1    /*
     2     * Copyright (c) 2015-2017, Texas Instruments Incorporated
     3     * All rights reserved.
     4     *
     5     * Redistribution and use in source and binary forms, with or without
     6     * modification, are permitted provided that the following conditions
     7     * are met:
     8     *
     9     * *  Redistributions of source code must retain the above copyright
    10     *    notice, this list of conditions and the following disclaimer.
    11     *
    12     * *  Redistributions in binary form must reproduce the above copyright
    13     *    notice, this list of conditions and the following disclaimer in the
    14     *    documentation and/or other materials provided with the distribution.
    15     *
    16     * *  Neither the name of Texas Instruments Incorporated nor the names of
    17     *    its contributors may be used to endorse or promote products derived
    18     *    from this software without specific prior written permission.
    19     *
    20     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    21     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
    22     * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    23     * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
    24     * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    25     * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    26     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
    27     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
    28     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
    29     * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
    30     * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    31     */
    32    /*
    33     *  ======== Task.xdc ========
    34     *
    35     */
    36    
    37    package ti.sysbios.knl;
    38    
    39    import xdc.rov.ViewInfo;
    40    
    41    import xdc.runtime.Error;
    42    import xdc.runtime.Assert;
    43    import xdc.runtime.Diags;
    44    import xdc.runtime.Log;
    45    import xdc.runtime.IHeap;
    46    
    47    import ti.sysbios.knl.Queue;
    48    
    49    /*!
    50     *  ======== Task ========
    51     *  Task Manager.
    52     *
    53     *  The Task module makes available a set of functions that manipulate task
    54     *  objects accessed through pointers of type {@link #Handle}. Tasks represent
    55     *  independent threads of control that conceptually execute functions in
    56     *  parallel within a single C program; in reality, concurrency is achieved
    57     *  by switching the processor from one task to another.
    58     *
    59     *  All tasks executing within a single program share a common set of
    60     *  global variables, accessed according to the standard rules of scope
    61     *  defined for C functions.
    62     *
    63     *  Each task is in one of five modes of execution at any point in time:
    64     *  running, ready, blocked, terminated, or inactive. By design, there is
    65     *  always one
    66     *  (and only one) task currently running, even if it is only the idle task
    67     *  managed internally by Task. The current task can be suspended from
    68     *  execution by calling certain Task functions, as well as functions
    69     *  provided by other modules like the Semaphore or Event Modules.
    70     *  The current task
    71     *  can also terminate its own execution. In either case, the processor
    72     *  is switched to the highest priority task that is ready to run.
    73     *
    74     *  You can assign numeric priorities to tasks. Tasks are
    75     *  readied for execution in strict priority order; tasks of the same
    76     *  priority are scheduled on a first-come, first-served basis.
    77     *  The priority of the currently running task is never lower
    78     *  than the priority of any ready task. Conversely, the running task
    79     *  is preempted and re-scheduled for execution whenever there exists
    80     *  some ready task of higher priority.
    81     *
    82     *  @a(Task Stacks)
    83     *
    84     *  When you create a task, it is provided with its own run-time stack,
    85     *  used for storing local variables as well as for further nesting of
    86     *  function calls. Each stack must be large enough to handle normal
    87     *  subroutine calls and one task preemption context.
    88     *  A task preemption context is the context that gets saved when one task
    89     *  preempts another as a result of an interrupt thread readying
    90     *  a higher-priority task.
    91     *
    92     *  See sections 3.5.3 and 7.5 of the BIOS User's Guide for further
    93     *  discussions regarding task stack sizing.
    94     *
    95     *  Certain system configuration settings will result in
    96     *  task stacks needing to be large enough to absorb two interrupt
    97     *  contexts rather than just one.
    98     *  Setting {@link ti.sysbios.BIOS#logsEnabled BIOS.logsEnabled} to 'true'
    99     *  or installing any Task hooks will have the side effect of allowing
   100     *  up to two interrupt contexts to be placed on a task stack. Also
   101     *  see {@link #minimizeLatency Task.minimizeLatency}.
   102     *
   103     *  @a(Task Deletion)
   104     *
   105     *  Any dynamically created task that is not in the Task_Mode_RUNNING
   106     *  state (ie not the currently running task) can be deleted using the
   107     *  {@link #delete} API.
   108     *
   109     *  Task_delete() removes the task from all internal queues and calls
   110     *  Memory_free() is used to free the task object and its stack.
   111     *  Memory_free() must acquire a lock to the memory before proceeding.
   112     *  If another task already holds a lock to the memory, then the thread
   113     *  performing the delete will be blocked until the memory is unlocked.
   114     *
   115     *  Note:
   116     *  Task_delete() should be called with extreme care.
   117     *  As mentioned above, the scope of Task_delete() is limited to
   118     *  freeing the Task object itself, freeing the task's stack memory
   119     *  if it was allocated at create time, and removing the task from
   120     *  any SYS/BIOS-internal state structures.
   121     *
   122     *  SYS/BIOS does not keep track of any resources the task may have
   123     *  acquired or used during its lifetime.
   124     *
   125     *  It is the application's responsibility to guarantee the integrity
   126     *  of a task's partnerships prior to deleting that task.
   127     *
   128     *  For example, if a task has obtained exclusive access to a resource,
   129     *  deleting that task will make the resource forever unavailable.
   130     *
   131     *  Task_delete() sets the referenced task handle to NULL. Any subsequent
   132     *  call to a Task instance API using that null task handle will behave
   133     *  unpredictably and will usually result in an application crash.
   134     *
   135     *  Assuming a task completely cleans up after itself prior to calling
   136     *  Task_exit() (or falling through the the bottom of the task
   137     *  function), it is then safest to use Task_delete() only when a task
   138     *  is in the 'Task_Mode_TERMINATED' state.
   139     *
   140     *  Delete hooks:
   141     *  You can specify application-wide Delete hook functions that
   142     *  run whenever a task is deleted. See the discussion of Hook Functions
   143     *  below for details.
   144     *
   145     *  Task_delete() constraints:
   146     *  @p(blist)
   147     *  -The task cannot be the currently executing task (Task_self()).
   148     *  -Task_delete cannot be called from a Swi or Hwi.
   149     *  -No check is performed to prevent Task_delete from being used on a
   150     *  statically-created object. If a program attempts to delete a task object
   151     *  that was created statically, the Memory_free() call will result in an
   152     *  assertion failure in its corresponding Heap manager, causing the
   153     *  application to exit.
   154     *  @p
   155     *
   156     *  @a(Stack Alignment)
   157     *
   158     *  Stack size parameters for both static and dynamic tasks are rounded
   159     *  up to the nearest integer multiple of a target-specific alignment
   160     *  requirement.
   161     *
   162     *  In the case of Task's which are created with a user-provided stack,
   163     *  both the base address and the stackSize are aligned. The base address
   164     *  is increased to the nearest aligned address. The stack size is decreased
   165     *  accordingly and then rounded down to the nearest integer multiple of the
   166     *  target-specific required alignment.
   167     *
   168     *  @p(html)
   169     *  <a name="hookfunc"></a>
   170     *  @p
   171     *
   172     *  @a(Hook Functions)
   173     *
   174     *  Sets of hook functions can be specified for the Task module.  Each
   175     *  set can contain these hook functions:
   176     *  @p(blist)
   177     *  -Register: A function called before any statically created tasks
   178     *      are initialized at runtime.  The register hook is called at boot time
   179     *      before main() and before interrupts are enabled.
   180     *  -Create: A function that is called when a task is created.
   181     *      This includes tasks that are created statically and those
   182     *      created dynamically using {@link #create} or {@link #construct}.
   183     *      For statically created tasks, create hook is called before main()
   184     *      and before interrupts are enabled. For dynamically created or
   185     *      constructed tasks, create hook is called in the same context the
   186     *      task is created or constructed in i.e. if a task is created in
   187     *      main(), the create hook is called in main context and if the task
   188     *      is created within another task, it is called in task context. The
   189     *      create hook is called outside of a Task_disable/enable block and
   190     *      before the task has been added to the ready list.
   191     *  -Ready: A function that is called when a task becomes ready to run.
   192     *      The ready hook is called in the context of the thread unblocking
   193     *      a task and therefore it can be called in Hwi, Swi or Task context.
   194     *      If a Swi or Hwi posts a semaphore that unblocks a task, the ready
   195     *      hook would be called in the Swi or Hwi's context. The ready hook is
   196     *      called from within a Task_disable/enable block with interrupts enabled.
   197     *  -Switch: A function that is called just before a task switch
   198     *      occurs. The 'prev' and 'next' task handles are passed to the switch
   199     *      hook. 'prev' is set to NULL for the initial task switch that occurs
   200     *      during SYS/BIOS startup.  The switch hook is called from within a
   201     *      Task_disable/enable block with interrupts enabled, in the
   202     *      context of the task being switched from (ie: the `prev` task).
   203     *  -Exit: A function that is called when a task exits using {@link #exit}.
   204     *      It is called in the exiting task's context. The exit hook is passed
   205     *      the handle of the exiting task. The exit hook is called outside of a
   206     *      Task_disable/enable block and before the task has been removed from
   207     *      the kernel lists.
   208     *  -Delete: A function that is called when any task is deleted at
   209     *      run-time with {@link #delete}. The delete hook is called in idle task
   210     *      context if {@link #deleteTerminatedTasks} is set to true. Otherwise,
   211     *      it is called in the context of the task that is deleting another task.
   212     *      The delete hook is called outside of a Task_disable/enable block.
   213     *  @p
   214     *  Hook functions can only be configured statically.
   215     *
   216     *  If you define more than one set of hook functions, all the functions
   217     *  of a particular type will be run when a Task triggers that type of
   218     *  hook.
   219     *
   220     *  @a(Warning)
   221     *  Configuring ANY Task hook function will have the side effect of allowing
   222     *  up to two interrupt contexts beings saved on a task stack. Be careful
   223     *  to size your task stacks accordingly.
   224     *
   225     *  @p(html)
   226     *  <B>Register Function</B>
   227     *  @p
   228     *
   229     *  The Register function is provided to allow a hook set to store its
   230     *  hookset ID.  This id can be passed to {@link #setHookContext} and
   231     *  {@link #getHookContext} to set or get hookset-specific context.  The
   232     *  Register function must be specified if the hook implementation
   233     *  needs to use {@link #setHookContext} or {@link #getHookContext}.
   234     *  The registerFxn hook function is called during system initialization
   235     *  before interrupts have been enabled.
   236     *
   237     *  @p(code)
   238     *  Void myRegisterFxn(Int id);
   239     *  @p
   240     *
   241     *  @p(html)
   242     *  <B>Create and Delete Functions</B>
   243     *  @p
   244     *
   245     *  The create and delete functions are called whenever a Task is created
   246     *  or deleted.  They are called with interrupts enabled (unless called
   247     *  at boot time or from main()).
   248     *
   249     *  @p(code)
   250     *  Void myCreateFxn(Task_Handle task, Error_Block *eb);
   251     *  @p
   252     *
   253     *  @p(code)
   254     *  Void myDeleteFxn(Task_Handle task);
   255     *  @p
   256     *
   257     *  @p(html)
   258     *  <B>Switch Function</B>
   259     *  @p
   260     *
   261     *  If a switch function is specified, it is invoked just before the new task
   262     *  is switched to.  The switch function is called with interrupts enabled.
   263     *
   264     *  This function can be used to save/restore additional task context (for
   265     *  example, external hardware registers), to check for task stack overflow,
   266     *  to monitor the time used by each task, etc.
   267     *
   268     *  @p(code)
   269     *  Void mySwitchFxn(Task_Handle prev, Task_Handle next);
   270     *  @p
   271     *
   272     *  To properly handle the switch to the first task your switchFxn should
   273     *  check for "prev == NULL" before using prev:
   274     *
   275     *  @p(code)
   276     *  Void mySwitchFxn(Task_Handle prev, Task_Handle next)
   277     *  {
   278     *      if (prev != NULL) {
   279     *          ...
