
SYS/BIOS (TI-RTOS Kernel) v6.41

User's Guide

Literature Number: SPRUEX3O
October 2014

Contents

Preface . 9

1 About SYS/BIOS . 11
1.1 What is SYS/BIOS? . 12
1.2 How are SYS/BIOS and TI-RTOS Related? . 13
1.3 How are SYS/BIOS and XDCtools Related? . 14

1.3.1 SYS/BIOS as a Set of Packages . 14
1.3.2 Configuring SYS/BIOS Using XDCtools . 15
1.3.3 XDCtools Modules and Runtime APIs . 18

1.4 SYS/BIOS Packages . 19
1.5 Using C++ with SYS/BIOS . 19

1.5.1 Memory Management . 19
1.5.2 Name Mangling . 20
1.5.3 Calling Class Methods from the Configuration. 21
1.5.4 Class Constructors and Destructors . 21

1.6 For More Information . 22
1.6.1 Using the API Reference Help System . 23

2 SYS/BIOS Configuration and Building . 24
2.1 Creating a SYS/BIOS Project with the TI Resource Explorer . 25
2.2 Adding SYS/BIOS Support to an Existing Project. 27
2.3 Configuring SYS/BIOS Applications . 28

2.3.1 Opening a Configuration File with XGCONF . 29
2.3.2 Performing Tasks with XGCONF. 30
2.3.3 Saving the Configuration . 30
2.3.4 About the XGCONF views . 31
2.3.5 Using the Available Products View . 32
2.3.6 Using the Outline View. 33
2.3.7 Using the Property View . 34
2.3.8 Using the Problems View. 38
2.3.9 Finding and Fixing Errors. 38
2.3.10 Accessing the Global Namespace . 39

2.4 Building SYS/BIOS Applications . 40
2.4.1 Understanding the Build Flow . 40
2.4.2 Rules for Working with CCS Project Properties. 41
2.4.3 Building an Application with GCC . 41
2.4.4 Running and Debugging an Application in CCS . 43
2.4.5 Compiler and Linker Optimization . 44

3 Threading Modules . 46
3.1 SYS/BIOS Startup Sequence . 47
3.2 Overview of Threading Modules . 48

3.2.1 Types of Threads . 49
3.2.2 Choosing Which Types of Threads to Use . 49
SPRUEX3O—October 2014 Contents 2
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com Contents
3.2.3 A Comparison of Thread Characteristics . 50
3.2.4 Thread Priorities. 52
3.2.5 Yielding and Preemption . 53
3.2.6 Hooks. 55

3.3 Hardware Interrupts . 56
3.3.1 Creating Hwi Objects . 57
3.3.2 Hardware Interrupt Nesting and System Stack Size . 58
3.3.3 Hwi Hooks . 58

3.4 Software Interrupts . 65
3.4.1 Creating Swi Objects . 65
3.4.2 Setting Software Interrupt Priorities . 66
3.4.3 Software Interrupt Priorities and System Stack Size . 67
3.4.4 Execution of Software Interrupts . 68
3.4.5 Using a Swi Object’s Trigger Variable . 68
3.4.6 Benefits and Tradeoffs. 72
3.4.7 Synchronizing Swi Functions . 73
3.4.8 Swi Hooks . 73

3.5 Tasks . 80
3.5.1 Creating Tasks. 81
3.5.2 Task Execution States and Scheduling . 82
3.5.3 Task Stacks . 84
3.5.4 Testing for Stack Overflow. 85
3.5.5 Task Hooks . 85
3.5.6 Task Yielding for Time-Slice Scheduling . 92

3.6 The Idle Loop . 98
3.7 Example Using Hwi, Swi, and Task Threads . 99

4 Synchronization Modules . 104
4.1 Semaphores . 105

4.1.1 Semaphore Example . 106
4.2 Event Module . 110

4.2.1 Implicitly Posted Events . 113
4.3 Gates . 116

4.3.1 Preemption-Based Gate Implementations . 116
4.3.2 Semaphore-Based Gate Implementations. 117
4.3.3 Priority Inversion . 118
4.3.4 Configuring the SYS/BIOS Gate Type. 118

4.4 Mailboxes . 119
4.5 Queues . 120

4.5.1 Basic FIFO Operation of a Queue . 120
4.5.2 Iterating Over a Queue . 122
4.5.3 Inserting and Removing Queue Elements . 122
4.5.4 Atomic Queue Operations . 122

5 Timing Services . 123
5.1 Overview of Timing Services . 124
5.2 Clock. 124
5.3 Timer Module . 127
5.4 Seconds Module . 127
5.5 Timestamp Module . 128
SPRUEX3O—October 2014 Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Contents www.ti.com
6 Support Modules . 130
6.1 Modules for Application Support and Management . 131
6.2 BIOS Module . 131
6.3 System Module . 132

6.3.1 SysMin Module . 134
6.3.2 SysCallback Module . 134

6.4 Program Module . 134
6.5 Startup Module . 135
6.6 Reset Module . 135
6.7 Error Module . 136
6.8 Text Module . 137

7 Memory . 138
7.1 Background. 139
7.2 Memory Map. 140

7.2.1 Choosing an Available Platform. 140
7.2.2 Creating a Custom Platform. 141

7.3 Placing Sections into Memory Segments . 145
7.3.1 Configuring Simple Section Placement . 146
7.3.2 Configuring Section Placement Using a SectionSpec . 146
7.3.3 Providing a Supplemental Linker Command File. 147
7.3.4 Default Linker Command File and Customization Options . 148

7.4 Sections and Memory Mapping for MSP430, Stellaris M3, and C28x . 149
7.5 Stacks . 149

7.5.1 System Stack . 149
7.5.2 Task Stacks . 150
7.5.3 ROV for System Stacks and Task Stacks . 151

7.6 Cache Configuration . 152
7.6.1 Configure Cache Size Registers at Startup . 152
7.6.2 Configure Parameters to Set MAR Registers . 152
7.6.3 Cache Runtime APIs . 152

7.7 Dynamic Memory Allocation . 153
7.7.1 Memory Policy . 153
7.7.2 Specifying the Default System Heap . 153
7.7.3 Using the xdc.runtime.Memory Module . 154
7.7.4 Specifying a Heap for Module Dynamic Instances . 155
7.7.5 Using malloc() and free() . 156

7.8 Heap Implementations . 156
7.8.1 HeapMin. 157
7.8.2 HeapMem . 157
7.8.3 HeapBuf . 158
7.8.4 HeapMultiBuf . 159
7.8.5 HeapTrack . 162

8 Hardware Abstraction Layer . 163
8.1 Hardware Abstraction Layer APIs. 164
8.2 HWI Module . 165

8.2.1 Associating a C Function with a System Interrupt Source . 165
8.2.2 Hwi Instance Configuration Parameters . 165
8.2.3 Creating a Hwi Object Using Non-Default Instance Configuration Parameters 166
4 Contents SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Contents
8.2.4 Enabling and Disabling Interrupts . 167
8.2.5 A Simple Example Hwi Application . 168
8.2.6 The Interrupt Dispatcher . 170
8.2.7 Registers Saved and Restored by the Interrupt Dispatcher. 170
8.2.8 Additional Target/Device-Specific Hwi Module Functionality . 170

8.3 Timer Module . 172
8.3.1 Target/Device-Specific Timer Modules . 175

8.4 Cache Module. 177
8.4.1 Cache Interface Functions . 177

8.5 HAL Package Organization . 178

9 Instrumentation . 180
9.1 Overview of Instrumentation . 181
9.2 Load Module . 181

9.2.1 Load Module Configuration . 182
9.2.2 Obtaining Load Statistics . 182

9.3 Error Handling. 183
9.4 Instrumentation Tools in Code Composer Studio . 185
9.5 Performance Optimization . 187

9.5.1 Configuring Logging. 187
9.5.2 Configuring Diagnostics . 188
9.5.3 Choosing a Heap Manager . 188
9.5.4 Hwi Configuration. 188
9.5.5 Stack Checking . 189

A Rebuilding SYS/BIOS . 190
A.1 Overview. 191
A.2 Prerequisites. 191
A.3 Building SYS/BIOS Using the bios.mak Makefile . 191
A.4 Building Your Project Using a Rebuilt SYS/BIOS . 194

B Timing Benchmarks . 195
B.1 Timing Benchmarks . 196
B.2 Interrupt Latency. 196
B.3 Hwi-Hardware Interrupt Benchmarks . 196
B.4 Swi-Software Interrupt Benchmarks . 197
B.5 Task Benchmarks . 198
B.6 Semaphore Benchmarks . 200

C Size Benchmarks . 203
C.1 Overview. 204
C.2 Comparison to DSP/BIOS 5 . 204
C.3 Default Configuration Sizes . 205
C.4 Static Module Application Sizes . 206

C.4.1 Hwi Application . 206
C.4.2 Clock Application . 206
C.4.3 Clock Object Application . 207
C.4.4 Swi Application. 207
C.4.5 Swi Object Application . 207
C.4.6 Task Application. 207
C.4.7 Task Object Application . 208
SPRUEX3O—October 2014 Contents 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Contents www.ti.com
C.4.8 Semaphore Application . 208
C.4.9 Semaphore Object Application . 208
C.4.10 Memory Application . 209

C.5 Dynamic Module Application Sizes. 210
C.5.1 Dynamic Task Application . 210
C.5.2 Dynamic Semaphore Application. 210

C.6 Timing Application Size . 210

D Minimizing the Application Footprint . 211
D.1 Overview. 212
D.2 Reducing Data Size . 212

D.2.1 Removing the malloc Heap . 212
D.2.2 Reducing the Size of Stacks . 212
D.2.3 Setting the Default Task Stack Size. 213
D.2.4 Disabling Named Modules . 213
D.2.5 Leaving Text Strings Off the Target . 213
D.2.6 Reduce the Number of atexit Handlers . 213

D.3 Reducing Code Size . 214
D.3.1 Use the Custom Build SYS/BIOS Libraries . 214
D.3.2 Disabling Logging . 214
D.3.3 Setting Memory Policies . 214
D.3.4 Disabling Core Features . 214
D.3.5 Eliminating printf() . 215
D.3.6 Disabling RTS Thread Protection . 215
D.3.7 Disable Task Stack Overrun Checking . 215
D.3.8 Cortex-M3/M4 Exception Management . 215

D.4 Basic Size Benchmark Configuration Script . 216

E Deprecated Input/Output Modules . 220
E.1 GIO Drivers and TI-RTOS. 221
E.2 Overview of the GIO Model . 221
E.3 Configuring Drivers in the Device Table . 222

E.3.1 Configuring the GIO Module . 224
E.4 Using GIO APIs . 225

E.4.1 Constraints When Using GIO APIs . 225
E.4.2 Creating and Deleting GIO Channels . 226
E.4.3 Using GIO_read() and GIO_write() — The Standard Model . 228
E.4.4 Using GIO_issue(), GIO_reclaim(), and GIO_prime() — The Issue/Reclaim Model 230
E.4.5 GIO_abort() and Error Handling. 232

E.5 Using GIO in Various Thread Contexts. 233
E.5.1 Using GIO with Tasks . 233
E.5.2 Using GIO with Swis . 234
E.5.3 Using GIO with Events. 234

E.6 GIO and Synchronization Mechanisms. 235
E.6.1 Using GIO with Generic Callbacks. 235

F IOM Interface . 236
F.1 Mini-Driver Interface Overview . 237

G Revision History . 246

Index . 248
6 Contents SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

SPRUEX3O—October 2014 7
Submit Documentation Feedback

www.ti.com

List of Figures

3-1 Thread Priorities . 52
3-2 Preemption Scenario . 54
3-3 Using Swi_inc() to Post a Swi . 70
3-4 Using Swi_andn() to Post a Swi . 71
3-5 Using Swi_dec() to Post a Swi . 71
3-6 Using Swi_or() to Post a Swi. 72
3-7 Execution Mode Variations . 83
4-1 Trace Window Results from Example 4-4 . 110
B–1 Hardware Interrupt to Blocked Task . 197
B–2 Hardware Interrupt to Software Interrupt . 197
B–3 Post of Software Interrupt Again . 198
B–4 Post Software Interrupt without Context Switch. 198
B–5 Post Software Interrupt with Context Switch . 198
B–6 Create a New Task without Context Switch. 199
B–7 Create a New Task with Context Switch . 199
B–8 Set a Task's Priority without a Context Switch. 199
B–9 Lower the Current Task's Priority, Context Switch. 200
B–10 Raise a Ready Task's Priority, Context Switch . 200
B–11 Task Yield . 200
B–12 Post Semaphore, No Waiting Task . 201
B–13 Post Semaphore, No Context Switch. 201
B–14 Post Semaphore with Task Switch . 201
B–15 Pend on Semaphore, No Context Switch . 201
B–16 Pend on Semaphore with Task Switch . 202

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

8 SPRUEX3O—October 2014
Submit Documentation Feedback

www.ti.com

List of Tables

1–1 TI-RTOS Components . 13
1–2 XDCtools Modules Using in C Code and Configuration . 18
1–3 Packages and Modules Provided by SYS/BIOS. 19
3-1 Comparison of Thread Characteristics . 50
3-2 Thread Preemption . 53
3–3 Hook Functions by Thread Type. 55
3–4 System Stack Use for Hwi Nesting by Target Family . 58
3–5 System Stack Use for Swi Nesting by Target Family . 67
3-6 Swi Object Function Differences . 69
3–7 Task Stack Use by Target Family . 84
5–1 Timeline for One-shot and Continuous Clocks . 125
7–1 Heap Implementation Comparison . 156
8–1 Proxy to Delegate Mappings. 178
C–1 Comparison of Benchmark Applications . 204
G–1 SPRUEX3O Revision History . 246
G–2 SPRUEX3N Revision History . 246

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Preface
SPRUEX3O—October 2014

Read This First

About This Manual

This manual describes SYS/BIOS, which is the Kernel component of TI-RTOS. SYS/BIOS is also called
"TI-RTOS Kernel" in some documents. This document describes SYS/BIOS 6.41, which is the version of
SYS/BIOS included as a component of TI-RTOS 2.00. If you plan to use SYS/BIOS within Code
Composer Studio (CCS), version 6.0 of CCS or higher is required.

SYS/BIOS gives developers of mainstream applications on Texas Instruments devices the ability to
develop embedded real-time software. SYS/BIOS provides a small firmware real-time library and easy-
to-use tools for real-time tracing and analysis.

Versions of SYS/BIOS prior to 6.30 were called DSP/BIOS.

Notational Conventions

This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special typeface.
Examples use a bold version of the special typeface for emphasis.

Here is a sample program listing:

• Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you
specify the information within the brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

Related Documentation From Texas Instruments

See the detailed list and links in Section 1.6.

Related Documentation

You can use the following books to supplement this reference guide:

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie,
published by Prentice-Hall, Englewood Cliffs, New Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by
O'Reilly & Associates; ISBN: 1565923545, February 1999

#include <xdc/runtime/System.h>

int main(){

 System_printf("Hello World!\n");

 return (0);

}

SPRUEX3O—October 2014 Read This First 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

Trademarks www.ti.com
Real-Time Systems, by Jane W. S. Liu, published by Prentice Hall; ISBN: 013099651, June 2000

Principles of Concurrent and Distributed Programming (Prentice Hall International Series in
Computer Science), by M. Ben-Ari, published by Prentice Hall; ISBN: 013711821X, May 1990

American National Standard for Information Systems-Programming Language C X3.159-1989,
American National Standards Institute (ANSI standard for C); (out of print)

Trademarks

The Texas Instruments logo and Texas Instruments are registered trademarks of Texas Instruments.
Trademarks of Texas Instruments include: TI, Code Composer, Code Composer Studio, DSP/BIOS,
SPOX, TMS320, TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x, TMS320C67x,
TMS320C28x, TMS320C5000, TMS320C6000 and TMS320C2000.

Windows is a registered trademark of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

All other brand or product names are trademarks or registered trademarks of their respective companies
or organizations.

October 28, 2014
10 Read This First SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Chapter 1
SPRUEX3O—October 2014

About SYS/BIOS

This chapter provides an overview of SYS/BIOS and describes its relationship to TI-RTOS and other TI-
RTOS components.

1.1 What is SYS/BIOS? . 12

1.2 How are SYS/BIOS and TI-RTOS Related? . 13

1.3 How are SYS/BIOS and XDCtools Related? . 14

1.4 SYS/BIOS Packages . 19

1.5 Using C++ with SYS/BIOS . 19

1.6 For More Information . 22

Topic Page
SPRUEX3O—October 2014 About SYS/BIOS 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

What is SYS/BIOS? www.ti.com
1.1 What is SYS/BIOS?

SYS/BIOS is a scalable real-time kernel. It is designed for
applications that require real-time scheduling and synchronization
or real-time instrumentation. SYS/BIOS provides preemptive multi-
threading, hardware abstraction, real-time analysis, and
configuration tools. SYS/BIOS helps minimize memory and CPU
requirements on the target. See the videos introducing SYS/BIOS
for an overview.

SYS/BIOS is the "TI-RTOS Kernel" component of the TI-RTOS
product. Both names refer to the same component. You may see the
"TI-RTOS Kernel" name in other documents and on Texas Instruments websites. This new name does
not require any code changes on your part; directory and module names are not affected by this change.

You can install SYS/BIOS by installing TI-RTOS from the CCS App Center (choose Help > CCS App
Center in CCS) or by downloading and installing it as a standalone product. CCS v6.0 or higher is
required.

SYS/BIOS requires no up-front or run-time license fees.

SYS/BIOS provides the following benefits:

• All SYS/BIOS objects can be configured statically or dynamically.

• To minimize memory size, the APIs are modularized so that only those APIs that are used by the
program need to be bound into the executable program. In addition, statically-configured objects
reduce code size by eliminating the need to include object creation calls.

• Error checking and debug instrumentation is configurable and can be completely removed from
production code versions to maximize performance and minimize memory size.

• Almost all system calls provide deterministic performance to enable applications to reliably meet real-
time deadlines.

• To improve performance, instrumentation data (such as logs and traces) is formatted on the host.

• The threading model provides thread types for a variety of situations. Hardware interrupts, software
interrupts, tasks, idle functions, and periodic functions are all supported. You can control the priorities
and blocking characteristics of threads through your choice of thread types.

• Structures to support communication and synchronization between threads are provided. These
include semaphores, mailboxes, events, gates, and variable-length messaging.

• Dynamic memory management services offering both variable-sized and fixed-sized block allocation.

• An interrupt dispatcher handles low-level context save/restore operations and enables interrupt
service routines to be written entirely in C.

• System services support the enabling/disabling of interrupts and the plugging of interrupt vectors,
including multiplexing interrupt vectors onto multiple sources.
12 About SYS/BIOS SPRUEX3O—October 2014
Submit Documentation Feedback

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/index.html
http://www.ti.com/tool/sysbios#videoheader
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com How are SYS/BIOS and TI-RTOS Related?
1.2 How are SYS/BIOS and TI-RTOS Related?

TI-RTOS is a scalable, one-stop embedded tools ecosystem for TI devices. It scales from a real-time
multitasking kernel (SYS/BIOS) to a complete RTOS solution including additional middleware
components and device drivers. By providing essential system software components that are pre-tested
and pre-integrated, TI-RTOS enables you to focus on differentiating your application.

SYS/BIOS is the "TI-RTOS Kernel" component of TI-RTOS. Both "SYS/BIOS" and "TI-RTOS Kernel"
refer to the same component. You may see the "TI-RTOS Kernel" name in other documents and on Texas
Instruments websites. This new name does not require any code or other changes on your part; directory
and module names are not affected by this change.

TI-RTOS is not installed automatically as part of the Code Composer Studio v6.0 installation. You can
install TI-RTOS from the CCS App Center (choose Help > CCS App Center in CCS). Choose the version
of TI-RTOS for your device family. If you use devices in multiple families, you can install multiple TI-RTOS
versions.

If you do not use CCS, you can download and install TI-RTOS as a standalone product. In addition to the
Texas Instruments Code Generation Tools, TI-RTOS includes support for the IAR and GNU tool chains.
You can also download and install SYS/BIOS as a standalone product without the other TI-RTOS
components.

TI-RTOS is provided with full source code and requires no up-front or runtime license fees.

The components of TI-RTOS are as follows. Some components are not available for all device families.

Table 1–1. TI-RTOS Components

This document refers to the directory where SYS/BIOS is installed as the BIOS_INSTALL_DIR. If you
install SYS/BIOS as part of TI-RTOS, this directory will have a path similar to
C:\ti\tirtos_<target>_2_00_##_##\products\bios_6_40_##_##, where C:\ti will be the directory
where you installed CCS, <target> is the device family, and # is a digit in the version number. If you
installed SYS/BIOS as a standalone product, BIOS_INSTALL_DIR is the directory where you installed it.

TI-RTOS Component Name PDF Documentation Location

TI-RTOS Kernel SYS/BIOS SYS/BIOS (TI-RTOS Kernel) User’s Guide -- SPRUEX3

TI-RTOS Instrumentation UIA System Analyzer User’s Guide -- SPRUH43

TI-RTOS Networking NDK TI Network Developer's Kit (NDK) Guide -- SPRU523
TI Network Developer's Kit (NDK) API Reference -- SPRU524

TI-RTOS Interprocessor
Communication

IPC IPC User’s Guide on Texas Instruments Wiki

TI-RTOS File System FatFS TI-RTOS User's Guide -- SPRUHD4

TI-RTOS USB USB stack TI-RTOS Getting Started Guides -- varies by device family
TI-RTOS User's Guide -- SPRUHD4

TI-RTOS Drivers and Board
Initialization

Drivers *Ware,
TI-RTOS examples

TI-RTOS Getting Started Guides -- varies by device family
TI-RTOS User's Guide -- SPRUHD4
SPRUEX3O—October 2014 About SYS/BIOS 13
Submit Documentation Feedback

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://processors.wiki.ti.com/index.php/TI-RTOS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/index.html
http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/spruhd4
http://www.ti.com/lit/pdf/spruhd4
http://www.ti.com/lit/pdf/spruhd4

How are SYS/BIOS and XDCtools Related? www.ti.com
1.3 How are SYS/BIOS and XDCtools Related?

XDCtools provides the underlying core tooling needed by TI-RTOS and its components, including
SYS/BIOS. You must have both XDCtools and SYS/BIOS installed in order to use SYS/BIOS.

XDCtools is installed automatically during the CCS installation.

If you install TI-RTOS or SYS/BIOS as a standalone product (outside of CCS), you will also need to
download and install XDCtools. The SYS/BIOS release notes provide information about the versions of
XDCtools that are compatible with your version of SYS/BIOS. If you install a new, standalone version of
SYS/BIOS, you may need to install a new version of XDCtools.

XDCtools is important to SYS/BIOS users because:

• XDCtools provides the technology that users use to configure the SYS/BIOS and XDCtools modules
used by the application. See Section 1.3.2.

• XDCtools provides the tools used to build the configuration file. This build step generates source
code files that are then compiled and linked with your application code. See Section 1.3.2.

• XDCtools provides a number of modules and runtime APIs that SYS/BIOS leverages for memory
allocation, logging, system control, and more. See Section 1.3.3.

XDCtools is sometimes referred to as "RTSC" (pronounced "rit-see"—Real Time Software Components),
which is the name for the open-source project within the Eclipse.org ecosystem for providing reusable
software components (called "packages") for use in embedded systems. For documentation about
XDCtools modules, see the online help within CCS. For information about packaging of reusable
software components and details about the tooling portion of XDCtools, see the RTSC-pedia web site.

1.3.1 SYS/BIOS as a Set of Packages

SYS/BIOS and XDCtools are sets of "packages," each of which delivers a subset of the product's
functionality. XDCtools uses a naming convention for packages to aid readability and to ensure that
packages delivered from different sources don't have namespace collisions that will pose problems for
the system integrator. If you are familiar with the Java package naming convention, you will find it to be
quite similar.

SYS/BIOS packages conform to this convention with names that consist of a hierarchical naming pattern;
each level is separated by a period ("."). Usually, the highest level of the name is the vendor ("ti"), followed
by the product ("sysbios"), and then followed by the module and submodule names (for example, "knl").

These names have the added benefit of reflecting the physical layout of the package within the file system
where SYS/BIOS has been installed. For example, the ti.sysbios.knl package files can be found in the
following folder:

See Section 1.4 for a partial list of the packages provided by SYS/BIOS and Section 1.3.3 for a partial
list of the modules provided by XDCtools.

BIOS_INSTALL_DIR\bios_6_4#_##\packages\ti\sysbios\knl
14 About SYS/BIOS SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://rtsc.eclipse.org/docs-tip/Main_Page

www.ti.com How are SYS/BIOS and XDCtools Related?
You can picture the architecture of the tools used to create applications as shown in the following figure.
The xdc.runtime package provided by XDCtools contains modules and APIs your application can use
along with the modules and APIs in SYS/BIOS.

1.3.2 Configuring SYS/BIOS Using XDCtools

Configuration is an essential part of using SYS/BIOS and is used for the following purposes:

• It specifies the modules and packages that will be used by the application.

• It can statically create objects for the modules that are used by the application.

• It validates the set of modules used explicitly and implicitly to make sure they are compatible.

• It statically sets parameters for the system, modules, and objects to change their runtime behavior.

An application's configuration is stored in one or more script files with a file extension of *.cfg. These are
parsed by XDCtools to generate corresponding C source code, C header, and linker command files that
are then compiled and linked into the end application. The following diagram depicts a build flow for a

Other
(3rd Party)
Packages

Other
(3rd Party)
Packages

DSP/BIOS
PackagesDSP/BIOS

PackagesDSP/BIOS
Packages

XDC Tools

xdc.runtime
Package

SYS/BIOS
Packages

Other
(3rd Party)
Packages

Texas
Instruments
compilers

Microsoft
compilers

other
compilers

XDCtools
SPRUEX3O—October 2014 About SYS/BIOS 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

How are SYS/BIOS and XDCtools Related? www.ti.com
typical SYS/BIOS application.

The configuration (*.cfg) file uses simple JavaScript-like syntax to set properties and call methods
provided by objects. You can create and modify a configuration file in the following ways:

• Using the visual configuration tool (XGCONF) in CCS.

• Editing the text of the configuration in the cfg Script tab in the XGCONF editor in CCS.

• Editing the *.cfg file directly with a text editor.
16 About SYS/BIOS SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com How are SYS/BIOS and XDCtools Related?
The following figure shows the XGCONF configuration tool in CCS being used to configure a static
SYS/BIOS Task instance. You can see this configuration for yourself in the "Static Example" SYS/BIOS
project template in CCS.

The Task instance named "task0" set up in the configuration tool corresponds to the following
configuration script:

var Task = xdc.useModule('ti.sysbios.knl.Task');

Task.numPriorities = 16;

Task.idleTaskStackSize = 1024;

var tskParams = new Task.Params;

tskParams.arg0 = 1;

tskParams.arg1 = 2;

tskParams.priority = 15;

tskParams.stack = null;

tskParams.stackSize = 1024;

var task0 = Task.create('&task0Fxn', tskParams);
SPRUEX3O—October 2014 About SYS/BIOS 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

How are SYS/BIOS and XDCtools Related? www.ti.com
1.3.3 XDCtools Modules and Runtime APIs

XDCtools contains several modules that provide basic system services your SYS/BIOS application will
need to operate successfully. Most of these modules are located in the xdc.runtime package in XDCtools.
By default, all SYS/BIOS applications automatically add the xdc.runtime package during build time.

The functionality provided by XDCtools for use in your C code and configuration file can be roughly
divided into four categories. The modules listed in the following table are in the xdc.runtime package,
unless otherwise noted.

Table 1–2. XDCtools Modules Using in C Code and Configuration

Category Modules Description

System Services System Basic low-level "system" services. For example, character output,
printf-like output, and exit handling. See Section 9.3. Proxies that
plug into this module include xdc.runtime.SysMin and
xdc.runtime.SysStd. See Section 6.3.

Startup Allows functions defined by different modules to be run before
main(). See Section 6.5.

Defaults Sets event logging, assertion checking, and memory use options for
all modules for which you do not explicitly set a value. See Section
7.7.1 and Section 9.5.1.1.

Main Sets event logging and assertion checking options that apply to your
application code.

Program Sets options for runtime memory sizes, program build options, and
memory sections and segments. This module is used as the "root"
for the configuration object model. This module is in the xdc.cfg
package. See Section 3.3.1, Section 6.4, and Section 7.3.2.

Memory Management Memory Creates/frees memory heaps statically or dynamically. See Section
7.7.

Diagnostics Log and
Loggers

Allows events to be logged and then passes those events to a Log
handler. Proxies that plug into this module include
xdc.runtime.LoggerBuf and xdc.runtime.LoggerSys. See Section
9.2.1 and Section 3.5.4.

Error Allows raising, checking, and handling errors defined by any
modules. See Section 6.7 and Section 9.3.

Diags Allows diagnostics to be enabled/disabled at either configuration- or
runtime on a per-module basis. See Section 9.5.1.

Timestamp
and Providers

Provides time-stamping APIs that forward calls to a platform-specific
time stamper (or one provided by CCS). See Section 5.5,

Text Provides string management services to minimize the string data
required on the target. See Section 6.8.

Synchronization Gate Protects against concurrent access to critical data structures. See
Section 4.3.

Sync Provides basic synchronization between threads using wait() and
signal() functions. See Section E.6.
18 About SYS/BIOS SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com SYS/BIOS Packages
1.4 SYS/BIOS Packages

SYS/BIOS provides the following packages:

Table 1–3. Packages and Modules Provided by SYS/BIOS

1.5 Using C++ with SYS/BIOS

SYS/BIOS applications can be written in C or C++. An understanding of several issues regarding C++
and SYS/BIOS can help to make C++ application development proceed smoothly. These issues concern
memory management, name mangling, calling class methods from configured properties, and special
considerations for class constructors and destructors.

SYS/BIOS provides an example that is written in C++. The example code is in the bigtime.cpp file in the
packages\ti\sysbios\examples\generic\bigtime directory of the SYS/BIOS installation.

1.5.1 Memory Management

The functions new and delete are the C++ operators for dynamic memory allocation and deallocation.
For TI targets, these operators use malloc() and free(). SYS/BIOS provides reentrant versions of malloc()
and free() that internally use the xdc.runtime.Memory module and (by default) the
ti.sysbios.heaps.HeapMem module.

Package Description

ti.sysbios.benchmarks Contains specifications for benchmark tests.
Provides no modules, APIs, or configuration. See Appendix B.

ti.sysbios.family.* Contains specifications for target/device-specific functions. See Section 8.5.

ti.sysbios.gates Contains several implementations of the IGateProvider interface for use in various
situations. These include GateHwi, GateSwi, GateTask, GateMutex, and GateMut-
exPri. See Section 4.3.

ti.sysbios.hal Contains Hwi, Timer, Seconds, and Cache modules. See Section 8.2, Section 8.3,
Section 5.4, and Section 8.4.

ti.sysbios.heaps Provides several implementations of the XDCtools IHeap interface. These include
HeapBuf (fixed-size buffers), HeapMem (variable-sized buffers), and HeapMultiBuf
(multiple fixed-size buffers). See Chapter 7.

ti.sysbios.interfaces Contains interfaces for modules to be implemented, for example, on a device or
platform basis.

ti.sysbios.io Contains modules for performing input/output actions and interacting with peripheral
drivers. Chapter E.

ti.sysbios.knl Contains modules for the SYS/BIOS kernel, including Swi, Task, Idle, and Clock.
See Chapter 3 and Chapter 5. Also contains modules related to inter-process
communication: Event, Mailbox, and Semaphore. See Chapter 4.

ti.sysbios.utils Contains the Load module, which provides global CPU load as well as thread-
specific load. See Section 9.2.
SPRUEX3O—October 2014 About SYS/BIOS 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Using C++ with SYS/BIOS www.ti.com
1.5.2 Name Mangling

The C++ compiler implements function overloading, operator overloading, and type-safe linking by
encoding a function's signature in its link-level name. The process of encoding the signature into the
linkname is referred to as name mangling.

Name mangling could potentially interfere with a SYS/BIOS application since you use function names
within the configuration to refer to functions declared in your C++ source files. To prevent name mangling
and thus to make your functions recognizable within the configuration, it is necessary to declare your
functions in an extern C block as shown in the following code fragment from the bigtime.cpp example:

This extern C block allows you to refer to the functions within the configuration file. For example, if you
have a Task object that should run clockTask() every time the Task runs, you could configure a Task as
follows:

Notice that in the configuration example above, the arg0 parameter of the Task is set to
$externPtr("cl3"). The C++ code to create a global clock object for this argument is as follows:

Functions declared within the extern C block are not subject to name mangling. Since function
overloading is accomplished through name mangling, function overloading has limitations for functions
that are called from the configuration. Only one version of an overloaded function can appear within the
extern C block. The code in the following example would result in an error.

While you can use name overloading in your SYS/BIOS C++ applications, only one version of the
overloaded function can be called from the configuration.

/*

 * Extern "C" block to prevent name mangling

 * of functions called within the Configuration Tool

 */

extern "C" {

 /* Wrapper functions to call Clock::tick() */

 void clockTask(Clock clock);

 void clockPrd(Clock clock);

 void clockIdle(void);

} // end extern "C"

var task0Params = new Task.Params();

task0Params.instance.name = "task0";

task0Params.arg0 = $externPtr("cl3");

Program.global.task0 = Task.create("&clockTask", task0Params);

/* Global clock objects */

Clock cl3(3); /* task clock */

extern “C” { // Example causes ERROR

 Int addNums(Int x, Int y);

 Int addNums(Int x, Int y, Int z); // error, only one version

 // of addNums is allowed

}

20 About SYS/BIOS SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Using C++ with SYS/BIOS
Default parameters is a C++ feature that is not available for functions called from the configuration. C++
allows you to specify default values for formal parameters within the function declaration. However, a
function called from the configuration must provide parameter values. If no values are specified, the
actual parameter values are undefined.

1.5.3 Calling Class Methods from the Configuration

Often, the function that you want to reference within the configuration is the member function of a class
object. It is not possible to call these member functions directly from the configuration, but it is possible
to accomplish the same action through wrapper functions. By writing a wrapper function which accepts
a class instance as a parameter, you can invoke the class member function from within the wrapper.

A wrapper function for a class method is shown in the following code fragment from the bigtime.cpp
example:

Any additional parameters that the class method requires can be passed to the wrapper function.

1.5.4 Class Constructors and Destructors

Any time that a C++ class object is instantiated, the class constructor executes. Likewise, any time that
a class object is deleted, the class destructor is called. Therefore, when writing constructors and
destructors, you should consider the times at which the functions are expected to execute and tailor them
accordingly. It is important to consider what type of thread will be running when the class constructor or
destructor is invoked.

Various guidelines apply to which SYS/BIOS API functions can be called from different SYS/BIOS
threads (tasks, software interrupts, and hardware interrupts). For example, memory allocation APIs such
as Memory_alloc() and Memory_calloc() cannot be called from within the context of a software interrupt.
Thus, if a particular class is instantiated by a software interrupt, its constructor must avoid performing
memory allocation.

Similarly, it is important to keep in mind the time at which a class destructor is expected to run. Not only
does a class destructor execute when an object is explicitly deleted, but also when a local object goes
out of scope. You need to be aware of what type of thread is executing when the class destructor is called
and make only those SYS/BIOS API calls that are appropriate for that thread. For further information on
function callability, see the CDOC online documentation.

/*

 * ======== clockPrd ========

 * Wrapper function for PRD objects calling

 * Clock::tick()

 */

void clockPrd(Clock clock)

{

 clock.tick();

 return;

}
SPRUEX3O—October 2014 About SYS/BIOS 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

For More Information www.ti.com
1.6 For More Information

You can read the following additional documents to learn more about TI-RTOS, SYS/BIOS, XDCtools,
and Code Composer Studio:

• TI-RTOS

— TI-RTOS Getting Started Guides -- several versions specific to device families

— TI-RTOS User’s Guide (SPRUHD4)

• SYS/BIOS

— SYS/BIOS Release Notes. Located in the top-level SYS/BIOS installation directory, or choose
Help > Help Contents in CCS and expand the SYS/BIOS item.

— SYS/BIOS Getting Started Guide. In <bios_install_dir>/docs/Bios_Getting_Started_Guide.pdf

— SYS/BIOS API Reference (also called "CDOC"). Run <bios_install_dir>/docs/cdoc/index.html, or
choose Help > Help Contents in CCS and expand the SYS/BIOS item. See Section 1.6.1.

— SYS/BIOS main page on Texas Instruments Wiki contains links to many SYS/BIOS resources.

— TI-RTOS forum on TI’s E2E Community lets you submit your questions.

— SYS/BIOS 6.x Product Folder on TI.com

— Embedded Software Download Page

• XDCtools

— XDCtools API Reference (also called "CDOC"). Run <xdc_install_dir>/docs/xdctools.chm, or
choose Help > Help Contents in CCS and expand the XDCtools item. See Section 1.6.1.

— RTSC-Pedia Wiki

— TI-RTOS forum on TI’s E2E Community

— Embedded Software Download Page

• Code Composer Studio (CCS)

— CCS online help. Choose Help > Help Contents in CCS.

— CCSv6 on Texas Instruments Wiki

— Code Composer forum on TI’s E2E Community
22 About SYS/BIOS SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v6
http://e2e.ti.com/support/development_tools/code_composer_studio/f/81.aspx
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://e2e.ti.com/support/embedded/f/355.aspx
http://focus.ti.com/docs/toolsw/folders/print/dspbios6.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/index.html
http://rtsc.eclipse.org/docs-tip
http://e2e.ti.com/support/embedded/f/355.aspx
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/index.html
http://www.ti.com/lit/pdf/spruhd4

www.ti.com For More Information
1.6.1 Using the API Reference Help System

The API Reference help for TI-RTOS, SYS/BIOS, and the other TI-RTOS components is called "CDOC".

1. Choose Help > Help Contents in CCS to open the
online help system, which provides help on TI-RTOS
and all its components in addition to the CCS IDE, the
compilers, and more.

2. Expand the TI-RTOS item for your device family.

3. Select the Config API reference (cdoc) item to go to
the reference help.

4. Click "+" next to a repository to expand its list of
packages. Click "+" next to a package name to see the
list of modules it provides. Select a package or module
to see its reference information.

In addition to the SYS/BIOS modules, this list includes all the
modules provided by TI-RTOS, the TI-RTOS components
that are available for your device family, and XDCtools.

The SYS/BIOS configuration property and C API
documentation is within the "ti.sysbios" package. To view
reference documentation on memory allocation, logs,
timestamps, asserts, and system, expand the "xdc.runtime"
and "xdc.runtime.knl" packages. The "bios" package
contains only the deprecated compatibility modules for
earlier versions of SYS/BIOS.

Each reference page is divided into two main sections:

• C Reference. This section has blue table borders. It
begins with a table of the APIs you can call from your
application’s C code. It also lists C structures, typedefs,
and constants that are defined by including this module’s
header file. A description of the module’s use follows;
often this includes a table of the calling contexts from which each API can be called. Detailed syntax
for the functions, typedefs, structures, and constants follows.

• Configuration Reference. This section has blue-gray table borders. You can jump to this section in
any topic by clicking the Configuration settings link near the top of the page. This section provides
information you can use when you are configuring the application in the *.cfg file (either using
XGCONF or editing the source code for the configuration file directly). This section lists the types,
structures, and constants defined by the module. It also lists parameters you can configure on a
module-wide basis, and parameters that apply to individual instances you create.

If you installed SYS/BIOS as a standalone tool, you can open the online help for SYS/BIOS by opening
the BIOS_INSTALL_DIR\docs\Bios_APIs.html file in a web browser.
SPRUEX3O—October 2014 About SYS/BIOS 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Chapter 2
SPRUEX3O—October 2014

SYS/BIOS Configuration and Building

This chapter describes how to configure and build SYS/BIOS applications.

2.1 Creating a SYS/BIOS Project with the TI Resource Explorer 25

2.2 Adding SYS/BIOS Support to an Existing Project 27

2.3 Configuring SYS/BIOS Applications . 28

2.4 Building SYS/BIOS Applications . 40

Topic Page
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 24
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com Creating a SYS/BIOS Project with the TI Resource Explorer
2.1 Creating a SYS/BIOS Project with the TI Resource Explorer

You can use Code Composer Studio (CCS) to create example projects that use SYS/BIOS by using TI
Resource Explorer. Use this window, which opens when you start CCS, to create example projects with
all the settings for your specific device.

Follow these steps to use the TI Resource Explorer in CCS to create a project that uses SYS/BIOS.

1. Open CCS. If you do not see the TI Resource Explorer area, make sure you are in the CCS Edit
perspective and choose View > Resource Explorer (Examples) from the menus.

2. Type the name or part of the name of your device in the "enter search keyword" field to hide all the
examples that don’t apply to your device.

3. Expand the TI-RTOS item until you see the Kernel Examples for your device. These are the
SYS/BIOS examples. (Any Driver Examples listed are TI-RTOS driver examples. Any
Instrumentation Examples listed are UIA examples. If you installed SYS/BIOS as a standalone
product within CCS, you will see a SYS/BIOS item in the main TI Resource Explorer tree.)
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Creating a SYS/BIOS Project with the TI Resource Explorer www.ti.com
4. Select the example you want to create. A description of the selected example is shown to the right
of the example list. To get started with SYS/BIOS, you can choose one of the Generic Examples,
such as the Log Example or Task Mutex Example.

When you are ready to create a production project, you might choose the "Minimal" or "Typical"
example depending on how memory-limited your target is. For some device families, device-specific
SYS/BIOS examples are also provided.

5. Click the Step 1 link in the right pane of the TI Resource Explorer to Import the example project
into CCS. This adds a new project to your Project Explorer view. Once you have completed a step
for a particular example and device, a green checkmark will be shown next to that step.

6. The project created will have a name with the format <example_name>_<board>. You can expand
the project to view or change the source code and configuration file.

7. The page shown when you select an example in the TI Resource Explorer provides additional links
to perform common actions with that example.

8. Use the Step 2 link when you are ready to build the project. If you want to change any build options,
right click on the project and select Properties from the context menu. For example, you can change
compiler, linker, and RTSC (XDCtools) options.
26 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Adding SYS/BIOS Support to an Existing Project
9. Use the Step 3 link to change the connection used to communicate with the board. The current
setting is shown in the TI Resource Explorer page for the selected example. (If you want to use a
simulator instead of a hardware connection, double-click the *.ccxml file in the targetConfigs folder
of the project to open the Target Configuration File editor. Change the Connection as needed, and
click Save.)

10. Use the Step 4 link to launch a debug session for the project and switch to the CCS Debug
Perspective.

2.2 Adding SYS/BIOS Support to an Existing Project

If you created a SYS/BIOS project using the TI Resource Explorer, a configuration file is automatically
added to your project and SYS/BIOS support is automatically enabled.

Note: Applications that can use SYS/BIOS are referred to as having RTSC support enabled.
RTSC is Real-Time Software Components, which is implemented by the XDCtools
component. See Section 1.3 for details.

If you start with an empty CCS project template, you can add a configuration file for use with SYS/BIOS
to your CCS project by choosing File > New > RTSC Configuration File. If the project does not have
RTSC support enabled, you will be asked if you want to enable RTSC support for the current project.
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Configuring SYS/BIOS Applications www.ti.com
2.3 Configuring SYS/BIOS Applications

You configure SYS/BIOS applications by modifying the *.cfg configuration file in the project. These files
are written in a scripting language that is a superset of JavaScript. While you can edit this file with a text
editor, CCS provides a graphical configuration editor called XGCONF.

XGCONF is useful because it gives you an easy way to view the available options and your current
configuration. Since modules and instances are activated behind-the-scenes when the configuration is
processed, XGCONF is a useful tool for viewing the effects of these internal actions and for detecting
conflicts.

For example, the following figure shows the XGCONF configuration tool in Code Composer Studio used
to configure a static SYS/BIOS Swi (software interrupt) instance.

The cfg Script tab shows that the code to create this Swi would be as follows:

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

/* Create a Swi Instance and manipulate its instance parameters. */

var swiParams = new Swi.Params;

swiParams.arg0 = 0;

swiParams.arg1 = 1;

swiParams.priority = 7;

Program.global.swi0 = Swi.create('&swi0Fxn', swiParams);

/* Create another Swi Instance using the default instance parameters */

Program.global.swi1 = Swi.create('&swi1Fxn');
28 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Configuring SYS/BIOS Applications
2.3.1 Opening a Configuration File with XGCONF

To open XGCONF, follow these steps:

1. Make sure you are in the CCS Edit perspective of CCS.
If you are not in that perspective, click the perspective link
in the upper-right corner to switch back.

2. Double-click on the *.cfg configuration file in the Project
Explorer tree. While XGCONF is opening, the CCS
status bar shows that the configuration is being
processed and validated. (If your project does not yet contain a *.cfg file, see Section 2.2.)

3. When XGCONF opens, you see the Welcome sheet for SYS/BIOS. This sheet provides links to
SYS/BIOS documentation resources.

4. Click the System Overview link to see a handy overview of the main modules you can use in
SYS/BIOS applications (see page 34).

Note: If the configuration is shown in a text editor instead of XGCONF, right-click on the *.cfg
file and choose Open With > XGCONF.
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Configuring SYS/BIOS Applications www.ti.com
2.3.2 Performing Tasks with XGCONF

The following list shows the configuration tasks you can perform with XGCONF and provides links to
explain how:

• Make more modules available. See page 33.

• Find a module. See page 32 and page 33.

• Add a module to the configuration. See page 32.

• Delete a module from the configuration. See page 33.

• Add an instance to the configuration. See page 33.

• Delete an instance from the configuration. See page 33.

• Change property values for a module. See page 34.

• Change property values for an instance. See page 34.

• Get help about a module. You can right-click in most places in XGCONF for and choose Help to get
information about a specific module or property. See page 33 and page 34.

• Configuring the memory map and section placement. The configuration file allows you to specify
which sections and heaps are used by various SYS/BIOS modules, but not their placement on the
target. Memory mapping and section placement is described in Chapter 7.

• Save the configuration or revert to the last saved file. See page 30.

• Fix errors in the configuration. See page 38.

You can open multiple configuration files at the same time. However, using XGCONF is resource
intensive and opening more than one file may slow down your system.

2.3.3 Saving the Configuration

If you have modified the configuration, you can press Ctrl+S to save the file. Or, choose File > Save from
the CCS menu bar.

In the cfg Script tab of a configuration, you can right-click and choose to Revert File to reload the last
saved configuration file or Save to save the current configuration to a file.

See Section 2.3.9 for information about the validation checks performed when you save a configuration
with XGCONF.
30 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Configuring SYS/BIOS Applications
2.3.4 About the XGCONF views

The XGCONF tool is made up of several panes that are used together:

1. Available Products view lets you add modules to your configuration. By default, this view appears
in the lower-left corner of the window. See Section 2.3.5.

2. Outline view shows modules used in your current configuration and lets you choose the module to
display in the Properties view. By default, this view appears on the right side of the window. Two
display modes are provided: a user configuration list and a configuration results tree. See Section
2.3.6.

3. Property view shows the property settings of the selected module or instance and lets you make
changes. You can also use the cfg Script tab in the Property view to modify the script directly. See
Section 2.3.7.

4. Problems view appears if errors and warnings are detected in the configuration during validation.
See Section 2.3.8.

1 23
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Configuring SYS/BIOS Applications www.ti.com
2.3.5 Using the Available Products View

The Available Products view lists the packages and
modules available for use in your configuration. It lists both
modules you are already using and modules you can add to
your configuration. The list is organized first by the software
component and then using functional categories.

Modules you can configure are listed in this tree. Modules
that do not apply to your target or are only used internally are
hidden in this tree.

Finding Modules

To find a particular module, expand the tree to see modules.
To find the SYS/BIOS modules, expand the TI-RTOS item
and then the Products item.

If you don’t know where a module is located or several
modules have similar names, type text in the "type filter text"
box. For example, you can type "gate" to find all the Gate
implementations in XDCtools, SYS/BIOS, and any other
repositories. You can use * and ? as wildcard characters.

If you want to look for a module using its full path within the
repository, right-click and choose Show Repositories. After
the category-based tree, you will see an All Repositories
node. You can expand this node to find particular modules.
For example, the full path to the SYS/BIOS Task module is
ti.sysbios.knl.Task.

Note that if you turn on Show Repositories, all modules are
listed. This includes modules that do not apply to your target
family and some modules (often shown as red balls) that you
cannot add to the configuration.

Adding Modules and Instances to the Configuration

To start using a module, right-click and choose Use
<module>. For example, choosing Use Swi adds the
ability to create and configure software interrupts to your
application. You can also drag modules from the Available
Products view to the Outline view to add them to the
configuration.

When you select a module in the Available Products view,
you see the properties you can set for that module in the
Property view (whether you are using it yet or not). When
you add use of a module to the configuration, that module
is shown in the Outline view.

You can get help on a particular module by right-clicking
on the module name and choosing Help from the pop-up menu.

Adding a module to the configuration causes an xdc.useModule() statement to be added to the
configuration script.
32 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Configuring SYS/BIOS Applications
Managing the Available Products List

When you open a configuration file with XGCONF, the package repositories that your application is set
to use in the Properties dialog are scanned for modules and the results are listed here.

You can add or remove products by right-clicking and choosing Add/Change Products. (This opens the
dialog you see by choosing Project > Properties from the CCS menus, then choosing the CCS General
category and the RTSC tab.) Check boxes next to versions of products you want to be able to use. If a
product isn’t listed, click the Add button to browse for a package repository in the file system. When you
click OK, the Available Products list is refreshed.

If TI-RTOS is selected, all the components included with TI-RTOS—including SYS/BIOS—will be
available for use.

You can open the Package Repository Path Browser by right-clicking and choosing Check Path. This
tool lists all the repositories and packages on the package path, shows the effects of adding repositories
or changing the order of locations in the path, and sorts the packages by various fields.

If there is a problem with the display or you have changed something in the file system that should affect
the modules shown, you can right-click and choose Refresh View.

2.3.6 Using the Outline View

The Outline view shows modules and instances that are available for configuration in your *.cfg file. You
can view the Outline in two ways:

• Show User Configuration. Select the icon. This is the easier-to-use view. This view mode
shows a flat list of only those modules directly referenced in the *.cfg file and instances created in the
*.cfg file. You can use this view to add instances of modules and delete the use of a module use from
the configuration.

• Show Configuration Results. Select the icon. This is the more advanced view. This mode
shows a tree view of all modules and instances that are used both implicitly (behind the scenes) and
explicitly (because they are referenced directly in the *.cfg file). You can edit any module that does
not have the "locked" icon. You can "unlock" some locked modules by choosing to add them to your
configuration. Instances that are shown as "locked" are used internally, and you should not attempt
to modify them.

As in the Available Products view, you can type filter text at the top of the Outline view to find modules
and instances by name.

To create an instance, right-click on a module and choose
New <module>. For example, New Semaphore. Notice
that not all modules let you create instance objects.

If you want to delete an instance from the configuration,
right-click on that instance in the Outline view, and select
Delete <name> from the menu.

When you select a module or instance in the Outline view, you see the properties you can set for that
module in the Property view.

You can get help on a particular module by right-clicking on the module name and choosing Help from
the pop-up menu. Help on SYS/BIOS and XDCtools configuration is in the blue-gray (Configuration
settings) section of the online documentation. For each module, the configuration help follows the blue
sections that document that module’s C APIs.
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Configuring SYS/BIOS Applications www.ti.com
Some modules have a red ball next to them, while others have a blue ball. The blue ball indicates
that this is a target module, which provides code or data that can be referenced at runtime on the
embedded target. The red ball indicates that this is a meta-only module, which exists in the
configuration but does not directly exist on the target.

To stop using a module in the configuration, right-click on that module in the Outline view, and select Stop
Using <module> from the menu. Deleting a module from the configuration removes the corresponding
xdc.useModule() statement and any instances of the module from the configuration script. If deleting the
module would result in an invalid script, an error message is displayed and the module is not deleted.
This can happen if a different module or instance refers to it in the script, for example in an assignment
to a proxy or a configuration parameter.

2.3.7 Using the Property View

If you select a module or instance in the Outline view or Available Products view, the Property view shows
properties for the selected item. There are several ways to view the properties.

• System Overview. This sheet provides a block diagram overview of the modules in TI-RTOS or
SYS/BIOS. See page 34.

• Module, Instance, or Basic. This layout organizes the properties visually. See page 36.

• Advanced. This layout provides a tabular list of property names and lets you set values in the table.
See page 37.

• cfg Script. The cfg script editor lets you edit the configuration script using a text editor. See page 37.

All the property sheets you have viewed are accessible from the tabs at the bottom of the Property view.

You can use the arrow buttons in the upper-right of the Property view to move through
sheets you have already viewed. The Home icon returns you to the BIOS module System Overview.

For numeric fields, you can right-click on a field and choose Set Radix to choose whether to display this
field as a decimal or hex value.

Point to a field with your mouse for brief information about a property. Right-click on a field and choose
Help to jump directly to the documentation for that property. Click the Help icon to get documentation
for the current module. Help on SYS/BIOS and XDCtools configuration is in the blue-gray section of the
online documentation. For each module, the configuration help follows the blue sections that document
that module’s C APIs.

System Overview Block Diagram

The System Overview shows all of the core modules in SYS/BIOS as blocks. A green checkmark shows
the modules that are currently used by your configuration. You can add other modules in the diagram to
your configuration by right-clicking on the block and choosing Use. You can configure any module by
clicking on it.
34 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Configuring SYS/BIOS Applications
To return to the System Overview from some other property sheet, select the BIOS module in the Outline
View and click the System Overview button.

You can add object instances to the configuration by right-clicking on a module and choosing the New
command.
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Configuring SYS/BIOS Applications www.ti.com
Module and Instance Property Sheets

The Module and Instance property sheets organize properties into categories and provides brief
descriptions of some properties. Checkboxes, selection fields, and text fields are provided depending on
the type of values a property can have.

Click the Module button to see and modify global properties for the module. In the Module property sheet
for optional modules, you can uncheck the Add <module> to my configuration box to stop using a
module. If you aren’t using a module, you can add it to your configuration by checking the box.

Click the Instance button to see properties for instances. A list on the left side of the page shows the
instances that have been created and lets you add or remove instances.

Some advanced properties aren’t shown in the Module and Instance sheets. For these, see the
Advanced sheet (page 37).

As you change properties, they are applied to the configuration and validated. However, they are not
saved until you save the configuration file.

You can fold up or reopen portions of the property sheet by clicking the arrow next to a section heading.
36 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Configuring SYS/BIOS Applications
Advanced Properties Sheet

The Advanced layout provides a tabular list of property names and lets you set values in the table.

To modify the value of a property, click on a row in the Value column and type or select a new value.

When you type a value for a property, XGCONF checks to make sure the type of the value matches the
type expected for the property. This is separate from the more extensive validation checks that are
performed when you save a configuration.

For many modules, the Advanced layout has both a Basic tab and an xdc.runtime tab. The Basic tab
shows the same properties as the Basic view, but in tabular form. The xdc.runtime tab shows
<module>.common$ properties inherited by the module. For example, these include properties related
to the memory used by the module and any instances, the diagnostics settings for the module, and the
Gate object used by this module if any. In addition, events, asserts, and errors that can occur for this
module are listed. See the online documentation for xdc.runtime.Types for more about the common$
properties.

Point to a field with your mouse for brief information about a property. Right-click on a field and choose
Help to jump directly to the documentation for that property. Click the Help icon to get documentation
for the current module.

