

DSP/BIOS 6.20 Getting Started Guide

April 30, 2009

ii

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other
changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and
conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing
and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI
components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI
intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI
regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI
under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all
associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice.
TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and
any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any
such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected
to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent
that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely
responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical
applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically
designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers
acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are
solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI
as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive
applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Broadband www.ti.com/broadband

DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol

Clocks and Timers www.ti.com/clocks Military www.ti.com/military

Interface interface.ti.com Optical Networking www.ti.com/opticalnetwork

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Telephony www.ti.com/telephony

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless

RF/IF and ZigBee® Solutions www.ti.com/lprf

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://www.dlp.com/
http://www.ti.com/broadband
http://dsp.ti.com/
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/military
http://interface.ti.com/
http://www.ti.com/opticalnetwork
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/telephony
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://www.ti.com/wireless
http://www.ti.com/lprf

iii

Preface

Read This First

About This Manual

This document describes the process of installing and using DSP/BIOS 6 for use with
Code Composer Studio v4 (CCSv4).

How to Use This Manual

This document provides installation instructions in Chapter 1 and step-by-step instructions
for starting to use DSP/BIOS in Chapter 2.

After you install DSP/BIOS, you might want to review the release notes in the installation
before reading further.

After you have read this document, you should see the DSP/BIOS 6 User’s Guide
(SPRUEX3) and the online CDOC reference for more information.

Notational Conventions

This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special
typeface. Examples use a bold version of the special typeface for emphasis.

Here is a sample program listing:

 #include <xdc/runtime/System.h>

 int main(){
 System_printf("Hello World!\n");
 return (0);
 }

• Square brackets ([and]) identify an optional parameter. If you use an optional
parameter, you specify the information within the brackets. Unless the square
brackets are in a bold typeface, do not enter the brackets themselves.

Related Documentation from Texas Instruments

DSP/BIOS 6 User’s Guide (SPRUEX3)

RTSC-Pedia wiki: http://rtsc.eclipse.org/docs-tip

Code Composer Studio Mediawiki: http://tiexpressdsp.com/wiki/index.php?title=CCSv4

CDOC API Reference online help system

iv

Trademarks

The Texas Instruments logo and Texas Instruments are registered trademarks of Texas
Instruments. Trademarks of Texas Instruments include: TI, Code Composer, Code
Composer Studio, DSP/BIOS, SPOX, TMS320, TMS320C54x, TMS320C55x,
TMS320C62x, TMS320C64x, TMS320C67x, TMS320C28x, TMS320C5000,
TMS320C6000 and TMS320C2000.

Windows is a registered trademark of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

All other brand or product names are trademarks or registered trademarks of their
respective companies or organizations.

Contents

Read This First ...iii

About This Manual ... iii
How to Use This Manual .. iii
Notational Conventions .. iii
Related Documentation from Texas Instruments... iii
Trademarks .. iv

Contents ...0-5
Using DSP/BIOS with CCSv4 ..1-6

1.1 Installing DSP/BIOS as Part of CCSv4 ..1-6
1.2 Creating Projects that Use DSP/BIOS 6.20 ...1-6
1.3 Configuration Templates ..1-8
1.4 Additional Ways to Create Configurations..1-9
1.5 Rules for Working with CCS Build Settings..1-9
1.6 Using XGCONF to Configure DSP/BIOS Modules and Objects ..1-9
1.7 XDCtools and RTSC Documentation ...1-9

Using DSP/BIOS as a Standalone Product..2-10
2.1 Using DSP/BIOS as a Standalone Product..2-10
2.2 Installing DSP/BIOS as a Standalone Product...2-10

2.2.1 Installing XDCtools..2-10
2.2.2 Installing DSP/BIOS 6 ...2-11

2.3 Setting Up the XDCPATH Environment Variable ...2-11
2.4 Managing the config.bld File ..2-11
2.5 Generating and Building DSP/BIOS Examples ..2-12
2.6 Configuring DSP/BIOS...2-14

2.6.1 DSP/BIOS Configuration Script ..2-14
2.6.2 Create and Build a DSP/BIOS Configuration Package...2-15

2.7 Building an Executable...2-15
2.7.1 Executable Build Flow Changes ...2-15
2.7.2 C Source File Changes ...2-16

2.8 Microsoft Visual Studio C++ 2005 Installation Notes ...2-16

6

Chapter 1

Using DSP/BIOS with CCSv4

This chapter describes how to build DSP/BIOS examples and applications.

