
Application Report
SPRAAS7B –April 2009

1

Migrating a DSP/BIOS 5 Application to DSP/BIOS 6
Steven Connell DSP/BIOS Kernel Team

ABSTRACT

This application note introduces DSP/BIOS 5.x users to DSP/BIOS 6. It provides details
and an example about using the legacy support. It further provides advice about migrating
applications to take advantage of DSP/BIOS 6 features. This application note also
discusses issues encountered when upgrading both from DSP/BIOS 5 to 6 and from Code
Composer Studio 3.x to 4.

Contents
1 Introduction to DSP/BIOS 6.x Legacy Support...2

1.1 What DSP/BIOS 6 Legacy Support is Provided? ..3
1.2 What Does this Application Note Cover?...3
1.3 What is the General Migration Procedure?..4
1.4 Software Requirements ...4

2 Converting Your Configuration..5
2.1 Converting a Simple Configuration Manually...5
2.2 Converting a Configuration Using the Conversion Tool...7

3 Converting and Updating Your CCStudio Project..10
3.1 Migrating Code Composer Studio Projects..10
3.2 Updating a CCStudio 4 Project to Build with a Generated Custom Platform File........11
3.3 Updating the Project’s Compiler Search Path ...12
3.4 Updating a CCStudio 4 Project’s Search Path to Find Included Configuration Files...13
3.5 Building and Running the Project ..14

4 Converting Your C Code...15
4.1 Legacy Module Mappings and API Guide ...15
4.2 Extending Your Legacy Program with DSP/BIOS 6 APIs..17

5 Migrating Memory Configurations...19
5.1 Memory Segments and Sections...19
5.2 Heaps ..20
5.3 Dynamic Memory Allocation ..21

6 Migrating Library Builds...22
6.1 Creating a New Library Project for CCStudio 4 ...23
6.2 Updating the Compiler Search Paths for CCStudio 4 Library Projects........................24

7 Porting the Mailbox Example to DSP/BIOS 6 Using Legacy Support25
7.1 Copying the Mailbox Example Files...25
7.2 Configuring the Mailbox Example ..26
7.3 Creating a CCStudio 4 Project for the Mailbox Program ...28
7.4 Updating the Compiler Search Path ..30
7.5 Updating the C Source File ...31
7.6 Building and Running the Application..31
7.7 Using XGCONF to View the DSP/BIOS Configuration ..33

SPRAAS7B

2 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

8 Porting the Mailbox Example to DSP/BIOS 6 with New Modules and APIs34
8.1 Updating the Configuration Files ...34
8.2 Updating the C Source File..43
8.3 Building and Running the Application ..48

9 Adding DSP/BIOS Tasks and Communication to a Legacy Application..................................49
9.1 Adding Two New DSP/BIOS 6 Tasks to a Legacy Program..50
9.2 Communicating Between the Existing Legacy TSKs and the New Tasks52

10 Building the Mailbox Example Using a Custom Platform File ..56
10.1 The Generated evmDM6437.xs File..56
10.2 Building the Mailbox Example Using the Custom evmDM6437.xs Platform File.........57
10.3 Updating the evmDM6437.xs File to Redefine Memory Segments59
10.4 Updating Platform Definitions to Load Code and Data in Different Segments59
10.5 Contents of the Originally Generated evmDM6437.xs File..61

11 Conclusion...62
12 References...62
A Unsupported DSP/BIOS 5 APIs..63
B Unsupported DSP/BIOS 5 Tconf Properties ...64

B.1 CLK Module Properties..64
B.2 GBL Module Properties ...64
B.3 HWI Module Properties..65
B.4 IDL Module Properties ...65
B.5 LOG Module Properties ...65
B.6 MEM Module Properties ..65
B.7 PRD Module Properties ...66
B.8 SWI Module Properties..66
B.9 TSK Module Properties..66

C Performance Benchmarks..66
C.1 C64 Timing Benchmarks ...66
C.2 C64 Sizing Benchmarks ..67

1 Introduction to DSP/BIOS 6.x Legacy Support
This application note introduces DSP/BIOS 5.x users to DSP/BIOS 6. It provides details about
the legacy support that is provided and how to make use of it. It further provides advice about
migrating applications to take advantage of DSP/BIOS 6 features.

The intention of this application note is to help you upgrade to DSP/BIOS 6 quickly and
effectively, with minimal overhead, through examples and reference information about legacy
module and API support. The information in this application note will hopefully act as a bridge to
connect the old world of DSP/BIOS 5 to the new world of DSP/BIOS 6.

This application note also discusses issues encountered when upgrading both from DSP/BIOS 5
to 6 and from Code Composer Studio 3.x to 4. While you may use DSP/BIOS 6 with either
CCStudio 3 or 4, many users may be performing both migrations at the same time. This
document provides notes at the beginning of sections that apply only to CCStudio 4.

Along with DSP/BIOS 6.x, you must use XDCtools 3.x, which provides tools and APIs that
implement the RTSC standard. For documentation on these additional tools, see Section 12.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 3

1.1 What DSP/BIOS 6 Legacy Support is Provided?

DSP/BIOS 6 provides legacy support for most APIs to make it easy for you to migrate DSP/BIOS
5 applications to DSP/BIOS 6. The following bullet points highlight DSP/BIOS 6 legacy support:

• The vast majority of DSP/BIOS C APIs are fully supported and callable within DSP/BIOS 6,
requiring no changes to existing C code.

• Tconf configuration (*.tcf) code is supported within DSP/BIOS 6 with some adjustments.

• A DSP/BIOS 5 program that uses supported legacy C APIs and has an updated configuration
will be 100% compatible after a rebuild.

Expanding on these highlights, most DSP/BIOS 5 legacy C APIs still exist in DSP/BIOS 6, and
may be called without making any C code changes. Allowing you to move C code forward,
unchanged, minimizes migration overhead. A small number of modules and their APIs are no
longer supported, either because they are no longer part of DSP/BIOS or because support for
them did not make sense. The number of these deprecated modules and APIs was minimized.

Legacy Tconf configuration support is also provided, but in this case you must make some
changes to that code in order to build. The changes needed for simple configurations are
minimal. For more advanced configurations, a conversion utility is provided to translate Tconf
configurations to RTSC configurations.

With these qualifications, existing DSP/BIOS 5 programs you upgrade to build in the DSP/BIOS
6 build environment will be 100% supported after updating the configuration and rebuilding,
provided that their legacy program does not use any unsupported legacy APIs or modules.

Note: This document uses the term "Tconf configuration" to describe DSP/BIOS 5 configuration
scripts. Note that both “Tconf configuration” and "DSP/BIOS configuration" refer to the same
thing: the *.tcf file used to configure your DSP/BIOS 5 application.

1.2 What Does this Application Note Cover?
The sections in this application note are divided into the following categories:

• Summary Information. Section 1 provides this introduction. Section 11 and 12 provide a
conclusion and a list of related documents.

• Procedures. Sections 2 through 6 give you step-by-step instructions for the following tasks:
– Section 2, “Converting Your Configuration”
– Section 3, “Converting and Updating Your CCStudio Project”
– Section 4, “Converting Your C Code”
– Section 5, “Migrating Memory Configurations”
– Section 6, “Migrating Library Builds”

• Mailbox Example. Sections 7 through 10 demonstrate the migration process using the
DSP/BIOS 5 mailbox example:

– Section 7, “Porting the Mailbox Example to DSP/BIOS 6 Using Legacy Support”
– Section 8, “Porting the Mailbox Example to DSP/BIOS 6 with New Modules and APIs”
– Section 9, “Adding DSP/BIOS Tasks and Communication to a Legacy Application”
– Section 10, “Building the Mailbox Example Using a Custom Platform File”

SPRAAS7B

4 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

• Reference. Appendixes A through C
– Appendix A, “Unsupported DSP/BIOS 5 APIs”
– Appendix B, “Unsupported DSP/BIOS 5 Tconf Properties”
– Appendix C, “Performance Benchmarks”

1.3 What is the General Migration Procedure?

In general, the migration process involves the following steps:

1. Convert a DSP/BIOS 5 Tconf configuration to a RTSC configuration. See Sections 2 and 5.

2. Migrate the build environment if necessary. See Section 3 (and Section 6 if you are building
a library).

3. Update the C source file(s) if necessary. See Section 4.

4. Build and run the migrated application.

1.4 Software Requirements

Please ensure that the following components have been installed and set up properly before
attempting to migrate the DSP/BIOS 5 mailbox example to DSP/BIOS 6:

• XDCtools
– For setup details and instructions, please see the XDCtools Getting Started Guide that is

included with the XDCtools installation.
– The instructions in this application note require you to have set up a repository directory.

The steps for doing this are found in the XDCtools Getting Started Guide.

• DSP/BIOS 6
– For setup details and instructions, please see the DSP/BIOS 6 Getting Started Guide

that is included with the DSP/BIOS installation.
– The instructions in this application note require you to have set up the config.bld script.

The steps for doing this are found in the DSP/BIOS 6 Getting Started Guide.

• DSP/BIOS 5
– The steps in this application note are based on the “mailbox” example, which is

packaged with DSP/BIOS 5.

• CCStudio 4 or CCStudio 3
– CCStudio 4 is required in order to configure DSP/BIOS using the XGCONF tool as

described in Section 7.7.
– CCStudio 3 is sufficient if you will configure DSP/BIOS with a text editor.

• Drivers
– You must have already installed the appropriate drivers for your hardware configuration,

if necessary.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 5

2 Converting Your Configuration
In DSP/BIOS 6, programs no longer use a Tconf configuration script. Instead, they use a RTSC
configuration script (*.cfg file), which is similar but somewhat different. Legacy users need to
convert existing Tconf scripts to RTSC configuration scripts in order to build with DSP/BIOS 6
legacy support.

It’s important to note that this does not mean that your Tconf configuration code must be thrown
out! Most Tconf configuration settings and properties are still supported as they were in
DSP/BIOS 5, with no changes to those configuration properties required. The degree of difficulty
in making this conversion varies from script to script.

If the Tconf configuration script contains settings for modules and/or properties that are no
longer supported, you will be notified of this by warning messages that are displayed either at
program build time or when the conversion tool (explained in Section 2.2) is run.

To make it easier to convert your Tconf configuration to a RTSC configuration, this section
categorizes Tconf configuration scripts as either “simple” or “complex”:

• A “simple” Tconf configuration is one that does not make any changes to the default memory
map.

• A “complex” Tconf configuration is one that does make changes to the memory map.
Specifically, Tconf configurations that create a new memory segment or change the base
location or length of a memory segment are considered “complex”.

Changes to memory segments in DSP/BIOS 6 require non-trivial changes to the configuration,
and that is why any Tconf configuration that does make memory map changes is not considered
“simple.” For details on how to configure memory segments, please see Section 5, “Migrating
Memory Configurations”.

Based on this categorization, one of two different methods of converting the Tconf configuration
script to a RTSC configuration script is recommended:

• Manual Conversion. Recommended for “simple” configurations. See Section 2.1.

• Using the Conversion Tool. Recommended for “complex” configurations. See Section 2.2.

2.1 Converting a Simple Configuration Manually

Converting a DSP/BIOS 5 Tconf configuration to a RTSC configuration is straightforward for
simple Tconf configurations. Again, a simple Tconf configuration is one that does not make any
changes to the application’s memory map. More specifically, a simple Tconf configuration would
not create new MEM segments, or redefine any pre-existing MEM segments.

The following steps summarize how to convert a simple DSP/BIOS 5 Tconf configuration into a
RTSC configuration:

1. Rename the Tconf configuration file to change its file extension from *.tcf to *.cfg.

2. Open the *.cfg file in your favorite text editor.

SPRAAS7B

6 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

3. Near the beginning of the file, you should see a line that loads the platform file. For
example, if your hardware platform was the “evmDM6437”, then you would see the following
line of code:

utils.loadPlatform("ti.platforms.evmDM6437");

 Delete this line of code from the file, since in CCStudio 4 the platform is defined by the
project options.

4. In place of the call to utils.loadPlatform(), add the following line of code to the *.cfg
file, in order to load the DSP/BIOS 6 legacy support:

xdc.loadPackage('ti.bios.tconf');

5. Near the end of the file, you should see the following line of code. Delete this line of code
from the file; it is no longer necessary.

prog.gen();

6. The methods prog.decl() and prog.extern() are no longer supported. If your code
uses either one, a build-time error will occur. If a *.tcf or *.tci file uses either of these
methods for a function assignment, remove prog.decl() or prog.extern() and leave
only the string name of the function being assigned. For example, the following code:

tsk0.fxn = prog.extern("tsk0Fxn");
tsk1.fxn = prog.decl("tsk1Fxn");

needs to be changed to the following:

tsk0.fxn = "tsk0Fxn";
tsk1.fxn = "tsk1Fxn";

If prog.decl() or prog.extern() are used as arguments, replace these method calls
with calls to the new method $externPtr(). For example, the following code:

tsk0.arg0 = prog.decl("foo");
tsk1.arg0 = prog.extern("bar");

needs to be changed to the following:

tsk0.arg0 = $externPtr("foo");
tsk1.arg0 = $externPtr("bar");

7. Save and close the file. It may now be used as a RTSC configuration file to build with
DSP/BIOS 6.

Note: If your configuration file imports any additional configuration files (*.tci files) by means of
calls to utils.importFile(), then you must update your CCStudio 4 project with the location
of these files so that XDCtools can find them at configuration time. See Section 3.4, "Updating a
CCStudio 4 Project’s Search Path to Find Included Configuration Files” for how to do this.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 7

2.2 Converting a Configuration Using the Conversion Tool

DSP/BIOS 6 includes a conversion tool that is provided by the “ti.bios.conversion” package. You
run this tool using the xs command provided by XDCtools. This conversion tool converts legacy
Tconf configuration scripts to RTSC configuration scripts, and is the recommended means of
translating a “complex” Tconf configuration to a RTSC configuration.

Once more, a Tconf configuration is considered to be “complex” if it makes changes to the
application’s memory map. More specifically, a complex Tconf configuration is one that creates
new MEM segments or redefines any pre-existing MEM segments. Such changes require non-
trivial changes to the configuration. For details on configuring memory segments, please see
Section 5, “Migrating Memory Configurations”.

Before using the conversion tool, please gather the following information that is needed in order
to create a RTSC configuration script:

• The full paths of any Tconf include files (*.tci) that are imported by the application Tconf script
(*.tcf).

• The name of the platform the application runs on.

2.2.1 Conversion Tool Syntax
The full syntax for the conversion tool command line is as follows:

xs [xs options] ti.bios.conversion [-v|--help] [-i] [-c outfile.cfg]
[--pf platform.xs] [--pn plat] infile.tcf

Options:
• –c name of the output RTSC configuration file
• --pf name of the output platform file
• --pn name of the platform instance
• –v show details during build
• --xp set a package path
• --help show command line options
• -i content of imported files is copied into the output file

The xs --xp option sets a package path. In order to use DSP/BIOS 6, you must add the
location of its packages to the path. For example:

xs --xp 'C:/Program Files/Texas Instruments/bios_6/packages' ti.bios.conversion
 [-v|--help] [-c outfile.cfg] [--pf platform.xs] [--pn myPlatform] infile.tcf

If your Tconf script imports Tconf include files (*.tci) from different directories, you must add
paths to these directories to the package path. The paths can be absolute or relative to the
current working directory. For example, if "infile.tcf" contains the following statement, and
"helper.tci" is in a directory "sub" relative to the current working directory, then the --xp option
should be set to ‘<bios_install_dir>/packages;sub’.

utils.importFile('helper.tci');

SPRAAS7B

8 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

Without the -i option, any lines that import files are left unchanged in the generated RTSC
configuration script, and the imported files are not converted. If the -i option is added to the
command line, all imported files are converted and their contents are copied inline into the
generated RTSC configuration script. Each imported file is clearly separated by comments in
case you want to split the generated script into separate files again.