Cfg Script Editor

The cfg script editor lets you edit the configuration script using a text editor by choosing the cfg Script
tab. Some advanced scripting features are available only by editing the script directly. For more
information see links from the http://rtsc.eclipse.org/docs-tip/RTSC_Scripting_Primer wiki page.

You can use Ctrl+S to save any changes you make. You can right-click on the file and choose Undo
Typing to undo the most recent graphical editing operation, or Revert File to return to the most recently
saved version of this file. When you save the file, it is validated and the other panes are refreshed to
reflect your changes.

When you select a module or instance in the Outline view, the cfg Script tab highlights all the lines of the
configuration file that are related to that module or instance.
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 37
Submit Documentation Feedback

http://rtsc.eclipse.org/docs-tip/RTSC_Scripting_Primer
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Configuring SYS/BIOS Applications www.ti.com
2.3.8 Using the Problems View

The Problems view lists all errors and warnings detected during a build or validation of the configuration
script. This view is automatically displayed whenever new errors or warnings are detected.

The Outline view shows an error icon next to any modules or instances for which problems were
detected. If you select such a module, the Properties view shows a red X icon next to the properties that
are incorrectly set.

If you double-click on an item in the Problems view while the cfg Script tab is displayed, the cfg Script
tab highlights the statement that caused the error or warning, and an error icon is shown in the left margin.
Position indicators for any problems also appear to the right of the scrollbar.

Depending on the type of problem, the validation may only report the first item found in the configuration.
For example, a syntax error such as an unknown variable in the script may prevent later problems, such
as invalid values being assigned to a property, from being reported. Such problems can be detected after
you fix the syntax error and re-validate the configuration.

If there is not enough detail available to identify a specific configuration parameter, no problem icon will
be shown in the Properties tab. A problem icon will still be shown on the module or instance in the Outline
view.

You can sort the problem list by clicking on the headings. You can filter the problem list to display fewer
items by clicking the Filter icon to open the Filters dialog.

2.3.9 Finding and Fixing Errors

A configuration is validated if you perform any of the following actions:

• Add a module to be used in the configuration

• Delete a module from use by the configuration

• Add a instance to the configuration

• Delete an instance from the configuration

• Save the configuration

You can force the configuration to be validated by saving the configuration or by clicking the Refresh
icon.
38 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Configuring SYS/BIOS Applications
Validation means that semantic checks are performed to make sure that, for example, objects that are
referenced actually exist. These checks also make sure that values are within the valid ranges for a
property. Some datatype checking is performed when you set a property in the Properties tab.

If you are editing the configuration code directly in the cfg Script tab, the configuration is validated only
if you save the configuration.

While a configuration is being validated (this takes a few seconds), you see the a progress icon in the
lower-right corner of the window.

After the configuration has been validated, any errors that were detected in the configuration are shown
in the Problems view. For example, if you delete the statement that creates an instance that is referenced
by another configuration parameter, you will see an error.

See Section 2.3.8 for more about finding and fixing errors.

2.3.10 Accessing the Global Namespace

Many of the configuration examples in this document define variables in the Program.global
namespace. For example:

 Program.global.myTimer = Timer.create(1, "&myIsr", timerParams);

The Program module is the root of the configuration object model created by XDCtools; the Program
module is implicitly used by configuration scripts; you do not need to add a useModule statement to make
it available.

Variables defined in Program.global become global symbols that can be used to directly reference
objects in C code. These objects are declared in a generated header file. In order to use these variables,
your C code needs to include the generated header file as follows:

 #include <xdc/cfg/global.h>

C code can then access these global symbols directly. For example:

 Timer_reconfig(myTimer, tickFxn, &timerParams, &eb);

If you do not want to #include the generated global.h file, you can declare external handles explicitly. For
example, adding the following declaration to your C code would allow you to use the statically configured
myTimer object in the previous example:

 #include <ti/sysbios/hal/Timer.h>

 extern Timer_Handle myTimer;

For more about the Program module, see http://rtsc.eclipse.org/cdoc-tip/xdc/cfg/Program.html.
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 39
Submit Documentation Feedback

http://rtsc.eclipse.org/cdoc-tip/xdc/cfg/Program.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Building SYS/BIOS Applications www.ti.com
2.4 Building SYS/BIOS Applications

When you build an application project, the associated configuration file is rebuilt if the configuration has
been changed. The folders listed in the "Includes" list of the CCS project tree (except for the compiler-
related folder) are folders that are on the package path.

To build a project, follow these steps:

1. Choose Project > Build Project.

2. Examine the log in the Console view to see if errors occurred.

3. After you build the project, look at the C/C++ Projects view. You can expand the Debug folder to see
the files that were generated by the build process.

For help with build errors, see the wiki page at http://rtsc.eclipse.org/docs-tip/Trouble_Shooting.

2.4.1 Understanding the Build Flow

The build flow for SYS/BIOS applications begins with an extra step to process the configuration file (*.cfg)
in the project. The configuration file is processed by XDCtools. If you look at the messages printed during
the build, you will see a command line that runs the "xs" executable in the XDCtools component with the
"xdc.tools.configuro" tool specified. For example:

In CCS, you can control the command-line options used with XDCtools by choosing Project > Properties
from the menus and selecting the Build > XDCtools category.

Target settings for processing your individual project are in the RTSC tab of the CCS General category.
(RTSC is the name for the Eclipse specification implemented by XDCtools.)

'Invoking: XDCtools'

"<xdc_install_dir>/xs" --xdcpath="<bios_install_dir>/packages;" xdc.tools.configuro
-o configPkg -t ti.targets.arm.elf.M3 -p ti.platforms.concertoM3:F28M35H52C1
-r release -c "C:/ccs/ccsv6/tools/compiler/tms470" "../example.cfg"
40 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://rtsc.eclipse.org/docs-tip/Trouble_Shooting
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Building SYS/BIOS Applications
When XDCtools processes your *.cfg file, code is placed in the <project_dir>/<configuration>/configPkg
directory (where <configuration> is Debug or Release depending on your active CCS configuration. This
code is compiled so that it can be linked with your final application. In addition, a compiler.opt file is
created for use during program compilation, and a linker.cmd file is created for use in linking the
application. You should not modify the files in the <project_dir>/<configuration>/configPkg directory after
they are generated, since they will be overwritten the next time you build.

For command-line details about xdc.tools.configuro, see the RTSC-pedia reference topic. Configuro can
also be used to build the configuration file with other build systems. For more information, see the wiki
page at http://rtsc.eclipse.org/docs-tip/Consuming_Configurable_Content.

2.4.2 Rules for Working with CCS Project Properties

After you have created a CCS project that contains a configuration file, you can change the properties of
the project in CCS by right-clicking the project name and choosing Properties.

In the CCS General category of the Properties dialog, the General tab applies to compiler settings, and
the RTSC tab applies to the "configuro" utility used to process the .cfg file.

If there is any platform-specific configuration in your .cfg file, you must change those settings in addition
to any platform-related changes you make to the CCS General > RTSC settings.

If your configuration file is stored in a separate project from the project that contains your source code
files, you should be careful about changing the CCS General settings for a configuration-only project. The
build settings for the configuration project must match or be compatible with those of all application
projects that reference the configuration project. So, if you change the build settings for a configuration
project, you should also change the build settings for the application projects that use that configuration.

2.4.3 Building an Application with GCC

The instructions in this section can be used to build SYS/BIOS applications on Windows or Linux. If you
are using a Windows machine, you can use the regular DOS command shell provided with Windows.
However, you may want to install a Unix-like shell, such as Cygwin.

For Windows users, the XDCtools top-level installation directory contains gmake.exe, which is used in
the commands that follow to run the Makefile. The gmake utility is a Windows version of the standard
GNU "make" utility provided with Linux.

If you are using Linux, change the "gmake" command to "make" in the commands that follow.

Requirements

• You must have SYS/BIOS and XDCtools installed on the system where you intend to build the
application.

• You must have the GCC compiler system installed on the system where you intend to build the
application. For example, you can use the Linaro Baremetal GNU Toolchain as a compiler for Cortex-
A8/A9/A15 and Cortex-M3/M4/M4F targets (that is, targets that support GNU). See the
documentation links on the web page at the link above for installation instructions.

• Your application must have a configuration file (*.cfg) that configures the application’s use of
XDCtools and SYS/BIOS.
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 41
Submit Documentation Feedback

http://rtsc.eclipse.org/cdoc-tip/index.html#xdc/tools/configuro/package.html
http://rtsc.eclipse.org/docs-tip/Consuming_Configurable_Content
https://launchpad.net/gcc-arm-embedded/4.7/4.7-2013-q3-update
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Building SYS/BIOS Applications www.ti.com
Limitations

Note: XDCtools provides linker scripts for most Stellaris and Tiva devices. If you are building
for a device that is not yet supported, you will need to modify one of these script files.

Description

The command line tools can be invoked directly or (preferably) the build can be managed with makefiles.

When the SYS/BIOS configuration file is built, the output will include:

• compiler.opt, which contains a set of options for the C compiler to use when compiling user
applications. The file contains is a set of #include options and pre-processor #defines. The
compiler.opt file can be provided to GCC via the @ option.

• linker.cmd, which contains a set of linker options for use when linking applications. The file contains
a list of libraries and object files produced from the configuration. It also specifies memory placement
for memory used by SYS/BIOS. This file should be passed to the linker using the -Wl,-T,cfg-out-
dir/linker.cmd option.

Procedure

Follow these steps to build a SYS/BIOS application with the GCC compiler:

1. Download the sample package from the page for your device family linked to by the SYS/BIOS with
GCC topic on the Texas Instruments Wiki. Uncompress the sample package to the location where
you will build your applications. The file contains:

— hello.c, clock.c, and task.c: Three simple C code files are included—a simple “hello world”
application, one that uses the SYS/BIOS Clock module, and one that uses the Task and
Semaphore modules.

— app.cfg: A simple shared configuration file for these applications.

— tm4c123gh6pm.lds: A linker script for a Tiva TM4C123GH6PM device.

— Makefile: A makefile that can be used to build the applications from the command line.

2. Open the Makefile with a text editor. Edit the first three lines of the sample Makefile to specify the
locations on your system for M4TOOLS (the GCC compiler location), SYSBIOS, and XDCTOOLS.
For example:

3. If you are building for a device other than a Tiva TM4C123GH6PM, first check the
XDCTOOLS/packages/ti/platforms/tiva/include_gnu directory to see if a linker script file is
provided for your device.

4. If no linker script file is provided for your device, make a copy of the closest provided file and edit the
“MEMORY” region specifications to make them correspond to the memory map for your device. You
can specify your new linker script file as the LINKERCMD file in the Makefile.

5. If you are using a linker script file other than tm4c123gh6pm.lds, edit the Makefile to change the
LINKERCMD setting.

M4TOOLS ?= /home/myusername/linaro/gcc-arm-none-eabi-4_7-2013q3

SYSBIOS ?= /home/myusername/bios_6_40_##_##

XDCTOOLS ?= /home/myusername/xdctools_3_30_##_##
42 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/SYS/BIOS_with_GCC
http://processors.wiki.ti.com/index.php/SYS/BIOS_with_GCC
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Building SYS/BIOS Applications
6. If you are using Windows and the gmake utility provided in the top-level directory of the XDCtools
installation, you should add the <xdc_install_dir> to your PATH environment variable so that the
gmake executable can be found.

7. Build the three sample applications by running the following command. (If you are running the build
on Linux, change all "gmake" commands to "make".)

8. You can clean the build by running the following command:

9. Once built, applications can be loaded and debugged with CCS. Within CCS, you can use Tools >
RTOS Object View (ROV) to browse SYS/BIOS kernel object states and various other tools for real-
time analysis. Alternatively, you can use GDB or another debugger for basic debugging, but the ROV
is not available outside of CCS.

For more information, such as the compiler and linker options needed by SYS/BIOS for the Cortex-A and
Cortex-M device families, see the SYS/BIOS with GCC topic on the Texas Instruments Wiki. Additional
information about building with various compilers may be found on the RTSC-pedia wiki.

2.4.4 Running and Debugging an Application in CCS

If you haven't already created a default target configuration, follow these steps:

1. Choose File > New > Target Configuration File.

2. Type a filename for the target configuration, which will be stored as part of the CCS project. For
example, you might type TCI6482sim.ccxml if that is the target you want to use. Then, click Finish.

3. In the Connection field for your target configuration, choose the type of connection you have to the
target. Then type part of the target name in the Device filter field. For example, you might choose the
"TI Simulator" connection and filter by "64xp" to find a C64x+ simulator.

4. Choose File > Save or click the Save icon to save your target configuration.

5. You can right-click on a target configuration and choose Set as Default Target to set which target
configuration is used for debugging.

To debug an application, follow these steps:

1. Choose Target > Debug Active Project or click the Debug icon. This loads the program and
switches you to the "Debug" perspective.

2. You can set breakpoints in your code if desired. Press F8 to run.

3. Use various tools provided with XDCtools and SYS/BIOS to debug the application. See Section 9.4
for a more detailed comparison.

— RTOS Object View (ROV). See Section 7.5.3, ROV for System Stacks and Task Stacks and the
wiki page on ROV at http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer.

— System Analyzer. See the System Analyzer User’s Guide (SPRUH43) and the System Analyzer
wiki page for details.

gmake

gmake clean
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 43
Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/SYS/BIOS_with_GCC
http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer
http://www.ti.com/lit/pdf/spruh43
http://rtsc.eclipse.org/docs-tip/Consuming_Configurable_Content/makefiles
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Building SYS/BIOS Applications www.ti.com
2.4.5 Compiler and Linker Optimization

You can optimize your application for better performance and code size or to give you more debugging
information by selecting different ways of compiling and linking your application. For example, you can
do this by linking with versions of the SYS/BIOS libraries that were compiled differently.

The choices you can make related to compiler and linker optimization are located in the following places:

• Build-Profile. You see this field when you are creating a new CCS project or modifying the CCS
General settings. We recommend that you use the "release" setting. The "release" option is preferred
even when you are creating and debugging an application; the "debug" option is mainly intended for
internal use by Texas Instruments. The "release" option results in a somewhat smaller executable
that can still be debugged. This build profile primarily affects how Codec Engine and some device
drivers are built.

Note: The "whole_program" and "whole_program_debug" options for the Build-Profile have
been deprecated, and are no longer supported. The option that provides the most
similar result is to set the BIOS.libType configuration parameter to
BIOS.LibType_Custom.

• Configuration. The drop-down field at the top of the Properties dialog allows you to choose between
and customize multiple build configurations. Each configuration can have the compiler and linker
settings you choose. Debug and Release are the default configurations available.

• BIOS.libType configuration parameter. You can set this parameter in XGCONF or by editing the
*.cfg file in your project. This parameter lets you select one of several custom versions of the
SYS/BIOS libraries to be built based on the needs of your application. See the table and discussion
that follow for more information.

The options for the BIOS.libType configuration parameter are as follows:

For all libType options, the executable that is created contains only the modules and APIs that your
application needs to access. If you have not used a particular module in your *.cfg file or your C code
(and it is not required internally by a SYS/BIOS module that is used), that module is not linked with your
application. Individual API functions that are not needed (either directly or indirectly) are also excluded
during the linking phase of the build.

• Instrumented. (default) This option results in a SYS/BIOS library being built with all Asserts and
Logs enabled. Your configuration file can additionally enable or disable various Diags and logging-
related settings. However, note that the checks to see if Diags are enabled before outputting a Log
event are always performed, which has an impact on performance even if you use the ALWAYS_ON
or ALWAYS_OFF setting. The resulting code size when using this option may be too large to fit on
some targets, such as C28x and MSP430.

BIOS.libType Logging/Asserts Code Size Runtime Performance

Instrumented
(BIOS.LibType_Instrumented)

On Good Good

Non-Instrumented
(BIOS.LibType_NonInstrumented)

Off Better Better

Custom (Optimized)
(BIOS.LibType_Custom)

As configured Best Best

Debug
(BIOS.LibType_Debug)

As configured Largest No optimization
44 SYS/BIOS Configuration and Building SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Building SYS/BIOS Applications
• Non-Instrumented. This option results in a SYS/BIOS library being built with all Asserts and Logs
disabled. No Assert or Diag settings are checked, and logging information is not available at runtime.
The checking for Asserts and Diags is compiled out of the libraries, so runtime performance and code
size are optimized. Checking of Error_Blocks and handling errors in ways other than logging an event
are still supported.

• Custom (Optimized). This option results in a SYS/BIOS library being built as configured by the user.
This option is optimized to provide the best runtime performance and code size given the needs of
your application. Instrumentation is available to whatever extent your application configures it. This
build preserves enough debug information to make it still possible to step through the optimized code
in CCS and locate global variables.

• Debug (Non-Optimized). This option results in a SYS/BIOS library being built as configured by the
user but with no optimizations enabled and full debug information embedded in the library. The
resulting application is fully debuggable; you can step into the code performed by SYS/BIOS APIs.
Since no optimization is performed, the code size is large and the runtime performance is slower than
with the custom libType.

All libType options except the Debug option use aggressive program optimizations that remove many
initialized constants and small code fragments (often "glue" code) from the final executable image. Such
classic optimizations as constant folding and function inlining are used, including across module
boundaries.

The first time you build a project, the build will be longer due to the SYS/BIOS library build process. The
libraries are stored in the "src" directory of your project. Subsequent builds may be faster; libraries do not
need to be rebuilt unless you change one of the few configuration parameters that affect the build settings
or use an additional module that wasn’t already used in the previous configuration.

The following example statements set the BIOS.libType configuration parameter:

If you use the BIOS.LibType_Custom or BIOS.LibType_Debug option for the BIOS.libType, you can also
set the BIOS.customCCOpts parameter to customize the C compiler command-line options used when
compiling the SYS/BIOS libraries. If you want to change this parameter, it is important to first examine
and understand the default command-line options used to compile the SYS/BIOS libraries for your target.
You can see the default in XGCONF or by placing the following statement in your configuration script and
building the project:

You must be careful not to cause problems for the SYS/BIOS compilation when you modify the
BIOS.customCCOpts parameter. For example, the --program_level_compile option is required.
(Some --define and --include_path options are used on the compiler command line but are not listed in
the customCCOpts definition; these also cannot be removed.)

For example, to create a debuggable custom library, you can remove the -o3 option from the
BIOS.customCCOpts definition by specifying it with the following string for a C64x+ target:

More information about configuring the BIOS.libType and BIOS.customCCOpts parameters is provided
in the SYS/BIOS FAQs on the TI Embedded Processor wiki. See Appendix A for information about how
to rebuild SYS/BIOS manually.

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.libType = BIOS.LibType_Custom;

print("customCCOpts =", BIOS.customCCOpts);

BIOS.customCCOpts = "-mv64p --abi=eabi -q -mi10 -mo -pdr -pden -pds=238 -pds=880
-pds1110 --program_level_compile -g";
SPRUEX3O—October 2014 SYS/BIOS Configuration and Building 45
Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Chapter 3
SPRUEX3O—October 2014

Threading Modules

This chapter describes the types of threads a SYS/BIOS program can use.

3.1 SYS/BIOS Startup Sequence . 47

3.2 Overview of Threading Modules . 48

3.3 Hardware Interrupts . 56

3.4 Software Interrupts . 65

3.5 Tasks . 80

3.6 The Idle Loop . 98

3.7 Example Using Hwi, Swi, and Task Threads 99

Topic Page
SPRUEX3O—October 2014 Threading Modules 46
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com SYS/BIOS Startup Sequence
3.1 SYS/BIOS Startup Sequence

The SYS/BIOS startup sequence is logically divided into two phases—those operations that occur prior
to the application's "main()" function being called and those operations that are performed after the
application's "main()" function is invoked. Control points are provided at various places in each of the two
startup sequences for user startup functions to be inserted.

The "before main()" startup sequence is governed completely by the XDCtools runtime package. For
more information about the boot sequence prior to main, refer to the "XDCtools Boot Sequence and
Control Points" wiki page. The XDCtools runtime startup sequence is as follows:

1. Immediately after CPU reset, perform target/device-specific CPU initialization (beginning at c_int00).
See the "Program Loading and Running" chapter in the Assembly Language Tools User’s Guide for
your target family for details on this step and the cinit() step.

2. Prior to cinit(), run the table of "reset functions" (the xdc.runtime.Reset module provides this hook).
The functions specified in the Reset.fxns[] array are called. These reset functions are called only on
platforms where a reset is performed before running a program.

3. Run cinit() to initialize C runtime environment.

4. Run the user-supplied "first functions" (the xdc.runtime.Startup module provides this hook).

5. Run all the module initialization functions.

6. Run the user-supplied "last functions" (the xdc.runtime.Startup module provides this hook).

7. Run pinit().

8. Run main().

The "after main()" startup sequence is governed by SYS/BIOS and is initiated by an explicit call to the
BIOS_start() function at the end of the application's main() function. The SYS/BIOS startup sequence that
run when BIOS_start() is called is as follows:

1. Startup Functions. Run the user-supplied "startup functions" (see BIOS.startupFxns). If the system
supports Timers, all statically created timers are initialized at this point using their static configuration.
If a timer was configured to start "automatically," it is started here.

2. Enable Hardware Interrupts.

3. Enable Software Interrupts. If the system supports software interrupts (Swis) (see
BIOS.swiEnabled), then the SYS/BIOS startup sequence enables Swis at this point.

4. Task Startup. If the system supports Tasks (see BIOS.taskEnabled), then task scheduling begins
here. If there are no statically or dynamically created Tasks in the system, then execution proceeds
directly to the idle loop.
SPRUEX3O—October 2014 Threading Modules 47
Submit Documentation Feedback

http://rtsc.eclipse.org/docs-tip/Using_xdc.runtime_Startup
http://rtsc.eclipse.org/docs-tip/Using_xdc.runtime_Startup
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Overview of Threading Modules www.ti.com
The following configuration script excerpt installs a user-supplied startup function at every possible
control point in the startup sequence. Configuration scripts have a file extension ".cfg" and used to
configure modules and objects.

3.2 Overview of Threading Modules

Many real-time applications must perform a number of seemingly unrelated functions at the same time,
often in response to external events such as the availability of data or the presence of a control signal.
Both the functions performed and when they are performed are important.

These functions are called threads. Different systems define threads either narrowly or broadly. Within
SYS/BIOS, the term is defined broadly to include any independent stream of instructions executed by the
processor. A thread is a single point of control that can activate a function call or an interrupt service
routine (ISR).

SYS/BIOS enables your applications to be structured as a collection of threads, each of which carries out
a modularized function. Multithreaded programs run on a single processor by allowing higher-priority
threads to preempt lower-priority threads and by allowing various types of interaction between threads,
including blocking, communication, and synchronization.

Real-time application programs organized in such a modular fashion—as opposed to a single,
centralized polling loop, for example—are easier to design, implement, and maintain.

SYS/BIOS provides support for several types of program threads with different priorities. Each thread
type has different execution and preemption characteristics. The thread types (from highest to lowest
priority) are:

• Hardware interrupts (Hwi), which includes Timer functions

• Software interrupts (Swi), which includes Clock functions

• Tasks (Task)

• Background thread (Idle)

/* get handle to xdc Reset module */

Reset = xdc.useModule('xdc.runtime.Reset');

/* install a "reset function" */

Reset.fxns[Reset.fxns.length++] = '&myReset';

/* get handle to xdc Startup module */

var Startup = xdc.useModule('xdc.runtime.Startup');

/* install a "first function" */

Startup.firstFxns[Startup.firstFxns.length++] = '&myFirst';

/* install a "last function" */

Startup.lastFxns[Startup.lastFxns.length++] = '&myLast';

/* get handle to BIOS module */

var BIOS = xdc.useModule('ti.sysbios.BIOS');

/* install a BIOS startup function */

BIOS.addUserStartupFunction('&myBiosStartup');
48 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Overview of Threading Modules
These thread types are described briefly in the following section and discussed in more detail in the rest
of this chapter.

3.2.1 Types of Threads

The four major types of threads in a SYS/BIOS program are:

• Hardware interrupt (Hwi) threads. Hwi threads (also called Interrupt Service Routines or ISRs) are
the threads with the highest priority in a SYS/BIOS application. Hwi threads are used to perform time
critical tasks that are subject to hard deadlines. They are triggered in response to external
asynchronous events (interrupts) that occur in the real-time environment. Hwi threads always run to
completion but can be preempted temporarily by Hwi threads triggered by other interrupts, if enabled.
See Section 3.3, Hardware Interrupts, page 56, for details about hardware interrupts.

• Software interrupt (Swi) threads. Patterned after hardware interrupts (Hwi), software interrupt
threads provide additional priority levels between Hwi threads and Task threads. Unlike Hwis, which
are triggered by hardware interrupts, Swis are triggered programmatically by calling certain Swi
module APIs. Swis handle threads subject to time constraints that preclude them from being run as
tasks, but whose deadlines are not as severe as those of hardware ISRs. Like Hwi's, Swi's threads
always run to completion. Swis allow Hwis to defer less critical processing to a lower-priority thread,
minimizing the time the CPU spends inside an interrupt service routine, where other Hwis can be
disabled. Swis require only enough space to save the context for each Swi interrupt priority level,
while Tasks use a separate stack for each thread. See Section 3.4, Software Interrupts, page 65, for
details about Swis.

• Task (Task) threads. Task threads have higher priority than the background (Idle) thread and lower
priority than software interrupts. Tasks differ from software interrupts in that they can wait (block)
during execution until necessary resources are available. Tasks require a separate stack for each
thread. SYS/BIOS provides a number of mechanisms that can be used for inter-task communication
and synchronization. These include Semaphores, Events, Message queues, and Mailboxes. See
Section 3.5, Tasks, page 80, for details about tasks.

• Idle Loop (Idle) thread. Idle threads execute at the lowest priority in a SYS/BIOS application and
are executed one after another in a continuous loop (the Idle Loop). After main returns, a SYS/BIOS
application calls the startup routine for each SYS/BIOS module and then falls into the Idle Loop. Each
thread must wait for all others to finish executing before it is called again. The Idle Loop runs
continuously except when it is preempted by higher-priority threads. Only functions that do not have
hard deadlines should be executed in the Idle Loop. See Section 3.6, The Idle Loop, page 98, for
details about the background thread.

Another type of thread, a Clock thread, is run within the context of a Swi thread that is triggered by a Hwi
thread invoked by a repetitive timer peripheral interrupt. See Section 5.2 for details.

3.2.2 Choosing Which Types of Threads to Use

The type and priority level you choose for each thread in an application program has an impact on
whether the threads are scheduled on time and executed correctly. SYS/BIOS static configuration makes
it easy to change a thread from one type to another.

A program can use multiple types of threads. Here are some rules for deciding which type of object to
use for each thread to be performed by a program.
SPRUEX3O—October 2014 Threading Modules 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Overview of Threading Modules www.ti.com
• Swi or Task versus Hwi. Perform only critical processing within hardware interrupt service routines.
Hwis should be considered for processing hardware interrupts (IRQs) with deadlines down to the
5-microsecond range, especially when data may be overwritten if the deadline is not met. Swis or
Tasks should be considered for events with longer deadlines—around 100 microseconds or more.
Your Hwi functions should post Swis or tasks to perform lower-priority processing. Using lower-
priority threads minimizes the length of time interrupts are disabled (interrupt latency), allowing other
hardware interrupts to occur.

• Swi versus Task. Use Swis if functions have relatively simple interdependencies and data sharing
requirements. Use tasks if the requirements are more complex. While higher-priority threads can
preempt lower priority threads, only tasks can wait for another event, such as resource availability.
Tasks also have more options than Swis when using shared data. All input needed by a Swi’s function
should be ready when the program posts the Swi. The Swi object’s trigger structure provides a way
to determine when resources are available. Swis are more memory-efficient because they all run
from a single stack.

• Idle. Create Idle threads to perform noncritical housekeeping tasks when no other processing is
necessary. Idle threads typically have no hard deadlines. Instead, they run when the system has
unused processor time. Idle threads run sequentially at the same priority. You may use Idle threads
to reduce power needs when other processing is not being performed. In this case, you should not
depend upon housekeeping tasks to occur during power reduction times.

• Clock. Use Clock functions when you want a function to run at a rate based on a multiple of the
interrupt rate of the peripheral that is driving the Clock tick. Clock functions can be configured to
execute either periodically or just once. These functions run as Swi functions.

• Clock versus Swi. All Clock functions run at the same Swi priority, so one Clock function cannot
preempt another. However, Clock functions can post lower-priority Swi threads for lengthy processing.
This ensures that the Clock Swi can preempt those functions when the next system tick occurs and
when the Clock Swi is posted again.

• Timer. Timer threads are run within the context of a Hwi thread. As such, they inherit the priority of
the corresponding Timer interrupt. They are invoked at the rate of the programmed Timer period.
Timer threads should do the absolute minimum necessary to complete the task required. If more
processing time is required, consider posting a Swi to do the work or posting a Semaphore for later
processing by a task so that CPU time is efficiently managed.

3.2.3 A Comparison of Thread Characteristics

Table 3-1 provides a comparison of the thread types supported by SYS/BIOS.

Table 3-1. Comparison of Thread Characteristics

Characteristic Hwi Swi Task Idle

Priority Highest 2nd highest 2nd lowest Lowest

Number of priority
levels

family/device-
specific

Up to 32 (16 for
MSP430 and C28x).
Periodic functions run
at the priority of the
Clock Swi.

Up to 32 (16 for
MSP430 and C28x).
This includes 1 for the
Idle Loop.

1

Can yield and pend No, runs to
completion except
for preemption

No, runs to completion
except for preemption

Yes Should not pend.
Pending would
disable all regis-
tered Idle threads.
50 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Overview of Threading Modules
Notes: 1) If you disable the Task manager, Idle threads use the system stack.

2) Some devices allow hardware interrupt priorities to by modified.

Execution states Inactive, ready,
running

Inactive, ready, running Ready, running,
blocked, terminated

Ready, running

Thread scheduler
disabled by

Hwi_disable() Swi_disable() Task_disable() Program exit

Posted or made
ready to run by

Interrupt occurs Swi_post(),
Swi_andn(),
Swi_dec(), Swi_inc(),
Swi_or()

Task_create() and
various task synchro-
nization mechanisms
(Event, Semaphore,
Mailbox)

main() exits and no
other thread is
currently running

Stack used System stack
(1 per program)

System stack
(1 per program)

Task stack
(1 per task)

Task stack used by
default (see Note 1)

Context saved when
preempts other
thread

Entire context
minus saved-by-
callee registers (as
defined by the TI C
compiler) are
saved to system.

Certain registers saved
to system.

Entire context saved
to task stack

--Not applicable--

Context saved when
blocked

--Not applicable-- --Not applicable-- Saves the saved-by-
callee registers (see
optimizing compiler
user’s guide for your
platform).

--Not applicable--

Share data with
thread via

Streams, lists,
pipes, global
variables

Streams, lists, pipes,
global variables

Streams, lists, pipes,
gates, mailboxes,
message queues,
global variables

Streams, lists, pipes,
global variables

Synchronize with
thread via

--Not applicable-- Swi trigger Semaphores, events,
mailboxes

-Not applicable--

Function hooks Yes: register,
create, begin, end,
delete

Yes:register, create,
ready, begin, end,
delete

Yes: register, create,
ready, switch, exit,
delete

No

Static creation Yes Yes Yes Yes

Dynamic creation Yes Yes Yes No

Dynamically change
priority

See Note 2 Yes Yes No

Implicit logging Interrupt event Post, begin, end Switch, yield, ready,
exit

None

Implicit statistics None None None None

Characteristic Hwi Swi Task Idle
SPRUEX3O—October 2014 Threading Modules 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Overview of Threading Modules www.ti.com
3.2.4 Thread Priorities

Within SYS/BIOS, hardware interrupts have the highest priority. The priorities among the set of Hwi
objects are not maintained implicitly by SYS/BIOS. The Hwi priority only applies to the order in which
multiple interrupts that are ready on a given CPU cycle are serviced by the CPU. Hardware interrupts are
preempted by another interrupt unless interrupts are globally disabled or when specific interrupts are
individually disabled.

Figure 3-1. Thread Priorities

Swis have lower priority than Hwis. There are up to 32 priority levels available for Swis (16 by default)
The maximum number of priority levels is 16 for MSP430 and C28x. Swis can be preempted by a higher-priority
Swi or any Hwi. Swis cannot block.

Tasks have lower priority than Swis. There are up to 32 task priority levels (16 by default). The maximum
number of priority levels is 16 for MSP430 and C28x. Tasks can be preempted by any higher-priority thread.
Tasks can block while waiting for resource availability and lower-priority threads.

The background Idle Loop is the thread with the lowest priority of all. It runs in a loop when the CPU is
not busy running another thread. When tasks are enabled, the Idle Loop is implemented as the only task
running at priority 0. When tasks are disabled, the Idle Loop is fallen into after the application's "main()"
function is called.

Hardware
Interrupts

(Hwi)

Software
Interrupts

(Swi)
 up to 32 levels

Tasks
up to 32 levels

Background thread
(Idle)

Clock
Functions

P
rio

rit
y

Timer
Functions
52 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Overview of Threading Modules
3.2.5 Yielding and Preemption

The SYS/BIOS thread schedulers run the highest-priority thread that is ready to run except in the
following cases:

• The thread that is running disables some or all hardware interrupts temporarily with Hwi_disable() or
Hwi_disableInterrupt(), preventing hardware ISRs from running.

• The thread that is running disables Swis temporarily with Swi_disable(). This prevents any higher-
priority Swi from preempting the current thread. It does not prevent Hwis from preempting the current
thread.

• The thread that is running disables task scheduling temporarily with Task_disable(). This prevents
any higher-priority task from preempting the current task. It does not prevent Hwis and Swis from
preempting the current task.

• If a lower priority task shares a gating resource with a higher task and changes its state to pending,
the higher priority task may effectively have its priority set to that of the lower priority task. This is
called Priority Inversion and is described in Section 4.3.3.

Both Hwis and Swis can interact with the SYS/BIOS task scheduler. When a task is blocked, it is often
because the task is pending on a semaphore which is unavailable. Semaphores can be posted from Hwis
and Swis as well as from other tasks. If a Hwi or Swi posts a semaphore to unblock a pending task, the
processor switches to that task if that task has a higher priority than the currently running task (after the
Hwi or Swi completes).

When running either a Hwi or Swi, SYS/BIOS uses a dedicated system interrupt stack, called the system
stack (sometimes called the ISR stack). Each task uses its own private stack. Therefore, if there are no
Tasks in the system, all threads share the same system stack. For performance reasons, sometimes it is
advantageous to place the system stack in precious fast memory. See Section 3.4.3 for information about
system stack size and Section 3.5.3 for information about task stack size.

Table 3-2 shows what happens when one type of thread is running (top row) and another thread becomes
ready to run (left column). The action shown is that of the newly posted (ready to run) thread.

Table 3-2. Thread Preemption

* On some targets, hardware interrupts can be individually enabled and disabled. This is not true on all
targets. Also, some targets have controllers that support hardware interrupt prioritization, in which case
a Hwi can only be preempted by a higher-priority Hwi.

Running Thread

Newly Posted Thread Hwi Swi Task Idle

Enabled Hwi Preempts if
enabled*

Preempts Preempts Preempts

Disabled Hwi Waits for
reenable

Waits for
reenable

Waits for
reenable

Waits for
reenable

Enabled, higher-priority Swi Waits Preempts Preempts Preempts

Lower-priority Swi Waits Waits Preempts Preempts

Enabled, higher-priority Task Waits Waits Preempts Preempts

Low-priority Task Waits Waits Waits Preempts
SPRUEX3O—October 2014 Threading Modules 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Overview of Threading Modules www.ti.com
Note that Table 3-2 shows the results if the type of thread that is posted is enabled. If that thread type is
disabled (for example, by Task_disable), a thread cannot run in any case until its thread type is
reenabled.

Figure 3-2 shows the execution graph for a scenario in which Swis and Hwis are enabled (the default),
and a Hwi posts a Swi whose priority is higher than that of the Swi running when the interrupt occurs.
Also, a second Hwi occurs while the first ISR is running and preempts the first ISR.

Figure 3-2. Preemption Scenario

In Figure 3-2, the low-priority Swi is asynchronously preempted by the Hwis. The first Hwi posts a higher-
priority Swi, which is executed after both Hwis finish executing.

Here is sample pseudo-code for the example depicted in Figure 3-2:

backgroundThread()

{

 Swi_post(Swi_B) /* priority = 5 */

}

Hwi_1 ()

{

 . . .

}

Hwi_2 ()

{

 Swi_post(Swi_A) /* priority = 7 */

}

B
ac

kg
ro

un
d

po
st

s
S

w
i B

Time

Thread Priority

Hardware interrupt 1
(Hwi 1)

Hardware interrupt 2
(Hwi 2)

Software interrupt A
(Swi A)

Software interrupt B
(Swi B)

Background
(Idle)

Events

In
cr

ea
si

ng
 P

rio
rit

y

H
w

i 2
 o

cc
ur

s

H
w

i 2
 p

os
ts

S
w

i A

H
w

i 1
 o

cc
ur

s

H
w

i 1
 fi

ni
sh

es

H
w

i 2
 fi

ni
sh

es

S
w

i A
 fi

ni
sh

es

S
w

i B
 fi

ni
sh

es

Swi A ready

background preempted

Swi B preempted

preempted
54 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Overview of Threading Modules
3.2.6 Hooks

Hwi, Swi, and Task threads optionally provide points in a thread's life cycle to insert user code for
instrumentation, monitoring, or statistics gathering purposes. Each of these code points is called a "hook"
and the user function provided for the hook is called a "hook function".

The following hook functions can be set for the various thread types:

Table 3–3. Hook Functions by Thread Type

Hooks are declared as a set of hook functions called "hook sets". You do not need to define all hook
functions within a set, only those that are required by the application.

Hook functions can only be declared statically (in a configuration script) so that they may be efficiently
invoked when provided and result in no runtime overhead when a hook function is not provided.

Except for the Register hook, all hook functions are invoked with a handle to the object associated with
that thread as its argument (that is, a Hwi object, a Swi object, or a Task object). Other arguments are
provided for some thread-type-specific hook functions.

You can define as many hook sets as necessary for your application. When more than one hook set is
defined, the individual hook functions within each set are invoked in hook ID order for a particular hook
type. For example, during Task_create() the order that the Create hook within each Task hook set is
invoked is the order in which the Task hook sets were originally defined.

The argument to a thread's Register hook (which is invoked only once) is an index (the "hook ID")
indicating the hook set's relative order in the hook function calling sequence.

Each set of hook functions has a unique associated "hook context pointer". This general-purpose pointer
can be used by itself to hold hook set specific information, or it can be initialized to point to a block of
memory allocated by the Create hook function within a hook set if more space is required for a particular
application.

An individual hook function obtains the value of its associated context pointer through the following
thread-type-specific APIs: Hwi_getHookContext(), Swi_getHookContext(), and Task_getHookContext().
Corresponding APIs for initializing the context pointers are also provided: Hwi_setHookContext(),
Swi_setHookContext(), and Task_setHookContext(). Each of these APIs take the hook ID as an
argument.

Thread Type Hook Functions

Hwi Register, Create, Begin, End, and Delete. See Section 3.3.3.

Swi Register, Create, Ready, Begin, End, and Delete. See Section 3.4.8.

Task Register, Create, Ready, Switch, Exit, and Delete. See Section 3.5.5.
SPRUEX3O—October 2014 Threading Modules 55
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Hardware Interrupts www.ti.com
The following diagram shows an application with three Hwi hook sets:

The hook context pointers are accessed using Hwi_getHookContext() using the index provided to the
three Register hook functions.

Just prior to invoking your ISR functions, the Begin Hook functions are invoked in the following order:

1. beginHookFunc0();

2. beginHookFunc1();

3. beginHookFunc2();

Likewise, upon return from your ISR functions the End Hook functions are invoked in the following order:

1. endHookFunc0();

2. endHookFunc1();

3. endHookFunc2();

3.3 Hardware Interrupts

Hardware interrupts (Hwis) handle critical processing that the application must perform in response to
external asynchronous events. The SYS/BIOS target/device specific Hwi modules are used to manage
hardware interrupts. See the video introducing Hwis for an overview.

In a typical embedded system, hardware interrupts are triggered either by on-device peripherals or by
devices external to the processor. In both cases, the interrupt causes the processor to vector to the ISR
address.

Any interrupt processing that may invoke SYS/BIOS APIs that affect Swi and Task scheduling must be
written in C or C++. The HWI_enter()/HWI_exit() macros provided in earlier versions of SYS/BIOS for
calling assembly language ISRs are no longer provided.

registerHookFunc0()
createHookFunc0()
beginHookFunc0()
endHookFunc0()
deleteHookFunc0()

Hwi Hook Set [0]

registerHookFunc1()
createHookFunc1()
beginHookFunc1()
endHookFunc1()
deleteHookFunc1()

Hwi Hook Set [1]

hookContextPtr[0]

hookContextPtr[1]

hookContextPtr[2]

registerHookFunc2()
createHookFunc2()
beginHookFunc2()
endHookFunc2()
deleteHookFunc2()

Hwi Hook Set [2]

Hwi_getHookContext(0)

Hwi_getHookContext(1)

Hwi_getHookContext(2)
56 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://processors.wiki.ti.com/images/b/b2/Hwis.pdf

www.ti.com Hardware Interrupts
Assembly language ISRs that do not interact with SYS/BIOS can be specified with Hwi_plug(). Such ISRs
must do their own context preservation. They may use the "interrupt" keyword, C functions, or assembly
language functions.

All hardware interrupts run to completion. If a Hwi is posted multiple times before its ISR has a chance to
run, the ISR runs only one time. For this reason, you should minimize the amount of code performed by
a Hwi function.

If interrupts are globally enabled—that is, by calling Hwi_enable()—an ISR can be preempted by any
interrupt that has been enabled.

Hwis must not use the Chip Support Library (CSL) for the target. Instead, see Chapter 8 for a description
of Hardware Abstraction Layer APIs.

Associating an ISR function with a particular interrupt is done by creating a Hwi object.

3.3.1 Creating Hwi Objects

The Hwi module maintains a table of pointers to Hwi objects that contain information about each Hwi
managed by the dispatcher (or by generated interrupt stubs on platforms for which the Hwi dispatcher is
not provided, such as the MSP430). To create a Hwi object dynamically, use calls similar to these:

Here, hwi0 is a handle to the created Hwi object, id is the interrupt number being defined, hwiFunc is the
name of the function associated with the Hwi, and hwiParams is a structure that contains Hwi instance
parameters (enable/restore masks, the Hwi function argument, etc). Here, hwiParams.arg is set to 5. If
NULL is passed instead of a pointer to an actual Hwi_Params struct, a default set of parameters is used.
The "eb" is an error block that you can use to handle errors that may occur during Hwi object creation.

The corresponding static configuration Hwi object creation syntax is:

Here, the "hwiParams = new Hwi.Params" statement does the equivalent of creating and initializing the
hwiParams structure with default values. In the static configuration world, no error block (eb) is required
for the "create" function. The "Program.global.hwi0" name becomes a a runtime-accessible handle
(symbol name = "hwi0") to the statically-created Hwi object.

Hwi_Handle hwi0;

Hwi_Params hwiParams;

Error_Block eb;

Error_init(&eb);

Hwi_Params_init(&hwiParams);

hwiParams.arg = 5;

hwi0 = Hwi_create(id, hwiFunc, &hwiParams, &eb);

if (hwi0 == NULL) {

 System_abort("Hwi create failed");

}

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

var hwiParams = new Hwi.Params;

hwiParams.arg = 5;

Program.global.hwi0 = Hwi.create(id, '&hwiFunc', hwiParams);
SPRUEX3O—October 2014 Threading Modules 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Hardware Interrupts www.ti.com
3.3.2 Hardware Interrupt Nesting and System Stack Size

When a Hwi runs, its function is invoked using the system stack. In the worst case, each Hwi can result
in a nesting of the scheduling function (that is, the lowest priority Hwi is preempted by the next highest
priority Hwi, which, in turn, is preempted by the next highest, …). This results in an increasing stack size
requirement for each Hwi priority level actually used.

The default system stack size is 4096 bytes. You can set the system stack size by adding the following
line to your config script:

The following table shows the amount of system stack required to absorb the worst-case Hwi interrupt
nesting. This first number is the amount of system stack space required for the first priority level on a
target. The second number shows the amount of stack space required for each subsequent priority level
used in the application.

Table 3–4. System Stack Use for Hwi Nesting by Target Family

See Section 3.4.3 for information about system stack use by software interrupts and Section 3.5.3 for
information about task stack size.

3.3.3 Hwi Hooks

The Hwi module supports the following set of Hook functions:

• Register. A function called before any statically created Hwis are initialized at runtime. The register
hook is called at boot time before main() and before interrupts are enabled.

• Create. A function called when a Hwi is created. This includes Hwis that are created statically and
those created dynamically using Hwi_create().

• Begin. A function called just prior to running a Hwi ISR function.

Program.stack = yourStackSize;

Target Family
Stack Consumed by
First Hwi

Stack Consumed by
Subsequent Nested Hwis Units

M3 176 80 8-bit bytes

MSP430 36 26 8-bit bytes

MSP430X 38 46 8-bit bytes

MSP430X_small 36 26 8-bit bytes

C674 68 384 8-bit bytes

C64P 68 384 8-bit bytes

C64T 68 208 8-bit bytes

C28_float 65 60 16-bit words

C28_large 65 46 16-bit words

Arm9 136 80 8-bit bytes

A8F 136 144 8-bit bytes
58 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Hardware Interrupts
• End. A function called just after a Hwi ISR function finishes.

• Delete. A function called when a Hwi is deleted at runtime with Hwi_delete().

The following HookSet structure type definition encapsulates the hook functions supported by the Hwi
module:

Hwi Hook functions can only be configured statically.

3.3.3.1 Register Function

The register function is provided to allow a hook set to store its corresponding hook ID. This ID can be
passed to Hwi_setHookContext() and Hwi_getHookContext() to set or get hook-specific context. The
Register function must be specified if the hook implementation needs to use Hwi_setHookContext() or
Hwi_getHookContext().

The registerFxn hook function is called during system initialization before interrupts have been enabled.

The Register function has the following signature:

3.3.3.2 Create and Delete Functions

The Create and Delete functions are called whenever a Hwi is created or deleted. The Create function is
passed an Error_Block that is to be passed to Memory_alloc() for applications that require additional
context storage space.

The createFxn and deleteFxn functions are called with interrupts enabled (unless called at boot time or
from main()).

These functions have the following signatures:

3.3.3.3 Begin and End Functions

The Begin and End hook functions are called with interrupts globally disabled. As a result, any hook
processing function contributes to overall system interrupt response latency. In order to minimize this
impact, carefully consider the processing time spent in a Hwi beginFxn or endFxn hook function.

The beginFxn is invoked just prior to calling the ISR function. The endFxn is invoked immediately after
the return from the ISR function.

typedef struct Hwi_HookSet {

 Void (*registerFxn)(Int); /* Register Hook */

 Void (*createFxn)(Handle, Error.Block *); /* Create Hook */

 Void (*beginFxn)(Handle); /* Begin Hook */

 Void (*endFxn)(Handle); /* End Hook */

 Void (*deleteFxn)(Handle); /* Delete Hook */

};

Void registerFxn(Int id);

Void createFxn(Hwi_Handle hwi, Error_Block *eb);

Void deleteFxn(Hwi_Handle hwi);
SPRUEX3O—October 2014 Threading Modules 59
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Hardware Interrupts www.ti.com
These functions have the following signatures:

When more than one Hook Set is defined, the individual hook functions of a common type are invoked in
hook ID order.

3.3.3.4 Hwi Hooks Example

The following example application uses two Hwi hook sets. The Hwi associated with a statically-created
Timer is used to exercise the Hwi hook functions. This example demonstrates how to read and write the
Hook Context Pointer associated with each hook set.

The configuration script and program output are shown after the C code listing.

This is the C code for the example:

Void beginFxn(Hwi_Handle hwi);

Void endFxn(Hwi_Handle hwi);

/* ======== HwiHookExample.c ========

 * This example demonstrates basic Hwi hook usage. */

#include <xdc/std.h>

#include <xdc/runtime/Error.h>

#include <xdc/runtime/System.h>

#include <xdc/runtime/Timestamp.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

#include <ti/sysbios/hal/Timer.h>

#include <ti/sysbios/hal/Hwi.h>

extern Timer_Handle myTimer;

volatile Bool myEnd2Flag = FALSE;

Int myHookSetId1, myHookSetId2;

Error_Block eb;

Error_init(&eb);

/* HookSet 1 functions */

/* ======== myRegister1 ========

 * invoked during Hwi module startup before main()

 * for each HookSet */

Void myRegister1(Int hookSetId)

{

 System_printf("myRegister1: assigned hookSet Id = %d\n", hookSetId);

 myHookSetId1 = hookSetId;

}

60 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Hardware Interrupts
/* ======== myCreate1 ========

 * invoked during Hwi module startup before main()

 * for statically created Hwis */

Void myCreate1(Hwi_Handle hwi, Error_Block *eb)

{

 Ptr pEnv;

 pEnv = Hwi_getHookContext(hwi, myHookSetId1);

 /* pEnv should be 0 at this point. If not, there's a bug. */

 System_printf("myCreate1: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Hwi_setHookContext(hwi, myHookSetId1, (Ptr)0xdead1);

}

/* ======== myBegin1 ========

 * invoked before Timer Hwi func */

Void myBegin1(Hwi_Handle hwi)

{

 Ptr pEnv;

 pEnv = Hwi_getHookContext(hwi, myHookSetId1);

 System_printf("myBegin1: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Hwi_setHookContext(hwi, myHookSetId1, (Ptr)0xbeef1);

}

/* ======== myEnd1 ========

 * invoked after Timer Hwi func */

Void myEnd1(Hwi_Handle hwi)

{

 Ptr pEnv;

 pEnv = Hwi_getHookContext(hwi, myHookSetId1);

 System_printf("myEnd1: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Hwi_setHookContext(hwi, myHookSetId1, (Ptr)0xc0de1);

}

/* HookSet 2 functions */

/* ======== myRegister2 ========

 * invoked during Hwi module startup before main

 * for each HookSet */

Void myRegister2(Int hookSetId)

{

 System_printf("myRegister2: assigned hookSet Id = %d\n", hookSetId);

 myHookSetId2 = hookSetId;

}

SPRUEX3O—October 2014 Threading Modules 61
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Hardware Interrupts www.ti.com
/* ======== myCreate2 ========

 * invoked during Hwi module startup before main

 * for statically created Hwis */

Void myCreate2(Hwi_Handle hwi, Error_Block *eb)

{

 Ptr pEnv;

 pEnv = Hwi_getHookContext(hwi, myHookSetId2);

 /* pEnv should be 0 at this point. If not, there's a bug. */

 System_printf("myCreate2: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Hwi_setHookContext(hwi, myHookSetId2, (Ptr)0xdead2);

}

/* ======== myBegin2 ========

 * invoked before Timer Hwi func */

Void myBegin2(Hwi_Handle hwi)

{

 Ptr pEnv;

 pEnv = Hwi_getHookContext(hwi, myHookSetId2);

 System_printf("myBegin2: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Hwi_setHookContext(hwi, myHookSetId2, (Ptr)0xbeef2);

}

/* ======== myEnd2 ========

 * invoked after Timer Hwi func */

Void myEnd2(Hwi_Handle hwi)

{

 Ptr pEnv;

 pEnv = Hwi_getHookContext(hwi, myHookSetId2);

 System_printf("myEnd2: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Hwi_setHookContext(hwi, myHookSetId2, (Ptr)0xc0de2);

 myEnd2Flag = TRUE;

}

/* ======== myTimerFunc ========

 * Timer interrupt handler */

Void myTimerFunc(UArg arg)

{

 System_printf("Entering myTimerHwi\n");

}

62 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Hardware Interrupts
This is the configuration script for the example:

/* ======== myTaskFunc ======== */

Void myTaskFunc(UArg arg0, UArg arg1)

{

 System_printf("Entering myTask.\n");

 Timer_start(myTimer);

 /* wait for timer interrupt and myEnd2 to complete */

 while (!myEnd2Flag) {

 ;

 }

 System_printf("myTask exiting ...\n");

}

/* ======== myIdleFunc ======== */

Void myIdleFunc()

{

 System_printf("Entering myIdleFunc().\n");

 System_exit(0);

}

/* ======== main ======== */

Int main(Int argc, Char* argv[])

{

 System_printf("Starting HwiHookExample...\n");

 BIOS_start();

 return (0);

}

/* pull in Timestamp to print time in hook functions */

xdc.useModule('xdc.runtime.Timestamp');

/* Disable Clock so that ours is the only Timer allocated */

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.clockEnabled = false;

var Idle = xdc.useModule('ti.sysbios.knl.Idle');

Idle.addFunc('&myIdleFunc');

/* Create myTask with default task params */

var Task = xdc.useModule('ti.sysbios.knl.Task');

var taskParams = new Task.Params();

Program.global.myTask = Task.create('&myTaskFunc', taskParams);
SPRUEX3O—October 2014 Threading Modules 63
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Hardware Interrupts www.ti.com
The program output is as follows:

/* Create myTimer as source of Hwi */

var Timer = xdc.useModule('ti.sysbios.hal.Timer');

var timerParams = new Timer.Params();

timerParams.startMode = Timer.StartMode_USER;

timerParams.runMode = Timer.RunMode_ONESHOT;

timerParams.period = 1000; // 1ms

Program.global.myTimer = Timer.create(Timer.ANY, "&myTimerFunc", timerParams);

/* Define and add two Hwi HookSets

 * Notice, no deleteFxn is provided.

 */

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

/* Hook Set 1 */

Hwi.addHookSet({

 registerFxn: '&myRegister1',

 createFxn: '&myCreate1',

 beginFxn: '&myBegin1',

 endFxn: '&myEnd1',

});

/* Hook Set 2 */

Hwi.addHookSet({

 registerFxn: '&myRegister2',

 createFxn: '&myCreate2',

 beginFxn: '&myBegin2',

 endFxn: '&myEnd2',

});

myRegister1: assigned hookSet Id = 0

myRegister2: assigned hookSet Id = 1

myCreate1: pEnv = 0x0, time = 0

myCreate2: pEnv = 0x0, time = 0

Starting HwiHookExample...

Entering myTask.

myBegin1: pEnv = 0xdead1, time = 75415

myBegin2: pEnv = 0xdead2, time = 75834

Entering myTimerHwi

myEnd1: pEnv = 0xbeef1, time = 76427

myEnd2: pEnv = 0xbeef2, time = 76830

myTask exiting ...

Entering myIdleFunc().
64 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Software Interrupts
3.4 Software Interrupts

Software interrupts are patterned after hardware ISRs. The Swi module in SYS/BIOS provides a software
interrupt capability. Software interrupts are triggered programmatically, through a call to a SYS/BIOS API
such as Swi_post(). Software interrupts have priorities that are higher than tasks but lower than hardware
interrupts. See the video introducing Swis for an overview.

Note: The Swi module should not be confused with the SWI instruction that exists on many
processors. The SYS/BIOS Swi module is independent from any target/device-specific
software interrupt features.

Swi threads are suitable for handling application tasks that occur at slower rates or are subject to less
severe real-time deadlines than those of Hwis.

The SYS/BIOS APIs that can trigger or post a Swi are:

• Swi_andn()
• Swi_dec()
• Swi_inc()
• Swi_or()
• Swi_post()

The Swi manager controls the execution of all Swi functions. When the application calls one of the APIs
above, the Swi manager schedules the function corresponding to the specified Swi for execution. To
handle Swi functions, the Swi manager uses Swi objects.