   280     *      }
   281     *      ...
   282     *  }
   283     *  @p
   284     *
   285     *  @p(html)
   286     *  <B>Ready Function</B>
   287     *  @p
   288     *
   289     *  If a ready function is specified, it is invoked whenever a task is made
   290     *  ready to run.   The ready function is called  with interrupts enabled
   291     *  (unless called at boot time or from main()).
   292     *
   293     *  @p(code)
   294     *  Void myReadyFxn(Task_Handle task);
   295     *  @p
   296     *
   297     *  @p(html)
   298     *  <B>Exit Function</B>
   299     *  @p
   300     *
   301     *  If an exit function is specified, it is invoked when a task exits (via
   302     *  call to Task_exit() or when a task returns from its' main function).
   303     *  The Exit Function is called with interrupts enabled.
   304     *
   305     *  @p(code)
   306     *  Void myExitFxn(Task_Handle task);
   307     *  @p
   308     *
   309     *  @p(html)
   310     *  <h3> Calling Context </h3>
   311     *  <table border="1" cellpadding="3">
   312     *    <colgroup span="1"></colgroup> <colgroup span="5" align="center">
   313     *  </colgroup>
   314     *
   315     *    <tr><th> Function                 </th><th>  Hwi   </th><th>  Swi   </th>
   316     *  <th>  Task  </th><th>  Main  </th><th>  Startup  </th></tr>
   317     *    <!--                                                       -->
   318     *    <tr><td> {@link #create}          </td><td>   N    </td><td>   N    </td>
   319     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   320     *    <tr><td> {@link #disable}         </td><td>   Y    </td><td>   Y    </td>
   321     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   322     *    <tr><td> {@link #exit}            </td><td>   N    </td><td>   N    </td>
   323     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   324     *    <tr><td> {@link #getIdleTask}     </td><td>   Y    </td><td>   Y    </td>
   325     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   326     *    <tr><td> {@link #Params_init}     </td><td>   Y    </td><td>   Y    </td>
   327     *  <td>   Y    </td><td>   Y    </td><td>   Y    </td></tr>
   328     *    <tr><td> {@link #restore}         </td><td>   Y    </td><td>   Y    </td>
   329     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   330     *    <tr><td> {@link #self}            </td><td>   Y    </td><td>   Y    </td>
   331     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   332     *    <tr><td> {@link #sleep}           </td><td>   N    </td><td>   N    </td>
   333     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   334     *    <tr><td> {@link #yield}           </td><td>   Y    </td><td>   Y    </td>
   335     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   336     *    <tr><td> {@link #construct}       </td><td>   N    </td><td>   N    </td>
   337     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   338     *    <tr><td> {@link #delete}          </td><td>   N    </td><td>   N    </td>
   339     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   340     *    <tr><td> {@link #destruct}        </td><td>   N    </td><td>   N    </td>
   341     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   342     *    <tr><td> {@link #getEnv}          </td><td>   Y    </td><td>   Y    </td>
   343     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   344     *    <tr><td> {@link #getHookContext}  </td><td>   Y    </td><td>   Y    </td>
   345     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   346     *    <tr><td> {@link #getMode}         </td><td>   Y    </td><td>   Y    </td>
   347     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   348     *    <tr><td> {@link #getPri}          </td><td>   Y    </td><td>   Y    </td>
   349     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   350     *    <tr><td> {@link #getFunc}         </td><td>   Y    </td><td>   Y    </td>
   351     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   352     *    <tr><td> {@link #setEnv}          </td><td>   Y    </td><td>   Y    </td>
   353     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   354     *    <tr><td> {@link #setHookContext}  </td><td>   Y    </td><td>   Y    </td>
   355     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   356     *    <tr><td> {@link #setPri}          </td><td>   Y    </td><td>   Y    </td>
   357     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   358     *    <tr><td> {@link #stat}            </td><td>   Y    </td><td>   Y    </td>
   359     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   360     *    <tr><td colspan="6"> Definitions: <br />
   361     *       <ul>
   362     *         <li> <b>Hwi</b>: API is callable from a Hwi thread. </li>
   363     *         <li> <b>Swi</b>: API is callable from a Swi thread. </li>
   364     *         <li> <b>Task</b>: API is callable from a Task thread. </li>
   365     *         <li> <b>Main</b>: API is callable during any of these phases: </li>
   366     *           <ul>
   367     *             <li> In your module startup after this module is started
   368     *  (e.g. Task_Module_startupDone() returns TRUE). </li>
   369     *             <li> During xdc.runtime.Startup.lastFxns. </li>
   370     *             <li> During main().</li>
   371     *             <li> During BIOS.startupFxns.</li>
   372     *           </ul>
   373     *         <li> <b>Startup</b>: API is callable during any of these phases:</li>
   374     *           <ul>
   375     *             <li> During xdc.runtime.Startup.firstFxns.</li>
   376     *             <li> In your module startup before this module is started
   377     *  (e.g. Task_Module_startupDone() returns FALSE).</li>
   378     *           </ul>
   379     *       </ul>
   380     *    </td></tr>
   381     *
   382     *  </table>
   383     *  @p
   384     */
   385    
   386    @DirectCall
   387    @ModuleStartup      /* generate a call to Task_Module_startup at startup */
   388    @InstanceInitStatic /* Construct/Destruct CAN becalled at runtime */
   389    @InstanceFinalize   /* generate call to Task_Instance_finalize on delete */
   390    @InstanceInitError  /* instance init can fail */
   391    @Template ("./Task.xdt") /* generate function to create a SMP specific
   392                                module state structure and initialize it */
   393    
   394    module Task
   395    {
   396    
   397        // -------- Module Constants --------
   398    
   399        // -------- Module Types --------
   400    
   401        /*! Task function type definition. */
   402        typedef Void (*FuncPtr)(UArg, UArg);
   403    
   404        /*! "All Task Blocked" function type definition. */
   405        typedef Void (*AllBlockedFuncPtr)(Void);
   406    
   407        /*! Check value computation function type definition. */
   408        typedef UInt32 (*ModStateCheckValueFuncPtr)(Task.Module_State *);
   409    
   410        /*! Data Integrity Check function type definition */
   411        typedef Int (*ModStateCheckFuncPtr)(Task.Module_State *, UInt32);
   412    
   413        /*! Check value computation function type definition. */
   414        typedef UInt32 (*ObjectCheckValueFuncPtr)(Task.Handle);
   415    
   416        /*! Task object data integrity check function type definition */
   417        typedef Int (*ObjectCheckFuncPtr)(Task.Handle, UInt32);
   418    
   419        /*!
   420         *  Task execution modes.
   421         *
   422         *  These enumerations are the range of modes or states that
   423         *  a task can be in. A task's current mode can be gotten using
   424         *  {@link #stat}.
   425         */
   426        enum Mode {
   427            Mode_RUNNING,           /*! Task is currently executing. */
   428            Mode_READY,             /*! Task is scheduled for execution. */
   429            Mode_BLOCKED,           /*! Task is suspended from execution. */
   430            Mode_TERMINATED,        /*! Task is terminated from execution. */
   431            Mode_INACTIVE           /*! Task is on inactive task list */
   432        };
   433    
   434        /*!
   435         *  Task Status Buffer.
   436         *
   437         *  Passed to and filled in by {@link #stat};
   438         */
   439        struct Stat {
   440            Int     priority;       /*! Task priority. */
   441            Ptr     stack;          /*! Task stack. */
   442            SizeT   stackSize;      /*! Task stack size. */
   443            IHeap.Handle stackHeap; /*! Heap used to alloc stack. */
   444            Ptr     env;            /*! Global environment struct. */
   445            Mode    mode;           /*! Task's current mode. */
   446            Ptr     sp;             /*! Task's current stack pointer. */
   447            SizeT   used;           /*! Maximum number of bytes used on stack. */
   448        };
   449    
   450        /*!
   451         *  Task hook set type definition.
   452         *
   453         *  Sets of hook functions can be specified for the Task module.
   454         *  See {@link #hookfunc Hook Functions} for details.
   455         */
   456        struct HookSet {
   457            Void (*registerFxn)(Int);
   458            Void (*createFxn)(Handle, Error.Block *);
   459            Void (*readyFxn)(Handle);
   460            Void (*switchFxn)(Handle, Handle);
   461            Void (*exitFxn)(Handle);
   462            Void (*deleteFxn)(Handle);
   463        };
   464    
   465        /*! "Don't care" task affinity */
   466        const UInt AFFINITY_NONE = ~(0);
   467    
   468        /*!  @_nodoc */
   469        metaonly struct BasicView {
   470            String      label;
   471            Int         priority;
   472            String      mode;
   473            String      fxn[];
   474            UArg        arg0;
   475            UArg        arg1;
   476            SizeT       stackSize;
   477            Ptr         stackBase;
   478            String      curCoreId;
   479            String      affinity;
   480        }
   481    
   482        /*!  @_nodoc */
   483        metaonly struct DetailedView {
   484            String      label;
   485            Int         priority;
   486            String      mode;
   487            String      fxn[];
   488            UArg        arg0;
   489            UArg        arg1;
   490            String      stackPeak;
   491            SizeT       stackSize;
   492            Ptr         stackBase;
   493            String      curCoreId;
   494            String      affinity;
   495            String      blockedOn;
   496        }
   497    
   498        /*!  @_nodoc */
   499        metaonly struct ModuleView {
   500            String      schedulerState;
   501            String      readyQMask[];
   502            Bool        workPending;
   503            UInt        numVitalTasks;
   504            Ptr         currentTask[];
   505            String      hwiStackPeak;
   506            SizeT       hwiStackSize;
   507            Ptr         hwiStackBase;
   508        }
   509    
   510        /*!  @_nodoc (not used by view) */
   511        metaonly struct CallStackView {
   512            Int         depth;
   513            String      decode;
   514        }
   515    
   516        /*!  @_nodoc */
   517        metaonly struct ReadyQView {
   518            Ptr         task;
   519            Ptr         next;
   520            Ptr         prev;
   521            Ptr         readyQ;
   522            String      label;
   523            Int         priority;
   524            String      mode;
   525            String      fxn[];
   526            String      curCoreId;
   527            String      affinity;
   528        }
   529    
   530        /*! @_nodoc */
   531        @Facet
   532        metaonly config ViewInfo.Instance rovViewInfo =
   533            ViewInfo.create({
   534                viewMap: [
   535                    ['Basic',    {type: ViewInfo.INSTANCE,     viewInitFxn: 'viewInitBasic',    structName: 'BasicView'}],
   536                    ['Detailed', {type: ViewInfo.INSTANCE,     viewInitFxn: 'viewInitDetailed', structName: 'DetailedView'}],
   537                    ['CallStacks',  {type: ViewInfo.TREE,         viewInitFxn: 'viewInitCallStack', structName: 'CallStackView'}],
   538                    ['ReadyQs',     {type: ViewInfo.TREE_TABLE,   viewInitFxn: 'viewInitReadyQs',   structName: 'ReadyQView'}],
   539                    ['Module',      {type: ViewInfo.MODULE,       viewInitFxn: 'viewInitModule',    structName: 'ModuleView'}],
   540                ]
   541            });
   542    
   543        // -------- Module Parameters --------
   544    
   545        // Logs
   546    
   547        /*! Logged on every task switch */
   548        config Log.Event LM_switch = {
   549            mask: Diags.USER1 | Diags.USER2,
   550            msg: "LM_switch: oldtsk: 0x%x, oldfunc: 0x%x, newtsk: 0x%x, newfunc: 0x%x"
   551        };
   552    
   553        /*! Logged on calls to Task_sleep */
   554        config Log.Event LM_sleep = {
   555            mask: Diags.USER1 | Diags.USER2,
   556            msg: "LM_sleep: tsk: 0x%x, func: 0x%x, timeout: %d"
   557        };
   558    
   559        /*! Logged when a task is made ready to run (ie Semaphore_post()) */
   560        config Log.Event LD_ready = {
   561            mask: Diags.USER2,
   562            msg: "LD_ready: tsk: 0x%x, func: 0x%x, pri: %d"
   563        };
   564    
   565        /*! Logged when a task is blocked (ie Semaphore_pend()) */
   566        config Log.Event LD_block = {
   567            mask: Diags.USER2,
   568            msg: "LD_block: tsk: 0x%x, func: 0x%x"
   569        };
   570    
   571        /*! Logged on calls to Task_yield */
   572        config Log.Event LM_yield = {
   573            mask: Diags.USER1 | Diags.USER2,
   574            msg: "LM_yield: tsk: 0x%x, func: 0x%x, currThread: %d"
   575        };
   576    
   577        /*! Logged on calls to Task_setPri */
   578        config Log.Event LM_setPri = {
   579            mask: Diags.USER1 | Diags.USER2,
   580            msg: "LM_setPri: tsk: 0x%x, func: 0x%x, oldPri: %d, newPri %d"
   581        };
   582    
   583        /*!