Note: If your *.tci files contain any calls to the methods prog.extern() or prog.decl(), we
recommend that you use the -i option when running the conversion tool. This option causes the
conversion tool to parse each *.tci file and to change all references to these methods
appropriately.

Alternatively, if you do not want to use the -i option, you may convert all prog.extern() or
prog.decl() calls manually, as described in Section 2.1. For more information on these
unsupported methods, see Section 2.1.

By default, output from the conversion tool is a RTSC configuration script with the same name as
the Tconf script, but with the extension .tcf replaced with .cfg. You can specify a different name
for the output file with the –c command-line option.

The conversion tool makes the following changes to the Tconf script, and saves them in the
RTSC configuration script:

Old Syntax New Syntax
utils.loadPlatform xdc.loadPackage(‘ti.bios.tconf’)
prog.gen() <blank>

2.2.2 Specifying Environment Variables to the Conversion Tool

If your original Tconf script accesses any environment variables through the environment
array, you need to define such variables on the command line for both the conversion tool.
Define environment variables using the -D option. For example, if your script contains a
statement like this:

utils.loadPlatform(environment[’config.platform’]);

Define ‘config.platform’ on the command lines for the conversion tool as follows:

xs ti.bios.conversion –Dconfig.platform=ti.platforms.evmDM6437 ...

2.2.3 How Memory Map Settings Are Translated

In addition to the *.cfg file, the conversion tool generates a file called platform.xs by default. This
file contains memory map configuration and platform-specific configuration (such as clockRate
and deviceName). The conversion tool extracts memory map information from the Tconf script
and saves equivalent commands in the platform.xs file. The platform.xs file creates a platform
instance that corresponds to the memory map created by the Tconf script. The platform instance
parameters are determined from bios.MEM and bios.GBL parameters in the Tconf script.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 9

For example, if your original TCF script contains the following statement:

bios.GBL.C64PLUSL2CFG = "32k";

Then, your new platform file will contain the following line, which ensures that there are 32 KB of
cache in your L2 memory.

l2Mode: "32k";

Memory-related commands in the new RTSC configuration script are ignored because, at the
time that configuration script is parsed, no changes to the memory map are allowed. The
memory map is already defined in platform.xs, which is processed before the RTSC
configuration script. However, commands that create and determine the size of heaps are still
valid and are processed at configuration time.

Also, you may override the default name for the generated platform file "platform.xs" by using the
–pf command-line option. You should include the platform configuration file in the config.bld file
you specify in your CCStudio 4 project.

For more on custom platform files, see Section 10. For more on memory configurations, see
Section 5.

2.2.4 Steps to Convert a Tconf Script to a RTSC Configuration Script
1. At a MS-DOS command prompt, change (cd) to the directory that contains the Tconf script

you wish to convert.

2. Run the following command to convert a Tconf script to a RTSC configuration script. (Notice
the space after the --xp= option.)

>xs -–xp= "%XDCPATH%" ti.bios.conversion –c myConfig.cfg –-pf myPlatform.xs
<filename>.tcf

Running this command for a Tconf script that loads the “evmDM6437” platform yields output
similar to the following:

Platform: ti.platforms.evmDM6437
 params.mem:[object Object],[object Object]
 params.catalogName:ti.catalog.c6000
 params.deviceName:DM6437
 params.clockRate:594
 params.regs:[object Object]
Target: ti.targets.C64P
Clock Rate: 594

This command also creates the following files:
• myConfig.cfg
• myConfig.h
• myPlatform.xs

The “ti.bios.conversion” utility converts the *.tcf file to a RTSC configuration file called
myConfig.cfg. This RTSC configuration script may now be used to configure your application and
build with DSP/BIOS 6.

SPRAAS7B

10 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

The contents of the myConfig.cfg file will be very similar to those of the original *.tcf file. The tool
essentially strips out calls to utils.loadPlatform(), prog.decl(), prog.extern(), and
prog.gen(), leaving all other code intact. The tool also generates the file myConfig.h, which
may need to be included by your application’s C source file.

Note: If any of the generated files (myConfig.cfg, myConfig.h, or myPlatform.xs) already exist in
the current directory, the conversion tool overwrites them with new generated files. To prevent
any data loss, please make sure to back up any files that have the same name as those
specified as command line arguments to the conversion tool.

3 Converting and Updating Your CCStudio Project
The following subsections describe changes you may need to make within your Code Composer
Studio project.

3.1 Migrating Code Composer Studio Projects

Note: This section applies only to users who are migrating to Code Composer Studio 4.

If you are migrating from Code Composer Studio 3 to Code Composer Studio 4, you will need to
migrate the build environment, which essentially means migrating the CCStudio 3 project file to a
CCStudio 4 project.

Since CCStudio 4 projects are completely different from CCStudio 3 project files, you will need to
recreate the project manually. As of this document’s publication, there is no tool for converting
CCStudio 3 DSP/BIOS 5.x projects to CCStudio 4 DSP/BIOS 6.x projects.

Use the following steps to migrate your legacy DSP/BIOS 5 application to build with DSP/BIOS
6. These steps are covered in greater detail for the mailbox example in Section 7.3, “Creating a
CCStudio 4 Project for the Mailbox Program”.

1. Use the CCStudio 4 project creation wizard to create a new CCStudio 4 project, selecting
the correct hardware platform and enabling DSP/BIOS.

2. Configure the project options to match those from your CCStudio 3 project. (Don’t worry; it’s
easier to do than it sounds!) While configuring the new CCStudio 4 project, it is important
that you transfer the compiler options, assembler options, linker options, and include paths
to the new project, as well as any special #defines configured in the CCStudio 3 project. In
addition, if you set any Tconf build options, use those as well for the XDCtools build options.

3. Add your source files to the project.

4. Add the migrated RTSC configuration to the project. Details for converting a Tconf
configuration to a RTSC configuration are provided in Section 2, “Converting Your
Configuration”. Also, please see Section 7.2, “Configuring the Mailbox Example”.

5. Rebuild the project, load the program, and then run.

See the RTSC+Eclipse QuickStart topic in the RTSC-pedia wiki for details about creating a
CCStudio 4 project that uses RTSC and DSP/BIOS 6 content. See the CCStudio 4 online help
for more about converting CCStudio 4 projects.

http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart
http://rtsc.eclipse.org/docs-tip

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 11

3.2 Updating a CCStudio 4 Project to Build with a Generated Custom Platform File

As mentioned in Section 2.2.3, the conversion tool creates the file “myPlatform.xs”, which is a
custom platform file. Custom platform files are used to create user-defined Memory segments
and to change the pre-defined Memory segments that ship for a default platform. The one
generated by the conversion tool contains settings for any memory changes in the Tconf
configuration script passed to it.

In order to use the custom platform file in your program’s build, you must specify and update a
config.bld file in the project in order to load it. Use the following steps to build your project using
this generated custom platform file:

1. In your project directory, create a new file called “config.bld” and open it for editing using
your favorite text editor.

2. Add the following line to the config.bld script to load the custom myPlatform.xs platform file:

xdc.loadCapsule("myPlatform.xs");

3. Save and close the config.bld file.

Note: The following steps apply to you only if you are migrating to Code Composer Studio 4.

1. In CCStudio 4, if it is not open already, open the RTSC configuration project that you want
to build using a custom platform file.

2. Make sure that you are in the C/C++ perspective by clicking the button with that label.

3. In the project pane, right-click on your RTSC configuration project, and select Build
Properties.

4. In the C/C++ Build category, choose the Tool Settings tab, and then click the + sign next
to XDCtools v3.15 to expand the list of XDCtools options. Choose Advanced Options.

5. For Build configuration file (-b), type “config.bld”.

SPRAAS7B

12 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

6. In the CCS Build Settings category, choose the RTSC Configuration tab.

7. For RTSC Platform (–p), select “ti.platforms.generic:plat”.

8. Click OK to apply these changes to the project.

For more information on custom platform files and how to use them in CCStudio 4, see Section
10.2, “Building the Mailbox Example Using the Custom evmDM6437.xs Platform File”.

3.3 Updating the Project’s Compiler Search Path

Since your program’s C file probably contains #include directives for legacy DSP/BIOS header
files, such as std.h, your project may need to be updated to pass the path to these legacy
header files to the compiler. This section shows how to update your project to add the following
include path:

<DSP/BIOS 6 Install Dir>/packages/ti/bios/include

Follow these steps to add this include file directory to the compiler search path. You will need to
perform these steps for both your main project and the referenced RTSC configuration project.

1. In the CCStudio 4 project pane, right-click on your main project and select Properties.

2. In the left pane of the project’s properties window, select C/C++ Build. You will see the
build properties in the right pane.

3. Under Configuration Settings, choose the Tool Settings tab, then click the + sign next to
C6000 Compiler v6.1 to show the list of compiler option categories:

4. Click Include Options, then click the + icon next to Add dir to #include search path
(--include path):

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 13

5. Type the path to the DSP/BIOS legacy include directory in the Directory field and click OK.

6. For the RTSC configuration project only, in the Tool Settings tab, click the + sign for
XDCtools v3.15 to expand the XDCtools options list. Click Basic Options. Update the
RTSC target (-t) and RTSC platform (-p) fields with the appropriate values for your
hardware. For example, if you are using the evmDM6437, then type the following values for
these fields:

7. Click OK in the Properties dialog to apply the settings you added.

3.4 Updating a CCStudio 4 Project’s Search Path to Find Included Configuration Files

Note: This section applies only to users who are migrating to Code Composer Studio 4.

If your configuration imports any Tconf include files (*.tci), then you must update the build
options of your project to add the paths to where those files are located. This is necessary so
that RTSC can locate them at configuration time. Note that if you have converted your Tconf
script using the conversion tool with the –i option, these steps won’t be necessary, as all of the
content of the Tconf include files will have been migrated into the generated RTSC configuration
script.

Follow these steps to update your project settings with the search path to these include files:

1. In CCStudio 4, make sure that you are in the “C/C++ Perspective” by clicking the button with
that label.

2. If your RTSC configuration project is not open in CCStudio 4, open it by selecting the
Project Open Project menu option. Make sure the RTSC configuration project is the
active project.

3. In the project pane, right click on your project, and select Build Properties. Choose the
C/C++ Build category.

4. Under “Configuration Settings”, click the tab labeled Tool Settings and then click the “+”
sign next to XDCtools v3.15 to expand the list of XDCtools options:

5. Click Advanced Options, then click the “+” icon for the box that says “Java properties
(-D)”.

SPRAAS7B

14 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

6. In the Enter Value dialog that opens, add:

config.importPath=<full path to Tconf include files>

For example, if your Tconf include files are all stored in the root of drive C:\, you should add
the following to the text box:

7. Click OK to accept the new option.

8. Click OK in the “Properties for <your project>” dialog to apply the settings just added. All of
your program’s Tconf include files will now be found at configuration time the next time you
build the project.

3.5 Building and Running the Project

At this point, if your legacy C code does not contain any deprecated DSP/BIOS APIs, you will be
able to build your project.

1. Create a target configuration by choosing File New Target Configuration. Use the
Basic tab to create a target configuration. Press Ctrl+S to save the configuration. Use View

 Target Configurations to see a list of your saved configurations. Right-click on the one
you want to use and choose Set As Default from the pop-up menu.

2. Select Project Build Active Project to build the mailbox application using DSP/BIOS 6.

3. Select Target Debug Active Project to launch the TI debugger and load the program.

4. Run the application by selecting Target Run or by pressing the F8 key.

If you have build problems in your C code at this point, it may be because your program is using
modules and or APIs that are no longer supported. Please refer to the table of legacy modules in
Section 4.1 and the list of deprecated APIs in Appendix A for information on unsupported APIs
and modules.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 15

4 Converting Your C Code
Most DSP/BIOS 5 legacy C APIs still exist in DSP/BIOS 6, and may be called without making
any C code changes. However, a small number of modules and their APIs are no longer
supported, either because they are no longer part of DSP/BIOS or because support for them did
not make sense. The number of these deprecated modules and APIs was kept to a minimum.

4.1 Legacy Module Mappings and API Guide

The following table maps legacy DSP/BIOS 5 modules to their DSP/BIOS 6 module
counterparts. It lists both the legacy support module for identical APIs and the “new version” of
that module introduced in DSP/BIOS 6. While most legacy modules are supported, we
recommend that you use the new DSP/BIOS 6 modules if you are writing new code.

Table 1. Module Mappings from DSP/BIOS 5 to DSP/BIOS 6

DSP/BIOS
5 Legacy
Module

DSP/BIOS 6
Legacy Module

Recommended DSP/BIOS 6
Module

Legacy APIs
Supported? Support Plan

ATM None None Yes Legacy support only

BCACHE None ti.sysbios.hal.Cache Yes --

BUF ti.bios.BUF ti.sysbios.heaps.HeapBuf Yes --

C62 None ti.sysbios.hal.Hwi Yes --

C64 None ti.sysbios.hal.Hwi Yes --

CLK ti.bios.CLK
ti.sysbios.knl.Clock
 and
xdc.runtime.Timestamp

Yes --

DEV ti.bios.DEV ti.sdo.io.IDriver Yes --

DIO ti.bios.DIO None Yes Legacy support only

DGN ti.bios.DGN ti.sdo.io.drivers.Generator Yes --

DGS None None No Will not be supported

DHL None None No Will not be supported

DNL None None Yes Legacy support only

DOV None None Yes Legacy support only

DPI ti.bios.DPI None Yes Legacy support only

DST None None No Will not be supported

DTR None ti.sdo.io.converters.Transformer Yes --

ECM ti.bios.ECM ti.sysbios.family.c64p.
EventCombiner Yes --

GBL ti.bios.GBL
ti.sysbios.BIOS
 and
ti.sysbios.hal.Cache

Yes* --

SPRAAS7B

16 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

DSP/BIOS
5 Legacy
Module

DSP/BIOS 6
Legacy Module

Recommended DSP/BIOS 6
Module

Legacy APIs
Supported? Support Plan

GIO ti.bios.GIO ti.sdo.io.Stream Yes --

HOOK ti.bios.HOOK ti.sysbios.knl.Task Yes --

HST None None No Will not be supported

HWI ti.bios.HWI ti.sysbios.hal.Hwi Yes* --

IDL ti.bios.IDL ti.sysbios.knl.Idle Yes --

LCK ti.bios.support.Lck ti.sysbios.gates.GateMutex Yes --

LOG ti.bios.LOG xdc.runtime.LoggerBuf Yes Supported in XDCtools

MBX ti.bios.MBX ti.sysbios.ipc.Mailbox Yes --

MEM ti.bios.MEM
ti.sysbios.heaps.HeapMem
 and
xdc.runtime.Memory

Yes --

MPC None None No To be supported in a
future release

MSGQ ti.bios.MSGQ None Yes To be supported in a
future release

PIP None None No Will not be supported

POOL ti.bios.POOL None Yes To be supported in a
future release

PRD ti.bios.PRD ti.sysbios.knl.Clock Yes* --

QUE ti.bios.QUE ti.sysbios.misc.Queue Yes --

RTDX ti.bios.RTDX
ti.rtdx.RtdxModule
 and
ti.rtdx.driver.RtdxDvr

No Supported in a
separate product

SEM ti.bios.SEM ti.sysbios.ipc.Semaphore Yes --

SIO ti.bios.SIO ti.sdo.io.Stream Yes --

STS ti.bios.STS ti.sysbios.misc.Stats Yes --

SWI ti.bios.SWI ti.sybios.knl.Swi Yes --

SYS
ti.bios.SYS
 and
ti.bios.support.Sys

xdc.runtime.System
 and
xdc.runtime.Error

Yes Supported in XDCtools

TRC None xdc.runtime.Diags Yes Supported in XDCtools

TSK ti.bios.TSK ti.sysbios.knl.Task Yes* --

* Most legacy APIs are supported for this module. See Appendix A for the list of APIs that are no
longer supported for this module.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 17

4.2 Extending Your Legacy Program with DSP/BIOS 6 APIs

Once you have updated a legacy program to build and run using DSP/BIOS 6, you can expand
that program with code that leverages the new DSP/BIOS 6 APIs and features.