If a Swi is posted, it runs only after all pending Hwis have run. A Swi function in progress can be
preempted at any time by a Hwi; the Hwi completes before the Swi function resumes. On the other hand,
Swi functions always preempt tasks. All pending Swis run before even the highest priority task is allowed
to run. In effect, a Swi is like a task with a priority higher than all ordinary tasks.

Note: Two things to remember about Swi functions are:

A Swi function runs to completion unless it is interrupted by a Hwi or preempted by a
higher-priority Swi.

Any hardware ISR that triggers or posts a Swi must have been invoked by the Hwi
dispatcher (or by generated interrupt stubs on platforms for which the Hwi dispatcher is
not provided, such as the MSP430). That is, the Swi must be triggered by a function
called from a Hwi object.

3.4.1 Creating Swi Objects

As with many other SYS/BIOS objects, you can create Swi objects either dynamically—with a call to
Swi_create()—or statically in the configuration. Swis you create dynamically can also be deleted during
program execution.

To add a new Swi to the configuration, create a new Swi object in the configuration script. Set the function
property for each Swi to run a function when the object is triggered by the application. You can also
configure up to two arguments to be passed to each Swi function.
SPRUEX3O—October 2014 Threading Modules 65
Submit Documentation Feedback

http://focus.ti.com/download/trng/multimedia/dsp/OLT110026/swis.mp4
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Software Interrupts www.ti.com
As with all modules with instances, you can determine from which memory segment Swi objects are
allocated. Swi objects are accessed by the Swi manager when Swis are posted and scheduled for
execution.

For complete reference information on the Swi API, configuration, and objects, see the Swi module in the
"ti.sysbios.knl" package documentation in the online documentation. (For information on running online
help, see Section 1.6.1, Using the API Reference Help System, page 23.)

To create a Swi object dynamically, use a call with this syntax:

Here, swi0 is a handle to the created Swi object, swiFunc is the name of the function associated with the
Swi, and swiParams is a structure of type Swi_Params that contains the Swi instance parameters
(priority, arg0, arg1, etc). If NULL is passed instead of a pointer to an actual Swi_Params struct, a default
set of parameters is used. "eb" is an error block you can use to handle errors that may occur during Swi
object creation.

Note: Swi_create() cannot be called from the context of a Hwi or another Swi thread.
Applications that dynamically create Swi threads must do so from either the context of
the main() function or a Task thread.

To create a Swi object in a configuration file, use statements like these:

3.4.2 Setting Software Interrupt Priorities

There are different priority levels among Swis. You can create as many Swis as your memory constraints
allow for each priority level. You can choose a higher priority for a Swi that handles a thread with a shorter
real-time deadline, and a lower priority for a Swi that handles a thread with a less critical execution
deadline.

The number of Swi priorities supported within an application is configurable up to a maximum 32. The
maximum number of priority levels is 16 for MSP430 and C28x. The default number of priority levels is 16. The
lowest priority level is 0. Thus, by default, the highest priority level is 15.

You cannot sort Swis within a single priority level. They are serviced in the order in which they were
posted.

Swi_Handle swi0;

Swi_Params swiParams;

Error_Block eb;

Error_init(&eb);

Swi_Params_init(&swiParams);

swi0 = Swi_create(swiFunc, &swiParams, &eb);

if (swi0 == NULL) {

 System_abort("Swi create failed");

}

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

var swiParams = new Swi.Params();

program.global.swi0 = Swi.create(swiParams);
66 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Software Interrupts
3.4.3 Software Interrupt Priorities and System Stack Size

When a Swi is posted, its associated Swi function is invoked using the system stack. While you can have
up to 32 Swi priority levels on some targets, keep in mind that in the worst case, each Swi priority level
can result in a nesting of the Swi scheduling function (that is, the lowest priority Swi is preempted by the
next highest priority Swi, which, in turn, is preempted by the next highest, …). This results in an increasing
stack size requirement for each Swi priority level actually used. Thus, giving Swis the same priority level
is more efficient in terms of stack size than giving each Swi a separate priority.

The default system stack size is 4096 bytes. You can set the system stack size by adding the following
line to your config script:

Note: The Clock module creates and uses a Swi with the maximum Swi priority (that is, if
there are 16 Swi priorities, the Clock Swi has priority 15).

The following table shows the amount of system stack required to absorb the worst-case Swi interrupt
nesting. This first number is the amount of system stack space required for the first priority level on a
target. The second number shows the amount of stack space required for each subsequent priority level
used in the application.

Table 3–5. System Stack Use for Swi Nesting by Target Family

See Section 3.3.2 for information about system stack use by Hwis and Section 3.5.3 for information about
task stack size.

Program.stack = yourStackSize;

Target Family
Stack Consumed by
First Priority Level

Stack Consumed by
Subsequent Priority Levels Units

M3 104 88 8-bit bytes

MSP430 78 32 8-bit bytes

MSP430X 90 60 8-bit bytes

MSP430X_small 78 32 8-bit bytes

C674 108 120 8-bit bytes

C64P 108 120 8-bit bytes

C64T 108 120 8-bit bytes

C28_float 83 40 16-bit words

C28_large 81 34 16-bit words

Arm9 104 80 8-bit bytes

A8F 160 72 8-bit bytes
SPRUEX3O—October 2014 Threading Modules 67
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Software Interrupts www.ti.com
3.4.4 Execution of Software Interrupts

Swis can be scheduled for execution with a call to Swi_andn(), Swi_dec(), Swi_inc(), Swi_or(), and
Swi_post(). These calls can be used virtually anywhere in the program—Hwi functions, Clock functions,
Idle functions, or other Swi functions.

When a Swi is posted, the Swi manager adds it to a list of posted Swis that are pending execution. The
Swi manager checks whether Swis are currently enabled. If they are not, as is the case inside a Hwi
function, the Swi manager returns control to the current thread.

If Swis are enabled, the Swi manager checks the priority of the posted Swi object against the priority of
the thread that is currently running. If the thread currently running is the background Idle Loop, a Task,
or a lower priority Swi, the Swi manager removes the Swi from the list of posted Swi objects and switches
the CPU control from the current thread to start execution of the posted Swi function.

If the thread currently running is a Swi of the same or higher priority, the Swi manager returns control to
the current thread, and the posted Swi function runs after all other Swis of higher priority or the same
priority that were previously posted finish execution.

When multiple Swis of the same priority level have been posted, their respective Swi functions are
executed in the order the Swis were posted.

There are two important things to remember about Swi:

• When a Swi starts executing, it must run to completion without blocking.

• When called from within a hardware ISR, the code calling any Swi function that can trigger or post a
Swi must be invoked by the Hwi dispatcher (or by generated interrupt stubs on platforms for which
the Hwi dispatcher is not provided, such as the MSP430). That is, the Swi must be triggered by a
function called from a Hwi object.

Swi functions can be preempted by threads of higher priority (such as a Hwi or a Swi of higher priority).
However, Swi functions cannot block. You cannot suspend a Swi while it waits for something—like a
device—to be ready.

If a Swi is posted multiple times before the Swi manager has removed it from the posted Swi list, its Swi
function executes only once, much like a Hwi is executed only once if the Hwi is triggered multiple times
before the CPU clears the corresponding interrupt flag bit in the interrupt flag register. (See Section 3.4.5
for more information on how to handle Swis that are posted multiple times before they are scheduled for
execution.)

Applications should not make any assumptions about the order in which Swi functions of equal priority
are called. However, a Swi function can safely post itself (or be posted by another interrupt). If more than
one is pending, all Swi functions are called before any tasks run.

3.4.5 Using a Swi Object’s Trigger Variable

Each Swi object has an associated 32-bit trigger variable for C6x targets and a 16-bit trigger variable for
C5x, C28x, and MSP430 targets. This is used either to determine whether to post the Swi or to provide
values that can be evaluated within the Swi function.

Swi_post(), Swi_or(), and Swi_inc() post a Swi object unconditionally:

• Swi_post() does not modify the value of the Swi object trigger when it is used to post a Swi.

• Swi_or() sets the bits in the trigger determined by a mask that is passed as a parameter, and then
posts the Swi.
68 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Software Interrupts
• Swi_inc() increases the Swi's trigger value by one before posting the Swi object.

• Swi_andn() and Swi_dec() post a Swi object only if the value of its trigger becomes 0:

• Swi_andn() clears the bits in the trigger determined by a mask passed as a parameter.

• Swi_dec() decreases the value of the trigger by one.

Table 3-6 summarizes the differences between these functions.

Table 3-6. Swi Object Function Differences

The Swi trigger allows you to have tighter control over the conditions that should cause a Swi function to
be posted, or the number of times the Swi function should be executed once the Swi is posted and
scheduled for execution.

To access the value of its trigger, a Swi function can call Swi_getTrigger(). Swi_getTrigger() can be called
only from the Swi object’s function. The value returned by Swi_getTrigger() is the value of the trigger
before the Swi object was removed from the posted Swi queue and the Swi function was scheduled for
execution.

When the Swi manager removes a pending Swi object from the posted object’s queue, its trigger is reset
to its initial value. The initial value of the trigger should be set in the application’s configuration script. If
while the Swi function is executing, the Swi is posted again, its trigger is updated accordingly. However,
this does not affect the value returned by Swi_getTrigger() while the Swi function executes. That is, the
trigger value that Swi_getTrigger() returns is the latched trigger value when the Swi was removed from
the list of pending Swis. The Swi's trigger however, is immediately reset after the Swi is removed from
the list of pending Swis and scheduled for execution. This gives the application the ability to keep
updating the value of the Swi trigger if a new posting occurs, even if the Swi function has not finished its
execution.

For example, if a Swi object is posted multiple times before it is removed from the queue of posted Swis,
the Swi manager schedules its function to execute only once. However, if a Swi function must always run
multiple times when the Swi object is posted multiple times, Swi_inc() should be used to post the Swi as

Action

Treats
Trigger as
Bitmask

Treats
Trigger as
Counter

Does not
Modify
Trigger

Always post Swi_or() Swi_inc() Swi_post()

Post if it becomes zero Swi_andn() Swi_dec() —
SPRUEX3O—October 2014 Threading Modules 69
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Software Interrupts www.ti.com
shown in Figure 3-3.

When a Swi has been posted using Swi_inc(), once the Swi manager calls the corresponding Swi
function for execution, the Swi function can access the Swi object trigger to know how many times it was
posted before it was scheduled to run, and proceed to execute the same function as many times as the
value of the trigger.

Figure 3-3. Using Swi_inc() to Post a Swi

Program Configuration
Swi object mySwi,

Function mySwiFxn

Program
Execution

mySwiFxn()
{ . . .
 repetitions = SWI_getTrigger();
 while (repetitions --) {
 'run Swi function'
 }
...
}

Trigger
Value

Value returned by
Swi_getTrigger

0

1

2

0

0

1

1

2

2

2

2

-- Calls Swi_inc(&mySwi)
-- mySwi is posted

-- Calls Swi_inc(&mySwi)
-- mySwi is posted again before it is
scheduled for execution

-- Swi manager removes mySwi from
posted Swi queue
-- mySwiFxn is scheduled for execution

-- mySwiFxn begins execution

-- mySwiFxn is preempted by ISR that
calls Swi_inc(&mySwi)
-- mySwi is added to posted Swi queue

-- mySwiFxn continues execution

not callable
outside Swi

not callable
outside Swi

not callable
outside Swi
70 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Software Interrupts
If more than one event must always happen for a given Swi to be triggered, Swi_andn() should be used
to post the corresponding Swi object as shown in Figure 3-4. For example, if a Swi must wait for input
data from two different devices before it can proceed, its trigger should have two set bits when the Swi
object is configured. When both functions that provide input data have completed their tasks, they should
both call Swi_andn() with complementary bitmasks that clear each of the bits set in the Swi trigger default
value. Hence, the Swi is posted only when data from both processes is ready.

Figure 3-4. Using Swi_andn() to Post a Swi

If the program execution requires that multiple occurrences of the same event must take place before a
Swi is posted, Swi_dec() should be used to post the Swi as shown in Figure 3-5. By configuring the Swi
trigger to be equal to the number of occurrences of the event before the Swi should be posted and calling
Swi_dec() every time the event occurs, the Swi is posted only after its trigger reaches 0; that is, after the
event has occurred a number of times equal to the trigger value.

Figure 3-5. Using Swi_dec() to Post a Swi

not callable
outside Swi

Program Configuration
Swi object mySwi,

Function mySwiFxn

Program
Execution

Trigger
Value

Value returned by
Swi_getTrigger

-- Calls Swi_andn(&mySwi, 0x1)
-- mySwi is not posted

-- Calls Swi_andn(&mySwi, 0x2)
-- mySwi is posted

-- Swi manager removes mySwi from
posted Swi queue
-- mySwiFxn is scheduled for execution

-- mySwiFxn begins execution

0 ... 1 1

0 ... 1 0

0 ... 1 1

0 ... 0 0

0 ... 1 1

0 ... 0 0

0 ... 0 0

not callable
outside Swi

not callable
outside Swi

Program Configuration
Swi object mySwi,

Function mySwiFxn

Program
Execution

Trigger
Value

Value returned by
Swi_getTrigger

2

1

0

2

2

0

0

-- Calls Swi_dec(&mySwi)
-- mySwi is not posted

-- Calls Swi_dec(&mySwi)
-- mySwi is posted

-- Swi manager removes mySwi from
posted Swi queue
-- mySwiFxn is scheduled for execution

-- mySwiFxn begins execution

not callable
outside Swi

not callable
outside Swi

not callable
outside Swi
SPRUEX3O—October 2014 Threading Modules 71
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Software Interrupts www.ti.com
In some situations the Swi function can call different functions depending on the event that posted it. In
that case the program can use Swi_or() to post the Swi object unconditionally when an event happens.
This is shown in Figure 3-6. The value of the bitmask used by Swi_or() encodes the event type that
triggered the post operation, and can be used by the Swi function as a flag that identifies the event and
serves to choose the function to execute.

Figure 3-6. Using Swi_or() to Post a Swi.

3.4.6 Benefits and Tradeoffs

There are several benefits to using Swis instead of Hwis:

• By modifying shared data structures in a Swi function instead of a Hwi, you can get mutual exclusion
by disabling Swis while a Task accesses the shared data structure (see page 73). This allows the
system to respond to events in real-time using Hwis. In contrast, if a Hwi function modified a shared
data structure directly, Tasks would need to disable Hwis to access data structures in a mutually
exclusive way. Obviously, disabling Hwis may degrade the performance of a real-time system.

• It often makes sense to break long ISRs into two pieces. The Hwi takes care of the extremely time-
critical operation and defers less critical processing to a Swi function by posting the Swi within the
Hwi function.

Remember that a Swi function must complete before any blocked Task is allowed to run.

not callable
outside Swi

Program Configuration
Swi object mySwi,

Function mySwiFxn

Program
Execution

Trigger
Value

Value returned by
Swi_getTrigger

-- Calls Swi_or(&mySwi, 0x1)
-- mySwi is posted

-- mySwiFxn is executed

-- Calls Swi_or(&mySwi, 0x2)
-- mySwi is posted

-- mySwiFxn is executed

0 ... 0 0

0 ... 0 1
not callable
outside Swi

not callable
outside Swi

0 ... 0 1

mySwiFxn()
{
 ...
 eventType = Swi_getTrigger();
 switch (eventType) {
 case '0x1': 'run alg 1'
 case '0x2': 'run alg 2'
 case '0x3': 'run alg 3'
 }
 ...
}

0 ... 0 0

0 ... 1 0

0 ... 0 0 0 ... 1 0
72 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Software Interrupts
3.4.7 Synchronizing Swi Functions

Within an Idle, Task, or Swi function, you can temporarily prevent preemption by a higher-priority Swi by
calling Swi_disable(), which disables all Swi preemption. To reenable Swi preemption, call Swi_restore().
Swis are enabled or disabled as a group. An individual Swi cannot be enabled or disabled on its own.

When SYS/BIOS finishes initialization and before the first task is called, Swis have been enabled. If an
application wishes to disable Swis, it calls Swi_disable() as follows:

The corresponding enable function is Swi_restore() where key is a value used by the Swi module to
determine if Swi_disable() has been called more than once.

This allows nesting of Swi_disable() / Swi_restore() calls, since only the outermost Swi_restore() call
actually enables Swis. In other words, a task can disable and enable Swis without having to determine if
Swi_disable() has already been called elsewhere.

When Swis are disabled, a posted Swi function does not run at that time. The interrupt is “latched” in
software and runs when Swis are enabled and it is the highest-priority thread that is ready to run.

To delete a dynamically created Swi, use Swi_delete(). The memory associated with Swi is freed.
Swi_delete() can only be called from the task level.

3.4.8 Swi Hooks

The Swi module supports the following set of Hook functions:

• Register. A function called before any statically created Swis are initialized at runtime. The register
hook is called at boot time before main() and before interrupts are enabled.

• Create. A function called when a Swi is created. This includes Swis that are created statically and
those created dynamically using Swi_create().

• Ready. A function called when any Swi becomes ready to run.

• Begin. A function called just prior to running a Swi function.

• End. A function called just after returning from a Swi function.

• Delete. A function called when a Swi is deleted at runtime with Swi_delete().

The following Swi_HookSet structure type definition encapsulates the hook functions supported by the
Swi module:

Swi Hook functions can only be configured statically.

When more than one Hook Set is defined, the individual hook functions of a common type are invoked in
hook ID order.

key = Swi_disable();

Swi_restore(key);

typedef struct Swi_HookSet {

 Void (*registerFxn)(Int); /* Register Hook */

 Void (*createFxn)(Handle, Error.Block *); /* Create Hook */

 Void (*readyFxn)(Handle); /* Ready Hook */

 Void (*beginFxn)(Handle); /* Begin Hook */

 Void (*endFxn)(Handle); /* End Hook */

 Void (*deleteFxn)(Handle); /* Delete Hook */

};
SPRUEX3O—October 2014 Threading Modules 73
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Software Interrupts www.ti.com
3.4.8.1 Register Function

The Register function is provided to allow a hook set to store its corresponding hook ID. This ID can be
passed to Swi_setHookContext() and Swi_getHookContext() to set or get hook-specific context. The
Register function must be specified if the hook implementation needs to use Swi_setHookContext() or
Swi_getHookContext().

The registerFxn function is called during system initialization before interrupts have been enabled.

The Register functions has the following signature:

3.4.8.2 Create and Delete Functions

The Create and Delete functions are called whenever a Swi is created or deleted. The Create function is
passed an Error_Block that is to be passed to Memory_alloc() for applications that require additional
context storage space.

The createFxn and deleteFxn functions are called with interrupts enabled (unless called at boot time or
from main()).

These functions have the following signatures.

3.4.8.3 Ready, Begin and End Functions

The Ready, Begin and End hook functions are called with interrupts enabled. The readyFxn function is
called when a Swi is posted and made ready to run. The beginFxn function is called right before the
function associated with the given Swi is run. The endFxn function is called right after returning from the
Swi function.

Both readyFxn and beginFxn hooks are provided because a Swi may be posted and ready but still
pending while a higher-priority thread completes.

These functions have the following signatures:

Void registerFxn(Int id);

Void createFxn(Swi_Handle swi, Error_Block *eb);

Void deleteFxn(Swi_Handle swi);

Void readyFxn(Swi_Handle swi);

Void beginFxn(Swi_Handle swi);

Void endFxn(Swi_Handle swi);
74 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Software Interrupts
3.4.8.4 Swi Hooks Example

The following example application uses two Swi hook sets. This example demonstrates how to read and
write the Hook Context Pointer associated with each hook set.

The configuration script and program output are shown after the C code listing.

This is the C code for the example:

/* ======== SwiHookExample.c ========

 * This example demonstrates basic Swi hook usage */

#include <xdc/std.h>

#include <xdc/runtime/Error.h>

#include <xdc/runtime/System.h>

#include <xdc/runtime/Timestamp.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

#include <ti/sysbios/hal/Timer.h>

#include <ti/sysbios/knl/Swi.h>

Swi_Handle mySwi;

Int myHookSetId1, myHookSetId2;

/* HookSet 1 functions */

/* ======== myRegister1 ========

 * invoked during Swi module startup before main

 * for each HookSet */

Void myRegister1(Int hookSetId)

{

 System_printf("myRegister1: assigned hookSet Id = %d\n", hookSetId);

 myHookSetId1 = hookSetId;

}

/* ======== myCreate1 ========

 * invoked during Swi_create for dynamically created Swis */

Void myCreate1(Swi_Handle swi, Error_Block *eb)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId1);

 /* pEnv should be 0 at this point. If not, there's a bug. */

 System_printf("myCreate1: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Swi_setHookContext(swi, myHookSetId1, (Ptr)0xdead1);

}

SPRUEX3O—October 2014 Threading Modules 75
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Software Interrupts www.ti.com
//* ======== myReady1 ========

 * invoked when Swi is posted */

Void myReady1(Swi_Handle swi)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId1);

 System_printf("myReady1: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Swi_setHookContext(swi, myHookSetId1, (Ptr)0xbeef1);

}

/* ======== myBegin1 ========

 * invoked just before Swi func is run */

Void myBegin1(Swi_Handle swi)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId1);

 System_printf("myBegin1: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Swi_setHookContext(swi, myHookSetId1, (Ptr)0xfeeb1);

}

/* ======== myEnd1 ========

 * invoked after Swi func returns */

Void myEnd1(Swi_Handle swi)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId1);

 System_printf("myEnd1: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Swi_setHookContext(swi, myHookSetId1, (Ptr)0xc0de1);

}

/* ======== myDelete1 ========

 * invoked upon Swi deletion */

Void myDelete1(Swi_Handle swi)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId1);

 System_printf("myDelete1: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

}

76 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Software Interrupts
/* HookSet 2 functions */

/* ======== myRegister2 ========

 * invoked during Swi module startup before main

 * for each HookSet */

Void myRegister2(Int hookSetId)

{

 System_printf("myRegister2: assigned hookSet Id = %d\n", hookSetId);

 myHookSetId2 = hookSetId;

}

/* ======== myCreate2 ========

 * invoked during Swi_create for dynamically created Swis */

Void myCreate2(Swi_Handle swi, Error_Block *eb)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId2);

 /* pEnv should be 0 at this point. If not, there's a bug. */

 System_printf("myCreate2: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Swi_setHookContext(swi, myHookSetId2, (Ptr)0xdead2);

}

/* ======== myReady2 ========

 * invoked when Swi is posted */

Void myReady2(Swi_Handle swi)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId2);

 System_printf("myReady2: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Swi_setHookContext(swi, myHookSetId2, (Ptr)0xbeef2);

}

/* ======== myBegin2 ========

 * invoked just before Swi func is run */

Void myBegin2(Swi_Handle swi)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId2);

 System_printf("myBegin2: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Swi_setHookContext(swi, myHookSetId2, (Ptr)0xfeeb2);

}

SPRUEX3O—October 2014 Threading Modules 77
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Software Interrupts www.ti.com
/* ======== myEnd2 ========

 * invoked after Swi func returns */

Void myEnd2(Swi_Handle swi)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId2);

 System_printf("myEnd2: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

 Swi_setHookContext(swi, myHookSetId2, (Ptr)0xc0de2);

}

/* ======== myDelete2 ========

 * invoked upon Swi deletion */

Void myDelete2(Swi_Handle swi)

{

 Ptr pEnv;

 pEnv = Swi_getHookContext(swi, myHookSetId2);

 System_printf("myDelete2: pEnv = 0x%x, time = %d\n", pEnv, Timestamp_get32());

}

/* ======== mySwiFunc ======== */

Void mySwiFunc(UArg arg0, UArg arg1)

{

 System_printf("Entering mySwi.\n");

}

/* ======== myTaskFunc ======== */

Void myTaskFunc(UArg arg0, UArg arg1)

{

 System_printf("Entering myTask.\n");

 System_printf("Posting mySwi.\n");

 Swi_post(mySwi);

 System_printf("Deleting mySwi.\n");

 Swi_delete(&mySwi);

 System_printf("myTask exiting ...\n");

}

/* ======== myIdleFunc ======== */

Void myIdleFunc()

{

 System_printf("Entering myIdleFunc().\n");

 System_exit(0);

}

78 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Software Interrupts
This is the configuration script for the example:

/* ======== main ======== */

Int main(Int argc, Char* argv[])

{

 Error_Block eb;

 Error_init(&eb);

 System_printf("Starting SwiHookExample...\n");

 /* Create mySwi with default params

 * to exercise Swi Hook Functions */

 mySwi = Swi_create(mySwiFunc, NULL, &eb);

 if (mySwi == NULL) {

 System_abort("Swi create failed");

 }

 BIOS_start();

 return (0);

}

/* pull in Timestamp to print time in hook functions */

xdc.useModule('xdc.runtime.Timestamp');

/* Disable Clock so that ours is the only Swi in the application */

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.clockEnabled = false;

var Idle = xdc.useModule('ti.sysbios.knl.Idle');

Idle.addFunc('&myIdleFunc');

/* Create myTask with default task params */

var Task = xdc.useModule('ti.sysbios.knl.Task');

var taskParams = new Task.Params();

Program.global.myTask = Task.create('&myTaskFunc', taskParams);

/* Define and add two Swi Hook Sets */

var Swi = xdc.useModule("ti.sysbios.knl.Swi");

/* Hook Set 1 */

Swi.addHookSet({

 registerFxn: '&myRegister1',

 createFxn: '&myCreate1',

 readyFxn: '&myReady1',

 beginFxn: '&myBegin1',

 endFxn: '&myEnd1',

 deleteFxn: '&myDelete1'

});
SPRUEX3O—October 2014 Threading Modules 79
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Tasks www.ti.com
This is the output for the application:

3.5 Tasks

SYS/BIOS task objects are threads that are managed by the Task module. Tasks have higher priority than
the Idle Loop and lower priority than hardware and software interrupts. See the video introducing Tasks
for an overview.

The Task module dynamically schedules and preempts tasks based on the task’s priority level and the
task’s current execution state. This ensures that the processor is always given to the highest priority
thread that is ready to run. There are up to 32 priority levels available for tasks, with the default number
of levels being 16. The maximum number of priority levels is 16 for MSP430 and C28x. The lowest priority level
(0) is reserved for running the Idle Loop.

The Task module provides a set of functions that manipulate task objects. They access Task objects
through handles of type Task_Handle.

The kernel maintains a copy of the processor registers for each task object. Each task has its own runtime
stack for storing local variables as well as for further nesting of function calls. See Section 3.5.3 for
information about task stack sizes.

/* Hook Set 2 */

Swi.addHookSet({

 registerFxn: '&myRegister2',

 createFxn: '&myCreate2',

 readyFxn: '&myReady2',

 beginFxn: '&myBegin2',

 endFxn: '&myEnd2',

 deleteFxn: '&myDelete2'

});

myRegister1: assigned hookSet Id = 0

myRegister2: assigned hookSet Id = 1

Starting SwiHookExample...

myCreate1: pEnv = 0x0, time = 315

myCreate2: pEnv = 0x0, time = 650

Entering myTask.

Posting mySwi.

myReady1: pEnv = 0xdead1, time = 1275

myReady2: pEnv = 0xdead2, time = 1678

myBegin1: pEnv = 0xbeef1, time = 2093

myBegin2: pEnv = 0xbeef2, time = 2496

Entering mySwi.

myEnd1: pEnv = 0xfeeb1, time = 3033

myEnd2: pEnv = 0xfeeb2, time = 3421

Deleting mySwi.

myDelete1: pEnv = 0xc0de1, time = 3957

myDelete2: pEnv = 0xc0de2, time = 4366

myTask exiting ...

Entering myIdleFunc().
80 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://focus.ti.com/download/trng/multimedia/dsp/OLT110026/tasks.mp4

www.ti.com Tasks
All tasks executing within a single program share a common set of global variables, accessed according
to the standard rules of scope defined for C functions.

3.5.1 Creating Tasks

You can create Task objects either dynamically with a call to Task_create() or statically in the
configuration. Tasks that you create dynamically can also be deleted during program execution.

3.5.1.1 Creating and Deleting Tasks Dynamically

You can spawn SYS/BIOS tasks by calling the function Task_create(), whose parameters include the
address of a C function in which the new task begins its execution. The value returned by Task_create()
is a handle of type Task_Handle, which you can then pass as an argument to other Task functions.

This C example creates a task:

If NULL is passed instead of a pointer to an actual Task_Params struct, a default set of parameters is
used. The "eb" is an error block that you can use to handle errors that may occur during Task object
creation. See Section 3.5.3 for information about task stack sizes.

A task becomes active when it is created and preempts the currently running task if it has a higher priority.

The memory used by Task objects and stacks can be reclaimed by calling Task_delete(). Task_delete()
removes the task from all internal queues and frees the task object and stack.

Any Semaphores or other resources held by the task are not released. Deleting a task that holds such
resources is often an application design error, although not necessarily so. In most cases, such resources
should be released prior to deleting the task. It is only safe to delete a Task that is either in the Terminated
or Inactive State.

3.5.1.2 Creating Tasks Statically

You can also create tasks statically within a configuration script. The configuration allows you to set a
number of properties for each task and for the Task manager itself.

For a complete description of all Task properties, see the Task module in the "ti.sysbios.knl" package
documentation in the online documentation. (For information on running online help, see Section 1.6.1,
Using the API Reference Help System, page 23.)

Task_Params taskParams;

Task_Handle task0;

Error_Block eb;

Error_init(&eb);

/* Create 1 task with priority 15 */

Task_Params_init(&taskParams);

taskParams.stackSize = 512;

taskParams.priority = 15;

task0 = Task_create((Task_FuncPtr)hiPriTask, &taskParams, &eb);

if (task0 == NULL) {

 System_abort("Task create failed");

}

Void Task_delete(Task_Handle *task);
SPRUEX3O—October 2014 Threading Modules 81
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Tasks www.ti.com
While it is running, a task that was created statically behaves exactly the same as a task created with
Task_create(). You cannot use the Task_delete() function to delete statically-created tasks.

The Task module automatically creates the Task_idle task and gives it the lowest task priority (0). It runs
the functions defined for the Idle objects when no higher-priority Hwi, Swi, or Task is running.

When you configure tasks to have equal priority, they are scheduled in the order in which they are created
in the configuration script. Tasks can have up to 32 priority levels with 16 being the default. The maximum
number of priority levels is 16 for MSP430 and C28x. The highest level is the number of priorities defined
minus 1, and the lowest is 0. The priority level of 0 is reserved for the system idle task. You cannot sort
tasks within a single priority level by setting the order property.

If you want a task to be initially inactive, set its priority to -1. Such tasks are not scheduled to run until
their priority is raised at runtime.

3.5.2 Task Execution States and Scheduling

Each Task object is always in one of four possible states of execution:

• Task_Mode_RUNNING, which means the task is the one actually executing on the system’s
processor.

• Task_Mode_READY, which means the task is scheduled for execution subject to processor
availability.

• Task_Mode_BLOCKED, which means the task cannot execute until a particular event occurs within
the system.

• Task_Mode_TERMINATED, which means the task is “terminated” and does not execute again.

• Task_Mode_INACTIVE, which means the task has a priority equal to -1 and is in a pre-Ready state.
This priority can be set when the task is created or by calling the Task_setPri() API at runtime.

Tasks are scheduled for execution according to a priority level assigned by the application. There can be
no more than one running task. As a rule, no ready task has a priority level greater than that of the
currently running task, since Task preempts the running task in favor of the higher-priority ready task.
Unlike many time-sharing operating systems that give each task its “fair share” of the processor,
SYS/BIOS immediately preempts the current task whenever a task of higher priority becomes ready to
run.

The maximum priority level is Task_numPriorities-1 (default=15; maximum=31). The minimum priority is
1. If the priority is less than 0, the task is barred from further execution until its priority is raised at a later
time by another task. If the priority equals Task_numPriorities-1, the task cannot be preempted by another
task. A highest-priority task can still call Semaphore_pend(), Task_sleep(), or some other blocking call to
allow tasks of lower priority to run. A Task’s priority can be changed at runtime with a call to Task_setPr().

During the course of a program, each task’s mode of execution can change for a number of reasons.
Figure 3-7 shows how execution modes change.
82 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Tasks
Figure 3-7. Execution Mode Variations

Functions in the Task, Semaphore, Event, and Mailbox modules alter the execution state of task objects:
blocking or terminating the currently running task, readying a previously suspended task, re-scheduling
the current task, and so forth.

There is one task whose execution mode is Task_Mode_RUNNING. If all program tasks are blocked and
no Hwi or Swi is running, Task executes the Task_idle task, whose priority is lower than all other tasks in
the system. When a task is preempted by a Hwi or Swi, the task execution mode returned for that task
by Task_stat() is still Task_Mode_RUNNING because the task will run when the preemption ends.

Notes: Do not make blocking calls, such as Semaphore_pend() or Task_sleep(), from within
an Idle function. Doing so causes the application to terminate.

When the Task_Mode_RUNNING task transitions to any of the other three states, control switches to the
highest-priority task that is ready to run (that is, whose mode is Task_Mode_READY). A
Task_Mode_RUNNING task transitions to one of the other modes in the following ways:

• The running task becomes Task_Mode_TERMINATED by calling Task_exit(), which is automatically
called if and when a task returns from its top-level function. After all tasks have returned, the Task
manager terminates program execution by calling System_exit() with a status code of 0.

• The running task becomes Task_Mode_BLOCKED when it calls a function (for example,
Semaphore_pend() or Task_sleep()) that causes the current task to suspend its execution; tasks can
move into this state when they are performing certain I/O operations, awaiting availability of some
shared resource, or idling.

• The running task becomes Task_Mode_READY and is preempted whenever some other, higher-
priority task becomes ready to run. Task_setPri() can cause this type of transition if the priority of the
current task is no longer the highest in the system. A task can also use Task_yield() to yield to other
tasks with the same priority. A task that yields becomes ready to run.

Task_create()

Task is created

Task_yield()

Task is preempted
Task_delete()

Task is deleted

Task_exit()

Task exits

Task_sleep(),

Semaphore_pend(), ...

Task suspends

Semaphore_post(), ...

Task is readied

Task_Mode_RUNNING

Task_Mode_READY

Task_Mode_BLOCKEDTask_Mode_TERMINATED

Task runs
SPRUEX3O—October 2014 Threading Modules 83
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Tasks www.ti.com
A task that is currently Task_Mode_BLOCKED transitions to the ready state in response to a particular
event: completion of an I/O operation, availability of a shared resource, the elapse of a specified period
of time, and so forth. By virtue of becoming Task_Mode_READY, this task is scheduled for execution
according to its priority level; and, of course, this task immediately transitions to the running state if its
priority is higher than the currently executing task. Task schedules tasks of equal priority on a first-come,
first-served basis.

3.5.3 Task Stacks

The kernel maintains a copy of the processor registers for each Task object. Each Task has its own
runtime stack for storing local variables as well as for further nesting of function calls.

You can specify the stack size separately for each Task object when you create the Task object statically
or dynamically.

Each task stack must be large enough to handle both its normal function calls and two full interrupting
Hwi contexts.

The following table shows the amount of task stack required to absorb the worst-case interrupt nesting.
These numbers represent two full Hwi interrupt contexts plus space used by the task scheduler for its
local variables. Additional nested interrupt contexts are pushed onto the common system stack.

Table 3–7. Task Stack Use by Target Family

When a Task is preempted, a task stack may be required to contain either two interrupting Hwi contexts
(if the Task is preempted by a Hwi) or one interrupting Hwi context and one Task preemption context (if
the Task is preempted by a higher-priority Task). Since the Hwi context is larger than the Task context,
the numbers given are for two Hwi contexts. If a Task blocks, only those registers that a C function must
save are saved to the task stack.

Another way to find the correct stack size is to make the stack size large and then use Code Composer
Studio software to find the stack size actually used.

Target Family Stack Consumed Units

M3 100 8-bit bytes

MSP430 52 8-bit bytes

MSP430X 96 8-bit bytes

MSP430X_small 52 8-bit bytes

C674 676 8-bit bytes

C64P 676 8-bit bytes

C64T 428 8-bit bytes

C28_float 123 16-bit words

C28_large 97 16-bit words

Arm9 184 8-bit bytes

A8F 280 8-bit bytes
84 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Tasks
See Section 3.3.2 for information about system stack use by Hwis and Section 3.4.3 for information about
system stack size.

3.5.4 Testing for Stack Overflow

When a task uses more memory than its stack has been allocated, it can write into an area of memory
used by another task or data. This results in unpredictable and potentially fatal consequences. Therefore,
a means of checking for stack overflow is useful.

By default, the Task module checks to see whether a Task stack has overflowed at each Task switch. To
improve Task switching latency, you can disable this feature the Task.checkStackFlag property to false.

The function Task_stat() can be used to watch stack size. The structure returned by Task_stat() contains
both the size of its stack and the maximum number of MAUs ever used on its stack, so this code segment
could be used to warn of a nearly full stack:

See the Task_stat() information in the "ti.sysbios.knl" package documentation in the online
documentation.

You can use the RTOS Object View (ROV) to examine runtime Task stack usage. For information, see
Section 7.5.3.

3.5.5 Task Hooks

The Task module supports the following set of Hook functions:

• Register. A function called before any statically created Tasks are initialized at runtime. The register
hook is called at boot time before main() and before interrupts are enabled.

• Create. A function called when a Task is created. This includes Tasks that are created statically and
those created dynamically using Task_create() or Task_construct(). The Create hook is called
outside of a Task_disable/enable block and before the task has been added to the ready list.

• Ready. A function called when a Task becomes ready to run. The ready hook is called from within a
Task_disable/enable block with interrupts enabled.

• Switch. A function called just before a task switch occurs. The 'prev' and 'next' task handles are
passed to the Switch hook. 'prev' is set to NULL for the initial task switch that occurs during
SYS/BIOS startup. The Switch hook is called from within a Task_disable/enable block with interrupts
enabled.

• Exit. A function called when a task exits using Task_exit(). The exit hook is passed the handle of the
exiting task. The exit hook is called outside of a Task_disable/enable block and before the task has
been removed from the kernel lists.

• Delete. A function called when a task is deleted at runtime with Task_delete().

Task_Stat statbuf; /* declare buffer */

Task_stat(Task_self(), &statbuf); /* call func to get status */

if (statbuf.used > (statbuf.stackSize * 9 / 10)) {

 System_printf("Over 90% of task's stack is in use.\n")

}

SPRUEX3O—October 2014 Threading Modules 85
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Tasks www.ti.com
The following HookSet structure type definition encapsulates the hook functions supported by the Task
module:

When more than one hook set is defined, the individual hook functions of a common type are invoked in
hook ID order.

Task hook functions can only be configured statically.

3.5.5.1 Register Function

The Register function is provided to allow a hook set to store its corresponding hook ID. This ID can be
passed to Task_setHookContext() and Task_getHookContext() to set or get hook-specific context. The
Register function must be specified if the hook implementation needs to use Task_setHookContext() or
Task_getHookContext().

The registerFxn function is called during system initialization before interrupts have been enabled.

The Register function has the following signature:

3.5.5.2 Create and Delete Functions

The Create and Delete functions are called whenever a Task is created or deleted. The Create function
is passed an Error_Block that is to be passed to Memory_alloc() for applications that require additional
context storage space.

The createFxn and deleteFxn functions are called with interrupts enabled (unless called at boot time or
from main()).

These functions have the following signatures.

3.5.5.3 Switch Function

If a Switch function is specified, it is invoked just before the new task is switched to. The switch function
is called with interrupts enabled.

This function can be used for purposes such as saving/restoring additional task context (for example,
external hardware registers), checking for task stack overflow, and monitoring the time used by each task.

The switchFxn has the following signature:

typedef struct Task_HookSet {

 Void (*registerFxn)(Int); /* Register Hook */

 Void (*createFxn)(Handle, Error.Block *); /* Create Hook */

 Void (*readyFxn)(Handle); /* Ready Hook */

 Void (*switchFxn)(Handle, Handle); /* Switch Hook */

 Void (*exitFxn)(Handle); /* Exit Hook */

 Void (*deleteFxn)(Handle); /* Delete Hook */

};

Void registerFxn(Int id);

Void createFxn(Task_Handle task, Error_Block *eb);

Void deleteFxn(Task_Handle task);

Void switchFxn(Task_Handle prev, Task_Handle next);
86 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Tasks
3.5.5.4 Ready Function

If a Ready Function is specified, it is invoked whenever a task is made ready to run. The Ready Function
is called with interrupts enabled (unless called at boot time or from main()).

The readyFxn has the following signature:

3.5.5.5 Exit Function

If an Exit Function is specified, it is invoked when a task exits (via call to Task_exit() or when a task returns
from its' main function). The exitFxn is called with interrupts enabled.

The exitFxn has the following signature:

3.5.5.6 Task Hooks Example

The following example application uses a single Task hook set. This example demonstrates how to read
and write the Hook Context Pointer associated with each hook set.

The configuration script and program output are shown after the C code listing.

This is the C code for the example:

Void readyFxn(Task_Handle task);

Void exitFxn(Task_Handle task);

/* ======== TaskHookExample.c ========

 * This example demonstrates basic task hook processing

 * operation for dynamically created tasks. */

#include <xdc/std.h>

#include <xdc/runtime/Error.h>

#include <xdc/runtime/Memory.h>

#include <xdc/runtime/System.h>

#include <xdc/runtime/Types.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

Task_Handle myTsk0, myTsk1, myTsk2;

Int myHookSetId, myHookSetId2;

/* HookSet functions */
SPRUEX3O—October 2014 Threading Modules 87
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Tasks www.ti.com
/* ======== myRegister ========

 * invoked during Swi module startup before main()

 * for each HookSet */

Void myRegister(Int hookSetId)

{

 System_printf("myRegister: assigned HookSet Id = %d\n", hookSetId);

 myHookSetId = hookSetId;

}

/* ======== myCreate ========

 * invoked during Task_create for dynamically

 * created Tasks */

Void myCreate(Task_Handle task, Error_Block *eb)

{

 String name;

 Ptr pEnv;

 name = Task_Handle_name(task);

 pEnv = Task_getHookContext(task, myHookSetId);

 System_printf("myCreate: task name = '%s', pEnv = 0x%x\n", name, pEnv);

 Task_setHookContext(task, myHookSetId, (Ptr)0xdead);

}

/* ======== myReady ========

 * invoked when Task is made ready to run */

Void myReady(Task_Handle task)

{

 String name;

 Ptr pEnv;

 name = Task_Handle_name(task);

 pEnv = Task_getHookContext(task, myHookSetId);

 System_printf("myReady: task name = '%s', pEnv = 0x%x\n", name, pEnv);

 Task_setHookContext(task, myHookSetId, (Ptr)0xc0de);

}

/* ======== mySwitch ========

 * invoked whenever a Task switch occurs/is made ready to run */

Void mySwitch(Task_Handle prev, Task_Handle next)

{

 String prevName;

 String nextName;

 Ptr pPrevEnv;

 Ptr pNextEnv;
88 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Tasks
 if (prev == NULL) {

 System_printf("mySwitch: ignoring dummy 1st prev Task\n");

 }

 else {

 prevName = Task_Handle_name(prev);

 pPrevEnv = Task_getHookContext(prev, myHookSetId);

 System_printf("mySwitch: prev name = '%s', pPrevEnv = 0x%x\n",

 prevName, pPrevEnv);

 Task_setHookContext(prev, myHookSetId, (Ptr)0xcafec0de);

 }

 nextName = Task_Handle_name(next);

 pNextEnv = Task_getHookContext(next, myHookSetId);

 System_printf(" next name = '%s', pNextEnv = 0x%x\n",

 nextName, pNextEnv);

 Task_setHookContext(next, myHookSetId, (Ptr)0xc001c0de);

}

/* ======== myExit ========

 * invoked whenever a Task calls Task_exit() or falls through

 * the bottom of its task function. */

Void myExit(Task_Handle task)

{

 Task_Handle curTask = task;

 String name;

 Ptr pEnv;

 name = Task_Handle_name(curTask);

 pEnv = Task_getHookContext(curTask, myHookSetId);

 System_printf("myExit: curTask name = '%s', pEnv = 0x%x\n", name, pEnv);

 Task_setHookContext(curTask, myHookSetId, (Ptr)0xdeadbeef);

}

/* ======== myDelete ========

 * invoked upon Task deletion */

Void myDelete(Task_Handle task)

{

 String name;

 Ptr pEnv;

 name = Task_Handle_name(task);

 pEnv = Task_getHookContext(task, myHookSetId);

 System_printf("myDelete: task name = '%s', pEnv = 0x%x\n", name, pEnv);

}

SPRUEX3O—October 2014 Threading Modules 89
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Tasks www.ti.com
/* Define 3 identical tasks */

Void myTsk0Func(UArg arg0, UArg arg1)

{

 System_printf("myTsk0 Entering\n");

 System_printf("myTsk0 Calling Task_yield\n");

 Task_yield();

 System_printf("myTsk0 Exiting\n");

}

Void myTsk1Func(UArg arg0, UArg arg1)

{

 System_printf("myTsk1 Entering\n");

 System_printf("myTsk1 Calling Task_yield\n");

 Task_yield();

 System_printf("myTsk1 Exiting\n");

}

Void myTsk2Func(UArg arg0, UArg arg1)

{

 System_printf("myTsk2 Entering\n");

 System_printf("myTsk2 Calling Task_yield\n");

 Task_yield();

 System_printf("myTsk2 Exiting\n");

}

/* ======== main ======== */

Int main(Int argc, Char* argv[])

{

 Task_Params params;

 Error_Block eb;

 Error_init(&eb);

 Task_Params_init(¶ms);

 params.instance->name = "myTsk0";

 myTsk0 = Task_create(myTsk0Func, ¶ms, &eb);

 if (myTsk0 == NULL) {

 System_abort("myTsk0 create failed");

 }

 params.instance->name = "myTsk1";

 myTsk1 = Task_create(myTsk1Func, ¶ms, &eb);

 if (myTsk1 == NULL) {

 System_abort("myTsk1 create failed");

 }
90 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Tasks
The configuration script is as follows:

 params.instance->name = "myTsk2";

 myTsk2 = Task_create(myTsk2Func, ¶ms, &eb);

 if (myTsk2 == NULL) {

 System_abort("myTsk2 create failed");

 }

 BIOS_start();

 return (0);

}

/* ======== myIdleFunc ======== */

Void myIdleFunc()

{

 System_printf("Entering idleFunc().\n");

 Task_delete(&myTsk0);

 Task_delete(&myTsk1);

 Task_delete(&myTsk2);

 System_exit(0);

}

/* Lots of System_printf() output requires a bigger bufSize */

SysMin = xdc.useModule('xdc.runtime.SysMin');

SysMin.bufSize = 4096;

var Idle = xdc.useModule('ti.sysbios.knl.Idle');

Idle.addFunc('&myIdleFunc');

var Task = xdc.useModule('ti.sysbios.knl.Task');

/* Enable instance names */

Task.common$.namedInstance = true;

/* Define and add one Task Hook Set */

Task.addHookSet({

 registerFxn: '&myRegister',

 createFxn: '&myCreate',

 readyFxn: '&myReady',

 switchFxn: '&mySwitch',

 exitFxn: '&myExit',

 deleteFxn: '&myDelete',

});
SPRUEX3O—October 2014 Threading Modules 91
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Tasks www.ti.com
The program output is as follows:

3.5.6 Task Yielding for Time-Slice Scheduling

Example 3-1 demonstrates a time-slicing scheduling model that can be managed by a user. This model
is preemptive and does not require any cooperation (that is, code) by the tasks. The tasks are
programmed as if they were the only thread running. Although SYS/BIOS tasks of differing priorities can
exist in any given application, the time-slicing model only applies to tasks of equal priority.

In this example, a periodic Clock object is configured to run a simple function that calls the Task_yield()
function every 4 clock ticks. Another periodic Clock object is to run a simple function that calls the
Semaphore_post() function every 16 milliseconds.

myRegister: assigned HookSet Id = 0

myCreate: task name = 'ti.sysbios.knl.Task.IdleTask', pEnv = 0x0

myReady: task name = 'ti.sysbios.knl.Task.IdleTask', pEnv = 0xdead

myCreate: task name = 'myTsk0', pEnv = 0x0

myReady: task name = 'myTsk0', pEnv = 0xdead

myCreate: task name = 'myTsk1', pEnv = 0x0

myReady: task name = 'myTsk1', pEnv = 0xdead

myCreate: task name = 'myTsk2', pEnv = 0x0

myReady: task name = 'myTsk2', pEnv = 0xdead

mySwitch: ignoring dummy 1st prev Task

 next name = 'myTsk0', pNextEnv = 0xc0de

myTsk0 Entering

myTsk0 Calling Task_yield

mySwitch: prev name = 'myTsk0', pPrevEnv = 0xc001c0de

 next name = 'myTsk1', pNextEnv = 0xc0de

myTsk1 Entering

myTsk1 Calling Task_yield

mySwitch: prev name = 'myTsk1', pPrevEnv = 0xc001c0de

 next name = 'myTsk2', pNextEnv = 0xc0de

myTsk2 Entering

myTsk2 Calling Task_yield

mySwitch: prev name = 'myTsk2', pPrevEnv = 0xc001c0de

 next name = 'myTsk0', pNextEnv = 0xcafec0de

myTsk0 Exiting

myExit: curTask name = 'myTsk0', pEnv = 0xc001c0de

mySwitch: prev name = 'myTsk0', pPrevEnv = 0xdeadbeef

 next name = 'myTsk1', pNextEnv = 0xcafec0de

myTsk1 Exiting

myExit: curTask name = 'myTsk1', pEnv = 0xc001c0de

mySwitch: prev name = 'myTsk1', pPrevEnv = 0xdeadbeef

 next name = 'myTsk2', pNextEnv = 0xcafec0de

myTsk2 Exiting

myExit: curTask name = 'myTsk2', pEnv = 0xc001c0de

mySwitch: prev name = 'myTsk2', pPrevEnv = 0xdeadbeef

 next name = 'ti.sysbios.knl.Task.IdleTask', pNextEnv = 0xc0de

Entering idleFunc().

myDelete: task name = 'myTsk0', pEnv = 0xcafec0de

myDelete: task name = 'myTsk1', pEnv = 0xcafec0de

myDelete: task name = 'myTsk2', pEnv = 0xcafec0de
92 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Tasks
The output of the example code is shown after the code.

Example 3-1 Time-Slice Scheduling

/*

 * ======== slice.c ========

 * This example utilizes time-slice scheduling among three

 * tasks of equal priority. A fourth task of higher

 * priority periodically preempts execution.

 *

 * A periodic Clock object drives the time-slice scheduling.

 * Every 4 milliseconds, the Clock object calls Task_yield()

 * which forces the current task to relinquish access to

 * to the CPU.

 *

 * Because a task is always ready to run, this program

 * does not spend time in the idle loop. Calls to Idle_run()

 * are added to give time to the Idle loop functions

 * occasionally. The call to Idle_run() is within a

 * Task_disable(), Task_restore() block because the call

 * to Idle_run() is not reentrant.

 */

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <xdc/runtime/Error.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Semaphore.h>

#include <ti/sysbios/knl/Clock.h>

#include <ti/sysbios/knl/Clock.h>

#include <ti/sysbios/knl/Idle.h>

#include <ti/sysbios/knl/Task.h>

#include <xdc/cfg/global.h>

Void hiPriTask(UArg arg0, UArg arg1);

Void task(UArg arg0, UArg arg1);

Void clockHandler1(UArg arg);

Void clockHandler2(UArg arg);

Semaphore_Handle sem;
SPRUEX3O—October 2014 Threading Modules 93
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Tasks www.ti.com
/* ======== main ======== */

Void main()

{

 Task_Params taskParams;

 Task_Handle myTsk0, myTski;

 Clock_Params clockParams;

 Clock_Handle myClk0, myClk1;

 Error_Block eb;

 UInt i;

 System_printf("Slice example started!\n");

 Error_init(&eb);

 /* Create 1 task with priority 15 */

 Task_Params_init(&taskParams);

 taskParams.stackSize = 512;

 // Note: Larger stack needed for some targets, including ’C6748

 taskParams.priority = 15;

 myTsk0 = Task_create((Task_FuncPtr)hiPriTask, &taskParams, &eb);

 if (myTsk0 == NULL) {

 System_abort("hiPriTask create failed");

 }

 /* Create 3 tasks with priority 1 */

 /* re-uses taskParams */

 taskParams.priority = 1;

 for (i = 0; i < 3; i++) {

 taskParams.arg0 = i;

 myTski = Task_create((Task_FuncPtr)task, &taskParams, &eb);

 if (myTski == NULL) {

 System_abort("LoPri Task %d create failed", i);

 }

 }

 /*

 * Create clock that calls Task_yield() every 4 Clock ticks

 */

 Clock_Params_init(&clockParams);

 clockParams.period = 4;/* every 4 Clock ticks */

 clockParams.startFlag = TRUE;/* start immediately */

 myClk0 = Clock_create((Clock_FuncPtr)clockHandler1, 4, &clockParams, &eb);

 if (myClk0 == NULL) {

 System_abort("Clock0 create failed");

 }
94 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Tasks
 /*

 * Create clock that calls Semaphore_post() every

 * 16 Clock ticks

 */

 clockParams.period = 16;/* every 16 Clock ticks */

 clockParams.startFlag = TRUE;/* start immediately */

 myClk1 = Clock_create((Clock_FuncPtr)clockHandler2, 16, &clockParams, &eb);

 if (myClk1 == NULL) {

 System_abort("Clock1 create failed");

 }

 /*

 * Create semaphore with initial count = 0 and default params

 */

 sem = Semaphore_create(0, NULL, &eb);

 if (sem == NULL) {

 System_abort("Semaphore create failed");

 }

 /* Start SYS/BIOS */

 BIOS_start();

}

/* ======== clockHandler1 ======== */

Void clockHandler1(UArg arg)

{

 /* Call Task_yield every 4 ms */

 Task_yield();

}

/* ======== clockHandler2 ======== */

Void clockHandler2(UArg arg)

{

 /* Call Semaphore_post every 16 ms */

 Semaphore_post(sem);

}

/* ======== task ======== */

Void task(UArg arg0, UArg arg1)

{

 Int time;

 Int prevtime = -1;

 UInt taskKey;

 /* While loop simulates work load of time-sharing tasks */

 while (1) {

 time = Clock_getTicks();
SPRUEX3O—October 2014 Threading Modules 95
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Tasks www.ti.com
 /* print time once per clock tick */

 if (time >= prevtime + 1) {

 prevtime = time;

 System_printf("Task %d: time is %d\n", (Int)arg0, time);

 }

 /* check for rollover */

 if (prevtime > time) {

 prevtime = time;

 }

 /* Process the Idle Loop functions */

 taskKey = Task_disable();

 Idle_run();

 Task_restore(taskKey);

 }

}

/* ======== hiPriTask ======== */

Void hiPriTask(UArg arg0, UArg arg1)

{

 static Int numTimes = 0;

 while (1) {

 System_printf("hiPriTask here\n");

 if (++numTimes < 3) {

 Semaphore_pend(sem, BIOS_WAIT_FOREVER);

 }

 else {

 System_printf("Slice example ending.\n");

 System_exit(0);

 }

 }

}

96 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Tasks
The System_printf() output for this example is as follows:

Slice example started!

hiPriTask here

Task 0: time is 0

Task 0: time is 1

Task 0: time is 2

Task 0: time is 3

Task 1: time is 4

Task 1: time is 5

Task 1: time is 6

Task 1: time is 7

Task 2: time is 8

Task 2: time is 9

Task 2: time is 10

Task 2: time is 11

Task 0: time is 12

Task 0: time is 13

Task 0: time is 14

Task 0: time is 15

hiPriTask here

Task 1: time is 16

Task 1: time is 17

Task 1: time is 18

Task 1: time is 19

Task 2: time is 20

Task 2: time is 21

Task 2: time is 22

Task 2: time is 23

Task 0: time is 24

Task 0: time is 25

Task 0: time is 26

Task 0: time is 27

Task 1: time is 28

Task 1: time is 29

Task 1: time is 30

Task 1: time is 31

hiPriTask here

Slice example ending.
SPRUEX3O—October 2014 Threading Modules 97
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

The Idle Loop www.ti.com
3.6 The Idle Loop

The Idle Loop is the background thread of SYS/BIOS, which runs continuously when no Hwi, Swi, or Task
is running. Any other thread can preempt the Idle Loop at any point.

