HWI_exit C55_AR_DR_X_MASK, C55_ACC_X_MASK, C55_MISC1_X_MASK, C55_MISC2_X_MASK,
C55_MISC3_X_MASK, IER0RESTOREMASK, IER1RESTOREMASK, MIRRESTOREMASK

D.4 OMAP 2420 and the C55 Module

In addition to extensions to the HWI module, the following extensions have been made to the C55 module
to support the OMAP 2420 level 2 interrupts.

D.4.1 C55_plug API

For C55_plug, the range of vector IDs is extended from 0-31 to 0-63. The IDs 32-63 correspond to level
2 interrupts 0-31 respectively. The c55.h file now includes definitions C55_L2_INT0 through
C55_L2_INT31 which map to vector IDs 32-63.

D.4.2 New APIs

The following APIs have been added to the C55 module for use with OMAP 2420. For details, see the
topics for these APIs in the alphabetic reference in Chapter 2.

• C55_disableInt. Disable an individual interrupt.
512 DSP/BIOS for OMAP 2420 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Building DSP/BIOS Applications for OMAP 2420
• C55_enableInt. Enable an individual interrupt.

• C55_l2AckInt. Explicitly acknowledge an L2 interrupt

• C55_l2DisableMIR. Disable a mask of L2 interrupts

• C55_l2EnableMIR. Enable a mask of L2 interrupts

• C55_l2SetIntPriority. Set the priority of a L2 interrupt

D.5 Building DSP/BIOS Applications for OMAP 2420

In order for the proper DSP/BIOS header files to be used during the build process, you must define the
symbol "_2420_" at assembly time.

If you are building from the command line, add the following option to your assembler command line:

-d_2420_

If you are building with CCS, follow these steps:

1. Open the application's CCS project.

2. Choose Project->Build Options to open the Build Options dialog.

3. Go to the Compiler tab and choose the Assembly category

4. Add _2420_ to the “Pre-Define NAME (-ad)” field.

5. Click OK.
SPRU404Q—August 2012 DSP/BIOS for OMAP 2420 513
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Usage Examples www.ti.com
D.6 Usage Examples

The following examples provide examples that use the HWI and C55 APIs related to the OMAP 2420.

D.6.1 Installing and Enabling a Single Level 2 Interrupt

This C code example plugs and enables the 24xx Level 2 interrupt #1.

/*

 * ======== l2_example1.c ========

 * DSP/BIOS Level 2 interrupt example

 */

#include <std.h>

#include <hwi.h>

#include <log.h>

#include <c55.h>

extern LOG_Obj trace;

void myIsr (Arg id)

{

 LOG_printf(&trace, "My l2 ISR %d", ArgToInt(id));

}

Void main ()

{

 HWI_Attrs attrs = HWI_ATTRS;

 // pass vector ID to myIsr

 attrs.arg = (Arg)C55_L2_INT1;

 // Plug Level 2 Interrupt #1 Vector

 HWI_dispatchPlug(C55_L2_INT1, (Fxn)myIsr, &attrs);

 // Enable Level 2 interrupt

 C55_enableInt(C55_L2_INT1);

}

514 DSP/BIOS for OMAP 2420 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Usage Examples
D.6.2 Installing and Enabling Multiple Level 2 Interrupts

This C code example plugs and enables level 2 interrupts numbers 10, 11, 12, and 13 and sets their
priority levels to 0, 1, 2, 3 respectively (0 = highest priority). The default interrupt nesting behavior (all
other interrupts enabled while l2FiqFunc is called) is configured.

/*

 * ======== l2_example2.c ========

 * DSP/BIOS Level 2 interrupt example

 */

#include <std.h>

#include <hwi.h>

#include <log.h>

#include <c55.h>

extern LOG_Obj trace;

void l2FiqFunc(Arg id)

{

 LOG_printf(&trace, "l2_fiq %d\n", ArgToInt(id)%32);

}

Void main()

{

 HWI_Attrs attrs;

 attrs = HWI_ATTRS;

 attrs.arg = (Arg)C55_L2_INT10;

 HWI_dispatchPlug(C55_L2_INT10, (Fxn)l2FiqFunc, &attrs);

 C55_l2SetIntPriority(C55_L2_INT10, 0);

 attrs.arg = (Arg)C55_L2_INT11;

 HWI_dispatchPlug(C55_L2_INT11, (Fxn)l2FiqFunc, &attrs);

 C55_l2SetIntPriority(C55_L2_INT11, 1);

 attrs.arg = (Arg)C55_L2_INT12;

 HWI_dispatchPlug(C55_L2_INT12, (Fxn)l2FiqFunc, &attrs);

 C55_l2SetIntPriority(C55_L2_INT12, 2);

 attrs.arg = (Arg)C55_L2_INT13;

 HWI_dispatchPlug(C55_L2_INT13, (Fxn)l2FiqFunc, &attrs);

 C55_l2SetIntPriority(C55_L2_INT13, 3);

 C55_l2EnableMIR(0x00003c00);

}

SPRU404Q—August 2012 DSP/BIOS for OMAP 2420 515
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Usage Examples www.ti.com
D.6.3 Enabling an L2 Interrupt Using "interrupt" Keyword

This C code example plugs and enables OMAP 24xx level 2 interrupt number 1.

/*

 * ======== l2_example3.c ========

 * DSP/BIOS Level 2 interrupt example

 */

#include <std.h>

#include <hwi.h>

#include <log.h>

#include <c55.h>

extern LOG_Obj trace;

interrupt void myIsr ()

{

 // Acknowledge this level 2 interrupt to the L2IC

 C55_l2AckInt();

 // ...

 // Your code here

 // ...

}

Void main ()

{

 // Plug Level 2 Interrupt #1 Vector

 C55_plug(C55_L2_INT1, (Fxn)myIsr);

 // Enable Level 2 interrupt

 C55_enableInt(C55_L2_INT1);

}

516 DSP/BIOS for OMAP 2420 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com Usage Examples
D.6.4 Assembly Language ISR Using HWI_enter, HWI_exit

This assembly code example uses the MIR mask arguments.

;#

;# DSP/BIOS Level 2 interrupt example

;#

; Include files

.include log.h55

.include hwi.h55

.include c55.h55

.global _l2FiqFunc

.global _intCount

.ref _trace

.ref _reportInfo

_myIsr:

HWI_enter C55_ALL_AR_DR_REGS, C55_ALL_ACC_REGS, C55_ALL_MISC1_REGS,
C55_ALL_MISC2_REGS, C55_ALL_MISC3_REGS,

0x0000, ; ier0 interrupt mask unchanged

0x0000, ; ier1 interrupt mask unchanged

0xffffffff ; all level 2 interrupts masked

;

; Your code here

;

HWI_exit C55_ALL_AR_DR_REGS, C55_ALL_ACC_REGS, C55_ALL_MISC1_REGS,
C55_ALL_MISC2_REGS, C55_ALL_MISC3_REGS,

0x0000, ; ier0 interrupt mask unchanged

0x0000, ; ier1 interrupt mask unchanged

0xffffffff ; all level 2 interrupts restored
SPRU404Q—August 2012 DSP/BIOS for OMAP 2420 517
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Usage Examples www.ti.com
D.6.5 Statically Configuring a Level 2 Interrupt

This example plugs and enables Level 2 interrupt number 7. All other level 1 and level 2 interrupts are
disabled by the DSP/BIOS dispatcher during the execution of "myIsr".