Topic Page

1.1 Installing DSP/BIOS as Part of CCSv4 ..6

1.2 Creating Projects that Use DSP/BIOS 6.20... 6

1.3 Configuration Templates ... 8

1.4 Additional Ways to Create Configurations...9

1.5 Rules for Working with .. 9

1.6 Using XGCONF to Configure DSP/BIOS Modules and Objects .. 9

1.7 XDCtools and RTSC Documentation .. 9

1.1 Installing DSP/BIOS as Part of CCSv4

If you are installing Code Composer Studio v4 (CCSv4), all the components you need to
use DSP/BIOS 6.20 are installed as part of the CCSv4 installation. When you perform the
CCSv4 installation, leave the checkboxes for installing XDCtools and DSP/BIOS 6
checked.

1.2 Creating Projects that Use DSP/BIOS 6.20

Follow these steps to use CCSv4 to create a CCS project that can use DSP/BIOS 6.x:

1) Open CCSv4 and choose File > New > CCS Project from the menu bar.

2) In the New CCS Project dialog, type a Project Name. For example, to begin creating
a project using the "hello world" example code provided with DSP/BIOS, you can
type "hellobios6". The default project location automatically reflects the project name.
Then, click Next.

3) Select your platform type in the Project Type field. For example, you might select
"C6000". Then, click Next.

4) Click Next in the "Additional Project Settings" page.

Using DSP/BIOS with CCSv4

7

5) In the Device Variant row of the "CCS Project Settings" page, select a filter in the
first field. This shortens the list of device variants in the second field. Then, select the
actual device you are using. For example, you might select “TMS320C64X” in the
filter field and "Generic C64x+ Device" in the second field. Depending on your device,
you might also need to adjust the Device Endianness and Runtime Support
Library settings.

6) In the Target content area, select the Enable RTSC support option. Then, click
Next.

7) In the “Referenced RTSC Configuration” page, choose whether you want to create a
new RTSC configuration or use an existing one. If you are getting started with
DSP/BIOS 6, you will probably need to create a new configuration. Then, click Next.

CCSv4 creates a separate project to contain files related to RTSC configuration,
which allows you to statically configure DSP/BIOS modules and objects. The RTSC
configuration project is referenced by the application project, so that when you build
the application project, the RTSC configuration is also rebuilt if it has been changed.

8) On the “New RTSC Configuration Project” page, accept the default name and
location for the configuration project. Then, click Next.

9) On the “RTSC Configuration Settings” page, make sure the versions of XDCtools,
DSP/BIOS, and other products that you want to use are selected. By default, the
most recent versions are selected.

10) Also on the “RTSC Configuration Settings” page, click the drop-down arrow next to
the RTSC Platform field. CCSv4 scans the available packages for available
platforms. Click on the list and choose the platform you want to use.

11) You can choose which libraries you want the configuration build to link with in the
RTSC Build-Profile field. The RTSC Target setting is based on device settings you
made on earlier pages, and should not need to be changed. Then, click Next.

12) On the “RTSC Configuration Templates” page, check the Create a project using
one of the templates box if you want to use a provided template as the basis for
your configuration. For example, you can create a project using the "hello world"
example by selecting the “Hello Example” under the “DSP/BIOS” category. See
Section 1.3 for information about choosing a template. Then, click Finish.

This adds two projects to the C/C++ Projects list in CCS: the main project for your
application and the RTSC configuration project. The RTSC configuration project contains
a *.cfg file, that will contain the static configuration of XDCtools and DSP/BIOS modules
and objects.

Using DSP/BIOS with CCSv4

8

1.3 Configuration Templates

When you are creating a CCSv4 project that enables RTSC support, you can select a
RTSC Configuration Template. The actual files for the DSP/BIOS templates are copied
from BIOS_INSTALL_DIR\packages\ti\sysbios\genx\templates. When you highlight a
template, a brief description is provided to the right.

The following DSP/BIOS templates are available when you choose File > New > CCS
Project and get to the RTSC Configuration Templates page of the project creation
wizard. These templates copy both a default .c file into the CCS Project and a default .cfg
file into the RTSC Configuration Project.

• Clock Example. This template uses the clock.c and common.cfg files.

• Error Example. This template uses the error.c and error.cfg files.

• Event Example. This template uses the event.c and common.cfg files.