The Idle manager allows you to insert functions that execute within the Idle Loop. The Idle Loop runs the
Idle functions you configured. Idle_loop calls the functions associated with each one of the Idle objects
one at a time, and then starts over again in a continuous loop.

Idle threads all run at the same priority, sequentially. The functions are called in the same order in which
they were created. An Idle function must run to completion before the next Idle function can start running.
When the last idle function has completed, the Idle Loop starts the first Idle function again.

Idle Loop functions are often used to poll non-real-time devices that do not (or cannot) generate
interrupts, monitor system status, or perform other background activities.

The Idle Loop is the thread with lowest priority in a SYS/BIOS application. The Idle Loop functions run
only when no Hwis, Swis, or Tasks need to run.

The CPU load and thread load are computed in an Idle loop function. (Data transfer for between the target
and the host is handled by a low-priority task.)

If you configure Task.enableIdleTask to be false, no Idle task is created and the Idle functions are not run.
If you want a function to run when there are no other threads ready to run, you can specify such a function
using Task.allBlockedFunc.

If you want the Idle Loop to run without creating a dedicated Idle task, you can disable
Task.enableIdleTask and configure Task.allBlockedFunc as follows. These statements cause the Idle
functions to be run using the stack of the last Task to pend.

Task.enableIdleTask = false;

Task.allBlockedFunc = Idle.run;
98 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Example Using Hwi, Swi, and Task Threads
3.7 Example Using Hwi, Swi, and Task Threads

This example depicts a stylized version of the SYS/BIOS Clock module design. It uses a combination of
Hwi, Swi, and Task threads.

A periodic timer interrupt posts a Swi that processes the Clock object list. Each entry in the Clock object
list has its own period and Clock function. When an object's period has expired, the Clock function is
invoked and the period restarted.

Since there is no limit to the number of Clock objects that can be placed in the list and no way to
determine the overhead of each Clock function, the length of time spent servicing all the Clock objects is
non-deterministic. As such, servicing the Clock objects in the timer's Hwi thread is impractical. Using a
Swi for this function is a relatively (as compared with using a Task) lightweight solution to this problem.

The configuration script and program output are shown after the C code listing. This is the C code for the
example:

/*

 * ======== HwiSwiTaskExample.c ========

 */

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <xdc/runtime/Error.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/hal/Timer.h>

#include <ti/sysbios/knl/Semaphore.h>

#include <ti/sysbios/knl/Swi.h>

#include <ti/sysbios/knl/Task.h>

#include <ti/sysbios/knl/Queue.h>

#include <xdc/cfg/global.h>

typedef struct {

 Queue_Elem elem;

 UInt32 timeout;

 UInt32 period;

 Void (*fxn)(UArg);

 UArg arg;

} Clock_Object;

Clock_Object clk1, clk2;

Timer_Handle timer;

Semaphore_Handle sem;

Swi_Handle swi;

Task_Handle task;

Queue_Handle clockQueue;

/* Here on Timer interrupt */

Void hwiFxn(UArg arg)

{

 Swi_post(swi);

}

SPRUEX3O—October 2014 Threading Modules 99
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Example Using Hwi, Swi, and Task Threads www.ti.com
/* Swi thread to handle Timer interrupt */

Void swiFxn(UArg arg1, UArg arg2)

{

 Queue_Elem *elem;

 Clock_Object *obj;

 /* point to first clock object in the clockQueue */

 elem = Queue_next((Queue_Elem *)clockQueue);

 /* service all the Clock Objects in the clockQueue */

 while (elem != (Queue_Elem *)clockQueue) {

 obj = (Clock_Object *)elem;

 /* decrement the timeout counter */

 obj->timeout -= 1;

 /* if period has expired, refresh the timeout

 * value and invoke the clock func */

 if (obj->timeout == 0) {

 obj->timeout = obj->period;

 (obj->fxn)(obj->arg);

 }

 /* advance to next clock object in clockQueue */

 elem = Queue_next(elem);

 }

}

/* Task thread pends on Semaphore posted by Clock thread */

Void taskFxn(UArg arg1, UArg arg2)

{

 System_printf("In taskFxn pending on Sempahore.\n");

 Semaphore_pend(sem, BIOS_WAIT_FOREVER);

 System_printf("In taskFxn returned from Sempahore.\n");

 System_exit(0);

}

/* First Clock function, invoked every 5 timer interrupts */

Void clk1Fxn(UArg arg)

{

 System_printf("In clk1Fxn, arg = %d.\n", arg);

 clk1.arg++;

}

/* Second Clock function, invoked every 20 timer interrupts */

Void clk2Fxn(UArg sem)

{

 System_printf("In clk2Fxn, posting Semaphore.\n");

 Semaphore_post((Semaphore_Object *)sem);

}

/* main() */

Int main(Int argc, char* argv[])

{

 Timer_Params timerParams;

 Task_Params taskParams;

 Error_Block eb;
100 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Example Using Hwi, Swi, and Task Threads
 System_printf("Starting HwiSwiTask example.\n");

 Error_init(&eb);

 Timer_Params_init(&timerParams);

 Task_Params_init(&taskParams);

 /* Create a Swi with default priority (15).

 * Swi handler is 'swiFxn' which runs as a Swi thread. */

 swi = Swi_create(swiFxn, NULL, &eb);

 if (swi == NULL) {

 System_abort("Swi create failed");

 }

 /* Create a Task with priority 3.

 * Task function is 'taskFxn' which runs as a Task thread. */

 taskParams.priority = 3;

 task = Task_create(taskFxn, &taskParams, &eb);

 if (task == NULL) {

 System_abort("Task create failed");

 }

 /* Create a binary Semaphore for example task to pend on */

 sem = Semaphore_create(0, NULL, &eb);

 if (sem == NULL) {

 System_abort("Semaphore create failed");

 }

 /* Create a Queue to hold the Clock Objects on */

 clockQueue = Queue_create(NULL, &eb);

 if (clockQueue == NULL) {

 System_abort("Queue create failed");

 }

 /* setup clk1 to go off every 5 timer interrupts. */

 clk1.fxn = clk1Fxn;

 clk1.period = 5;

 clk1.timeout = 5;

 clk1.arg = 1;

 /* add the Clock object to the clockQueue */

 Queue_put(clockQueue, &clk1.elem);

 /* setup clk2 to go off every 20 timer interrupts. */

 clk2.fxn = clk2Fxn;

 clk2.period = 20;

 clk2.timeout = 20;

 clk2.arg = (UArg)sem;

 /* add the Clock object to the clockQueue */

 Queue_put(clockQueue, &clk2.elem);

SPRUEX3O—October 2014 Threading Modules 101
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Example Using Hwi, Swi, and Task Threads www.ti.com
The configuration script is as follows:

 /* Configure a periodic interrupt using any available Timer

 * with a 1000 microsecond (1ms) interrupt period.

 *

 * The Timer interrupt will be handled by 'hwiFxn' which

 * will run as a Hwi thread.

 */

 timerParams.period = 1000;

 timer = Timer_create(Timer_ANY, hwiFxn, &timerParams, &eb);

 if (timer == NULL) {

 System_abort("Timer create failed");

 }

 BIOS_start();

 return(0);

}

/* ======== HwiSwiTaskExample.cfg ======== */

var Defaults = xdc.useModule('xdc.runtime.Defaults');

var Diags = xdc.useModule('xdc.runtime.Diags');

var Error = xdc.useModule('xdc.runtime.Error');

var Log = xdc.useModule('xdc.runtime.Log');

var LoggerBuf = xdc.useModule('xdc.runtime.LoggerBuf');

var Main = xdc.useModule('xdc.runtime.Main');

var Memory = xdc.useModule('xdc.runtime.Memory')

var SysMin = xdc.useModule('xdc.runtime.SysMin');

var System = xdc.useModule('xdc.runtime.System');

var Text = xdc.useModule('xdc.runtime.Text');

var BIOS = xdc.useModule('ti.sysbios.BIOS');

var Clock = xdc.useModule('ti.sysbios.knl.Clock');

var Task = xdc.useModule('ti.sysbios.knl.Task');

var Semaphore = xdc.useModule('ti.sysbios.knl.Semaphore');

var Queue = xdc.useModule('ti.sysbios.knl.Queue');

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');

Program.argSize = 0x0;

System.maxAtexitHandlers = 4;

BIOS.heapSize = 0x2000;

/* System stack size (used by ISRs and Swis) */

Program.stack = 0x1000;

/* Circular buffer size for System_printf() */

SysMin.bufSize = 0x400;
102 Threading Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Example Using Hwi, Swi, and Task Threads
The program output is as follows:

/* Create and install logger for the whole system */

var loggerBufParams = new LoggerBuf.Params();

loggerBufParams.numEntries = 32;

var logger0 = LoggerBuf.create(loggerBufParams);

Defaults.common$.logger = logger0;

Main.common$.diags_INFO = Diags.ALWAYS_ON;

System.SupportProxy = SysMin;

BIOS.libType = BIOS.LibType_Custom;

Starting HwiSwiTask example.

In taskFxn pending on Semaphore.

In clk1Fxn, arg = 1.

In clk1Fxn, arg = 2.

In clk1Fxn, arg = 3.

In clk1Fxn, arg = 4.

In clk2Fxn, posting Semaphore.

In taskFxn returned from Semaphore
SPRUEX3O—October 2014 Threading Modules 103
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Chapter 4
SPRUEX3O—October 2014

Synchronization Modules

This chapter describes modules that can be used to synchronize access to shared resources.

4.1 Semaphores. 105

4.2 Event Module . 110

4.3 Gates . 116

4.4 Mailboxes . 119

4.5 Queues . 120

Topic Page
SPRUEX3O—October 2014 Synchronization Modules 104
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com Semaphores
4.1 Semaphores

SYS/BIOS provides a fundamental set of functions for inter-task synchronization and communication
based upon semaphores. Semaphores are often used to coordinate access to a shared resource among
a set of competing tasks. The Semaphore module provides functions that manipulate semaphore objects
accessed through handles of type Semaphore_Handle. See the video introducing Semaphores for an
overview.

Semaphore objects can be declared as either counting or binary semaphores. They can be used for task
synchronization and mutual exclusion. The same APIs are used for both counting and binary
semaphores.

Binary semaphores are either available or unavailable. Their value cannot be incremented beyond 1.
Thus, they should be used for coordinating access to a shared resource by a maximum of two tasks.
Binary semaphores provide better performance than counting semaphores.

Counting semaphores keep an internal count of the number of corresponding resources available. When
count is greater than 0, tasks do not block when acquiring a semaphore. The maximum count value for
a semaphores plus one is the number of tasks a counting semaphore can coordinate.

To configure the type of semaphore, use the following configuration parameter:

The functions Semaphore_create() and Semaphore_delete() are used to create and delete semaphore
objects, respectively, as shown in Example 4-1. You can also create semaphore objects statically.

Example 4-1 Creating and Deleting a Semaphore

The semaphore count is initialized to count when it is created. In general, count is set to the number of
resources that the semaphore is synchronizing.

Semaphore_pend() waits for a semaphore. If the semaphore count is greater than 0, Semaphore_pend()
simply decrements the count and returns. Otherwise, Semaphore_pend() waits for the semaphore to be
posted by Semaphore_post().

The timeout parameter to Semaphore_pend(), as shown in Example 4-2, allows the task to wait until a
timeout, to wait indefinitely (BIOS_WAIT_FOREVER), or to not wait at all (BIOS_NO_WAIT).
Semaphore_pend()’s return value is used to indicate if the semaphore was acquired successfully.

Example 4-2 Setting a Timeout with Semaphore_pend()

config Mode mode = Mode_COUNTING;

Semaphore_Handle Semaphore_create(

 Int count,

 Semaphore_Params *attrs

 Error_Block *eb);

Void Semaphore_delete(Semaphore_Handle *sem);

Bool Semaphore_pend(

 Semaphore_Handle sem,

 UInt timeout);
SPRUEX3O—October 2014 Synchronization Modules 105
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://focus.ti.com/download/trng/multimedia/dsp/OLT110026/semaphores.mp4

Semaphores www.ti.com
Example 4-3 shows Semaphore_post(), which is used to signal a semaphore. If a task is waiting for the
semaphore, Semaphore_post() removes the task from the semaphore queue and puts it on the ready
queue. If no tasks are waiting, Semaphore_post() simply increments the semaphore count and returns.

Example 4-3 Signaling a Semaphore with Semaphore_post()

4.1.1 Semaphore Example

Example 4-4 provides sample code for three writer tasks that create unique messages and place them
on a list for one reader task. The writer tasks call Semaphore_post() to indicate that another message
has been put on the list. The reader task calls Semaphore_pend() to wait for messages.
Semaphore_pend() returns only when a message is available on the list. The reader task prints the
message using the System_printf() function.

The three writer tasks, a reader task, a semaphore, and a queue in this example program were created
statically as follows:

Void Semaphore_post(Semaphore_Handle sem);

var Defaults = xdc.useModule('xdc.runtime.Defaults');

var Diags = xdc.useModule('xdc.runtime.Diags');

var Error = xdc.useModule('xdc.runtime.Error');

var Log = xdc.useModule('xdc.runtime.Log');

var LoggerBuf = xdc.useModule('xdc.runtime.LoggerBuf');

var Main = xdc.useModule('xdc.runtime.Main');

var Memory = xdc.useModule('xdc.runtime.Memory')

var SysMin = xdc.useModule('xdc.runtime.SysMin');

var System = xdc.useModule('xdc.runtime.System');

var Text = xdc.useModule('xdc.runtime.Text');

var BIOS = xdc.useModule('ti.sysbios.BIOS');

var Clock = xdc.useModule('ti.sysbios.knl.Clock');

var Task = xdc.useModule('ti.sysbios.knl.Task');

var Semaphore = xdc.useModule('ti.sysbios.knl.Semaphore');

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');

/* set heap and stack sizes */

BIOS.heapSize = 0x2000;

Program.stack = 0x1000;

SysMin.bufSize = 0x400;

/* set library type */

BIOS.libType = BIOS.LibType_Custom;

/* Set logger for the whole system */

var loggerBufParams = new LoggerBuf.Params();

loggerBufParams.numEntries = 32;

var logger0 = LoggerBuf.create(loggerBufParams);

Defaults.common$.logger = logger0;

Main.common$.diags_INFO = Diags.ALWAYS_ON;
106 Synchronization Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Semaphores
Since this program employs multiple tasks, a counting semaphore is used to synchronize access to the
list. Figure 4-1 provides a view of the results from Example 4-3. Though the three writer tasks are
scheduled first, the messages are read as soon as they have been put on the queue, because the
reader’s task priority is higher than that of the writer.

Example 4-4 Semaphore Example Using Three Writer Tasks

/* Use Semaphore, and Task modules and set global properties */

var Semaphore = xdc.useModule('ti.sysbios.knl.Semaphore');

Program.global.sem = Semaphore.create(0);

var Task = xdc.useModule('ti.sysbios.knl.Task');

Task.idleTaskVitalTaskFlag = false;

/* Statically create reader and writer Tasks */

var reader = Task.create('&reader');

reader.priority = 5;

var writer0 = Task.create('&writer');

writer0.priority = 3;

writer0.arg0 = 0;

var writer1 = Task.create('&writer');

writer1.priority = 3;

writer1.arg0 = 1;

var writer2 = Task.create('&writer');

writer2.priority = 3;

writer2.arg0 = 2;

/* uses Queue module and create two instances statically */

var Queue = xdc.useModule('ti.sysbios.knl.Queue');

Program.global.msgQueue = Queue.create();

Program.global.freeQueue = Queue.create();

/* ======== semtest.c ======== */

#include <xdc/std.h>

#include <xdc/runtime/Memory.h>

#include <xdc/runtime/System.h>

#include <xdc/runtime/Error.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Semaphore.h>

#include <ti/sysbios/knl/Task.h>

#include <ti/sysbios/knl/Queue.h>

#define NUMMSGS 3 /* number of messages */

#define NUMWRITERS 3 /* number of writer tasks created with */
SPRUEX3O—October 2014 Synchronization Modules 107
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Semaphores www.ti.com
/* Config Tool */

typedef struct MsgObj {

 Queue_Elem elem; /* first field for Queue */

 Int id; /* writer task id */

 Char val; /* message value */

} MsgObj, *Msg;

Void reader();

Void writer();

/* The following objects are created statically. */

extern Semaphore_Handle sem;

extern Queue_Handle msgQueue;

extern Queue_Handle freeQueue;

/* ======== main ======== */

Int main(Int argc, Char* argv[])

{

 Int i;

 MsgObj *msg;

 Error_Block eb;

 Error_init(&eb);

 msg = (MsgObj *) Memory_alloc(NULL, NUMMSGS * sizeof(MsgObj), 0, &eb);

 if (msg == NULL) {

 System_abort("Memory allocation failed");

 }

 /* Put all messages on freeQueue */

 for (i = 0; i < NUMMSGS; msg++, i++) {

 Queue_put(freeQueue, (Queue_Elem *) msg);

 }

 BIOS_start();

 return(0);

}

/* ======== reader ======== */

Void reader()

{

 Msg msg;

 Int i;

 for (i = 0; i < NUMMSGS * NUMWRITERS; i++) {

 /* Wait for semaphore to be posted by writer(). */

 Semaphore_pend(sem, BIOS_WAIT_FOREVER);
108 Synchronization Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Semaphores
 /* get message */

 msg = Queue_get(msgQueue);

 /* print value */

 System_printf("read '%c' from (%d).\n", msg->val, msg->id);

 /* free msg */

 Queue_put(freeQueue, (Queue_Elem *) msg);

 }

 System_printf("reader done.\n");

}

/* ======== writer ======== */

Void writer(Int id)

{

 Msg msg;

 Int i;

 for (i = 0; i < NUMMSGS; i++) {

 /* Get msg from the free list. Since reader is higher

 * priority and only blocks on sem, list is never

 * empty. */

 msg = Queue_get(freeQueue);

 /* fill in value */

 msg->id = id;

 msg->val = (i & 0xf) + 'a';

 System_printf("(%d) writing '%c' ...\n", id, msg->val);

 /* put message */

 Queue_put(msgQueue, (Queue_Elem *) msg);

 /* post semaphore */

 Semaphore_post(sem);

 }

 System_printf("writer (%d) done.\n", id);

}

SPRUEX3O—October 2014 Synchronization Modules 109
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Event Module www.ti.com
Figure 4-1. Trace Window Results from Example 4-4

4.2 Event Module

Events provide a means for communicating between and synchronizing threads. They are similar to
Semaphores (see Section 4.1), except that they allow you to specify multiple conditions ("events") that
must occur before the waiting thread returns.

An Event instance is used with calls to "pend" and "post", just as for a Semaphore. However, calls to
Event_pend() additionally specify which events to wait for, and calls to Event_post() specify which events
are being posted.

Note: Only a single Task can pend on an Event object at a time.

A single Event instance can manage up to 32 events, each represented by an event ID. Event IDs are
simply bit masks that correspond to a unique event managed by the Event object.

Each Event behaves like a binary semaphore.

A call to Event_pend() takes an "andMask" and an "orMask". The andMask consists of the event IDs of
all the events that must occur, and the orMask consists of the event IDs of any events of which only one
must occur.

As with Semaphores, a call to Event_pend() takes a timeout value and returns 0 if the call times out. If a
call to Event_pend() is successful, it returns a mask of the "consumed" events—that is, the events that
occurred to satisfy the call to Event_pend(). The task is then responsible for handling ALL of the
consumed events.

(0) writing 'a' ...

read 'a' from (0).

(0) writing 'b' ...

read 'b' from (0).

(0) writing 'c' ...

read 'c' from (0).

writer (0) done.

(1) writing 'a' ...

read 'a' from (1).

(1) writing 'b' ...

read 'b' from (1).

(1) writing 'c' ...

read 'c' from (1).

writer (1) done.

(2) writing 'a' ...

read 'a' from (2).

(2) writing 'b' ...

read 'b' from (2).

(2) writing 'c' ...

read 'c' from (2).

reader done.

writer (2) done.
110 Synchronization Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Event Module
Only Tasks can call Event_pend(), whereas Hwis, Swis, and other Tasks can all call Event_post().

The Event_pend() prototype is as follows:

The Event_post() prototype is as follows:

Configuration example: These configuration statements create an event statically. The Event object
has an Event_Handle named "myEvent".

Runtime example: The following C code creates an Event object with an Event_Handle named
"myEvent".

Runtime example: The following C code blocks on an event. It wakes the task only when both events 0
and 6 have occurred. It sets the andMask to enable both Event_Id_00 and Event_Id_06. It sets the
orMask to Event_Id_NONE.

Runtime example: The following C code has a call to Event_post() to signal which events have occurred.
The eventMask should contain the IDs of the events that are being posted.

UInt Event_pend(Event_Handle event,

 UInt andMask,

 UInt orMask,

 UInt timeout);

Void Event_post(Event_Handle event,

 UInt eventIds);

var Event = xdc.useModule("ti.sysbios.knl.Event");

Program.global.myEvent = Event.create();

Event_Handle myEvent;

Error_Block eb;

Error_init(&eb);

/* Default instance configuration params */

myEvent = Event_create(NULL, &eb);

if (myEvent == NULL) {

 System_abort("Event create failed");

}

Event_pend(myEvent, (Event_Id_00 + Event_Id_06), Event_Id_NONE,

 BIOS_WAIT_FOREVER);

Event_post(myEvent, Event_Id_00);
SPRUEX3O—October 2014 Synchronization Modules 111
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Event Module www.ti.com
Runtime Example: The following C code example shows a task that provides the background
processing required for three Interrupt Service Routines:

Event_Handle myEvent;

main()

{

 ...

 /* create an Event object. All events are binary */

 myEvent = Event_create(NULL, &eb);

 if (myEvent == NULL) {

 System_abort("Event create failed");

 }

}

isr0()

{

 ...

 Event_post(myEvent, Event_Id_00);

 ...

}

isr1()

{

 ...

 Event_post(myEvent, Event_Id_01);

 ...

}

isr2()

{

 ...

 Event_post(myEvent, Event_Id_02);

 ...

}

isr0

isr1

isr2

task
112 Synchronization Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Event Module
4.2.1 Implicitly Posted Events

In addition to supporting the explicit posting of events through the Event_post() API, some SYS/BIOS
objects support implicit posting of events associated with their objects. For example, a Mailbox can be
configured to post an associated event whenever a message is available (that is, whenever
Mailbox_post() is called) thus allowing a task to block while waiting for a Mailbox message and/or some
other event to occur.

Mailbox and Semaphore objects currently support the posting of events associated with their resources
becoming available.

SYS/BIOS objects that support implicit event posting must be configured with an event object and event
ID when created. You can decide which event ID to associate with the specific resource availability signal
(that is, a message available in Mailbox, room available in Mailbox, or Semaphore available).

Note: As mentioned earlier, only one Task can pend on an Event object at a time.
Consequently, SYS/BIOS objects that are configured for implicit event posting should
only be waited on by a single Task at a time.

When Event_pend() is used to acquire a resource from implicitly posting objects, the BIOS_NO_WAIT
timeout parameter should be used to subsequently retrieve the resource from the object.

task()

{

 UInt events;

 while (TRUE) {

 /* Wait for ANY of the ISR events to be posted *

 events = Event_pend(myEvent, Event_Id_NONE,

 Event_Id_00 + Event_Id_01 + Event_Id_02,

 BIOS_WAIT_FOREVER);

 /* Process all the events that have occurred */

 if (events & Event_Id_00) {

 processISR0();

 }

 if (events & Event_Id_01) {

 processISR1();

 }

 if (events & Event_Id_02) {

 processISR2();

 }

 }

}

SPRUEX3O—October 2014 Synchronization Modules 113
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Event Module www.ti.com
Runtime example: The following C code example shows a task processing the messages posted to a
Mailbox message as well as performing an ISR’s post-processing requirements.

Event_Handle myEvent;

Mailbox_Handle mbox;

typedef struct msg {

 UInt id;

 Char buf[10];

}

main()

{

 Mailbox_Params mboxParams;

 Error_Block eb;

 Error_init(&eb);

 myEvent = Event_create(NULL, &eb);

 if (myEvent == NULL) {

 System_abort("Event create failed");

 }

 Mailbox_Params_init(&mboxParams);

 mboxParams.readerEvent = myEvent;

 /* Assign Event_Id_00 to Mailbox "not empty" event */

 mboxParams.readerEventId = Event_Id_00;

 mbox = Mailbox_create(sizeof(msg), 50, &mboxParams, &eb);

 if (mbox == NULL) {

 System_abort("Mailbox create failed");

 }

 /* Mailbox_create() sets Mailbox's readerEvent to

 * counting mode and initial count = 50 */

}

WriterTask

ReaderTask

Mailbox ISR
114 Synchronization Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Event Module
writerTask()

{

 ...

 Mailbox_post(mbox, &msgA, BIOS_WAIT_FOREVER);

 /* implicitly posts Event_Id_00 to myEvent */

 ...

}

isr()

{

 Event_post(myEvent, Event_Id_01);

}

readerTask()

{

 while (TRUE) {/* Wait for either ISR or Mailbox message */

 events = Event_pend(myEvent,

 Event_Id_NONE, /* andMask = 0 */

 Event_Id_00 + Event_Id_01, /* orMask */

 BIOS_WAIT_FOREVER); /* timeout */

 if (events & Event_Id_00) {

 /* Get the posted message.

 * Mailbox_pend() will not block since Event_pend()

 * has guaranteed that a message is available.

 * Notice that the special BIOS_NO_WAIT

 * parameter tells Mailbox that Event_pend()

 * was used to acquire the available message.

 */

 Mailbox_pend(mbox, &msgB, BIOS_NO_WAIT);

 processMsg(&msgB);

 }

 if (events & Event_Id_01) {

 processISR();

 }

 }

}

SPRUEX3O—October 2014 Synchronization Modules 115
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Gates www.ti.com
4.3 Gates

Gates are devices for preventing concurrent accesses to critical regions of code. The various Gate
implementations differ in how they attempt to lock the critical regions.

Threads can be preempted by other threads of higher priority, and some sections of code need to be
completed by one thread before they can be executed by another thread. Code that modifies a global
variable is a common example of a critical region that may need to be protected by a Gate.

Gates generally work by either disabling some level of preemption such as disabling task switching or
even hardware interrupts, or by using a binary semaphore.

All Gate implementations support nesting through the use of a "key".

For Gates that function by disabling preemption, it is possible that multiple threads would call
Gate_enter(), but preemption should not be restored until all of the threads have called Gate_leave().
This functionality is provided through the use of a key. A call to Gate_enter() returns a key that must then
be passed back to Gate_leave(). Only the outermost call to Gate_enter() returns the correct key for
restoring preemption.

As shown in the examples that follow, the actual module name for the implementation is used instead of
"Gate" in the function name.

Runtime example: The following C code protects a critical region with a Gate. This example uses a
GateHwi, which disables and enables interrupts as the locking mechanism.

4.3.1 Preemption-Based Gate Implementations

The following implementations of gates use some form of preemption disabling:

• ti.sysbios.gates.GateHwi

• ti.sysbios.gates.GateSwi

• ti.sysbios.gates.GateTask

UInt gateKey;

GateHwi_Handle gateHwi;

GateHwi_Params prms;

Error_Block eb;

Error_init(&eb);

GateHwi_Params_init(&prms);

gateHwi = GateHwi_create(&prms, &eb);

if (gateHwi == NULL) {

 System_abort("Gate create failed");

}

/* Simultaneous operations on a global variable by multiple

 * threads could cause problems, so modifications to the global

 * variable are protected with a Gate. */

gateKey = GateHwi_enter(gateHwi);

myGlobalVar = 7;

GateHwi_leave(gateHwi, gateKey);
116 Synchronization Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Gates
4.3.1.1 GateHwi

GateHwi disables and enables interrupts as the locking mechanism. Such a gate guarantees exclusive
access to the CPU. This gate can be used when the critical region is shared by Task, Swi, or Hwi threads.

The duration between the enter and leave should be as short as possible to minimize Hwi latency.

4.3.1.2 GateSwi

GateSwi disables and enables software interrupts as the locking mechanism. This gate can be used
when the critical region is shared by Swi or Task threads. This gate cannot be used by a Hwi thread.

The duration between the enter and leave should be as short as possible to minimize Swi latency.

4.3.1.3 GateTask

GateTask disables and enables tasks as the locking mechanism. This gate can be used when the critical
region is shared by Task threads. This gate cannot be used by a Hwi or Swi thread.

The duration between the enter and leave should be as short as possible to minimize Task latency.

4.3.2 Semaphore-Based Gate Implementations

The following implementations of gates use a semaphore:

• ti.sysbios.gates.GateMutex

• ti.sysbios.gates.GateMutexPri

4.3.2.1 GateMutex

GateMutex uses a binary Semaphore as the locking mechanism. Each GateMutex instance has its own
unique Semaphore. Because this gate can potentially block, it should not be used a Swi or Hwi thread,
and should only be used by Task threads.

4.3.2.2 GateMutexPri

GateMutexPri is a mutex Gate (it can only be held by one thread at a time) that implements "priority
inheritance" in order to prevent priority inversion. Priority inversion occurs when a high-priority Task has
its priority effectively "inverted" because it is waiting on a Gate held by a lower-priority Task. Issues and
solutions for priority inversion are described in Section 4.3.3.

Configuration example: The following example specifies a GateType to be used by HeapMem. (See
Section 7.8.2, HeapMem for further discussion.)

var GateMutexPri = xdc.useModule('ti.sysbios.gates.GateMutexPri');

var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');

HeapMem.common$.gate = GateMutexPri.create();
SPRUEX3O—October 2014 Synchronization Modules 117
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Gates www.ti.com
4.3.3 Priority Inversion

The following example shows the problem of priority inversion. A system has three tasks—Low, Med, and
High—each with the priority suggested by its name. Task Low runs first and acquires the gate. Task High
is scheduled and preempts Low. Task High tries to acquire the gate, and waits on it. Next, task Med is
scheduled and preempts task Low. Now task High must wait for both task Med and task Low to finish
before it can continue. In this situation, task Low has, in effect, lowered task High's priority to that of Low.

Solution: Priority Inheritance
To guard against priority inversion, GateMutexPri implements priority inheritance. When task High tries
to acquire a gate that is owned by task Low, task Low's priority is temporarily raised to that of High, as
long as High is waiting on the gate. So, task High "donates" its priority to task Low.

When multiple tasks wait on the gate, the gate owner receives the highest priority of any of the tasks
waiting on the gate.

Caveats
Priority inheritance is not a complete guard against priority inversion. Tasks only donate their priority on
the call to enter a gate, so if a task has its priority raised while waiting on a gate, that priority is not carried
through to the gate owner.

This can occur in situations involving multiple gates. For example, a system has four tasks: VeryLow,
Low, Med, and High, each with the priority suggested by its name. Task VeryLow runs first and acquires
gate A. Task Low runs next and acquires gate B, then waits on gate A. Task High runs and waits on gate
B. Task High has donated its priority to task Low, but Low is blocked on VeryLow, so priority inversion
occurs despite the use of the gate. The solution to this problem is to design around it. If gate A may be
needed by a high-priority, time-critical task, then it should be a design rule that no task holds this gate for
a long time or blocks while holding this gate.

When multiple tasks wait on this gate, they receive the gate in order of priority (higher-priority tasks
receive the gate first). This is because the list of tasks waiting on a GateMutexPri is sorted by priority, not
FIFO.

Calls to GateMutexPri_enter() may block, so this gate can only be used in the task context.

GateMutexPri has non-deterministic calls because it keeps the list of waiting tasks sorted by priority.

4.3.4 Configuring the SYS/BIOS Gate Type

The application sets the type of gate to be used by calls in the TI RTS library (Chapter 6). The type of
gate selected is used to guarantee re-entrancy of the RTS APIs. The BIOS.rtsGateType configuration
property controls this behavior. In XGCONF, this property is labeled "C Standard Library Lock".

The type of gate depends on the type of threads that are going to be calling RTS library functions. For
example, if both Swi and Task threads are going to be calling the RTS library's System_printf() function,
GateSwi should be used. In this case, Hwi threads are not disabled during System_printf() calls from the
Swi or Task threads.

If NoLocking is used, the RTS lock is not plugged, and re-entrancy for the TI RTS library calls is not
guaranteed. The application can plug the RTS locks directly if it wants.
118 Synchronization Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Mailboxes
The types of gates available are listed in Section 4.3.1 and Section 4.3.2. Note that GateTask is not
supported as a SYS/BIOS RTS gate type.

• GateHwi: Interrupts are disabled and restored to maintain re-entrancy. Use if making any RTS calls
from a Hwi.

• GateSwi: Swis are disabled and restored to maintain re-entrancy. Use if not making RTS calls from
any Hwis but making such calls from Swis.

• GateMutex: A single mutex is used to maintain re-entrancy. Use if only making RTS calls from Tasks.
Blocks only Tasks that are also trying to execute critical regions of the RTS library.

• GateMutexPri: A priority-inheriting mutex is used to maintain re-entrancy. Blocks only Tasks that are
also trying to execute critical regions of the RTS library. Raises the priority of the Task that is
executing the critical region in the RTS library to the level of the highest priority Task that is blocked
by the mutex.

The default RTS Gate Type depends on the type of threading model enabled by other configuration
parameters. If BIOS.taskEnabled is true, GateMutex is used. If BIOS.swiEnabled is true and
BIOS.taskEnabled is false, GateSwi is used. If both BIOS.swiEnabled and BIOS.taskEnabled are false,
xdc.runtime.GateNull is used.

If BIOS.taskEnabled is false, the user should not select GateMutex (or other Task level gates). Similarly,
if BIOS.taskEnabled and BIOS.swiEnabled are false, the user should not select GateSwi or the Task
level gates.

4.4 Mailboxes

The ti.sysbios.knl.Mailbox module provides a set of functions to manage mailboxes. Mailboxes can be
used to pass buffers from one task to another on the same processor.

A Mailbox instance can be used by multiple readers and writers.

The Mailbox module copies the buffer to fixed-size internal buffers. The size and number of these buffers
are specified when a Mailbox instance is created (or constructed). A copy is done when a buffer is sent
via Mailbox_post(). Another copy occurs when the buffer is retrieved via a Mailbox_pend().

Mailbox_create() and Mailbox_delete() are used to create and delete mailboxes, respectively. You can
also create mailbox objects statically.

Mailboxes can be used to ensure that the flow of incoming buffers does not exceed the ability of the
system to process those buffers. The examples given later in this section illustrate just such a scheme.

You specify the number of internal mailbox buffers and size of each of these buffers when you create a
mailbox. Since the size is specified when you create the Mailbox, all buffers sent and received with the
Mailbox instance must be of this same size.

Mailbox_Handle Mailbox_create(SizeT bufsize,

 UInt numBufs,

 Mailbox_Params *params,

 Error_Block *eb)

Void Mailbox_delete(Mailbox_Handle *handle);
SPRUEX3O—October 2014 Synchronization Modules 119
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Queues www.ti.com
Mailbox_pend() is used to read a buffer from a mailbox. If no buffer is available (that is, the mailbox is
empty), Mailbox_pend() blocks. The timeout parameter allows the task to wait until a timeout, to wait
indefinitely (BIOS_WAIT_FOREVER), or to not wait at all (BIOS_NO_WAIT). The unit of time is system
clock ticks.

Mailbox_post() is used to post a buffer to the mailbox. If no buffer slots are available (that is, the mailbox
is full), Mailbox_post() blocks. The timeout parameter allows the task to wait until a timeout, to wait
indefinitely (BIOS_WAIT_FOREVER), or to not wait at all (BIOS_NO_WAIT).

Mailbox provides configuration parameters to allow you to associate events with a mailbox. This allows
you to wait on a mailbox message and another event at the same time. Mailbox provides two
configuration parameters to support events for the reader(s) of the mailbox—readerEvent and
readerEventId. These allow a mailbox reader to use an event object to wait for the mailbox message.
Mailbox also provides two configuration parameters for the mailbox writer(s)—writerEvent and
writerEventId. These allow mailbox writers to use an event object to wait for room in the mailbox.

Note that the names of these event handles can be misleading. The readerEvent is the Event that a
Mailbox reader should pend on, but it is posted by the Mailbox writer within the Mailbox_post() call. The
writerEvent is the Event that the Mailbox writer should pend on waiting for the Mailbox to become not full
so that it can successfully perform a Mailbox_post() without pending because the Mailbox is full.
However, the writerEvent is posted by the Mailbox reader whenever the Mailbox is successful read from
(that is, Mailbox_pend() returns TRUE).

When using events, a thread calls Event_pend() and waits on several events. Upon returning from
Event_pend(), the thread must call Mailbox_pend() or Mailbox_post()—depending on whether it is a
reader or a writer—with a timeout value of BIOS_NO_WAIT. See Section 4.2.1 for a code example that
obtains the corresponding Mailbox resource after returning from Event_pend().

4.5 Queues

The ti.sysbios.knl.Queue module provides support for creating lists of objects. A Queue is implemented
as a doubly-linked list, so that elements can be inserted or removed from anywhere in the list, and so that
Queues do not have a maximum size.

4.5.1 Basic FIFO Operation of a Queue

To add a structure to a Queue, its first field needs to be of type Queue_Elem. The following example
shows a structure that can be added to a Queue.

A Queue has a "head", which is the front of the list. Queue_enqueue() adds elements to the back of the
list, and Queue_dequeue() removes and returns the element at the head of the list. Together, these
functions support a natural FIFO queue.

Bool Mailbox_pend(Mailbox_Handle handle,

 Ptr buf,

 UInt timeout);

Bool Mailbox_post(Mailbox_Handle handle,

 Ptr buf,

 UInt timeout);
120 Synchronization Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Queues
Run-time example: The following example demonstrates the basic Queue operations—
Queue_enqueue() and Queue_dequeue(). It also uses the Queue_empty() function, which returns true
when there are no more elements in the Queue.

The example prints:

/* This structure can be added to a Queue because the first field is a Queue_Elem. */

typedef struct Rec {

 Queue_Elem elem;

 Int data;

} Rec;

Queue_Handle myQ;

Rec r1, r2;

Rec* rp;

r1.data = 100;

r2.data = 200;

// No parameters or Error block are needed to create a Queue.

myQ = Queue_create(NULL, NULL);

// Add r1 and r2 to the back of myQ.

Queue_enqueue(myQ, &(r1.elem));

Queue_enqueue(myQ, &(r2.elem));

// Dequeue the records and print their data

while (!Queue_empty(myQ)) {

 // Implicit cast from (Queue_Elem *) to (Rec *)

 rp = Queue_dequeue(myQ);

 System_printf("rec: %d\n", rp->data);

}

rec: 100

rec: 200
SPRUEX3O—October 2014 Synchronization Modules 121
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Queues www.ti.com
4.5.2 Iterating Over a Queue

The Queue module also provides several APIs for looping over a Queue. Queue_head() returns the
element at the front of the Queue (without removing it) and Queue_next() and Queue_prev() return the
next and previous elements in a Queue, respectively.

Run-time example: The following example demonstrates one way to iterate over a Queue once from
beginning to end. In this example, "myQ" is a Queue_Handle.

4.5.3 Inserting and Removing Queue Elements

Elements can also be inserted or removed from anywhere in the middle of a Queue using Queue_insert()
and Queue_remove(). Queue_insert() inserts an element in front of the specified element, and
Queue_remove() removes the specified element from whatever Queue it is in. Note that Queue does not
provide any APIs for inserting or removing elements at a given index in the Queue.

Run-time example: The following example demonstrates Queue_insert() and Queue_remove().

4.5.4 Atomic Queue Operations

Queues are commonly shared across multiple threads in the system, which might lead to concurrent
modifications of the Queue by different threads, which would corrupt the Queue. The Queue APIs
discussed above do not protect against this. However, Queue provides two "atomic" APIs, which disable
interrupts before operating on the Queue. These APIs are Queue_get(), which is the atomic version of
Queue_dequeue(), and Queue_put(), which is the atomic version of Queue_enqueue().

Queue_Elem *elem;

for (elem = Queue_head(myQ); elem != (Queue_Elem *)myQ;

 elem = Queue_next(elem)) {

 ...

}

Queue_enqueue(myQ, &(r1.elem));

/* Insert r2 in front of r1 in the Queue. */

Queue_insert(&(r1.elem), &(r2.elem));

/* Remove r1 from the Queue. Note that Queue_remove() does not

 * require a handle to myQ. */

Queue_remove(&(r1.elem));
122 Synchronization Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Chapter 5
SPRUEX3O—October 2014

Timing Services

This chapter describes modules that can be used for timing purposes.

5.1 Overview of Timing Services . 124

5.2 Clock. 124

5.3 Timer Module . 127

5.4 Seconds Module . 127

5.5 Timestamp Module . 128

Topic Page
SPRUEX3O—October 2014 Timing Services 123
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

Overview of Timing Services www.ti.com
5.1 Overview of Timing Services

Several modules are involved in timekeeping and clock-related services within SYS/BIOS and XDCtools:

• The ti.sysbios.knl.Clock module is responsible for the periodic system tick that the kernel uses to
keep track of time. All SYS/BIOS APIs that expect a timeout parameter interpret the timeout in terms
of Clock ticks. The Clock module is used to schedule functions that run at intervals specified in clock
ticks. By default, the Clock module uses the hal.Timer module to get a hardware-based tick.
Alternately, the Clock module can be configured to use an application-provided tick source. See
Section 5.2 for details. (The Clock module replaces both the CLK and PRD modules in earlier
versions of DSP/BIOS.)

• The ti.sysbios.hal.Timer module provides a standard interface for using timer peripherals. It hides
any target/device-specific characteristics of the timer peripherals. Target/device-specific properties
for timers are supported by the ti.sysbios.family.xxx.Timer modules (for example,
ti.sysbios.family.c64.Timer). You can use the Timer module to select a timer that calls a tickFxn when
the timer expires. See Section 5.3 and Section 8.3 for details.

• The ti.sysbios.hal.Seconds module provides a means for maintaining the current time and date,
as defined by the number of seconds since 1970 (the Unix epoch). This module generates a custom
time() function that calls Seconds_get(), overriding the C standard library’s time() function. See
Section 5.4 for details.

• The xdc.runtime.Timestamp module provides simple timestamping services for benchmarking
code and adding timestamps to logs. This module uses a target/device-specific TimestampProvider
in SYS/BIOS to control how timestamping is implemented. See Section 5.5 for details.

 See the video introducing Timers and Clocks for an overview.

5.2 Clock

The ti.sysbios.knl.Clock module is responsible for the periodic system tick that the kernel uses to keep
track of time. All SYS/BIOS APIs that expect a timeout parameter interpret the timeout in terms of Clock
ticks.

The Clock module, by default, uses the ti.sysbios.hal.Timer module to create a timer to generate the
system tick, which is basically a periodic call to Clock_tick(). See Section 5.3 for more about the Timer
module.

The Clock module can be configured not to use the timer with either of the following configuration
statements:

The period for the system tick is set by the configuration parameter Clock.tickPeriod. This is set in
microseconds.

The Clock_tick() and the tick period are used as follows:

• If the tickSource is Clock.tickSource_TIMER (the default), Clock uses ti.sysbios.hal.Timer to
create a timer to generate the system tick, which is basically a periodic call to Clock_tick(). Clock
uses Clock.tickPeriod to create the timer. Clock.timerId can be changed to make Clock use a different
timer.

ti.sysbios.knl.Clock.tickSource = Clock.tickSource_USER

 or

ti.sysbios.knl.Clock.tickSource = Clock.tickSource_NULL
124 Timing Services SPRUEX3O—October 2014
Submit Documentation Feedback

http://focus.ti.com/download/trng/multimedia/dsp/OLT110026/timers_clocks.mp4
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Clock
• If the tickSource is Clock.tickSource_USER, then your application must call Clock_tick() from a
user interrupt and set the tickPeriod to the approximate frequency of the user interrupt in
microseconds.

• If the tickSource is Clock.tickSource_NULL, you cannot call any SYS/BIOS APIs with a timeout
value and cannot call any Clock APIs. You can still use the Task module but you cannot call APIs that
require a timeout, for example, Task_sleep(). Clock.tickPeriod values is not valid in this configuration.

Clock_getTicks() gets the number of Clock ticks that have occurred since startup. The value returned
wraps back to zero after it reaches the maximum value that can be stored in 32 bits.

The Clock module provides APIs to start, stop and reconfigure the tick. These APIs allow you to make
frequency changes at runtime. These three APIs are not reentrant and gates need to be used to protect
them.

• Clock_tickStop() stops the timer used to generate the Clock tick by calling Timer_stop().

• Clock_tickReconfig() calls Timer_setPeriodMicroseconds() internally to reconfigure the timer.
Clock_tickReconfig() fails if the timer cannot support Clock.tickPeriod at the current CPU frequency.

• Clock_tickStart() restarts the timer used to generate the Clock tick by calling Timer_start().

The Clock module lets you create Clock object instances, which reference functions that run when a
timeout value specified in Clock ticks expires.

All Clock functions run in the context of a Swi. That is, the Clock module automatically creates a Swi for
its use and run the Clock functions within that Swi. The priority of the Swi used by Clock can be changed
by configuring Clock.swiPriority.

You can dynamically create clock instances using Clock_create(). Clock instances can be "one-shot" or
continuous. You can start a clock instance when it is created or start it later by calling Clock_start(). This
is controlled by the startFlag configuration parameter. Clock_create() can be called only from the context
of a Task or the main() function.

A function and a non-zero timeout value are required arguments to Clock_create(). The function is called
when the timeout expires. The timeout value is used to compute the first expiration time. For one-shot
Clock instances, the timeout value used to compute the single expiration time, and the period is zero. For
periodic Clock instances, the timeout value is used to compute the first expiration time; the period value
(part of the params) is used after the first expiration.

Table 5–1. Timeline for One-shot and Continuous Clocks

Clock created and
started with startFlag
or Clock_start()

Time

One-shot Clock

Continuous Clock

Func runs

Func runs Func runs Func runs

period period ...timeout

timeout
SPRUEX3O—October 2014 Timing Services 125
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Clock www.ti.com
Clock instances (both one-shot and periodic) can be stopped and restarted by calling Clock_start() and
Clock_stop(). Notice that while Clock_tickStop() stops the timer used to generate the Clock tick,
Clock_stop() stops only one instance of a clock object. The expiration value is recomputed when you call
Clock_start(). APIs that start or stop a Clock Instance—Clock_start() and Clock_stop()—can be called in
any context except program startup before main() begins.

The Clock module provides the Clock_setPeriod(), Clock_setTimeout(), and Clock_setFunc() APIs to
modify Clock instance properties for Clock instances that have been stopped.

Runtime example: This C example shows how to create a Clock instance. This instance is dynamic
(runs repeatedly) and starts automatically. It runs the myHandler function every 5 ticks. A user argument
(UArg) is passed to the function.

Configuration example: This example configuration script creates a Clock instance with the same
properties as the previous example.

Runtime example: This C example uses some of the Clock APIs to print messages about how long a
Task sleeps.

Clock_Params clockParams;

Clock_Handle myClock;

Error_Block eb;

Error_init(&eb);

Clock_Params_init(&clockParams);

clockParams.period = 5;

clockParams.startFlag = TRUE;

clockParams.arg = (UArg)0x5555;

myClock = Clock_create(myHandler1, 5, &clockParams, &eb);

if (myClock == NULL) {

 System_abort("Clock create failed");

}

var Clock = xdc.useModule('ti.sysbios.knl.Clock');

var clockParams = new Clock.Params();

clockParams.period = 5;

clockParams.startFlag = true;

clockParams.arg = (UArg)0x5555;

Program.global.clockInst1 = Clock.create("&myHandler1", 5, clockParams);

UInt32 time1, time2;

. . .

System_printf("task going to sleep for 10 ticks... \n");

time1 = Clock_getTicks();

Task_sleep(10);

time2 = Clock_getTicks();

System_printf("...awake! Delta time is: %lu\n", (ULong) (time2 - time1));
126 Timing Services SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Timer Module
Runtime example: This C example uses some of the Clock APIs to lower the Clock module frequency.

5.3 Timer Module

The ti.sysbios.hal.Timer module presents a standard interface for using the timer peripherals. This
module is described in detail in Section 8.3 because it is part of the Hardware Abstraction Layer (HAL)
package.

You can use this module to create a timer (that is, to mark a timer for use) and configure it to call a tickFxn
when the timer expires. Use this module only if you do not need to do any custom configuration of the
timer peripheral.

The timer can be configured as a one-shot or a continuous mode timer. The period can be specified in
timer counts or microseconds.

5.4 Seconds Module

The ti.sysbios.hal.Seconds module provides a way to set and get the number of seconds elapsed since
Jan 1 00:00:00 GMT 1970 (the Unix epoch). The Seconds module maintains the time through a device-
specific Seconds delegate, if available. If a device-specific Seconds module is not available, the
ti.sysbios.hal.SecondsClock module is used as the Seconds delegate. SecondsClock internally uses the
Clock module to periodically increment the seconds count.

The Seconds module APIs are:

 Void Seconds_set(UInt32 seconds);

 UInt32 Seconds_get(Void);

An application should call Seconds_set() to initialize the seconds count. Seconds_set() can be called
again, if needed, to update or reset the seconds count. An application must call Seconds_set() at least
once before any calls to Seconds_get(). Otherwise, the result returned by Seconds_get() is meaningless.

The Seconds module includes a time() function that calls Seconds_get(). This overrides the C Standard
Library time() function. You can use this time() function in conjunction with other time functions in the C
Standard header file, time.h, to view the current date and time in a readable format.

BIOS_getCpuFreq(&cpuFreq);

cpuFreq.lo = cpuFreq.lo / 2;

BIOS_setCpuFreq(&cpuFreq);

key = Hwi_disable();

Clock_tickStop();

Clock_tickReconfig();

Clock_tickStart();

Hwi_restore(key);
SPRUEX3O—October 2014 Timing Services 127
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Timestamp Module www.ti.com
Examples

This example initializes the Seconds module, sets the date, gets the current date, and displays the
current time and date in human readable format:

Note: For some compiler run-time libraries, including TI's, the time() function returns the
number of seconds elapsed since Jan 1, 1900. In this case, the Seconds module's
time() function adds an offset to the value returned by Seconds_get(), in order to be
consistent with other APIs in the run-time support library.

5.5 Timestamp Module

The xdc.runtime.Timestamp module, as the name suggests, provides timestamping services. The
Timestamp module can be used for benchmarking code and adding timestamps to logs. Calls to the
Timestamp module function are forwarded to a platform-specific TimestampProvider implementation.

The package path to the Timestamp module is xdc.runtime.Timestamp, so SYS/BIOS applications
should contain the following #include statement:

#include <xdc/runtime/Timestamp.h>

Configuration files (*.cfg) should enable this module as follows:

var BIOS = xdc.useModule('xdc.runtime.Timestamp');

The following Timestamp module APIs are useful in SYS/BIOS applications:

• Timestamp_get32() — Return a 32-bit timestamp.

#include <time.h>

#include <ti/sysbios/hal/Seconds.h>

UInt32 t;

time_t t1;

struct tm *ltm;

char *curTime;

/* set to today’s date in seconds since Jan 1, 1970 */

Seconds_set(1412800000); /* Wed, 08 Oct 2014 20:26:40 GMT */

/* retrieve current time relative to Jan 1, 1970 */

t = Seconds_get();

/*

 * Use overridden time() function to get the current time.

 * Use standard C RTS library functions with return from time().

 * Assumes Seconds_set() has been called as above

 */

t1 = time(NULL);

ltm = localtime(&t1);

curTime = asctime(ltm);

System_printf("Time(GMT): %s\n", curTime);
128 Timing Services SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Timestamp Module
• Timestamp_get64() — Return a 64-bit timestamp if 64-bit resolution is supported by the target.

• Timestamp_getFreq() — Get the timestamp timer’s frequency in Hz. You can use this function to
convert a timestamp value into units of real time.

If you want a platform-independent version of Timestamp, you can use the TimestampStd modules,
which uses the ANSI C clock() function.

Platform-specific TimestampProvider modules are located in the ti.sysbios.family package. For example,
ti.sysbios.family.msp430.TimestampProvider and ti.sysbios.family.arm.m3.TimestampProvider. Most
TimestampProvider modules have configuration parameters that you can use to control the hardware
clock source and the behavior if the timestamp counter overflows.

This example calculates the factor needed to correlate Timestamp delta to the CPU cycles:

Types_FreqHz freq1; /* Timestamp frequency */

Types_FreqHz freq2; /* BIOS frequency */

Float factor; /* Clock ratio cpu/timestamp */

Timestamp_getFreq(&freq1);

BIOS_getCpuFreq(&freq2);

factor = (Float)freq2.lo / freq1.lo;

System_printf("%lu\t%lu\t%lu\t Timestamp Freq, BIOS Freq, Factor\n",

 freq1.lo, freq2.lo, (UInt32) factor);
SPRUEX3O—October 2014 Timing Services 129
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Chapter 6
SPRUEX3O—October 2014

Support Modules

This chapter describes modules that provide APIs for some basic support features and configuration
parameters that manage overall application behavior.

6.1 Modules for Application Support and Management 131

6.2 BIOS Module . 131

6.3 System Module . 132

6.4 Program Module . 134

6.5 Startup Module . 135

6.6 Reset Module . 135

6.7 Error Module . 136

6.8 Text Module . 137

Topic Page
SPRUEX3O—October 2014 Support Modules 130
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com Modules for Application Support and Management
6.1 Modules for Application Support and Management

SYS/BIOS and XDCtools provide a number of modules with functions intended to be used to support and
manage overall application behavior. The following modules provide APIs and configuration settings that
fall into this category:

• BIOS Module (ti.sysbios.BIOS): Responsible for SYS/BIOS startup and global parameter
maintenance. See Section 6.2.

• System (xdc.runtime.System): provides low-level "system" services. See Section 6.3.

• SysMin (xdc.runtime.SysMin): Recommended proxy for System module. See Section 6.3.1.

• SysCallback (xdc.runtime.SysCallback): Proxy for custom System behavior. See Section 6.3.2.

• Program (xdc.cfg.Program): Acts as the root of the configuration namespace. See Section 6.4.

• Startup (xdc.runtime.Startup): Manages application startup and initialization. See Section 6.5.

• Reset (xdc.runtime.Reset): Allows target-specific reset functions to be run immediately after
system reset. See Section 6.6.

• Error (xdc.runtime.Error): Provides mechanisms for handling errors. See Section 6.7.

• Text (xdc.runtime.Text): Manages strings with common substrings. See Section 6.8.

• Memory (xdc.runtime.Memory): Manages memory use. See Chapter 7.

6.2 BIOS Module

The BIOS module is responsible for setting up global parameters for use by SYS/BIOS and for
performing the SYS/BIOS startup sequence. See Section 3.1 for details about the startup sequence.