/*

 * ======== l2_example4.c ========

 * DSP/BIOS Level 2 interrupt example

 */

#include <std.h>

#include <hwi.h>

#include <log.h>

#include <c55.h>

extern LOG_Obj trace;

void myIsr (Arg id)

{

 LOG_printf(&trace, "My L2 ISR %d", ArgToInt(id));

}

Void main ()

{

 // Enable Level 2 interrupt number 7

 C55_enableInt(C55_L2_INT7);

}

 TCONF script

/* ========= l2_example4.tcf ======== */

bios.HWI_L2_INT7.useDispatcher = 1;

 // use HWI dispatcher

bios.HWI_L2_INT7.fxn = prog.extern("myIsr");

 // attach to "myIsr" C function

bios.HWI_L2_INT7.arg = 7;

 // pass interrupt ID as argument

bios.HWI_L2_INT7.iMirMask = "all";

 // mask all other L2 ints

bios.HWI_L2_INT7.interruptMask0 = "all";

 // mask L1 ints 0-15

bios.HWI_L2_INT7.interruptMask1 = "all";

 // mask L1 ints 16-31
518 DSP/BIOS for OMAP 2420 SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

Appendix E
SPRU404Q—August 2012

DSP/BIOS for ‘C55x Devices with Three Timers

This appendix describes special DSP/BIOS features provided for use with the C55x devices that provide
three 32-bit general-purpose timers.

E.1 Overview

Certain C55x devices include three 32-bit general-purpose timers. Currently, the devices that provide
such timers are the C5505, C5515, C5517, and C5535. Future devices may also provide these timers.

The CLK module supports these devices' timers, which share a common interrupt (HWI_INT4), by
allowing separate functions to be configured for each of the three timers.

In order for DSP/BIOS to use one of these timers to drive the CLK module and to allow applications to
use the other two timers, several new CLK module configuration parameters and a new runtime API—
CLK_setTimerFunc()— have been added to DSP/BIOS.

Important: DSP/BIOS configures only the timer selected for use by the CLK manager. You must
fully configure any other timers you use. Additionally, timer functions you configure
must acknowledge the timer's interrupt and clear the timer's interrupt pending status in
the timer’s "interrupt" register as well as its corresponding status in the "Timer Interrupt
Aggregation Flag Register" at IO address 0x1c14.

E.2 CLK Module Support for Three Timers

A rudimentary interrupt dispatcher is invoked whenever any of the three timers generates an interrupt.
The CLK interrupt dispatcher then determines which timers have interrupts pending and calls the function
configured for each.

Timer interrupt functions configured for any of the three timers must have the following signature:

Void timerfunc(Arg arg);

These interrupt functions can be set either statically or dynamically.

E.1 Overview . 519

E.2 CLK Module Support for Three Timers . 519

Topic Page
SPRU404Q—August 2012 DSP/BIOS for ‘C55x Devices with Three Timers 519
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

CLK Module Support for Three Timers www.ti.com
E.2.1 Static Configuration

The following CLK module properties are provided specifically for multiple timer support:

• TIMER0FUNC. This property specifies the function to be executed when the timer 0 interrupt occurs.
By default, timer 0 is used to drive the DSP/BIOS CLK, and so this timer cannot be configured to run
a user function unless you change the CLK module’s Timer Selection property to a different timer or
disable the CLK manager. To configure this property in a configuration script, follow this example:

 bios.CLK.TIMER0FUNC = prog.extern("timer0Fxn");

• TIMER0ARG. This property specifies the argument to be passed to the corresponding timer function.
For example:

 bios.CLK.TIMER0ARG = 1;

• TIMER1FUNC. This property specifies the function to be executed when the timer 1 interrupt occurs.
To configure this property in a configuration script, follow this example:

 bios.CLK.TIMER1FUNC = prog.extern("timer1Fxn");

• TIMER1ARG. This property specifies the argument to be passed to the corresponding timer function.
For example:

 bios.CLK.TIMER1ARG = 2;

• TIMER2FUNC. This property specifies the function to be executed when the timer 2 interrupt occurs.
To configure this property in a configuration script, follow this example:

 bios.CLK.TIMER2FUNC = prog.extern("timer2Fxn");

• TIMER2ARG. This property specifies the argument to be passed to the corresponding timer function.
For example:

 bios.CLK.TIMER2ARG = 4;

The DSP/BIOS Configuration Tool lets you choose one of the three timers in the Timer Selection field.
This timer is used to drive the DSP/BIOS clock. You can configure user functions and arguments for the
other two timers only.

DSP/BIOS automatically plugs the CLK interrupt dispatcher into HWI_INT4 if any of the 3 timer functions
are statically set to something other than FXN_F_nop. By default, the CLK manager's timer handler
makes this happen without the user having to manually set any of the timer interrupt functions.

E.2.2 Dynamic Configuration

To dynamically set a timer interrupt function, use the following new CLK API:

CLK_setTimerFunc(Uns timerId,
 Void (*func)(Arg),
 Arg arg);

The timerId is 0, 1, or 2 corresponding to the timer being used. By default, the DSP/BIOS CLK manager
uses timer 0.

For example, the following statement dynamically sets timer 1's interrupt handler:

CLK_setTimerFunc(1, myTimer1Func, 4);

When timer 1's interrupt occurs, the CLK interrupt dispatcher calls the configured handler as follows:

myTimerFunc(4);

See page 2–74 for details.
520 DSP/BIOS for ‘C55x Devices with Three Timers SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

SPRU40
Submit
Index

A
abort function 427
aborting program 429
AC registers, conventions for 494
allocators

for messages sent by MSGQ module 227
interface for 277

AND operation
signed integers 24
unsigned integers 25

AR registers, conventions for 494
Arg data type 10
ArgToInt macro 482
ArgToPtr macro 482
arguments for functions 10
assembly language

callable functions (DSP/BIOS) 484
calling C functions from 9

atexit function 482
ATM module 23

function callability 484
functions in, list of 11, 23

ATM_andi function 24
ATM_andu function 25
ATM_cleari function 26
ATM_clearu function 27
ATM_deci function 28
ATM_decu function 29
ATM_inci function 30
ATM_incu function 31
ATM_ori function 32
ATM_oru function 33
ATM_seti function 34
ATM_setu function 35
atomic queue manager 323
average statistics for data series 391