   584         *  Logged when Task functions fall thru the bottom
   585         *  or when Task_exit() is explicitly called.
   586         */
   587        config Log.Event LD_exit = {
   588            mask: Diags.USER2,
   589            msg: "LD_exit: tsk: 0x%x, func: 0x%x"
   590        };
   591    
   592        /*! Logged on calls to Task_setAffinity */
   593        config Log.Event LM_setAffinity = {
   594            mask: Diags.USER1 | Diags.USER2,
   595            msg: "LM_setAffinity: tsk: 0x%x, func: 0x%x, oldCore: %d, oldAffinity %d, newAffinity %d"
   596        };
   597    
   598        /*! Logged on every task schedule entry */
   599        config Log.Event LM_schedule = {
   600            mask: Diags.USER3,
   601            msg: "LD_schedule: coreId: %d, workFlag: %d, curSetLocal: %d, curSetX: %d, curMaskLocal: %d"
   602        };
   603    
   604        /*! Logged when no scheduling work was found */
   605        config Log.Event LM_noWork = {
   606            mask: Diags.USER3,
   607            msg: "LD_noWork: coreId: %d, curSetLocal: %d, curSetX: %d, curMaskLocal: %d"
   608        };
   609    
   610        // Errors
   611    
   612        /*!
   613         *  Error raised when a stack overflow (or corruption) is detected.
   614         *
   615         *  This error is raised by kernel's stack checking function.  This
   616         *  function checks the stacks before every task switch to make sure
   617         *  that reserved word at top of stack has not been modified.
   618         *
   619         *  The stack checking logic is enabled by the {@link #initStackFlag} and
   620         *  {@link #checkStackFlag} configuration parameters.  If both of these
   621         *  flags are set to true, the kernel will validate the stacks.
   622         */
   623        config Error.Id E_stackOverflow  = {
   624            msg: "E_stackOverflow: Task 0x%x stack overflow."
   625        };
   626    
   627        /*!
   628         *  Error raised when a task's stack pointer (SP) does not point
   629         *  somewhere within the task's stack.
   630         *
   631         *  This error is raised by kernel's stack checking function.  This
   632         *  function checks the SPs before every task switch to make sure
   633         *  they point within the task's stack.
   634         *
   635         *  The stack checking logic is enabled by the {@link #initStackFlag} and
   636         *  {@link #checkStackFlag} configuration parameters.  If both of these
   637         *  flags are set to true, the kernel will validate the stack pointers.
   638         */
   639        config Error.Id E_spOutOfBounds  = {
   640            msg: "E_spOutOfBounds: Task 0x%x stack error, SP = 0x%x."
   641        };
   642    
   643        config Error.Id E_deleteNotAllowed = {
   644            msg: "E_deleteNotAllowed: Task 0x%x."
   645        };
   646    
   647        /*!
   648         *  Error raised when the check value of the Task module state does not
   649         *  match the stored check value (computed during startup). This indicates
   650         *  that the Task module state was corrupted.
   651         */
   652        config Error.Id E_moduleStateCheckFailed = {
   653            msg: "E_moduleStateCheckFailed: Task module state data integrity check failed."
   654        };
   655    
   656        /*!
   657         *  Error raised when the check value of the Task object does not match
   658         *  the stored check value (computed during startup). This indicates
   659         *  that the Task object was corrupted.
   660         */
   661        config Error.Id E_objectCheckFailed = {
   662            msg: "E_objectCheckFailed: Task 0x%x object data integrity check failed."
   663        };
   664    
   665        // Asserts
   666    
   667        /*! Asserted in Task_create and Task_delete */
   668        config Assert.Id A_badThreadType = {
   669            msg: "A_badThreadType: Cannot create/delete a task from Hwi or Swi thread."
   670        };
   671    
   672        /*! Asserted in Task_delete */
   673        config Assert.Id A_badTaskState = {
   674            msg: "A_badTaskState: Can't delete a task in RUNNING state."
   675        };
   676    
   677        /*! Asserted in Task_delete */
   678        config Assert.Id A_noPendElem = {
   679            msg: "A_noPendElem: Not enough info to delete BLOCKED task."
   680        };
   681    
   682        /*! Asserted in Task_create */
   683        config Assert.Id A_taskDisabled = {
   684            msg: "A_taskDisabled: Cannot create a task when tasking is disabled."
   685        };
   686    
   687        /*! Asserted in Task_create */
   688        config Assert.Id A_badPriority = {
   689            msg: "A_badPriority: An invalid task priority was used."
   690        };
   691    
   692        /*! Asserted in Task_sleep */
   693        config Assert.Id A_badTimeout = {
   694            msg: "A_badTimeout: Can't sleep FOREVER."
   695        };
   696    
   697        /*! Asserted in Task_setAffinity */
   698        config Assert.Id A_badAffinity = {
   699            msg: "A_badAffinity: Invalid affinity."
   700        };
   701    
   702        /*! Asserted in Task_sleep */
   703        config Assert.Id A_sleepTaskDisabled = {
   704            msg: "A_sleepTaskDisabled: Cannot call Task_sleep() while the Task scheduler is disabled."
   705        };
   706    
   707        /*! Asserted in Task_getIdleTaskHandle */
   708        config Assert.Id A_invalidCoreId = {
   709            msg: "A_invalidCoreId: Cannot pass a non-zero CoreId in a non-SMP application."
   710        };
   711    
   712        /*!
   713         *  Number of Task priorities supported. Default is 16.
   714         *
   715         *  The maximum number of priorities supported is
   716         *  target specific and depends on the number of
   717         *  bits in a UInt data type. For 6x and ARM devices
   718         *  the maximum number of priorities is therefore 32.
   719         *  For 28x, 55x, and MSP430 devices, the maximum number of
   720         *  priorities is 16.
   721         */
   722        config UInt numPriorities = 16;
   723    
   724        /*!
   725         *  Default stack size (in MAUs) used for all tasks.
   726         *
   727         *  Default is obtained from the family-specific TaskSupport module
   728          *  (e.g. {@link ti.sysbios.family.arm.m3.TaskSupport},
   729          *  {@link ti.sysbios.family.c62.TaskSupport}).
   730         */
   731        config SizeT defaultStackSize;
   732    
   733        /*!
   734         *  Default memory section used for all statically created task stacks.
   735         *
   736         *  The default stack section name is target/device specific.
   737         *  For C6x targets it is ".far:taskStackSection".
   738         *  For C28x targets it is ".taskStackSection".
   739         *  For GNU targets it is ".bss".
   740         *  For all other targets it is ".bss:taskStackSection".
   741         *
   742         *  By default, all statically created task stacks are grouped together
   743         *  into the defaultStackSection and placed where ever
   744         *  the target specific defaultStackSection base section name
   745         *  (ie .bss, .far, .ebss) is placed.
   746         *
   747         *  To place all task stacks into a different memory segment,
   748         *  add the following to your config script:
   749         *
   750         *  @p(code)
   751         *  Program.sectMap[Task.defaultStackSection] = new Program.SectionSpec();
   752         *  Program.sectMap[Task.defaultStackSection].loadSegment =
   753         *                   "yourMemorySegment";
   754         *  @p
   755         *
   756         *  To group all task stacks into a different section AND place that
   757         *  section into a specific memory segment, add the following to your
   758         *  config script:
   759         *
   760         *  @p(code)
   761         *  Task.defaultStackSection = ".yourSectionName";
   762         *  Program.sectMap[Task.defaultStackSection] = new Program.SectionSpec();
   763         *  Program.sectMap[Task.defaultStackSection].loadSegment =
   764         *                   "yourMemorySegment";
   765         *  @p
   766         *
   767         *  Where "yourSectionName" can be just about anything, and
   768         *                   "yourMemorySegment"
   769         *  must be a memory segment defined for your board.
   770         */
   771        metaonly config String defaultStackSection;
   772    
   773        /*!
   774         *  Default Mem heap used for all dynamically created task stacks.
   775         *
   776         *  Default is null.
   777         */
   778        config IHeap.Handle defaultStackHeap;
   779    
   780        /*!
   781         *  Default core affinity for newly created tasks.
   782         *
   783         *  Default is Task_AFFINITY_NONE, meaning don't care.
   784         */
   785        metaonly config UInt defaultAffinity = AFFINITY_NONE;
   786    
   787        /*!
   788         *  Create a task (of priority 0) to run the Idle functions in.
   789         *
   790         *  When set to true, a task is created that continuously calls the
   791         *  {@link Idle#run Idle_run()} function, which, in turn calls each of
   792         *  the configured Idle functions.
   793         *
   794         *  When set to false, no Idle Task is created and it is up to the
   795         *  user to call the Idle_run() function if the configured Idle
   796         *  functions need to be run. Or, by adding the following lines to
   797         *  the config script, the Idle functions will run whenever all
   798         *  tasks are blocked ({@link #allBlockedFunc Task.allBlockedFunc}):
   799         *
   800         *  @p(code)
   801         *  Task.enableIdleTask = false;
   802         *  Task.allBlockedFunc = Idle.run;
   803         *  @p
   804         *
   805         *  Default is true.
   806         *
   807         *  @see #idleTaskStackSize
   808         *  @see #idleTaskStackSection
   809         *  @see #idleTaskVitalTaskFlag
   810         *  @see #allBlockedFunc
   811         */
   812        metaonly config Bool enableIdleTask = true;
   813    
   814        /*!
   815         *  Reduce interrupt latency by enabling interrupts
   816         *  within the Task scheduler.
   817         *
   818         *  By default, interrupts are disabled within certain critical
   819         *  sections of the task scheduler when switching to a different
   820         *  task thread. This default behavior guarantees that a task stack
   821         *  will only ever absorb ONE ISR context. Nested interrupts all run
   822         *  on the shared Hwi stack.
   823         *
   824         *  While most users find this behavior desirable, the resulting
   825         *  impact on interrupt latency is too great for certain applications.
   826         *
   827         *  By setting this parameter to 'true', the worst case interrupt latency
   828         *  imposed by the kernel will be reduced but will result in task stacks
   829         *  needing to be sized to accommodate one additional interrupt context.
   830         *
   831         *  See sections 3.5.3 and 7.5 of the BIOS User's Guide for further
   832         *  discussions regarding task stack sizing.
   833         *
   834         *  Also see {@link ti.sysbios.BIOS#logsEnabled BIOS.logsEnabled}
   835         *  and the discussion on Task hooks.
   836         */
   837        metaonly config Bool minimizeLatency = false;
   838    
   839        /*!