The package path to the BIOS module is ti.sysbios.BIOS, so SYS/BIOS applications should contain the
following #include statement:

#include <ti/sysbios/BIOS.h>

Configuration files (*.cfg) should enable this module as follows:

var BIOS = xdc.useModule('ti.sysbios.BIOS');

The following BIOS module APIs are useful in SYS/BIOS applications:

• BIOS_start() — An application’s main() function must call this function as the final statement to be
executed before giving control to the SYS/BIOS thread scheduler. This call should be performed after
all initialization required by the application has been performed. This function performs any remaining
SYS/BIOS initialization and then transfers control to the highest priority Task that is ready to run. If
Tasks are not enabled, control is transferred directly to the Idle Loop. The BIOS_start() function does
not return unless BIOS_exit() is called.

• BIOS_getCpuFreq() — This function returns the CPU frequency in Hz. See Chapter 5 for information
about timing. An example that uses this function is provided in Section 5.2.

• BIOS_setCpuFreq() — This function sets the CPU frequency in Hz. See Chapter 5 for information
about timing. An example that uses this function is provided in Section 5.2.

• BIOS_exit() — Call this function when you want a SYS/BIOS application to terminate normally and
return to the calling environment. You can use this function to pass an integer status back to the
function that called BIOS_start(), which is usually main(). Calling BIOS_exit() is recommended over
SPRUEX3O—October 2014 Support Modules 131
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

System Module www.ti.com
calling System_exit() for SYS/BIOS applications, because BIOS_exit() performs internal cleanup
before calling System_exit(). All functions bound via System_atexit() or the ANSI C Standard Library
atexit() function are then executed. If an application needs to terminate with an error condition, it
should call System_abort() or System_abortSpin().

• BIOS_getThreadType() — This function returns the type of thread from which this function call is
made. The available thread types are BIOS_ThreadType_Hwi, BIOS_ThreadType_Swi,
BIOS_ThreadType_Task, and BIOS_ThreadType_Main.

The BIOS module defines the BIOS_WAIT_FOREVER and BIOS_NO_WAIT constants, which can be
used with APIs that have a timeout argument.

The BIOS module provides several configuration parameters that control global SYS/BIOS behavior. For
example, BIOS.heapSize and BIOS.heapSection are described in Section 7.7.2. The BIOS.libType
configuration parameter selected which version of the SYS/BIOS libraries to use in the build, and is
described in Section 2.4.5. Various ways to reduce the size of a SYS/BIOS application by setting BIOS
module configuration parameters are shown in Appendix C and Appendix D.

See the API Reference help (CDOC) for the ti.sysbios.BIOS module for details about the APIs and
configuration parameters.

6.3 System Module

The System module provides basic low-level "system" services, such as character output, printf-like
output, and exit handling.

The package path to the System module is xdc.runtime.System, so SYS/BIOS applications should
contain the following #include statement:

#include <xdc/runtime/System.h>

Configuration files (*.cfg) should enable this module as follows:

var System = xdc.useModule('xdc.runtime.System');

The following System module APIs are useful in SYS/BIOS applications:

• System_printf() — Several functions similar to printf are provided. These include System_putch(),
System_sprintf(), System_vprintf(), System_aprintf() (arguments of type IArg), and
System_vsnprintf() (print a specified number of characters to a character buffer using a varargs list
to pass the arguments).

We strongly recommend that SYS/BIOS applications call System_printf() and its related functions in
place of the standard printf() function. The System module provides familiar printf-like functionality
but with fewer options. The memory footprint is much smaller than traditional printf(). System_printf()
allows users to specify to handling of the character output using a System provider (see Section 6.3.1
and Section 6.3.2).

The System module print functions are also recommended over Log module print functions, because
the System module functions are easier to use in many cases. The Log module is intended for use
with host instrumentation tools, and it has more options to disable/enable logging. See information
about UIA, which uses the Log module, in the System Analyzer User’s Guide (SPRUH43) for details.
132 Support Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://www.ti.com/lit/pdf/spruh43

www.ti.com System Module
• System_abort() — Your application can call this function when it needs to abort abnormally and
return an error message. This function allows you to return a string describing the error that occurred.
When this function is called, the System gate is entered, the SupportProxy's abort function is called,
and then System.abortFxn is called. No exit functions bound via System_atexit() or the ANSI C
Standard Library atexit() functions are called.

• System_flush() — This function sends any buffered output characters to the output device. It also
issues a break point to the IDE. Because this call halts the target, calling it can affect the details of
real-time execution. The destination for the output characters is determined by the SupportProxy
module.

• System_exit() — It is recommended that SYS/BIOS applications call BIOS_exit() instead of the
System_exit() function. The BIOS_exit() function performs internal cleanup before calling
System_exit(). The System_exit() may be called from a Task, but cannot be called from a Swi or Hwi.

• System_atexit() — Call this function to add an exit handler to the internal stack of functions to be
executed when System_exit() is called. The System.maxAtexitHandlers configuration property
controls how many exit handlers can be stacked. The default is 8.

The System module uses a support proxy module to implement the low-level services needed. The
implementation to use is specified by the System.SupportProxy configuration parameter. The default is
the SysMin module (Section 6.3.1). Another option is the SysCallback module (Section 6.3.2).

The System module is gated. Other modules can use its gate via the Gate_enterSystem() and
Gate_leaveSystem() functions.

Exit Functions

By default, when an application exits with no error condition, the System module calls its standard exit
function, which in turn calls the ANSI C Standard exit() function. If you would like your application to spin
indefinitely, so that you can debug the application’s state, add the following statement to your
configuration:

System.exitFxn = System.exitSpin;

Configuring this "spin" function also reduces the code size of your application. The System_exitSpin()
API should not be called directly by applications.

You can also use the System_atexit() function in C code to specify multiple exit handlers at runtime. The
prototype for a custom exit handler is:

typedef Void (*System_AtexitHandler)(Int);

Abort Functions

By default, when an application aborts due to an error condition, the System module calls its standard
abort function, which in turn calls the ANSI C Standard abort() function. If you would like your application
to spin indefinitely, so that you can debug the application’s state, add the following statement to your
configuration:

System.abortFxn = System.abortSpin;

Configuring this "spin" function also reduces the code size of your application. The System_abortSpin()
API should not be called directly by applications.

The prototype for a custom abort handler is:

typedef Void (*System_AbortFxn)();
SPRUEX3O—October 2014 Support Modules 133
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Program Module www.ti.com
6.3.1 SysMin Module

The SysMin module is the SupportProxy module used by most SYS/BIOS examples and templates. This
module provides implementations of the functions required for a System SupportProxy. This includes
functions to flush buffered characters, output a single character, and perform exit and abort actions.

The SysMin module is recommended for most applications, because it places the characters into a
circular buffer that the RTOS Object Viewer (ROV) tool knows how to find and present.

The module maintains an internal circular buffer on the target to store the "output" characters. When the
buffer is full, data is over-written. When a function is called that flushes the buffer, characters in the
internal circular buffer are "output" using the configured outputFxn. Unless you provide a custom
outputFxn, on TI targets the HOSTwrite() function in the TI C Run Time Support library is used to output
the character buffer. On non-TI targets, the ANSI C Standard Library function fwrite() is used.

An application should not call SysMin functions directly, but the SysMin module does provide
configuration parameters to control the buffer site used to store output internally and the memory section
that contains this buffer. Configuration files (*.cfg) can enable this module as follows:

var BIOS = xdc.useModule('xdc.runtime.SysMin');

6.3.2 SysCallback Module

The SysCallback module is an alternative to the SysMin proxy module. It requires you to provide custom
functions to handle abort, exit, flush, putch, and ready actions. Use this module if you need to customize
the output behavior of your application.

6.4 Program Module

The Program module acts as the "root" for the configuration namespace. It is used in configurations, but
does not provide any C APIs. See Section 2.3.10 for more about the configuration namespace.

Your configuration file does not need a useModule() statement to enable this module.

The Program module provides configuration parameters that control the run-time memory sizes. These
include Program.stack, which controls the size of the application’s stack, which is separate from the
stacks used by individual Tasks.

The Program module also provides configuration parameters that control the contents of the auto-
generated linker command file. These include the Program.sectMap[] array (see Section 7.3.2) and the
Program.sectionsExclude parameter (see Section 7.3.4).

See the API Reference help (CDOC) for the xdc.cfg.Program module for details about the APIs and
configuration parameters.
134 Support Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Startup Module
6.5 Startup Module

The Startup module manages the very early startup initialization that occurs before C's main() function is
invoked. This initialization typically consists of setting hardware specific registers that control watchdog
timers, access to memory, cache settings, clock speeds, etc.

In addition to configuration parameters that allow the user to add custom startup functions, this module
also provides services that allow modules to automatically add initialization functions to the startup
sequence.

Configuration files (*.cfg) that configure the Startup module should enable this module as follows:

var BIOS = xdc.useModule('xdc.runtime.Startup');

See Section 3.1 for an overview of the startup process, including the sequence in which functions
configured for the Startup module are run and an example configuration script excerpt that installs a user-
supplied startup function at every possible control point in the startup sequence.

See the Texas Instruments Processors Wiki for target-specific details about the startup sequence.

6.6 Reset Module

The Reset module allows you to define an initial reset function by configuring the Reset.fxns[] array
property. Reset functions are called as early as possible in the application startup and are intended for
platform-specific hardware initialization.

Note that only certain target families perform a device reset before running a program. As a result, the
reset function is not supported on all platforms. Do not place code that you intend to be portable in this
function. Instead, use the Startup module to define cross-platform application startup functions.

Configuration files (*.cfg) that configure the Reset module should enable this module as follows:

var BIOS = xdc.useModule('xdc.runtime.Reset');

The Reset module allows you to configure an array of startup functions, which allows you to provide
separate functions for the startup activities of various peripherals.

See Section 3.1 for an overview of the startup process, including the sequence in which functions
configured for the Reset module are run and an example configuration script excerpt that installs a user-
supplied Reset function.
SPRUEX3O—October 2014 Support Modules 135
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://processors.wiki.ti.com/index.php/Category:SYSBIOS#Get_device-specific_information_about_SYS.2FBIOS

Error Module www.ti.com
6.7 Error Module

The Error module provides mechanisms for raising, checking, and handling errors in a program.

The package path to the Error module is xdc.runtime.Error, so SYS/BIOS applications that use Error APIs
should contain the following #include statement:

#include <xdc/runtime/Error.h>

Configuration files (*.cfg) that configure the Error module should enable this module as follows:

var BIOS = xdc.useModule('xdc.runtime.Error');

A number of SYS/BIOS APIs—particularly those that create objects and allocate memory—have an
argument that expects an Error_Block. Section 9.3 describes error blocks and several APIs that manage
them, including Error_init() and Error_check().

The following Error module APIs may be useful in your SYS/BIOS applications:

• Error_init() — Puts an error block into its initial state.

• Error_check() — Returns true if an error was raised.

• Error_getData() — Gets an error’s argument list.

• Error_getMsg() — Gets an error’s "printf" format string.

• Error_print() — Prints an error using System_printf().

• Error_raise() — Raises an error.

This example uses Error APIs in a call to System_printf():

This example raises an error in response to an error condition:

You can configure how SYS/BIOS applications respond to raised errors with the Error.policy,
Error.policyFxn, and Error.raiseHook configuration parameters.

By default, the Error.policy is to return errors to the calling function (Error_UNWIND). If the Error.policy
is Error_TERMINATE, all raised errors are fatal and calls to Error_raise() do not return to the caller.

By default, the Error.policyFxn is Error_policyDefault(), which processes the error and logs it before
returning to the caller or aborting, depending on the Error.policy. Alternately, you can use
Error_policySpin(), which simply loops infinitely, to minimize the target footprint.

You can specify an Error.raiseHook function to be called whenever an error is raised, even if the
Error.policy is TERMINATE. By default, this function is set to Error_print(), which causes the error to be
formatted and output by System_printf(). Setting this configuration parameter to null indicates that no
function hook should be called.

System_printf(Error_getMsg(eb),

 Error_getData(eb)->arg[0],

 Error_getData(eb)->arg[1]);

if (val % 2) {

 Error_raise(eb, Error_E_generic, "Value is not a multiple of 2", 0);

}

136 Support Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Text Module
6.8 Text Module

The Text module efficiently manages a collection of strings with common substrings. Collections with a
high degree of commonality are stored in much less space than as ordinary table of independent strings.
The total space available for the compressed representation of text strings is limited to 64K characters.

To further save space, the "compressed" representation need not even be loaded in the target's memory.
By default, text strings are loaded into target memory. You can prevent this by setting the Text.isLoaded
configuration property to false as shown in Appendix D.

You can use the Text_isLoaded Boolean constant at run-time to control the format string passed to
System_printf() functions. For example:

The package path to the Text module is xdc.runtime.Text, so SYS/BIOS applications that use Text APIs
and constants should contain the following #include statement:

#include <xdc/runtime/Text.h>

Configuration files (*.cfg) that configure the Text module should enable this module as follows:

var BIOS = xdc.useModule('xdc.runtime.Text');

if (Text_isLoaded) {

 System_asprintf(tempStr, fmt, a1, a2, a3, a4, a5, a6, a7, a8);

}

else {

 System_asprintf(tempStr, "{evt: fmt=%p, args=[0x%x, 0x%x ...]}", fmt, a1, a2);

}

SPRUEX3O—October 2014 Support Modules 137
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Chapter 7
SPRUEX3O—October 2014

Memory

This chapter describes issues related to memory use in SYS/BIOS.

7.1 Background . 139

7.2 Memory Map . 140

7.3 Placing Sections into Memory Segments . 145

7.4 Sections and Memory Mapping for MSP430, Stellaris M3, and C28x 149

7.5 Stacks. 149

7.6 Cache Configuration . 152

7.7 Dynamic Memory Allocation . 153

7.8 Heap Implementations . 156

Topic Page
SPRUEX3O—October 2014 Memory 138
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com Background
7.1 Background

This chapter deals with the configuration of static memory (that is, memory mapping and section
placement), caches, and stacks. It also provides information on dynamic memory allocation (allocating
and freeing memory at runtime).

Static memory configuration relates to the "memory map" available to the executable and the placement
of code and data into the memory map. The memory map is made up of internal memory regions that
exist within the CPU and external memory regions located on the hardware board. See Section 7.2 for
details about the memory map.

Code and data are placed in memory regions by the linker using the linker command file. The linker
command file specifies a memory map. For each memory region, the linker command file specifies the
origin or base address, length and attributes (read, write, and execute). A memory region specified in the
linker command file is also called a "memory segment".

The following is a memory map specification from a linker command file:

The linker command file also contains information on "memory section" placement, as shown in the
following example. Sections are relocatable blocks of code produced by the compiler. The compiler
produces some well-known sections for placements of various types of code and data, for example: .text,
.switch, .bss, .far , .cinit, and .const. For details, see the appropriate compiler user’s guide.

The linker places "memory sections" (such as .text and .cinit) into "memory segments" (such as IRAM)
as specified by SECTIONS portion of the linker command file. See Section 7.3 for details about section
placement.

Section 7.2 discusses the memory map for SYS/BIOS applications. (MSP430 users should see Section
7.4 instead.)

Section 7.3 discusses section placement in a SYS/BIOS application. (MSP430 users should see Section
7.4 instead.)

Section 7.5 discusses stacks, including how to configure the system stack and task stacks.

MEMORY {

 IRAM (RWX) : org = 0x800000, len = 0x200000

 DDR : org = 0x80000000, len = 0x10000000

}

SECTIONS {

 .text: load >> DDR

 .switch: load >> DDR

 .stack: load > DDR

 .vecs: load >> DDR

 .args: load > DDR

 .sysmem: load > DDR

 .far: load >> DDR

 .data: load >> DDR

 .cinit: load > DDR

 .bss: load > DDR

 .const: load > DDR

 .pinit: load > DDR

 .cio: load >> DDR

}

SPRUEX3O—October 2014 Memory 139
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Memory Map www.ti.com
Section 7.6 covers cache configuration specific to the C6000 and cache runtime APIs.

Section 7.7 also discusses dynamic memory allocation. Runtime code can allocate and free memory
from a "heap," which is a memory pool that has been set aside and managed for the purpose of dynamic
memory allocation.

Various heap implementations are described in Section 7.8.

7.2 Memory Map

Note: If you are using the MSP430, see Section 7.4 instead. This section does not apply to
the MSP430.

The memory map for an executable is determined by the device (which has internal memory) and the
hardware board (which has external memory).

When you create a CCS project for an application that uses SYS/BIOS, you select a "platform" on the
RTSC Configuration Settings page. The memory map for on-device and external memory is determined
by this platform. The platform also sets the clock speed and specifies memory section placement.

You select a platform when you create a new project or change the project build properties, not when you
create a configuration file.

Executables that need different memory maps must use different platforms even if they run on the same
type of board.

The platform is tied to a particular device (CPU) and gets the internal memory map from the device—for
example, IRAM and FLASH. The platform also contains the external memory specifications and cache
settings. The internal and external memory segments together form the memory map.

7.2.1 Choosing an Available Platform

Before building a SYS/BIOS 6.x executable, you need to select the hardware board you will be using.
You do this by selecting a platform either when you create a CCS project or in the RTSC tab of the
project’s CCS General properties. The Platform field provides a drop-down list of all available platforms
that match your Target; these items represent various evaluation boards available for your chosen device
(CPU).
140 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Memory Map
To view the memory map for your platform, you can open the platform wizard by choosing Tools > RTSC
Tools > Platform > Edit/View. Select the packages repository in your XDCtools installation. For
example, C:\ti\xdctools_3_30_##_##\packages. Then, choose the Package you are using and click
Next.

In most cases, you begin application development using one of the evaluation boards, and can select
one of the standard platforms from the drop-down list. You should select one of existing platforms if all of
the following are true:

• You are in the development phase and are using an evaluation board.

• You do not care about cache sizes and are satisfied with the defaults set by the existing platform.

• You do not want to change the default section placement.

• You want the same clock rate as the evaluation board.

If any of these statements do not apply, see Section 7.2.2.

7.2.2 Creating a Custom Platform

At some point in the application development process, most customers build their own boards, choosing
a TI device and adding custom external memory.

You will also need to create your own platform if any of the following items are true:

• You want to customize cache sizes.

• You want to manually override the default section placement.

For such custom boards you will need to create a platform using the platform wizard. The platform wizard
is a GUI tool that allows you to easily create a custom platform. Creating a custom platform gives you a
lot of flexibility in terms of defining the memory map and selecting default memory segments for section
placement.
SPRUEX3O—October 2014 Memory 141
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Memory Map www.ti.com
To run the platform wizard, follow these steps:

1. In CCS, choose Tools > RTSC Tools > Platform > New from the menus. This opens the New
Platform wizard.

2. Type a name for the package. This will be the name of the directory created to contain the platform
package, and will be the name you select when you choose the platform for the project to use.

You can use a simple name or a period-delimited name. Periods correspond to directory levels when
a platform package is created. For example, myBoards.DA830_bigCache will be created in
C:\myRepository\packages\myBoards\DA830_bigCache if you are using C:\myRepository\packages
as the repository location.

3. Next to the Platform Package Repository field, click Browse. Choose the location of the repository
where you want to save your platform package. The default is
C:\Users\<username>\myRepository\packages.

If you haven’t created a package repository before, and you don’t want to use the default, create a
new directory to contain the repository. In the directory you choose, create a sub-directory called
"packages". For example, you might use C:\myRepository\packages as the repository. The full path
to the repository should not contain any spaces.

4. Optionally, if you have already created a CCS project that you want to be able to use this platform,
check the Add Repository to Project Package Path box. Then select the project that should have
access to this repository. You don’t need to do this now; you can also add repositories to projects
from the project’s Build Properties dialog.

5. Choose the Device Family and Device Name from the drop-down lists. For example:

6. Click Next. You see the Device Page of the platform wizard.

Note: If you want another project to be able to use this platform, you can later add the
repository that contains the platform to a project’s properties by right-clicking on the
project and choosing Build Properties. Choose the CCS General category and then
the RTSC tab. Click Add and browse the file-system for the repository you want the
project to be able to search for platforms.

See the subsections that follow for ways to specify the cache, segment, and section use for your platform.
You can also visit the Demo of the RTSC Platform Wizard to watch demonstrations that use the platform
wizard.
142 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://rtsc.eclipse.org/docs-tip/Demo_of_the_RTSC_Platform_Wizard_in_CCSv4
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Memory Map
7.2.2.1 Getting and Setting the Clock Speed and Default Memory Settings

The Device Page opens with no clock speed setting, no external memory segments, and no memory
section assignments. Generally, the first thing you will want to do is to import the default settings from an
existing platform so that you can use those as a base for making the modifications you need.

To import defaults, follow these steps:

1. Click the Import button next to the Clock Speed
field.

2. In the Select Platform dialog, choose the platform
whose defaults you want to import, and click OK.

3. Click Yes in the confirmation dialog that asks if you
are sure you want to change the settings.

4. You see the default clock speed and external
memory settings. You can change these if you like.
SPRUEX3O—October 2014 Memory 143
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Memory Map www.ti.com
7.2.2.2 Determining Cache Sizes for Custom Platforms

Since cache sizes affect the memory map, if you are using a C6000 target, you need to decide on the
sizes you want to use when creating a platform. For example, if you are using the
"ti.platforms.evmDA830" platform, the L1P, L1D, and L2 cache sizes affect the size of available
L1PSRAM, L1DSRAM, and IRAM.

Since cache sizes are set in the platform, executables that need different cache configurations will also
need different platforms.

The following example steps use the Device Page of the platform wizard to specify the maximum cache
sizes for TMS320DA830 platform:

1. Set the L1D Cache to 32K. Set the L1P Cache to 32K. Set the L2 Cache to 256K.

2. Notice that the sizes of L1PSRAM, L1DSRAM and IRAM are adjusted down to zero.

See Section 7.6 for more about cache configuration.

7.2.2.3 Selecting Default Memory Segments for Data, Code and Stack

The platform also determines the default memory segment for placement of code, data and stack. If you
do not explicitly place a section, then the defaults are used. For example, if you do not configure the
location of a Task stack in the *.cfg file, then the task stack will be placed in the stack memory segment
specified by the platform.

You can make coarse decisions on where you want your code, data, and stack to be placed by selecting
values for data memory, code memory, and stack memory in your platform definition.

For example on the evmDA830, you may want your code in SDRAM and data in RAM. You can achieve
this by selecting Code memory to be SDRAM and Data memory to be IRAM in the platform wizard.

See Section 7.3 for details about how you can use the configuration files to be more specific about how
memory sections should be placed in memory segments.
144 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Placing Sections into Memory Segments
7.2.2.4 Setting Custom Base Addresses and Lengths for Segments

You can customize the names, locations, sizes, type, and access for both internal and external memory
segments.

To customize internal memory segments, begin by checking the Customize Memory box in the Device
Memory area. You can then click on fields in the list of memory segments and make changes. In the
Name, Base, and Length columns, type the value you want to use. In the Space and Access columns,
you can select from a list of options.

To customize external memory segments, you can right-click in the External Memory area and choose
Insert Row or Delete Row.

In the new row, type a Name, Base address, and Length for the memory segment. Choose the type of
memory Space and the permitted Access to this memory.

To watch a demo that shows how to customize memory segments, see http://rtsc.eclipse.org/docs-
tip/Demo_of_Customizing_Memory_Sections.

7.3 Placing Sections into Memory Segments

Note: If you are using the MSP430, see Section 7.4 instead. This section does not apply to
the MSP430.

The platform defines your application’s memory map along with the default section placement in memory
for those segments. (See Section 7.2 for details on platform configuration.) The platform provides general
control over the placement of the "code", "data", and "stack" sections. For more fine-grained control of
the sections, there are several options:
SPRUEX3O—October 2014 Memory 145
Submit Documentation Feedback

http://rtsc.eclipse.org/docs-tip/Demo_of_Customizing_Memory_Sections
http://rtsc.eclipse.org/docs-tip/Demo_of_Customizing_Memory_Sections
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Placing Sections into Memory Segments www.ti.com
• To define and place new sections that are not managed by SYS/BIOS, you can either modify the
project’s configuration (.cfg) file as described in Sections 7.3.1 and 7.3.2 or provide a supplemental
linker command file as described in Section 7.3.3.

• To modify the placement of sections managed by SYS/BIOS, you can either modify the project’s
configuration (.cfg) file as described in Sections 7.3.1 and 7.3.2 or provide your own linker command
file to replace part or all of the XDCtools-generated one as described in Section 7.3.4.

Note: To place sections into segments in the *.cfg file, you will need to edit the source of your
*.cfg script in a text editor. Currently, you cannot use the XGCONF GUI editor.

7.3.1 Configuring Simple Section Placement

In a configuration file, section placement is done through the Program.sectMap[] array.

The simplest way to configure the segment in which a section should be placed is as follows:

This example would cause the IRAM segment to be used both for loading and running the .foo section.

7.3.2 Configuring Section Placement Using a SectionSpec

The Program.sectMap[] array maps section names to structures of the type SectionSpec. If you use the
simple statement syntax shown in the previous section, you don’t need to create a SectionSpec structure.
Using a SectionSpec structure gives you more precise control over how the run and load memory
segments (or addresses) for a section are specified.

The SectionSpec structure contains the following fields.

• runSegment. The segment where the section is to be run.

• loadSegment. The segment where the section is to be loaded.

• runAddress. Starting address where the section is to be run. You cannot specify both the
runSegment and runAddress.

• loadAddress. Starting address where the section is to be loaded. You cannot specify both the
loadSegment and the loadAddress.

• runAlign. Alignment of the section specified by runSegment. If you specify the runSegment, you can
also specify runAlign.

• loadAlign. Alignment of the section specified by loadSegment. If you specify the loadSegment, you
can also specify loadAlign.

• type. You can use this field to define various target-specific flags to identify the section type. For
example, COPY, DSECT, and NOLOAD.

• fill. If specified, this value is used to initialize an uninitialized section.

Program.sectMap[".foo"] = "IRAM";
146 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Placing Sections into Memory Segments
The following .cfg file statements specify the memory segments where the .foo section is to be loaded
and run.

If you specify only the loadSegment or runSegment for a section, the default behavior is to use the
specified segment for both loading and running.

The following statements place the Swi_post() function into the IRAM memory segment:

The following statements place all static instances for the Task module into the .taskStatic section:

Configuration statements that specify sections using the sectMap array affect the section placement in
the linker command file that is generated from the configuration.

7.3.3 Providing a Supplemental Linker Command File

It is possible to provide your own linker command file to supplement the one generated by XDCtools. You
can do this to define new sections and to leverage all of the features available through the linker
command language.

Simply add a linker command file you have written to your CCS project. The file must have a file extension
of *.cmd. CCS automatically recognizes such a linker command file and invokes it during the link step.

The definition of the memory map (the “MEMORY” specification of the linker command file) is handled by
your platform, so this approach cannot be used to change the definition of the existing memory segments.

This approach works for defining new memory sections. If you want to change the placement of sections
managed by SYS/BIOS, however, you must follow one of the approaches described in Section 7.3.1,
7.3.2, or 7.3.4.

Program.sectMap[".foo"] = new Program.SectionSpec();

Program.sectMap[".foo"].loadSegment = "FLASH";

Program.sectMap[".foo"].runSegment = "RAM";

Program.sectMap[".text:_ti_sysbios_knl_Swi_post__F"] = new Program.SectionSpec();

Program.sectMap[".text:_ti_sysbios_knl_Swi_post__F"] = "IRAM";

var Task = xdc.useModule('ti.sysbios.knl.Task');

Task.common$.instanceSection = ".taskStatic";

Program.sectMap[".taskStatic"] = new Program.SectionSpec();

Program.sectMap[".taskStatic"].loadSegment = "IRAM";
SPRUEX3O—October 2014 Memory 147
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Placing Sections into Memory Segments www.ti.com
7.3.4 Default Linker Command File and Customization Options

The linker command file used by a SYS/BIOS application is auto-generated when the configuration is
processed. This command file is typically located with the configuration package, as shown here:

The auto-generated linker command file uses a template specified by the platform associated with the
program. This command file defines MEMORY and SECTIONS as determined during the configuration
process. The placement of sections in the configuration file is reflected in this auto-generated command
file.

You can customize the auto-generated linker command file using any of the following techniques:

• Exclude sections from the auto-generated command file. See the page at http://rtsc.eclipse.org/cdoc-
tip/xdc/cfg/Program.html#sections.Exclude for examples that configure the
Program.sectionsExclude parameter.

• Replace the entire SECTIONS portion of the generated linker command file. See information about
the Program.sectionsTemplate parameter at http://rtsc.eclipse.org/cdoc-
tip/xdc/cfg/Program.html#sections.Template.
148 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://rtsc.eclipse.org/cdoc-tip/xdc/cfg/Program.html#sections.Exclude
http://rtsc.eclipse.org/cdoc-tip/xdc/cfg/Program.html#sections.Exclude
http://rtsc.eclipse.org/cdoc-tip/xdc/cfg/Program.html#sections.Template
http://rtsc.eclipse.org/cdoc-tip/xdc/cfg/Program.html#sections.Template
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Sections and Memory Mapping for MSP430, Stellaris M3, and C28x
• Specify a template for the program's linker command file. See http://rtsc.eclipse.org/cdoc-
tip/xdc/cfg/Program.html#link.Template for information and examples that use the
Program.linkTemplate parameter. The simplest way to create a template for your program is to first
auto-generate the linker command file, then edit it to suit your application’s needs, and then set the
Program.linkTemplate parameter to reference your edited file.

Important: This technique requires that you copy the auto-generated linker command file and edit
it every time you change the configuration, the platform, or install a new version of
XDCtools.

7.4 Sections and Memory Mapping for MSP430, Stellaris M3, and C28x

When you create a project in CCS, you must select a device as part of the project settings (for example,
MSP430F5435A) in the CCS project creation wizard. A linker command file specific to the selected
device is automatically added to the project by CCS.

In the RTSC Configuration Settings page of the wizard, a Target and a Platform are automatically
selected based on your previous selections. We recommend using "release" as the Build-Profile, even if
you are in the debugging stage of code development. See Section 2.4.5 for more about build settings for
reducing the size of your executable for the MSP430.

The platforms for the MSP430, Stellaris Cortex-M3 microcontrollers, and C28x devices differ from other
platforms in that they do not define the memory map for the device. Instead, the linker command file
added by the project wizard is used directly. Any changes to the memory map and section placement can
be made by editing the linker command file directly. See the MSP430 Optimizing C/C++ Compiler User's
Guide for more details on linker command file options.

Note that an additional XDCtools-generated linker command file is added to the project; this file places a
few sections that are SYS/BIOS specific. This command file assumes that "FLASH" and "RAM" are part
of the memory map.

Note: For hardware-specific information about using SYS/BIOS, see links on the
http://processors.wiki.ti.com/index.php/Category:SYSBIOS page.

7.5 Stacks

SYS/BIOS uses a single system stack for hardware interrupts and a separate task stack for each Task
instance.

7.5.1 System Stack

You can configure the size of the System stack, which is used as the stack for hardware interrupts and
software interrupts (and by the Idle functions if Task is disabled). You should set the System stack size
to meet the application's needs. See Section 3.4.3 for information about system stack size requirements.
SPRUEX3O—October 2014 Memory 149
Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://rtsc.eclipse.org/cdoc-tip/xdc/cfg/Program.html#link.Template
http://rtsc.eclipse.org/cdoc-tip/xdc/cfg/Program.html#link.Template
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Stacks www.ti.com
You can use the .stack section to control the location of the system stack. For example, the following
configuration statements place the system stack of size 0x400 in the IRAM segment.

Setting Program.stack generates appropriate linker options in the linker command file to allow the system
stack to be allocated at link time. For example, the linker command file for a C6000 application might
include the command option -stack 0x0400.

See your project’s auto-generated linker command file for symbols related to the system stack size and
location. For C6000 these include __TI_STACK_END and __STACK_SIZE.

7.5.2 Task Stacks

If the Task module is enabled, SYS/BIOS creates an additional stack for each Task instance the
application contains (plus one task stack for the Idle threads). See Section 3.5.3 for information about
task stack size requirements.

You can specify the size of a Task’s stack in the configuration file. (You can use XGCONF to do this or
edit the .cfg file directly.) For example:

You can control the location of task stacks for statically-created Tasks by using Program.sectMap[]. For
example:

Program.stack = 0x400;

Program.sectMap[".stack"] = "IRAM";

var Task = xdc.useModule('ti.sysbios.knl.Task');

/* Set default stack size for tasks */

Task.defaultStackSize = 1024;

/* Set size of idle task stack */

Task.idleTaskStackSize = 1024;

/* Create a Task Instance and set stack size */

var tskParams = new Task.Params;

tskParams.stackSize = 1024;

var task0 = Task.create('&task0Fxn', tskParams);

/* Place idle task stack section */

Program.sectMap[".idleTaskStackSection"] = "IRAM";

/* Place other static task stacks */

Program.sectMap[".taskStackSection"] = "IRAM";
150 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Stacks
7.5.3 ROV for System Stacks and Task Stacks

At runtime, you can use Tools > RTOS Object View (ROV) in CCS to browse for details about each of
the Task instances. For information about ROV, see the wiki page at http://rtsc.eclipse.org/docs-
tip/RTSC_Object_Viewer. The Detailed tab shows the task stack information and status.

The Module tab of the Task view shows the HwiStack (which is the system stack) information and status.
SPRUEX3O—October 2014 Memory 151
Submit Documentation Feedback

http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer
http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Cache Configuration www.ti.com
7.6 Cache Configuration

C6000 cache sizes in SYS/BIOS 6.x are determined by the platform you choose. To change cache sizes,
create or modify the platform using the platform wizard as described in Section 7.2.2.2.

The following subsections describe ways you can use the family-specify Cache modules in SYS/BIOS to
manipulate caching behavior.

7.6.1 Configure Cache Size Registers at Startup

For C6000 targets, the ti.sysbios.hal.Cache module gets cache sizes from the platform and sets the
cache size registers at startup time. The ti.sysbios.hal.Cache module is a generic module whose
implementations are provided in the family-specific ti.sysbios.family.*.Cache modules. See Section 8.4
for more about the Cache module and its implementations.

For example on the DA830, the Cache module sets the L1PCFG, L1DCFG and L2CFG registers at
startup time.

7.6.2 Configure Parameters to Set MAR Registers

For C6000 targets, the ti.sysbios.family.c64p.Cache module defines Cache.MAR##-## configuration
parameters that allow you to control which external memory addresses are cacheable or non-cacheable.
For example, Cache_MAR128_159 is one such configuration parameter. These configuration
parameters directly map to the MAR registers on the device. Each external memory address space of 16
MB is controlled by one MAR bit (0: noncacheable, 1:cacheable).

The SYS/BIOS Cache module has module-wide configuration parameters that map to the MAR registers.

By default the C64P Cache module makes all memory regions defined in the platform cacheable by
setting all of the corresponding MAR bits to 0x1. To disable caching on a DA830 device for the external
memory range from 8000 0000h to 80FF FFFFh, you set Cache.MAR128_159 = 0x0 as follows. This sets
register MAR128 to 0.

After the MAR bit is set for an external memory space, new addresses accessed by the CPU will be
cached in L2 cache or, if L2 is disabled, in L1. See device-specific reference guides for MAR registers
and their mapping to external memory addresses.

At system startup, the Cache module writes to the MAR registers and configures them.

7.6.3 Cache Runtime APIs

For any target that has a cache, the ti.sysbios.hal.Cache module provides APIs to manipulate caches at
runtime. These include the Cache_enable(), Cache_disable(), Cache_wb(), and Cache_inv() functions.
See Section 8.4.1 for details.

var Cache = xdc.useModule('ti.sysbios.family.c64p.Cache');

Cache.MAR_128_159 = 0x0;
152 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Dynamic Memory Allocation
7.7 Dynamic Memory Allocation

A "Heap" is a module that implements the IHeap interface. Heaps are dynamic memory managers: they
manage a specific piece of memory and support allocating and freeing pieces ("blocks") of that memory.

Memory allocation sizes are measured in "Minimum Addressable Units" (MAUs) of memory. An MAU is
the smallest unit of data storage that can be read or written by the CPU. For the C28x, this is an 16-bit
word. For the all other currently supported target families—including C6000, ARM, and MSP430—this is
an 8-bit byte.

7.7.1 Memory Policy

You can reduce the amount of code space used by an application by setting the memoryPolicy on a global
or per-module basis. This is particularly useful on targets where the code memory is significantly
constrained.

The options are:

• DELETE_POLICY. This is the default. The application creates and deletes objects (or objects for this
module) at runtime. You need both the MODULE_create() functions and the MODULE_delete()
functions to be available to the application.

• CREATE_POLICY. The application creates objects (or objects for this module) at runtime. It does not
delete objects at runtime. You need the MODULE_create() functions to be available to the
application, but not the MODULE_delete() functions.

• STATIC_POLICY. The application creates all objects (or all objects for this module) in the
configuration file. You don’t need the MODULE_create() or the MODULE_delete() functions to be
available to the application.

For example, the following configuration statements set the default memory policy for all modules to static
instance creation only:

7.7.2 Specifying the Default System Heap

The BIOS module creates a default heap for use by SYS/BIOS. When Memory_alloc() is called at runtime
with a NULL heap, this system heap will be used. The default system heap created by the BIOS module
is a HeapMem instance. The BIOS module provides the following configuration parameters related to the
system heap:

• BIOS.heapSize can be used to set the system heap size.

• BIOS.heapSection can be used to place the system heap.

For example, you can configure the default system heap as follows:

If you want to use a different heap manager for the system heap, you can specify the system heap in your
configuration file and SYS/BIOS will not override the setting.

var Defaults = xdc.useModule('xdc.runtime.Defaults');

var Types = xdc.useModule('xdc.runtime.Types');

Defaults.memoryPolicy = Types.STATIC_POLICY;

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.heapSize = 0x900;

BIOS.heapSection = "systemHeap";
SPRUEX3O—October 2014 Memory 153
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Dynamic Memory Allocation www.ti.com
Note: The SYS/BIOS system heap cannot be a HeapStd instance. The BIOS module detects
this condition and generates an error message.

The following configuration statements specify a system heap that uses HeapBuf instead of HeapMem:

If you do not want a system heap to be created, you can set BIOS.heapSize to zero. The BIOS module
will then use a HeapNull instance to minimize code/data usage.

7.7.3 Using the xdc.runtime.Memory Module

All dynamic allocation is done through the xdc.runtime.Memory module. The Memory module provides
APIs such as Memory_alloc() and Memory_free(). All Memory APIs take an IHeap_Handle as their first
argument. The Memory module does very little work itself; it makes calls to the Heap module through the
IHeap_Handle. The Heap module is responsible for managing the memory. Using Memory APIs makes
applications and middleware portable and not tied to a particular heap implementation.

IHeap_Handles to be used with Memory APIs are obtained by creating Heap instances statically or
dynamically. When The IHeap_Handle passed to the Memory APIs is NULL, the default system heap is
used. See Section 7.7.2.

Runtime example: This example allocates and frees memory from two different heaps. It allocates from
the system heap by passing NULL to Memory_alloc as the IHeap_Handle. It allocates from a separate
heap called "otherHeap" by explicitly passing the "otherHeap" handle.

/* Create a heap using HeapBuf */

var heapBufParams = new HeapBuf.Params;

heapBufParams.blockSize = 128;

heapBufParams.numBlocks = 2;

heapBufParams.align = 8;

heapBufParams.sectionName = "myHeap";

Program.global.myHeap = HeapBuf.create(heapBufParams);

Program.sectMap["myHeap"] = "DDR";

Memory.defaultHeapInstance = Program.global.myHeap;

#include <xdc/std.h>

#include <xdc/runtime/IHeap.h>

#include <xdc/runtime/System.h>

#include <xdc/runtime/Memory.h>

#include <xdc/runtime/Error.h>

extern IHeap_Handle systemHeap, otherHeap;

Void main()

{

 Ptr buf1, buf2;

 Error_Block eb;

 Error_init(&eb);
154 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Dynamic Memory Allocation
7.7.4 Specifying a Heap for Module Dynamic Instances

You can specify the default heap to be used when allocating memory for dynamically-created module
instances. The configuration property that controls the default heap for all modules is
Default.common$.instanceHeap.

For example, these configuration statements specify the heap for allocating instances:

If you do not specify a separate heap for instances, the heap specified for Memory.defaultHeapInstance
will be used (see Section 7.7.2).

To specify the heap a specific module uses when it allocates memory for dynamically-created instances,
set the instanceHeap parameter for that module. For example, the following configuration statements
specify the heap for the Semaphore module:

 /* Alloc and free using systemHeap */

 buf1 = Memory_alloc(NULL, 128, 0, &eb);

 if (buf1 == NULL) {

 System_abort("Memory allocation for buf1 failed");

 }

 Memory_free(NULL, buf1, 128);

 /* Alloc and free using otherHeap */

 buf2 = Memory_alloc(otherHeap, 128, 0, &eb);

 if (buf2 == NULL) {

 System_abort("Memory allocation for buf2 failed");

 }

 Memory_free(otherHeap, buf2, 128);

}

var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');

var heapMemParams = new HeapMem.Params;

heapMemParams.size = 8192;

var heap1 = HeapMem.create(heapMemParams);

Default.common$.instanceHeap = heap1;

var Semaphore = xdc.useModule('ti.sysbios.knl.Semaphore');

var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');

var heapMemParams = new HeapMem.Params;

heapMemParams.size = 8192;

var heap1 = HeapMem.create(heapMemParams);

Semaphore.common$.instanceHeap = heap1;
SPRUEX3O—October 2014 Memory 155
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Heap Implementations www.ti.com
7.7.5 Using malloc() and free()

Applications can call the malloc() and free() functions. Normally these functions are provided by the RTS
library supplied by the code generation tools. However, when you are using SYS/BIOS, these functions
are provided by SYS/BIOS and re-direct allocations to the default system heap (see Section 7.7.2).

To change the size of the heap used by malloc(), use the BIOS.heapSize configuration parameter.

7.8 Heap Implementations

The xdc.runtime.Memory module is the common interface for all memory operations. The actual memory
management is performed by a Heap instance, such as an instance of HeapMem or HeapBuf. For
example, Memory_alloc() is used at runtime to dynamically allocate memory. All of the Memory APIs take
a Heap instance as one of their parameters. Internally, the Memory module calls into the heap’s interface
functions.

SYS/BIOS provides the following Heap implementations:

• HeapMin. Very small code footprint implementation. Supports memory allocation, but does not
support freeing memory. Section 7.8.1

• HeapMem. Allocate variable-size blocks. Section 7.8.2

• HeapBuf. Allocate fixed-size blocks. Section 7.8.3

• HeapMultiBuf. Specify variable-size allocation, but internally allocate from a variety of fixed-size
blocks. Section 7.8.4

• HeapTrack. Used to detect memory allocation and deallocation problems. Section 7.8.5

This table compares SYS/BIOS heap implementations. See the CDOC help for details.

Table 7–1. Heap Implementation Comparison

Different heap implementations optimize for different memory management traits. The HeapMem module
(Section 7.8.2) accepts requests for all possible sizes of blocks, so it minimizes internal fragmentation.
The HeapBuf module (Section 7.8.3), on the other hand, can only allocate blocks of a fixed size, so it
minimizes external fragmentation in the heap and is also faster at allocating and freeing memory.

Module Description/Characteristics Limitations

xdc.runtime.HeapMin Minimal memory use, non-
blocking. No support for freeing
heap memory.

free() not supported

ti.sysbios.heaps.HeapMem Uses Gate to protect during
allocation and freeing, accepts any
block size

Slower, non-deterministic

ti.sysbios.heaps.HeapBuf Fast, deterministic, non-blocking Allocates blocks of a single size

ti.sysbios.heaps.HeapMultiBuf Fast, deterministic, non-blocking,
multiple-block sizes supported

Limited number of block sizes

ti.sysbios.heaps.HeapTrack Detects memory leaks, buffer
overflows, and double frees of
memory.

Performance and size penalty
associated with tracking
156 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Heap Implementations
7.8.1 HeapMin

HeapMin is a minimal footprint heap implementation. This module is designed for applications that
generally allocate memory and create module instances at runtime, but never delete created instances
or free memory explicitly.

HeapMin does not support freeing memory. By default, an application aborts with an error status if it calls
HeapMin_free(). The HeapMin.freeError configuration parameter can be set to "false" to cause
HeapMin_free() to simply return without raising an error.

If you call HeapMin_create() at runtime, the application is responsible for specifying the buffer that the
heap will manage and aligning the buffer.

If you create HeapMin instances in your static configuration, the heap is aligned to the largest alignment
required for targets that support static alignment. For targets that do not support static alignment, the
buffer alignment is undefined.

7.8.2 HeapMem

HeapMem can be considered the most "flexible" of the Heaps because it allows you to allocate variable-
sized blocks. When the size of memory requests is not known until runtime, it is ideal to be able to allocate
exactly how much memory is required each time. For example, if a program needs to store an array of
objects, and the number of objects needed isn't known until the program actually executes, the array will
likely need to be allocated from a HeapMem.

The flexibility offered by HeapMem has a number of performance tradeoffs.

• External Fragmentation. Allocating variable-sized blocks can result in fragmentation. As memory
blocks are "freed" back to the HeapMem, the available memory in the HeapMem becomes scattered
throughout the heap. The total amount of free space in the HeapMem may be large, but because it
is not contiguous, only blocks as large as the "fragments" in the heap can be allocated.

This type of fragmentation is referred to as "external" fragmentation because the blocks themselves
are allocated exactly to size, so the fragmentation is in the overall heap and is "external" to the blocks
themselves.

• Non-Deterministic Performance. As the memory managed by the HeapMem becomes
fragmented, the available chunks of memory are stored on a linked list. To allocate another block of
memory, this list must be traversed to find a suitable block. Because this list can vary in length, it's
not known how long an allocation request will take, and so the performance becomes "non-
deterministic".

A number of suggestions can aide in the optimal use of a HeapMem.

• Larger Blocks First. If possible, allocate larger blocks first. Previous allocations of small memory
blocks can reduce the size of the blocks available for larger memory allocations.

• Overestimate Heap Size. To account for the negative effects of fragmentation, use a HeapMem that
is significantly larger than the absolute amount of memory the program will likely need.

When a block is freed back to the HeapMem, HeapMem combines the block with adjacent free blocks to
make the available block sizes as large as possible.

Note: HeapMem uses a user-provided lock to lock access to the memory. For details, see
Section 4.3, Gates.
SPRUEX3O—October 2014 Memory 157
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Heap Implementations www.ti.com
The following examples create a HeapMem instance with a size of 1024 MAUs.

Configuration example: This example statically configures the heap:

Runtime example: This second example uses C code to dynamically create a HeapMem instance:

HeapMem uses a Gate (see the Gates section for an explanation of Gates) to prevent concurrent
accesses to the code which operates on a HeapMem's list of free blocks. The type of Gate used by
HeapMem is statically configurable through the HeapMem's common defaults.

Configuration example: This example configures HeapMem to use a GateMutexPri to protect critical
regions of code.

The type of Gate used depends upon the level of protection needed for the application. If there is no risk
of concurrent accesses to the heap, then "null" can be assigned to forgo the use of any Gate, which would
improve performance. For an application that could have concurrent accesses, a GateMutex is a likely
choice. Or, if it is possible that a critical thread will require the HeapMem at the same time as a low-priority
thread, then a GateMutexPri would be best suited to ensuring that the critical thread receives access to
the HeapMem as quickly as possible. See Section 4.3.2.2, GateMutexPri for more information.

7.8.3 HeapBuf

HeapBuf is used for allocating fixed-size blocks of memory, and is designed to be fast and deterministic.
Often a program needs to create and delete a varying number of instances of a fixed-size object. A
HeapBuf is ideal for allocating space for such objects, since it can handle the request quickly and without
any fragmentation.

var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');

/* Create heap as global variable so it can be used in C code */

var heapMemParams = new HeapMem.Params();

heapMemParams.size = 1024;

Program.global.myHeap = HeapMem.create(heapMemParams);

HeapMem_Params prms;

static char *buf[1024];

HeapMem_Handle heap;

Error_Block eb;

Error_init(&eb);

HeapMem_Params_init(&prms);

prms.size = 1024;

prms.buf = (Ptr)buf;

heap = HeapMem_create(&prms, &eb);

if (heap == NULL) {

 System_abort("HeapMem create failed");

}

var GateMutexPri = xdc.useModule('ti.sysbios.gates.GateMutexPri');

var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');

HeapMem.common$.gate = GateMutexPri.create();
158 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Heap Implementations
A HeapBuf may also be used for allocating objects of varying sizes when response time is more important
than efficient memory usage. In this case, a HeapBuf will suffer from "internal" fragmentation. There will
never be any fragmented space in the heap overall, but the allocated blocks themselves may contain
wasted space, so the fragmentation is "internal" to the allocated block.

Allocating from and freeing to a HeapBuf always takes the same amount of time, so a HeapBuf is a
"deterministic" memory manager.

The following examples create a HeapBuf instance with 10 memory blocks of size 128.

Configuration example: The first example configures the heap statically. In this example, no buffer or
bufSize parameter needs to be specified, since the configuration can compute these values and allocate
the correct sections at link time.

Runtime example: This second example uses C code to dynamically create a HeapBuf instance. In this
example, you must pass the bufSize and buf parameters. Be careful when specifying these runtime
parameters. The blocksize needs to be a multiple of the worst-case structure alignment size. And bufSize
should be equal to blockSize * numBlocks. The worst-case structure alignment is target dependent. On
C6x and ARM devices, this value is 8. The base address of the buffer should also be aligned to this same
size.

7.8.4 HeapMultiBuf

HeapMultiBuf is intended to balance the strengths of HeapMem and HeapBuf. Internally, a HeapMultiBuf
maintains a collection of HeapBuf instances, each with a different block size, alignment, and number of
blocks. A HeapMultiBuf instance can accept memory requests of any size, and simply determines which
of the HeapBufs to allocate from.

var HeapBuf = xdc.useModule('ti.sysbios.heaps.HeapBuf');

/* Create heap as global variable so it can be used in C code */

var heapBufParams = new HeapBuf.Params();

heapBufParams.blockSize = 128;

heapBufParams.numBlocks = 10;

Program.global.myHeap = HeapBuf.create(heapBufParams);

HeapBuf_Params prms;

static char *buf[1280];

HeapBuf_Handle heap;

Error_Block eb;

Error_init(&eb);

HeapBuf_Params_init(&prms);

prms.blockSize = 128;

prms.numBlocks = 10;

prms.buf = buf;

prms.bufSize = 1280;

heap = HeapBuf_create(&prms, &eb);

if (heap == NULL) {

 System_abort("HeapBuf create failed");

}

SPRUEX3O—October 2014 Memory 159
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Heap Implementations www.ti.com
A HeapMultiBuf provides more flexibility in block size than a single HeapBuf, but largely retains the fast
performance of a HeapBuf. A HeapMultiBuf instance has the added overhead of looping through the
HeapBufs to determine which to allocate from. In practice, though, the number of different block sizes is
usually small and is always a fixed number, so a HeapMultiBuf can be considered deterministic by some
definitions.

A HeapMultiBuf services a request for any memory size, but always returns one of the fixed-sized blocks.
The allocation will not return any information about the actual size of the allocated block. When freeing a
block back to a HeapMultiBuf, the size parameter is ignored. HeapMultiBuf determines the buffer to free
the block to by comparing addresses.

When a HeapMultiBuf runs out of blocks in one of its buffers, it can be configured to allocate blocks from
the next largest buffer. This is referred to as "block borrowing". See the online reference described in
Section 1.6.1 for more about HeapMultiBuf.

The following examples create a HeapMultiBuf that manages 1024 MAUs of memory, which are divided
into 3 buffers. It will manage 8 blocks of size 16 MAUs, 8 blocks of size 32 MAUs, and 5 blocks of size
128 MAUs as shown in the following diagram.

Configuration example: The first example statically configures the HeapMultiBuf instance:

Runtime example: This second example uses C code to dynamically create a HeapMultiBuf instance:

var HeapMultiBuf = xdc.useModule('ti.sysbios.heaps.HeapMultiBuf');

/* HeapMultiBuf without blockBorrowing. */

/* Create as a global variable to access it from C Code. */

var heapMultiBufParams = new HeapMultiBuf.Params();

heapMultiBufParams.numBufs = 3;

heapMultiBufParams.blockBorrow = false;

heapMultiBufParams.bufParams =

 [{blockSize: 16, numBlocks:8, align: 0},

 {blockSize: 32, numBlocks:8, align: 0},

 {blockSize: 128, numBlocks:5, align: 0}];

Program.global.myHeap =

 HeapMultiBuf.create(heapMultiBufParams);

HeapMultiBuf_Params prms;

HeapMultiBuf_Handle heap;

Error_Block eb;

Error_init(&eb);

Program.global.myHeap

16 MAUs 16 MAUs 16 MAUs 16 MAUs 16 MAUs 16 MAUs 16 MAUs 16 MAUs
32 MAUs
32 MAUs

32 MAUs 32 MAUs 32 MAUs
32 MAUs 32 MAUs 32 MAUs

128 MAUs
128 MAUs
128 MAUs
128 MAUs
128 MAUs
160 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Heap Implementations
/* Create the buffers to manage */

Char buf0[128];

Char buf1[256];

Char buf2[640];

/* Create the array of HeapBuf_Params */

HeapBuf_Params bufParams[3];

/* Load the default values */

HeapMultiBuf_Params_init(&prms);

prms.numBufs = 3;

prms.bufParams = bufParams;

HeapBuf_Params_init(&prms.bufParams[0]);

prms.bufParams[0].align = 0;

prms.bufParams[0].blockSize = 16;

prms.bufParams[0].numBlocks = 8;

prms.bufParams[0].buf = (Ptr) buf0;

prms.bufParams[0].bufSize = 128;

HeapBuf_Params_init(&prms.bufParams[1]);

prms.bufParams[1].align = 0;

prms.bufParams[1].blockSize = 32;

prms.bufParams[1].numBlocks = 8;

prms.bufParams[1].buf = (Ptr) buf1;

prms.bufParams[1].bufSize = 256;

HeapBuf_Params_init(&prms.bufParams[2]);

prms.bufParams[2].align = 0;

prms.bufParams[2].blockSize = 128;

prms.bufParams[2].numBlocks = 5;

prms.bufParams[2].buf = (Ptr) buf2;

prms.bufParams[2].bufSize = 640;

heap = HeapMultiBuf_create(&prms, &eb);

if (heap == NULL) {

 System_abort("HeapMultiBuf create failed");

}

SPRUEX3O—October 2014 Memory 161
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Heap Implementations www.ti.com
7.8.5 HeapTrack

HeapTrack is a buffer management module that tracks all currently allocated blocks for any heap
instance. HeapTrack is useful for detecting memory leaks, buffer overflows, and double frees of memory
blocks. Any XDCtools or SYSBIOS heap instance can plugged into HeapTrack. For each memory
allocation, an extra packet of data will be added. This data is used by the RTOS Object View (ROV) to
display information about the heap instance.

HeapTrack implements the default heap functions as well as two debugging functions. The first,
HeapTrack_printHeap() prints all the memory blocks for a given HeapTrack instance. The second,
HeapTrack_printTask() prints all memory blocks for a given Task handle.

HeapTrack has several asserts that detect key memory errors. These include freeing the same block of
memory twice, overflowing an allocated block of memory, deleting a non-empty heap instance, and
calling HeapTrack_printHeap() with a null heap object.

There is both a performance and size overhead cost when using HeapTrack. These costs should be
taken into account when setting heap and buffer sizes.

You can find the amount by which the HeapTrack module increases the block size by using
sizeof(HeapTrack_Tracker) in your C code. This is the amount by which the size is increased when
your code or some other function calls Memory_alloc() from a heap managed by HeapTrack. The
HeapTrack_Tracker structure is added to the end of an allocated block; HeapTrack therefore does not
impact the alignment of allocated blocks.

