
Template Version 1.4

User Guide

BIOSUSB User Guide

01.10.01

Page 2 of 21

BIOSUSB Release Notes

This page has been intentionally left blank.

Page 3 of 21

BIOSUSB Release Notes

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers
are responsible for their products and applications using TI components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other TI intellectual property right
relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third–party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©2008, Texas Instruments Incorporated

Page 4 of 21

BIOSUSB User Guide

This page has been intentionally left blank.

Page 5 of 21

BIOSUSB User Guide

TABLE OF CONTENTS

1 Introduction... 7

1.1 Terms & Abbreviations..7

1.2 References ..7

2 Installation Guide... 8

2.1 System Requirements...8

2.2 Installation and configuration of dependent packages.8

3 Folder Structure ... 10

4 USB Host Stack Architecture .. 12

4.1 Host Core Stack ...12

4.2 Host Class (MSC) Driver..12

4.3 Host Class (HID) Driver...12

4.4 Host Generic Services ...13

4.5 Platform Abstraction and Native OS Abstraction13

4.6 Host Stack Component Libraries and Dependencies13

4.7 Host Stack Component Build Options ..13

4.8 Platform specific library...14

4.9 Use Case: USB Host Mass Storage Functionality.......................................14

4.10 Use Case: USB Host HID Functionality ..14

5 USB Device Stack Architecture ... 15

5.1 Device Core Stack ..15

5.2 Device (MSC) Function Driver ..15

5.3 Device (HID) Function Driver...15

5.4 Device Generic Services ..15

5.5 Platform Abstraction and Native OS Abstraction16

5.6 Device Stack Component Libraries and Dependencies16

5.7 Device Stack Component Build Options ...16

5.8 Use Case: USB Device Mass Storage Functionality....................................17

5.9 Use Case: USB Device HID Functionality ...17

6 Building and Running USB Application Example ... 18

6.1 Building the USB MSC Device example for NAND OR MMC/SD OR
SATA. ...18

6.2 Building the USB HID (keyboard) Device example.19

6.3 Building the USB Host Mass Storage example. ...19

6.4 Building the USB Host HID (keyboard/mouse) example.............................20

7 Technical Support BIOSUSB ... 21

Page 6 of 21

BIOSUSB User Guide

Page 7 of 21

BIOSUSB User Guide

1 Introduction

The BIOS USB Package (based on JUNGO USB stack) provides capability to incorporate a
USB host or USB device functionality for an embedded device. This document describes the
USB host and device stack architecture, installation procedure and example use cases in TI
BIOS environment.

The BIOSUSB package supports both CCS3 and CCS4 for the following platforms

 C6747/OMAPL137

 C6748/OMAPL138

1.1 Terms & Abbreviations

Term Description

API Application Programming Interface

Port Platform and Operating system abstraction layer

JOS USB general services module

USB Device Platform capable of performing USB device functionality

USB Host Platform capable of performing USB host functionality

MSC Mass Storage Class

USB Universal Serial Bus

USBware Product name of Jungo’s USB host and device stack

1.2 References

Document Description

1 usb_device_stack.pdf USBware device stack details

2 usb_host_stack.pdf USBware host stack details

3 mass_storage_class_driver.pdf USBware mass storage driver details

4 mass_storage_fd.pdf USBware mass storage function driver details

5 hid_class_driver.pdf HID Class driver details

6 hid_keyboard_fd.pdf HID keyboard function driver details

7 hid_fd_lib.pdf HID function driver library reference

Page 8 of 21

BIOSUSB User Guide

2 Installation Guide
This chapter discusses the BIOS USB package installation procedure and how to
configure and run the usb host or device sample example provided along with the
package, refer to section-6.