   840         *  Idle task stack size in MAUs.
   841         *
   842         *  Default is inherited from module config defaultStackSize.
   843         */
   844        metaonly config SizeT idleTaskStackSize;
   845    
   846        /*!
   847         *  Idle task stack section
   848         *
   849         *  Default is inherited from module config defaultStackSection;
   850         */
   851        metaonly config String idleTaskStackSection;
   852    
   853        /*!
   854         *  Idle task's vitalTaskFlag.
   855         *  (see {@link #vitalTaskFlag}).
   856         *
   857         *  Default is true.
   858         */
   859        metaonly config Bool idleTaskVitalTaskFlag = true;
   860    
   861        /*!
   862         *  Function to call while all tasks are blocked.
   863         *
   864         *  This function will be called repeatedly while no tasks are
   865         *  ready to run.
   866         *
   867         *  Ordinarily (in applications that have tasks ready to run at startup),
   868         *  the function will run in the context of the last task to block.
   869         *
   870         *  In an application where there are no tasks ready to run
   871         *  when BIOS_start() is called, the allBlockedFunc function is
   872         *  called within the BIOS_start() thread which runs on the system/ISR
   873         *  stack.
   874         *
   875         *  By default, allBlockedFunc is initialized to point to an internal
   876         *  function that simply returns.
   877         *
   878         *  By adding the following lines to the config script, the Idle
   879         *  functions will run whenever all tasks are blocked:
   880         *
   881         *  @p(code)
   882         *  Task.enableIdleTask = false;
   883         *  Task.allBlockedFunc = Idle.run;
   884         *  @p
   885         *
   886         *  @see #enableIdleTask
   887         *
   888         *  @a(constraints)
   889         *  The configured allBlockedFunc is designed to be called repeatedly.
   890         *  It must return in order for the task scheduler to check if all
   891         *  tasks are STILL blocked and if not, run the highest priority task
   892         *  currently ready to run.
   893         *
   894         *  The configured allBlockedFunc function is called with interrupts
   895         *  disabled. If your function must run with interrupts enabled,
   896         *  surround the body of your code with  Hwi_enable()/Hwi_restore()
   897         *  function calls per the following example:
   898         *
   899         *  @p(code)
   900         *  Void yourFunc() {
   901         *      UInt hwiKey;
   902         *
   903         *      hwiKey = Hwi_enable();
   904         *
   905         *      ...         // your code here
   906         *
   907         *      Hwi_restore(hwiKey);
   908         *  }
   909         *  @p
   910         */
   911        config AllBlockedFuncPtr allBlockedFunc = null;
   912    
   913        /*!
   914         *  Initialize stack with known value for stack checking at runtime
   915         *  (see {@link #checkStackFlag}).
   916         *  If this flag is set to false, while the
   917         *  {@link ti.sysbios.hal.Hwi#checkStackFlag} is set to true, only the
   918         *  first byte of the stack is initialized.
   919         *
   920         *  This is also useful for inspection of stack in debugger or core
   921         *  dump utilities.
   922         *  Default is true.
   923         */
   924        config Bool initStackFlag = true;
   925    
   926        /*!
   927         *  Check 'from' and 'to' task stacks before task context switch.
   928         *
   929         *  The check consists of testing the top of stack value against
   930         *  its initial value (see {@link #initStackFlag}). If it is no
   931         *  longer at this value, the assumption is that the task has
   932         *  overrun its stack. If the test fails, then the
   933         *  {@link #E_stackOverflow} error is raised.
   934         *
   935         *  Default is true.
   936         *
   937         *  To enable or disable full stack checking, you should set both this
   938         *  flag and the {@link ti.sysbios.hal.Hwi#checkStackFlag}.
   939         *
   940         *  @a(Note)
   941         *  Enabling stack checking will add some interrupt latency because the
   942         *  checks are made within the Task scheduler while interrupts are
   943         *  disabled.
   944         */
   945        config Bool checkStackFlag = true;
   946    
   947        /*!
   948         *  Automatically delete terminated tasks.
   949         *
   950         *  If this feature is enabled, an Idle function is installed that
   951         *  deletes dynamically created Tasks that have terminated either
   952         *  by falling through their task function or by explicitly calling
   953         *  Task_exit().
   954         *
   955         *  A list of terminated Tasks that were created dynmically is
   956         *  maintained internally. Each invocation of the installed Idle function
   957         *  deletes the first Task on this list. This one-at-a-time process
   958         *  continues until the list is empty.
   959         *
   960         *  @a(Note)
   961         *  This feature is disabled by default.
   962         *
   963         *  @a(WARNING)
   964         *  When this feature is enabled, an error will be raised if the user's
   965         *  application attempts to delete a terminated task. If a terminated task
   966         *  has already been automatically deleted and THEN the user's application
   967         *  attempts to delete it (ie: using a stale Task handle), the results are
   968         *  undefined and probably catastrophic!
   969         *
   970         */
   971        config Bool deleteTerminatedTasks = false;
   972    
   973        /*!
   974         *  Const array that holds the HookSet objects.
   975         *
   976         *  See {@link #hookfunc Hook Functions} for details about HookSets.
   977         */
   978        config HookSet hooks[length] = [];
   979    
   980        /*!
   981         *  ======== moduleStateCheckFxn ========
   982         *  Function called to perform module state data integrity check
   983         *
   984         *  If {@link #moduleStateCheckFlag} is set to true, SYS/BIOS kernel
   985         *  will call this function each time Task_disable() function is called.
   986         *  SYS/BIOS provides a default implementation of this function that
   987         *  computes the check value for the static module state fields and
   988         *  compares the resulting check value against the stored value. In
   989         *  addition, the check function validates some of the pointers used
   990         *  by the Task scheduler. The application can install its own
   991         *  implementation of the module state check function.
   992         *
   993         *  Here's an example module state check function:
   994         *
   995         *  *.cfg
   996         *  @p(code)
   997         *  var Task = xdc.useModule('ti.sysbios.knl.Task');
   998         *
   999         *  // Enable Task module state data integrity check
  1000         *  Task.moduleStateCheckFlag = true;
  1001         *
  1002         *  // Install custom module state check function
  1003         *  Task.moduleStateCheckFxn = "&myCheckFunc";
  1004         *  @p
  1005         *
  1006         *  *.c
  1007         *  @p(code)
  1008         *  #define ti_sysbios_knl_Task__internalaccess
  1009         *  #include <ti/sysbios/knl/Task.h>
  1010         *
  1011         *  Int myCheckFunc(Task_Module_State *moduleState, UInt32 checkValue)
  1012         *  {
  1013         *      UInt32 newCheckValue;
  1014         *
  1015         *      newCheckValue = Task_moduleStateCheckValueFxn(moduleState);
  1016         *      if (newCheckValue != checkValue) {
  1017         *          // Return '-1' to indicate data corruption. SYS/BIOS kernel
  1018         *          // will raise an error.
  1019         *          return (-1);
  1020         *      }
  1021         *
  1022         *      return (0);
  1023         *  }
  1024         *  @p
  1025         */
  1026        config ModStateCheckFuncPtr moduleStateCheckFxn = Task.moduleStateCheck;
  1027    
  1028        /*!
  1029         *  ======== moduleStateCheckValueFxn ========
  1030         *  Function called to compute module state check value
  1031         *
  1032         *  If {@link #moduleStateCheckFlag} is set to true, SYS/BIOS kernel
  1033         *  will call this function during startup to compute the Task module
  1034         *  state's check value.
  1035         *
  1036         *  SYS/BIOS provides a default implementation of this function that
  1037         *  computes a 32-bit checksum for the static module state fields (i.e.
  1038         *  module state fields that do not change during the lifetime of the
  1039         *  application). The application can install its own implementation
  1040         *  of this function.
  1041         *
  1042         *  Here's an example module state check value computation function:
  1043         *
  1044         *  *.cfg
  1045         *  @p(code)
  1046         *  var Task = xdc.useModule('ti.sysbios.knl.Task');
  1047         *
  1048         *  // Enable Task module state data integrity check
  1049         *  Task.moduleStateCheckFlag = true;
  1050         *
  1051         *  // Install custom module state check value function
  1052         *  Task.moduleStateCheckValueFxn = "&myCheckValueFunc";
  1053         *  @p
  1054         *
  1055         *  *.c
  1056         *  @p(code)
  1057         *  #define ti_sysbios_knl_Task__internalaccess
  1058         *  #include <ti/sysbios/knl/Task.h>
  1059         *
  1060         *  UInt32 myCheckValueFunc(Task_Module_State *moduleState)
  1061         *  {
  1062         *      UInt64 checksum;
  1063         *
  1064         *      checksum = (uintptr_t)moduleState->readyQ +
  1065         *                 (uintptr_t)moduleState->smpCurSet +
  1066         *                 (uintptr_t)moduleState->smpCurMask +
  1067         *                 (uintptr_t)moduleState->smpCurTask +
  1068         *                 (uintptr_t)moduleState->smpReadyQ +
  1069         *                 (uintptr_t)moduleState->idleTask +
  1070         *                 (uintptr_t)moduleState->constructedTasks;
  1071         *      checksum = (checksum >> 32) + (checksum & 0xFFFFFFFF);
  1072         *      checksum = checksum + (checksum >> 32);
  1073         *
  1074         *      return ((UInt32)(~checksum));
  1075         *  }
  1076         *  @p
  1077         */
  1078        config ModStateCheckValueFuncPtr moduleStateCheckValueFxn =
  1079            Task.getModuleStateCheckValue;
  1080    
  1081        /*!
  1082         *  ======== moduleStateCheckFlag ========
  1083         *  Perform a runtime data integrity check on the Task module state
  1084         *
  1085         *  This configuration parameter determines whether a data integrity
  1086         *  check is performed on the Task module state in order to detect
  1087         *  data corruption.
  1088         *
  1089         *  If this field is set to true, a check value of the static fields in
  1090         *  the Task module state (i.e. fields that do not change during the
  1091         *  lifetime of the application) is computed during startup. The
  1092         *  computed check value is stored for use by the Task module state check
  1093         *  function. The application can implement its own check value
  1094         *  computation function (see {@link #moduleStateCheckValueFxn}).
  1095         *  By default, SYS/BIOS installs a check value computation function that
  1096         *  computes a 32-bit checksum of the static fields in the Task module
  1097         *  state.
  1098         *
  1099         *  The module state check function (see {@link #moduleStateCheckFxn})
  1100         *  is called from within the Task_disable() function. The application
  1101         *  can provide its own implementation of this function. By default,
  1102         *  SYS/BIOS installs a check function that computes the check value
  1103         *  for select module state fields and compares the resulting check
  1104         *  value against the stored value.
  1105         *
  1106         *  If the module state check function returns a '-1' (i.e. check failed),
  1107         *  then the SYS/BIOS kernel will raise an error.
  1108         */
  1109        config Bool moduleStateCheckFlag = false;
  1110    
  1111        /*!
  1112         *  ======== objectCheckFxn ========
  1113         *  Function called to perform Task object data integrity check
  1114         *
  1115         *  If {@link #objectCheckFlag} is set to true, SYS/BIOS kernel
  1116         *  will call this function from within a Task switch hook and
  1117         *  each time a Task blocks or unblocks. SYS/BIOS provides a default
  1118         *  implementation of this function that computes the check value
  1119         *  for the static Task object fields and compares the resulting
  1120         *  check value against the stored value. The application can install
  1121         *  its own implementation of the object check function.