B
BIOS clock (see timer)
BIOS library

instrumented or non-instrumented 121
BK registers, conventions for 494
board clock frequency 120
board input clock 122
board name 120

Bool data type 10
Boolean values 10
BR registers, conventions for 494
BSA registers, conventions for 494
BUF module 36

configuration properties 36
function callability 484
functions in, list of 11, 36
global properties 37
object properties 38

BUF_alloc function 39
BUF_create function 40
BUF_delete function 42
BUF_free function 43
BUF_maxbuff function 44
BUF_stat function 45
buffer pool

allocating fixed-size buffer 39
creating 40
deleting 42
fixed-size buffers 36
freeing fixed-size buffer 43
maximum number of buffers 44
status of 45

buffered pipe manager 259
buffers, splitting 115

C
C functions

calling from assembly language 9
C_library_stdlib 482
C5000 boards

memory segments 210
C55 module

function callability 485
functions in, list of 11
OMAP 2320 and 501
OMAP 2420 and 512

C55_disableIER0 function 47
C55_disableIER1 function 47
C55_disableInt function 48, 501, 512
C55_enableIER0 function 49
C55_enableIER1 function 49
4Q—August 2012 Index 521
Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S

www.ti.com
C55_enableInt function 51, 501, 513
C55_l2AckInt function 52, 501, 513
C55_l2DisableMIR function 53, 501, 513
C55_l2DisableMIR1 function 54
C55_l2EnableMIR function 55, 501, 513
C55_l2EnableMIR1 function 56
C55_l2SetIntPriority function 57, 501, 513
C55_plug function 58, 501, 512
C5505 timers 74
callability of functions 484
calling context (see context)
calloc function 482

not callable from SWI or HWI 491
CDP register, conventions for 494
CFCT register, conventions for 494
channels (see communication channels; data channels; host

channels)
character, outputting 441
class driver 80
CLK module 59

checking calling context 171
configuration properties 59
function callability 155, 485
functions in, list of 12, 59
global properties 62
object properties 65
OMAP 2320 and 497
OMAP 2420 and 507, 519
property differences for OMAP 2320 497
property differences for OMAP 2420 507, 520
timer for, driving PRD ticks 281, 282
trace types for 442

CLK_countspms function 66
CLK_cpuCyclesPerHtime function 67
CLK_cpuCyclesPerLtime function 68
CLK_gethtime function 69
CLK_getltime function 70
CLK_getprd function 71
CLK_reconfig function 72
CLK_setTimerFunc function 74
CLK_start function 75
CLK_stop function 76
CLKMD - (PLL) Clock Mode Register 120
CLKMD register 120
clock domains

idling 290, 292, 300, 311
idling during deep sleep 295

clock function
not callable from SWI or HWI 491

Clock Mode Register 120
clocks (see clock domains; real-time clock; system clock;

timer)
communication channels

closing 136
control call on 133
opening 134, 138

consumer, of data pipe 260
context

CLK, checking for 171
HWI, checking for 171
SWI, checking for 417
switching, functions allowing 484
switching, register usage and 9

conversion specifications for formatted data 433, 435, 437,
439

count statistics for data series 390
counts per millisecond, timer 66
CPU clock domains (see clock domains)
CPU cycles

converting high-resolution time to 67
converting low-resolution time to 68

CPU frequency 123, 126
CSR register, conventions for 494

D
data channels

busy status, checking 341
initializing 342
initializing for output 343
input, disabling 344
input, enabling 346
input, number of MADUs read from 352
input, reading from 350, 351
input, status of 348
output, disabling 345
output, enabling 347
output, status of 349
output, writing to 353

data pipes 259
allocating empty frame from 263
getting frame from 266
number of frames available to read 268
number of frames available to write 271
number of words written, setting 276
putting frame in 274
recycling frame that has been read to 265
writerAddr point of, getting 270

data types 10
Arg 10
Bool 10
EnumInt 10
EnumString 10
Extern 10
Int16 10
Int32 10
Numeric 10
Reference 10
String 10

DBIER0 register, conventions for 494
DBIER1 register, conventions for 494
deep sleep, enabling 295
default values

for properties 10
dependencies

declaring 319
number of, determining 305
releasing 318

DEV module 77
configuration properties 79
function callability 485
functions in, list of 12, 77
object properties 80
properties 79

DEV_createDevice function 82
522 Index SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
DEV_deleteDevice function 85
DEV_match function 86
device

closing 87
control operation of 88
creating 82
deleting 85
idling 89
initializing 90
matching with driver 86
opening 92
readiness of, checking 93
retrieving buffer from 94
sending buffer to 91

device drivers 77
DGN driver 96
DGS driver 100
DHL driver 103
DIO adapter 106
DNL driver 109
DOV driver 110
DPI driver 112
DST driver 115
DTR driver 117
list of 79
matching device with 86

device table 86
device-dependent control operations, performing 373
DGN driver 80, 96

object properties 97
DGS driver 80, 100
DGS_Params structure 100
dgs.h file 100
DHL driver 80, 103

global properties 104
object properties 105

DIO adapter 80, 106
configuration properties for 106
global properties 107
object properties 108

DNL driver 80, 109
DOV driver 80, 110
DP register, conventions for 494
DPI driver 80, 112

object properties 114
D-port write operation 121
drivers (see device drivers)
DSP speed 120
DSP/BIOS clock (see timer)
DSP/BIOS functions, list of 11
DSP/BIOS modules, list of 8
DSP/BIOS version 125
DST driver 80, 115
DTR driver 80, 117
DTR_multiply function 117
DTR_multiplyInt16 function 117
DTR_Params structure 118
dtr.h file 118
Dxx_close function 87
Dxx_ctrl function 88
Dxx_idle function 89
Dxx_init function 90
Dxx_issue function 91

Dxx_open function 92
Dxx_ready function 93
Dxx_reclaim function 94

E
empty devices 109
enumerated integers 10
enumerated strings 10
EnumInt data type 10
EnumString data type 10
environment for HOOK and TSK objects 147
environment pointer for HOOK and TSK objects 148
error condition

flagging 431
error function 427
error handling

error codes 491
MSGQ module 254

error message, writing to system log 188
error number for tasks 465
events

power, function to be called on 313, 316
scheduling functions based on 282
tracing 442
unregistering notification function for 322

exit function 427, 482
exit handler

stacking 430
Extern data type 10

F
f32toi16 function 101
false/true values 10
fixed-size buffers

allocating 39
freeing 43
maximum number of 44
pools of 36

formatted data, outputting 433, 435, 437, 439
fprintf function

not callable from SWI or HWI 491
frame

available to read to, getting number of 268
available to write, getting number of 271
getting from pipe 266
number of words in, getting 269
number of words that can be written to 272
putting in pipe 274
recycling 265
size and address of, determining 273

free function 482
not callable from SWI or HWI 491

frequency
changing 297
for setpoint, determining 307

frequency scaling 294
reprogramming clock after 292

functions
arguments for 10
SPRU404Q—August 2012 Index 523
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
callability of 484
calling conventions for 9
external 10
list of 11
naming conventions for 9