Configuration example: This example statically configures HeapTrack with an existing heap.

You can also use HeapTrack with the default BIOS module heap by setting the heapTrackEnabled
configuration parameter.

Runtime example: This example uses C code to dynamically create a HeapTrack instance with an
existing heap.

var HeapTrack = xdc.useModule('ti.sysbios.heaps.HeapTrack');

var heapTrackParams = new HeapTrack.Params();

heapTrackParams.heap = heapHandle;

Program.global.myHeap = HeapTrack.create(heapTrackParams);

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.heapTrackEnabled = true;

HeapTrack_Params prms;

HeapTrack_Handle heap;

Error_Block eb;

Error_init(&eb);

HeapTrack_Params_init(&prms);

prms.heap = heapHandle;

heap = HeapTrack_create(&prms, &eb);

if (heap == NULL) {

 System_abort("HeapTrack create failed");

}

162 Memory SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Chapter 8
SPRUEX3O—October 2014

Hardware Abstraction Layer

This chapter describes modules that provide hardware abstractions.

8.1 Hardware Abstraction Layer APIs . 164

8.2 HWI Module . 165

8.3 Timer Module . 172

8.4 Cache Module . 177

8.5 HAL Package Organization . 178

Topic Page
SPRUEX3O—October 2014 Hardware Abstraction Layer 163
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

Hardware Abstraction Layer APIs www.ti.com
8.1 Hardware Abstraction Layer APIs

SYS/BIOS provides services for configuration and management of interrupts, cache, and timers. Unlike
other SYS/BIOS services such as threading, these modules directly program aspects of a device's
hardware and are grouped together in the Hardware Abstraction Layer (HAL) package. Services such as
enabling and disabling interrupts, plugging of interrupt vectors, multiplexing of multiple interrupts to a
single vector, and cache invalidation or writeback are described in this chapter.

Note: Any configuration or manipulation of interrupts and their associated vectors, the cache,
and timers in a SYS/BIOS application must be done through the SYS/BIOS HAL APIs.
In earlier versions of DSP/BIOS, some HAL services were not available and developers
were expected to use functions from the Chip Support Library (CSL) for a device. The
most recent releases of CSL (3.0 or above) are designed for use in applications that do
not use SYS/BIOS. Some of their services are not compatible with SYS/BIOS. Avoid
using CSL interrupt, cache, and timer functions and SYS/BIOS in the same application,
since this combination is known to result in complex interrupt-related debugging
problems.

The HAL APIs fall into two categories:

• Generic APIs that are available across all targets and devices

• Target/device-specific APIs that are available only for a specific device or ISA family

The generic APIs are designed to cover the great majority of use cases. Developers who are concerned
with ensuring easy portability between different TI devices are best served by using the generic APIs as
much as possible. In cases where the generic APIs cannot enable use of a device-specific hardware
feature that is advantageous to the software application, you may choose to use the target/device-
specific APIs, which provide full hardware entitlement.

In this chapter, an overview of the functionality of each HAL package is provided along with usage
examples for that package’s generic API functions. After the description of the generic functions,
examples of target/device-specific APIs, based on those provided for ’C64x+ devices, are also given. For
a full description of the target/device-specific APIs available for a particular family or device, please refer
to the API reference documentation. Section 8.5, HAL Package Organization provides an overview of the
generic HAL packages and their associated target/device-specific packages to facilitate finding the
appropriate packages.

Note: For hardware-specific information about using SYS/BIOS, see the links at
http://processors.wiki.ti.com/index.php/Category:SYSBIOS.
164 Hardware Abstraction Layer SPRUEX3O—October 2014
Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com HWI Module
8.2 HWI Module

The ti.sysbios.hal.Hwi module provides a collection of APIs for managing hardware interrupts. These
APIs are generic across all supported targets and devices and should provide sufficient functionality for
most applications. See the video introducing Hwis for an overview.

8.2.1 Associating a C Function with a System Interrupt Source

To associate a user-provided C function with a particular system interrupt, you create a Hwi object that
encapsulates information regarding the interrupt required by the Hwi module.

The standard static and dynamic forms of the "create" function are supported by the ti.sysbios.hal.Hwi
module.

Configuration example: The following example statically creates a Hwi object that associates interrupt
5 with the "myIsr" C function using default instance configuration parameters:

Runtime example: The C code required to configure the same interrupt dynamically would be as follows:

The NULL argument is used when the default instance parameters are satisfactory for creating a Hwi
object.

8.2.2 Hwi Instance Configuration Parameters

The following configuration parameters and their default values are defined for each Hwi object. For a
more detailed discussion of these parameters and their values see the ti.sysbios.hal.Hwi module in the
online documentation. (For information on running online help, see Section 1.6.1, Using the API
Reference Help System, page 23.)

• The "maskSetting" defines how interrupt nesting is managed by the interrupt dispatcher.

• The configured "arg" parameter will be passed to the Hwi function when the dispatcher invokes it.

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

Hwi.create(5, '&myIsr');

#include <ti/sysbios/hal/Hwi.h>

#include <xdc/runtime/Error.h>

#include <xdc/runtime/System.h>

Hwi_Handle myHwi;

Error_Block eb;

Error_init(&eb);

myHwi = Hwi_create(5, myIsr, NULL, &eb);

if (myHwi == NULL) {

 System_abort("Hwi create failed");

}

MaskingOption maskSetting = MaskingOption_SELF;

UArg arg = 0;
SPRUEX3O—October 2014 Hardware Abstraction Layer 165
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://processors.wiki.ti.com/images/b/b2/Hwis.pdf

HWI Module www.ti.com
• The "enabledInt" parameter is used to automatically enable or disable an interrupt upon Hwi object
creation.

• The "eventId" accommodates 'C6000 devices that allow dynamic association of a peripheral event
to an interrupt number. The default value of -1 leaves the eventId associated with an interrupt number
in its normal (reset) state (that is, no re-association is required).

• The "priority" parameter is provided for those architectures that support interrupt priority setting. The
default value of -1 informs the Hwi module to set the interrupt priority to a default value appropriate
to the device.

8.2.3 Creating a Hwi Object Using Non-Default Instance Configuration Parameters

Building on the examples given in Section 8.2.1, the following examples show how to associate interrupt
number 5 with the "myIsr" C function, passing "10" as the argument to "myIsr" and leaving the interrupt
disabled after creation.

Configuration example:

Bool enableInt = true;

Int eventId = -1;

Int priority = -1;

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

/* initialize hwiParams to default values */

var hwiParams = new Hwi.Params;

hwiParams.arg = 10; /* Set myIsr5 argument to 10 */

hwiParams.enableInt = false; /* override default setting */

/* Create a Hwi object for interrupt number 5

 * that invokes myIsr5() with argument 10 */

Hwi.create(5, '&myIsr', hwiParams);
166 Hardware Abstraction Layer SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com HWI Module
Runtime example:

8.2.4 Enabling and Disabling Interrupts

You can enable and disable interrupts globally as well as individually with the following Hwi module APIs:

• UInt Hwi_enable();

Globally enables all interrupts. Returns the previous enabled/disabled state.

• UInt Hwi_disable();

Globally disables all interrupts. Returns the previous enabled/disabled state.

• Hwi_restore(UInt key);

Restores global interrupts to their previous enabled/disabled state. The "key" is the value returned
from Hwi_disable() or Hwi_enable().

• The APIs that follow are used for enabling, disabling, and restoring specific interrupts given by
"intNum". They have the same semantics as the global Hwi_enable/disable/restore APIs.:

— UInt Hwi_enableInterrupt(UInt intNum);

— UInt Hwi_disableInterrupt(UInt intNum);

— Hwi_restoreInterrupt(UInt key);

• Hwi_clearInterrupt(UInt intNum);

Clears "intNum" from the set of currently pending interrupts.

Disabling hardware interrupts is useful during a critical section of processing.

On the C6000 platform, Hwi_disable() clears the GIE bit in the control status register (CSR). On the
C2000 platform, Hwi_disable() sets the INTM bit in the ST1 register.

#include <ti/sysbios/hal/Hwi.h>

#include <xdc/runtime/Error.h>

Hwi_Params hwiParams;

Hwi_Handle myHwi;

Error_Block eb;

/* initialize error block and hwiParams to default values */

Error_init(&eb);

Hwi_Params_init(&hwiParams);

hwiParams.arg = 10;

hwiParams.enableInt = FALSE;

myHwi = Hwi_create(5, myIsr, &hwiParms, &eb);

if (myHwi == NULL) {

 System_abort("Hwi create failed");

}

SPRUEX3O—October 2014 Hardware Abstraction Layer 167
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

HWI Module www.ti.com
8.2.5 A Simple Example Hwi Application

The following example creates two Hwi objects. One for interrupt number 5 and another for interrupt
number 6. For illustrative purposes, one interrupt is created statically and the other dynamically. An idle
function that waits for the interrupts to complete is also added to the Idle function list.

Configuration example:

Runtime example:

/* Pull in BIOS module required by ALL BIOS applications */

xdc.useModule('ti.sysbios.BIOS');

/* Pull in XDC runtime System module for various APIs used */

xdc.useModule('xdc.runtime.System');

/* Get handle to Hwi module for static configuration */

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

var hwiParams = new Hwi.Params; /* Initialize hwiParams to default values */

hwiParams.arg = 10; /* Set myIsr5 argument */

hwiParams.enableInt = false; /* Keep interrupt 5 disabled until later */

/* Create a Hwi object for interrupt number 5

 * that invokes myIsr5() with argument 10 */

Hwi.create(5, '&myIsr5', hwiParams);

/* Add an idle thread 'myIdleFunc' that monitors interrupts. */

var Idle = xdc.useModule(ti.sysbios.knl.Idle);

Idle.addFunc('&myIdleFunc');

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <xdc/runtime/Error.h>

#include <ti/sysbios/hal/Hwi.h>

Bool Hwi5 = FALSE;

Bool Hwi6 = FALSE;
168 Hardware Abstraction Layer SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com HWI Module
main(Void) {

 Hwi_Params hwiParams;

 Hwi_Handle myHwi;

 Error_Block eb;

 /* Initialize error block and hwiParams to default values */

 Error_init(&eb);

 Hwi_Params_init(&hwiParams);

 /* Set myIsr6 parameters */

 hwiParams.arg = 12;

 hwiParams.enableInt = FALSE;

 /* Create a Hwi object for interrupt number 6

 * that invokes myIsr6() with argument 12 */

 myHwi = Hwi_create(6, myIsr6, &hwiParms, &eb);

 if (myHwi == NULL) {

 System_abort("Hwi create failed");

 }

 /* enable both interrupts */

 Hwi_enableInterrupt(5);

 Hwi_enableInterrupt(6);

 /* start BIOS */

 BIOS_start();

}

/* Runs when interrupt 5 occurs */

Void myIsr5(UArg arg) {

 If (arg == 10) {

 Hwi5 = TRUE;

 }

}

/* Runs when interrupt 6 occurs */

Void myIsr6(UArg arg) {

 If (arg == 12) {

 Hwi6 = TRUE;

 }

}

/* The Idle thread checks for completion of interrupts 5 & 6

 * and exits when they have both completed. */

Void myIdleFunc()

{

 If (Hwi5 && Hwi6) {

 System_printf("Both interrupts have occurred!");

 System_exit(0);

 }

}

SPRUEX3O—October 2014 Hardware Abstraction Layer 169
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

HWI Module www.ti.com
8.2.6 The Interrupt Dispatcher

To consolidate code that performs register saving and restoration for each interrupt, SYS/BIOS provides
an interrupt dispatcher that automatically performs these actions for an interrupt routine. Use of the Hwi
dispatcher allows ISR functions to be written in C.

In addition to preserving the interrupted thread's context, the SYS/BIOS Hwi dispatcher orchestrates the
following actions:

• Disables SYS/BIOS Swi and Task scheduling during interrupt processing

• Automatically manages nested interrupts on a per-interrupt basis.

• Invokes any configured "begin" Hwi Hook functions.

• Runs the Hwi function.

• Invokes any configured "end" Hwi Hook functions.

• Invokes Swi and Task schedulers after interrupt processing to perform any Swi and Task operations
resulting from actions within the Hwi function.

On some platforms, such as the MSP430, the Hwi dispatcher is not provided. However, interrupt stubs
are generated to provide essentially the same default functionality. However, the generated interrupt
stubs do not automatically manage nested interrupts, because this is not supported on the MSP430.

Note: For hardware-specific information about using SYS/BIOS, see the links on the
http://processors.wiki.ti.com/index.php/Category:SYSBIOS wiki page.

Note: The interrupt keyword or INTERRUPT pragma must not be used to define the C
function invoked by the Hwi dispatcher (or interrupt stubs, on platforms for which the
Hwi dispatcher is not provided, such as the MSP430). The Hwi dispatcher and the
interrupt stubs contain this functionality, and the use of the C modifier will cause
catastrophic results.

Functions that use the interrupt keyword or INTERRUPT pragma may not use the Hwi
dispatcher or interrupt stubs and may not call SYS/BIOS APIs.

8.2.7 Registers Saved and Restored by the Interrupt Dispatcher

The registers saved and restored by the dispatcher in preparation for invoking the user's Hwi function
conform to the "saved by caller" or "scratch" registers as defined in the register usage conventions
section of the C compiler documents. For more information, either about which registers are saved and
restored, or about the TMS320 functions conforming to the Texas Instruments C runtime model, see the
Optimizing Compiler User's Guide for your platform.

8.2.8 Additional Target/Device-Specific Hwi Module Functionality

As described in Section 8.5, the ti.sysbios.hal.Hwi module is implemented using the proxy-delegate
mechanism. All ti.sysbios.hal.Hwi module APIs are forwarded to a target/device-specific Hwi module that
implements all of the ti.sysbios.hal.Hwi required APIs. Each of these Hwi module implementations
provide additional APIs and functionality unique to the family/device and can be used instead of the
ti.sysbios.hal.Hwi module if needed.
170 Hardware Abstraction Layer SPRUEX3O—October 2014
Submit Documentation Feedback

http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com HWI Module
For example, the ’C64x+ target-specific Hwi module, ti.sysbios.family.c64p.Hwi, provides the following
APIs in addition to those defined in the ti.sysbios.hal.Hwi module:

• Hwi_eventMap(UInt intNum, UInt eventId);

Remaps a peripheral event number to an interrupt number.

• Bits16 Hwi_enableIER(Bits16 mask);
Bits16 Hwi_disableIER(Bits16 mask);
Bits16 Hwi_restoreIER(Bits16 mask);

These three APIs allow enabling, disabling and restoring a set of interrupts defined by a "mask"
argument. These APIs provide direct manipulation of the ’C64x+'s internal IER registers.

To gain access to these additional APIs, you use the target/device-specific Hwi module associated with
the ’C64x+ target rather than the ti.sysbios.hal.Hwi module.

For documentation on the target/device-specific Hwi modules, see the CDOC documentation for
ti.sysbios.family.*.Hwi. For example, ti.sysbios.family.c28.Hwi.

The following examples are modified versions of portions of the example in Section 8.2.5. The
modifications are shown in bold.

Configuration example:

Runtime example:

var Hwi = xdc.useModule('ti.sysbios.family.c64p.Hwi');

/* Initialize hwiParams to default values */

var hwiParams = new Hwi.Params;

/* Set myIsr5 parameters */

hwiParams.arg = 10;

hwiParams.enableInt = false;

/* Create a Hwi object for interrupt number 5

 * that invokes myIsr5() with argument 10 */

Hwi.create(5, '&myIsr5', hwiParams);

#include <ti/sysbios/family/c64p/Hwi.h>

#include <xdc/runtime/Error.h>

main(Void) {

 Hwi_Params hwiParams;

 Hwi_Handle myHwi;

 Error_Block eb;

 /* Initialize error block and hwiParams to default values */

 Error_init(&eb);

 Hwi_Params_init(&hwiParams);

 /* Set myIsr6 parameters */

 hwiParams.arg = 12;

 hwiParams.enableInt = FALSE;
SPRUEX3O—October 2014 Hardware Abstraction Layer 171
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Timer Module www.ti.com
8.3 Timer Module

The ti.sysbios.hal.Timer module presents a standard interface for using the timer peripherals. It hides any
target/device-specific characteristics of the timer peripherals. It inherits the ti.sysbios.interfaces.ITimer
interface.

You can use this module to create a timer (that is, to mark a timer for use) and configure it to call a tickFxn
when the timer expires. Use this module only if you do not need to do any custom configuration of the
timer peripheral.

This module has a configuration parameter called TimerProxy which is plugged by default with a
target/device-specific implementation. For example, the implementation for C64x targets is
ti.sysbios.family.c64.Timer.

The timer can be configured as a one-shot or a continuous mode timer. The period can be specified in
timer counts or microseconds.

The timer interrupt always uses the Hwi dispatcher. The Timer tickFxn runs in the context of a Hwi thread.
The Timer module automatically creates a Hwi instance for the timer interrupt.

The Timer_create() API takes a timerId. The timerId can range from zero to a target/device-specific value
determined by the TimerProxy. The timerId is just a logical ID; its relationship to the actual timer
peripheral is controlled by the TimerProxy.

If it does not matter to your program which timer is used, specify a timerId of Timer.ANY (for configuration)
or Timer_ANY (in C), which means "use any available timer". For example, in a configuration use:

In a C program, use:

 /* Create a Hwi object for interrupt number 6

 * that invokes myIsr6() with argument 12 */

 myHwi = Hwi_create(6, myIsr6, &hwiParms, &eb);

 if (myHwi == NULL) {

 System_abort("Hwi create failed");

 }

 /* Enable interrupts 5 & 6 simultaneously using the C64x+

 * Hwi module Hwi_enableIER() API. */

 Hwi_enableIER(0x0060);

. . .

Timer.create(Timer.ANY, "&myIsr", timerParams);

myTimer = Timer_create(Timer_ANY, myIsr, &timerParams, &eb);

if (myTimer == NULL) {

 System_abort("Timer create failed");

}

172 Hardware Abstraction Layer SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Timer Module
The timerParams includes a number of parameters to configure the timer. For example
timerParams.startMode can be set to StartMode_AUTO or StartMode_USER. The StartMode_AUTO
setting indicates that statically-created timers will be started in BIOS_start() and dynamically-created
timers will be started at create() time. The StartMode_USER indicates that your program starts the timer
using Timer_start(). See the example in Section 8.3.1.

You can get the total number of timer peripherals by calling Timer_getNumTimers() at runtime. This
includes both used and available timer peripherals. You can query the status of the timers by calling
Timer_getStatus().

If you want to use a specific timer peripheral or want to use a custom timer configuration (setting timer
output pins, emulation behavior, etc.), you should use the target/device-specific Timer module. For
example, ti.sysbios.family.c64.Timer.

The Timer module also allows you to specify the extFreq (external frequency) property for the timer
peripheral and provides an API to get the timer frequency at runtime. This external frequency property is
supported only on targets where the timer frequency can be set separately from the CPU frequency.

You can use Timer_getFreq() to convert from timer interrupts to real time.

The Timer module provides APIs to start, stop, and modify the timer period at runtime. These APIs have
the following side effects.

• Timer_setPeriod() stops the timer before setting the period register. It then restarts the timer.

• Timer_stop() stops the timer and disables the timer interrupt.

• Timer_start() clears counters, clears any pending interrupts, and enables the timer interrupt before
starting the timer.

Runtime example: This C example creates a timer with a period of 10 microseconds. It passes an
argument of 1 to the myIsr function. It instructs the Timer module to use any available timer peripheral:

Timer_Params timerParams;

Timer_Handle myTimer;

Error_Block eb;

Error_init(&eb);

Timer_Params_init(&timerParams);

timerParams.period = 10;

timerParams.periodType = Timer_PeriodType_MICROSECS;

timerParams.arg = 1;

myTimer = Timer_create(Timer_ANY, myIsr, &timerParams, &eb);

if (myTimer == NULL) {

 System_abort("Timer create failed");

}

SPRUEX3O—October 2014 Hardware Abstraction Layer 173
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Timer Module www.ti.com
Configuration example: This example statically creates a timer with the same characteristics as the
previous C example. It specifies a timerId of 1:

Runtime example: This C example sets a frequency for a timer it creates. The extFreq.hi and extFreq.lo
properties set the high and low 32-bit portions of the structure used to represent the frequency in Hz.

Configuration example: This configuration example specifies a frequency for a timer that it creates.

Runtime example: This C example creates a timer that runs the tickFxn() every 2 milliseconds using any
available timer peripheral. It also creates a task that, when certain conditions occur, changes the timer’s
period from 2 to 4 milliseconds. The tickFxn() itself prints a message that shows the current period of the
timer.

var timer = xdc.useModule('ti.sysbios.hal.Timer');

var timerParams = new Timer.Params();

timerParams.period = 10;

timerParams.periodType = Timer.PeriodType_MICROSECS;

timerParams.arg = 1;

timer.create(1, '&myIsr', timerParams);

Timer_Params timerParams;

Timer_Handle myTimer;

Error_Block eb;

Error_init(&eb);

Timer_Params_init(&timerParams);

timerParams.extFreq.lo = 270000000; /* 27 MHz */

timerParams.extFreq.hi = 0;

myTimer = Timer_create(Timer_ANY, myIsr, &timerParams, &eb);

if (myTimer == NULL) {

 System_abort("Timer create failed");

}

var Timer = xdc.useModule('ti.sysbios.hal.Timer');

var timerParams = new Timer.Params();

timerParams.extFreq.lo = 270000000;

timerParams.extFreq.hi = 0;

...

Timer.create(1, '&myIsr', timerParams);

Timer_Handle timerHandle;

Int main(Void)

{

 Error_Block eb;

 Timer_Params timerParams;

 Task_Handle taskHandle;
174 Hardware Abstraction Layer SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Timer Module
8.3.1 Target/Device-Specific Timer Modules

As described in Section 8.5, the ti.sysbios.hal.Timer module is implemented using the proxy-delegate
mechanism. A separate target/device-specific Timer module is provided for each supported family. For
example, the ti.sysbios.timers.timer64.Timer module acts as the timer peripherals manager for the 64P
family.

These target/device-specific modules provide additional configuration parameters and APIs that are not
supported by the generic ti.sysbios.hal.Timer module.

In the case of the ti.sysbios.timers.timer64.Timer module, the configuration parameters controlInit,
globalControlInit, and emuMgtInit are provided to configure various timer properties. This module also
exposes a Hwi Params structure as part of its create parameters to allow you to configure the Hwi object
associated with the Timer. This module also exposes a Timer_reconfig() API to allow you to reconfigure
a statically-created timer.

 Error_init(&eb);

 Timer_Params_init(&timerParams);

 timerParams.period = 2000; /* 2 ms */

 timerHandle = Timer_create(Timer_ANY, tickFxn, &timerParams, &eb);

 if (timerHandle == NULL) {

 System_abort("Timer create failed");

 }

 taskHandle = Task_create(masterTask, NULL, &eb);

 if (taskHandle == NULL) {

 System_abort("Task create failed");

 }

}

Void masterTask(UArg arg0 UArg arg1)

{

 ...

 // Condition detected requiring a change to timer period

 Timer_stop(timerHandle);

 Timer_setPeriodMicroSecs(4000); /* change 2ms to 4ms */

 Timer_start(timerHandle);

 ...

}

Void tickFxn(UArg arg0)

{

 System_printf("Current period = %d\n",

 Timer_getPeriod(timerHandle);

}

SPRUEX3O—October 2014 Hardware Abstraction Layer 175
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Timer Module www.ti.com
Configuration example: This configuration example specifies timer parameters, including target/device-
specific parameters for a timer called myTimer that it creates.

Runtime example: This C example uses the myTimer created in the preceding configuration example
and reconfigures the timer with a different function argument and startMode in the program’s main()
function before calling BIOS_start().

var Timer = xdc.useModule('ti.sysbios.timers.timer64.Timer');

var timerParams = new Timer.Params();

timerParams.period = 2000; //2ms

timerParams.arg = 1;

timerParams.startMode = Timer.StartMode_USER;

timerParams.controlInit.invout = 1;

timerParams.globalControlInit.chained = false;

timerParams.emuMgtInit.free = false;

timerParams.suspSrc = SuspSrc_ARM;

Program.global.myTimer = Timer.create(1, "&myIsr", timerParams);

#include <ti/sysbios/timers/timer64/Timer.h>

#include <xdc/cfg/global.h>

#include <xdc/runtime/Error.h>

Void myIsr(UArg arg)

{

 System_printf("myIsr arg = %d\n", (Int)arg);

 System_exit(0);

}

Int main(Int argc, char* argv[])

{

 Timer_Params timerParams;

 Error_Block eb;

 Error_init(&eb);

 Timer_Params_init(&timerParams);

 timerParams.arg = 2;

 timerParams.startMode = Timer_StartMode_AUTO;

 Timer_reconfig(myTimer, tickFxn, &timerParams, &eb);

 if (Error_check(&eb)) {

 System_abort("Timer reconfigure failed");

 }

 BIOS_start();

 return(0);

}

176 Hardware Abstraction Layer SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Cache Module
8.4 Cache Module

The cache support provides API functions that perform cache coherency operations at the cache line
level or globally. The cache coherency operations are:

• Invalidate. Makes valid cache lines invalid and discards the content of the affected cache lines.

• Writeback. Writes the contents of cache lines to a lower-level memory, such as the L2 cache or
external memory, without discarding the lines in the original cache.

• Writeback-Invalidation. Writes the contents of cache lines to lower-level memory, and then discards
the contents of the lines in the original cache.

8.4.1 Cache Interface Functions

The cache interface is defined in ti.sysbios.interfaces.ICache. The Cache interface contains the following
functions. The implementations for these functions are target/device-specific.

• Cache_enable(); Enables all caches.

• Cache_disable(); Disables all caches.

• Cache_inv(blockPtr, byteCnt, type, wait); Invalidates the specified range of memory. When you
invalidate a cache line, its contents are discarded and the cache tags the line as "clean" so that next
time that particular address is read, it is obtained from external memory. All lines in the range are
invalidated in all caches.

• Cache_wb(blockPtr, byteCnt, type, wait); Writes back the specified range of memory. When you
perform a writeback, the contents of the cache lines are written to lower-level memory. All lines within
the range are left valid in caches and the data within the range is written back to the source memory.

• Cache_wbInv(blockPtr, byteCnt, type, wait); Writes back and invalidates the specified range of
memory. When you perform a writeback, the contents of the cache lines are written to lower-level
memory. When you invalidate a cache line, its contents are discarded. All lines within the range are
written back to the source memory and then invalidated in all caches.

These Cache APIs operate on an address range beginning with the starting address of blockPtr and
extending for the specified byte count. The range of addresses operated on is quantized to whole cache
lines in each cache.

The blockPtr points to an address in non-cache memory that may be cached in one or more caches or
not at all. If the blockPtr does not correspond to the start of a cache line, the start of that cache line is
used.

If the byteCnt is not equal to a whole number of cache lines, the byteCnt is rounded up to the next size
that equals a whole number of cache lines.

The type parameter is a bit mask of the Cache_Type type, which allows you to specify one or more
caches in which the action should be performed.

If the wait parameter is true, then this function waits until the invalidation operation is complete to return.
If the wait parameter is false, this function returns immediately. You can use Cache_wait() later to ensure
that this operation is complete.

• Cache_wait(); Waits for the cache wb/wbInv/inv operation to complete. A cache operation is not truly
complete until it has worked its way through all buffering and all memory writes have landed in the
source memory.
SPRUEX3O—October 2014 Hardware Abstraction Layer 177
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

HAL Package Organization www.ti.com
As described in Section 8.5, this module is implemented using the proxy-delegate mechanism. A
separate target/device-specific Cache module is provided for each supported family.

Additional APIs are added to this module for certain target/device-specific implementations. For example,
the ti.sysbios.family.c64p.Cache module adds APIs specific to the C64x+ caches. These extensions
have functions that also have the prefix "Cache_".

Currently the C64x+, C674x, and ARM caches are supported.

C64x+ specific: The caches on these devices are Level 1 Program (L1P), Level 1 Data (L1D), and Level
2 (L2). See the TMS320C64x+ DSP Megamodule Reference Guide (SPRU871) for information about the
L1P, L1D, and L2 caches.

8.5 HAL Package Organization

The three SYS/BIOS modules that reside in the ti.sysbios.hal package: Hwi, Timer, and Cache require
target/device-specific API implementations to achieve their functionality. In order to provide a common
set of APIs for these modules across all supported families/devices, SYS/BIOS uses the proxy-delegate
module mechanism. (See the "RTSC Interface Primer: Lesson 12" for details.)

Each of these three modules serves as a proxy for a corresponding target/device-specific module
implementation. In use, all Timer/Hwi/Cache API invocations are forwarded to an appropriate
target/device-specific module implementation.

During the configuration step of the application build process, the proxy modules in the ti.sysbios.hal
package locate and bind themselves to appropriate delegate module implementations based on the
current target and platform specified in the user's config.bld file. The delegate binding process is done
internally.

Note: For hardware-specific information about using SYS/BIOS, see the links on the
http://processors.wiki.ti.com/index.php/Category:SYSBIOS wiki page.

The following tables show some of the Timer, Hwi, and Cache delegate modules that may be selected
based on an application's target and device. The mapping of target/device to the delegate modules used
by Timer, Cache, and Hwi is accessible through a link in the ti.sysbios.hal package online help.

Table 8–1. Proxy to Delegate Mappings

Proxy Module Delegate Modules

ti.sysbios.hal.Timer ti.sysbios.hal.TimerNull *
ti.sysbios.timers.dmtimer.Timer
ti.sysbios.timers.gptimer.Timer
ti.sysbios.timers.timer64.Timer
ti.sysbios.family.c28.Timer
ti.sysbios.family.c67p.Timer
ti.sysbios.family.msp430.Timer
ti.sysbios.family.arm.<various>.Timer
178 Hardware Abstraction Layer SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.ti.com/lit/pdf/spru871
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com HAL Package Organization
* For targets/devices for which a Timer or Cache module has not yet been developed, the hal.TimerNull
or hal.CacheNull delegate is used. In TimerNull/CacheNull, the APIs defined in ITimer/ICache are
implemented using null functions.

For the proxy-delegate mechanism to work properly, both the proxy and the delegate modules must be
implementations of a common interface specification. The Timer, Hwi, and Cache interface specifications
reside in ti.sysbios.interfaces and are ITimer, IHwi, and ICache respectively. These interface
specifications define a minimum set of general APIs that, it is believed, will satisfy a vast majority of
application requirements. For those applications that may need target/device-specific functionality not
defined in these interface specifications, the corresponding Timer, Hwi, and Cache delegate modules
contain extensions to the APIs defined in the interface specifications.

To access to these extended API sets, you must directly reference the target/device-specific module in
your configuration file and include its corresponding header file in your C source files.

ti.sysbios.hal.Hwi ti.sysbios.family.c28.Hwi
ti.sysbios.family.c64p.Hwi
ti.sysbios.family.c67p.Hwi
ti.sysbios.family.msp430.Hwi
ti.sysbios.family.arm.<various>.Hwi

ti.sysbios.hal.Cache ti.sysbios.hal.CacheNull *
ti.sysbios.family.c64p.Cache
ti.sysbios.family.c67p.Cache
ti.sysbios.family.arm.Cache

Table 8–1. Proxy to Delegate Mappings

Proxy Module Delegate Modules
SPRUEX3O—October 2014 Hardware Abstraction Layer 179
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Chapter 9
SPRUEX3O—October 2014

Instrumentation

This chapter describes modules and other tools that can be used for instrumentation purposes.

9.1 Overview of Instrumentation . 181

9.2 Load Module . 181

9.3 Error Handling . 183

9.4 Instrumentation Tools in Code Composer Studio 185

9.5 Performance Optimization . 187

Topic Page
SPRUEX3O—October 2014 Instrumentation 180
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com Overview of Instrumentation
9.1 Overview of Instrumentation

Much of the instrumentation available to SYS/BIOS applications is provided by the XDCtools modules
and APIs. See the CDOC online reference documentation for details about the Assert, Diags, and Error
modules.

9.2 Load Module

The ti.sysbios.utils.Load module reports execution times and load information for threads in a system.

SYS/BIOS manages four distinct levels of execution threads: hardware interrupt service routines,
software interrupt routines, tasks, and background idle functions. The Load module reports execution
time and load on a per-task basis, and also provides information globally for hardware interrupt service
routines, software interrupt routines, and idle functions (in the form of the idle task). It can also report an
estimate of the global CPU load, which is computed as the percentage of time in the measurement
window that was not spent in the idle loop. More specifically, the load is computed as follows.

where:

• 'x' is the number of times the idle loop has been executed during the measurement window.

• 't' is the minimum time for a trip around the idle loop, meaning the time it takes to complete the idle
loop if no work is being done in it.

• 'w' is the length in time of the measurement window.

Any work done in the idle loop is included in the CPU load. In other words, any time spent in the loop
beyond the shortest trip around the idle loop is counted as non-idle time.

The Load module relies on "update" to be called to compute load and execution times from the time when
"update" was last called. This is automatically done for every period specified by Load.windowInMs
(default = 500 ms) in a ti.sysbios.knl.Idle function when Load.updateInIdle is set to true (the default). The
benchmark time window is the length of time between 2 calls to "update".

The execution time is reported in units of xdc.runtime.Timestamp counts, and the load is reported in
percentages.

By default, load data is gathered for all threads. You can use the configuration parameters
Load.hwiEnabled, Load.swiEnabled, and Load.taskEnabled to select which type(s) of threads are
monitored.

global CPU load = 100 * (1 - ((x * t) / w))
SPRUEX3O—October 2014 Instrumentation 181
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Load Module www.ti.com
9.2.1 Load Module Configuration

The Load module has been set up to provide data with as little configuration as possible. Using the default
configuration, load data is gathered and logged for all threads roughly every 500 ms.

The following code configures the Load module to write Load statistics to a LoggerBuf instance.

For information on advanced configuration and caveats of the Load module, see the online reference
documentation.

9.2.2 Obtaining Load Statistics

Load statistics recorded by the Load module can be obtained in one of two ways:

• Load module logger. If you configure the Load module with a logger and have turned on the
diags_USER4, the statistics gathered by the Load module are recorded to the load module's logger
instance. You can use the RTOS Analyzer tools to visualize the Load based on these Log records.
See the System Analyzer User’s Guide (SPRUH43) and the System Analyzer wiki page for more
information.

Alternatively, you can configure the logger to print the logs to the console. The global CPU load log
prints a percentage. For example:

The global Swi and Hwi load logs print two numbers: the time in the thread, and the length of the
measurement window. For example:

These evaluate to loads of 8.7% and 7.6%.

The Task load log uses the same format, with the addition of the Task handle address as the first
argument. For example:

This evaluates to a load of 35.7%.

• Runtime APIs. You can also choose to call Load_getTaskLoad(), Load_getGlobalSwiLoad(),
Load_getGlobalHwiLoad() or Load_getCPULoad() at any time to obtain the statistics at runtime.

The Load_getCPULoad() API returns an actual percentage load, whereas Load_getTaskLoad(),
Load_getGlobalSwiLoad(), and Load_getGlobalHwiLoad() return a Load_Stat structure. This
structure contains two fields, the length of time in the thread, and the length of time in the

var LoggerBuf = xdc.useModule('xdc.runtime.LoggerBuf');

var Load = xdc.useModule('ti.sysbios.utils.Load');

var Diags = xdc.useModule('xdc.runtime.Diags');

var loggerBuf = LoggerBuf.create();

Load.common$.logger = loggerBuf;

Load.common$.diags_USER4 = Diags.ALWAYS_ON;

LS_cpuLoad: 10

LS_hwiLoad: 13845300,158370213

LS_swiLoad: 11963546,158370213

LS_taskLoad: 0x11802830,56553702,158370213
182 Instrumentation SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.ti.com/lit/pdf/spruh43
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Error Handling
measurement window. The load percentage can be calculated by dividing these two numbers and
multiplying by 100%. However, the Load module also provides a convenience function,
Load_calculateLoad(), for this purpose. For example, the following code retrieves the Hwi Load:

9.3 Error Handling

A number of SYS/BIOS APIs—particularly those that create objects and allocate memory—have an
argument that expects an Error_Block. This type is defined by the xdc.runtime.Error module provided by
XDCtools. The following example shows the recommended way to declare and use an error block when
creating a Swi:

Notice that in the previous example, the test to determine whether to call System_abort() compares the
value returned by Swi_create() to NULL as follows:

Most of the SYS/BIOS APIs that expect an error block also return a handle to the created object or the
allocated memory. For this reason, it is simplest and provides the best performance to check the value
returned by these APIs.

Load_Stat stat;

UInt32 hwiLoad;

Load_getGlobalHwiLoad(&stat);

hwiLoad = Load_calculateLoad(&stat);

#include <xdc/std.h>

#include <xdc/runtime/Error.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Swi.h>

Swi_Handle swi0;

Swi_Params swiParams;

Error_Block eb;

Error_init(&eb);

Swi_Params_init(&swiParams);

swi0 = Swi_create(swiFunc, &swiParams, &eb);

if (swi0 == NULL) {

 System_abort("Swi create failed");

}

if (swi0 == NULL) {

 System_abort("Swi create failed");

}

SPRUEX3O—October 2014 Instrumentation 183
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Error Handling www.ti.com
For APIs that get passed an Error_Block but do not return a handle or other status value, you can use
the Error_check() function to test the Error_Block as in the following example, which calls
Timer_reconfig() to reconfigure a statically-created Timer object:

You may see examples in other documentation that pass NULL in place of the Error_Block argument. If
an error occurs when creating an object or allocating memory and NULL was passed instead of an
Error_Block, the application aborts and a reason for the error is output using System_printf(). This may
be the best behavior in systems where any error is fatal, and you do not want to do any error checking.

The advantage to passing and testing an Error_Block is that your program can have control over when it
aborts. For example, instead of aborting when memory cannot be allocated, you might want to try to
release other memory and try again or switch to a mode with more limited memory needs.

Note that the System_abort() function calls a hook function from its System.SupportProxy module (for
example, xdc.runtime.SysStd). You might want to use a different abort() hook function that performs a
reset and starts the application over.

Timer_reconfig(myTimer, tickFxn, &timerParams, &eb);

if (Error_check(&eb)) {

 System_abort("Timer reconfigure failed");

}

184 Instrumentation SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Instrumentation Tools in Code Composer Studio
9.4 Instrumentation Tools in Code Composer Studio

When you are debugging an application, there are several items in the Tools menu that are especially
useful for debugging SYS/BIOS applications.

Tools > RTOS Object View (ROV) is a stop-mode debugging tool for use with TI-RTOS applications. For
information, see Section 7.5.3, ROV for System Stacks and Task Stacks and the wiki page on ROV at
http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer.

Tools > RTOS Analyzer provides several tools for examining the execution sequence of SYS/BIOS
threads, CPU load analysis, logging of messages and errors, and task behavior. In order to use these
commands, your application must have enabled the UIA module LoggingSetup. Once you enable the UIA
package, SYS/BIOS thread execution and loads are instrumented by default. See System Analyzer
User's Guide (SPRUH43) for information about using the RTOS Analyzer tools.

Tools > System Analyzer allow you to access analysis tools to view additional instrumentation in tables
and graphs. These tools require additional coding using the UIA C/C++ APIs. If you add additional UIA
events to benchmark code and gather additional data, you can use these analysis tools. Multicore data
correlation is also provided. For details about using System Analyzer, see the System Analyzer User’s
Guide (SPRUH43).
SPRUEX3O—October 2014 Instrumentation 185
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer
http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43

Instrumentation Tools in Code Composer Studio www.ti.com
If you installed TI-RTOS, UIA is available for use by your application. By default, UIA is disabled in the
SYS/BIOS examples, but you can enable it by selecting the LoggingSetup module in the XGCONF
configuration editor and checking the box to enable the module.

If you installed SYS/BIOS and UIA as standalone products (without installing TI-RTOS), you can enable
UIA for a project as follows:

1. In the Project Explorer pane of CCS, right-click on the project and choose Properties.

2. In the Properties dialog, choose the General category, then the RTSC tab.

3. In the Products and Repositories area, check the box next to System Analyzer (UIA Target) and
make sure the most recent version is selected. This causes your application to link with the
necessary parts of UIA and makes the UIA modules available within XGCONF. (If you see a TI-RTOS
item checked, UIA is already available to your project.)

4. Click OK.

UIA runtime data can be gathered via Ethernet for any target that has an NDK driver. Runtime data
collection via JTAG is also provided for all C64x+ and C66x targets. Stop-mode data collection is provided
for the additional targets listed in the UIA release notes.
186 Instrumentation SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Performance Optimization
9.5 Performance Optimization

This section provides suggestions for optimizing the performance of SYS/BIOS applications. This is
accomplished in two ways: by using compiler and linker optimizations, and by optimizing the
configuration of SYS/BIOS.

9.5.1 Configuring Logging

Logging can significantly impact the performance of a system. You can reduce the impact of logging by
optimizing the configuration. There are two main ways to optimize the logging used in your application:

• No logging. In SYS/BIOS, logging is not enabled by default.

• Optimizing logging. If you need some logging enabled in your application, there are some
configuration choices you can make to optimize performance. These are described in the following
subsections.

9.5.1.1 Diags Settings

There are four diagnostics settings for each diagnostics level: RUNTIME_OFF, RUNTIME_ON,
ALWAYS_OFF, and ALWAYS_ON.

The two runtime settings (RUNTIME_OFF and RUNTIME_ON) allow you to enable or disable a particular
diagnostics level at runtime. However, a check must be performed to determine whether logging is
enabled or disabled every time an event is logged.

If you use ALWAYS_OFF or ALWAYS_ON instead, you cannot change the setting at runtime. The call
will either be a direct call to log the event (ALWAYS_ON) or will be optimized out of the code
(ALWAYS_OFF).

9.5.1.2 Choosing Diagnostics Levels

SYS/BIOS modules only log to two levels: USER1 and USER2. They follow the convention that USER1
is for basic events and USER2 is for more detail.

To improve performance, you could only turn on USER1, or turn on USER2 for particular modules only.

Refer to each module's documentation to see which events are logged as USER1 and which are logged
as USER2.

var Defaults = xdc.useModule('xdc.runtime.Defaults');

var Diags = xdc.useModule('xdc.runtime.Diags');

/* 'RUNTIME' settings allow you to turn it off or on at runtime,

 * but require a check at runtime. */

Defaults.common$.diags_USER1 = Diags.RUNTIME_ON;

Defaults.common$.diags_USER2 = Diags.RUNTIME_OFF;

/* These settings cannot be changed at runtime, but optimize out

 * the check for better performance. */

Defaults.common$.diags_USER3 = Diags.ALWAYS_OFF;

Defaults.common$.diags_USER4 = Diags.ALWAYS_ON;
SPRUEX3O—October 2014 Instrumentation 187
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Performance Optimization www.ti.com
9.5.1.3 Choosing Modules to Log

To optimize logging, enable logging only for modules that interest you for debugging.

For example, Hwi logging tends to be the most expensive in terms of performance due to the frequency
of hardware interrupts. Two Hwi events are logged on every Clock tick when the Clock's timer expires.

9.5.2 Configuring Diagnostics

By default, Asserts are enabled for all modules. SYS/BIOS uses asserts to check for common user
mistakes such as calling an API with an invalid argument or from an unsupported context. Asserts are
useful for catching coding mistakes that may otherwise lead to confusing bugs.

To optimize performance after you have done basic debugging of API calls, your configuration file can
disable asserts as follows:

9.5.3 Choosing a Heap Manager

SYS/BIOS provides several different heap manager implementations. Each of these has various
performance trade-offs when allocating and freeing memory. See Section 7.8 for a detailed discussion of
the trade-offs of each module.

HeapMem can allocate a block of any size, but is the slowest of the three. HeapBuf can only allocate
blocks of a single configured size, but is very quick. HeapMultiBuf manages a pool of HeapBuf instances
and balances the advantages of the other two. HeapMultiBuf is quicker than HeapMem, but slower than
HeapBuf. HeapMin uses minimal memory but cannot deallocate memory.

Consider also using different heap implementations for different roles. For example, HeapBuf is ideally
suited for allocating a fixed-size object that is frequently created and deleted. If you were allocating and
freeing many fixed sized data buffers, you could create a HeapBuf instance just for allocating these data
buffers.

9.5.4 Hwi Configuration

The hardware interrupt dispatcher provides a number of features by default that add to interrupt latency.
If your application does not require some of these features, you can disable them to reduce interrupt
latency.

• dispatcherAutoNestingSupport. You may disable this feature if you don't need interrupts enabled
during the execution of your Hwi functions.

• dispatcherSwiSupport. You may disable this feature if no Swi threads will be posted from any Hwi
threads.

• dispatcherTaskSupport. You may disable this feature if no APIs are called from Hwi threads that
would lead to a Task being scheduled. For example, Semaphore_post() would lead to a Task being
scheduled.

var Defaults = xdc.useModule('xdc.runtime.Defaults');

var Diags = xdc.useModule('xdc.runtime.Diags');

/* Disable asserts in all modules. */

Defaults.common$.diags_ASSERT = Diags.ALWAYS_OFF;
188 Instrumentation SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Performance Optimization
• dispatcherIrpTrackingSupport. This feature supports the Hwi_getIrp() API, which returns an
interrupt's most recent return address. You can disable this feature if your application does not use
that API.

9.5.5 Stack Checking

By default, the Task module checks to see whether a Task stack has overflowed at each Task switch. To
improve Task switching latency, you can disable this feature the Task.checkStackFlag property to false.
SPRUEX3O—October 2014 Instrumentation 189
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Appendix A
SPRUEX3O—October 2014

Rebuilding SYS/BIOS

This appendix describes how to rebuild the SYS/BIOS source code.

A.1 Overview . 191

A.2 Prerequisites . 191

A.3 Building SYS/BIOS Using the bios.mak Makefile 191

A.4 Building Your Project Using a Rebuilt SYS/BIOS. 194

Topic Page
SPRUEX3O—October 2014 Rebuilding SYS/BIOS 190
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com Overview
A.1 Overview

The SYS/BIOS product includes source files and build scripts that allow you to modify the SYS/BIOS
sources and rebuild its libraries. You can do this in order to modify, update, or add functionality. If you edit
the SYS/BIOS source code and/or corresponding build scripts, you must also rebuild SYS/BIOS in order
to create new libraries containing these modifications.

Note that starting with SYS/BIOS v6.32, you can cause the SYS/BIOS libraries to be rebuilt as part of the
application build within CCS. See Section 2.4.5 for details. The custom-built libraries will be stored with
your CCS project and will contain only modules and APIs that your application needs to access. You can
cause such a custom build to occur by configuring the BIOS.libType property as follows.

Caution: This appendix provides details about rebuilding the SYS/BIOS source code. We
strongly recommend that you copy the SYS/BIOS installation to a directory with a
different name and rebuild that copy, rather than rebuilding the original installation.

For information about building SYS/BIOS applications (that is, applications that use SYS/BIOS), see
Section 2.4.

A.2 Prerequisites

In order to rebuild SYS/BIOS, the SYS/BIOS and XDCtools products must both be installed. It is
important to build SYS/BIOS with a compatible version of XDCtools. To find out which versions are
compatible, see the “Dependencies” section of the Release Notes in the top-level directory of your
SYS/BIOS installation.

Note: You should generally avoid installing the various Texas Instruments tools and source
distributions in directories that have spaces in their paths.

A.3 Building SYS/BIOS Using the bios.mak Makefile

Rebuilding SYS/BIOS itself from the provided source files is straightforward, whether you are using the
TI compiler toolchain or the GNU GCC toolchain.

SYS/BIOS ships with a bios.mak file in the top-level installation directory. This makefile enables you to
easily (re)build SYS/BIOS using your choice of compilers and desired "targets". A target incorporates a
particular ISA and a runtime model; for example, Cortex-M3 and the GCC compiler with specific options.

The instructions in this section can be used to build SYS/BIOS applications on Windows or Linux. If you
are using a Windows machine, you can use the regular DOS command shell provided with Windows.
However, you may want to install a Unix-like shell, such as Cygwin.

For Windows users, the XDCtools top-level installation directory contains gmake.exe, which is used in
the commands that follow to run the Makefile. The gmake utility is a Windows version of the standard
GNU "make" utility provided with Linux.

If you are using Linux, change the "gmake" command to "make" in the commands that follow.

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.libType = BIOS.LibType_Custom;
SPRUEX3O—October 2014 Rebuilding SYS/BIOS 191
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Building SYS/BIOS Using the bios.mak Makefile www.ti.com
For these instructions, suppose you have the following directories:

• $BASE/sysbios/bios_6_40_##_## — The location where you installed SYS/BIOS.

• $BASE/sysbios/copy-bios_6_40_##_## — The location of a copy of the SYS/BIOS installation.

• $BASE/xdctools_3_30_##_## — The location where you installed XDCtools.

• $TOOLS/gcc/bin — The location of a compiler, in this case a GCC compiler for M3.

The following steps refer to the top-level directory of the XDCtools installation as <xdc_install_dir>.
They refer to the top-level directory of the copy of the SYS/BIOS installation as
<bioscopy_install_dir>.

Follow these steps to rebuild SYS/BIOS:

1. If you have not already done so, install XDCtools and SYS/BIOS.

2. Make a copy of the SYS/BIOS installation that you will use when rebuilding. This leaves you with an
unmodified installation as a backup. For example, use commands similar to the following on
Windows:

Or, use the a command similar to the following on Linux:

3. Make sure you have access to compilers for any targets for which you want to be able be able to build
applications using the rebuilt SYS/BIOS. Note the path to the directory containing the executable for
each compiler. These compilers can include Texas Instruments compilers, GCC compilers, and any
other command-line compilers for any targets supported by SYS/BIOS.

4. If you are using Windows and the gmake utility provided in the top-level directory of the XDCtools
installation, you should add the <xdc_install_dir> to your PATH environment variable so that the
gmake executable can be found.

5. You may remove the top-level doc directory located in <bioscopy_install_dir>/docs if you need
to save disk space.

6. At this point, you may want to add the remaining files in the SYS/BIOS installation tree to your
Software Configuration Management (SCM) system.

mkdir c:\sysbios\copy-bios_6_40_##_##

copy c:\sysbios\bios_6_40_##_## c:\sysbios\copy-bios_6_40_##_##

cp -r $BASE/sysbios/bios_6_40_##_##/* $BASE/sysbios/copy-bios_6_40_##_##
192 Rebuilding SYS/BIOS SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Building SYS/BIOS Using the bios.mak Makefile
7. Open the <bioscopy_install_dir>/bios.mak file with a text editor, and make the following
changes for any options you want to hardcode in the file. (You can also set these options on the
command line if you want to override the settings in the bios.mak file.)

— Ignore the following lines near the beginning of the file. These definitions are used internally, but
few users will have a need to change them.

— Specify the location of XDCtools. For example:

— Specify the location of the compiler executable for all targets you want to be able to build for with
SYS/BIOS. Use only the directory path; do not include the name of the executable file. Any
targets for which you do not specify a compiler location will be skipped during the build. For
example, on Linux you might specify the following:

Similarly, on Windows you might specify the following compiler locations:

— If you need to add any repositories to your XDCPATH (for example, to reference the packages
directory of another component), you should edit the XDCPATH definition.

— You can uncomment the line that sets XDCOPTIONS to “v” if you want more information output
during the build.

8. Clean the SYS/BIOS installation with the following commands. (If you are running the build on Linux,
change all "gmake" commands to "make".)

9. Run the bios.mak file to build SYS/BIOS as follows. (Remember, if you are running the build on
Linux, change all "gmake" commands to "make".)

10. If you want to specify options on the command line to override the settings in bios.mak, use a
command similar to the following.

#

Where to install/stage the packages

Typically this would point to the devkit location

#

DESTDIR ?= <UNDEFINED>

prefix ?= /

docdir ?= /docs/bios

packagesdir ?= /packages

XDC_INSTALL_DIR ?= $(BASE)/xdctools_3_30_##_##

ti.targets.C28_float ?= /opt/ti/ccsv6/tools/compiler/c2000

ti.targets.arm.elf.M3 ?= /opt/ti/ccsv6/tools/compiler/tms470

gnu.targets.arm.M3 ?= $TOOLS/gcc/bin

ti.targets.C28_float ?= c:/ti/ccsv6/tools/compiler/c2000

ti.targets.arm.elf.M3 ?= c:/ti/ccsv6/tools/compiler/tms470

gnu.targets.arm.M3 ?= c:/tools/gcc/bin

cd <bioscopy_install_dir>

gmake -f bios.mak clean

gmake -f bios.mak

gmake -f bios.mak XDC_INSTALL_DIR=<xdc_install_dir> gnu.targets.arm.M3=<compiler_path>
SPRUEX3O—October 2014 Rebuilding SYS/BIOS 193
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Building Your Project Using a Rebuilt SYS/BIOS www.ti.com
A.4 Building Your Project Using a Rebuilt SYS/BIOS

To build your application using the version of SYS/BIOS you have rebuilt, you must point your project to
this rebuilt version by following these steps:

1. Open CCS and select the application project you want to rebuild.

2. Right-click on your project and choose Properties. If you have a configuration project that is separate
from your application project, open the properties for the configuration project.

3. In the CCS General category of the Properties dialog, choose the RTSC tab.

4. Under the Products and Repositories tab, uncheck all the boxes for SYS/BIOS (and DSP/BIOS if
there are any). This ensures that no version is selected.

5. Click the Add button next to the Products and Repositories tab.

6. Choose Select repository from file-system, and browse to the “packages” directory of the location
where you copied and rebuilt SYS/BIOS. For example, the location may be
C:\myBiosBuilds\custom_bios_6_40_##-##\packages on Windows or $BASE/sysbios/copy-
bios_6_40_##_##/packages on Linux.

7. Click OK to apply these changes to the project.

8. You may now rebuild your project using the re-built version of SYS/BIOS.
194 Rebuilding SYS/BIOS SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Appendix B
SPRUEX3O—October 2014

Timing Benchmarks

This appendix describes SYS/BIOS timing benchmark statistics.

B.1 Timing Benchmarks . 196

B.2 Interrupt Latency . 196

B.3 Hwi-Hardware Interrupt Benchmarks . 196

B.4 Swi-Software Interrupt Benchmarks . 197

B.5 Task Benchmarks . 198

Topic Page
SPRUEX3O—October 2014 Timing Benchmarks 195
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

Timing Benchmarks www.ti.com
B.1 Timing Benchmarks

This appendix describes the timing benchmarks for SYS/BIOS functions, explaining the meaning of the
values as well as how they were obtained, so that designers may better understand their system
performance.

The sections that follow explain the meaning of each of the timing benchmarks. The name of each section
corresponds to the name of the benchmark in the actual benchmark data table.

The explanations in this appendix are best viewed along side the actual benchmark data. Since the actual
benchmark data depends on the target and the memory configuration, and is subject to change, the data
is provided in HTML files in the ti.sysbios.benchmarks package (that is, in the
BIOS_INSTALL_DIR\packages\ti\sysbios\benchmarks directory).

The benchmark data was collected with the Build-Profile set to “release” and the BIOS.libType
configuration parameter set to BIOS.LibType_Custom. See Section 2.4.5 for more on these settings.

B.2 Interrupt Latency

The Interrupt Latency benchmark is the maximum number of instructions during which the SYS/BIOS
kernel disables maskable interrupts. Interrupts are disabled in order to modify data shared across
multiple threads. SYS/BIOS minimizes this time as much as possible to allow the fastest possible
interrupt response time.