Using a combination of legacy code and new code in the same DSP/BIOS program is supported.
However, if you want to combine the old with the new like this, there are certain precautions you
must take to ensure that things will work smoothly. This section provides guidelines and
examples for extending a DSP/BIOS 5 legacy program using the DSP/BIOS 6 modules in the C
code and RTSC configuration.

See Sections 9 and 9.2 for examples that add DSP/BIOS 6 API calls to the mailbox example.

4.2.1 Place New Configuration Code After Legacy Configuration Code

When you extend a legacy application’s RTSC configuration file with configuration statements for
DSP/BIOS 6 modules, you must place the new configuration code after the existing legacy
configuration code.

If DSP/BIOS 6 modules are configured before legacy modules, the result may be a build-time
error that states that certain legacy modules must be used before certain new modules. You can
easily avoid this problem by adding all configuration of DSP/BIOS 6 and XDCtools modules to
the end of your RTSC configuration script. This includes any useModule() calls, as well as any
code to configure those modules.

If a configuration contains settings for equivalent properties using both the DSP/BIOS 6 and
DSP/BIOS 5 names, then the DSP/BIOS 6 setting takes precedence. For example, if a
configuration contained the following statements, the net result of these equivalent settings
would be to configure the CPU speed to be 400MHz (the DSP/BIOS 6 setting).

bios.GBL.CLKOUT = 500; /* DSP/BIOS 5 */

xdc.global.BIOS = xdc.useModule('ti.sysbios.BIOS"); /* DSP/BIOS 6 */
BIOS.cpuFreq = 400;

4.2.2 Place Header File #include Directives for DSP/BIOS 6 Before Legacy Directives

When you update a legacy C file to include DSP/BIOS 6 header files, it is important that you add
the #include directives for those header files before the existing #include directives for legacy
DSP/BIOS header files.

Currently, if you add any DSP/BIOS 6 header file #include directives after any legacy #includes,
then the DSP/BIOS 6 API calls in that C file will be listed as undefined symbols at link time. So,
when updating a legacy file for use with DSP/BIOS 6, just make sure to include the DSP/BIOS 6
headers first.

There is an alternative workaround for this issue, in case you do not want to worry about the
order of #include directives. If any DSP/BIOS 6 APIs are listed as unresolved symbols due to the
order of header file inclusion, you may instead call those APIs using their “long names,” which
prepend the package name for a particular module’s API.

SPRAAS7B

18 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

For example, suppose the following call results in an undefined symbol error due to #include
ordering:

Task_sleep(10);

You can change this DSP/BIOS 6 API call to the following to use the “long name” alternative to
resolve the undefined symbol:

ti_sysbios_knl_Task_sleep(10);

4.2.3 Communicating Between Old Code and New Code

Your program can communicate between legacy code and new code that uses DSP/BIOS 6
APIs. For example, if your program contains a legacy TSK C function, and a new Task function
has been added, communication between the two is allowed with some simple guidelines.

In general, it is highly recommended that your new DSP/BIOS 6 code use legacy APIs and
objects to communicate with legacy code, and vice versa.

An example of this is a legacy TSK that pends on a legacy SEM object via the following call:

SEM_pend(legacy_sem, 10);

If you add a DSP/BIOS 6 Task function and want this Task function to post the SEM object
legacy_sem, then the new Task function should use the legacy DSP/BIOS API to do so, even
though this Task itself is not legacy code, as follows:

SEM_post(legacy_sem);

The same applies for the opposite case; if a new Task function pends on a DSP/BIOS 6
Semaphore object via the following call:

Semaphore_pend(new_sem, 10);

Then a legacy TSK function should also post the Semaphore using the new code:

Semaphore_post(new_sem);

All interactions between new and old code should match new APIs/objects and legacy
APIs/objects in this manner.

To be clear, the following example shows an incorrect use of mixing and matching of old code
with new code. The following incorrect code demonstrates how not to mix new APIs with legacy
objects:

Semaphore_post(legacy_sem); // WRONG! – can’t use new API with legacy object!

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 19

5 Migrating Memory Configurations
DSP/BIOS 5 provided MEM, the memory manager, for managing new memory segments, heaps
and sections, and for loading specific sections into certain memory segments. The MEM module
was also used for dynamic memory allocation.

All this functionality is available in DSP/BIOS 6 in the Memory (xdc.runtime.Memory), HeapMem
(ti.sysbios.heaps.HeapMem), and Program modules. The MEM module no longer exists.

The subsections that follow provide an overview of Memory segments and sections, Heaps, and
dynamic memory allocation in DSP/BIOS 6.

5.1 Memory Segments and Sections
In DSP/BIOS 5, the MEM manager module was used to create new MEM segments for user
applications. In DSP/BIOS 6, MEM segments have been replaced by XDCtools Memory
segments, which are specified in the platform file.

The most significant difference between MEM segments and Memory segments is how they are
created. While MEM segments were created or modified in the configuration script, Memory
sections are created or modified using a platform file.

The DSP/BIOS 6 installation includes several platform files that define Memory segments.
However, to change these Memory segments requires defining a custom platform file and using
that to build the application. Section 10.3 shows how to define new Memory sections using a
custom platform file.

The DSP/BIOS 5 MEM manager used section names that could be specified to load to a certain
MEM segment. This also exists in DSP/BIOS 6, but the means to load Memory segments differs.

Memory sections in DSP/BIOS 6 are specified to load into Memory segments using the Program
module’s sectMap[] array. This array maps section name strings to the Memory segments
into which that section is to be loaded. This pseudo-configuration code shows a mapping:

Program.sectMap[“<section name>”] = <Memory segment>.name;

You should replace <section name> above with the string name of the section to be mapped.
Also, replace <Memory segment> with the Memory segment name to load that section into.

Using the mailbox example for the evmDM6437 platform, to load the .text section of the
application into the IRAM Memory segment instead of to the DDR2 Memory segment, redefine
the mapping in the “mailbox.cfg” RTSC configuration script using the Program module as
follows:

var IRAM = Program.cpu.memoryMap.IRAM;
Program.sectMap[“.text”] = IRAM.name;

You have access to all of the existing Memory segments via the Program module’s
”cpu.memoryMap”. Use “Program.cpu.memoryMap” to get a reference to any Memory segment
defined for that program’s platform.

SPRAAS7B

20 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

Some modules allow you to specify a section name for that module’s data to be loaded into. For
instance, the Task module allows you to specify (or create) a section name for a given Task
instance’s stack using the Task module’s Params structure member “stackSection”. Once a
section name is specified using “stackSection”, that section name can be mapped to load into or
run from a particular Memory segment by way of the sectMap[] array.

For example, the following configuration code creates a static Task instance, then creates a new
section name "myTaskStackSection" for its stack, and maps this section to load into the IRAM
Memory segment:

xdc.global.Task = xdc.useModule('ti.sysbios.knl.Task');
var taskParams = new Task.Params();
taskParams.stackSection = "myTaskStackSection";
Task.create('&reader', taskParams);
Program.sectMap[".myTaskStackSection"] = "IRAM";

5.2 Heaps

DSP/BIOS 6 provides the HeapMem module to create heaps and manage a program’s memory.
Both DSP/BIOS 6 and XDCtools provide other Heap modules (each of which performs memory
management duties), as well as the IHeap interface.

All DSP/BIOS and XDCtools Heaps implement the IHeap interface. In fact, you may create your
own Heap module by inheriting the IHeap interface. This allows you to define your own memory
management algorithms for your custom Heap.

It’s also important to note that the definition of “Heap” as applied to these modules is very
generic. Heap modules are heaps in the sense that they provide memory management; this
definition does not imply variable size, non-determinism, or fragmentation, only managed
memory.

This section focuses on the HeapMem module for explaining Heaps. The full list of Heap
modules provided by DSP/BIOS 6 and XDCtools are listed in the table at the end of this section.

A Heap is created and configured in the application’s RTSC configuration script. Heap
configuration parameters include size, alignment, and section name. The following configuration
code creates a Heap of size 4096 using the HeapMem module:

xdc.global.HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');
var heapMemParams = new HeapMem.Params();
heapMemParams.size = 4096;
heapMemParams.sectionName = "myHeapSection";
Program.global.myHeap = HeapMem.create(heapMemParams);

This code uses the HeapMem Params structure to set properties for the new Heap. Notice that a
new Memory section name is created and used to assign the Heap to a particular Memory
segment.

The code to assign the Heap “myHeap” to the Memory segment IRAM using the Program
module would look like this:

Program.sectMap["myHeapSection"] = “IRAM”;

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 21

A limitation of the DSP/BIOS 5 MEM manager was that for any MEM segment, you could only
create a single heap in that segment.

One benefit of DSP/BIOS 6 is that you can create more than one heap for a given Memory
segment. The following code creates a second IRAM Heap, HeapMem, of size 8192:

heapMemParams.size = 8192;
heapMemParams.sectionName = "myOtherHeapSection";
Program.global.myOtherHeap = HeapMem.create(heapMemParams);
Program.sectMap["myOtherHeapSection"] = “IRAM”;

DSP/BIOS 6 and XDCtools provide several Heap modules, as shown in the following table.

Table 2. DSP/BIOS 6 and XDCtools Heap Modules

Heap Module Description
xdc.runtime.IHeap Heap interface. All Heap modules inherit from and implement

this interface. You may inherit from the IHeap interface to
implement your own Heap module and perform any memory
management style.

xdc.runtime.HeapMin A simple, minimum footprint Heap.
xdc.runtime.HeapStd This Heap is based on the C RTS functions malloc() and free().
ti.sysbios.heaps.HeapBuf Single, fixed size buffer, split into blocks of equal size. This

Heap corresponds to the DSP/BIOS 5 BUF module.
ti.sysbios.heaps.HeapMem HeapMem corresponds to the DSP/BIOS 5 MEM module.
ti.sysbios.heaps.HeapMultiBuf Allows you to create many different HeapBuf Heaps of different

sizes.

You can find more information on Heap modules in the online CDOC reference documentation.

5.3 Dynamic Memory Allocation

The DSP/BIOS 5 MEM module supported the MEM_alloc() and MEM_free() APIs to
dynamically allocate and free memory. These functions took a MEM segment ID as an argument
to specify which MEM segment to allocate from.

In DSP/BIOS 6, the Memory module and the Heap modules provided by DSP/BIOS 6 and
XDCtools replace the DSP/BIOS 5 MEM module’s dynamic memory allocation. The APIs were
replaced by the Memory module APIs Memory_alloc() and Memory_free(), and a Heap is
specified as the first argument.

DSP/BIOS 6 provides a default Heap for dynamically allocating and freeing memory without
explicitly configuring and creating a new heap. The default heap is specified by passing NULL as
the IHeap handle to these functions. The following C code dynamically allocates and frees
memory from the default Heap:

Ptr buf = Memory_alloc(NULL, 512, 0, NULL);
Memory_free(NULL, buf, 512);

SPRAAS7B

22 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

Alternately, you may create your own Heap and use it to allocate memory from in your program.
The Memory_alloc() and Memory_free() functions take a Heap handle of type
IHeap_Handle as the first function argument (IHeap_Handle is a generic Heap handle). To use a
HeapMem Heap in the call to Memory_alloc(), the HeapMem handle must be cast to type
IHeap_Handle. However, casting a HeapMem handle to type IHeap_Handle could result in data
loss, so a special function is provided to cast the handle: HeapMem_Handle_upCast().

The following code can be used to cast the HeapMem handle myHeap to type IHeap_Handle,
and allocate and free memory from this heap:

Ptr buf;
// “Cast” myHeap to type IHeap_Handle
IHeap_Handle iHeapHandle = HeapMem_Handle_upCast(myHeap);
buf = Memory_alloc(iHeapHandle, 512, 0, NULL);
Memory_free(iHeapHandle, buf, 512);

DSP/BIOS 6 also allows a user-created heap to be assigned as the default system heap,
overriding the default heap that is provided. This way, dynamically-created DSP/BIOS objects
are allocated from the user-created heap that was set as the default heap. The following
configuration code sets the default heap of the program to be myOtherHeap:

Memory.defaultHeapInstance = Program.global.myOtherHeap;

6 Migrating Library Builds
DSP/BIOS 5 and DSP/BIOS 6 applications use a configuration file. As a result of this, the include
paths needed by DSP/BIOS to find header files are automatically added as options to the
compiler. In DSP/BIOS 6 applications, these options are automatically placed into the generated
file “compiler.opt”.

However, since library builds do not use a DSP/BIOS configuration, there are additional steps
you must take to rebuild a library. You’ll need to update the library project options by adding the
extra include search paths that would normally be added by the generated “compiler.opt” file.

You may rebuild your existing DSP/BIOS 5 libraries using the legacy support included with
DSP/BIOS 6. To do so, you’ll need to create a new project within CCStudio 4. This is required
because there is currently no way to automatically convert your CCStudio 3.x project to a
CCStudio 4 project.

Creating a project for a library build differs from creating a project for an executable, which has
been described in the previous examples of this document. Since library builds do not use a
RTSC configuration, a few vital compiler search paths will be missing. When you use a RTSC
configuration, these search paths are added automatically. However, because there will be no
RTSC configuration, you’ll need to add these compiler search paths to the project manually.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 23

6.1 Creating a New Library Project for CCStudio 4

Note: This section applies only to users who are migrating to Code Composer Studio 4.

Follow the steps to create a new CCStudio 4 project that uses DSP/BIOS 6 as described in the
RTSC+Eclipse QuickStart topic of the RTSC-pedia wiki or in the
Bios_Getting_Started_Guide.pdf document. However, when you reach the CCS Project
Settings page in the project-creation wizard, select Static Library from the Project Kind drop-
down box.

If you select the location of your existing library source files when you begin creating the project,
then when you finish creating the project, all of the library source files that exist in the project
directory are added to the project automatically.

http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart
http://rtsc.eclipse.org/docs-tip

SPRAAS7B

24 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

6.2 Updating the Compiler Search Paths for CCStudio 4 Library Projects

Note: This section applies only to users who are migrating to Code Composer Studio 4.

Now that the project has been created, it’s necessary to update the compiler search paths, as
mentioned previously.

1. In the CCStudio 4 project pane, right-click the library project and select Properties.

2. In the left pane of the library project’s properties window, select C/C++ Build. You will see
the build properties in the right pane.

3. Under Configuration Settings, click the Tool Settings tab, then click the + sign next to
C6000 Compiler v6.1 to show the list of compiler option categories.

4. Click Include Options, then click the + icon next to Add dir to #include search path
(--include path):

Note: For legacy libraries, source files must include the DSP/BIOS file “std.h” as follows:

 #include <std.h>

Including this file has always been a requirement for DSP/BIOS 5 programs, so your library
sources likely already include this file correctly. If std.h is not properly included, the library build
will fail due to undefined identifiers in the file “xdc/std.h”.

5. Type the path to the DSP/BIOS legacy include directory in the Directory field and click OK.

6. For both types of library (legacy and DSP/BIOS 6 API), repeat the two previous steps. This
time, add the following additional paths to the compiler search path, where you replace the
<DSP/BIOS 6 Install Dir> and <XDCtools 6 Install Dir> with the actual locations:

• ${BIOS_CG_ROOT}/packages

• ${XDC_CG_ROOT}/packages

7. Click OK in the Properties dialog to apply the settings you added.

8. Select Project Build Active Project to build the library using DSP/BIOS 6.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 25

7 Porting the Mailbox Example to DSP/BIOS 6 Using Legacy Support
DSP/BIOS 6 supports most legacy DSP/BIOS 5 APIs and Tconf configuration properties. The
subsections that follow show how to build and run an existing DSP/BIOS 5 application using
DSP/BIOS 6 legacy support. That is, the DSP/BIOS 5 APIs are still used, but the project is built
with DSP/BIOS 6.