  1122         *
  1123         *  Here's an example Task object check function:
  1124         *
  1125         *  *.cfg
  1126         *  @p(code)
  1127         *  var Task = xdc.useModule('ti.sysbios.knl.Task');
  1128         *
  1129         *  // Enable Task object data integrity check
  1130         *  Task.objectCheckFlag = true;
  1131         *
  1132         *  // Install custom Task object check function
  1133         *  Task.objectCheckFxn = "&myCheckFunc";
  1134         *  @p
  1135         *
  1136         *  *.c
  1137         *  @p(code)
  1138         *  #define ti_sysbios_knl_Task__internalaccess
  1139         *  #include <ti/sysbios/knl/Task.h>
  1140         *
  1141         *  Int myCheckFunc(Task_Handle handle, UInt32 checkValue)
  1142         *  {
  1143         *      UInt32 newCheckValue;
  1144         *
  1145         *      newCheckValue = Task_objectCheckValueFxn(handle);
  1146         *      if (newCheckValue != checkValue) {
  1147         *          // Return '-1' to indicate data corruption. SYS/BIOS kernel
  1148         *          // will raise an error.
  1149         *          return (-1);
  1150         *      }
  1151         *
  1152         *      return (0);
  1153         *  }
  1154         *  @p
  1155         */
  1156        config ObjectCheckFuncPtr objectCheckFxn = Task.objectCheck;
  1157    
  1158        /*!
  1159         *  ======== objectCheckValueFxn ========
  1160         *  Function called to compute Task object check value
  1161         *
  1162         *  If {@link #objectCheckFlag} is set to true, SYS/BIOS kernel
  1163         *  will call this function to compute the Task object's check value
  1164         *  each time a Task is created.
  1165         *
  1166         *  SYS/BIOS provides a default implementation of this function that
  1167         *  computes a 32-bit checksum for the static Task object fields (i.e.
  1168         *  Task object fields that do not change during the lifetime of the
  1169         *  Task). The application can install its own implementation of this
  1170         *  function.
  1171         *
  1172         *  Here's an example Task object check value computation function:
  1173         *
  1174         *  *.cfg
  1175         *  @p(code)
  1176         *  var Task = xdc.useModule('ti.sysbios.knl.Task');
  1177         *
  1178         *  // Enable Task object data integrity check
  1179         *  Task.objectCheckFlag = true;
  1180         *
  1181         *  // Install custom Task object check value function
  1182         *  Task.objectCheckValueFxn = "&myCheckValueFunc";
  1183         *  @p
  1184         *
  1185         *  *.c
  1186         *  @p(code)
  1187         *  #define ti_sysbios_knl_Task__internalaccess
  1188         *  #include <ti/sysbios/knl/Task.h>
  1189         *
  1190         *  UInt32 myCheckValueFunc(Task_Handle taskHandle)
  1191         *  {
  1192         *      UInt64 checksum;
  1193         *
  1194         *      checksum = taskHandle->stackSize +
  1195         *                 (uintptr_t)taskHandle->stack +
  1196         *                 (uintptr_t)taskHandle->stackHeap +
  1197         *  #if defined(__IAR_SYSTEMS_ICC__)
  1198         *                 (UInt64)taskHandle->fxn +
  1199         *  #else
  1200         *                 (uintptr_t)taskHandle->fxn +
  1201         *  #endif
  1202         *                 taskHandle->arg0 +
  1203         *                 taskHandle->arg1 +
  1204         *                 (uintptr_t)taskHandle->hookEnv +
  1205         *                 taskHandle->vitalTaskFlag;
  1206         *      checksum = (checksum >> 32) + (checksum & 0xFFFFFFFF);
  1207         *      checksum = checksum + (checksum >> 32);
  1208         *
  1209         *      return ((UInt32)(~checksum));
  1210         *  }
  1211         *  @p
  1212         */
  1213        config ObjectCheckValueFuncPtr objectCheckValueFxn =
  1214            Task.getObjectCheckValue;
  1215    
  1216        /*!
  1217         *  ======== objectCheckFlag ========
  1218         *  Perform a runtime data integrity check on each Task object
  1219         *
  1220         *  This configuration parameter determines whether a data integrity
  1221         *  check is performed on each Task object in the system in order to detect
  1222         *  data corruption.
  1223         *
  1224         *  If this field is set to true, a check value of the static fields in
  1225         *  the Task object (i.e. fields that do not change during the lifetime
  1226         *  of the Task) is computed when the Task is created. The computed check
  1227         *  value is stored for use by the Task object check function. The
  1228         *  application can implement its own check value computation function
  1229         *  (see {@link #objectCheckValueFxn}). By default, SYS/BIOS installs a
  1230         *  check value computation function that computes a 32-bit checksum of
  1231         *  the static fields in the Task object.
  1232         *
  1233         *  The Task object check function (see {@link #objectCheckFxn})
  1234         *  is called from within a Task switch hook if stack checking
  1235         *  (see {@link #checkStackFlag}) is enabled. It is also called when
  1236         *  a task blocks or unblocks. The application can provide its own
  1237         *  implementation of this function. By default, SYS/BIOS installs a
  1238         *  check function that computes the check value for select Task
  1239         *  object fields and compares the resulting check value against the
  1240         *  stored value.
  1241         *
  1242         *  If the Task object check function returns a '-1' (i.e. check failed),
  1243         *  then the SYS/BIOS kernel will raise an error.
  1244         */
  1245        config Bool objectCheckFlag = false;
  1246    
  1247        // -------- Module Functions --------
  1248    
  1249        /*!
  1250         *  ======== addHookSet ========
  1251         *  addHookSet is used in a config file to add a hook set.
  1252         *
  1253         *  Configures a set of hook functions for the
  1254         *  Task module. Each set contains these hook functions:
  1255         *
  1256         *  @p(blist)
  1257         *  -Register: A function called before any statically created tasks
  1258         *  are initialized at runtime.  The register hook is called at boot time
  1259         *  before main() and before interrupts are enabled.
  1260         *  -Create: A function that is called when a task is created.
  1261         *  This includes tasks that are created statically and those
  1262         *  created dynamically using {@link #create} or {@link #construct}.
  1263         *  The create hook is called outside of a Task_disable/enable block and
  1264         *   before the task has been added to the ready list.
  1265         *  -Ready: A function that is called when a task becomes ready to run.
  1266         *   The ready hook is called from within a Task_disable/enable block with
  1267         *   interrupts enabled.
  1268         *  -Switch: A function that is called just before a task switch
  1269         *  occurs. The 'prev' and 'next' task handles are passed to the Switch
  1270         *  hook. 'prev' is set to NULL for the initial task switch that occurs
  1271         *  during SYS/BIOS startup.  The Switch hook is called from within a
  1272         *  Task_disable/enable block with interrupts enabled.
  1273         *  -Exit:  A function that is called when a task exits using
  1274         *  {@link #exit}.  The exit hook is passed the handle of the exiting
  1275         *  task.  The exit hook is called outside of a Task_disable/enable block
  1276         *  and before the task has been removed from the kernel lists.
  1277         *  -Delete: A function that is called when any task is deleted at
  1278         *  run-time with {@link #delete}.  The delete hook is called outside
  1279         *  of a Task_disable/enable block.
  1280         *  @p
  1281         *  Hook functions can only be configured statically.
  1282         *
  1283         *  See {@link #hookfunc Hook Functions} for more details.
  1284         *
  1285         *  HookSet structure elements may be omitted, in which case those
  1286         *  elements will not exist.
  1287         *
  1288         *  For example, the following configuration code defines a HookSet:
  1289         *
  1290         *  @p(code)
  1291         *  // Hook Set 1
  1292         *  Task.addHookSet({
  1293         *     registerFxn: '&myRegister1',
  1294         *     createFxn:   '&myCreate1',
  1295         *     readyFxn:    '&myReady1',
  1296         *     switchFxn:   '&mySwitch1',
  1297         *     exitFxn:     '&myExit1',
  1298         *     deleteFxn:   '&myDelete1'
  1299         *  });
  1300         *  @p
  1301         *
  1302         *  @param(hook)    structure of type HookSet
  1303         */
  1304        metaonly Void addHookSet(HookSet hook);
  1305    
  1306        /*!
  1307         *  @_nodoc
  1308         *  ======== Task_startup ========
  1309         *  Start the task scheduler.
  1310         *
  1311         *  Task_startup signals the end of boot operations, enables
  1312         *  the Task scheduler and schedules the highest priority ready
  1313         *  task for execution.
  1314         *
  1315         *  Task_startup is called by BIOS_start() after Hwi_enable()
  1316         *  and Swi_enable(). There is no return from this function as the
  1317         *  execution thread is handed to the highest priority ready task.
  1318         */
  1319        Void startup();
  1320    
  1321        /*!
  1322         *  ======== Task_enabled ========
  1323         *  Returns TRUE if the Task scheduler is enabled
  1324         *
  1325         *  @_nodoc
  1326         */
  1327        Bool enabled();
  1328    
  1329        /*!
  1330         *  @_nodoc
  1331         *  ======== unlockSched ========
  1332         *  Force a Task scheduler unlock. Used by Core_atExit() & Core_hwiFunc()
  1333         *  to unlock Task scheduler before exiting.
  1334         *
  1335         *  This function should only be called after a Hwi_disable() has entered
  1336         *  the Inter-core gate and disabled interrupts locally.
  1337         */
  1338        Void unlockSched();
  1339    
  1340        /*!
  1341         *  ======== Task_disable ========
  1342         *  Disable the task scheduler.
  1343         *
  1344         *  {@link #disable} and {@link #restore} control Task scheduling.
  1345         *  {@link #disable} disables all other Tasks from running until
  1346         *  {@link #restore} is called. Hardware and Software interrupts
  1347         *  can still run.
  1348         *
  1349         *  {@link #disable} and {@link #restore} allow you to ensure that
  1350         *  statements
  1351         *  that must be performed together during critical processing are not
  1352         *  preempted by other Tasks.
  1353         *
  1354         *  The value of the key returned is opaque to applications and is meant
  1355         *  to be passed to Task_restore().
  1356         *
  1357         *  In the following example, the critical section is
  1358         *  not preempted by any Tasks.
  1359         *
  1360         *  @p(code)
  1361         *  key = Task_disable();
  1362         *      `critical section`
  1363         *  Task_restore(key);
  1364         *  @p
  1365         *
  1366         *  You can also use {@link #disable} and {@link #restore} to
  1367         *  create several Tasks and allow them to be invoked in
  1368         *  priority order.
  1369         *
  1370         *  {@link #disable} calls can be nested.
  1371         *
  1372         *  @b(returns)     key for use with {@link #restore}
  1373         *
  1374         *  @a(constraints)
  1375         *  Do not call any function that can cause the current task to block
  1376         *  within a {@link #disable}/{@link #restore} block. For example,
  1377         *  {@link ti.sysbios.knl.Semaphore#pend Semaphore_pend}
  1378         *  (if timeout is non-zero),
  1379         *  {@link #sleep}, {@link #yield}, and Memory_alloc can all
  1380         *  cause blocking.
  1381         */
  1382        UInt disable();
  1383    
  1384        /*!
  1385         *  @_nodoc
  1386         *  ======== enable ========
  1387         *  Enable the task scheduler.
  1388         *
  1389         *  {@link #enable} unconditionally enables the Task scheduler and
  1390         *  schedules the highest priority ready task for execution.
  1391         *
  1392         *  This function is called by {@link #startup} (which is called by
  1393         *  {@link ti.sysbios.BIOS#start BIOS_start}) to begin multi-tasking
  1394         *  operations.
  1395         */
  1396        Void enable();
  1397    
  1398        /*!
  1399         *  ======== restore ========
  1400         *  Restore Task scheduling state.
  1401         *
  1402         *  {@link #disable} and {@link #restore} control Task scheduling
  1403         *  {@link #disable} disables all other Tasks from running until
  1404         *  {@link #restore} is called. Hardware and Software interrupts
  1405         *  can still run.
  1406         *
  1407         *  {@link #disable} and {@link #restore} allow you to ensure that
  1408         *  statements
  1409         *  that must be performed together during critical processing are not
  1410         *  preempted.