• Hello Example. This template uses the hello.c and common.cfg files.

• Legacy Example. This template uses the legacy.c and legacy.cfg files.

• Log Example. This template uses the log.c and log.cfg files.

• Memory Example. This template uses the memory.c and memory.cfg files.

• Mutex Example. This template uses the mutex.c and common.cfg files.

• RTA Example. This template uses the stairstep.c and stairstep.cfg files.

• Static Example. This template uses the static.c and static.cfg files.

• Swi Example. This template uses the swi.c and common.cfg files.

Additional templates are available for the Inter-Processor Communication (IPC) product,
which works with DSP/BIOS in applications. See the DSP/BIOS Inter-Processor
Communication (IPC) User’s Guide (SPRUGO6) for details.

The following DSP/BIOS templates are available when you choose File > New > RTSC
Configuration Project and get to the RTSC Configuration Templates page of the project
creation wizard. These templates copy only a default .cfg file into the RTSC Configuration
Project (but no .c file).

• Full BIOS Configuration. Enables the use of Task, Swi, Idle, and Clock scheduling.
Also enables the Event, Mailbox, and Semaphore modules. It enables the Memory
module and creates a default memory heap called “heap”.

• Full BIOS with RTA Configuration. In addition to the configuration in the previous
template, this configuration enables and configures logging-related modules.
Configures a loggerBuf, diagnostics, the RTA agent, and the RTDX driver.

Using DSP/BIOS with CCSv4

9

1.4 Additional Ways to Create Configurations

In addition to creating new projects as described in the previous sections, you can create
a standalone RTSC configuration project that you will later reference from other CCS
projects. To do so in CCSv4, choose File > New > RTSC Configuration Project. Use
the wizard to define the configuration project. The wizard is similar to the one you use for
a new CCS project, but omits pages and fields that are not required.

To add a RTSC configuration file to an existing project, choose File > New > RTSC
Configuration File. Then click Next. Type a name for the file and click Finish.

1.5 Rules for Working with CCS Build Settings

After you have created a RTSC Configuration Project, you can change the properties of
the project in CCSv4 by right-clicking the project name and choosing Properties.

However, you should be careful about changing the CCS Build Settings for a RTSC
configuration project. The build settings for the configuration project much match or be
compatible with those of all application projects that reference the RTSC configuration
project. So, if you change the CCS Build Settings for a RTSC configuration project, you
should also change the build settings for the application projects that use that
configuration.

In the “CCS Build Settings” category of the Properties dialog, the General tab applies to
compiler settings, the RTSC Configuration tab applies to the “configuro” utility used to
process the .cfg file, and the Link Order tab applies to the linker settings.

Note that if there is any platform-specific configuration in your .cfg file, you much change
those settings in addition to any changes you make to the CCS Build Settings.

1.6 Using XGCONF to Configure DSP/BIOS Modules and Objects

XGCONF is a tool that allows you to graphically create and view RTSC configuration
scripts. (If you have used DSP/BIOS 5.x, it is somewhat similar to the DSP/BIOS
Configuration Tool.)

To start XGCONF, right-click on a *.cfg file in the "C/C++ Projects" view and select Open
with > XGCONF.

For information about using XGCONF, see the RTSC-Pedia page about XGCONF at
http://rtsc.eclipse.org/docs-tip/XGCONF_User's_Guide.

1.7 XDCtools and RTSC Documentation

XDCtools is a set of tools that enable the creation and use of RTSC packages. RTSC
(pronounced rit-see) stands for Real-Time Software Components. It allows products to be
developed as reusable packages, and is described in the RTSC-pedia at
http://rtsc.eclipse.org/docs-tip.

XDCtools and RTSC define the configuration language used by DSP/BIOS (and other
products that make use of RTSC). For DSP/BIOS 6.x versions, the configuration scripts
are stored in .cfg and other files.

For further documentation on RTSC and XDCtools, use the Windows Start menu to
choose Texas Instruments > XDCtools 3.xx > XDCtools Documentation. Also see the
XDCtools release notes.

http://rtsc.eclipse.org/docs-tip/XGCONF_User's_Guide
http://rtsc.eclipse.org/docs-tip

10

Chapter 2

Using DSP/BIOS as a Standalone
Product

This chapter describes how to use DSP/BIOS outside the CCSv4 environment,
for example, from a command line.