G
gather/scatter driver 100
GBL module 119

configuration properties 119
function callability 485
functions in, list of 13, 119
global properties 120

GBL_getClkin function 122
GBL_getFrequency function 123
GBL_getProcId function 124
GBL_getVersion function 125
GBL_setFrequency function 126
GBL_setProcId function 127
Gconf

underscore preceding C function names 9, 65, 175, 402
GEL configuration 509
General Purpose (GP) Timers 497, 507, 519
generators 96
getenv function 482

not callable from SWI or HWI 491
GIO module 128

configuration properties 129
function callability 485
functions in, list of 13, 128
global properties 130
object properties 131

GIO_abort function 132
GIO_control function 133
GIO_create function 134
GIO_delete function 136
GIO_flush function 137
GIO_new function 138
GIO_read function 140
GIO_submit function 141
GIO_write function 143
global settings 119
GP (General Purpose) Timers 497, 507, 519

H
hardware interrupts 153

callable functions 484
context of, determining if in 171
disabled, manipulating variables while 23
disabling 161
enabling 164
plugging dispatcher 162
preserving registers across 493
restoring context before interrupt 168
restoring global interrupt enable state 172
saving context of 165
target-specific, acknowledging 46, 52
target-specific, disabling 47, 48, 53, 54
target-specific, enabling 49, 51, 55, 56

target-specific, enabling and disabling 46
target-specific, setting priority of 57

hardware registers
MEM module and 203

hardware timer counter register ticks 59
heap, address 218
high-resolution time 59, 60, 62

converting to CPU cycles 67
getting 69

hook functions 144
HOOK module 144

configuration properties 144
function callability 486
functions in, list of 13, 144
object properties 145
properties 145

HOOK_getenv function 147
HOOK_setenv function 148
host channel manager 149
host link driver 80, 103
HST module 149

configuration properties 149
function callability 486
functions in, list of 13, 149
global properties 150
object properties 150

HST object 103
HST_getpipe function 152
HWI module 153

configuration properties 153
function callability 486
functions in, list of 14, 153
global properties 156
object properties 157
OMAP 2320 and 498
OMAP 2420 and 510
statistics units for 391

HWI_disable function 161
HWI_dispatchPlug function 500, 512
HWI_dispatchplug function 162
HWI_enable function 164
HWI_enter function 155, 165, 500, 512
HWI_exit function 155, 168, 500, 512
HWI_isHWI function 171
HWI_restore function 172

I
I/O availability, scheduling functions based on 282
i16tof32 function 101
i16toi32 function 101
i16tou8 function 101
i32toi16 function 101
IDL module 173

configuration properties 173
function callability 486
functions in, list of 14, 173
global properties 174
object properties 174

IDL_run function 176
idle functions, running 176
idle thread manager 173
524 Index SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
IER (Interrupt Enable Register)
disable interrupts using 47
enable interrupts using 49

IER0 register, conventions for 494
IER1 register, conventions for 494
IFR0 register, conventions for 494
IFR1 register, conventions for 494
initialization 144
input channels

declaring 342
disabling 344
enabling 346
number of MADUs read from 352
reading from 350, 351
status of, determining 348

input streams 365
Input/Output

aborting 132
closing communication channel 136
control call on communication channel 133
flushing input and output channels 137
opening communication channel 134, 138
submitting GIO packet 141
synchronous read 140
synchronous write 143

Int16 data type 10
Int32 data type 10
integers

enumerated 10
unsigned 10

interface for allocators 277
Interrupt Enable Register

disable interrupts using 47
enable interrupts using 49

Interrupt Mask Register 53, 54, 55, 56
interrupt service routines (see hardware interrupts)
interrupt threads 401
interrupt vector, plugging 46, 58
interrupts (see hardware interrupts; software interrupts)
IOM model for device drivers 77
ISR epilog 168
ISR prolog 165
IVPD register, conventions for 494
IVPH register, conventions for 494

L
L2IC (Level 2 Interrupt Controller) 497, 507, 519

base address 499, 510
objects and properties 499, 511

latency to scale between setpoints 309
LCK module 177

configuration properties 177
function callability 486
functions in, list of 14, 177
global properties 177
object properties 178

LCK_create function 179
LCK_delete function 180
LCK_pend function 181

thread restrictions for 483
LCK_post function 182

thread restrictions for 483
Level 2 Interrupt Controller (L2IC) 497, 507, 519

base address 499, 510
objects and properties 499, 511

level 2 interrupts 48, 51, 52
load addresses 207
localcopy function 101
LOG module 183

configuration properties 183
function callability 486
functions in, list of 14, 183
global properties 184
object properties 184

LOG_disable function 186
LOG_enable function 187
LOG_error function 188
LOG_event function 189
LOG_message function 190
LOG_printf function 191
LOG_reset function 194
low-resolution time 59, 60, 61

converting to CPU cycles 68
getting 70
restarting 75
stopping 76

M
MADUs 203
mailbox

clear bits from 403, 405
creating 197
decrementing 408
deleting 198
get value of 414
incrementing 416
OR mask with value in 418, 419
posting message to 200
waiting for message from 199

mailbox manager 195
main function

calling context 171
malloc function 482

not callable from SWI or HWI 491
maximum statistics for data series 391
MBX module 195

configuration properties 195
function callability 486
functions in, list of 14, 195
global properties 196
object properties 196

MBX_create function 197
MBX_delete function 198
MBX_pend function 199
MBX_post function 200
MEM module 201

configuration properties 201
function callability 486
functions in, list of 15, 201
global properties 203
object properties 209

MEM_alloc function 211
SPRU404Q—August 2012 Index 525
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
MEM_define function 216
MEM_free function 217
MEM_getBaseAddress function 218
MEM_increaseTableSize function 219
MEM_redefine function 220
MEM_stat function 221
MEM_undefine function 222
MEM_valloc function 223
memory block

freeing 217
increasing 219

memory model 121
memory segment manager 201
memory segments

allocating and initializing 223
allocating from 211
C5000 boards 210
defining 216
existing, redefining 220
status of, returning 221
undefining 222

message log 183
appending formatted message to 191
disabling 186
enabling 187
resetting 194
writing unformatted message to 189

message queues 226
closing 234
determining destination queue for message 239
finding 246
number of messages in 235
open, finding 244
opening 248
placing message in 251
receiving message from 237
releasing 253

messages
allocating 233
determining destination message queue of 239
freeing 236
ID for, setting 256
ID of, determining 240
number of, in message queue 235
placing in message queue 251
receiving from message queue 237
reply destination of, determining 242
reply destination of, setting 258
size of, determining 241

messaging, multi-processor 224
mini-drivers 106

deleting 136
minit function

not callable from SWI or HWI 491
MIR (Interrupt Mask Register) 53, 54, 55, 56
modules