  1411    
  1412         *  In the following example, the critical section is not preempted
  1413         *  by any Tasks.
  1414         *
  1415         *  @p(code)
  1416         *  key = Task_disable();
  1417         *      `critical section`
  1418         *  Task_restore(key);
  1419         *  @p
  1420         *
  1421         *  You can also use {@link #disable} and {@link #restore} to create
  1422         *  several Tasks and allow them to be performed in priority order.
  1423         *
  1424         *  {@link #disable} calls can be nested.
  1425         *
  1426         *  {@link #restore} returns with interrupts enabled if the key unlocks
  1427         *  the scheduler
  1428         *
  1429         *  @param(key)     key to restore previous Task scheduler state
  1430         *
  1431         *  @a(constraints)
  1432         *  Do not call any function that can cause the current task to block
  1433         *  within a {@link #disable}/{@link #restore} block. For example,
  1434         *  {@link ti.sysbios.knl.Semaphore#pend Semaphore_pend()}
  1435         *  (if timeout is non-zero),
  1436         *  {@link #sleep}, {@link #yield}, and Memory_alloc can all
  1437         *  cause blocking.
  1438         *
  1439         *  {@link #restore} internally calls Hwi_enable() if the key passed
  1440         *  to it results in the unlocking of the Task scheduler (ie if this
  1441         *  is root Task_disable/Task_restore pair).
  1442         */
  1443        Void restore(UInt key);
  1444    
  1445        /*!
  1446         *  @_nodoc
  1447         *  ======== restoreHwi ========
  1448         *  Restore Task scheduling state.
  1449         *  Used by dispatcher. Does not re-enable Ints.
  1450         */
  1451        Void restoreHwi(UInt key);
  1452    
  1453        /*!
  1454         *  ======== self ========
  1455         *  Returns a handle to the currently executing Task object.
  1456         *
  1457         *  Task_self returns the object handle for the currently executing task.
  1458         *  This function is useful when inspecting the object or when the current
  1459         *  task changes its own priority through {@link #setPri}.
  1460         *
  1461         *  No task switch occurs when calling Task_self.
  1462         *
  1463         *  Task_self will return NULL until Tasking is initiated at the end of
  1464         *  BIOS_start().
  1465         *
  1466         *  @b(returns)     address of currently executing task object
  1467         */
  1468        Handle self();
  1469    
  1470        /*!
  1471         *  ======== selfMacro ========
  1472         *  Returns a handle to the currently executing Task object.
  1473         *
  1474         *  Task_selfMacro is identical to {@link #self} but is implemented as
  1475         *  and inline macro.
  1476         *
  1477         *  @b(returns)     address of currently executing task object
  1478         */
  1479        @Macro
  1480        Handle selfMacro();
  1481    
  1482        /*!
  1483         *  @_nodoc
  1484         *  ======== checkStacks ========
  1485         *  Check for stack overflow.
  1486         *
  1487         *  This function is usually called by the {@link #HookSet} switchFxn to
  1488         *  make sure task stacks are valid before performing the context
  1489         *  switch.
  1490         *
  1491         *  If a stack overflow is detected on either the oldTask or the
  1492         *  newTask, a {@link #E_stackOverflow} Error is raised and the system
  1493         *  exited.
  1494         *
  1495         *  In order to work properly, {@link #checkStacks} requires that the
  1496         *  {@link #initStackFlag} set to true, which it is by default.
  1497         *
  1498         *  You can call {@link #checkStacks} directly from your application.
  1499         *  For example, you can check the current task's stack integrity
  1500         *  at any time with a call like the following:
  1501         *
  1502         *  @p(code)
  1503         *  Task_checkStacks(Task_self(), Task_self());
  1504         *  @p
  1505         *
  1506         *  @param(oldTask)  leaving Task Object Ptr
  1507         *  @param(newTask)  entering Task Object Ptr
  1508         */
  1509        Void checkStacks(Handle oldTask, Handle newTask);
  1510    
  1511        /*!
  1512         *  ======== exit ========
  1513         *  Terminate execution of the current task.
  1514         *
  1515         *  Task_exit terminates execution of the current task, changing its mode
  1516         *  from {@link #Mode_RUNNING} to {@link #Mode_TERMINATED}. If all tasks
  1517         *  have been terminated, or if all remaining tasks have their
  1518         *  vitalTaskFlag attribute set to FALSE, then SYS/BIOS terminates the
  1519         *  program as a whole by calling the function System_exit with a status
  1520         *  code of 0.
  1521         *
  1522         *  Task_exit is automatically called whenever a task returns from its
  1523         *  top-level function.
  1524         *
  1525         *  Exit Hooks (see exitFxn in {@link #HookSet}) can be used to provide
  1526         *  functions that run whenever a task is terminated. The exitFxn Hooks
  1527         *  are called before the task has been blocked and marked
  1528         *  {@link #Mode_TERMINATED}.
  1529         *  See {@link #hookfunc Hook Functions} for more information.
  1530         *
  1531         *  Any SYS/BIOS function can be called from an Exit Hook function.
  1532         *
  1533         *  Calling {@link #self} within an Exit function returns the task
  1534         *  being exited. Your Exit function declaration should be similar to
  1535         *  the following:
  1536         *  @p(code)
  1537         *  Void myExitFxn(Void);
  1538         *  @p
  1539         *
  1540         *  A task switch occurs when calling Task_exit unless the program as a
  1541         *  whole is terminated
  1542         *
  1543         *  @a(constraints)
  1544         *  Task_exit cannot be called from a Swi or Hwi.
  1545         *
  1546         *  Task_exit cannot be called from the program's main() function.
  1547         */
  1548        Void exit();
  1549    
  1550        /*!
  1551         *  ======== sleep ========
  1552         *  Delay execution of the current task.
  1553         *
  1554         *  Task_sleep changes the current task's mode from {@link #Mode_RUNNING}
  1555         *  to {@link #Mode_BLOCKED}, and delays its execution for nticks
  1556         *  increments of the {@link Clock system clock}. The actual time
  1557         *  delayed can be up to 1 system clock tick less than nticks due to
  1558         *  granularity in system timekeeping and the time elapsed per
  1559         *  tick is determined by {@link Clock#tickPeriod Clock_tickPeriod}.
  1560         *
  1561         *  After the specified period of time has elapsed, the task reverts to
  1562         *  the {@link #Mode_READY} mode and is scheduled for execution.
  1563         *
  1564         *  A task switch always occurs when calling Task_sleep if nticks > 0.
  1565         *
  1566         *  @param(nticks)  number of system clock ticks to sleep
  1567         *
  1568         *  @a(constraints)
  1569         *  Task_sleep cannot be called from a Swi or Hwi, or within a
  1570         *  {@link #disable} / {@link #restore} block.
  1571         *
  1572         *  Task_sleep cannot be called from the program's main() function.
  1573         *
  1574         *  Task_sleep should not be called from within an Idle function. Doing
  1575         *  so prevents analysis tools from gathering run-time information.
  1576         *
  1577         *  nticks cannot be {@link ti.sysbios.BIOS#WAIT_FOREVER BIOS_WAIT_FOREVER}.
  1578         */
  1579        Void sleep(UInt32 nticks);
  1580    
  1581        /*!
  1582         *  ======== yield ========
  1583         *  Yield processor to equal priority task.
  1584         *
  1585         *  Task_yield yields the processor to another task of equal priority.
  1586         *
  1587         *  A task switch occurs when you call Task_yield if there is an equal
  1588         *  priority task ready to run.
  1589         *
  1590         *  Tasks of higher priority preempt the currently running task without
  1591         *  the need for a call to Task_yield. If only lower-priority tasks are
  1592         *  ready to run when you call Task_yield, the current task continues to
  1593         *  run. Control does not pass to a lower-priority task.
  1594         *
  1595         *  @a(constraints)
  1596         *  When called within an Hwi, the code sequence calling Task_yield
  1597         *  must be invoked by the Hwi dispatcher.
  1598         *
  1599         *  Task_yield cannot be called from the program's main() function.
  1600         */
  1601        Void yield();
  1602    
  1603        /*!
  1604         *  ======== getIdleTask ========
  1605         *  returns a handle to the idle task object (for core 0)
  1606         */
  1607        Handle getIdleTask();
  1608    
  1609        /*!
  1610         *  ======== getIdleTaskHandle ========
  1611         *  returns a handle to the idle task object for the specified coreId
  1612         *  (should be used only in applications built with
  1613         *  {@link ti.sysbios.BIOS#smpEnabled} set to true)
  1614         *
  1615         *  @a(Note)
  1616         *  If this function is called in a non-SMP application, coreId should
  1617         *  always be 0.
  1618         */
  1619        Handle getIdleTaskHandle(UInt coreId);
  1620    
  1621        /*!
  1622         *  @_nodoc
  1623         *  ======== startCore ========
  1624         *  begin tasking on a core
  1625         */
  1626        Void startCore(UInt coreId);
  1627    
  1628        /*!
  1629         *  ======== getNickName ========
  1630         *
  1631         */
  1632        metaonly String getNickName(Any tskView);
  1633    
  1634    instance:
  1635    
  1636        /*!
  1637         *  ======== create ========
  1638         *  Create a Task.
  1639         *
  1640         *  Task_create creates a new task object. If successful, Task_create
  1641         *  returns the handle of the new task object. If unsuccessful,
  1642         *  Task_create returns NULL unless it aborts.
  1643         *
  1644         *  The fxn parameter uses the {@link #FuncPtr} type to pass a pointer to
  1645         *  the function the Task object should run. For example, if myFxn is a
  1646         *  function in your program, your C code can create a Task object
  1647         *  to call that
  1648         *  function as follows:
  1649         *
  1650         *  @p(code)
  1651         *  Task_Params taskParams;
  1652         *
  1653         *  // Create task with priority 15
  1654         *  Task_Params_init(&taskParams);
  1655         *  taskParams.stackSize = 512;
  1656         *  taskParams.priority = 15;
  1657         *  Task_create((Task_FuncPtr)myFxn, &taskParams, &eb);
  1658         *  @p
  1659         *
  1660         *  The following statements statically create a task in the
  1661         *  configuration file:
  1662         *
  1663         *  @p(code)
  1664         *  var params = new Task.Params;
  1665         *  params.instance.name = "tsk0";
  1666         *  params.arg0 = 1;
  1667         *  params.arg1 = 2;
  1668         *  params.priority = 1;
  1669         *  Task.create('&tsk0_func', params);
  1670         *  @p
  1671         *
  1672         *  If NULL is passed instead of a pointer to an actual Task_Params
  1673         *  struct, a
  1674         *  default set of parameters is used. The "eb" is an error block that
  1675         *  you can use
  1676         *  to handle errors that may occur during Task object creation.
  1677         *
  1678         *  The newly created task is placed in {@link #Mode_READY} mode, and is
  1679         *  scheduled to begin concurrent execution of the following function
  1680         *  call:
  1681         *
  1682         *  @p(code)
  1683         *  (*fxn)(arg1, arg2);
  1684         *  @p
  1685         *
  1686         *  As a result of being made ready to run, the task runs any
  1687         *  application-wide Ready functions that have been specified.
  1688         *
  1689         *  Task_exit is automatically called if and when the task returns
  1690         *  from fxn.
  1691         *
  1692         *  @p(html)
  1693         *  <B>Create Hook Functions</B>
  1694         *  @p
  1695         *
  1696         *  You can specify application-wide Create hook functions in your config
  1697         *  file that run whenever a task is created. This includes tasks that
  1698         *  are created statically and those created dynamically using
  1699         *  Task_create.
  1700         *
  1701         *  For Task objects created statically, Create functions are called
  1702         *  during the Task module initialization phase of the program startup
  1703         *  process prior to main().
  1704         *
  1705         *  For Task objects created dynamically, Create functions
  1706         *  are called after the task handle has been initialized but before the
  1707         *  task has been placed on its ready queue.