The interrupt latency of the kernel is measured across the scenario within SYS/BIOS in which maskable
interrupts will be disabled for the longest period of time. The measurement provided here is the cycle
count measurement for executing that scenario.

B.3 Hwi-Hardware Interrupt Benchmarks

Hwi_enable(). This is the execution time of a Hwi_enable() function call, which is used to globally enable
hardware interrupts.

Hwi_disable(). This is the execution time of a Hwi_disable() function call, which is used to globally
disable hardware interrupts.

Hwi dispatcher. These are execution times of specified portions of Hwi dispatcher code. This dispatcher
handles running C code in response to an interrupt. The benchmarks provide times for the following
cases:

• Interrupt prolog for calling C function. This is the execution time from when an interrupt occurs
until the user's C function is called.

• Interrupt epilog following C function call. This is the execution time from when the user's C
function completes execution until the Hwi dispatcher has completed its work and exited.
196 Timing Benchmarks SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Swi-Software Interrupt Benchmarks
Hardware interrupt to blocked task. This is a measurement of the elapsed time from the start of an ISR
that posts a semaphore, to the execution of first instruction in the higher-priority blocked task, as shown
in Figure B–1.

Figure B–1 Hardware Interrupt to Blocked Task

Hardware interrupt to software interrupt. This is a measurement of the elapsed time from the start of
an ISR that posts a software interrupt, to the execution of the first instruction in the higher-priority posted
software interrupt.

This duration is shown in Figure B–2. Swi 2, which is posted from the ISR, has a higher priority than Swi
1, so Swi 1 is preempted. The context switch for Swi 2 is performed within the Swi executive invoked by
the Hwi dispatcher, and this time is included within the measurement. In this case, the registers
saved/restored by the Hwi dispatcher correspond to that of "C" caller saved registers.

Figure B–2 Hardware Interrupt to Software Interrupt

B.4 Swi-Software Interrupt Benchmarks

Swi_enable(). This is the execution time of a Swi_enable() function call, which is used to enable software
interrupts.

Swi_disable(). This is the execution time of a Swi_disable() function call, which is used to disable
software interrupts.

Swi_post(). This is the execution time of a Swi_post() function call, which is used to post a software
interrupt. Benchmark data is provided for the following cases of Swi_post():

Task 1 executing
Semaphore_post()

Task 2 executing

Hardware Interrupt to
Blocked Task

Time

Hwi
dispatcher
epilog

Hwi
dispatcher
prolog

Interrupt asserted Interrupt response

Swi 1 executing Swi_post() Swi 2 executing

Hardware Interrupt to Software
Interrupt

Time

Hwi
dispatcher

Hwi
dispatcher

Interrupt asserted Interrupt response
SPRUEX3O—October 2014 Timing Benchmarks 197
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Task Benchmarks www.ti.com
• Post software interrupt again. This case corresponds to a call to Swi_post() of a Swi that has
already been posted but hasn't started running as it was posted by a higher-priority Swi. Figure B–3
shows this case. Higher-priority Swi1 posts lower-priority Swi2 twice. The cycle count being
measured corresponds to that of second post of Swi2.

Figure B–3 Post of Software Interrupt Again

• Post software interrupt, no context switch. This is a measurement of a Swi_post() function call,
when the posted software interrupt is of lower priority then currently running Swi. Figure B–4 shows
this case.

Figure B–4 Post Software Interrupt without Context Switch

• Post software interrupt, context switch. This is a measurement of the elapsed time between a call
to Swi_post() (which causes preemption of the current Swi) and the execution of the first instruction
in the higher-priority software interrupt, as shown in Figure B–5. The context switch to Swi2 is
performed within the Swi executive, and this time is included within the measurement.

Figure B–5 Post Software Interrupt with Context Switch

B.5 Task Benchmarks

Task_enable(). This is the execution time of a Task_enable() function call, which is used to enable
SYS/BIOS task scheduler.

Task_disable(). This is the execution time of a Task_disable() function call, which is used to disable
SYS/BIOS task scheduler.

Task_create(). This is the execution time of a Task_create() function call, which is used to create a task
ready for execution. Benchmark data is provided for the following cases of Task_create():

Swi 1 executing Swi_post()
of Swi 2

Swi 1 executing Swi 1 executing

Post a Swi that has already been posted

Time

Swi_post() of
Swi 2 again

Swi 1 executing Swi_post() of Swi 2 Swi 1 executing

Post Software Interrupt,
No Context Switch

Time

Swi 1 executing Swi_post() of Swi 2 Swi 2 executing

Post Software Interrupt,
Context Switch

Time
198 Timing Benchmarks SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Task Benchmarks
• Create a task, no context switch. The executing task creates and readies another task of lower or
equal priority, which results in no context switch. See Figure B–6.

Figure B–6 Create a New Task without Context Switch

• Create a task, context switch. The executing task creates another task of higher priority, resulting
in a context switch. See Figure B–7.

Figure B–7 Create a New Task with Context Switch

Note: The benchmarks for Task_create() assume that memory allocated for a Task object is
available in the first free list and that no other task holds the lock to that memory.
Additionally the stack has been pre-allocated and is being passed as a parameter.

Task_delete(). This is the execution time of a Task_delete() function call, which is used to delete a task.
The Task handle created by Task_create() is passed to the Task_delete() API.

Task_setPri(). This is the execution time of a Task_setPri() function call, which is used to set a task's
execution priority. Benchmark data is provided for the following cases of Task_setPri():

• Set a task priority, no context switch. This case measures the execution time of the Task_setPri()
API called from a task Task1 as in Figure B–8 if the following conditions are all true:

— Task_setPri() sets the priority of a lower-priority task that is in ready state.

— The argument to Task_setPri() is less then the priority of current running task.

Figure B–8 Set a Task's Priority without a Context Switch

Task 1 executing Task_create() Task 1 executing

Create a Task, No Context Switch

Time

(Readies lower priority new Task 2)

Task 1 executing Task_create() Task 2 executing

Create a Task, Context Switch

Time

(Readies higher priority new Task 2, Task Context Switch)

Task 1 executing Task_setpri() Task 1 executing

Time

Set a Task Priority,
No Context Switch

Task_setPri()
SPRUEX3O—October 2014 Timing Benchmarks 199
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Semaphore Benchmarks www.ti.com
• Lower the current task's own priority, context switch. This case measures execution time of
Task_setPri() API when it is called to lower the priority of currently running task. The call to
Task_setPri() would result in context switch to next higher-priority ready task. Figure B–9 shows this
case.

Figure B–9 Lower the Current Task's Priority, Context Switch

• Raise a ready task's priority, context switch. This case measures execution time of Task_setPri()
API called from a task Task1 if the following conditions are all true:

— Task_setPri() sets the priority of a lower-priority task that is in ready state.

— The argument to Task_setPri() is greater then the priority of current running task.

The execution time measurement includes the context switch time as shown in Figure B–10.

Figure B–10 Raise a Ready Task's Priority, Context Switch

• Task_yield(). This is a measurement of the elapsed time between a function call to Task_yield()
(which causes preemption of the current task) and the execution of the first instruction in the next
ready task of equal priority, as shown in Figure B–11.

Figure B–11 Task Yield

B.6 Semaphore Benchmarks

Semaphore benchmarks measure the time interval between issuing a Semaphore_post() or
Semaphore_pend() function call and the resumption of task execution, both with and without a context
switch.

Semaphore_post(). This is the execution time of a Semaphore_post() function call. Benchmark data is
provided for the following cases of Semaphore_post():

Task 1 executing Task_setpri() Task 2 executing

Lower the Current Task’s Own Priority, Context Switch

Time

(Lower Task 1’s priority, Task Context Switch) Task_setPri()

Task 1 executing Task_setpri() Task 2 executing

Raise a Task’s Priority, Context Switch

Time

(Raise Task 2’s priority, Task Context Switch) Task_setPri()

Task 1 executing Task_yield() Task 2 executing

Task yieldTime

(Task Context Switch)
200 Timing Benchmarks SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Semaphore Benchmarks
• Post a semaphore, no waiting task. In this case, the Semaphore_post() function call does not
cause a context switch as no other task is waiting for the semaphore. This is shown in Figure B–12.

Figure B–12 Post Semaphore, No Waiting Task

• Post a semaphore, no context switch. This is a measurement of a Semaphore_post() function call,
when a lower-priority task is pending on the semaphore. In this case, Semaphore_post() readies the
lower-priority task waiting for the semaphore and resumes execution of the original task, as shown
in Figure B–13.

Figure B–13 Post Semaphore, No Context Switch

• Post a semaphore, context switch. This is a measurement of the elapsed time between a function
call to Semaphore_post() (which readies a higher-priority task pending on the semaphore causing a
context switch to higher-priority task) and the execution of the first instruction in the higher-priority
task, as shown in Figure B–14.

Figure B–14 Post Semaphore with Task Switch

Semaphore_pend(). This is the execution time of a Semaphore_pend() function call, which is used to
acquire a semaphore. Benchmark data is provided for the following cases of Semaphore_pend():

• Pend on a semaphore, no context switch. This is a measurement of a Semaphore_pend() function
call without a context switch (as the semaphore is available.) See Figure B–15.

Figure B–15 Pend on Semaphore, No Context Switch

Task 1 executing Task 1 executing

Post Semaphore,
No Waiting Task

Time

Task 1 executing Semaphore_post()

Post Semaphore,
No Context Switch

Time

Task 1 executing

Task 1 executing Semaphore_post() Task 2 executing

Post Semaphore, Context Switch
Time

(Readies higher priority Task 2, Context Switch)

Task 1 executing Task 1 executing

Pend on Semaphore,
No Context Switch

Time
SPRUEX3O—October 2014 Timing Benchmarks 201
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Semaphore Benchmarks www.ti.com
• Pend on a semaphore, context switch. This is a measurement of the elapsed time between a
function call to Semaphore_pend() (which causes preemption of the current task) and the execution
of first instruction in next higher-priority ready task. See Figure B–16.

Figure B–16 Pend on Semaphore with Task Switch

Task 1 executing Task 2 executing

Pend on Semaphore, Task Switch

Time

 (Task 1 suspends, Task Context Switch)
202 Timing Benchmarks SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Appendix C
SPRUEX3O—October 2014

Size Benchmarks

This appendix describes SYS/BIOS size benchmark statistics.

C.1 Overview . 204

C.2 Comparison to DSP/BIOS 5 . 204

C.3 Default Configuration Sizes . 205

C.4 Static Module Application Sizes . 206

C.5 Dynamic Module Application Sizes . 210

Topic Page
SPRUEX3O—October 2014 Size Benchmarks 203
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

Overview www.ti.com
C.1 Overview

This appendix contains information on the size impact of using SYS/BIOS modules in an application.

Tradeoffs between different SYS/BIOS 6 modules and their impact on system memory can be complex,
because applying a module usually requires support from other modules.

Also, even if one module's code is linked in by another module, it does not necessarily link in the entire
module, but typically only the functions referenced by the application—an optimization that keeps the
overall size impact of the SYS/BIOS 6 kernel to a minimum.

Because of the complexity of these tradeoffs, it is important to understand that this appendix does not
provide an analytical model of estimating SYS/BIOS 6 overhead, but rather gives sizing information for
a number of SYS/BIOS configurations.

The size benchmarks are a series of applications that are built on top of one another. Moving down Table
C–1, each application includes all of the configuration settings and API calls in the previous applications.
Applications lower on the table generally require the modules in the applications above them (The Clock
module, for example, requires the Hwi module), so this progression allows for measuring the size impact
of a module by subtracting the sizes of all of the other modules it depends upon. (The data in the table,
however, is provided in absolute numbers.)

The actual size benchmark data is included in the SYS/BIOS 6 installation in the ti.sysbios.benchmarks
package (that is, in the BIOS_INSTALL_DIR\packages\ti\sysbios\benchmarks directory). There is a
separate HTML file for each target. For example, the ‘C64x sizing information is in the
c6400Sizing.html file. The sections that follow should be read alongside the actual sizing information
as a reference.

The benchmark data was collected with the Build-Profile set to “release” and the BIOS.libType
configuration parameter set to BIOS.LibType_Custom. See Section 2.4.5 for more on these settings.

For each benchmark application, the table provides four pieces of sizing information, all in 8-bit bytes.

• Code Size is the total size of all of the code in the final executable.

• Initialized Data Size is the total size of all constants (the size of the .const section).

• Uninitialized Data Size is the total size of all variables.

• C-Initialization Size is the total size of C-initialization records.

C.2 Comparison to DSP/BIOS 5

Where possible, SYS/BIOS 6 size benchmarks have been designed to match the DSP/BIOS 5
benchmarks so that the results can be compared directly. The following table shows which data to
compare.

Table C–1 Comparison of Benchmark Applications

DSP/BIOS 5 SYS/BIOS 6

Default configuration Default configuration

Base configuration Basic configuration

HWI application Hwi application

CLK application Clock application
204 Size Benchmarks SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Default Configuration Sizes
1 SYS/BIOS 6 does not have a PRD module. Instead, the SYS/BIOS 6 Clock module supports the
functionality of both the DSP/BIOS 5 CLK and PRD modules.

2 The RTA application is not implemented for SYS/BIOS 6.

3 This benchmark is the application used to generate the timing benchmarks for SYS/BIOS 6 (see
Appendix B). This application leverages all of the key components of the operating system in a
meaningful way. It does not utilize any of the size-reducing measures employed in the base configuration
of the size benchmarks.

C.3 Default Configuration Sizes

There are two minimal configurations provided as base size benchmarks:

• Default Configuration. This is the true "default" configuration of SYS/BIOS. The configuration script
simply includes the BIOS module as follows:

This shows the size of an empty application with everything left at its default value; no attempts have
been made here to minimize the application size.

• Basic Configuration. This configuration strips the application of all unneeded features and is
essentially the smallest possible SYS/BIOS application. Appendix D details tactics used to reduce
the memory footprint of this configuration. This is the configuration that the size benchmarks will be
built off of.

CLK Object application Clock Object application

SWI application Swi application

SWI Object application Swi Object application

PRD application None1

PRD Object application None1

TSK application Task application

TSK Object application Task Object application

SEM application Semaphore application

SEM Object application Semaphore Object application

MEM application Memory application

Dynamic TSK application Dynamic Task application

Dynamic SEM application Dynamic Semaphore application

RTA application None2

None Timing Application3

xdc.useModule('ti.sysbios.BIOS');

DSP/BIOS 5 SYS/BIOS 6
SPRUEX3O—October 2014 Size Benchmarks 205
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Static Module Application Sizes www.ti.com
C.4 Static Module Application Sizes

This section is the focus of the size benchmarks. Each application builds on top of the applications above
it in Table C–1.

For each module there are generally two benchmarks. For example, there is the "Clock application"
benchmark and the "Clock Object application" benchmark. The first of the two benchmarks (Clock
application) does three things:

• In the configuration script, it includes the module.

• In the configuration script, it creates a static instance of the module.

• In the C code, it makes a call to one of the module's APIs.

The second benchmark (the "object" application) creates a second static instance in the configuration
script. This demonstrates the size impact of creating an instance of that object. For example, if the Clock
application requires x bytes of initialized data, and the Clock Object application requires y bytes of
initialized data, then the impact of one Clock instance is (y - x) bytes of data.

The code snippets for each application apply to all targets, except where noted.

C.4.1 Hwi Application

The Hwi Application configuration script creates a Hwi instance, and the C code calls the Hwi_plug() API.

Configuration Script Addition

C Code Addition

C.4.2 Clock Application

The Clock Application enables the Clock module, creates a Clock instance, and pulls in the modules
necessary to call the Timestamp_get32() API in the C code.

Configuration Script Addition

C Code Addition

// Use target/device-specific Hwi module.

var Hwi = xdc.useModule('ti.sysbios.family.c64.Hwi');

var hwi5 = Program.global.hwi5 = Hwi.create(5, '&oneArgFxn');

Hwi_plug(7, (Hwi_PlugFuncPtr)main);

var BIOS = xdc.useModule('ti.sysbios.BIOS');

xdc.useModule('xdc.runtime.Timestamp');

BIOS.clockEnabled = true;

var Clock = xdc.useModule('ti.sysbios.knl.Clock');

Clock.create("&oneArgFxn", 5, {startFlag:true,arg:10});

Timestamp_get32();
206 Size Benchmarks SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Static Module Application Sizes
C.4.3 Clock Object Application

The Clock Object Application statically creates an additional Clock instance to illustrate the size impact
of each Clock instance.

Configuration Script Addition

C.4.4 Swi Application

The Swi Application enables the Swi module and creates a static Swi instance in the configuration script.
It calls the Swi_post() API in the C code.

Configuration Script Addition

C Code Addition

C.4.5 Swi Object Application

The Swi Object Application creates an additional Swi instance to illustrate the size impact of each new
Swi instance.

Configuration Script Addition

C.4.6 Task Application

The Task Application configuration script enables Tasks and creates a Task instance. It also configures
the stack sizes to match the sizes in the DSP/BIOS 5 benchmarks (for comparison). In the C code, the
Task application makes a call to the Task_yield() API.

Configuration Script Addition

C Code Addition

Clock.create("&oneArgFxn", 5, {startFlag:true,arg:10});

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.swiEnabled = true;

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

Program.global.swi0 = Swi.create('&twoArgsFxn');

Swi_post(swi0);

Program.global.swi1 = Swi.create('&twoArgsFxn');

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.taskEnabled = true;

var Task = xdc.useModule('ti.sysbios.knl.Task');

Program.global.tsk0 = Task.create("&twoArgsFxn");

Task.idleTaskStackSize = 0x200;

Program.global.tsk0.stackSize = 0x200;

Task_yield();
SPRUEX3O—October 2014 Size Benchmarks 207
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Static Module Application Sizes www.ti.com
C.4.7 Task Object Application

The Task Object Application creates an additional Task instance to illustrate the size impact of each new
Task instance.

Configuration Script Addition

C.4.8 Semaphore Application

The Semaphore Application configuration script creates a Semaphore instance and disables support for
Events in the Semaphore for an equitable comparison with the DSP/BIOS 5 SEM module.

In the C code, the Semaphore application makes a call to the Semaphore_post() and Semaphore_pend()
APIs.

Configuration Script Addition

C Code Addition

C.4.9 Semaphore Object Application

The Semaphore Object Application configuration script creates an additional Semaphore instance to
illustrate the size impact of each new Semaphore instance.

Configuration Script Addition

Program.global.tsk1 = Task.create("&twoArgsFxn");

Program.global.tsk1.stackSize = 0x200;

var Sem = xdc.useModule('ti.sysbios.knl.Semaphore');

Sem.supportsEvents = false;

Program.global.sem0 = Sem.create(0);

Semaphore_post(sem0);

Semaphore_pend(sem0, BIOS_WAIT_FOREVER);

Program.global.sem1 = Sem.create(0);
208 Size Benchmarks SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Static Module Application Sizes
C.4.10 Memory Application

The Memory Application configuration script configures the default heap used for memory allocations. It
creates a HeapMem instance to manage a 4 KB heap, places the heap into its own section in memory,
then assigns the HeapMem instance as the default heap to use for Memory.

In the C code, the Memory application makes calls to the Memory_alloc() and Memory_free() APIs. It
allocates a block from the default heap by passing NULL as the first parameter to Memory_alloc(), then
frees the block back to the default heap by again passing NULL as the first parameter to Memory_free().

Configuration Script Addition

C Code Addition

var mem = xdc.useModule('xdc.runtime.Memory');

var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');

var heap0 = HeapMem.create();

heap0.sectionName = "myHeap";

Program.sectMap["myHeap"] = Program.platform.dataMemory;

heap0.size = 0x1000;

mem.defaultHeapInstance = heap0;

Ptr *buf;

Error_Block eb;

Error_init(&eb);

buf = Memory_alloc(NULL, 128, 0, &eb);

if (buf == NULL) {

 System_abort("Memory allocation failed");

}

Memory_free(NULL, buf, 128);
SPRUEX3O—October 2014 Size Benchmarks 209
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Dynamic Module Application Sizes www.ti.com
C.5 Dynamic Module Application Sizes

The following application demonstrate the size effects of creating object dynamically (in the C code).

C.5.1 Dynamic Task Application

The Dynamic Task Application demonstrates the size impact of dynamically (in the C code) creating and
deleting a Task instance. This application comes after the Memory application because it must use the
Memory module to allocate space for the new Task instance.

C Code Addition

C.5.2 Dynamic Semaphore Application

The Dynamic Semaphore Application demonstrates the size impact of dynamically (in the C code)
creating and deleting a Semaphore instance. This application comes after the Memory application
because it must use the Memory module to allocate space for the new Semaphore instance.

C Code Addition

C.6 Timing Application Size

The timing application is the application used to generate the timing benchmarks for SYS/BIOS 6 (see
Appendix B). This application leverages all of the key components of the operating system in a
meaningful way, and does not utilize any of the size-reducing measures employed in the base
configuration of the size benchmarks. Therefore, this is the largest application provided as a benchmark.

Task_Handle task;

Error_Block eb;

Error_init(&eb);

task = Task_create((Task_FuncPtr)main, NULL, &eb);

if (task == NULL) {

 System_abort("Task create failed");

}

Task_delete(&task);

Semaphore_Handle sem;

Error_Block eb;

Error_init(&eb);

sem = Semaphore_create(1, NULL, &eb);

if (sem == NULL) {

 System_abort("Semaphore create failed");

}

Semaphore_delete(&sem);
210 Size Benchmarks SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Appendix D
SPRUEX3O—October 2014

Minimizing the Application Footprint

This appendix describes how to minimize the size of a SYS/BIOS application.

D.1 Overview . 212

D.2 Reducing Data Size . 212

D.3 Reducing Code Size . 214

D.4 Basic Size Benchmark Configuration Script 216

Topic Page
SPRUEX3O—October 2014 Minimizing the Application Footprint 211
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

Overview www.ti.com
D.1 Overview

This section provides tips and suggestions for minimizing the memory requirements of a SYS/BIOS-
based application. This is accomplished by disabling features of the operating system that are enabled
by default and by reducing the size of certain buffers in the system.

Most of the tips described here are used in the “Kernel only” configuration for the size benchmarks. The
final section of this chapter presents a full configuration script that minimizes memory requirements.

The actual size benchmark data is included in the SYS/BIOS 6 installation in the ti.sysbios.benchmarks
package (that is, in the BIOS_INSTALL_DIR\packages\ti\sysbios\benchmarks directory). There is a
separate HTML file for each target. For example, the ‘C64x sizing information can be found in the
c6400Sizing.html file.

The following sections simply describe different configuration options and their effect on reducing the
application size. For further details on the impact of these settings, refer to the documentation for the
relevant modules.

Because the code and data sections are often placed in separate memory segments, it may be more
important to just reduce either code size data size. Therefore the suggestions are divided based on
whether they reduce code or data size. In general, it is easier to reduce data size than code size.

D.2 Reducing Data Size

D.2.1 Removing the malloc Heap

Calls to malloc are satisfied by a separate heap, whose size is configurable. The following code removes
the heap to minimize to data footprint. Applications that remove the heap cannot dynamically allocate
memory. Therefore, such applications should not use the SYS/BIOS Memory module APIs or other
SYS/BIOS APIs that internally allocate memory from a heap.

D.2.2 Reducing the Size of Stacks

See Section 3.4.3 for information about system stack size requirements and Section 3.5.3 for information
about task stack size requirements.

The Program variable is automatically available to all scripts. It defines the "root" of the configuration
object model. It comes from the xdc.cfg.Program module, and is implicitly initialized as follows:

The size of the System stack, which is used as the stack for interrupt service routines (Hwis and Swis),
is configurable, and can be reduced depending on the application's needs.

BIOS.heapSize = 0;

var Program = xdc.useModule('xdc.cfg.Program');

Program.stack = 1024;
212 Minimizing the Application Footprint SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Reducing Data Size
Likewise, the size of each Task stack is individually configurable, and can be reduced depending on the
application's needs. See Section 3.5.3 for information about task stack sizes.

You can configure the size of the Idle task stack as follows:

D.2.3 Setting the Default Task Stack Size

Task.defaultStackSize specifies the size of the task stacks if no size is provided in the Task creation
parameters:

D.2.4 Disabling Named Modules

The space used to store module name strings can be reclaimed with the following configuration setting:

D.2.5 Leaving Text Strings Off the Target

By default, all of the text strings in the system, such as module and instance names and error strings, are
loaded into the target's memory. These strings can be left out of the application using the following
settings.

D.2.6 Reduce the Number of atexit Handlers

By default, up to 8 System_atexit() handlers can be specified that will be executed when the system is
exiting. You can save data space by reducing the number of handlers that can be set at runtime to the
number you are actually intending to use. For example:

var tskParams = new Task.Params;

tskParams.stackSize = 512;

var task0 = Task.create('&task0Fxn', tskParams);

Task.idleTaskStackSize = 512;

Task.defaultStackSize = 1024;

var Defaults = xdc.useModule('xdc.runtime.Defaults');

Defaults.common$.namedModule = false;

var Text = xdc.useModule('xdc.runtime.Text');

Text.isLoaded = false;

System.maxAtexitHandlers = 0;
SPRUEX3O—October 2014 Minimizing the Application Footprint 213
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Reducing Code Size www.ti.com
D.3 Reducing Code Size

D.3.1 Use the Custom Build SYS/BIOS Libraries

Set the Build-Profile (shown when you are creating a new CCS project or modifying the CCS General
> RTSC settings) to “release.”

In the configuration settings, change the BIOS.libType parameter to BIOS.LibType_Custom. This causes
the SYS/BIOS libraries to be recompiled with optimizations that reduce code size.

See Section 2.4.5 for more on these settings.

D.3.2 Disabling Logging

Logging and assertion handling can be disabled with the following configuration settings:

D.3.3 Setting Memory Policies

The BIOS module supports two methods for creating and deleting objects. If all of the objects in an
application can be statically created in the configuration script, then all of the code associated with
dynamically creating instances of modules can be left out of the application. This is referred to as a static
memory policy.

D.3.4 Disabling Core Features

Some of the core features of SYS/BIOS can be enabled or disabled as needed. These include the Swi,
Clock, and Task modules.

Applications typically enable at least one of the Swi and Task handlers. Some applications may not need
to use both Swi and Task, and can disable the unused thread type.

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.libType = BIOS.LibType_Custom;

BIOS.assertsEnabled = false;

BIOS.logsEnabled = false;

BIOS.runtimeCreatesEnabled = false;

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.swiEnabled = false;

BIOS.clockEnabled = false;

BIOS.taskEnabled = false;
214 Minimizing the Application Footprint SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Reducing Code Size
D.3.5 Eliminating printf()

There is no way to explicitly remove printf from the application. However, printf code and related data
structures are not included if an application has no references to System_printf(). This requires:

• The application code cannot contain any calls to System_printf().

• The following configuration settings need to be made to SYS/BIOS:

See the module documentation for details. Essentially, these settings will eliminate all references to the
printf code.

D.3.6 Disabling RTS Thread Protection

If an application does not require the RTS library to be thread safe, it can specify to not use any Gate
module in the RTS library. This can prevent the application from bringing in another type of Gate module.

D.3.7 Disable Task Stack Overrun Checking

If you are not concerned that any of your Task instances will overrun their stacks, you can disable the
checks that make sure the top of the stack retains its initial value. This saves on code space. See Section
3.5.3 for information about task stack sizes.

By default, stack checking is performed. Use these statements if you want to disable stack checking for
all Tasks:

D.3.8 Cortex-M3/M4 Exception Management

The Cortex-M exception module uses System_printf() to send useful information about an exception.
This is useful when debugging, but it uses some code and data space. If you set M3Hwi.excHandler to
“null”, the exception module will simply spin in an infinite loop when an exception occurs.

var System = xdc.useModule('xdc.runtime.System');

var SysMin = xdc.useModule('xdc.runtime.SysMin');

SysMin.bufSize = 0;

SysMin.flushAtExit = false;

System.SupportProxy = SysMin;

//Remove Error_raiseHook, which brings System_printf

var Error = xdc.useModule('xdc.runtime.Error');

Error.raiseHook = null;

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.rtsGateType = BIOS.NoLocking;

Task.checkStackFlag = false;

Task.initStackFlag = false;

if ((Program.build.target.name == "M3") ||

 (Program.build.target.name == "M4") ||

 (Program.build.target.name == "M4F")) {

 M3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');

 M3Hwi.excHandlerFunc = null;

}

SPRUEX3O—October 2014 Minimizing the Application Footprint 215
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Basic Size Benchmark Configuration Script www.ti.com
D.4 Basic Size Benchmark Configuration Script

The basic size benchmark configuration script puts together all of these concepts to create an application
that is close to the smallest possible size of a SYS/BIOS application.

Note that in a real-world application, you would want to enable at least either Swi or Task handlers so that
your application could use some threads.

This configuration script works on any target.

var Defaults = xdc.useModule('xdc.runtime.Defaults');

var Diags = xdc.useModule('xdc.runtime.Diags');

var Error = xdc.useModule('xdc.runtime.Error');

var Main = xdc.useModule('xdc.runtime.Main');

var SysMin = xdc.useModule('xdc.runtime.SysMin');

var System = xdc.useModule('xdc.runtime.System');

var Text = xdc.useModule('xdc.runtime.Text');

var BIOS = xdc.useModule('ti.sysbios.BIOS');

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

var Task = xdc.useModule('ti.sysbios.knl.Task');

/*

 * Keep module names from being loaded on the target.

 * The module name strings are placed in the .const section. Setting this

 * parameter to false will save space in the .const section. Error and

 * Assert messages will contain an "unknown module" prefix instead

 * of the actual module name.

 */

Defaults.common$.namedModule = false;

/*

 * Minimize exit handler array in System. The System module includes

 * an array of functions that are registered with System_atexit() to be

 * called by System_exit().

 */

System.maxAtexitHandlers = 4;

/*

 * Disable the Error print function.

 * We lose error information when this is disabled since the errors are

 * not printed. Disabling the raiseHook will save some code space if

 * your app is not using System_printf() since the Error_print() function

 * calls System_printf().

 */

Error.raiseHook = null;
216 Minimizing the Application Footprint SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Basic Size Benchmark Configuration Script
/*

 * Keep Error, Assert, and Log strings from being loaded on the target.

 * These strings are placed in the .const section.

 * Setting this parameter to false will save space in the .const section.

 * Error, Assert and Log message will print raw ids and args instead of

 * a formatted message.

 */

Text.isLoaded = false;

/*

 * Disable the output of characters by SysMin when the program exits.

 * SysMin writes characters to a circular buffer.

 * This buffer can be viewed using the SysMin Output view in ROV.

 */

SysMin.flushAtExit = false;

/* Circular buffer size for System_printf() */

SysMin.bufSize = 128;

System.SupportProxy = SysMin;

/*

 * The BIOS module will create the default heap for the system if this

 * value is non-zero.

 */

BIOS.heapSize = 0;

/*

 * Tune the stack sizes.

 */

Program.stack = 1024; /* System stack size (used by ISRs and Swis) */

Task.defaultStackSize = 1024;

Task.idleTaskStackSize = 1024;
SPRUEX3O—October 2014 Minimizing the Application Footprint 217
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Basic Size Benchmark Configuration Script www.ti.com
/*

 * Build a custom BIOS library. The custom library will be smaller than the

 * "instrumented" (default) and "non-instrumented" libraries.

 *

 * The BIOS.logsEnabled parameter specifies whether the Logging is enabled

 * within BIOS for this custom build. These logs are used by the RTA and

 * UIA analysis tools.

 *

 * The BIOS.assertsEnabled parameter specifies whether BIOS code will

 * include Assert() checks. Setting this parameter to 'false' will generate

 * smaller and faster code, but having asserts enabled is recommended for

 * early development as the Assert() checks will catch lots of programming

 * errors (invalid parameters, etc.)

 */

BIOS.libType = BIOS.LibType_Custom;

BIOS.logsEnabled = false;

BIOS.assertsEnabled = false;

/*

 * Disable runtime ModXyz_create(). This can only be used in static systems

 * where all objects are created in the configuration tool.

 */

BIOS.runtimeCreatesEnabled = false;

/*

 * Disable key features of BIOS. It would be unusual to set all of these

 * to false as this would disable all of the thread types except Hwi.

 */

BIOS.swiEnabled = false;

BIOS.taskEnabled = false;

BIOS.clockEnabled = false;

/*

 * Do not provide any thread protection for the compiler runtime library.

 */

BIOS.rtsGateType = BIOS.NoLocking;

/*

 * By default, the idle task checks the ISR and system stack to make sure that

 * they have not overflowed. The task scheduler also checks the task stacks to

 * make sure that they have not overflowed. You can eliminate this code by

 * setting the following variables to false.

 */

Hwi.checkStackFlag = false;

Task.checkStackFlag = false;

Task.initStackFlag = false;
218 Minimizing the Application Footprint SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Basic Size Benchmark Configuration Script
/*

 * Set the error and abort functions to simple spin loops.

 */

System.abortFxn = System.abortSpin;

System.exitFxn = System.exitSpin;

Error.policyFxn = Error.policySpin;

/*

 * The Cortex-M exception module uses System_printf() to dump a lot of

 * useful information about the exception. This is very useful while

 * debugging but takes up some code and data space. If you set

 * M3Hwi.excHandler to 'null', the exception module will simply spin

 * in an infinite loop when and exception occurs.

 */

if ((Program.build.target.name == "M3") ||

 (Program.build.target.name == "M4") ||

 (Program.build.target.name == "M4F")) {

 M3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');

 M3Hwi.excHandlerFunc = null;

}

SPRUEX3O—October 2014 Minimizing the Application Footprint 219
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Appendix E

Deprecated Input/Output Modules

This chapter describes modules that can be used to handle input and output data.

E.1 GIO Drivers and TI-RTOS . 221

E.2 Overview of the GIO Model. 221

E.3 Configuring Drivers in the Device Table . 222

E.4 Using GIO APIs . 225

E.5 Using GIO in Various Thread Contexts . 233

E.6 GIO and Synchronization Mechanisms. 235

Topic Page
SPRUEX3O—October 2014 Deprecated Input/Output Modules 220
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com GIO Drivers and TI-RTOS
E.1 GIO Drivers and TI-RTOS

The GIO model was used for DSP-side device drivers. This model is deprecated, but is still provided with
SYS/BIOS for use in legacy applications.

The GIO model is not compatible with TI-RTOS drivers. If you are using TI-RTOS, see the TI-RTOS
Getting Started Guide for your target family and the TI-RTOS User's Guide (SPRUHD4) to learn about
drivers.

E.2 Overview of the GIO Model

This chapter describes how to use the GIO (General Purpose I/O Manager) module (ti.sysbios.io.GIO)
and drivers written to implement the IOM interface for input and output. You use the GIO module to send
data to an output channel or receive data from an input channel.

The GIO driver model is intended for use only by SYS/BIOS applications that do not use TI-RTOS drivers.

The GIO module is an abstraction of device drivers. It allows you to develop applications that do not
directly interact with driver code. This allows the application to be developed in a driver-independent and
platform-independent manner.

The GIO module also allows your application to process one buffer while the driver is working on another
buffer. This improves performance and minimizes the copying of data. The typical use case for the GIO
module is that an application gets a buffer of data from an input channel, processes the data and sends
the data to an output channel.

The following figure shows a typical flow of data for an output channel:

In this use case, the application calls GIO module APIs. Those APIs manage buffers and the driver
abstraction. Internally, the GIO module APIs calls the implementation of the IOM interface for the driver.
As this figure shows, the high-level application does not interact with the drivers directly. Instead, the
application uses the GIO module to interface with the drivers.
SPRUEX3O—October 2014 Deprecated Input/Output Modules 221
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com
http://www.ti.com/lit/pdf/spruhd4

Configuring Drivers in the Device Table www.ti.com
IOM drivers implement the IOM interface in <bios_install_dir>/packages/ti/sysbios/io/IOM.h to
manage a peripheral. Such drivers are provided in some certain other software components (for example,
the PSP and SDK products), or you can write your own. See Appendix F for details about the IOM
interface. IOM drivers are sometimes called "mini-drivers".

The are two types of objects that applications must create in order to use GIO channels and IOM drivers:

• DEV table: The DEV module maintains a table of IOM driver names for use by the GIO module. You
can manage this table statically using the XGCONF configuration tool or at runtime using C APIs.
See Section E.3.

• GIO channels: The GIO module manages GIO objects that correspond to input and output channels.
You can create GIO channels using C APIs, but they cannot be created statically. See Section E.4.2.

The GIO module supports both synchronous (blocking) APIs and asynchronous (non-blocking) APIs:

• Synchronous APIs can yield to other threads while waiting for a buffer to be ready or for the timeout
to occur. GIO calls this model GIO_Model_STANDARD. APIs can only be used in the context of Task
threads, because Hwi and Swi threads cannot use blocking calls. The main GIO APIs used with the
synchronous model are GIO_read and GIO_write. In addition, drivers typically implement
GIO_submit, GIO_flush, GIO_abort, and GIO_control as synchronous APIs.

• Asynchronous APIs cannot yield to other threads. If the buffer is not ready, these functions return
a failure status. GIO calls this model GIO_Model_ISSUERECLAIM. APIs can be used in any thread
context. The main GIO APIs used with the asynchronous model are GIO_issue, GIO_reclaim, and
GIO_prime.

E.3 Configuring Drivers in the Device Table

The DEV module manages a table of IOM drivers. This a table of devices that can be found by name,
allowing GIO channels to be created using the name. To configure the driver table in XGCONF, follow
these steps:

1. Open your application’s *.cfg file with XGCONF.

2. In the Available Products area, select the SYS/BIOS > I/O > DEV module.

3. In the Device Manager -- Module Settings page, check the box to Add DEV to my configuration.
You can change the size of the device table to the maximum number of devices you will create both
statically and dynamically.
222 Deprecated Input/Output Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Configuring Drivers in the Device Table
4. Click the Instance button near the top of the Device Manager page.

5. Click the Add button next to the DEVs list. Type a name for the driver. This is the name that you will
use when creating GIO channels, either with XGCONF or the GIO_create() API.

6. Set the required and additional settings for the selected DEV driver. The information to specify should
be provided in the documentation for the IOM driver you are using. See the CDOC online help for the
DEV module for information about the properties.

7. Create an item for each IOM driver your application will use. You can create multiple GIO channels
for a single driver (if the driver supports it). So, for example, you do not need to specify two separate
drivers if the application will use an IOM driver on two channels.

If you prefer to edit the *.cfg files using the cfg Script tab or a text editor, the following statements create
the "generator" driver in the DEV table as shown in the previous figure:

The runtime APIs for managing the table maintained by the DEV module are:

• DEV_create()

• DEV_delete()

var DEV = xdc.useModule('ti.sysbios.io.DEV');

...

DEV.tableSize = 4;

var dev0Params = new DEV.Params();

dev0Params.instance.name = "generator";

dev0Params.initFxn = "&DGN_init";

dev0Params.deviceParams = "&DGN_DEVPARAMS_GENSINE";

Program.global.generator = DEV.create("/sinewave", "&DGN_FXNS", dev0Params);
SPRUEX3O—October 2014 Deprecated Input/Output Modules 223
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Configuring Drivers in the Device Table www.ti.com
For example, the following C code fragment creates the same "generator" driver in the DEV table at
runtime:

If you use a variable for the name of the driver (instead of a hardcoded string as used in the previous
example), that variable must remain defined with the driver name as long as the DEV instance exists.

The DEV module provides additional APIs for matching a device name to a driver handle and for getting
various information from the DEV table. These APIs are using internally by the GIO module; your
application will probably not need to use them. Details are available in the CDOC online help system.

E.3.1 Configuring the GIO Module

The GIO module manages a set of channel instances. You can create these instances only with C APIs;
they cannot be created statically. However, you do need to enable the GIO module in the configuration
by following these steps:

1. Open your application’s *.cfg file with XGCONF.

2. In the Available Products area, select the SYS/BIOS > I/O > GIO module.

3. In the General Purpose I/O Manager -- Module Settings page, check the box to Add GIO module to
my configuration.

If you prefer to edit *.cfg files using the cfg Script tab or a text editor, the following statement enables the
GIO module:

For the runtime C APIs used to create and delete GIO channels, see Section E.4.2.

#include <ti/sysbios/io/DEV.h>

DEV_Params params;

Error_Block eb;

DEV_Params_init(¶ms);

Error_init(&eb);

DEV_create("/sinewave", &DGN_FXNS, ¶ms, &eb);

var GIO = xdc.useModule('ti.sysbios.io.GIO');
224 Deprecated Input/Output Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Using GIO APIs
E.4 Using GIO APIs

This section describes how to use the GIO module as an abstraction for drivers after you have associated
a driver handle with a driver name as described in the previous section. The ti.sysbios.io.GIO module
provides the following API functions to create and delete devices and channels:

The ti.sysbios.io.GIO module provides the following API functions to control sending data over channels
and to control the behavior of channels:

The Standard model is described in Section E.4.3, and the Issue/Reclaim model is described in Section
E.4.4.

E.4.1 Constraints When Using GIO APIs

• A GIO instance can be used only by a single Task.

• GIO_issue() and GIO_reclaim() can only be called by a single thread (Task or Swi) or in the callback
context.

• GIO_issue(), GIO_reclaim(), GIO_read(), and GIO_write() cannot be called during Module startup.
Some drivers may require that these APIs not be called even from main() if they require hardware
interrupts to enable their peripherals.

API Function Description

GIO_create() Allocate and initialize a GIO_Obj object and open a communication channel.

GIO_delete() Finalize and free a previously-allocated GIO_Obj instance.

GIO_Params_init Initialize a config-params structure with supplied values before creating an instance.

API Function Description
Standard
Model

Issue/Reclaim
Model

GIO_abort() Abort all pending I/O. X X

GIO_control() Send a control command to the driver. X X

GIO_flush() Drain output buffers and discard any pending input. X

GIO_issue() Issue a buffer to the channel. X

GIO_prime() Prime an output channel instance. X

GIO_read() Synchronously read from a GIO instance. X

GIO_reclaim() Reclaim a buffer that was previously issued by calling
issue

X

GIO_submit() Submit an I/O job to the mini-driver. X

GIO_write() Synchronously write to a GIO instance. X
SPRUEX3O—October 2014 Deprecated Input/Output Modules 225
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Using GIO APIs www.ti.com
E.4.2 Creating and Deleting GIO Channels

The GIO module manages GIO instances, which correspond to communication channels. Such channels
are assigned a mode when you create them; they can be input, output, or in/out channels. You also
specify the device driver a channel should use when you create it.

GIO channels can only be created using C APIs. They cannot be created statically with XGCONF.

Several GIO instances can be created to use the same driver instance. If the driver instance supports two
channels, then two GIO instances can be created using the same driver.

The GIO_create() API creates a GIO instance. It has the following parameters:

The GIO_Params structure allows you to specify the following parameters:

The driver name and mode are required parameters for creating a GIO instance. The driver name must
match a string that is present in the driver table. See Section E.3.

The mode must be GIO_INPUT, GIO_OUPUT, or GIO_INOUT. Note that some drivers only support
certain modes. See the documentation for your driver for details.

GIO_Params allow you to set optional parameters.

• The "instance" field allows you to specify a name for the GIO instance. The name will show up in the
ROV debugging tool.

• The "chanParams" is a pointer to driver-specific parameters used to configure the driver. These
parameters are sent to the driver in the driver’s open() call. Typically drivers have default values for
such parameters.

• The "model" field can be set to GIO_Model_STANDARD or GIO_Model_ISSUERECLAIM. The
Standard model is the default and the simplest option to use; it is used with synchronous GIO APIs
that can block while waiting for a buffer, and so can only be called in the context of a Task thread.
The IssueReclaim model must be used with asynchronous GIO APIs that cannot block, but can be
called in the context of Hwi, Swi, and Task threads.

• The "numPackets" field specifies the number of packets that can be used if you are using the
GIO_Model_ISSUERECLAIM asynchronous model. This is 2 by default. If you are using the
GIO_Model_STANDARD model and the GIO_read()/GIO_write() functions, you should set this
parameter to 1 to save the memory used by the extra packet.

GIO_Handle GIO_create(

 String name,

 UInt mode,

 const GIO_Params *params,

 Error_Block *eb)

struct GIO_Params {

 IInstance_Params *instance;

 Ptr chanParams;

 GIO_Model model;

 Int numPackets;

 ISync_Handle sync;

 Uint timeout;

};
226 Deprecated Input/Output Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Using GIO APIs
• The "sync" field selects a synchronization mechanism to use if the GIO_Model_ISSUERECLAIM
model is selected. GIO uses the xdc.runtime.knl.Sync module for synchronization when the GIO
channel waits for the driver. If you pass NULL for this field, Sync uses a Semaphore for
synchronization. Most applications will not need to change this default. See Section E.6 for more on
synchronization mechanisms.

• The "timeout" field specifies how long to wait (in Clock module ticks) for a buffer to be ready when a
blocking call is made. This field is used only with the GIO_Model_STANDARD model. The default is
BIOS_WAIT_FOREVER.

GIO_create() also takes an Error_Block and can fail. GIO_create() returns a GIO_Handle that is passed
to many other GIO APIs to send or receive data.

This example creates two GIO channels that will use the Issue/Reclaim model:

Important: A GIO_Handle cannot be used by more than one Task simultaneously. One Task must
finish a GIO_read() or GIO_write() or GIO_issue()/GIO_reclaim() before another Task
can use the same GIO_Handle. It is safer for only one Task to use each GIO_Handle.

#include <xdc/std.h>

#include <xdc/runtime/Error.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

#include <xdc/cfg/global.h>

#include <ti/sysbios/io/GIO.h>

GIO_Handle handleIn, handleOut;

Error_Block eb;

Error_init(&eb);

/*

 * ======== main ========

 */

Int main(Int argc, Char* argv[])

{

 GIO_Params gioParams;

 /* Create input GIO instance */

 GIO_Params_init(&gioParams);

 gioParams.model = GIO_Model_ISSUERECLAIM;

 handleIn = GIO_create("sampleDriver", GIO_INPUT, &gioParams, &eb);

 /* Create output GIO instance */

 gioParams.timeout = 5000;

 handleOut = GIO_create("sampleDriver", GIO_OUTPUT, &gioParams, &eb);

 BIOS_start();

 return(0);

}

SPRUEX3O—October 2014 Deprecated Input/Output Modules 227
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Using GIO APIs www.ti.com
GIO_delete() deletes a GIO instance and frees all resources allocated during GIO_create(). This frees
up the driver channel in use.

GIO_control() can be called to configure or perform control functionality on the communication channel.
The calling syntax is as follows:

The cmd argument may be one of the command code constants listed in ti/sysbios/io/iom.h. Drivers may
add command codes to provide additional functionality.

The args parameter points to a data structure defined by the device to allow control information to be
passed between the device and the application. In some cases, this argument may point directly to a
buffer holding control data. In other cases, there may be a level of indirection if the mini-driver expects a
data structure to package many components of data required for the control operation. In the simple case
where no data is required, this parameter may just be a predefined command value.

GIO_control() returns IOM_COMPLETED upon success. If an error occurs, the device returns a negative
value. For a list of error values, see ti/sysbios/io/iom.h. The underlying driver IOM function call is typically
a blocking call, so calling GIO_control() can result in blocking.

E.4.3 Using GIO_read() and GIO_write() — The Standard Model

The Standard GIO model is the simplest way to use GIO. It waits for a buffer to be ready and allows other
threads to run while waiting. The Standard model can only be used if you are reading from and writing to
the device in the context of a Task thread. For a more complicated model that uses double-buffering, see
Section E.4.4.

When you are using GIO_Model_STANDARD, your application should call GIO_read() and GIO_write()
from the context of Task threads. GIO_read() is used to get a buffer from an input channel. GIO_write()
is used to write to a buffer for an output channel.

GIO_read() has the following calling syntax:

An application calls GIO_read() to read a specified number of MADUs (minimum addressable data units)
from a GIO channel. The GIO_Handle is a handle returned by GIO_create().

The buf parameter points to a device-defined data structure for passing buffer data between the device
and the application. This structure may be generic across a domain or specific to a single mini-driver. In
some cases, this parameter may point directly to a buffer that holds the read data. In other cases, this
parameter may point to a structure that packages buffer information, size, offset to be read from, and
other device-dependent data. For example, for video capture devices, this structure may contain pointers
to RGB buffers, their sizes, video format, and a host of data required for reading a frame from a video
capture device. Upon a successful read, this argument points to the returned data.

Int GIO_control(

 GIO_Handle handle,

 UInt cmd,

 Ptr args);

Int GIO_read(

 GIO_Handle handle,

 Ptr buf,

 SizeT *pSize);
228 Deprecated Input/Output Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Using GIO APIs
The pSize parameter points to the size of the buffer or data structure pointed to by the buf parameter.
When GIO_read() returns, this parameter points to the number of MADUs actually read from the device.
This parameter is relevant only if the buf parameter points to a raw data buffer. In cases where it points
to a device-defined structure, it is redundant—the size of the structure is known to the mini-driver and the
application.

GIO_read() returns IOM_COMPLETED upon successfully reading the requested number of MADUs from
the device. If an error occurs, the device returns a negative value. For a list of error values, see
ti/sysbios/io/iom.h.

GIO_read() blocks until the buffer is filled or the timeout period specified when this GIO instance was
created occurs.

A call to GIO_read() results in a call to the mdSubmit function of the associated mini-driver. The
IOM_READ command is passed to the mdSubmit function. The mdSubmit call is typically a blocking call,
so calling GIO_read() can result in the thread blocking.

GIO_write() has the following parameters:

An application calls GIO_write() to write a specified number of MADUs (minimum addressable data units)
to the GIO channel.

The handle, buf, and pSize parameters are the same as those passed to GIO_read(). When you call
GIO_write(), the buf parameter should already contain the data to be written to the device. When
GIO_write() returns, the pSize parameter points to the number of MADUs written to the device.

GIO_write() returns IOM_COMPLETED upon successfully writing the requested number of MADUs to
the device. If an error occurs, the device returns a negative value. For a list of error values, see
ti/sysbios/io/iom.h.

GIO_write() blocks until the buffer can be written to the device or the timeout period specified when this
GIO instance was created occurs.

A call to GIO_write() results in a call to the mdSubmit function of the associated mini-driver. The
IOM_WRITE command is passed to the mdSubmit function. The mdSubmit call is typically a blocking
call, so calling GIO_write() can result in the thread blocking.

GIO_submit() is called internally by GIO_read() and GIO_write(). Typically, your application will not call
it directly. The only reason to call it directly is if your application needs to call the mdSubmit function of
the associated driver in some specialized way.

Int GIO_write(

 GIO_Handle handle,

 Ptr buf,

 SizeT *pSize);
SPRUEX3O—October 2014 Deprecated Input/Output Modules 229
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Using GIO APIs www.ti.com
E.4.4 Using GIO_issue(), GIO_reclaim(), and GIO_prime() — The Issue/Reclaim Model

GIO has another model for using channels called GIO_Model_ISSUERECLAIM. This model uses
asynchronous API calls, which cannot yield to other threads. If the buffer is not ready, the functions return
a failure status. These APIs can be used in any thread context. The main GIO APIs used with the
synchronous model are GIO_issue, GIO_reclaim, and GIO_prime.

• A GIO_issue()/GIO_reclaim() pair on an input channel is similar to a call to GIO_read().

• A GIO_issue()/GIO_reclaim() pair on an output channel is similar to a call to GIO_write().

GIO_issue() sends a buffer to a channel. Full buffers are sent to output channels, and empty buffers are
sent to input channels. No buffer is returned during the call to GIO_issue(), and the application no longer
owns the buffer. GIO_issue() returns control to the thread from which it was called without blocking. The
buffer has been given to the driver for processing.

Later, when the application is ready to get the buffer back, it calls GIO_reclaim(). By default, this call to
GIO_reclaim() blocks if the driver has not completed processing the I/O packet. If you want GIO_reclaim()
to be non-blocking, you can specify that it should use a different Sync implementation when you create
the GIO channel. In normal operation each GIO_issue() call is followed by a GIO_reclaim() call.

The GIO_issue/GIO_reclaim model provides flexibility by allowing your application to control the number
of outstanding buffers at runtime. Your application can send multiple buffers to a channel without blocking
by using GIO_issue(). This allows the application to choose how deep to buffer a device.

The GIO_issue/GIO_reclaim APIs guarantee that the client's buffers are returned in the order in which
they were issued. This allows a client to use memory for streaming. For example, if a SYS/BIOS Task
receives a large buffer, that Task can pass the buffer to the channel in small pieces simply by advancing
a pointer through the larger buffer and calling GIO_issue() for each piece. The pieces of the buffer are
guaranteed to come back in the same order they were sent. In this case, the number of buffer pieces to
be passed should be less than or equal to the numPackets parameter you set when creating the channel.

Short bursts of multiple GIO_issue() calls can be made without an intervening GIO_reclaim() call followed
by short bursts of GIO_reclaim() calls. However, over the life of the channel GIO_issue() and
GIO_reclaim() must be called the same number of times. The number of GIO_issue() calls can exceed
the number of GIO_reclaim() calls by the value specified by the gioParams.numPackets parameter when
creating the channel (2 by default).

GIO_issue() has the following calling syntax:

The GIO_Handle is a handle returned by GIO_create() and the buf argument is a pointer to a buffer to
issue to the channel.

The size argument is a direction dependent logical size value. For an output channel, use the size
argument to specify the number of MADUs (minimum addressable data units) of data the buffer contains.
For an input channel, the size argument indicates the number of MADUs being requested. In either case,
this logical size value must be less than or equal to the physical size of the buffer.

Int GIO_issue(

 GIO_Handle handle,

 Ptr buf,

 SizeT size,

 UArg arg);
230 Deprecated Input/Output Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Using GIO APIs
The arg argument is not interpreted by GIO, but can be used to pass associated information along with
the buffer to the driver. All compliant device drivers preserve the value of arg and maintain its association
with the data it was issued with. For example, arg could be used to send a timestamp to an output device,
indicating exactly when the data is to be rendered. The driver treats the arg as a read-only field, and the
arg is returned by GIO_reclaim().

If GIO_issue() returns a failure value, the channel was not able to accept the buffer being issued or there
was a error from the underlying driver. Note that the error could be driver-specific. If GIO_issue() fails
because of an underlying driver problem, your application should call GIO_abort() before attempting to
perform more I/O through the channel.

GIO_reclaim() requests a buffer back from a channel. The buffers are returned in the same order that
they were issued. GIO_reclaim() has the following calling syntax:

For output channels, GIO_reclaim() returns a processed buffer, and the size is zero. For input channels,
GIO_reclaim() returns a full buffer, and the size is the number of MADUs of data in the buffer.

As with GIO_issue(), the GIO_reclaim() API does not modify the contents of the pArg argument.

GIO_reclaim() calls Sync_wait() with the timeout you specified when you created the GIO channel.
Sync_wait() used the Sync implementation you specified when you created the GIO channel. If this is a
blocking Sync implementation, then GIO_reclaim() can block. If you are calling this API from a Swi thread,
you should use a non-blocking Sync. See Section E.6 for more about Sync implementations.

If GIO_reclaim() returns a failure status (!= IOM_COMPLETED), no buffer was returned. Therefore, if
GIO_reclaim() fails, your application should not attempt to de-reference pBuf, since it is not guaranteed
to contain a valid buffer pointer.

If you attempt to call GIO_reclaim() without having a previous unmatched call to GIO_issue(), the
GIO_reclaim() call will either block forever or fail. The error is not detected at run-time.

GIO_prime() sends a buffer to an output channel to prime it at startup. It has the following calling syntax:

This API is useful, for example, if an application uses double-buffering and you want to issue a buffer an
output channel, but the driver cannot handle dummy buffers. GIO_prime() makes a buffer available for
GIO_reclaim() without actually sending the buffer to the driver.