ATM module 23
BUF module 36
CLK module 59
DEV module 77
functions for, list of 11
GBL module 119
GIO module 128

HOOK module 144
HST module 149
HWI module 153
IDL module 173
LCK module 177
list of 8
LOG module 183
MBX module 195
MEM module 201
MSGQ module 224
PIP module 259
POOL module 277
PRD module 281
PWRM module 288
QUE module 323
SEM module 354
SIO module 365
STS module 390
SWI module 399
SYS module 426
trace types for 442
TRC module 442
TSK module 446

MSGQ API 227, 228
MSGQ module 224

configuration properties 226
function callability 486
functions in, list of 15, 224
global properties 232
internal errors, handling 254
static configuration 228

MSGQ_alloc function 233
MSGQ_close function 234
MSGQ_count function 235
MSGQ_free function 236
MSGQ_get function 237
MSGQ_getAttrs function 238
MSGQ_getDstQueue function 239
MSGQ_getMsgId function 240
MSGQ_getMsgSize function 241
MSGQ_getSrcQueue function 242
MSGQ_isLocalQueue function 243
MSGQ_locate function 244
MSGQ_locateAsync function 246
MSGQ_open function 248
MSGQ_put function 251
MSGQ_release function 253
MSGQ_setErrorHandler function 254
MSGQ_setMsgId function 256
MSGQ_setSrcQueue function 258
multiple processors 127
multiprocessor application

converting single-processor application to 113
multi-processor applications 127
multi-processor messaging 224

N
naming conventions

functions 9
properties 10

NMI functions
526 Index SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
calling HWI functions 155
notification function signatures 316
notification functions 322
notifyReader function 260

PIP API calls and 156
notifyWriter function 260
null driver 109
Numeric data type 10

O
object references

properties holding 10
OMAP 2320 497

C55 module and 501
CLK module and 497
HWI module and 498

OMAP 2420 507, 519
C55 module and 512
CLK module and 507, 519
HWI module and 510

on-chip timer (see timer)
operations (see functions)
OR operation

signed integers 32
unsigned integers 33

output channels
declaring 343
disabling 345
enabling 347
status of, determining 349
writing to 353

output streams 365
outputting formatted data 433, 435, 437, 439
outputting single character 441
overlap driver 110

P
packing/unpacking ratio, DGS driver 100
PC register, conventions for 494
period register

value of 71
periodic function

starting 285
stopping 286

periodic function manager 281
periodic rate 60
PIP module 259

configuration properties 259
function callability 487
functions in, list of 16, 259
global properties 261
object properties 261
statistics units for 391
trace types for 442

PIP_alloc function 263
PIP_free function 260, 265
PIP_get function 266
PIP_getReaderAddr function 267
PIP_getReaderNumFrames function 268

PIP_getReaderSize function 269
PIP_getWriterAddr function 270
PIP_getWriterNumFrames function 271
PIP_getWriterSize function 272
PIP_peek function 273
PIP_put function 260, 274
PIP_setWriterSize function 276
pipe driver 80, 112
pipe manager, buffered 259
pipe object 152
pipes

allocating empty frame from 263
get readerAddr pointer of 267
getting frame from 266
number of frames available to read 268
number of frames available to write 271
number of words written, setting 276
putting frame in 274
recycling frame that has been read to 265
writerAddr point of, getting 270

POOL module 277
configuration properties 277
functions in, list of 277
global properties 280

posted mode 121
power event

function to be called on 313
registered, function to be called on 316

power management 288
PRD module 281

configuration properties 281
function callability 487
functions in, list of 16, 281
global properties 282
object properties 283
statistics units for 391
ticks driven by CLK timer 281, 282
ticks, getting current count 284
ticks, incrementing 287
ticks, setting increments for 282
trace types for 442

PRD_getticks function 284
PRD_start function 285
PRD_stop function 286
PRD_tick function 287
prescalar register

resetting 72
printf function

not callable from SWI or HWI 491
processor ID 120, 124, 127
processors

multiple 127
PROCID 127
producer, of data pipe 260
program

aborting 429
terminating 432

properties
data types for 10
default values for 10
GIO object 131
HOOK module 145
HOOK object 145
SPRU404Q—August 2012 Index 527
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
MEM object 209
naming conventions 10

putc function 428
PWRM module 288

capabilities of, determining 302
clock domains, idling 290, 292, 300, 311
clock domains, idling during deep sleep 295
configuration properties 290, 300
function callability 487
functions in, list of 16, 288
global properties 291

PWRM_changeSetpoint function 297
PWRM_configure function 300
PWRM_getCapabilities function 302
PWRM_getCurrentSetpoint function 304
PWRM_getDependencyCount function 305
PWRM_getNumSetpoints function 306
PWRM_getSetpointInfo function 307
PWRM_getTransitionLatency function 309
PWRM_idleClocks function 311
PWRM_registerNotify function 313
PWRM_releaseDependency function 318
PWRM_setDependency function 319
PWRM_sleepDSP function 320
PWRM_unregisterNotify function 322
pwrmNotifyFxn function 316

Q
QUE module 323

configuration properties 323
function callability 488
functions in, list of 17, 323
global properties 324
object properties 324

QUE_create function 325
QUE_delete function 326
QUE_dequeue function 327
QUE_empty function 328
QUE_enqueue function 329
QUE_get function 330
QUE_head function 331
QUE_insert function 332
QUE_new function 333
QUE_next function 334
QUE_prev function 335
QUE_put function 336
QUE_remove function 337
queue manager 323
queues

creating 325
deleting 326
emptying 333
getting element from front of 330
inserting element at end of 329
inserting element in middle of 332
putting element at end of 336
removing element from front of 327
removing element from middle of 337
returning pointer to element at front of 331
returning pointer to next element of 334
returning pointer to previous element of 335

testing if empty 328

R
rand function

not callable from SWI or HWI 491
REA0 register, conventions for 494
REA1 register, conventions for 494
reader, of data pipe 260
readers, MSGQ module 226, 228
read-time data exchange settings 338
realloc function 482

not callable from SWI or HWI 491
real-time clock (see CLK module)
Reference data type 10
register conventions 493
registers

modification in multi-threaded application 493
preserving across task context switches or

interrupts 493
resource lock

acquiring ownership of 181
creating 179
deleting 180
relinquishing ownership of 182

resource lock manager 177
resources

declaring dependency on 319
number of dependencies on 305
releasing dependency on 318