  1708         *
  1709         *  Any SYS/BIOS function can be called from Create functions.
  1710         *  SYS/BIOS passes the task handle of the task being created to each of
  1711         *  the Create functions.
  1712         *
  1713         *  All Create function declarations should be similar to this:
  1714         *  @p(code)
  1715         *  Void myCreateFxn(Task_Handle task);
  1716         *  @p
  1717         *
  1718         *  @param(fxn)     Task Function
  1719         *
  1720         *  @a(constraints)
  1721         *  @p(blist)
  1722         *  - The fxn parameter and the name attribute cannot be NULL.
  1723         *  - The priority attribute must be less than or equal to
  1724         *  ({@link #numPriorities} - 1) and greater than or equal to one (1)
  1725         *  (priority 0 is owned by the Idle task).
  1726         *  - The priority can be set to -1 for tasks that will not execute
  1727         *  until another task changes the priority to a positive value.
  1728         *  - The stackHeap attribute must identify a valid memory Heap.
  1729         *  @p
  1730         */
  1731        create(FuncPtr fxn);
  1732    
  1733        // -------- Handle Parameters --------
  1734    
  1735        /*! Task function argument. Default is 0 */
  1736        config UArg arg0 = 0;
  1737    
  1738        /*! Task function argument. Default is 0 */
  1739        config UArg arg1 = 0;
  1740    
  1741        /*!
  1742         *  Task priority (0 to Task.numPriorities-1, or -1).
  1743         *  Default is 1.
  1744         */
  1745        config Int priority = 1;
  1746    
  1747        /*!
  1748         *  Task stack pointer. Default = null.
  1749         *
  1750         *  Null indicates that the stack is to be allocated by create().
  1751         *
  1752         *  @a(Static Configuration Usage Warning)
  1753         *  This parameter can only be assigned a non-null value
  1754         *  during runtime Task creates or constructs.
  1755         *
  1756         *  Static configuration of the 'stack' parameter is not supported.
  1757         *
  1758         *  Note that if {@link ti.sysbios.BIOS#runtimeCreatesEnabled
  1759         *  BIOS.runtimeCreatesEnabled} is set to false, then the user is required
  1760         *  to provide the stack buffer when constructing the Task object.
  1761         *  If 'stack' is not provided, then Task_construct() will fail.
  1762         */
  1763        config Ptr stack = null;
  1764    
  1765        /*!
  1766         *  Task stack size in MAUs.
  1767         *
  1768         *  The default value of 0 means that the module config
  1769         *  {@link #defaultStackSize} is used.
  1770         */
  1771        config SizeT stackSize = 0;
  1772    
  1773        /*!
  1774         *  Mem section used for statically created task stacks.
  1775         *
  1776         *  Default is inherited from module config defaultStackSection.
  1777         */
  1778        metaonly config String stackSection;
  1779    
  1780        /*!
  1781         *  Mem heap used for dynamically created task stack.
  1782         *
  1783         *  The default value of NULL means that the module config
  1784         *  {@link #defaultStackHeap} is used.
  1785         */
  1786        config IHeap.Handle stackHeap = null;
  1787    
  1788        /*! Environment data struct. */
  1789        config Ptr env = null;
  1790    
  1791        /*!
  1792         *  Exit system immediately when the last task with this
  1793         *  flag set to TRUE has terminated.
  1794         *
  1795         *  Default is true.
  1796         */
  1797        config Bool vitalTaskFlag = true;
  1798    
  1799        /*!
  1800         *  The core which this task is to run on. Default is Task_AFFINITY_NONE
  1801         *
  1802         *  If there is a compelling reason for a task to be pinned to a
  1803         *  particular core, then setting 'affinity' to the corresponding core
  1804         *  id will force the task to only be run on that core.
  1805         *
  1806         *  The default affinity is inherited from {@link #defaultAffinity
  1807         *  Task.defaultAffinity}
  1808         *  which in turn defaults to {@link #AFFINITY_NONE Task_AFFINITY_NONE},
  1809         *  which means the task can be run on either core.
  1810         *
  1811         *  Furthermore,  Task_AFFINITY_NONE implies that the task can be moved
  1812         *  from core to core as deemed necessary by the Task scheduler in order
  1813         *  to keep the two highest priority ready tasks running simultaneously.
  1814         */
  1815        config UInt affinity;
  1816    
  1817        // -------- Handle Functions --------
  1818    
  1819        /*!
  1820         *  @_nodoc
  1821         *  ======== getArg0 ========
  1822         *  Returns arg0 passed via params to create.
  1823         *
  1824         *  @b(returns)     task's arg0
  1825         */
  1826        UArg getArg0();
  1827    
  1828        /*!
  1829         *  @_nodoc
  1830         *  ======== getArg1 ========
  1831         *  Returns arg1 passed via params to create.
  1832         *
  1833         *  @b(returns)     task's arg1
  1834         */
  1835        UArg getArg1();
  1836    
  1837        /*!
  1838         *  ======== getEnv ========
  1839         *  Get task environment pointer.
  1840         *
  1841         *  Task_getEnv returns the environment pointer of the specified task. The
  1842         *  environment pointer references an arbitrary application-defined data
  1843         *  structure.
  1844         *
  1845         *  If your program uses multiple hook sets, {@link #getHookContext}
  1846         *  allows you to get environment pointers you have set for a particular
  1847         *  hook set and Task object combination.
  1848         *
  1849         *  @b(returns)     task environment pointer
  1850         */
  1851        Ptr getEnv();
  1852    
  1853        /*!
  1854         *  ======== getFunc ========
  1855         *  Get Task function and arguments
  1856         *
  1857         *  If either arg0 or arg1 is NULL, then the corresponding argument is not
  1858         *  returned.
  1859         *
  1860         *  @param(arg0)    pointer for returning Task's first function argument
  1861         *  @param(arg1)    pointer for returning Task's second function argument
  1862         *
  1863         *  @b(returns)     Task function
  1864         */
  1865        FuncPtr getFunc(UArg *arg0, UArg *arg1);
  1866    
  1867        /*!
  1868         *  ======== getHookContext ========
  1869         *  Get hook set's context for a task.
  1870         *
  1871         *  For example, this C code gets the HookContext, prints it,
  1872         *  and sets a new value for the HookContext.
  1873         *
  1874         *  @p(code)
  1875         *  Ptr pEnv;
  1876         *  Task_Handle myTask;
  1877         *  Int myHookSetId1;
  1878         *
  1879         *  pEnv = Task_getHookContext(task, myHookSetId1);
  1880         *
  1881         *  System_printf("myEnd1: pEnv = 0x%lx, time = %ld\n",
  1882         *                (ULong)pEnv, (ULong)Timestamp_get32());
  1883         *
  1884         *  Task_setHookContext(task, myHookSetId1, (Ptr)0xc0de1);
  1885         *  @p
  1886         *
  1887         *  See {@link #hookfunc Hook Functions} for more details.
  1888         *
  1889         *  @param(id)      hook set ID
  1890         *  @b(returns)     hook set context for task
  1891         */
  1892        Ptr getHookContext(Int id);
  1893    
  1894        /*!
  1895         *  ======== getPri ========
  1896         *  Get task priority.
  1897         *
  1898         *  Task_getPri returns the priority of the referenced task.
  1899         *
  1900         *  @b(returns)     task priority
  1901         */
  1902        Int getPri();
  1903    
  1904        /*!
  1905         *  @_nodoc
  1906         *  ======== setArg0 ========
  1907         *  Set arg0 (used primarily for legacy support)
  1908         */
  1909        Void setArg0(UArg arg);
  1910    
  1911        /*!
  1912         *  @_nodoc
  1913         *  ======== setArg1 ========
  1914         *  Set arg1 (used primarily for legacy support)
  1915         */
  1916        Void setArg1(UArg arg);
  1917    
  1918        /*!
  1919         *  ======== setEnv ========
  1920         *  Set task environment.
  1921         *
  1922         *  Task_setEnv sets the task environment pointer to env. The
  1923         *  environment pointer references an arbitrary application-defined
  1924         *  data structure.
  1925         *
  1926         *  If your program uses multiple hook sets, {@link #setHookContext}
  1927         *  allows you to set environment pointers for any
  1928         *  hook set and Task object combination.
  1929         *
  1930         *  @param(env)     task environment pointer
  1931         */
  1932        Void setEnv(Ptr env);
  1933    
  1934        /*!
  1935         *  ======== setHookContext ========
  1936         *  Set hook instance's context for a task.
  1937         *
  1938         *  For example, this C code gets the HookContext, prints it,
  1939         *  and sets a new value for the HookContext.
  1940         *
  1941         *  @p(code)
  1942         *  Ptr pEnv;
  1943         *  Task_Handle myTask;
  1944         *  Int myHookSetId1;
  1945         *
  1946         *  pEnv = Task_getHookContext(task, myHookSetId1);
  1947         *
  1948         *  System_printf("myEnd1: pEnv = 0x%lx, time = %ld\n",
  1949         *                (ULong)pEnv, (ULong)Timestamp_get32());
  1950         *
  1951         *  Task_setHookContext(task, myHookSetId1, (Ptr)0xc0de1);
  1952         *  @p
  1953         *
  1954         *  See {@link #hookfunc Hook Functions} for more details.
  1955         *
  1956         *  @param(id)              hook set ID
  1957         *  @param(hookContext)     value to write to context
  1958         */
  1959        Void setHookContext(Int id, Ptr hookContext);
  1960    
  1961        /*!
  1962         *  ======== setPri ========
  1963         *  Set a task's priority
  1964         *
  1965         *  Task_setpri sets the execution priority of task to newpri, and returns
  1966         *  that task's old priority value. Raising or lowering a task's priority
  1967         *  does not necessarily force preemption and re-scheduling of the caller:
  1968         *  tasks in the {@link #Mode_BLOCKED} mode remain suspended despite a
  1969         *  change in priority; and tasks in the {@link #Mode_READY} mode gain
  1970         *  control only if their new priority is greater than that of the
  1971         *  currently executing task.
  1972         *
  1973         *  newpri should be set to a value greater than or equal to 1 and
  1974         *  less than or equal to ({@link #numPriorities} - 1).  newpri can also
  1975         *  be set to -1 which puts the the task into the INACTIVE state and the
  1976         *  task will not run until its priority is raised at a later time by
  1977         *  another task.  Priority 0 is reserved for the idle task.
  1978         *  If newpri equals ({@link #numPriorities} - 1), execution of the task
  1979         *  effectively locks out all other program activity, except for the
  1980         *  handling of interrupts.
  1981         *
  1982         *  The current task can change its own priority (and possibly preempt its
  1983         *  execution) by passing the output of {@link #self} as the value of the
  1984         *  task parameter.
  1985         *
  1986         *  A context switch occurs when calling Task_setpri if a currently
  1987         *  running task priority is set lower than the priority of another
  1988         *  currently ready task, or if another ready task is made to have a
  1989         *  higher priority than the currently running task.
  1990         *
  1991         *  Task_setpri can be used for mutual exclusion.
  1992         *
  1993         *  If a task's new priority is different than its previous priority,
  1994         *  then its relative placement in its new ready task priority
  1995         *  queue can be different than the one it was removed from. This can
  1996         *  effect the relative order in which it becomes the running task.
  1997         *
  1998         *  The effected task is placed at the head of its new priority queue
  1999         *  if it is the currently running task. Otherwise it is placed at
  2000         *  at the end of its new task priority queue.
  2001         *
  2002         *  @param(newpri) task's new priority
  2003         *  @b(returns)     task's old priority
  2004         *
  2005         *  @a(constraints)
  2006         *  newpri must be a value between 1 and ({@link #numPriorities} - 1) or -1.
  2007         *
  2008         *  The task cannot be in the {@link #Mode_TERMINATED} mode.