The subsections that follow show how to convert the DSP/BIOS 5 Tconf configuration to a RTSC
configuration script, modify the project and C source file, and build and run the application.
Section 8 further modifies the application to take advantage of DSP/BIOS 6 modules and APIs.

7.1 Copying the Mailbox Example Files

To preserve the existing application’s configuration and source files, use the following steps to
copy the application source and configuration files to two new directories before making any
changes. These copies will be used for all work in this application note.

1. Create a new directory named “mailbox”. This directory will be used to store the mailbox
application's C source files. You may create this directory anywhere on your computer, and
it will be referred to as the working directory throughout this document.

2. Copy the mailbox C source file into the "mailbox" directory from
<DSP/BIOS 5 Install Dir>/packages/ti/bios/examples/basic/mailbox/mailbox.c.

3. Create a new directory named "mailbox_configuration". This directory will be used to store
the mailbox application's DSP/BIOS configuration files. You may create this directory
anywhere on your computer, and it will be referred to as the configuration directory
throughout this document.

4. Copy the following mailbox Tconf configuration files into the "mailbox_configuration"
directory:
– <DSP/BIOS 5 Install Dir>/packages/ti/bios/examples/basic/mailbox/mailbox.tcf
– <DSP/BIOS 5 Install Dir>packages/ti/bios/examples

/basic/mailbox/mailbox_evmDM6437_custom.tci
– <DSP/BIOS 5 Install Dir>/packages/ti/bios/examples/basic/mailbox/mailbox.tci
– <DSP/BIOS 5 Install Dir>/packages/ti/bios/examples/common/evmDM6437_common.tci

Note: You should copy the Tconf include files (*.tci) to the configuration directory for
convenience. If you do not want to move an application’s *.tci files from their existing locations,
you must update the CCStudio 4 mailbox_configuration project (which will be created in the next
section) with the paths to these *.tci files. Otherwise, these files will not be found at build time.
For instructions on how to update your CCStudio 4 project with the path locations of *.tci files,
see Section 3.4.

Similarly, if you use the conversion tool to convert your Tconf script to a RTSC configuration
script, and the script contains *.tci files that exist in different directories, you’ll need to pass
relative paths to these files on the command line during the conversion step. Do this using the
--xp XDCPATH command line option to the xs command, so the conversion tool and XDCtools
can find these *.tci files. For further details on this, see Section 2.2.1, “Conversion Tool Syntax”.

SPRAAS7B

26 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

7.2 Configuring the Mailbox Example
While there is more than one way to migrate a DSP/BIOS 5 Tconf configuration to a RTSC
configuration, you must choose which is best, based on your existing Tconf script. Section 2,
”Converting Your Configuration,” discusses configuration scripts and how to classify your Tconf
configuration as “simple” or “complex.” Based on that classification, you should choose one of
two means of converting a Tconf configuration to a RTSC configuration.

Looking at the mailbox.tcf Tconf configuration, you can see that it should be classified as
“simple,” as it does not make changes to memory that are not supported at configuration time.

Based on this classification, the recommended route to take in moving the DSP/BIOS 5 mailbox
configuration to DSP/BIOS 6 is a manual conversion. However, we’ll show both methods in the
following subsections so that you can see how to perform each method.

7.2.1 Coverting the Mailbox Configuration Manually
Since the mailbox.tcf script is relatively simple and contains no changes to the evmDM6437
platform’s memory map, the easiest way to convert it into a RTSC configuration script is by
hand. Because there are no memory map changes, if the conversion tool were used, it would
just parse the Tconf configuration files and remove the following lines of configuration code:

• utils.loadPlatform("ti.platforms.evmDM6437");

• prog.gen()

It will also add one line of code to bring in DSP/BIOS legacy support. These changes are so
simple that it is easiest to make them by hand and rename the mailbox.tcf file to mailbox.cfg.

Follow these steps to translate the mailbox.tcf script to a RTSC configuration script mailbox.cfg
that will allow this program to build with DSP/BIOS 6 legacy support:

1. In the configuration directory, rename the “mailbox.tcf” file to “mailbox.cfg”.

2. Open mailbox.cfg in your favorite text editor.

3. Near the beginning of the file, delete the following line of code from the file:

utils.loadPlatform("ti.platforms.evmDM6437");

4. In place of the call to utils.loadPlatform(), add the following line of code to
mailbox.cfg to bring in the necessary DSP/BIOS 6 legacy support:

xdc.loadPackage('ti.bios.tconf');

5. Near the end of the file, delete the following lines of code:

if (config.hasReportedError == false) {
 prog.gen();
}

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 27

6. To see the full output of the trace log statements in CCSv4, you need to enable the mailbox
program to use DSP/BIOS Real Time Analysis (RTA). In order to do this, you will need to
set the flush property of the trace log to “true” in the configuration file, as well as configure
the RTA and RTDX modules. Note that this step is not necessary for the program to work
with DSP/BIOS 6; the program still runs without these changes. But, it is nice to see all of
the example’s output, if merely for aesthetic reasons. Also, this extra step would not be
done by the conversion tool, if it were used to convert the mailbox.tcf file.
Add the following lines of code to the end of the mailbox.cfg file in order to enable flushing
for the trace log and configure RTA and RTDX:

trace.exitFlush = true;

/* Enable RTA */

/* Bring in and configure the RTA Agent */
xdc.global.Agent = xdc.useModule('ti.sysbios.rta.Agent');

/* This example generates a lot of RTA traffic so give plenty of buffer
 * room to the Agent. */
Agent.numSystemRecords = 8192;

/* Bring in and configure the necessary RTDX modules */
xdc.global.RtdxModule = xdc.useModule('ti.rtdx.RtdxModule');
xdc.global.RtdxDvr = xdc.useModule('ti.rtdx.driver.RtdxDvr');

var rtdx = RtdxDvr.create();

xdc.global.DriverTable = xdc.useModule('ti.sdo.io.DriverTable');
DriverTable.addMeta("/rtdx", rtdx);

RtdxDvr.numInputChannels = 2;
RtdxModule.bufferSizeInWords = 4096;

7. Save and close the mailbox.cfg file.

7.2.2 Converting the Mailbox Configuration Using the Conversion Tool

DSP/BIOS 6 includes a conversion utility called “ti.bios.conversion”, which is run using the
XDCtools command xs.

This section demonstrates how to convert the mailbox.tcf Tconf script to the mailbox.cfg RTSC
configuration script using the conversion tool. This step is optional, and should not be done if you
have already converted the mailbox.tcf script to mailbox.cfg script manually, as described in the
previous section. This step is only provided in order to give you an example of how to use the
conversion tool in case you are converting complex configurations.

For more information on the conversion tool, please refer to Section 2.2, “Converting a
Configuration Using the Conversion Tool”.

SPRAAS7B

28 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

1. At a MS-DOS command prompt, change (cd) to the configuration directory.

2. Run the following command to convert the mailbox.tcf Tconf script in the configuration
directory to a RTSC configuration script. (Notice the space after the --xp= option.)

>xs -–xp= "%XDCPATH%;.." ti.bios.conversion –c mailbox.cfg –-pf evmDM6437.xs
mailbox.tcf

Running this command produces the following output:

Platform: ti.platforms.evmDM6437
 params.mem:[object Object],[object Object]
 params.catalogName:ti.catalog.c6000
 params.deviceName:DM6437
 params.clockRate:594
 params.regs:[object Object]
Target: ti.targets.C64P
Clock Rate: 594

This command also creates the following files:
• mailbox.cfg
• mailboxcfg.h
• evmDM6437.xs

The “ti.bios.conversion” utility converts the application’s “mailbox.tcf” file to a RTSC configuration
file called “mailbox.cfg.” The contents of the “mailbox.cfg” file will be very similar to the
“mailbox.tcf” file. The tool also re-generates the “mailboxcfg.h” file in its DSP/BIOS 6 form. This
file is included by the C source file “mailbox.c.”

Lastly, the tool creates the file “evmDM6437.xs”, which is a custom platform file. Custom
platform files can be used to create user-defined Memory segments. For more information on
custom platform files and how to use them, please see Section 10, “Building the Mailbox
Example Using a Custom Platform File”.

7.3 Creating a CCStudio 4 Project for the Mailbox Program

Note: This section applies only to users who are migrating to Code Composer Studio 4.

The Project Import Legacy CCSv3.3 Project command in CCSv4 does not migrate a
DSP/BIOS 5 project to the DSP/BIOS 6 project organization, which uses separate projects for
the source code and the RTSC configuration. So, instead of migrating the existing project, it is
recommended that you create a new DSP/BIOS 6 project.

This section walks you through the CCStudio 4 project creation wizard to create a new project
for the legacy mailbox example. In CCSv4, DSP/BIOS 6 projects typically consist of 2 separate
projects, one for sources, and another dependent project which handles the RTSC configuration.
For more about the project creation wizard, see the RTSC+Eclipse QuickStart topic of the
RTSC-pedia wiki. By following these steps, you will learn the correct settings to use when
creating a DSP/BIOS 6 project in CCStudio 4, how to modify the project to choose a different
hardware platform, how to update compiler and XDCtools options, and how to use XGCONF to
view and change the settings in the mailbox.cfg file.

http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart
http://rtsc.eclipse.org/docs-tip

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 29

1. In CCStudio 4, enter the C/C++ perspective by clicking the corresponding button:

2. From the File menu, select File New CCS Project. This opens the new project wizard.

3. In the Project Name field, type mailbox, then un-check the Use default location checkbox.
Once unchecked, click the Browse button, and then navigate to the working directory,
choosing it for the project location.

4. Click Next to bring the wizard to the Select a type of project page. Choose C6000 for the
project type:

5. Click Next to bring the wizard to the Additional Project Settings page. No changes are

necessary for this step of the wizard.

6. Click Next to bring the wizard to the CCS Project Settings page. In this screen, select
Executable from the Project Kind drop-down box. Make sure the device settings are
correct. Also, check the Enable RTSC support box. Notice that enabling RTSC support
allows a project to use DSP/BIOS. All other default settings should be OK.

7. Click Next to bring the wizard to the Referenced RTSC Configuration page. Choose to

create a new RTSC configuration project.

8. Click Next to bring the wizard to the New RTSC Configuration Project page. Use the
default name "mailbox_configuration", then un-check the Use default location checkbox.
Once unchecked, click the Browse button, and then navigate to the configuration directory
"mailbox_configuration", choosing it for the project location.

9. Click Next to bring the wizard to the RTSC Configuration Settings page. Change the
RTSC Target to ti.targets.C64P and the RTSC Platform to ti.platforms.evmDM6437.

SPRAAS7B

30 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

10. Click Next to bring the wizard to the RTSC Configuration Templates page. Do not check
the box to create a project using a template.

11. Click Finish to create the new mailbox project.

Notice that all of the mailbox source files that exist in the working directory are automatically
added to the mailbox project, and all of the mailbox configuration files that exist in the
configuration directory are automatically added to the mailbox_configuration project.

7.4 Updating the Compiler Search Path

Note: This section applies only to users who are migrating to Code Composer Studio 4.

The mailbox.c file contains #include directives for legacy DSP/BIOS header files, such as
std.h. Since the path to these legacy header files is not currently being passed to the compiler,
these legacy header files won’t be found at compile time. So, the mailbox project must be
updated to add the following include path:

<DSP/BIOS 6 Install Dir>/packages/ti/bios/include

Additionally, the default hardware platform for the DM643x device that you chose during the
project creation points to a different RTSC configuration platform than what we need. The steps
in this section also show you how to correct the RTSC configuration platform file.

Follow these steps to add this include file directory to the compiler search path for the mailbox
program:

1. In the CCStudio 4 project pane, right-click the mailbox project and select Properties.

2. In the left pane of the mailbox project’s properties window, select C/C++ Build. You will see
the build properties in the right pane.

3. Under Configuration Settings, click the Tool Settings tab, then click the + sign next to
C6000 Compiler v6.1 to show the list of compiler options:

4. Click Include Options, then click the + icon next to Add dir to #include search path
(--include path):

5. Type the path to the DSP/BIOS legacy include directory in the Directory field and click OK.

6. Click OK in the Properties dialog to apply the settings you added.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 31

7.5 Updating the C Source File

The legacy C file mailbox.c contains a reference to the header file mailboxcfg.h, which was
generated by the DSP/BIOS 5 configuration. Now that DSP/BIOS 6 is being used to configure
the mailbox program, it is necessary to include the new generated file. This is accomplished by
including the xdc/cfg/global.h file, which indirectly includes the newly generated mailbox
configuration header file.

1. Open “mailbox.c” in a text editor.

2. Replace the following line in the mailbox.c file:

#include “mailboxcfg.h”

with this line:

#include <xdc/cfg/global.h>

3. Save and close the file.

7.6 Building and Running the Application
1. Make sure that the active project in CCSv4 is the “mailbox” project (rather than the

“mailbox_configuration” project.

2. Create and activate a target configuration by choosing File New Target
Configuration. Select the default location, then click Finish to bring up the general setup
for a target configuration.

3. Use the Basic tab under general setup to create a target configuration. For Connection,
select "Spectrum Digital DSK-EVM onboard USB Emulator”. For Device, select
"TMS320DM6437". Press Ctrl+S to save the target configuration.

4. Use View Target Configurations to see a list of your saved target configurations. Right-
click on the one you want to use and choose Set As Default from the pop-up menu.

5. Switch to the Debug perspective.

6. Open the RTA log view by selecting Tools RTA Printf Logs. This opens the RTA
Printf Logs pane.

7. Choose Project Build Active Project to build the “mailbox” project using DSP/BIOS 6.

8. Choose Target Debug Active Target to load the mailbox.out executable.

9. Connect CCStudio 4 to the DM6437 EVM board by selecting Target Connect Target.

SPRAAS7B

32 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

10. Run the application by selecting Target Run or pressing the F8 key. Output is displayed
in the RTA Printf Logs pane:

11. Halt the program by selecting Target Halt.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 33

7.7 Using XGCONF to View the DSP/BIOS Configuration

Note: This section applies only to users who are migrating to Code Composer Studio 4.

You can use the XGCONF tool to view a legacy DSP/BIOS 6 program’s RTSC configuration
graphically. (For legacy configurations, editing the DSP/BIOS configuration is not supported.) In
this section, you will learn how to open the XGCONF tool and use it to view the current
configuration settings of the mailbox program. For more about using XGCONF, see the
XGCONF User's Guide topic of the RTSC-pedia wiki.

1. To open XGCONF, you must be in the C/C++ perspective of CCStudio 4. Click the C/C++
icon to switch back to that perspective.

2. Make sure the project that contains the RTSC configuration file, “mailbox_configuration”, is
set to be the "Active" project. You can do this by right-clicking on the mailbox_configuration
project in the "C/C++ Projects" view and selecting Set as Active Project. This step is
important since XGCONF works with the properties of the current active project in the
workspace.

3. Right-click on the “mailbox.cfg” file in the project list and select Open With XGCONF: It
takes a few seconds for XGCONF to open. During this time, the CCStudio status bar shows
that the configuration is being processed and validated.