RETA register, conventions for 494
RPTC register, conventions for 494
RSA0 register, conventions for 494
RSA1 register, conventions for 494
RTDX module 338

configuration properties 338
function callability 488
functions in, list of 17
object properties 340
target configuration properties 339

RTDX_channelBusy function 341
RTDX_CreateInputChannel 342
RTDX_CreateOutputChannel function 343
RTDX_disableInput function 344
RTDX_disableOutput function 345
RTDX_enableInput function 346
RTDX_enableOutput function 347
RTDX_isInputEnabled function 348
RTDX_isOutputEnabled function 349
RTDX_read function 350
RTDX_readNB function 351
RTDX_sizeofInput function 352
RTDX_write function 353
RTS functions

not calling in HWI or SWI threads 155, 483
RTS library 120

S
scaling operation 117
SEM module 354
528 Index SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
configuration properties 354
function callability 488
functions in, list of 18, 354
global properties 355
object properties 355

SEM_count function 356
SEM_create function 357
SEM_delete function 358
SEM_new function 359
SEM_pend function 360
SEM_pendBinary function 361
SEM_post function 362
SEM_postBinary function 363
SEM_reset 364
semaphore manager 354
semaphores

binary, signaling 363
binary, waiting for 361
count of, determining 356
count of, resetting 364
creating 357
deleting 358
initializing 359
signaling 362
waiting for 360

setpoints (see V/F setpoints)
signal generators 96
signed integers

AND operation 24
clearing 26
decrementing 28
incrementing 30
OR operation 32
setting 34

single-processor application
converting to multiprocessor application 113

SIO module 365
configuration properties 366
function callability 489
functions in, list of 18
functions in. list of 365
global properties 367
object properties 367

SIO_bufsize function 370
SIO_create function 371
SIO_ctrl function 373
SIO_delete function 374
SIO_flush function 375
SIO_get function 376
SIO_idle function 378
SIO_issue function 379
SIO_ISSUERECLAIM streaming model

DPI and 113
SIO_put function 381
SIO_ready function 383
SIO_reclaim function 384
SIO_reclaimx function 386
SIO_segid function 387
SIO_select function 388
SIO_staticbuf function 389
SIO/DEV model for device drivers 77
sleep

changing sleep states 320

deep sleep, enabling 295
for tasks 477

software generator driver 80
software interrupt manager 399
software interrupts

address of currently executing interrupt 423
attributes of, returning 412
attributes of, setting 424
callable functions 484
checking to see if in context of 417
clearing 406
context of, determining if in 417
deleting 409
disabled, manipulating variables while 23
enabling 411
mailbox for, clearing bits 403, 405
mailbox for, decrementing 408
mailbox for, incrementing 416
mailbox for, OR mask with value in 418, 419
mailbox for, returning value of 414
posting 418, 419, 420
priority mask, returning 415
raising priority of 421
restoring priority of 422

SP register, conventions for 494
split driver 115
sprintf function

not callable from SWI or HWI 491
srand function

not callable from SWI or HWI 491
SSP register, conventions for 494
ST registers, conventions for 495
stack

allocating for tasks 452
checking for overflow 454

stack size for tasks 450, 452
stackable gather/scatter driver 100
stackable overlap driver 110
stackable split driver 115
stackable streaming transformer driver 117
STATICPOOL allocator 279
statistics

resetting values of 396
saving values for delta 397
tracing 442
updating 394
updating with delta 395

statistics object manager 390
status register conventions 495
std.h library

functions in 482
macros in, list of 21

stdlib.h library
functions in 482
functions in, list of 21

stream I/O manager 365
streams

acquiring static buffer from 389
closing 374
device for, determining if ready 383
device for, selecting ready device 388
device-dependent control operation, issuing 373
flushing 375
SPRU404Q—August 2012 Index 529
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
getting buffer from 376
idling 378
memory segment used by, returning 387
opening 371
putting buffer to 381
requesting buffer from 384, 386
sending buffer to 379
size of buffers used by, determining 370

strftime function
not callable from SWI or HWI 491

String data type 10
strings 10

enumerated 10
STS module 390

configuration properties 390
function callability 489
functions in, list of 19, 390
global properties 392
object properties 393

STS_add function 394
STS_delta function 395
STS_reset function 396
STS_set function 397
sum statistics for data series 391
SWI module 399

configuration properties 400
function callability 489
functions in, list of 19, 399
global properties 402
object properties 402
statistics units for 391
trace types for 442

SWI_andn function 403
SWI_andnHook function 405
SWI_create function 406
SWI_dec function 408
SWI_delete function 409
SWI_enable function 411
SWI_getattrs function 412
SWI_getmbox function 414
SWI_getpri function 415
SWI_inc function 416
SWI_isSWI function 417
SWI_or function 418
SWI_orHook function 419
SWI_post function 420
SWI_raisepri function 421
SWI_restorepri function 422
SWI_self function 423
SWI_setattrs function 424
synchronous read 140
synchronous write 143
SYS module 426

configuration properties 426
function callability 489
functions in, list of 20, 426
global properties 427
object properties 428

SYS_abort function 427, 429
SYS_atexit function 430
SYS_EALLOC status 491
SYS_EBADIO status 491
SYS_EBADOBJ status 492

SYS_EBUSY status 491
SYS_EDEAD status 492
SYS_EDOMAIN status 492
SYS_EEOF status 492
SYS_EFREE status 491
SYS_EINVAL status 491
SYS_EMODE status 491
SYS_ENODEV status 491
SYS_ENOTFOUND status 492
SYS_ENOTIMPL status 492
SYS_error function 427, 431
SYS_ETIMEOUT status 492
SYS_EUSER status 492
SYS_exit function 427, 432
SYS_OK status 491
SYS_printf function 428, 433
SYS_putchar function 428, 441
SYS_sprintf function 435
SYS_vprintf function 428, 437
SYS_vsprintf 439
system clock 60

choosing module driving 451
incrementing in TSK module 470, 479
PRD module driving 451
returning current value of 480

system clock manager 59
system log 183

writing error message to 188
writing program-supplied message to 190

system settings, managing 426

T
T0 register, conventions for 494
T1 register, conventions for 494
T2 register, conventions for 494
T3 register, conventions for 494
target board name 120
task context switches, preserving registers across 493
task environment

setting 472
task manager 446
task scheduler

disabling 461
enabling 462

tasks
callable functions 484
checking if in context of 469
creating 455
currently executing, handle of 471
default priority of 451
delaying execution of (sleeping) 477
deleting 458
environment pointer for, getting 464
error number for, getting 465
error number for, setting 473
execution priority of, setting 474
handle of STS object, getting 468
incrementing system clock for 470, 479
name of, getting 466
not shutting down system during 453
priority of 453, 467
530 Index SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
resetting time statistics for 475
status of, retrieving 478
terminating 463
updating time statistics for 459
yielding to task of equal priority 481