  2009         *
  2010         *  The new priority should not be zero (0). This priority level is
  2011         *  reserved for the Idle task.
  2012         */
  2013        UInt setPri(Int newpri);
  2014    
  2015        /*!
  2016         *  ======== stat ========
  2017         *  Retrieve the status of a task.
  2018         *
  2019         *  Task_stat retrieves attribute values and status information about a
  2020         *  task.
  2021         *
  2022         *  Status information is returned through statbuf, which references a
  2023         *  structure of type {@link #Stat}.
  2024         *
  2025         *  When a task is preempted by a software or hardware interrupt, the task
  2026         *  execution mode returned for that task by Task_stat is still
  2027         *  {@link #Mode_RUNNING}  because the task runs when the preemption ends.
  2028         *
  2029         *  The current task can inquire about itself by passing the output of
  2030         *  {@link #self} as the first argument to Task_stat. However, the task
  2031         *  stack pointer (sp) in the {@link #Stat} structure is the value from
  2032         *  the previous context switch.
  2033         *
  2034         *  Task_stat has a non-deterministic execution time. As such, it is not
  2035         *  recommended to call this API from Swis or Hwis.
  2036         *
  2037         *  @param(statbuf) pointer to task status structure
  2038         *
  2039         *  @a(constraints)
  2040         *  statbuf cannot be NULL;
  2041         */
  2042        Void stat(Stat *statbuf);
  2043    
  2044        /*!
  2045         *  ======== getMode ========
  2046         *  Retrieve the {@link #Mode} of a task.
  2047         */
  2048        Mode getMode();
  2049    
  2050        /*!
  2051         *  ======== setAffinity ========
  2052         *  Set task's core affinity (should be used only in applications built
  2053         *  with {@link ti.sysbios.BIOS#smpEnabled BIOS.smpEnabled} set to true)
  2054         *
  2055         *  If the new core ID is different than the current core affinity
  2056         *  a reschedule will be performed immediately.
  2057         *
  2058         *  @a(constraints)
  2059         *  Must NOT be called with interrupts disabled
  2060         *  (ie within a Hwi_disable()/Hwi_restore() block).
  2061         *
  2062         *  Must NOT be called with tasking disabled
  2063         *  (ie within a Task_disable()/Task_restore() block).
  2064         *
  2065         *  @b(returns)     task's previous core affinity
  2066         */
  2067        UInt setAffinity(UInt coreId);
  2068    
  2069        /*!
  2070         *  ======== getAffinity ========
  2071         *  Return task's core affinity (should be used only in applications built
  2072         *  with {@link ti.sysbios.BIOS#smpEnabled} set to true)
  2073         *
  2074         *  @b(returns)     task's current core affinity
  2075         */
  2076        UInt getAffinity();
  2077    
  2078        /*!
  2079         *  @_nodoc
  2080         *  ======== block ========
  2081         *  Block a task.
  2082         *
  2083         *  Remove a task from its ready list.
  2084         *  The effect of this API is manifest the next time the internal
  2085         *  Task scheduler is invoked.
  2086         *  This can be done directly by embedding the call within a
  2087         *  {@link #disable}/{@link #restore} block.
  2088         *  Otherwise, the effect will be manifest as a result of processing
  2089         *  the next dispatched interrupt, or by posting a Swi, or by falling
  2090         *  through the task function.
  2091         *
  2092         *  @a(constraints)
  2093         *  If called from within a Hwi or a Swi, or main(), there is no need
  2094         *  to embed the call within a {@link #disable}/{@link #restore} block.
  2095         */
  2096        Void block();
  2097    
  2098        /*!
  2099         *  @_nodoc
  2100         *  ======== unblock ========
  2101         *  Unblock a task.
  2102         *
  2103         *  Place task in its ready list.
  2104         *  The effect of this API is manifest the next time the internal
  2105         *  Task scheduler is invoked.
  2106         *  This can be done directly by embedding the call within a
  2107         *  {@link #disable}/{@link #restore} block.
  2108         *  Otherwise, the effect will be manifest as a result of processing
  2109         *  the next dispatched interrupt, or by posting a Swi, or by falling
  2110         *  through the task function.
  2111         *
  2112         *  @a(constraints)
  2113         *  If called from within a Hwi or a Swi, or main(), there is no need
  2114         *  to embed the call within a {@link #disable}/{@link #restore} block.
  2115         */
  2116        Void unblock();
  2117    
  2118        /*!
  2119         *  @_nodoc
  2120         *  ======== blockI ========
  2121         *  Block a task.
  2122         *
  2123         *  Remove a task from its ready list.
  2124         *  Must be called within Task_disable/Task_restore block
  2125         *  with interrupts disabled.
  2126         *  This API is meant to be used internally.
  2127         */
  2128        Void blockI();
  2129    
  2130        /*!
  2131         *  @_nodoc
  2132         *  ======== unblockI ========
  2133         *  Unblock a task.
  2134         *
  2135         *  Place task in its ready list.
  2136         *  Must be called within Task_disable/Task_restore block
  2137         *  with interrupts disabled.
  2138         *  This API is meant to be used internally.
  2139         *
  2140         *  @param(hwiKey) key returned from Hwi_disable()
  2141         */
  2142        Void unblockI(UInt hwiKey);
  2143    
  2144    internal:   /* not for client use */
  2145    
  2146        /*! Target-specific support functions. */
  2147        proxy SupportProxy inherits ti.sysbios.interfaces.ITaskSupport;
  2148    
  2149        /*
  2150         *  ======== schedule ========
  2151         *  Find highest priority ready task and invoke it.
  2152         *
  2153         *  Must be called with interrupts disabled.
  2154         */
  2155        Void schedule();
  2156    
  2157        /*
  2158         *  ======== enter ========
  2159         *  Task's initial entry point before entering task function.
  2160         */
  2161        Void enter();
  2162    
  2163        /*
  2164         *  ======== sleepTimeout ========
  2165         *  This function is the clock event handler for sleep.
  2166         */
  2167        Void sleepTimeout(UArg arg);
  2168    
  2169        /*
  2170         *  ======== postInit ========
  2171         *  finish initializing static and dynamic Tasks
  2172         */
  2173        Int postInit(Object *task, Error.Block *eb);
  2174    
  2175        /*
  2176         *  Number of statically constructed Task objects.
  2177         *  Shouldn't be set directly by the user's
  2178         *  config (it gets set by instance$static$init).
  2179         */
  2180        config UInt numConstructedTasks = 0;
  2181    
  2182        /*
  2183         *  ======== allBlockedFunction ========
  2184         *  default function to be called
  2185         */
  2186        Void allBlockedFunction();
  2187    
  2188        /*
  2189         *  ======== deleteTerminatedTasksFunc ========
  2190         *  Idle func that deletes the first terminated task it finds
  2191         *  in the queue of dynamically created tasks
  2192         */
  2193        Void deleteTerminatedTasksFunc();
  2194    
  2195        /*
  2196         *  ======== Task_processVitalTasks ========
  2197         *  Call BIOS_exit() when last vitalTask exits or is
  2198         *  deleted.
  2199         */
  2200        Void processVitalTaskFlag(Object *task);
  2201    
  2202        /*
  2203         *  ======== moduleStateCheck ========
  2204         */
  2205        Int moduleStateCheck(Task.Module_State *moduleState, UInt32 checkValue);
  2206    
  2207        /*
  2208         *  ======== getModuleStateCheckValue ========
  2209         */
  2210        UInt32 getModuleStateCheckValue(Task.Module_State *moduleState);
  2211    
  2212        /*
  2213         *  ======== objectCheck ========
  2214         */
  2215        Int objectCheck(Task.Handle handle, UInt32 checkValue);
  2216    
  2217        /*
  2218         *  ======== getObjectCheckValue ========
  2219         */
  2220        UInt32 getObjectCheckValue(Task.Handle handle);
  2221    
  2222        /*
  2223         *  ======== startupHookFunc ========
  2224         *  Called by core 0 just before switch to first task
  2225         */
  2226        config Void (*startupHookFunc)(Void) = null;
  2227    
  2228        /*
  2229         *  Common object used by all blocked tasks to enable Task_delete()
  2230         *  to remove a task from any pend Q it is placed on while blocked.
  2231         */
  2232        struct PendElem {
  2233            Queue.Elem      qElem;
  2234            Task.Handle     task;
  2235            Clock.Handle    clock;
  2236        };
  2237    
  2238        struct Instance_State {
  2239            Queue.Elem      qElem;          // Task's readyQ element
  2240            volatile Int    priority;       // Task priority
  2241            UInt            mask;           // curSet mask = 1 << priority
  2242            Ptr             context;        // ptr to Task's saved context
  2243                                            // while not in RUNNING mode.
  2244            Mode            mode;           // READY, BLOCKED, RUNNING, etc
  2245            PendElem        *pendElem;      // ptr to Task, Semaphore, Event,
  2246                                            // or GateMutexPri PendElem
  2247            SizeT           stackSize;      // Task's stack buffer size
  2248            Char            stack[];        // buffer used for Task's stack
  2249            IHeap.Handle    stackHeap;      // Heap to allocate stack from
  2250            FuncPtr         fxn;            // Task function
  2251            UArg            arg0;           // Task function 1st arg
  2252            UArg            arg1;           // Task function 2nd arg
  2253            Ptr             env;            // Task environment pointer
  2254            Ptr             hookEnv[];      // ptr to Task's hook env array
  2255            Bool            vitalTaskFlag;  // TRUE = shutdown system if
  2256                                            // last task like this exits
  2257            Queue.Handle    readyQ;         // This Task's readyQ
  2258            UInt            curCoreId;      // Core this task is currently running on.
  2259            UInt            affinity;       // Core this task must run on
  2260                                            // Task_AFFINITY_NONE = don't care
  2261        };
  2262    
  2263        struct Module_State {
  2264            volatile Bool   locked;         // Task scheduler locked flag
  2265            volatile UInt   curSet;         // Bitmask reflects readyQ states
  2266            Bool            workFlag;       // Scheduler work is pending.
  2267                                            // Optimization. Must be set
  2268                                            // whenever readyQs are modified.
  2269            UInt            vitalTasks;     // number of tasks with
  2270                                            // vitalTaskFlag = true
  2271            Handle          curTask;        // current Task instance
  2272            Queue.Handle    curQ;           // current Task's readyQ
  2273            Queue.Object    readyQ[];       // Task ready queues
  2274    
  2275            volatile UInt   smpCurSet[];    // Bitmask reflects readyQ states
  2276                                            // curSet[n] = core n
  2277                                            // curSet[Core.numCores] = don't care
  2278            volatile UInt   smpCurMask[];   // mask of currently running tasks
  2279            Handle          smpCurTask[];   // current Task instance ([0] = core 0, etc)
  2280            Queue.Handle    smpReadyQ[];    // core ready queues
  2281                                            // [0] = core0 readyQs
  2282                                            // [1] = core1 readyQs
  2283                                            // [numCores] = don't care readyQs
  2284            Queue.Object    inactiveQ;      // Task's with -1 priority
  2285            Queue.Object    terminatedQ;    // terminated dynamically created Tasks
  2286    
  2287            Handle          idleTask[];             // Idle Task handles
  2288            Handle          constructedTasks[];     // array of statically
  2289                                                    // constructed Tasks
  2290        };
  2291    
  2292        struct RunQEntry {
  2293            Queue.Elem      elem;
  2294            UInt            coreId;
  2295            Int             priority;
  2296        };
  2297    
  2298        struct Module_StateSmp {
  2299            Queue.Object        *sortedRunQ;         // A queue of RunQEntry elems
  2300                                                     // that is  sorted by priority
  2301            volatile RunQEntry  smpRunQ[];           // Run queue entry handles for
  2302                                                     // each core
  2303        };
  2304    }