2.1 System Requirements

The following products are required to be installed prior to using the BIOSUSB
Package for C6747/OMAPL37 and C6748/OMAPL138 platform:

For CCS3 Environment

 CCS 3.3.80.11 (service release 10)

 DSP-BIOS versioned 5.41.02.14

 Code Generation Tools 6.1.9

 EVM C6747/OMAPL37 (Rev-D recommended) or C6748/OMAPL138 Board
(Beta- version recommended)

 XDS 510 USB Emulator (Optional) – EVM has on board emulator

For CCS4 Environment

 CCS4 version 4.0.0.16000

 DSP-BIOS versioned 5.41.02.14

 XDS 510 USB Emulator (Optional) – EVM has on board emulator

Dependent Packages

 EDMA 3 LLD – versioned 01.11.00.02

 ERTFS File System package versioned 1.10.00.30 or higher version

 PSP_DRIVERS Package - The BIOSPSP GA Package with versioned 1.30.00

2.2 Installation and configuration of dependent packages.

BIOS USB package is dependent on the following packages and as such expects
these packages to be installed and configured correctly prior to its installation and
usage.

I. EDMA3 LLD Driver package

II. RTFS package – Required for BIOS USB Host functionality. RTFS package is
needed for supporting MSC devices such as USB sticks, USB HDD’s etc.

III. PSP_DRIVERS Package

1. Install EDMA-3 LLD Driver into preferred drive/folder. Please refer the EDMA3
package installation guide. The environment variable ‘
EDMA3LLD_BIOS5_INSTALLDIR’ is used in the sample application projects for
referring to the EDMA3 driver libraries. This environment variable is created and
updated by the EDMA3 LLD driver during its installation. Please ensure that this
environment variable is pointing to the EDMA3 LLD install directory intended to be
used along with this package. This is more important when there are multiple EDMA
LLD installations as the installer updates this environment variable with latest
installation version. (eg. If EDMA LLD driver is installed into c:\edma3_lld\ the
environment variable is set to EDMA3LLD_BIOS5_INSTALLDIR=c:\edma3_lld).

Page 9 of 21

BIOSUSB User Guide

2. Install the RTFS Driver into preferred drive/folder. Please refer to the RTFS package
installation guide. The environment variable ‘RTFS_INSTALL_DIR’ is used in the
sample application project for referring to RTFS driver libraries. Please ensure that
this environment variable is pointing to the RTFS install directory intended to be used
along with this package.

3. Install BIOSPSP Package Driver into preferred drive/folder. Please refer to PSP
driver’s installation procedure. The environment variable
‘PSP_DRIVERS_INSTALL_DIR’ is used in the sample application project for referring
to libraries of PSP components like block media, PSC, platforms, MMC/SD, NAND, I2C
etc. Please ensure that this environment variable is pointing to the install directory of
PSP component intended to be used along with this package. (eg. If BIOSPSP
package is installed into c:\pspdrivers_1_30_00_06\ the environment variable is set
to PSP_DRIVERS_INSTALL_DIR = c:\pspdrivers_1_30_00_06).

4. Install the BIOS USB package using the self extracting installer. Figure-1 shows the
directory structure of BIOS USB Package after the installation. The installer will
create BIOSUSB_INSTALL_DIR environment variable pointing to BIOSUSB
installation directory. This environment variable is used in USB Host MSC application
examples of RTFS package.

Page 10 of 21

BIOSUSB User Guide

3 Folder Structure

Figure 1 illustrates the folder structure and placement of the BIOS USB package.

Figure 1: BIOSUSB directory structure

The folder ‘biosusb’ contains the following components

Page 11 of 21

BIOSUSB User Guide

 USB stack for Device and/or Host mode as applicable

 Example application for demonstrating USB functionalities

 USB applications

Folder structure - detailed.

A. device: This folder contains

a. Public header files relating to the device stack

b. Device stack libraries in release mode in for C6747/C6748 platforms. All the
libraries will have a platform specific extension.

B. host: This folder contains

a. Public header files relating to the host stack

b. Host stack libraries in release mode for C6747/C6748 platforms. All the
libraries will have a platform specific extension.

C. apps : This folder contains the USB application for device/host.

a. devmscglue This folder contains the USB device MSC glue application
source, documentation and binary (Debug and Release modes). MSC glue
application supports storage device exposition over USB (Platform acting as
MSC device to a USB host).