This API is non-blocking, and can be called from any thread context.

If GIO_prime() returns a failure status (!= IOM_COMPLETED), the GIO channel was not able to accept
the buffer being issued due to the un-availability of GIO packets.

See the CDOC online reference described in Section 1.6.1 for more about these APIs.

Int GIO_reclaim(

 GIO_Handle handle,

 Ptr *pBuf,

 SizeT *pSize,

 UArg *pArg);

Int GIO_prime(

 GIO_Handle handle,

 Ptr buf,

 SizeT size,

 UArg arg);
SPRUEX3O—October 2014 Deprecated Input/Output Modules 231
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Using GIO APIs www.ti.com
E.4.5 GIO_abort() and Error Handling

Your application can delete all pending buffers being sent to a channel by calling GIO_abort(). If the error
is less serious, you may instead call GIO_flush() to finish all pending output requests but discard any
pending input requests. One of these actions may need to be done in response to the following situations:

• The application has decided to cancel current I/O and work on something else.

• A GIO API returned an error.

GIO_abort() cancels all input and output from the device. When this call is made, all pending calls are
completed with a status of GIO_ABORTED. An application can use this call to return the device to its
initial state. Usually this is done in response to an unrecoverable error at the device level.

GIO_abort() returns IOM_COMPLETED after successfully aborting all input and output requests. If an
error occurs, the device returns a negative value. The list of error values are defined in the
ti/sysbios/io/iom.h file. The underlying call sent to the driver is typically implemented as a blocking call,
so calling GIO_abort() can result in the thread blocking.

If you are using the ISSUERECLAIM model, the underlying device connected to the channel is idled as
a result of calling GIO_abort(), and all buffers are made ready for GIO_reclaim(). The application needs
to call GIO_reclaim() to get back the buffers. However the client will not block when calling GIO_reclaim()
after GIO_abort().

GIO_abort() has the following calling syntax:

GIO_flush() discards all buffers pending for input channels and completes any pending requests to
output channels. All pending input calls are completed with a status of IOM_FLUSHED, and all output
calls are completed routinely.

This call returns IOM_COMPLETED upon successfully flushing all input and output. If an error occurs,
the device returns a negative value. For a list of error values, see ti/sysbios/io/iom.h. The underlying call
sent to the driver is typically implemented as a blocking call, so calling GIO_flush() can result in the thread
blocking.

GIO_flush() has the following calling syntax:

Int GIO_abort(

 GIO_Handle handle

);

Int GIO_flush(

 GIO_Handle handle

);
232 Deprecated Input/Output Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Using GIO in Various Thread Contexts
E.5 Using GIO in Various Thread Contexts

The GIO module can be used in a number of different thread context and with various synchronization
mechanisms. The following subsections discuss special cases.

E.5.1 Using GIO with Tasks

GIO_read and GIO_write can be used only with Task threads. In addition, GIO_issue() and GIO_reclaim()
can be used with either Task or Swi threads. By default GIO uses SyncSem for synchronization.

E.5.1.1 Using a Semaphore Instance Created by the Application with a GIO Instance

There may be cases where you do not want GIO to create a Semaphore for synchronization, and instead
wants to supply your own Semaphore to GIO. The following code snippet shows how to do this.

#include <ti/sysbios/syncs/SyncSem.h>

#include <ti/sysbios/knl/Semaphore.h>

#include <ti/sysbios/io/GIO.h>

/*

* ======== main ========

*/

Int main(Int argc, Char* argv[])

{

 GIO_Params gioParams;

 SyncSem_Params syncParams;

 SyncSem_Handle syncSem;

 /* Create input channel */

 SyncSem_Params_init(&syncParams);

 syncParams.sem = Semaphore_create(0, NULL, NULL);

 syncSem = SyncSem_create(&syncParams, NULL);

 GIO_Params_init(&gioParams);

 gioParams.chanParams = (UArg)&genParamsIn;

 gioParams.sync = SyncSem_Handle_upCast(syncSem);

 handleIn = GIO_create("/genDevice", GIO_INPUT, &gioParams, &eb);

}

SPRUEX3O—October 2014 Deprecated Input/Output Modules 233
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Using GIO in Various Thread Contexts www.ti.com
E.5.2 Using GIO with Swis

GIO_issue() and GIO_reclaim() can also be used with Swi threads. The client first creates a GIO
Instance. The application has to populate the "sync" field in the GIO_Params struct. This sync field needs
to be assigned to a SyncSwi instance.

The application needs to follow these steps to get a SyncSwi_Handle.

1. Create a Swi instance.

2. Populate the "swi" field of a SyncSwi_Params struct with the Swi_Handle received in the previous
step.

3. Create a SyncSwi instance using the SyncSwi_Params struct.

4. Populate the "sync" field in GIO_Params struct with the SyncSwi_Handle received from the previous
step.

The GIO module calls ISync_signal() in the callback path when I/O completes. This results in a
Swi_post(). The swi runs and calls GIO_reclaim() to get back the processed buffer.

SyncSwi_wait() does nothing and returns FALSE for timeout.

E.5.3 Using GIO with Events

There are cases where a Task needs to wait on multiple events. For example, a Task may need to wait
for a buffer from an input channel or a message from the host. In such cases, the Task should use the
Event_pend() API to "wait on multiple" items. See Section 4.2 for more information on Events.

In order to use GIO with the Event module, the GIO instance needs to be created using the following
steps:

1. Create an Event instance.

2. Populate the "event" field of the SyncEvent_Params struct with the Event_Handle received from the
previous step.

3. Create a SyncEvent instance using the SyncEvent_Params struct.

4. Populate the "sync" field in the GIO_Params struct with the SyncEvent_Handle received from the
previous step.

For the example later in this section, the application first primes the channel by calling GIO_issue(). When
the worker task runs, it calls Event_pend() and BLOCKS waiting for I/O completion.

When I/O is complete, the GIO module calls ISync_signal(), which results in an Event_post() call. The
Task wakes up, checks which event happened, and calls GIO_reclaim() to get the processed buffer.
234 Deprecated Input/Output Modules SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com GIO and Synchronization Mechanisms
E.6 GIO and Synchronization Mechanisms

The xdc.runtime.knl.ISync module specifies the interface for two functions that are used internally by a
GIO channel instance: ISync_signal() and ISync_wait(). Various implementations of these interfaces
handle synchronization of GIO in different ways. SYS/BIOS contains several implementations of the
ISync interface:

• SyncSem (the default) is based on Semaphores and is BLOCKING. This module is found in
ti.sysbios.syncs.

• SyncSwi is based on Swis and is NON-BLOCKING. This module is found in ti.sysbios.syncs.

• SyncEvent is based on Events and is NON-BLOCKING. This module is found in ti.sysbios.syncs.

• SyncGeneric can be used with any two functions that provide the ISync_signal() and ISync_wait()
functionality. This module is found in XDCtools in xdc.runtime.knl.

• SyncNull performs no synchronization. This module is found in XDCtools in xdc.runtime.knl.

Instead of tying itself to a particular module for synchronization, the GIO module allows you to pick an
ISync implementation module. You can select an ISync implementation for all GIO instances using the
module-level configuration parameter "GIO_SyncProxy". You can select an ISync implementation for a
specific GIO channel instance using the instance-level configuration parameter "sync" (see Section
E.4.2).

By default GIO_SyncProxy is bound to SyncSem by the BIOS module. If you pass NULL for the "sync"
parameter to GIO_create(), the GIO module creates a SyncSem instance for the GIO instance. This
translates to a Semaphore instance for this GIO instance.

The GIO module calls ISync_signal() in the callback path when I/O completes. It calls ISync_wait() from
GIO_reclaim() when I/O has not been completed.

E.6.1 Using GIO with Generic Callbacks

It is possible for the application to provide two functions equivalent to ISync_signal() and ISync_wait()
using the xdc.runtime.knl.SyncGeneric module.

One use case for this is when the application will use GIO with a simple callback. The application then
provides its callback function as the signal function to SyncGeneric_create(). The GIO module then
invokes the application callback when I/O completes. The application can reclaim the buffer within the
callback function.
SPRUEX3O—October 2014 Deprecated Input/Output Modules 235
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Appendix F
SPRUEX3O—October 2014

IOM Interface

This appendix provides reference details for the IOM (I/O Mini-driver) interface.

F.1 Mini-Driver Interface Overview. 237

mdBindDev . 240

mdControlChan . 241

mdCreateChan. 242

mdDeleteChan . 243

mdSubmitChan . 244

mdUnBindDev . 245

Topic Page
SPRUEX3O—October 2014 IOM Interface 236
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com Mini-Driver Interface Overview
F.1 Mini-Driver Interface Overview

The mini-driver interface specifies how to implement a mini-driver.

Functions

A mini-driver should implement the following functions:

• mdBindDev. Bind device to mini-driver.

• mdControlChan. Perform channel control command.

• mdCreateChan. Create a device channel.

• mdDeleteChan. Delete a channel.

• mdSubmitChan. Submit a packet to a channel for processing.

• mdUnBindDev. Unbind device from mini-driver.

Description

A mini-driver contains the device-specific portions of the driver. Once you create the specified functions
for your mini-driver, application integrators can easily use your mini-driver through GIO channels.

The sections that follow describe how to implement the mini-driver functions in detail. Once implemented,
these functions should be referenced in an interface table of type IOM_Fxns, which applications will
reference to integrate the mini-driver. For example:

Note: Any mini-driver functions you choose not to implement should either plug the mini-
driver function table with IOM_xxxNOTIMPL, where xxx corresponds to the function
name. Alternately, you may implement a function that returns a status of
IOM_ENOTIMPL.

IOM_Fxns UART_FXNS = {

 mdBindDev,

 IOM_UNBINDDEVNOTIMPL,

 mdControlChan,

 mdCreateChan,

 mdDeleteChan,

 mdSubmitChan

};
SPRUEX3O—October 2014 IOM Interface 237
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Mini-Driver Interface Overview www.ti.com
Constants, Types, and Structures

The following code can be found in <bios_install_dir>/packages/ti/sysbios/io/IOM.h.

/* Modes for mdCreateChan */

#define IOM_INPUT 0x0001

#define IOM_OUTPUT 0x0002

#define IOM_INOUT (IOM_INPUT | IOM_OUTPUT)

/* IOM Status Codes */

#define IOM_COMPLETED 0 /* I/O successful */

#define IOM_PENDING 1 /* I/O queued and pending */

#define IOM_FLUSHED 2 /* I/O request flushed */

#define IOM_ABORTED 3 /* I/O aborted */

/* IOM Error Codes */

#define IOM_EBADIO -1 /* generic failure */

#define IOM_ETIMEOUT -2 /* timeout occurred */

#define IOM_ENOPACKETS -3 /* no packets available */

#define IOM_EFREE -4 /* unable to free resources */

#define IOM_EALLOC -5 /* unable to alloc resource */

#define IOM_EABORT -6 /* I/O aborted uncompleted*/

#define IOM_EBADMODE -7 /* illegal device mode */

#define IOM_EOF -8 /* end-of-file encountered */

#define IOM_ENOTIMPL -9 /* operation not supported */

#define IOM_EBADARGS -10 /* illegal arguments used */

#define IOM_ETIMEOUTUNREC -11 /* unrecoverable timeout */

#define IOM_EINUSE -12 /* device already in use */

/* Command codes for IOM_Packet */

#define IOM_READ 0

#define IOM_WRITE 1

#define IOM_ABORT 2

#define IOM_FLUSH 3

#define IOM_USER 128 /* 0-127 reserved for system */

/* Command codes for GIO_control and mdControlChan */

#define IOM_CHAN_RESET 0 /* reset channel only */

#define IOM_CHAN_TIMEDOUT 1 /* channel timeout occurred */

#define IOM_DEVICE_RESET 2 /* reset entire device */

typedef struct IOM_Fxns

{

 IOM_TmdBindDev mdBindDev;

 IOM_TmdUnBindDev mdUnBindDev;

 IOM_TmdControlChan mdControlChan;

 IOM_TmdCreateChan mdCreateChan;

 IOM_TmdDeleteChan mdDeleteChan;

 IOM_TmdSubmitChan mdSubmitChan;

} IOM_Fxns;
238 IOM Interface SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com Mini-Driver Interface Overview
#define IOM_BINDDEVNOTIMPL (IOM_TmdBindDev)IOM_mdNotImpl

#define IOM_UNBINDDEVNOTIMPL (IOM_TmdUnBindDev)IOM_mdNotImpl

#define IOM_CONTROLCHANNOTIMPL (IOM_TmdControlChan)IOM_mdNotImpl

#define IOM_CREATECHANNOTIMPL (IOM_TmdCreateChan)IOM_mdNotImpl

#define IOM_DELETECHANNOTIMPL (IOM_TmdDeleteChan)IOM_mdNotImpl

#define IOM_SUBMITCHANNOTIMPL (IOM_TmdSubmitChan)IOM_mdNotImpl

typedef struct IOM_Packet { /* frame object */

 Queue_Elem link; /* queue link */

 Ptr addr; /* buffer address */

 SizeT size; /* buffer size */

 UArg arg; /* user argument */

 UInt cmd; /* mini-driver command */

 Int status; /* status of command */

 UArg misc; /* reserved for driver */

} IOM_Packet;

/* Mini-driver's callback function. */

Void (*IOM_TiomCallback)(Ptr arg, IOM_Packet *packet);
SPRUEX3O—October 2014 IOM Interface 239
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

mdBindDev www.ti.com
C Interface

Syntax
status = mdBindDev(*devp, devid, devParams);

Parameters
Ptr *devp; /* address for global device data pointer */
Int devid; /* device id */
Ptr devParams; /* pointer to config parameters */

Return Value
Int status; /* success or failure code */

Description
The mdBindDev function is called by SYS/BIOS during device initialization. It is called once per
configured device and is called after the mini-driver’s initialization function.

This function is typically used to specify device-specific global data, such as interrupts IDs and global
data structures (for ROM-ability). Additional system resources may be allocated by the mini-driver at
runtime.

The devp parameter provides the address where the function should place the global device data pointer.

The devid parameter is used to identify specific devices for systems that have more than one device of
a specific type. For example, several McBSP mini-drivers use the devid parameter to specify which
McBSP port to allocate and configure.

The devParams parameter is a pointer to the configuration parameters to be used to configure the device.

This function should return IOM_COMPLETED if it is successful. If a failure occurs, it should return one
of the a negative error codes listed in Section F.1, Mini-Driver Interface Overview. If this function returns
a failure code, the SYS/BIOS initialization fails with a call to System_abort().

mdBindDev Bind device to mini-driver
240 IOM Interface SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com mdControlChan
C Interface

Syntax
status = mdControlChan (chanp, cmd, arg);

Parameters
Ptr chanp; /* channel handle */
UInt cmd; /* control functionality to perform */
Ptr arg; /* optional device-defined data structure */

Return Value
Int status; /* success or failure code */

Description
A class driver calls this function to cause the mini-driver to perform some type of control functionality. For
example, it may cause the mini-driver to reset the device or get the device status. Calling GIO_control
results in execution of the appropriate mini-driver’s mdControlChan function.

The chanp parameter provides a channel handle to identify the device instance.

The cmd parameter indicates which control functionality should be carried out.

The arg parameter is an optional device-defined data structure used to pass control information between
the device and the application

If successful, this function should return IOM_COMPLETED. If the cmd value provided is unsupported,
this function should return a status of IOM_ENOTIMPL.

mdControlChan Perform channel control command

/* Command codes for GIO_control and mdControlChan */

#define IOM_CHAN_RESET 0 /* reset channel only */

#define IOM_CHAN_TIMEDOUT 1 /* channel timeout occurred */

#define IOM_DEVICE_RESET 2 /* reset entire device */
SPRUEX3O—October 2014 IOM Interface 241
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

mdCreateChan www.ti.com
C Interface

Syntax
status = mdCreateChan (*chanp, devp, name, mode, chanParams, cbFxn, cbArg);

Parameters
Ptr *chanp; /* channel handle */
Ptr devp; /* device global data structure */
String name /* name of device instance */
Int mode /* input or output mode */
Ptr chanParams /*pointer to channel parameters */
IOM_TiomCallback cbFxn /* pointer to callback function */
Ptr cbArg /* callback function argument */

Return Value
Int status; /* success or failure code */

Description
A class driver calls this function to create a channel instance. Calling GIO_create results in execution of
the appropriate mini-driver’s mdCreateChan function.

The chanp parameter provides an address at which this function should place a channel handle to
identify the device instance. The channel handle is a pointer to a device-specific data structure. See
“mdBindDev” on page 240 for an example.

The devp parameter is a pointer to the device’s global data structure. This is the value returned by the
mini-driver’s mdBindDev call.

The name parameter is the name of the device instance. This is the remainder of the device name after
getting a complete match from the SYS/BIOS device driver table. For example, this might contain channel
parameters.

The mode parameter specifies whether the device is being opened in input mode, output mode, or both.
The mode may be IOM_INPUT, IOM_OUTPUT, or IOM_INOUT. If your driver does not support one or
more modes, this function should return IOM_EBADMODE for unsupported modes.

The chanParams parameter is used to pass device- or domain-specific arguments to the mini-driver.

The cbFxn parameter is a function pointer that points to the callback function to be called by the mini-
driver when it has completed a request.

The cbArg parameter is an argument to be passed back by the mini-driver when it invokes the callback
function.

Typically, the mdCreateChan function places the callback function and its argument in the device-specific
data structure. For example:

If successful, this function should return IOM_COMPLETED. If unsuccessful, this function should return
one of the a negative error codes listed in Section F.1, Mini-Driver Interface Overview.

mdCreateChan Create a device channel

chan->cbFxn = cbFxn;

chan->cbArg = cbArg;
242 IOM Interface SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com mdDeleteChan
C Interface

Syntax
status = mdDeleteChan (chanp)

Parameters
Ptr chanp; /* channel handle */

Return Value
Int status; /* success or failure code */

Description
A class driver calls this function to delete the specified channel instance. Calling GIO_delete results in
execution of the appropriate mini-driver’s mdDeleteChan function.

The chanp parameter provides a channel handle to identify the device instance. The channel handle is
a pointer to a device-specific data structure. See the mdBindDev topic for an example.

If successful, this function should return IOM_COMPLETED. If unsuccessful, this function should return
one of the a negative error codes listed in Section F.1, Mini-Driver Interface Overview.

mdDeleteChan Delete a channel
SPRUEX3O—October 2014 IOM Interface 243
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

mdSubmitChan www.ti.com
C Interface

Syntax
status = mdSubmitChan (chanp, *packet);

Parameters
Ptr chanp; /* channel handle */
IOM_Packet *packet; /* pointer to IOM_Packet */

Return Value
Int status; /* success or failure code */

Description
A class driver calls this function to cause the mini-driver to process the IOM_Packet. Calls to GIO_submit,
GIO_read, GIO_write, GIO_abort, and GIO_flush result in execution of the appropriate mini-driver’s
mdSubmitChan function.

Note: The mini-driver function mdSubmitChan must be written to be reentrant to allow it to be
called from multiple thread contexts.

The chanp parameter provides a channel handle to identify the device instance. The channel handle is
a pointer to a device-specific data structure. See the mdBindDev topic for an example.

The packet parameter points to a structure of type IOM_Packet. This structure is defined as follows:

The value for the cmd code may be one of the following:

Additional cmd codes may be added for domain-specific commands. Such codes should be constants
with values greater than 127. See the iom.h file for these cmd codes.

If the cmd code is IOM_READ or IOM_WRITE, this function should queue the packet on the pending list.
If the cmd code is IOM_ABORT, this function should abort both read and write packets. If the cmd code
is IOM_FLUSH, this function should complete queued writes, but abort queued reads.

If this function successfully completes a read or write IOM_Packet request, it should return
IOM_COMPLETED. If this function queues up a read or write request, it should return IOM_PENDING.
If this function successfully aborts or flushes a packet, it should return IOM_COMPLETED. If
unsuccessful, this function should return one of the a negative error codes listed in Section F.1.

mdSubmitChan Submit a packet to a channel for processing

typedef struct IOM_Packet { /* frame object */

 Queue_Elem link; /* queue link */

 Ptr addr; /* buffer address */

 SizeT size; /* buffer size */

 UArg arg; /* user argument */

 UInt cmd; /* mini-driver command */

 Int status; /* status of command */

 UArg misc; /* reserved for driver */

} IOM_Packet;

#define IOM_READ 0

#define IOM_WRITE 1

#define IOM_ABORT 2

#define IOM_FLUSH 3
244 IOM Interface SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com mdUnBindDev
C Interface

Syntax
status = mdUnBindDev(devp);

Parameters
Ptr devp; /* global device data pointer */

Return Value
Int status; /* success or failure code */

Description
This function should free resources allocated by the mdBindDev function.

Currently, this function is not called as a result of any GIO functions. It may be used in the future to
support dynamic device driver loading and unloading.

The devp parameter is a pointer to the device’s global data structure. This is the value returned by the
mini-driver’s mdBindDev call.

If successful, this function should return IOM_COMPLETED. If unsuccessful, this function should return
a negative error code.

mdUnBindDev Unbind device from mini-driver
SPRUEX3O—October 2014 IOM Interface 245
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Appendix G
SPRUEX3O—October 2014

Revision History

Table G–1 lists significant changes made between SPRUEX3N and SPRUEX3O.

Table G–2 lists significant changes made between SPRUEX3M and SPRUEX3N.

Table G–1. SPRUEX3O Revision History

Chapter Location Additions/Modifications/Deletions

Preface This document applies to SYS/BIOS software version 6.41.

Configuration Section 2.4.5 Pre-built libraries are no longer included with SYS/BIOS. Instead, the various
BIOS.libType options determine how the libraries will be built.

Threading Section 3.1 Added more detail to the startup sequence steps.

Synchronization Section 4.4 Corrected and explained names of mailbox events and event IDs.

Synchronization Section 4.5 Corrected references to the Queue module to refer to the ti.sysbios.knl package,
not the ti.sysbios.misc package.

Timing Section 5.4 Added Seconds module. This is a new module.

Timing Section 5.5 Added more information about Timestamp module.

Run-Time
Support

Chapter 6 Added chapter to provide information about support modules. These modules
existed previously, but were described only in XDCtools documents.

Memory Section 7.8 and
Section 7.8.1

Add HeapMin heap implementation. This module existed previously, but was
described only in XDCtools documents.

HAL Section 8.3 Corrected configuration examples to use Timer.ANY, not Timer_ANY.

Rebuilding Appendix A The bios.mak file should refer to the directory that contains the gcc compiler, not
to the compiler executable itself.

I/O Modules Appendix E Moved GIO model driver information to the appendices and identified as
deprecated.

Table G–2. SPRUEX3N Revision History

Chapter Location Additions/Modifications/Deletions

Preface This document applies to SYS/BIOS software version 6.40.

About Section 1.1 SYS/BIOS is not provided as part of the CCS installation. Instead, the easiest
way to get SYS/BIOS is to install TI-RTOS from the CCS App Center.

About Section 1.2 SYS/BIOS is the "TI-RTOS Kernel" component of TI-RTOS.
SPRUEX3O—October 2014 Revision History 246
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com
About Section 1.6.1 The CDOC Reference help for SYS/BIOS is integrated with the CDOC help for TI-
RTOS and other TI-RTOS components in the CCS Help.

Configuration Section 2.1 SYS/BIOS examples are provided in TI Resource Explorer as "Kernel Examples"
in the TI-RTOS example tree and should be imported from there.

Configuration Section 2.3.5 SYS/BIOS modules are integrated into TI-RTOS in the list of Available Products
in XGCONF.

Configuration Section 2.4.3 Made several revisions to instructions for building an application with GCC.

HAL Section 8.3 Corrected the call syntax for a Timer tickFxn.

Instrumentation Section 9.4 Updated information about Tools > RTOS Analyzer and Tools > System
Analyzer menu commands.

Instrumentation Section 9.5.3 Corrected recommendations about choosing a Heap manager.

Minimizing
Footprint

Appendix D Added and updated several sections to the appendix and updated the examples.

Table G–2. SPRUEX3N Revision History

Chapter Location Additions/Modifications/Deletions
SPRUEX3O—October 2014 Revision History 247
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

Index
SPRUEX3O—October 2014

Index
A
abort() function, GIO module 232
alloc() function

Memory module 154
alloc() function, Memory module 156
andn() function, Swi module 68, 69, 71
API Reference help 23
application

configuring 28
debugging 43

application stack size 67
Assert module 181

optimizing 188
asynchronous APIs (non-blocking) 222
atexit() handlers 213
Available Products view 32

B
background thread (see Idle Loop)
Begin hook function

for hardware interrupts 58, 59
for software interrupts 73, 74

binary semaphores 105
BIOS module 131, 153

libType parameter 44, 191
BIOS_exit() function 131
BIOS_getCpuFreq() function 131
BIOS_getThreadType() function 132
BIOS_setCpuFreq() function 131
BIOS_start() function 47, 131
bios.mak file 191
blocked state 53, 82, 83
books (resources) 22
buffer overflows 162
Build Configuration 44
build flow 40
Build-Profile field 44

C
C++ 19
C28x devices 149
Cache interface 177
Cache module 19, 177, 179
Cache_disable() function 177
Cache_enable() function 177
Cache_inv() function 177

Cache_wait() function 177
Cache_wb() function 177
Cache_wbInv() function 177
caches 177

coherency operations for 177
disabling all caches 177
enabling all caches 177
invalidating range of memory 177
size 144, 152
waiting on 177
writing back a range of memory 177
writing back and invalidating a range of memory 177

CCS
build properties 41
building 40
creating a project 25
debugging 43
online help 22, 23
other documentation 22

channels, I/O 224
creating 226

checkStackFlag property 215
Chip Support Library (CSL) 57
cinit() function 47
class constructor 21
class destructor 21
class methods 21
clock application size 206
Clock module 19, 124
Clock_create() function 95, 125, 126
Clock_getTicks() function 95, 125, 126
Clock_setFunc() function 126
Clock_setPeriod() function 126
Clock_setTimeout() function 126
Clock_start() function 126
Clock_stop() function 126
Clock_tick() function 124
Clock_tickReconfig() function 125, 127
Clock_tickStart() function 125, 127
Clock_tickStop() function 125, 127
clocks 49, 124

creating dynamically 125, 126
creating statically 126
disabling 214
speed 143
starting 125
stopping 126
ticks for, manipulating 125, 127
ticks for, tracking 126
when to use 50

code size, reducing 214
SPRUEX3O—October 2014 Index 248
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O

www.ti.com
command line
building applications 41
building SYS/BIOS 191

compiler options 45
configuration namespace 134
Configuration Results view 33
configuration size

basic size benchmark configuration script 216
default 205

configuro tool 40
counting semaphores 105
Create hook function

for hardware interrupts 58, 59
for software interrupts 73, 74
for tasks 85, 86

create() function
Clock module 125
GIO module 226
Hwi module 57
Mailbox module 119
memory policy 153
Semaphore module 105
Swi module 65
Task module 81, 198
Timer module 172

critical regions, protecting (see gates)
custom libType 45
customCCOpts parameter 45
Cygwin shell 41

D
data size, reducing 212
debug build profile 44
debug libType 45
debugging 181
dec() function, Swi module 68, 69, 71
Defaults module 18
delegate modules 178
Delete hook function

for hardware interrupts 59
for software interrupts 73, 74
for tasks 85, 86

delete() function
GIO module 228
Mailbox module 119
memory policy 153
Semaphore module 105
Swi module 73
Task module 81, 199

dequeue() function, Queue module 120
deterministic performance 157
DEV module 222

configuring 222
DEV_create() function 223
DEV_delete() function 223
device drivers 221
device-specific modules 178
Diags module 18, 181

optimizing 187
disable() function

Cache interface 177

Hwi module 53, 167, 196
Swi module 53, 73, 197
Task module 53, 198

disableInterrupt() function, Hwi module 53
dispatcher 170

optimization 188
documents (resources) 22
download 22
drivers 221

table of names 222
DSP/BIOS 5

size benchmark comparisons 204
dynamic configuration 12
dynamic module application sizes 210

E
enable() function

Cache interface 177
Hwi module 57, 167, 196
Swi module 197
Task module 198

End hook function
for hardware interrupts 59
for software interrupts 73, 74

enqueue() function, Queue module 120
enter() function, Gate module 116
error block 183
Error module 18, 136, 181, 183
Error_check() function 136, 184
Error_getData() function 136
Error_getMsg() function 136
Error_init() function 136, 183
Error_print() function 136
Error_raise() function 136
errors

finding in configuration 38
handling 183

Event module 19, 110
used with Mailbox 120

Event_create() function 111, 114
Event_pend() function 110, 115, 120
Event_post() function 110, 115
events 110

associating with mailboxes 120
channels used with 234
creating dynamically 111
creating statically 111
examples of 111
posting 110, 111
posting implicitly 113
waiting on 110, 111

execution states of tasks 82
Task_Mode_BLOCKED 82, 83
Task_Mode_INACTIVE 82
Task_Mode_READY 82, 83
Task_Mode_RUNNING 82, 83
Task_Mode_TERMINATED 82, 83

execution states of threads 51
Exit hook function, for tasks 85, 87
exit() function, Task module 83
eXpress Dsp Components (see XDCtools)
249 Index SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com
external memory 140

F
family-specific modules 178
flush() function, GIO module 232
forum, E2E community 22
fragmentation, memory 157
free() function 156

C++ 19
Memory module 154

function names 20
functions

(see also hook functions)

G
Gate module 18
Gate_enter() function 116
Gate_leave() function 116
GateHwi module 117
GateHwi_create() function 116
GateMutex module 117
GateMutexPri module 117, 118
gates 116

preemption-based implementations of 116
priority inheritance with 118
priority inversion, resolving 118
semaphore-based implementations of 117

GateSwi module 117
GateTask module 117
GCC (GNU Compiler Collection) 41
get() function, Queue module 122
getFreq() function, Timer module 173
getHookContext() function

Hwi module 56
getHookContext() function, Swi module 74
getNumTimers() function, Timer module 173
getStatus() function, Timer module 173
getTicks() function, Clock module 125
getTrigger() function, Swi module 69
GIO module 221

APIs 225
channels 222
configuring 224
synchronization 235

GIO_abort() function 232
GIO_control() function 228
GIO_create() function 226, 233
GIO_delete() function 228
GIO_flush() function 232
GIO_issue() function 230
GIO_Params structure 226
GIO_prime() function 231
GIO_read() function 228
GIO_reclaim() function 231
GIO_submit() function 229
GIO_write() function 229
global namespace 39
gmake utility 41, 191

H
hal package 178
hardware interrupts 49, 56

application size 210
compared to other types of threads 50
creating 57
disabling 167
enabled at startup 47
enabling 167
hook functions for 58, 60
interrupt dispatcher for 170, 188
priority of 52
registers saved and restored by 170
timing benchmarks for 196
when to use 50

head() function, Queue module 122
Heap implementation

used by Memory module 156
HeapBuf module 19, 156, 158, 188
HeapMem module 19, 156, 157, 188

system heap 153
HeapMin module 157
HeapMultiBuf module 19, 156, 159, 188
heaps 156

default 155
HeapBuf implementation 158
HeapMem implementation 157
HeapMultiBuf implementation 159
implementations of 156
module-specific 155
optimizing 188
system 153

HeapTrack module 156, 162
help system 23
hook context pointer 55
hook functions 51, 55

for hardware interrupts 58, 60
for software interrupts 73
for tasks 85, 87

hook sets 55
Hwi dispatcher 170
Hwi module 19, 56, 58, 179

logging and performance 188
Hwi threads (see hardware interrupts)
Hwi_create() function 57
Hwi_delete() function

hook function 59
Hwi_disable() function 53, 127
Hwi_disableInterrupt() function 53
Hwi_enable() function 57
Hwi_getHookContext() function 56, 59, 62
Hwi_plug() function 57
Hwi_restore() function 127
Hwi_setHookContext() function 59, 61

I
I/O modules 221
ICache interface 177
Idle Loop 49, 98

compared to other types of threads 50
SPRUEX3O—October 2014 Index 250
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com
priority of 52
when to use 50

Idle module 19
manager 98

inactive state 82
inc() function, Swi module 68, 69
insert() function, Queue module 122
instance

adding 33
deleting 33
setting properties 36

instrumentation 181
instrumented libType 44
interrupt keyword 170
Interrupt Latency benchmark 196
INTERRUPT pragma 170
Interrupt Service Routines (ISRs) (see hardware interrupts)
interrupts (see hardware interrupts, software interrupts)
inter-task synchronization (see semaphores)
inv() function, Cache interface 177
IOM module

driver names 222
interface 236

IOM_Fxns structure 237
ISR stack (see system stack)
ISRs (Interrupt Service Routines) (see hardware interrupts)
issue() function, GIO module 230, 233, 234
Issue/Reclaim model 226, 230
ISync module 235

L
leave() function, Gate module 116
libraries, SYS/BIOS 44
libType parameter 44, 191
linker command file

customizing 148
supplemental 147

linking 44
Load module 19, 181

configuration 182
logger 182

Load_calculateLoad() function 183
Load_getCPULoad() function 182
Load_getGlobalHwiLoad() function 182
Load_getGlobalSwiLoad() function 182
Load_getTaskLoad() function 182
Log module 18
logging

disabling 214
implicit, for threads 51
optimizing 187

M
M3 microcontrollers 149
Mailbox module 19, 119
Mailbox_create() function 114, 119
Mailbox_delete() function 119

Mailbox_pend() function 115, 119
Mailbox_post() function 115, 119
mailboxes 119

associating events with 120
creating 119
deleting 119
posting buffers to 120
posting implicitly 113
reading buffers from 120

Main module 18
main() function 47

calling BIOS_start() 47
functions called before 58, 73

make utility 41, 191
malloc heap, reducing size of 212
malloc() function 156

C++ 19
MAR registers 152
MAUs (Minimum Addressable Units) 153
mdBindDev function 240
mdControlChan function 241
mdCreateChan function 242
mdDeleteChan function 243
mdSubmitChan function 244
mdUnBindDev function 245
memory

allocation of (see heaps)
fragmentation 157
leaks, detecting 162
policies for, setting 214
requirements for, minimizing 212

memory application size 209
memory map 140
Memory module 18, 154, 156
Memory_alloc() function 108, 154
Memory_free() function 154
memoryPolicy property 153
microcontrollers 149
Minimum Addressable Units (MAUs) 153
modules

adding to configuration 32
list of 19
named, disabling 213
removing from configuration 34
setting properties 36

MSP430 device 149
multithreading (see threads)
mutex 117
mutual exclusion (see semaphores)

N
name mangling 20
name overloading 20
named modules, disabling 213
naming conventions 20
next() function, Queue module 122
non-instrumented libType 45
non-synchronous APIs (non-blocking) 222
NULL, in place of error block 183
251 Index SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com
O
optimization 187
or() function, Swi module 68, 69, 72
Outline view 33

P
packages

SYS/BIOS list 19
XDCtools 18

pend() function
Event module 110, 111, 120
Mailbox module 120
Semaphore module 105, 201

performance 187
platform

custom 141
Platform field 140
platform wizard 141
plug() function, Hwi module 57
post() function

Event module 110, 111
Mailbox module 120
Semaphore module 106, 200
Swi module 68, 69, 197

posting Swis 65
preemption 53
preemption-based gate implementations 116
prev() function, Queue module 122
prime() function, GIO module 231
printf() function, removing 215
priority inheritance 118
priority inheritance, with gates 118
priority inversion 117, 118
priority inversion problem, with gates 118
priority levels of threads 50
Program module 18, 134
Program.global namespace 39
Program.sectMap array 146
project

building 40
Property view 34
proxy-delegate modules 178
put() function, Queue module 122

Q
Queue module 120
Queue_create() function 101
Queue_dequeue() function 120
Queue_empty() function 121
Queue_enqueue() function 120
Queue_get() function 109
Queue_head() function 122
Queue_insert() function 122
Queue_next() function 100, 122
Queue_prev() function 122
Queue_put() function 101, 108, 122
Queue_remove() function 122
queues 120

atomic operation of 122
FIFO operation on 120
inserting elements in 122
iterating over 122
removing elements from 122

R
read() function, GIO module 228
Ready hook function

for software interrupts 73, 74
for tasks 85, 87

ready state 82, 83
reclaim() function, GIO module 231, 233, 234
Register hook function

for hardware interrupts 58, 59
for software interrupts 73, 74
for tasks 85, 86

release build profile 44
release notes 22
remove() function, Queue module 122
repository 142
Reset module 47, 135
Resource Explorer 25
resources 22
restore() function

Hwi module 167
Swi module 73

ROV tool 151, 185
RTS thread protection, disabling 215
RTSC-pedia wiki 142
running state 82, 83

S
sections

configuration 146
placement 146
segment placement 144

SectionSpec structure 146
sectMap array 146
segments 140

configuration 145
section placement 144

semaphore application size 208, 210
Semaphore module 19, 105
Semaphore_create() function 101, 105, 233
Semaphore_delete() function 105
Semaphore_pend() function 100, 105, 108
Semaphore_post() function 95, 100, 106, 109
semaphore-based gate implementations 117
semaphores 105

binary semaphores 105
configuring type of 105
counting semaphores 105
creating 105
deleting 105
example of 106
posting implicitly 113
signaling 106
timing benchmarks for 200
SPRUEX3O—October 2014 Index 252
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com
waiting on 105
setHookContext() function, Swi module 74
setPeriod() function, Timer module 173
setPri() function, Task module 199
size benchmarks 204

compared to version 5.x 204
default configuration size 205
dynamic module application sizes 210
static module application sizes 206
timing application size 210

software interrupts 49, 65
application size 207
channels used with 234
compared to other types of threads 50
creating dynamically 66
creating statically 65, 66
deleting 73
disabling 214
enabled at startup 47
enabling and disabling 73
hook functions for 73, 75
posting, functions for 65, 68
posting multiple times 68
posting with Swi_andn() function 71
posting with Swi_dec() function 71
posting with Swi_inc() function 69
posting with Swi_or() function 72
preemption of 68, 73
priorities for 52, 66, 67
priority levels, number of 66
timing benchmarks for 197
trigger variable for 68
vs. hardware interrupts 72
when to use 50, 72

speed, clock 143
stacks used by threads 51, 149

optimization 85, 189
tasks 84

standardization 12
start() function

Clock module 125
Timer module 173

Startup module 18, 47, 135
startup sequence for SYS/BIOS 47
stat() function, Task module 85
static configuration 12
static module application sizes 206
statistics, implicit, for threads 51
Stellaris Cortex-M3 microcontrollers 149
stop() function

Clock module 126
Timer module 173

Swi module 19, 65
Swi threads (see software interrupts)
Swi_andn() function 65, 68, 69, 71
Swi_create() function 65

hook function 73
Swi_dec() function 65, 68, 69, 71
Swi_delete() function 73
Swi_disable() function 53, 73
Swi_getHookContext() function 74, 75
Swi_getTrigger() function 69
Swi_inc() function 65, 68, 69, 70

Swi_or() function 65, 68, 72
Swi_post() function 54, 65, 68, 99
Swi_restore() function 73
Swi_setHookContext() function 74, 75
Switch hook function, for tasks 85, 86
Sync module 18
SyncEvent module 235
SyncGeneric module 235
SyncGeneric_create() function 235
synchronization

channels 233
GIO module 235
see also events, semaphores 110

synchronous APIs (blocking) 222
SyncNull module 235
SyncSem module 235
SyncSem_create() function 233
SyncSwi module 235
SYS/BIOS 12

benefits of 12
other documentation 22
packages in 19
relationship to XDCtools 14
startup sequence for 47

SYS/BIOS libraries 44
SysCallback module 134
SysMin module 134
System Analyzer 185
system heap 153
System module 18, 132
System Overview page 29, 34
system stack 53

configuring size 149
reducing size of 212
threads using 51

System_abort() function 79, 133, 183
System_atexit() function 133
System_exit() function 133
System_flush() function 133
System_printf() function 60, 132

T
Target Configuration File 43
Target field 140
target/device-specific timers 175
target-specific modules 178
task application size 207, 210
Task module 19, 80
task stack

configuring size 150
determining size used by 84
overflow checking for 85
threads using 51

task synchronization (see semaphores)
Task_create() function 81, 94
Task_delete() function 81
Task_disable() function 53
Task_exit() function 83, 87
Task_getHookContext() function 86
Task_idle task 83
Task_Mode_BLOCKED state 82, 83
253 Index SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com
Task_Mode_INACTIVE state 82
Task_Mode_READY state 82, 83
Task_Mode_RUNNING state 82, 83
Task_Mode_TERMINATED state 82, 83
Task_setHookContext() function 86
Task_setPri() function 82, 83
Task_stat() function 83, 85
Task_yield() function 83, 90, 95
tasks 49, 80

begun at startup 47
blocked 53, 84
channels used with 233
compared to other types of threads 50
creating dynamically 81
creating statically 81
deleting 81
disabling 214
execution states of 82
hook functions for 85, 87
idle 83
priority level 52, 82
scheduling 82
terminating 83
timing benchmarks for 198
when to use 50
yielding 92

terminated state 82, 83
Text module 18, 137
text strings, not storing on target 213
thread scheduler, disabling 51
threads 48

creating dynamically 51
creating statically 51
execution states of 51
hook functions in 51, 55
implicit logging for 51
implicit statistics for 51
pending, ability to 50
posting mechanism of 51
preemption of 53
priorities of 52
priorities of, changing dynamically 51
priority levels, number of 50
sharing data with 51
stacks used by 51
synchronizing with 51
types of 49
types of, choosing 49
types of, comparing 50
yielding of 50, 53

TI Resource Explorer 25
ti.sysbios.benchmarks package 19
ti.sysbios.family.* packages 19
ti.sysbios.gates package 19
ti.sysbios.hal package 19
ti.sysbios.heaps package 19
ti.sysbios.interfaces package 19
ti.sysbios.io package 19
ti.sysbios.knl package 19
ti.sysbios.utils package 19
tick() function, Clock module 124
tickReconfig() function, Clock module 125

tickSource parameter 124
tickStart() function, Clock module 125
tickStop() function, Clock module 125
Timer module 19, 127, 178
timer peripherals

number of 173
specifying 173
status of 173

Timer_create() function 102
Timer_reconfig() function 184
TimerNull module 178
timers 124, 127

clocks using 124
converting from timer interrupts to real time 173
creating 172, 173, 174
frequency for, setting 174
initialized at startup 47
modifying period for 173
starting 173
stopping 173
target/device-specific 175
when to use 50

time-slice scheduling 92
Timestamp module 18, 128
Timestamp_get32() function 61, 128, 129
timestamps 124, 128
timing application size 210
timing benchmarks 196

hardware interrupt benchmarks 196
Interrupt Latency benchmark 196
semaphore benchmarks 200
software interrupt benchmarks 197
task benchmarks 198

timing services (see clocks; timers; timestamps)
trigger variable for software interrupts 68
trigger variable, software interrupts 68

U
UIA module 185
User Configuration view 33

V
validation of configuration 39

W
wait() function, Cache interface 177
waiting thread 53
wb() function, Cache interface 177
wbInv() function, Cache interface 177
whole_program build profile 44
whole_program_debug build profile 44
wiki, Texas Instruments 22
wrapper function 21
write() function, GIO module 228
SPRUEX3O—October 2014 Index 254
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

www.ti.com
X
xdc.cfg package 18
xdc.runtime package 18
xdc.runtime.knl package 235
xdc.useModule() statement 17, 28
XDCtools

build settings 40
command line 40
other documentation 22
relationship to SYS/BIOS 14

XGCONF 28
opening 29
saving 30
views 31

Y
yield() function, Task module 200
yielding 53, 83
255 Index SPRUEX3O—October 2014
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEX3O
http://www.ti.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and
other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service
per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such
information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty
in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each
component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products
and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services
are used. Information published by TI regarding third-party products or services does not constitute a license to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the
patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related require-
ments concerning its products, and any use of TI components in its applications, notwithstanding any applications-related infor-
mation or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and
implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen
the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its
representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s
goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety
standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of
the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended
for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use
of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for
compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. In any
case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

http://amplifier.ti.com
http://e2e.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http:/power.ti.com
http://microcontroller.ti.com

	SYS/BIOS (TI-RTOS Kernel) v6.41 User's Guide
	Contents
	List of Figures
	List of Tables

	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	About SYS/BIOS
	1.1 What is SYS/BIOS?
	1.2 How are SYS/BIOS and TI-RTOS Related?
	1.3 How are SYS/BIOS and XDCtools Related?
	1.3.1 SYS/BIOS as a Set of Packages
	1.3.2 Configuring SYS/BIOS Using XDCtools
	1.3.3 XDCtools Modules and Runtime APIs

	1.4 SYS/BIOS Packages
	1.5 Using C++ with SYS/BIOS
	1.5.1 Memory Management
	1.5.2 Name Mangling
	1.5.3 Calling Class Methods from the Configuration
	1.5.4 Class Constructors and Destructors

	1.6 For More Information
	1.6.1 Using the API Reference Help System

	SYS/BIOS Configuration and Building
	2.1 Creating a SYS/BIOS Project with the TI Resource Explorer
	2.2 Adding SYS/BIOS Support to an Existing Project
	2.3 Configuring SYS/BIOS Applications
	2.3.1 Opening a Configuration File with XGCONF
	2.3.2 Performing Tasks with XGCONF
	2.3.3 Saving the Configuration
	2.3.4 About the XGCONF views
	2.3.5 Using the Available Products View
	2.3.6 Using the Outline View
	2.3.7 Using the Property View
	2.3.8 Using the Problems View
	2.3.9 Finding and Fixing Errors
	2.3.10 Accessing the Global Namespace

	2.4 Building SYS/BIOS Applications
	2.4.1 Understanding the Build Flow
	2.4.2 Rules for Working with CCS Project Properties
	2.4.3 Building an Application with GCC
	2.4.4 Running and Debugging an Application in CCS
	2.4.5 Compiler and Linker Optimization

	Threading Modules
	3.1 SYS/BIOS Startup Sequence
	3.2 Overview of Threading Modules
	3.2.1 Types of Threads
	3.2.2 Choosing Which Types of Threads to Use
	3.2.3 A Comparison of Thread Characteristics
	3.2.4 Thread Priorities
	3.2.5 Yielding and Preemption
	3.2.6 Hooks

	3.3 Hardware Interrupts
	3.3.1 Creating Hwi Objects
	3.3.2 Hardware Interrupt Nesting and System Stack Size
	3.3.3 Hwi Hooks
	3.3.3.1 Register Function
	3.3.3.2 Create and Delete Functions
	3.3.3.3 Begin and End Functions
	3.3.3.4 Hwi Hooks Example

	3.4 Software Interrupts
	3.4.1 Creating Swi Objects
	3.4.2 Setting Software Interrupt Priorities
	3.4.3 Software Interrupt Priorities and System Stack Size
	3.4.4 Execution of Software Interrupts
	3.4.5 Using a Swi Object’s Trigger Variable
	3.4.6 Benefits and Tradeoffs
	3.4.7 Synchronizing Swi Functions
	3.4.8 Swi Hooks
	3.4.8.1 Register Function
	3.4.8.2 Create and Delete Functions
	3.4.8.3 Ready, Begin and End Functions
	3.4.8.4 Swi Hooks Example

	3.5 Tasks
	3.5.1 Creating Tasks
	3.5.1.1 Creating and Deleting Tasks Dynamically
	3.5.1.2 Creating Tasks Statically

	3.5.2 Task Execution States and Scheduling
	3.5.3 Task Stacks
	3.5.4 Testing for Stack Overflow
	3.5.5 Task Hooks
	3.5.5.1 Register Function
	3.5.5.2 Create and Delete Functions
	3.5.5.3 Switch Function
	3.5.5.4 Ready Function
	3.5.5.5 Exit Function
	3.5.5.6 Task Hooks Example

	3.5.6 Task Yielding for Time-Slice Scheduling

	3.6 The Idle Loop
	3.7 Example Using Hwi, Swi, and Task Threads

	Synchronization Modules
	4.1 Semaphores
	4.1.1 Semaphore Example

	4.2 Event Module
	4.2.1 Implicitly Posted Events

	4.3 Gates
	4.3.1 Preemption-Based Gate Implementations
	4.3.1.1 GateHwi
	4.3.1.2 GateSwi
	4.3.1.3 GateTask

	4.3.2 Semaphore-Based Gate Implementations
	4.3.2.1 GateMutex
	4.3.2.2 GateMutexPri

	4.3.3 Priority Inversion
	4.3.4 Configuring the SYS/BIOS Gate Type

	4.4 Mailboxes
	4.5 Queues
	4.5.1 Basic FIFO Operation of a Queue
	4.5.2 Iterating Over a Queue
	4.5.3 Inserting and Removing Queue Elements
	4.5.4 Atomic Queue Operations

	Timing Services
	5.1 Overview of Timing Services
	5.2 Clock
	5.3 Timer Module
	5.4 Seconds Module
	5.5 Timestamp Module

	Support Modules
	6.1 Modules for Application Support and Management
	6.2 BIOS Module
	6.3 System Module
	6.3.1 SysMin Module
	6.3.2 SysCallback Module

	6.4 Program Module
	6.5 Startup Module
	6.6 Reset Module
	6.7 Error Module
	6.8 Text Module

	Memory
	7.1 Background
	7.2 Memory Map
	7.2.1 Choosing an Available Platform
	7.2.2 Creating a Custom Platform
	7.2.2.1 Getting and Setting the Clock Speed and Default Memory Settings
	7.2.2.2 Determining Cache Sizes for Custom Platforms
	7.2.2.3 Selecting Default Memory Segments for Data, Code and Stack
	7.2.2.4 Setting Custom Base Addresses and Lengths for Segments

	7.3 Placing Sections into Memory Segments
	7.3.1 Configuring Simple Section Placement
	7.3.2 Configuring Section Placement Using a SectionSpec
	7.3.3 Providing a Supplemental Linker Command File
	7.3.4 Default Linker Command File and Customization Options

	7.4 Sections and Memory Mapping for MSP430, Stellaris M3, and C28x
	7.5 Stacks
	7.5.1 System Stack
	7.5.2 Task Stacks
	7.5.3 ROV for System Stacks and Task Stacks

	7.6 Cache Configuration
	7.6.1 Configure Cache Size Registers at Startup
	7.6.2 Configure Parameters to Set MAR Registers
	7.6.3 Cache Runtime APIs

	7.7 Dynamic Memory Allocation
	7.7.1 Memory Policy
	7.7.2 Specifying the Default System Heap
	7.7.3 Using the xdc.runtime.Memory Module
	7.7.4 Specifying a Heap for Module Dynamic Instances
	7.7.5 Using malloc() and free()

	7.8 Heap Implementations
	7.8.1 HeapMin
	7.8.2 HeapMem
	7.8.3 HeapBuf
	7.8.4 HeapMultiBuf
	7.8.5 HeapTrack

	Hardware Abstraction Layer
	8.1 Hardware Abstraction Layer APIs
	8.2 HWI Module
	8.2.1 Associating a C Function with a System Interrupt Source
	8.2.2 Hwi Instance Configuration Parameters
	8.2.3 Creating a Hwi Object Using Non-Default Instance Configuration Parameters
	8.2.4 Enabling and Disabling Interrupts
	8.2.5 A Simple Example Hwi Application
	8.2.6 The Interrupt Dispatcher
	8.2.7 Registers Saved and Restored by the Interrupt Dispatcher
	8.2.8 Additional Target/Device-Specific Hwi Module Functionality

	8.3 Timer Module
	8.3.1 Target/Device-Specific Timer Modules

	8.4 Cache Module
	8.4.1 Cache Interface Functions

	8.5 HAL Package Organization

	Instrumentation
	9.1 Overview of Instrumentation
	9.2 Load Module
	9.2.1 Load Module Configuration
	9.2.2 Obtaining Load Statistics

	9.3 Error Handling
	9.4 Instrumentation Tools in Code Composer Studio
	9.5 Performance Optimization
	9.5.1 Configuring Logging
	9.5.1.1 Diags Settings
	9.5.1.2 Choosing Diagnostics Levels
	9.5.1.3 Choosing Modules to Log

	9.5.2 Configuring Diagnostics
	9.5.3 Choosing a Heap Manager
	9.5.4 Hwi Configuration
	9.5.5 Stack Checking

	Rebuilding SYS/BIOS
	A.1 Overview
	A.2 Prerequisites
	A.3 Building SYS/BIOS Using the bios.mak Makefile
	A.4 Building Your Project Using a Rebuilt SYS/BIOS

	Timing Benchmarks
	B.1 Timing Benchmarks
	B.2 Interrupt Latency
	B.3 Hwi-Hardware Interrupt Benchmarks
	B.4 Swi-Software Interrupt Benchmarks
	B.5 Task Benchmarks
	B.6 Semaphore Benchmarks

	Size Benchmarks
	C.1 Overview
	C.2 Comparison to DSP/BIOS 5
	C.3 Default Configuration Sizes
	C.4 Static Module Application Sizes
	C.4.1 Hwi Application
	C.4.2 Clock Application
	C.4.3 Clock Object Application
	C.4.4 Swi Application
	C.4.5 Swi Object Application
	C.4.6 Task Application
	C.4.7 Task Object Application
	C.4.8 Semaphore Application
	C.4.9 Semaphore Object Application
	C.4.10 Memory Application

	C.5 Dynamic Module Application Sizes
	C.5.1 Dynamic Task Application
	C.5.2 Dynamic Semaphore Application

	C.6 Timing Application Size

	Minimizing the Application Footprint
	D.1 Overview
	D.2 Reducing Data Size
	D.2.1 Removing the malloc Heap
	D.2.2 Reducing the Size of Stacks
	D.2.3 Setting the Default Task Stack Size
	D.2.4 Disabling Named Modules
	D.2.5 Leaving Text Strings Off the Target
	D.2.6 Reduce the Number of atexit Handlers

	D.3 Reducing Code Size
	D.3.1 Use the Custom Build SYS/BIOS Libraries
	D.3.2 Disabling Logging
	D.3.3 Setting Memory Policies
	D.3.4 Disabling Core Features
	D.3.5 Eliminating printf()
	D.3.6 Disabling RTS Thread Protection
	D.3.7 Disable Task Stack Overrun Checking
	D.3.8 Cortex-M3/M4 Exception Management

	D.4 Basic Size Benchmark Configuration Script

	Deprecated Input/Output Modules
	E.1 GIO Drivers and TI-RTOS
	E.2 Overview of the GIO Model
	E.3 Configuring Drivers in the Device Table
	E.3.1 Configuring the GIO Module

	E.4 Using GIO APIs
	E.4.1 Constraints When Using GIO APIs
	E.4.2 Creating and Deleting GIO Channels
	E.4.3 Using GIO_read() and GIO_write() — The Standard Model
	E.4.4 Using GIO_issue(), GIO_reclaim(), and GIO_prime() — The Issue/Reclaim Model
	E.4.5 GIO_abort() and Error Handling

	E.5 Using GIO in Various Thread Contexts
	E.5.1 Using GIO with Tasks
	E.5.1.1 Using a Semaphore Instance Created by the Application with a GIO Instance

	E.5.2 Using GIO with Swis
	E.5.3 Using GIO with Events

	E.6 GIO and Synchronization Mechanisms
	E.6.1 Using GIO with Generic Callbacks

	IOM Interface
	F.1 Mini-Driver Interface Overview
	mdBindDev
	mdControlChan
	mdCreateChan
	mdDeleteChan
	mdSubmitChan
	mdUnBindDev

	Revision History
	Index