Tconf
underscore preceding C function names 9, 65, 175, 402

TDDR 59
terminating program 432
threads

idle thread manager 173
interrupt threads 401
register modification and 493
RTS functions callable from 483

tick count, determining 284
tick counter (see PRD module, ticks)
timer 59, 60

counts per millisecond 66
reprogramming after frequency scaling 292
resetting 72

timer counter 60
timer divide-down register 59
timer period register

resetting 72
timers 74
trace buffer

memory segment for 427
size of 427

trace manager 442
tracing

disabling 443
enabling 444
querying enabled trace types 445

transform function, DGS driver 100
transformer driver 117
transformers 117
transports array 127, 231
transports, MSGQ module 227
TRC module 442

function callability 490
functions in, list of 20, 442

TRC_disable function 443
TRC_enable function 444
TRC_query function 445
TRN0 register, conventions for 494
TRN1 register, conventions for 494
true/false values 10
TSK module 446

configuration properties 447
function callability 490
functions in, list of 20, 446
global properties 450
object properties 452
statistics units for 391
system clock driven by 451, 470, 479
trace types for 442

TSK_checkstacks function 454
TSK_create function 455
TSK_delete function 458
TSK_deltatime function 459
TSK_disable function 461
TSK_enable function 462
TSK_exit function 463

TSK_getenv function 464
TSK_geterr function 465
TSK_getname function 466
TSK_getpri function 467
TSK_getsts function 468
TSK_isTSK function 469
TSK_itick function 470
TSK_self function 471
TSK_setenv function 472
TSK_seterr function 473
TSK_setpri function 474
TSK_settime function 475
TSK_sleep function 477
TSK_stat function 478
TSK_tick function 479
TSK_time function 480
TSK_yield function 481

U
u16tou32 function 101
u32tou16 function 101
u32tou8 function 101
u8toi16 function 101
u8tou32 function 101
underscore

preceding C function names 9, 65, 175, 402
unsigned integers 10

AND operation 25
clearing 27
decrementing 29
incrementing 31
OR operation 33
setting 35

user hook function 292

V
V/F setpoints

changing 297
determining 304
frequency and voltage of, determining 307
latency to scale between 309
number of determining 306

variables
manipulating with interrupts disabled 23

vfprintf function
not callable from SWI or HWI 491

voltage
changing 297
for setpoint, determining 307

voltage scaling 294
vprintf function

not callable from SWI or HWI 491
vsprintf function

not callable from SWI or HWI 491

W
writer, of data pipe 260
SPRU404Q—August 2012 Index 531
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

www.ti.com
writers, MSGQ module 226, 228

X
XAR registers, conventions for 494

XCDP register, conventions for 494
XDP register, conventions for 494
XSP register, conventions for 494
XSSP register, conventions for 494
532 Index SPRU404Q—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU403S
http://www.ti.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its semiconductor products and services per JESD46C and to discontinue any product or
service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such
information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at
the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty
in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each
component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products
and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services
are used. Information published by TI regarding third-party products or services does not constitute a license to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the
patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related require-
ments concerning its products, and any use of TI components in its applications, notwithstanding any applications-related infor-
mation or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and
implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen
the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its
representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s
goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety
standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of
the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended
for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use
of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for
compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Compo-
nents which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible
for any failure of such components to meet such requirements.

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

	TMS320C55x DSP/BIOS 5.x Application Programming Interface (API) Reference Guide
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	Contents
	Figures
	Tables

	API Functional Overview
	1.1 DSP/BIOS Modules
	1.2 Naming Conventions
	1.3 Assembly Language Interface Overview
	1.4 DSP/BIOS Tconf Overview
	1.5 List of Operations

	Application Program Interface
	2.1 ATM Module
	ATM_andi
	ATM_andu
	ATM_cleari
	ATM_clearu
	ATM_deci
	ATM_decu
	ATM_inci
	ATM_incu
	ATM_ori
	ATM_oru
	ATM_seti
	ATM_setu

	2.2 BUF Module
	BUF_alloc
	BUF_create
	BUF_delete
	BUF_free
	BUF_maxbuff
	BUF_stat

	2.3 C55 Module
	C55_disableIER0, C55_disableIER1
	C55_disableInt
	C55_enableIER0, C55_enableIER1
	C55_enableInt
	C55_l2AckInt
	C55_l2DisableMIR
	C55_l2DisableMIR1
	C55_l2EnableMIR
	C55_l2EnableMIR1
	C55_l2SetIntPriority
	C55_plug

	2.4 CLK Module
	CLK_countspms
	CLK_cpuCyclesPerHtime
	CLK_cpuCyclesPerLtime
	CLK_gethtime
	CLK_getltime
	CLK_getprd
	CLK_reconfig
	CLK_setTimerFunc
	CLK_start
	CLK_stop

	2.5 DEV Module
	DEV_createDevice
	DEV_deleteDevice
	DEV_match
	Dxx_close
	Dxx_ctrl
	Dxx_idle
	Dxx_init
	Dxx_issue
	Dxx_open
	Dxx_ready
	Dxx_reclaim
	DGN Driver
	DGS Driver
	DHL Driver
	DIO Adapter
	DNL Driver
	DOV Driver
	DPI Driver
	DST Driver
	DTR Driver

	2.6 GBL Module
	GBL_getClkin
	GBL_getFrequency
	GBL_getProcId
	GBL_getVersion
	GBL_setFrequency
	GBL_setProcId

	2.7 GIO Module
	GIO_abort
	GIO_control
	GIO_create
	GIO_delete
	GIO_flush
	GIO_new
	GIO_read
	GIO_submit
	GIO_write

	2.8 HOOK Module
	HOOK_getenv
	HOOK_setenv

	2.9 HST Module
	HST_getpipe

	2.10 HWI Module
	HWI_disable
	HWI_dispatchPlug
	HWI_enable
	HWI_enter
	HWI_exit
	HWI_isHWI
	HWI_restore

	2.11 IDL Module
	IDL_run

	2.12 LCK Module
	LCK_create
	LCK_delete
	LCK_pend
	LCK_post

	2.13 LOG Module
	LOG_disable
	LOG_enable
	LOG_error
	LOG_event
	LOG_message
	LOG_printf
	LOG_reset

	2.14 MBX Module
	MBX_create
	MBX_delete
	MBX_pend
	MBX_post

	2.15 MEM Module
	MEM_alloc
	MEM_calloc
	MEM_define
	MEM_free
	MEM_getBaseAddress
	MEM_increaseTableSize
	MEM_redefine
	MEM_stat
	MEM_undefine
	MEM_valloc