D. example : This folder contains the example for USB device or host for
C6747/C6748 platforms.

E. Header Files : The exported header files are distributed in following directory.

a. <BIOSUSB_INSTALL_DIR>\packages\ti\biosusb

b. <BIOSUSB_INSTALL_DIR>\packages\ti\biosusb\host

c. <BIOSUSB_INSTALL_DIR>\packages\ti\biosusb\device

For example the USB host Driver Interface prototype definitions (USBDI API) are
available in biousb\host\usbdi.h. Please refer documents in section 1.2 for more
information.

Page 12 of 21

BIOSUSB User Guide

4 USB Host Stack Architecture

The USB host stack provides capability to support hot-pluggable interfaces for connecting
various USB devices. Figure 2 illustrates the architecture of the USB host stack. Sections 3.1
to 3.9 describe the functionality of each of the components in the USB host architecture.
Host stack component libraries are located in biosusb\host\Release folder.

Figure 2: USB Host Stack Architecture

4.1 Host Core Stack

The host core stack component (ti.biosusb.host.core.a674) provides an implementation of
the USB host functionality. It provides communication facility to its clients (class drivers)
such as the mass storage class driver. This component also implements the hub driver and
the host controller driver functionality for both USB1.1 Host Controller (OHCI) and USB2.0
controller (MUSB).

4.2 Host Class (MSC) Driver

The host mass storage class driver component (ti.biosusb.host.mass.a674) provides the
capability to communicate with external USB mass storage devices such as thumb drives. It
supports the SCSI command protocol for communication with the external USB mass
storage devices.

4.3 Host Class (HID) Driver

The HID class driver component (ti.biosusb.host.hid.a674) provides the support for HID
input devices like keyboard, mouse etc

Host Controller
Hardware

USB1 (OHCI), USB0(MUSB)

Host Core Stack
(ti.biosusb.host.core.a674)

Host Class Driver’s
(ti.biosusb.host.mass.a674)

(ti.biosusb.host.hid.a674)

G
e
n

e
ric S

e
rv

ice
s

(ti.biosusb.host.jos.a674)

P
la

tfo
rm

 a
n

d
 O

S
 A

b
stra

ctio
n

(ti.biosusb.host.portcom
.a674)

(ti.biosusb.host.port.a674)

Applications

Page 13 of 21

BIOSUSB User Guide

4.4 Host Generic Services

The USB host generic services component (ti.biosusb.host.jos.a674) provides the services
to the other components in the USB host stack architecture. It provides services for memory
allocation, task management and initialization.

4.5 Platform Abstraction and Native OS Abstraction

The platform abstraction and native OS abstraction provides abstraction to the platform
features and operating system interfaces. This component provides isolation to the other
components of the host stack architecture from platform, native operating system and
allows portability of the host stack components.

4.6 Host Stack Component Libraries and Dependencies

Table 1 lists the host stack components and the corresponding libraries included in the
BIOSUSB deliverable. Note: The host stack component libraries are located at biosusb\host.

Host Stack
Component

Library Name Depends On

Host Core Stack ti.biosusb.host.core.a674 ti.biosusb.host.jos.a674

Host MSC Class
Driver

ti.biosusb.host.mass.a674 ti.biosusb.host.core.a674
ti.biosusb.host.jos.a674

Host HID Class Driver ti.biosusb.host.hid.a674 ti.biosusb.host.core.a674
ti.biosusb.host.jos.a674

Host Generic Services ti.biosusb.host.jos.a674 ti.biosusb.host.portcom.a674
ti.biosusb.host.port.a674

Platform and Native
OS Abstraction

ti.biosusb.host.portcom.a674
ti.biosusb.host.port.a674

None

Table 1: USB Host Stack Component Libraries and Dependency

4.7 Host Stack Component Build Options

Multiple build options can be specified for the compilation of the USB host stack
components. Table 2 lists the build options that have been used to build the (binary) host
stack components that are available in the BIOS USB package.