4. Let’s take a look at one of the legacy DSP/BIOS configuration objects that exist in the

mailbox program. Recall the following configuration code from the file
“mailbox_evmDM6437_custom.tci” that creates an MBX object called “mbx”:

var mbx;
mbx = bios.MBX.create("mbx");
mbx.messageSize = 8;
mbx.length = 2;

5. You can see the result of this configuration code in XGCONF. In the Outline pane, toggle
the full tree view of the modules on by clicking the icon. Click the + sign next to the
ti.bios package in the Outline pane to expand the view of this package, which contains
legacy modules.

http://rtsc.eclipse.org/docs-tip/XGCONF_User's_Guide
http://rtsc.eclipse.org/docs-tip

SPRAAS7B

34 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

6. Next, click the + sign next to the module “MBX”. Notice that there is an instance found
under “MBX” called “mbx”. Click on “mbx” to select it. You see the properties for this MBX
instance in the properties tab. Notice that its properties match those set in the configuration
code:

7. You can use XGCONF in this way to view other properties of a DSP/BIOS program’s

configuration. This is a good time to play around with the tool by viewing the TSK instances
and seeing how the properties there match exactly what was configured.

8 Porting the Mailbox Example to DSP/BIOS 6 with New Modules and APIs
In this section, you’ll manually convert the existing, legacy RTSC configuration file and legacy C
code of the mailbox example to use the new DSP/BIOS 6 modules and C APIs.

In the subsections that follow, you will update the configuration files (Section 8.1), C source files
(Section 8.2), and project. Then you will build and run the application (Section 8.3). After
following these steps, the application configuration and C file will no longer contain any
DSP/BIOS legacy configuration code or C code.

As an alternative to removing all legacy code, Sections 9 and 9.2 provide examples that
integrate new DSP/BIOS 6 code with existing legacy DSP/BIOS 5 code.

8.1 Updating the Configuration Files
Where DSP/BIOS 6 configuration code is very similar to DSP/BIOS 5 configuration code,
conversion is straightforward. However, there are some differences that make conversion less
simple. For example, heaps in DSP/BIOS 6 are configured very differently. The following steps
explain the configuration changes needed to port the mailbox application to DSP/BIOS 6.

These steps must be done manually; that is, the conversion tool may not be used to do this. The
conversion tool only works for converting a legacy Tconf configuration script to a legacy RTSC
configuration script. The conversion tool does not support converting a RTSC configuration that
uses legacy DSP/BIOS 6 modules to one that uses non-legacy DSP/BIOS 6 modules.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 35

8.1.1 Porting the mailbox.cfg File
In DSP/BIOS 6, the useModule() method enables the application to use a particular module,
such as a DSP/BIOS, XDCtools, or a user-defined module. The RTSC configuration script calls
useModule() for all modules the program configures, and it automatically links all the module’s
libraries to the application. Calling useModule() returns a reference to the module, which is
used to configure that module’s settings.
For the mailbox example, only DSP/BIOS and XDCtools modules are necessary. The program
needs to configure settings for the following modules:
• BIOS
• HeapMem
• Defaults
• Memory
• Cache
• Task
• Mailbox
• Clock
• LoggerBuf
• Diags
• Main
So, the useModule() method must also be called for each of these modules in order to link in
their libraries and/or configure them.
Follow these steps to use all of the modules for the mailbox program and to remove unneeded
legacy code:

1. Open “mailbox.cfg” in a text editor.

2. At the top of the file, add the following code to use all necessary modules:

/* use the BIOS module to link in the sysbios library */
xdc.useModule('ti.sysbios.BIOS');

/* use modules for memory heaps and cache configuration */
xdc.global.HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');
xdc.global.Defaults = xdc.useModule('xdc.runtime.Defaults');
xdc.global.Memory = xdc.useModule('xdc.runtime.Memory');
xdc.global.Cache = xdc.useModule('ti.sysbios.family.c64p.Cache');

/* use modules for Task, Mailbox, and Clock functionality */
xdc.global.Task = xdc.useModule('ti.sysbios.knl.Task');
xdc.global.Mailbox = xdc.useModule('ti.sysbios.ipc.Mailbox');
xdc.global.Clock = xdc.useModule('ti.sysbios.knl.Clock');

/* use modules needed for logging */
xdc.global.LoggerBuf = xdc.useModule('xdc.runtime.LoggerBuf');
xdc.global.Diags = xdc.useModule('xdc.runtime.Diags');
xdc.global.Main = xdc.useModule('xdc.runtime.Main');

SPRAAS7B

36 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

3. Remove legacy configuration code from the file. The mailbox.cfg file contains a legacy
reference that was necessary in Section 7, but is no longer needed. Delete the following line
of code from the file:

xdc.loadPackage('ti.bios.tconf');

4. Save and close the file.

8.1.2 Porting the evmDM6437_common.tci File

The “evmDM6437_common.tci” file contains code to enable Real Time Analysis, memory heaps,
Real Time Data Exchange, and the Task Manager. It also contains configuration code to create
a heap in the memory section IRAM, to map the heap in IRAM as the segment for DSP/BIOS
objects and mallocs, and to configure the cache and the clock.

In the following steps, you will convert this configuration code to DSP/BIOS 6 and remove
unneeded legacy code:

1. Open “evmDM6437_common.tci” in an editor.

2. Delete the following lines of code from the file:

/*
 * Enable common BIOS features used by all examples
 */
bios.enableRealTimeAnalysis(prog);
bios.enableMemoryHeaps(prog);
bios.enableRtdx(prog);
bios.enableTskManager(prog);

It is no longer necessary to use these legacy methods to enable RTA, memory heaps, RTDX or
the Task Manager. The Task Manager is enabled by default in DSP/BIOS 6 and the
configuration code to enable RTA and RTDX was already added in Section 7.2.1.

8.1.2.1 Converting the IRAM Heap Creation Code

Next the evmDM6437_common.tci file creates a heap in IRAM and maps the segment as the
default heap for DSP/BIOS objects and mallocs.

In DSP/BIOS 6, heaps and segments are configured using the Program, Memory, and
HeapMem modules. These modules function in DSP/BIOS 6 as the equivalent of the MEM
manager in DSP/BIOS 5.

The following steps create and set up a heap using the Program, HeapMem and Memory
modules. The configuration that follows sets the heap’s size, maps it to the IRAM segment, and
sets the heap as the default. For details on memory, see Section 5, “Migrating Memory
Configurations”.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 37

1. Delete the following code from the file “evmDM6437_common.tci”:

/* Enable heaps in IRAM and define label SEG0 for heap usage. */
bios.IRAM.createHeap = true;
bios.IRAM.enableHeapLabel = true;
bios.IRAM["heapLabel"] = prog.extern("SEG0");
bios.IRAM.heapSize = 0x2000;
bios.MEM.BIOSOBJSEG = prog.get("IRAM");
bios.MEM.MALLOCSEG = prog.get("IRAM");

2. Using the HeapMem reference created by the useModule() method in mailbox.cfg, create
a HeapMem heap instance of size 0x2000 by adding the following code:

var params = new HeapMem.Params;
params.size = 0x2000;
params.sectionName = "myHeap";
var heap = HeapMem.create(params);

3. Using the Memory reference created by the useModule() method in mailbox.cfg, assign
this heap to be the default Heap for the application. This also assigns the heap to be the
default heap for malloc() and free() calls. Add the following code:

Memory.defaultHeapInstance = heap;

4. Using the Memory reference created by the useModule() method in mailbox.cfg, assign
this heap to be the default Heap for DSP/BIOS objects. Add the following code:

Defaults.common$.instanceHeap = heap;

5. Using the Program module, which exists during RTSC configuration, map the section name
of our Heap “myHeap”, which was created in Step 2, to load data into the IRAM segment:

var IRAM = Program.cpu.memoryMap.IRAM;
Program.sectMap[“myHeap”] = {loadSegment: IRAM.name};

8.1.2.2 Converting the Cache Configuration Code
1. Delete the following lines of code from the file “evmDM6437_common.tci”:

bios.GBL.C64PLUSCONFIGURE = 1;
bios.GBL.C64PLUSMAR128to159 = 0x0000ffff;

In DSP/BIOS 5, configuring the cache required that this intention be explicitly set in the
Tconf include file (the first line of this code). This is no longer necessary in DSP/BIOS 6, as
the enabling of the cache is now handled in the platform file.

2. Add a line of code to set the MAR 128 – 159 register bit mask:

Cache.MAR128_159 = 0x0000ffff;

SPRAAS7B

38 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

8.1.2.3 Converting the Clock Configuration Code

The legacy module CLK corresponds to the DSP/BIOS 6 Clock module. The CLK module
allowed you to take a specific timer out of reset mode. This property is not supported by the
DSP/BIOS 6 Clock module, so the legacy CLK configuration code in the mailbox example should
be deleted.

1. Delete the following lines of code from the file “evmDM6437_common.tci”:

bios.CLK.TIMERSELECT = "Timer 0"; /* Select Timer 0 to drive BIOS CLK */
bios.CLK.RESETTIMER = true; /* Take the selected timer our of reset */

2. Add configuration code to set Timer 0 as the timer instance created by the Clock module:

Clock.timerId = 0; /* Select Timer 0 to drive BIOS CLK */

3. Save and close the file.

8.1.3 Porting the mailbox.tci File

The “mailbox.tci” file contains configuration settings for DSP/BIOS Logs and creates DSP/BIOS
Tasks for the mailbox program. While the code to configure logging in DSP/BIOS 6 is different
from earlier versions, DSP/BIOS 6 Task configuration is very similar to legacy TSK configuration.

In the subsections that follow, you will also convert the logging configuration code to DSP/BIOS
6 format and remove unneeded legacy code.

8.1.3.1 Converting the Log Configuration Code

In DSP/BIOS 5 applications, you printed to a DSP/BIOS LOG by defining a LOG buffer and
calling the LOG_printf() function to write to the buffer. In DSP/BIOS 6, you will create a
default logger to write log output to. One method is to use the XDCtools LoggerBuf module to
create a LoggerBuf instance and set the instance as the default logger for the system so that
output will be written to it.

Additionally, XDCtools provides greater control over the logging in an application by providing
the diagnostics module, “xdc.runtime.Diags,” to enable or disable the logging for a particular
module. For more information on Diags, see Section 8.2.7.

The following steps enable USER2 diagnostics for the mailbox program’s logging. You will
remove the legacy LOG configuration and replace it by setting up an XDCtools LoggerBuf
instance as the default logger in the mailbox application.

1. Open mailbox.tci for editing.

2. Delete the following lines of code:

var trace;
trace = bios.LOG.create("trace");
trace.bufLen = 256;
trace.logType = "circular";

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 39

3. Add the following code:

/* create trace logger */
var trace = LoggerBuf.create();

/* Set trace to be the default logger for the application. */
Main.common$.logger = trace;

/*
 * Enable diagnostics for USER2 events for our program. Logging in the C
 * Code will be done using USER2 events. Disabling this would disable all of
 * the logging done in mailbox.c
 */
Main.common$.diags_USER2 = Diags.RUNTIME_ON;

4. Delete the lines of code that configure the LOG_system Log. This Log buffer is not used in
DSP/BIOS 6.

/* Set the buffer length of LOG_system buffer */
bios.LOG_system.bufLen = 512;

8.1.3.2 Converting the Task Configuration Code

The DSP/BIOS 5 TSK module corresponds to the DSP/BIOS 6 Task module. Creating a static
Task in DSP/BIOS 6 is similar to creating a static TSK in DSP/BIOS 5, and is fairly
straightforward.

1. Delete the legacy TSK configuration code:

/*
 * Create and initialize four TSKs
 */
var reader0;
reader0 = bios.TSK.create("reader0");
reader0.priority = 1;
reader0["fxn"] = prog.extern("reader");

var writer0;
writer0 = bios.TSK.create("writer0");
writer0.priority = 1;
writer0["fxn"] = prog.extern("writer");
writer0.arg0 = 0;

var writer1;
writer1 = bios.TSK.create("writer1");
writer1.priority = 1;
writer1["fxn"] = prog.extern("writer");
writer1.arg0 = 1;

var writer2;
writer2 = bios.TSK.create("writer2");
writer2.priority = 1;
writer2["fxn"] = prog.extern("writer");
writer2.arg0 = 2;

SPRAAS7B

40 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

2. Add the following Task configuration code:

/*
 * Create and initialize four Tasks
 */
var reader0Params = new Task.Params();
reader0Params.priority = 1;
var reader0 = Task.create('&reader', reader0Params);

var writer0Params = new Task.Params();
writer0Params.arg0 = 0;
writer0Params.priority = 1;
var writer0 = Task.create('&writer', writer0Params);

var writer1Params = new Task.Params();
writer1Params.arg0 = 1;
writer1Params.priority = 1;
var writer1 = Task.create('&writer', writer1Params);

var writer2Params = new Task.Params();
writer2Params.arg0 = 2;
writer2Params.priority = 1;
var writer2 = Task.create('&writer', writer2Params);

3. Save and close the file.

8.1.4 Porting the mailbox_evmDM6437_custom.tci File

The mailbox_evmDM6437_custom.tci file contains configuration settings for the legacy MBX
module. The DSP/BIOS 5 MBX module corresponds to the DSP/BIOS 6 Mailbox module, and
creating a static Mailbox in DSP/BIOS 6 is similar to creating a static MBX in DSP/BIOS 5.

In the next steps, you will convert this configuration code to DSP/BIOS 6 and remove unneeded
legacy code.

1. Delete the legacy MBX configuration code:

/* Create a mbx */

var mbx;
mbx = bios.MBX.create("mbx");
mbx.messageSize = 8;
mbx.length = 2;

2. Add the following Mailbox configuration code:

var mbxParams = new Mailbox.Params(); // Use a default Mailbox Params
var messageSize = 8;
var length = 2;
Program.global.mbx = Mailbox.create(messageSize, length, mbxParams);

3. Save and close the file.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 41

8.1.5 Viewing the DSP/BIOS 6 Mailbox Configuration Using XGCONF

Note: This section applies only to users who are migrating to Code Composer Studio 4.

In Section 7.7, you saw how to use XGCONF to view the legacy DSP/BIOS 6 configuration of
the mailbox program. Now that the mailbox.cfg file has been updated to use non-legacy
configuration code, you can again view it graphically with XGCONF, although you’ll have to look
in different places to see what our configuration contains. (Previously the mailbox configuration
settings were found under “ti.bios”. Now they’ll be found under “ti.sysbios”.)

In this section, you will learn where to look in XGCONF to find DSP/BIOS 6 module settings.

1. Make sure the project that contains the RTSC configuration file, “mailbox_configuration”, is
set to be the "Active" project. You can do this by right-clicking on the mailbox_configuration
project in the "C/C++ Projects" view and selecting Set as Active Project.

2. To open XGCONF, you must be in the C/C++ perspective of CCStudio. If necessary, click
the C/C++ icon to switch back to that perspective.

3. To open XGCONF, right click the “mailbox.cfg” file in the project pane, and then select
Open With XGCONF:

4. Recall the configuration code you added in Section 8.1.4 to create a mailbox instance in the

file “mailbox_evmDM6437_custom.tci”. Recall that in that section you added the following
code:

xdc.global.Mailbox = xdc.useModule('ti.sysbios.ipc.Mailbox');
. . .
var mbxParams = new Mailbox.Params(); // Use a default Mailbox Params
var messageSize = 8;
var length = 2;
Program.global.mbx = Mailbox.create(messageSize, length, mbxParams);

SPRAAS7B

42 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

5. You can also see the result of this configuration code in XGCONF, however, it will be in a
different place—under the “ti.sysbios.ipc.Mailbox” module. Click the + sign next to the
ti.sysbios.ipc package in the Outline pane to expand the view of this package.

6. In the Outline pane, toggle the full tree view of the modules on by clicking the icon.
Expand the tree in the Outline page as shown in the following figure. Next, click the + sign
next to the module Mailbox. Notice that there is an instance under Mailbox called mbx.
This is the instance created by the RTSC configuration code. Click on mbx to select it. You
will see the properties for this Mailbox instance in the Properties pane to the left, under
Create Args. Notice that its properties match what was set in the configuration code:

7. Next, let’s look at some of the Task instances. Recall the Task instances that were created

by the following code from in Section 8.1.3.2.

var reader0Params = new Task.Params();
reader0Params.priority = 1;
var reader0 = Task.create('&reader', reader0Params);

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 43

8. In the Outline pane, expand the tree as shown in the following figure. Notice that there are
several instances found under Task, all corresponding to the instances created by the
mailbox.cfg script:

You can use XGCONF in this way to view other properties of a DSP/BIOS program’s
configuration. All you need to remember is that the layout of the Outline tab reflects the layout of
the DSP/BIOS 6 and XDCtools packages and modules. Just find the module of interest in the
Outline tab, and you can see the end result of the RTSC configuration script for that module.