	2.16 MSGQ Module
	MSGQ_alloc
	MSGQ_close
	MSGQ_count
	MSGQ_free
	MSGQ_get
	MSGQ_getAttrs
	MSGQ_getDstQueue
	MSGQ_getMsgId
	MSGQ_getMsgSize
	MSGQ_getSrcQueue
	MSGQ_isLocalQueue
	MSGQ_locate
	MSGQ_locateAsync
	MSGQ_open
	MSGQ_put
	MSGQ_release
	MSGQ_setErrorHandler
	MSGQ_setMsgId
	MSGQ_setSrcQueue

	2.17 PIP Module
	PIP_alloc
	PIP_free
	PIP_get
	PIP_getReaderAddr
	PIP_getReaderNumFrames
	PIP_getReaderSize
	PIP_getWriterAddr
	PIP_getWriterNumFrames
	PIP_getWriterSize
	PIP_peek
	PIP_put
	PIP_reset
	PIP_setWriterSize

	2.18 POOL Module
	2.19 PRD Module
	PRD_getticks
	PRD_start
	PRD_stop
	PRD_tick

	2.20 PWRM Module
	PWRM_changeSetpoint
	PWRM_configure
	PWRM_getCapabilities
	PWRM_getCurrentSetpoint
	PWRM_getDependencyCount
	PWRM_getNumSetpoints
	PWRM_getSetpointInfo
	PWRM_getTransitionLatency
	PWRM_idleClocks
	PWRM_registerNotify
	pwrmNotifyFxn
	PWRM_releaseDependency
	PWRM_setDependency
	PWRM_sleepDSP
	PWRM_unregisterNotify

	2.21 QUE Module
	QUE_create
	QUE_delete
	QUE_dequeue
	QUE_empty
	QUE_enqueue
	QUE_get
	QUE_head
	QUE_insert
	QUE_new
	QUE_next
	QUE_prev
	QUE_put
	QUE_remove

	2.22 RTDX Module
	RTDX_channelBusy
	RTDX_CreateInputChannel
	RTDX_CreateOutputChannel
	RTDX_disableInput
	RTDX_disableOutput
	RTDX_enableInput
	RTDX_enableOutput
	RTDX_isInputEnabled
	RTDX_isOutputEnabled
	RTDX_read
	RTDX_readNB
	RTDX_sizeofInput
	RTDX_write

	2.23 SEM Module
	SEM_count
	SEM_create
	SEM_delete
	SEM_new
	SEM_pend
	SEM_pendBinary
	SEM_post
	SEM_postBinary
	SEM_reset

	2.24 SIO Module
	SIO_bufsize
	SIO_create
	SIO_ctrl
	SIO_delete
	SIO_flush
	SIO_get
	SIO_idle
	SIO_issue
	SIO_put
	SIO_ready
	SIO_reclaim
	SIO_reclaimx
	SIO_segid
	SIO_select
	SIO_staticbuf

	2.25 STS Module
	STS_add
	STS_delta
	STS_reset
	STS_set

	2.26 SWI Module
	SWI_andn
	SWI_andnHook
	SWI_create
	SWI_dec
	SWI_delete
	SWI_disable
	SWI_enable
	SWI_getattrs
	SWI_getmbox
	SWI_getpri
	SWI_inc
	SWI_isSWI
	SWI_or
	SWI_orHook
	SWI_post
	SWI_raisepri
	SWI_restorepri
	SWI_self
	SWI_setattrs

	2.27 SYS Module
	SYS_abort
	SYS_atexit
	SYS_error
	SYS_exit
	SYS_printf
	SYS_sprintf
	SYS_vprintf
	SYS_vsprintf
	SYS_putchar

	2.28 TRC Module
	TRC_disable
	TRC_enable
	TRC_query

	2.29 TSK Module
	TSK_checkstacks
	TSK_create
	TSK_delete
	TSK_deltatime
	TSK_disable
	TSK_enable
	TSK_exit
	TSK_getenv
	TSK_geterr
	TSK_getname
	TSK_getpri
	TSK_getsts
	TSK_isTSK
	TSK_itick
	TSK_self
	TSK_setenv
	TSK_seterr
	TSK_setpri
	TSK_settime
	TSK_sleep
	TSK_stat
	TSK_tick
	TSK_time
	TSK_yield

	2.30 std.h and stdlib.h functions

	Function Callability and Error Tables
	A.1 Function Callability Table
	A.2 DSP/BIOS Error Codes

	C55x DSP/BIOS Register Usage
	B.1 Overview
	B.2 Register Conventions
	B.3 Status Register Conventions

	DSP/BIOS for OMAP 2320
	C.1 Overview
	C.2 OMAP 2320 and the CLK Module
	C.2.1 Static Configuration

	C.3 OMAP 2320 and the HWI Module
	C.3.1 Level 2 Interrupt Controller Base Address
	C.3.2 Level 2 Interrupt Objects and Properties
	C.3.3 HWI_dispatchPlug API
	C.3.4 HWI_enter and HWI_exit APIs

	C.4 OMAP 2320 and the C55 Module
	C.4.1 C55_plug API
	C.4.2 New APIs

	C.5 Building DSP/BIOS Applications for OMAP 2320
	C.6 Usage Examples
	C.6.1 Installing and Enabling a Single Level 2 Interrupt
	C.6.2 Installing and Enabling Multiple Level 2 Interrupts
	C.6.3 Enabling an L2 Interrupt Using "interrupt" Keyword
	C.6.4 Assembly Language ISR Using HWI_enter, HWI_exit
	C.6.5 Statically Configuring a Level 2 Interrupt

	DSP/BIOS for OMAP 2420
	D.1 Overview
	D.2 OMAP 2420 and the CLK Module
	D.2.1 Static Configuration
	D.2.2 GEL Configuration

	D.3 OMAP 2420 and the HWI Module
	D.3.1 Level 2 Interrupt Controller Base Address
	D.3.2 Level 2 Interrupt Objects and Properties
	D.3.3 HWI_dispatchPlug API
	D.3.4 HWI_enter and HWI_exit APIs

	D.4 OMAP 2420 and the C55 Module
	D.4.1 C55_plug API
	D.4.2 New APIs

	D.5 Building DSP/BIOS Applications for OMAP 2420
	D.6 Usage Examples
	D.6.1 Installing and Enabling a Single Level 2 Interrupt
	D.6.2 Installing and Enabling Multiple Level 2 Interrupts
	D.6.3 Enabling an L2 Interrupt Using "interrupt" Keyword
	D.6.4 Assembly Language ISR Using HWI_enter, HWI_exit
	D.6.5 Statically Configuring a Level 2 Interrupt

	DSP/BIOS for ‘C55x Devices with Three Timers
	E.1 Overview
	E.2 CLK Module Support for Three Timers
	E.2.1 Static Configuration
	E.2.2 Dynamic Configuration

	Index