Configuration Option Configuration Value

1 CONFIG_PORT dsp_bios

2 CONFIG_MEMPOOL 1

Page 14 of 21

BIOSUSB User Guide

3 CONFIG_MEMPOOL_SIZE 500000

4 CONFIG_MEMPOOL_DMABLE 1

5 CONFIG_MUSBHSHC 1

6 CONFIG_JHOST 1

7 CONFIG_BYTE_ORDER CPU_LITTLE_ENDIAN

8 CONFIG_ALIGN_CRITICAL 1

9 CONFIG_EXTERNAL_VBUS_CONTROL 1

10 CONFIG_LONG_64B 1

11 CONFIG_EXTERNAL_DMA 1

Table 2: USB Host Stack Component Build Options

4.8 Platform specific library

The usb platform specific library support of platform specific initialization for usb
module for C6747/C6748 platforms.

4.9 Use Case: USB Host Mass Storage Functionality

The following libraries are required to build a USB host mass storage functionality. These
libraries are available in Release mode in the directory biosusb/host/Release.

A. ti.biosusb.host.core.a674

B. ti.biosusb.host.mass.a674

C. ti.biosusb.host.jos.a674

D. ti.biosusb.host.portcom.a674

E. ti.biosusb.host.port.a674

4.10 Use Case: USB Host HID Functionality

The following libraries are required to build a USB host HID functionality. These libraries are
available for both in Debug and Release mode in the directory biosusb/host/Release.

F. ti.biosusb.host.core.a674

G. ti.biosusb.host.jos.a674

H. ti.biosusb.host.portcom.a674

I. ti.biosusb.host.port.a674

J. ti.biosusb.host.hid.a674

Page 15 of 21

BIOSUSB User Guide

5 USB Device Stack Architecture

The USB device stack enables the platform to act as a USB device to a USB host. Figure 3
illustrates the architecture of the USB device stack. Sections 5.1 to 5.7 describes the
functionality of each of the components in the USB device architecture.

Figure 3: USB Device Stack Architecture

5.1 Device Core Stack

The device core stack (ti.biosusb.device.core.a674) component provides an implementation
of the USB device functionality and device controller driver for USB2.0 MUSB controller. It
provides communication facility to its clients (Class function drivers) such as the mass
storage function driver.

5.2 Device (MSC) Function Driver

The device mass storage function driver component provides the capability to expose mass
storage device functionality to the USB host. It supports the SCSI command protocol for
communication with the USB host.

5.3 Device (HID) Function Driver

The HID function driver component provides the capability to expose HID device interface
functionality to the USB host.

5.4 Device Generic Services

The USB device generic services component provides the services to the other components
in the USB device stack architecture. It provides services for memory allocation, task
management and initialization.

Device Controller
Hardware USB0 (MUSB)

Device Core Stack
(ti.biosusb.device.core.a674)

Device Function Driver
(ti.biosusb.device.fd.a674)

(ti.biosusb.device.fd.hid.a674)

G
e
n

e
ric S

e
rv

ice
s

(ti.biosusb.device.j os.a674)

P
la

tfo
rm

 a
n

d
 O

S

A
b

stra
ctio

n
(ti.biosusb.device. portcom

.a674)
(ti.biosusb.device. port.a674)
Applications

Page 16 of 21

BIOSUSB User Guide

5.5 Platform Abstraction and Native OS Abstraction

The platform abstraction and native OS abstraction provides abstraction to the platform
features and operating system interfaces. This component provides isolation to the other
components of the device stack architecture from platform and native operating system and
allows portability of the device stack components.

5.6 Device Stack Component Libraries and Dependencies

Table 3 lists the device stack components and the corresponding libraries included in the
PSP deliverable.

Table 3: USB Device Stack Component Libraries and Dependency

5.7 Device Stack Component Build Options

Multiple build options can be specified for compilation of the USB device stack components.
Table 4 lists the build options that have been used to build the device stack components
that are available in the BIOS USB product.