8.2 Updating the C Source File

The C source file “mailbox.c” contains legacy API calls and includes legacy header files. In order
to port the source file to DSP/BIOS 6, these legacy headers and C API calls must be changed to
their DSP/BIOS 6 equivalents.

8.2.1 Replacing the Legacy Header Files
1. Open the “mailbox.c” file for editing and find the #include statements near the top of the

file. The mailbox.c file includes the following legacy header files:

#include <std.h>
#include <log.h>
#include <mbx.h>
#include <tsk.h>

SPRAAS7B

44 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

2. The first step in converting these #include statements is to determine their DSP/BIOS 6
counterparts. For the most part, a DSP/BIOS 6 header file has a similar name to its legacy
counterpart. For example, the legacy “tsk.h” corresponds to “Task.h” in DSP/BIOS 6. The
DSP/BIOS 6 header files are found in the ”ti/sysbios” directory and sub-directories.
DSP/BIOS 6 requires that #include statements use the package path of the header files,
so it is important to note this path when locating the header files. The DSP/BIOS 5 header
files included in the mailbox.c source file map to DSP/BIOS 6 header files as follows:

std.h ----> xdc/std.h
log.h ----> xdc/runtime/System.h, xdc/runtime/Log.h
mbx.h ----> ti/sysbios/ipc/Mailbox.h
tsk.h ----> ti/sysbios/knl/Task.h

3. In addition, the BIOS header file must be included in the application, so you will need:

ti/sysbios/BIOS.h

4. Delete the existing #include statements from the “mailbox.c” file, and replace them with
the new list of DSP/BIOS 6 header files:

#include <xdc/std.h>
#include <xdc/runtime/System.h>
#include <xdc/runtime/Log.h>
#include <xdc/runtime/Diags.h>
#include <ti/sysbios/ipc/Mailbox.h>
#include <ti/sysbios/knl/Task.h>
#include <ti/sysbios/BIOS.h>
#include <xdc/cfg/global.h>

For more information on mapping legacy modules to DSP/BIOS 6 and XDCtools modules, see
Section 4.1, “Legacy Module Mappings and API Guide”.

8.2.2 Updating the main() Function to Call BIOS_start()
All DSP/BIOS 6 programs must call the BIOS_start() function. The BIOS_start() function
should be called within main() after all other user initialization code. Add the following code to
the main() function of mailbox.c:

BIOS_start();

8.2.3 Replacing the Legacy MBX_post() and MBX_pend() Calls
The DSP/BIOS 5 MBX_pend() and MBX_post() APIs correspond to the DSP/BIOS 6
Mailbox_pend() and Mailbox_post() APIs. Make the following changes to the mailbox.c
file to use the Mailbox module APIs:

1. In the “mailbox.c” file, go to the reader() function and replace the following legacy code:

if (MBX_pend(&mbx, &msg, TIMEOUT) == 0) {

with the DSP/BIOS 6 equivalent:

if (Mailbox_pend(mbx, &msg, TIMEOUT)== 0) {

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 45

2. In the “mailbox.c” file, find the writer() function and replace the following line of legacy
code:

MBX_post(&mbx, &msg, TIMEOUT);

with the DSP/BIOS 6 equivalent:

Mailbox_post(mbx, &msg, TIMEOUT);

8.2.4 Replacing the Legacy ArgToInt() Macro Call
The ArgToInt() macro is defined in the legacy std.h file. To remove this legacy dependency,
replace it with a simple cast.

In the “mailbox.c” file, go to the writer() function and replace the following line of legacy code:

Int id = ArgToInt (id_arg);

with:

Int id = (Int)id_arg;

8.2.5 Replacing the Legacy LOG_printf() API Calls with Log_print*() Calls

Section 8.1.3.1 showed you how to create a trace logger for the application in the RTSC
configuration file with the XDCtools LoggerBuf module. Now you will modify the C code to use
the new logging API, Log_print*(), where “*” is a place holder for the number of values to
print. For example, if a print statement does not print any arguments use Log_print0(); if a
print statement prints one value use Log_print1(), and so on.

The Log_print*() statement does not specify a log handle, but specifies a Log event
diagnostic argument instead. The Log event diagnostic should match what was specified in the
configuration script; in this case it was diags_USER2. For more information on diagnostics
masks, see Section 8.2.7.

1. In the “mailbox.c” file, go to the reader() function and find the LOG_printf()
statements. Notice the number of variables that each print statement prints; there are
LOG_printf() calls that print zero arguments, and one that prints two arguments. These
calls must be replaced with the appropriate Log_print*() call, depending on the number
of arguments being printed.

2. The first LOG_printf() call in the reader() function does not print any arguments.
Therefore, it should be substituted with the Log_print0() API. Replace the following line
of code in the reader() function:

LOG_printf(&trace, "timeout expired for MBX_pend()");

with the new API call:

Log_print0(Diags_USER2, "timeout expired for MBX_pend()");

SPRAAS7B

46 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

Note that Diags_USER2 is specified as the first argument to the new function, not a LOG
buffer handle as in the legacy API. This sets the diagnostics mask for our logging to
USER2, so that all Log_print*() statements specifying Diags_USER2 will have their
output displayed when the application is run.

3. The second LOG_printf() call in the reader() function prints two values, so replace it
with the Log_print2() API. Replace the following line of code in the reader() function:

LOG_printf(&trace, "read '%c' from (%d).", msg.val, msg.id);

with the new API call:

Log_print2(Diags_USER2, "read '%c' from (%d).", msg.val, msg.id);

4. Replace the following line of code in the reader() function:

LOG_printf(&trace, "reader done.");

with the new API call:

Log_print0(Diags_USER2, "reader done.");

5. Go to the writer() function and replace the following line of code:

LOG_printf(&trace, "(%d) writing '%c' ...", id, (Int)msg.val);

with the new API call:

Log_print2(Diags_USER2, "(%d) writing '%c' ...", id, (Int)msg.val);

Also replace:

LOG_printf(&trace, "writer (%d) done.", id);

with:

Log_print1(Diags_USER2, "writer (%d) done.", id);

6. Save and close the file.

8.2.6 Optional: Replacing the TSK_yield() Legacy API Call

The mailbox example contains a call to TSK_yield() that is commented out. If you wish to
uncomment this call, it must first be converted to a DSP/BIOS 6 call.

1. Open the “mailbox.c” file for editing.

2. Go to the writer() function and replace the following legacy API call:

TSK_yield()

with:

Task_yield()

3. Save and close the file.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 47

8.2.7 More About Diagnostics Masks (Diags)
As shown in Section 8.2.5, the Log_print*() APIs use a diagnostics mask as the first
argument. As mentioned previously, this mask controls the logging output displayed for the
program at run time for greater control over the output of the program.

There are different types of diagnostics for each module—any of which may be enabled or
disabled—that categorize the logs in the application. This makes it easy to turn off all logging
and print statements for an application, or disable a subset of the print output in the application.

To see the logging results, the diagnostics set for each of the Log_print*() statements must
match what was specified in the application’s RTSC configuration. For the mailbox application,
this was diags_USER2, so that should be the first argument to all Log_print*() calls.

For example, all of the logging output generated by the Log_print*() statements may be
disabled by adding the following line of configuration code and rebuilding the application:

Main.common$.diags_USER2 = Diags.RUNTIME_OFF;

To turn the logging output back on, change this line of code to:

Main.common$.diags_USER2 = Diags.RUNTIME_ON;

Another way to change the output is by changing the diagnostics mask in a Log_print*()
statement. For example, you could change the Log_print*() calls in the writer() function
to specify the Diags_USER1 mask, instead of Diags_USER2.

Specifically, the print statements in the writer() function would change to:

Log_print2(Diags_USER1, "(%d) writing '%c' ...", id, (Int)msg.val);

and:

Log_print1(Diags_USER1, "writer (%d) done.", id);

If you have made the changes to the mailbox.c file (don’t forget to rebuild), only the program
output for the reader() function print statements would be displayed. Since the diagnostics for
USER1 were never enabled in the configuration, changing the diagnostics mask of the
writer() function’s print statements to USER1 disabled them. Adding the following line of
configuration code to mailbox.tci would enable the print output for USER1, and allow the output
of the writer() function to be displayed:

Main.common$.diags_USER1 = Diags.RUNTIME_ON;

For more information on Diags, please see Section 8.2.5 for diagnostic masks used as
arguments in Log_print*() calls, or see the online CDOC reference documentation that came
with your XDCtools installation.

SPRAAS7B

48 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

8.3 Building and Running the Application

Note: This section applies only to users who are migrating to Code Composer Studio 4.

1. Make sure that the “mailbox” project is the active project. Then, from within the C/C++
perspective, select Project Build Active Project to build the mailbox application using
DSP/BIOS 6.

2. Enter the Debug perspective in order to load the mailbox.out executable. If you have not
used it before, you can open this perspective by choosing Launch TI Debugger from the
drop-down arrow next to the debug icon:

3. Connect CCStudio 4 to the DM6437 EVM board by selecting Target Connect Target.
4. Reset the board by selecting Run Reset CPU Reset.
5. Load the program by selecting Target Load Program and choosing the application

executable “<working directory path>/mailbox/Debug/mailbox.out”.

6. Run the application by selecting Run Run or pressing the F8 key. Output is displayed in
the RTA Printf Logs pane, as shown in the following picture.

7. Halt the program by selecting Run Halt.

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 49

9 Adding DSP/BIOS Tasks and Communication to a Legacy Application
Once you have updated an DSP/BIOS 5 legacy application to build and run using DSP/BIOS 6
legacy support, you may want to expand upon that program, making use of some of the new
DSP/BIOS 6 modules and code. This section shows how to add two new DSP/BIOS 6 Tasks to
a hypothetical legacy program that already contains two legacy TSKs.

Suppose a legacy DSP/BIOS 5 program contains two TSKs that run the following “reader” and
“writer” functions, which communicate via MBX. Section 9.1 shows how to add two new
DSP/BIOS 6 Tasks, which communicate with each other via Mailbox. Section 9.2 shows how the
legacy TSKs can communicate with the DSP/BIOS 6 Tasks, and vice versa.

Since this section expands on Section 4.2, “Extending Your Legacy Program with DSP/BIOS 6
APIs”, you should read that section first.

/* ======== reader ======== */
Void reader(Void)
{
 MsgObj msg;
 Int i;

 for (i=0; ;i++) {
 /* wait for mailbox to be posted by writer() */
 if (MBX_pend(&mbx, &msg, TIMEOUT) == 0) {
 Log_print0(Diags_USER2, "BIOS5 reader: timeout expired for MBX_pend()");
 break;
 }
 Log_print2(Diags_USER2, "BIOS 5 reader: read '%c' from BIOS 5 writer (%d).",
 msg.val, msg.id);
 }
 Log_print0(Diags_USER2, "BIOS 5 reader done.");
}

/* ======== writer ======== */
Void writer(Arg id_arg)
{
 MsgObj msg;
 Int i;
 Int id = ArgToInt (id_arg);

 for (i=0; i < NUMMSGS; i++) {
 /* fill in value */
 msg.id = id;

 /* Send message to BIOS 5 MBX. Use legacy API to communicate with legacy code */
 msg.val = i % NUMMSGS + (Int)('a');
 MBX_post(&mbx, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 5 writer: (%d) using MBX_post to write '%c' to the
BIOS 5 MBX ...", id, (Int)msg.val);
 }

 Log_print1(Diags_USER2, "BIOS 5 writer: (%d) done.", id);
}

Notice that although this code is “old” legacy code, it has been updated to use the “new” API
Log_print*(). This causes the output of the program to be written into the same log buffer
and displayed in order. For more information on this, see Section Error! Reference source not
found..

SPRAAS7B

50 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

9.1 Adding Two New DSP/BIOS 6 Tasks to a Legacy Program

This section shows how you can expand the program to add two new Tasks.

The two new DSP/BIOS 6 Tasks being added are considered “new code.” As such, there are
two new functions written for them, both of which use DSP/BIOS 6 APIs. Since they will
communicate with one another, they will use a DSP/BIOS 6 Mailbox object and APIs. All of this
conforms to the rules of communication described in Section 4.2.

1. In order to add two new DSP/BIOS 6 Tasks and a Mailbox object to an existing application,
you would first add RTSC configuration code similar to the following to the *.cfg file. The
following code statically configures two new Tasks and a Mailbox, and must be added after
all existing legacy configuration code in order to work correctly (see Section 4.2.1 for
details).

/* create two new BIOS 6 Tasks */
xdc.global.Task = xdc.useModule("ti.sysbios.knl.Task");
var tskParams = new Task.Params();
tskParams.priority = 1;
Task.create('&bios6Reader', tskParams);
Task.create('&bios6Writer', tskParams);

/* create a BIOS 6 Mailbox for communication between BIOS 6 Tasks */
xdc.global.Mailbox = xdc.useModule("ti.sysbios.ipc.Mailbox");
var mbxParams = new Mailbox.Params();
var messageSize = 8;
var length = 2;
Program.global.bios6Mailbox = Mailbox.create(messageSize, length, mbxParams);

2. Since this example mixes legacy and new code, you must include the DSP/BIOS 6 header
files before the existing DSP/BIOS 5 legacy headers in the existing legacy C file (note that
the order of XDCtools header files is not important). You would add code similar to the
following lines shown in bold to include necessary header files for the new Task and
Mailbox code. All of the #include directives needed are shown, so that the required ordering
is clear:

/* header files for new code must come before legacy header files */
#include <ti/sysbios/Bios.h>
#include <ti/sysbios/ipc/Mailbox.h>
#include <ti/sysbios/knl/Task.h>

#include <xdc/runtime/LoggerBuf.h>
#include <xdc/runtime/Log.h>
#include <xdc/runtime/Diags.h>
#include <xdc/runtime/System.h>
#include <xdc/cfg/global.h>

/* existing legacy header files */
#include <std.h>
#include <mbx.h>
#include <tsk.h>

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 51

3. The following new Task functions could be used for the new DSP/BIOS 6 Tasks:

/*
 * ======== bios6Reader ========
 */
Void bios6Reader(Arg id_arg)
{
 MsgObj msg;
 Int i;

 for (i=0; ;i++) {
 /* wait for mailbox to be posted by writer() */
 if (Mailbox_pend(bios6Mailbox, &msg, TIMEOUT) == 0) {
 Log_print0(Diags_USER2, "BIOS 6 reader: timeout expired for MBX_pend()");
 break;
 }

 Log_print2(Diags_USER2, "BIOS 6 reader: read '%c' from BIOS 6 writer (%d).",
 msg.val, msg.id);
 }

 Log_print0(Diags_USER2, "BIOS 6 reader: reader done.");
}

/*
 * ======== bios6Writer ========
 */
Void bios6Writer(Arg id_arg)
{
 MsgObj msg;
 Int i;
 Int id = (Int)id_arg;

 for (i=0; i < NUMMSGS; i++) {
 /* fill in value */
 msg.id = id;
 msg.val = i % NUMMSGS + (Int)('a');

 /* Send msg to BIOS 6 Mailbox. Use new BIOS 6 API to communicate
 * with non-legacy BIOS 6 code. */
 msg.val = i % NUMMSGS + (Int)('a');
 Mailbox_post(bios6Mailbox, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 6 writer: (%d) using Mailbox_post to write '%c'
to the BIOS 6 Mailbox ...", id, (Int)msg.val);
 }

 Log_print1(Diags_USER2, "BIOS 6 writer: (%d) done.", id);
}

4. To properly run a DSP/BIOS 6 program, you would also need to add the following code to
the main() function:

BIOS_start();

SPRAAS7B

52 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

Building and running should yield output similar to the following for this hypothetical example:

9.2 Communicating Between the Existing Legacy TSKs and the New Tasks

The example in the subsections that follow shows how to update our hypothetical example to
communicate between legacy TSK functions and new Task functions.