Configuration Option Configuration Value

1 CONFIG_PORT Dsp_bios

2 CONFIG_MEMPOOL 1

3 CONFIG_MEMPOOL_SIZE 500000

4 CONFIG_MEMPOOL_DMABLE 1

5 CONFIG_MUSBHSFC 1

6 CONFIG_ JSLAVE 1

7 CONFIG_BYTE_ORDER CPU_LITTLE_ENDIAN

8 CONFIG_ALIGN_CRITICAL 1

9 CONFIG_EXTERNAL_VBUS_CONTROL 1

Host Stack Component Library Name Depends On

Device Core Stack ti.biosusb.device.core.a674 ti.biosusb.device.jos.a674
ti.biosusb.device.port.a674

Device MSC/HID Function
Driver

ti.biosusb.device.fd.a674/
ti.biosusb.device.fd.hid.a674

ti.biosusb.device.core.a674
ti.biosusb.device.jos.a674

Device Generic Services ti.biosusb.device.jos.a674 ti.biosusb.device.port.a674
ti.biosusb.device.portcom.a674

Platform and Native OS
Abstraction

ti.biosusb.device.port.a674
ti.biosusb.device.portcom.a674

None

Page 17 of 21

BIOSUSB User Guide

10 CONFIG_LONG_64B 1

11 CONFIG_EXTERNAL_DMA 1

Table 4: USB Device Stack Component Build Options

5.8 Use Case: USB Device Mass Storage Functionality

The following libraries are required to build USB device mass storage functionality. These
libraries are available in Release mode in the directory biosusb/device/Release.

A. ti.biosusb.device.core.a674

B. ti.biosusb.device.fd.a674

C. ti.biosusb.device.jos.a674

D. ti.biosusb.device.port.a674

E. ti.biosusb.device.portcom.a674

5.9 Use Case: USB Device HID Functionality

The following libraries are required to build USB device HID function driver . These libraries
are available in Release mode in the directory biosusb/device/Release.

A. ti.biosusb.device.core.a674

B. ti.biosusb.device.jos.a674

C. ti.biosusb.device.port.a674

D. ti.biosusb.device.portcom.a674

E. ti.biosusb.device.fd.hid.a674

Page 18 of 21

BIOSUSB User Guide

6 Building and Running USB Application Example
This chapter discusses how to configure and run the USB host or device example
provided along with the package.

Note : Before running any USB example, user should perform system reset
or reset the target board or EVM . The system reset can be performed
through code composer studio IDE. (From CCS IDE, select menu item
Debug->”Advanced Resets”->”System Reset”). Note that CPU Reset from
CCS does only the resetting the CPU, it does not reset the entire system.

Setup Procedure for CCS4 Environment (Building and Loading the
executable)

1. Invoke the CCS4 and perform Target configuration to configure
C6747/OMAPL137 or C6748/OMAPL138 EVM platform and use the appropriate
DSP gel file and Launch the target by selecting Debug-> “TI Launch
Debugger”, then connect to the target.

2. Select C/C++ perspective window (click on window->”open perspective”-
>C/C++) and Open the USB example’s appropriate CCS4 project file. Select
Project->”Import existing CCS/CCSE eclipse project” and provide project
directory path from “<INSTALL_DIR> \biosusb_xx_yy_zz\ packages\ ti\
biosusb\ examples\ <usbdevmsc, usbdevhid, usbhosthid >\build\ <C6747/
C6748>\ ccs4”. This will load the selected project. Set Project configuration to
Debug/Release mode.

3. Build the project in Release/Debug mode. Switch to Debug window by
selecting Debug Perspective window (click on window->”open perspective”-
>Debug) and load the executable.

4. Run the application program by pressing F8 key.

6.1 Building the USB MSC Device example for NAND OR MMC/SD OR SATA.

Below steps details how to build the USB device mass-storage application, where the
target platform acts as USB mass-storage device with NAND or MMC/SD or SATA
(only on C6748/OMAPL138 platform) as local storage media. User can choose the
storage media to be either NAND or MMCSD or SATA with this application. Make sure
all the dependent packages/components are installed and the environment variables
are created and the values are initialized correctly.

For CCS3 Environment

1. Setup the CCSV3 to configure C6747/OMAPL137 or C6748/OMAPL138 EVM
platform and use the appropriate DSP gel file and connect to the target.

2. Open the project (PJT file) for the USB device sample application from
“<INSTALL_DIR>\biosusb_xx_yy_zz\packages\ti\biosusb\examples\usbdevm
sc\build\<C6747/C6748>\ccs3\usb_dev_msc_sample.pjt”. Set Project
configuration to Release mode.

3. User can chose either NAND or MMC/SD or SATA (only C6748 paltform) as
storage media. Refer to block media user guide from BIOSPSP package for
further details with respect to media selection to expose over USB.