This section shows how to update the code in Section 9.1 to allow the legacy TSKs to
communicate with the new Tasks, and vice versa.

9.2.1 Update the bios6Writer() Task to Post a Message to the Legacy reader() TSK

First, let’s see how you could change the new bios6Writer() Task to communicate with the
legacy reader() TSK. This is an example of new code communicating with legacy code.

1. Look at the legacy TSK reader() function in Section 9. Notice that it is waiting for a
message via:

MBX_pend(mbx, ...);

To update the bios6Writer() Task to send a message to the legacy reader() TSK, we
must use code that matches that of the legacy code in the reader() function. This means
the following legacy call must be made from within the bios6Writer() Task, which uses
the legacy MBX object:

MBX_post(mbx, ...);

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 53

2. To update the bios6Writer() function to send the legacy reader() TSK a message,
you could add the code shown in bold. (The entire updated function is shown for clarity; new
additions are shown in bold.)

/* ======== bios6Writer ======== */
Void bios6Writer(Arg id_arg)
{
 MsgObj msg;
 Int i;
 Int id = (Int)id_arg;

 for (i=0; i < NUMMSGS; i++) {
 /* fill in value */
 msg.id = id;
 msg.val = i % NUMMSGS + (Int)('a');

 if (i == NUMMSGS - 1) {
 /* Send message to BIOS 5 MBX. Use legacy API to talk with old code. */
 msg.val = '6';
 MBX_post(&mbx, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 6 writer: (%d) using MBX_post to write '%c'
to the BIOS 5 MBX ...", id, (Int)msg.val);
 }
 else {
 /*
 * Send msg to BIOS 6 Mailbox. Use new BIOS 6 API to communicate
 * with non-legacy BIOS 6 code:
 */
 msg.val = i % NUMMSGS + (Int)('a');
 Mailbox_post(bios6Mailbox, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 6 writer: (%d) using Mailbox_post to write
'%c' to the BIOS 6 Mailbox ...", id, (Int)msg.val);
 }
 }

 Log_print1(Diags_USER2, "BIOS 6 writer: (%d) done.", id); }
}

SPRAAS7B

54 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

3. Look at the legacy reader() function in Section 9. To handle receiving of the message
from the bios6Writer() Task you would add the new code is shown in bold.

/*
 * ======== reader ========
 */
Void reader(Void)
{
 MsgObj msg;
 Int i;

 for (i=0; ;i++) {

 /* wait for mailbox to be posted by writer() */
 if (MBX_pend(&mbx, &msg, TIMEOUT) == 0) {
 Log_print0(Diags_USER2, "BIOS5 reader: timeout expired for MBX_pend()");
 break;
 }

 /* print value */
 if (msg.val == '6') {
 Log_print2(Diags_USER2, "BIOS 5 reader: read '%c' from BIOS 6 writer
(%d).", msg.val, msg.id);
 }
 else {
 Log_print2(Diags_USER2, "BIOS 5 reader: read '%c' from BIOS 5 writer
(%d).", msg.val, msg.id);
 }
 }

 Log_print0(Diags_USER2, "BIOS 5 reader done.");

}

9.2.2 Updating the Legacy writer() TSK to Post a Message to the bios6Reader() Task

Now, let’s see how we would change the legacy writer() TSK to communicate with the new
bios6Reader() Task. This is an example of old code communicating with new DSP/BIOS 6
code.

1. Look at the bios6Reader() function in Section 9.1. Notice that it waits for a message via:

Mailbox_pend(bios6Mailbox, ...);

To update the legacy writer() TSK to send a message to new the bios6Reader()
Task, we again must use code that matches what’s used by the entity that we want to
communicate with. So, the writer() TSK must use the new Mailbox module APIs to
communicate with bios6Reader(), using the new Mailbox object:

Mailbox_post(bios6Mailbox, ...);

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 55

2. To update the writer() function to send the bios6Reader() Task its last message, the
following code shown in bold could be added:

/* ======== writer ======== */
Void writer(Arg id_arg)
{
 MsgObj msg;
 Int i;
 Int id = ArgToInt (id_arg);

 for (i=0; i < NUMMSGS; i++) {
 /* fill in value */
 msg.id = id;
 if (i == NUMMSGS - 1) {
 /* Send msg to BIOS 6 Mailbox. Use new BIOS 6 API to communicate
 * from legacy code to new BIOS 6 code. */
 msg.val = '5';
 Mailbox_post(bios6Mailbox, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 5 writer: (%d) using Mailbox_post to
write '%c' to the BIOS 6 Mailbox ...", id, (Int)msg.val);
 }
 else {
 /* Send message to BIOS 5 MBX. Use legacy API to communicate with
 * legacy code. */
 msg.val = i % NUMMSGS + (Int)('a');
 MBX_post(&mbx, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 5 writer: (%d) using MBX_post to write
'%c' to the BIOS 5 MBX ...", id, (Int)msg.val);
 }
 }
 Log_print1(Diags_USER2, "BIOS 5 writer: (%d) done.", id);
}

9.2.3 Build and Run

You should see output similar to the following for this example:

SPRAAS7B

56 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

10 Building the Mailbox Example Using a Custom Platform File
As discussed previously, a custom platform file must be used to create or redefine Memory
segments for a platform. In DSP/BIOS 6, Memory segments are no longer created and updated
in the configuration file.

The subsections that follow provide an overview of a custom platform file for the evmDM6437,
show how to use this file to add new memory sections to the program, and detail the steps to
build the mailbox example using this custom platform. You will generate the custom
“evmDM6437.xs” platform file, build the mailbox example using the custom platform file, and
update the file to redefine Memory sections.

10.1 The Generated evmDM6437.xs File

In Section 7.2.2, “Converting the Mailbox Configuration Using the Conversion Tool”, you may
have used the conversion tool to convert the “mailbox.tcf” file to the “mailbox.cfg” RTSC
configuration file. One of the byproducts of running the conversion tool is a generated custom
platform file. If you did not perform the steps in Section 7.2.2 (it was an optional section), then
please do so now in order to generate a custom platform file for your hardware.

When the conversion tool is run on a Tconf script, it parses the Tconf script’s configuration and
finds all of the Memory segment settings. It creates the “evmDM6437.xs” custom platform file
and puts the memory information into this file in a RTSC platform format. The custom platform
can be used to build the application with all the memory segment settings of the original Tconf
configuration.

Open the “evmDM6437.xs” file and look at the code. Notice that it defines an array called
memory[], and then defines each element of that array with Memory segment information.

var memory = [];
memory[0] = ["DDR2",
{
 name: "DDR2",
 base: 0x80000000,
 len: 0x8000000,
 space: "code/data"
}];
...

Notice that the Memory segments defined in this file are the same as in the original DSP/BIOS 5
mailbox example’s Tconf configuration for the evmDM6437 platform. The conversion tool simply
adds the same Memory segments that existed in the DSP/BIOS 5 application.

Scroll down to the end of the file to see the platform definition:

Build.platformTable['ti.platforms.generic:plat'] = {
 clockRate: 594,
 catalogName: 'ti.catalog.c6000',
 deviceName: 'TMS320CDM6437',
 customMemoryMap: memory
};

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 57

This code adds the platform “ti.platforms.generic:plat” to the build system, setting its clock rate,
catalog name, device name, and memory map. Notice that the memory[] array defined here is
passed as the “customMemoryMap” argument.

For convenience, the contents of the file “evmDM6437.xs” have been provided in Section 10.5.

10.2 Building the Mailbox Example Using the Custom evmDM6437.xs Platform File

10.2.1 Observing the Existing Memory Segments of the Mailbox Program
1. Open the generated linker command file for the mailbox example “mailbox_p64p_x.xdl”.

This file is generated in the Debug\configPkg\package\cfgl subdirectory of the working
directory.

2. Scroll down in the file and observe the “Memory” section, which shows the Memory
segments defined for the program. It should look like the following code. After the project is
rebuilt using the custom platform file, the Memory segments will be redefined.

MEMORY
{
 IRAM (RWX) : org = 0x10800000, len = 0x20000
 L1DSRAM (RW) : org = 0x10f04000, len = 0xc000
 DDR2 : org = 0x80000000, len = 0x8000000
 SRAM : org = 0x42000000, len = 0x200000
}

3. Close the mailbox_p64p_x.xdl file.

10.2.2 Setting up config.bld to Load the Custom Platform File
1. In the working directory, create a new file called “config.bld” and open it for editing using

your favorite text editor.

2. Add the following line of code to the config.bld file. This tells the build system to look in the
custom platform file “evmDM6437.xs” when trying to find the custom platform
“ti.platforms.generic:plat”:

xdc.loadCapsule("evmDM6437.xs");

3. Save and close the new config.bld file.

SPRAAS7B

58 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

10.2.3 Updating the Mailbox Project to Load the Custom Platform and to Use Config.bld

Note: This section applies only to users who are migrating to Code Composer Studio 4.

1. In CCStudio 4, if it is not open already, open the mailbox project.

2. Make sure that you are in the C/C++ Perspective by clicking the button with that label.

3. In the project pane, right click on your project, and select Build Properties.

4. Under Configuration Settings, click the Tool Settings tab, and then click the + sign next
to XDCtools v3.15 to expand the list of XDCtools options. Click Basic Options.

5. For Build configuration file (-b), specify “config.bld”. For RTSC platform (–p), specify
“ti.platforms.generic:plat”:

6. Click OK to save the project settings.

7. Select Project-->Build Active Project to rebuild the project using the custom platform file.

10.2.4 Observing the New Memory Segments Created by the Custom Platform File
1. Open the generated linker command file for the mailbox example “mailbox_p64p_x.xdl”

2. Again, scroll down into the file and observe the “Memory” section, which shows the Memory
segments defined for the program. It should now contain the following code. Notice that
there are now two additional Memory segments, “CACHE_L1P” and “CACHE_L1D”. These
segments were defined in the custom platform file “evmDM6437.xs”, and did not exist in the
default platform for the evmDM6437 that came with your installation:

MEMORY
{
 DDR2 : org = 0x80000000, len = 0x8000000
 IRAM : org = 0x10800000, len = 0x20000
 CACHE_L1D : org = 0x10f10000, len = 0x8000
 SRAM : org = 0x42000000, len = 0x200000
 CACHE_L1P : org = 0x10e08000, len = 0x8000
 L1DSRAM : org = 0x10f04000, len = 0xc000
}

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 59

10.3 Updating the evmDM6437.xs File to Redefine Memory Segments

You may use the custom platform file to redefine Memory segments as needed. This section
describes how to shorten an existing Memory segment, IRAM, to make room for and create a
new Memory segment, newIRAM.

1. Open the evmDM6437.xs platform file.

2. Redefine IRAM to be half its original size by setting its length to 0x10000:

memory[1] = ["IRAM",
 {
 name: "IRAM",
 base: 0x10800000,
 len: 0x10000, //previously set to 0x20000
 space: "code/data"
 }];

3. Define a new section called newIRAM in the evmDM6437.xs file. Add this code after the
“L1DSRAM” definition:

memory[6] = ["newIRAM",
 {
 name: "newIRAM",
 base: 0x10810000,
 len: 0x10000,
 space: "code/data"
 }];

4. Rebuild the project.

5. Open the generated linker command file for the mailbox example “mailbox_p64p_x.xdl”.
Observe the new Memory segment “newIRAM”.

MEMORY
{
 DDR2 : org = 0x80000000, len = 0x8000000
 IRAM : org = 0x10800000, len = 0x10000
 CACHE_L1D : org = 0x10f10000, len = 0x8000
 SRAM : org = 0x42000000, len = 0x200000
 CACHE_L1P : org = 0x10e08000, len = 0x8000
 L1DSRAM : org = 0x10f04000, len = 0xc000
 newIRAM : org = 0x10810000, len = 0x10000
}

The program has now been configured and built with a new set of Memory segments.

10.4 Updating Platform Definitions to Load Code and Data in Different Segments

Another benefit of defining a custom platform file is that it allows you to specify a Memory
segment for all code and data sections to load into. You can use the following values to specify
the Memory segment for loading all code and data sections of your program:

• codeMemory

• dataMemory

SPRAAS7B

60 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

Update the evmDM6437.xs platform file to change the default Memory segments for loading the
code and data sections for the mailbox program. Add the following lines in bold to the file:

Build.platformTable['ti.platforms.generic:plat'] = {
 clockRate: 594,
 catalogName: 'ti.catalog.c6000',
 deviceName: 'TMS320CDM6437',
 customMemoryMap: memory,
 codeMemory: "SRAM",
 dataMemory: "IRAM",
};

Rebuild the mailbox project, and open the generated linker command file for the mailbox
example “mailbox_p64p_x.xdl”. This file is generated in the Debug\configPkg\package\cfgl
subdirectory of the working directory.

Scroll to the end of the file, and you will see that the code and data sections are now assigned to
load into SRAM and IRAM, respectively:

SECTIONS
{
 /* previously, these were all set to load into “DDR2” */

 .text: load >> (SRAM)
 .switch: load >> (IRAM)
 .stack: load > (IRAM)
 .vecs: load >> (SRAM)
 .taskStackSection: load >> (IRAM)
 .args: load > (IRAM align 0x4), fill = 0 { _argsize = 0x200; }
 xdc.noload: load >> (IRAM), type = NOLOAD
 .sysmem: load > (IRAM)
 .far: load >> (IRAM)
 myHeap: load >> (IRAM)
 .data: load >> (IRAM)
 .cinit: load > (IRAM)
 .bss: load > (IRAM)
 .const: load >> (IRAM)
 .pinit: load > (IRAM)
 .cio: load >> (IRAM)
}

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 61

10.5 Contents of the Originally Generated evmDM6437.xs File

var memory = [];

memory[0] = ["DDR2",
 { name: "DDR2",
 base: 0x80000000,
 len: 0x8000000,
 space: "code/data"
 }];

memory[1] = ["IRAM",
 { name: "IRAM",
 base: 0x10800000,
 len: 0x20000,
 space: "code/data"
 }];

memory[2] = ["CACHE_L1D",
 { name: "CACHE_L1D",
 base: 0x10f10000,
 len: 0x8000,
 space: "Cache"
 }];

memory[3] = ["SRAM",
 { name: "SRAM",
 base: 0x42000000,
 len: 0x200000,
 space: "code/data"
 }];

memory[4] = ["CACHE_L1P",
 { name: "CACHE_L1P",
 base: 0x10e08000,
 len: 0x8000,
 space: "Cache"
 }];

memory[5] = ["L1DSRAM",
 { name: "L1DSRAM",
 base: 0x10f04000,
 len: 0xc000,
 space: "data"
 }];

Build.platformTable['ti.platforms.generic:plat'] = {
 clockRate: 594,
 catalogName: "ti.catalog.c6000",
 deviceName: "TMS320CDM6437",
 customMemoryMap: memory
};

SPRAAS7B

62 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

11 Conclusion
After following the example in this document, you should have a better understanding of
DSP/BIOS 6 and changes from DSP/BIOS 5. Although the steps were tailored for the DSP/BIOS
mailbox example for a specific platform, you should be able to migrate any application for any
supported platform to DSP/BIOS 6 by following its example.

12 References
• TMS320 DSP/BIOS 6 User’s Guide (SPRUEX3).

• XDCtools Release Notes (XDC_INSTALL_DIR/release_notes.html). Includes information
about changes in each version, known issues, validation, and device support.

• DSP/BIOS 6 Release Notes (BIOS_INSTALL_DIR/release_notes.html). Includes information
about changes in each version, known issues, validation, and device support.

• DSP/BIOS Getting Started Guide (BIOS_INSTALL_DIR/docs/
Bios_Getting_Started_Guide.doc). Includes steps for installing and validating the installation.

• XDCtools Getting Started Guide (XDC_INSTALL_DIR/docs/
XDCtools_Getting_Started_Guide.pdf). Steps for installing and validating the installation.

• RTSC-pedia at http://rtsc.eclipse.org/docs-tip for more about RTSC and XDCtools.

• RTSC+Eclipse QuickStart at http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart for
information about using RTSC in CCStudio 4.

http://rtsc.eclipse.org/docs-tip
http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 63

Appendices

A Unsupported DSP/BIOS 5 APIs
The following table lists DSP/BIOS 5 APIs for which legacy support is currently not provided in
DSP/BIOS 6. The table indicates whether there are plans to support each API in a future
release. For a list of correspondences between DSP/BIOS 5 and 6 modules, see Section 4.1.

Table 3. Unsupported DSP/BIOS 5 APIs

Module API Future Support?
DGS, DHL, DST Dxx_close No
DGS, DHL, DST Dxx_ctrl No
DGS, DHL, DST Dxx_idle No
DGS, DHL, DST Dxx_init No
DGS, DHL, DST Dxx_issue No
DGS, DHL, DST Dxx_open No
DGS, DHL, DST Dxx_ready No
DGS, DHL, DST Dxx_reclaim No
GBL GBL_getVersion No
HST HST_getpipe No
HWI HWI_enter No
HWI HWI_exit No
MPC MPC_getPA Yes
MPC MPC_getPageSize Yes
MPC MPC_getPrivMode Yes
MPC MPC_setBufferPA Yes
MPC MPC_setPA Yes
MPC MPC_setPrivMode Yes
PIP PIP_alloc No
PIP PIP_free No
PIP PIP_get No
PIP PIP_getReaderAddr No
PIP PIP_getReaderNumFrames No
PIP PIP_getReaderSize No
PIP PIP_getWriterAddr No
PIP PIP_getWriterNumFrames No
PIP PIP_getWriterSize No
PIP PIP_peek No
PIP PIP_put No
PIP PIP_reset No
PIP PIP_setWriterSize No
PRD PRD_tick No
RTDX RTDX_channelBusy No
RTDX RTDX_CreateInputChannel No

SPRAAS7B

64 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

Module API Future Support?
RTDX RTDX_CreateOutputChannel No
RTDX RTDX_disableInput No
RTDX RTDX_disableOutput No
RTDX RTDX_enableInput No
RTDX RTDX_enableOutput No
RTDX RTDX_isInputEnabled No
RTDX RTDX_isOutputEnabled No
RTDX RTDX_read No
RTDX RTDX_readNB No
RTDX RTDX_sizeofInput No
RTDX RTDX_write No
TSK TSK_deltatime No
TSK TSK_getsts No
TSK TSK_resetTime No
TSK TSK_settime No
TSK TSK_tick No

B Unsupported DSP/BIOS 5 Tconf Properties
The following DSP/BIOS 5 Tconf configuration properties are no longer supported. If your RTSC
configuration configures one of these properties, a warning message is provided when you build
the application.

B.1 CLK Module Properties
CLK.CONFIGURETIMER
CLK.PRD
CLK.WHICHHIRESTIMER
CLK.FIXTDDR
CLK.TCRTDDR
CLK.POSTINITFXN
CLK.CONONDEBUG
CLK.STARTBOTH

CLK.<Instance>.order

B.2 GBL Module Properties
GBL.C641XCCFGL2MODE
GBL.C641XCONFIGUREL2

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 65

B.3 HWI Module Properties
HWI.RESETVECTOR
HWI.RESETVECTORADDR
HWI.EXTPIN4POLARITY
HWI.EXTPIN5POLARITY
HWI.EXTPIN6POLARITY
HWI.EXTPIN7POLARITY

HWI.<Instance>.monitor
HWI.<Instance>.addr
HWI.<Instance>.dataType
HWI.<Instance>.operation

B.4 IDL Module Properties
IDL.AUTOCALCULATE
IDL.LOOPINSTCOUNT

IDL.<Instance>.calibration
IDL.<Instance>.order

B.5 LOG Module Properties
LOG.<Instance>.dataType
LOG.<Instance>.format

B.6 MEM Module Properties
MEM.GBLINITSEG
MEM.TRCDATASEG
MEM.SYSDATASEG
MEM.OBJSEG
MEM.BIOSSEG
MEM.SYSINITSEG
MEM.HWISEG
MEM.VECSEG
MEM.RTDXTESTSEG
MEM.USERCOMMANDFILE
MEM.ENABLELOADADDR
MEM.LOADBIOSSEG
MEM.LOADSYSINITSEG
MEM.LOADGBLINITSEG
MEM.LOADTRCDATASEG
MEM.LOADTEXTSEG
MEM.LOADSWITCHSEG
MEM.LOADCINITSEG
MEM.LOADPINITSEG
MEM.LOADCONSTSEG
MEM.LOADECONSTSEG
MEM.LOADHWISEG
MEM.LOADHWIVECSEG
MEM.LOADRTDXTEXTSEG

MEM.<Instance>.base
MEM.<Instance>.len
MEM.<Instance>.space

SPRAAS7B

66 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

B.7 PRD Module Properties
PRD.<Instance>.arg1
PRD.<Instance>.order

B.8 SWI Module Properties
SWI.<Instance>.order

B.9 TSK Module Properties
TSK.<Instance>.manualStack
TSK.<Instance>.allocateTaskName
TSK.<Instance>.order

C Performance Benchmarks
This appendix shows a side-by-side comparison of timing and sizing benchmarks between
DSP/BIOS 5.32, DSP/BIOS 6.10, and DSP/BIOS 6.10 legacy support. This benchmark data is
meant to help you more easily compare DSP/BIOS 5 and DSP/BIOS 6.

For any given benchmark, the result for the version of DSP/BIOS that has the best score is in
bold for clarity. If the best result is a “tie” between 2 or more DSP/BIOS versions, then the
results for all “tied” versions are in bold.

For more information on DSP/BIOS 5 benchmarks, please refer to the following documents:

• DSP/BIOS Benchmarks (SPRAA16D)

• DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs (SPRA772A)

For more information on DSP/BIOS 6 benchmarks, please refer to:

• TMS320 DSP/BIOS 6 User’s Guide (accessible via the DSP/BIOS 6 release notes)

C.1 C64 Timing Benchmarks

The following timing benchmarks were run using the C64x Functional Simulator for Little Endian.
Note that for DSP/BIOS 6 benchmarks, the timer has a margin of error of +/- 8 CPU cycles. So,
when comparing benchmark numbers between DSP/BIOS 6 and DSP/BIOS 6 legacy, numbers
that differ by 8 or fewer CPU cycles should be considered equivalent. For some cases this
results in a “tie” for the results between DSP/BIOS 6 and DSP/BIOS 6 legacy that differ by 8.

Benchmark DSP/BIOS 6 APIs
(CPU cycles)

DSP/BIOS 6 legacy
APIs (CPU cycles)

DSP/BIOS 5.32
(CPU cycles)

Hwi_enable 16 8 16
Hwi_disable 8 8 24
Hwi_prolog 96 96 64
Hwi_epilog 112 112 64

SPRAAS7B

 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6 67

Benchmark DSP/BIOS 6 APIs
(CPU cycles)

DSP/BIOS 6 legacy
APIs (CPU cycles)

DSP/BIOS 5.32
(CPU cycles)

Int-to-Task 320 320 568
Int-to-Swi 216 208 192
Swi_enable 48 48 72
Swi_disable 8 16 24
Swi_post, again 40 40 32
Swi_post, no switch 80 72 56
Swi_post, switch 136 128 120
Task_create, no switch 840 840 664
Task_setPri, no switch 160 152 272
Task_yield 152 144 232
Semaphore_post, no task 32 32 32
Semaphore_post, switch 168 168 264
Semaphore_pend, no switch 40 48 24
Semaphore_pend, switch 176 176 232

CLK_gethtime /
xdc_runtime_Timestamp_get32

- 24 64

CLK_getltime / Clock_getTicks 8 8 16

C.2 C64 Sizing Benchmarks

The following size benchmarks were built for C64x little-endian mode.

Table 4. Sizes for the Basic DSP/BIOS Application

 DSP/BIOS 6 DSP/BIOS 6 legacy DSP/BIOS 5
Code (8-bit bytes) 3328 7168 1984
Initialized Data (8-bit bytes) 520 637 56
Uninitialized Data (8-bit bytes) 1900 2530 1304
C initialization (8-bit bytes) 1076 2100 916
Total Size 6824 12435 4260

SPRAAS7B

68 Migrating a DSP/BIOS 5 Application to DSP/BIOS 6

Table 5. Sizes for the Swi Static Module Application

 DSP/BIOS 6 DSP/BIOS 6 legacy DSP/BIOS 5
Code (8-bit bytes) 6080 10112 6144
Initialized Data (8-bit bytes) 530 633 72
Uninitialized Data (8-bit bytes) 2212 2742 1784
C initialization (8-bit bytes) 1500 2332 1308
Total Size 10322 15819 9308

Table 6. Sizes for the Semaphore Static Module Application

 DSP/BIOS 6 DSP/BIOS 6 legacy DSP/BIOS 5
Code (8-bit bytes) 11872 14752 11936
Initialized Data (8-bit bytes) 564 613 223
Uninitialized Data (8-bit bytes) 4652 6522 4456
C initialization (8-bit bytes) 2612 3116 3340
Total Size 19700 25003 19955

Table 7. Sizes for the Memory Static Module Application

 DSP/BIOS 6 DSP/BIOS 6 legacy DSP/BIOS 5
Code (8-bit bytes) 14240 17280 13344
Initialized Data (8-bit bytes) 652 661 231
Uninitialized Data (8-bit bytes) 8872 10684 8620
C initialization (8-bit bytes) 2780 3236 3468

Total Size 26544 31861 25663

Table 8. Sizes for the Dynamic Semaphore Module Application

 DSP/BIOS 6 DSP/BIOS 6
legacy

DSP/BIOS 5

Code (8-bit bytes) 17504 18400 15968
Initialized Data (8-bit bytes) 820 669 235
Uninitialized Data (8-bit bytes) 8872 10692 8632
C initialization (8-bit bytes) 2780 3268 3500
Total Size 29976 33029 28335

	Migrating a DSP/BIOS 5 Application to DSP/BIOS 6
	1 Introduction to DSP/BIOS 6.x Legacy Support
	1.1 What DSP/BIOS 6 Legacy Support is Provided?
	1.2 What Does this Application Note Cover?
	1.3 What is the General Migration Procedure?
	1.4 Software Requirements

	2 Converting Your Configuration
	2.1 Converting a Simple Configuration Manually
	2.2 Converting a Configuration Using the Conversion Tool
	2.2.1 Conversion Tool Syntax
	2.2.2 Specifying Environment Variables to the Conversion Tool
	2.2.3 How Memory Map Settings Are Translated
	2.2.4 Steps to Convert a Tconf Script to a RTSC Configuration Script

	3 Converting and Updating Your CCStudio Project
	3.1 Migrating Code Composer Studio Projects
	3.2 Updating a CCStudio 4 Project to Build with a Generated Custom Platform File
	3.3 Updating the Project’s Compiler Search Path
	3.4 Updating a CCStudio 4 Project’s Search Path to Find Included Configuration Files
	3.5 Building and Running the Project

	4 Converting Your C Code
	4.1 Legacy Module Mappings and API Guide
	4.2 Extending Your Legacy Program with DSP/BIOS 6 APIs
	4.2.1 Place New Configuration Code After Legacy Configuration Code
	4.2.2 Place Header File #include Directives for DSP/BIOS 6 Before Legacy Directives
	4.2.3 Communicating Between Old Code and New Code

	5 Migrating Memory Configurations
	5.1 Memory Segments and Sections
	5.2 Heaps
	5.3 Dynamic Memory Allocation

	6 Migrating Library Builds
	6.1 Creating a New Library Project for CCStudio 4
	6.2 Updating the Compiler Search Paths for CCStudio 4 Library Projects

	7 Porting the Mailbox Example to DSP/BIOS 6 Using Legacy Support
	7.1 Copying the Mailbox Example Files
	7.2 Configuring the Mailbox Example
	7.2.1 Coverting the Mailbox Configuration Manually
	7.2.2 Converting the Mailbox Configuration Using the Conversion Tool

	7.3 Creating a CCStudio 4 Project for the Mailbox Program
	7.4 Updating the Compiler Search Path
	7.5 Updating the C Source File
	7.6 Building and Running the Application
	7.7 Using XGCONF to View the DSP/BIOS Configuration

	8 Porting the Mailbox Example to DSP/BIOS 6 with New Modules and APIs
	8.1 Updating the Configuration Files
	8.1.1 Porting the mailbox.cfg File
	8.1.2 Porting the evmDM6437_common.tci File
	8.1.2.1 Converting the IRAM Heap Creation Code
	8.1.2.2 Converting the Cache Configuration Code
	8.1.2.3 Converting the Clock Configuration Code

	8.1.3 Porting the mailbox.tci File
	8.1.3.1 Converting the Log Configuration Code
	8.1.3.2 Converting the Task Configuration Code

	8.1.4 Porting the mailbox_evmDM6437_custom.tci File
	8.1.5 Viewing the DSP/BIOS 6 Mailbox Configuration Using XGCONF

	8.2 Updating the C Source File
	8.2.1 Replacing the Legacy Header Files
	8.2.2 Updating the main() Function to Call BIOS_start()
	8.2.3 Replacing the Legacy MBX_post() and MBX_pend() Calls
	8.2.4 Replacing the Legacy ArgToInt() Macro Call
	8.2.5 Replacing the Legacy LOG_printf() API Calls with Log_print*() Calls
	8.2.6 Optional: Replacing the TSK_yield() Legacy API Call
	8.2.7 More About Diagnostics Masks (Diags)

	8.3 Building and Running the Application

	9 Adding DSP/BIOS Tasks and Communication to a Legacy Application
	9.1 Adding Two New DSP/BIOS 6 Tasks to a Legacy Program
	9.2 Communicating Between the Existing Legacy TSKs and the New Tasks
	9.2.1 Update the bios6Writer() Task to Post a Message to the Legacy reader() TSK
	9.2.2 Updating the Legacy writer() TSK to Post a Message to the bios6Reader() Task
	9.2.3 Build and Run

	10 Building the Mailbox Example Using a Custom Platform File
	10.1 The Generated evmDM6437.xs File
	10.2 Building the Mailbox Example Using the Custom evmDM6437.xs Platform File
	10.2.1 Observing the Existing Memory Segments of the Mailbox Program
	10.2.2 Setting up config.bld to Load the Custom Platform File
	10.2.3 Updating the Mailbox Project to Load the Custom Platform and to Use Config.bld
	10.2.4 Observing the New Memory Segments Created by the Custom Platform File

	10.3 Updating the evmDM6437.xs File to Redefine Memory Segments
	10.4 Updating Platform Definitions to Load Code and Data in Different Segments
	10.5 Contents of the Originally Generated evmDM6437.xs File

	11 Conclusion
	12 References
	A Unsupported DSP/BIOS 5 APIs
	B Unsupported DSP/BIOS 5 Tconf Properties
	B.1 CLK Module Properties
	B.2 GBL Module Properties
	B.3 HWI Module Properties
	B.4 IDL Module Properties
	B.5 LOG Module Properties
	B.6 MEM Module Properties
	B.7 PRD Module Properties
	B.8 SWI Module Properties
	B.9 TSK Module Properties

	C Performance Benchmarks
	C.1 C64 Timing Benchmarks
	C.2 C64 Sizing Benchmarks