Page 19 of 21

BIOSUSB User Guide

4. Build the project in Release mode, the executable file will be created in the
“<INSTALL_DIR>\biosusb_xx_yy_zz\packages\ti\biosusb\examples
\usbdevmsc\build\<C6747/C6748>\ccs3\bin\<Debug or Release> folder.

5. Load the ‘devmsc_sample.out’ file from the Release folder to target and Run.

For CCS4 Environment

Please follow the procedure explained in section 6.

6. Connect the micro-B USB cable between the target (USB0 port) and Host PC.
The PC enumerates the mass storage device and new removable drive will be
appear in the explorer.

7. Format the drive, now the device is ready for file read/write operation.

6.2 Building the USB HID (keyboard) Device example.

Below steps details how to build the USB device HID application, where the target
platform acts HID Keyboard device. Make sure all the dependent
packages/components are installed and the environment variables are created and
the values are initialized correctly.

For CCS3 Environment

1. Setup the CCSV3 to configure C6747/OMAPL137 or C6748/OMAPL138 EVM
platform and use the appropriate DSP gel file and connect to the target.

2. Open the project (PJT file) for the USB HID device sample application from
“<INSTALL_DIR>\biosusb_xx_yy_zz\packages\ti\biosusb\examples\usbdevhid\b
uild\<C6747/C6748>\ccs3\usb_dev_hid_sample.pjt”. Set Project configuration to
Release mode.

3. Build the project in Release mode, the executable file will be created in the
“<INSTALL_DIR>\biosusb_xx_yy_zz\packages\ti\biosusb\examples\usbdevhid\b
uild\<C6747/C6748>\bin\Release folder.

4. Load the ‘devhid_sample.out’ file from the Release folder to target and Run.

For CCS4 Environment

Please follow the procedure explained in section 6.

5. Connect the micro-B USB cable between the target (USB0 port) and host-pc.
The PC enumerates the HID device.

Note : In this example, in order to simulate the key press events, open the
Notepad application in host-pc. Press “Shift” key and “Scroll lock” key together
from the host-pc keyboard, you will see the “Jungo Demo!” string displayed on
the notepad.

6.3 Building the USB Host Mass Storage example.

This example will details how to build the USB host mass-storage application. Please
refer section 3.8.4 in RTFS User’s Guide. The section 3.8.4 of RTFS User’s guide will
explain how to configure and build this example and its usage.

Note: This example dependent on the block media with RTFS file system support.
The block media file system project from the PSP_DRIVERS packages needs to be
built. Refer the block media documentation for further information.

Page 20 of 21

BIOSUSB User Guide

6.4 Building the USB Host HID (keyboard/mouse) example.

Below steps details how to build the USB host HID example application.

For CCS3 Environment

1. Setup the CCSV3 to configure C6747/OMAPL137 or C6748/OMAPL138 EVM
platform and use the appropriate DSP gel file and connect to the target.

2. Open the project (PJT file) for the USB host sample HID application from
“<INSTALL_DIR>\biosusb_xx_yy_zz\packages\ti\biosusb\examples\
usbhosthid\build\<C6747/C6748>\ccs3\usb_host_hid_sample.pjt”. Set
Project configuration to Release mode.

3. Build the project in Release mode, the executable file will be created in
the“<INSTALL_DIR>\biosusb_xx_yy_zz\packages\ti\biosusb\examples\usbho
sthid\build\<C6747/C6748>\bin\Release folder.

4. Connect the USB mouse/keyboard to USB port (USB0 or USB1) directly or
through HUB.

5. Load the ‘hosthid_sample.out’ file from the Release folder to target and Run.

For CCS4 Environment

Please follow the procedure explained in section 6.

6. The target will enumerate the USB mouse/keyboard device, when you move
mouse or press any key on keyboard, keyboard/mouse key press event
message will be displayed on the console window.

Page 21 of 21

BIOSUSB User Guide

7 Technical Support BIOSUSB

To submit questions about issues with this BIOSUSB drivers release please go to the
external forums at http://community.ti.com/ or to http://support.ti.com