Topic Page

2.1 Using DSP/BIOS as a Standalone Product .. 10

2.2 Installing DSP/BIOS as a Standalone Product... 10

2.3 Setting Up the XDCPATH Environment Variable... 11

2.4 Managing the config.bld File... 11

2.5 Generating and Building DSP/BIOS Examples.. 12

2.6 Configuring DSP/BIOS... 14

2.7 Building an Executable.. 15

2.8 Microsoft Visual Studio C++ 2005 Installation Notes.. 16

2.1 Using DSP/BIOS as a Standalone Product

This chapter applies only if you are using DSP/BIOS outside the CCSv4
environment. The steps described here are not required if you are using CCSv4
projects.

2.2 Installing DSP/BIOS as a Standalone Product

If you are installing DSP/BIOS 6 as a standalone software product, use the steps
for installing XDCtools and DSP/BIOS in the following subsections.

2.2.1 Installing XDCtools

You must install XDCtools in order to use DSP/BIOS 6. Please refer to the
XDCtools Getting Started Guide for details. XDCtools provides tools to enable
the creation and use of Real-Time Software Components (RTSC) packages.

Using DSP/BIOS as a Standalone Product

11

2.2.2 Installing DSP/BIOS 6

To install DSP/BIOS as standalone software, follow these steps:

1) Place the distribution file into a temporary location.

2) Double-click on the distribution file to start the installation process. The
installation directory, <bios_install_dir>, can be anywhere on your system,
but make sure there are no spaces in the full path to <bios_install_dir>.

3) View documentation for the DSP/BIOS 6 packages at
<bios_install_dir>/docs. See the XDCtools Getting Started Guide for
information on using the xdc.tools.cdoc.sg tool to generate and view
documentation for repositories.

2.3 Setting Up the XDCPATH Environment Variable
XDCPATH is a required environment variable. It is the path where XDCtools
looks to locate all packages. All DSP/BIOS configuration scripts only mention
packages by name, not by their location, and therefore the scripts are physically
portable. If you copy a package to a different location or a different system, only
the XDCPATH environment variable needs to be changed. XDCtools provides a
tool, xdc.tools.path.sg, to view and manage XDCPATH. See XDCtools Getting
Started Guide for details.

Using XDCPATH, we can select repositories (e.g. select among different
DSP/BIOS installs) and select a config.bld script.

Add the DSP/BIOS repository <bios_install_dir>/packages to the XDCPATH
environment variable. In the Windows System Properties in the Control Panel,
select Environment Variables under the Advanced tab. Add a new system
variable named XDCPATH, with the value <bios_install_dir>/packages.

Other operating systems require a slightly different command to set environment
variables. See the documentation for your operating system for details.

2.4 Managing the config.bld File
The build configuration script, config.bld, is a master setup script that completely
defines the RTSC targets and the environment in which individual RTSC
packages will build. For practical purposes, however, this script is usually just a
list of targets and paths to their Code Gen tools.

The intention behind the build configuration script is the following: it is a small,
non-portable piece of the build flow, because it defines the location of the various
Code Gen tools on your system. Another use for the build configuration script is
to provide a common build setup for multiple packages.

DSP/BIOS 6 ships a default config.bld script at

 <bios_install_dir>/etc/config.bld.default

Using DSP/BIOS as a Standalone Product

12

1) View this script. This default script names all the targets and platforms that
DSP/BIOS 6 supports. It also points to the Code Gen tools. Please refer to
the release notes on supported versions of Code Gen tools.

2) Create a directory <localRepository> anywhere on your system. Copy
config.bld.default into <localRepository>/config.bld. All targets are disabled
by default. Please uncomment the target of interest in the Build.targets array
in config.bld. You will also need to edit this script for the following reasons.

• Location of your Code Gen tools is different.

• You are interested in a particular platform.

3) Add <localRepository> to the XDCPATH environment variable.

2.5 Generating and Building DSP/BIOS Examples

DSP/BIOS does not ship any pre-built examples. Instead it ships a package
ti.sysbios.genx which will generate the examples in a directory of your choice.
ti.sysbios.genx allows the examples to be customized for your config.bld script. It
also allows re-generation of the examples in case of corruption.

View options for ti.sysbios.genx by typing the following:

 xs ti.sysbios.genx --help

Generate DSP/BIOS 6 examples as follows:

 xs ti.sysbios.genx <myExamples>

Examples are generated in the <myExamples> folder for all targets and platforms
listed in the config.bld referred to in your XDCPATH environment variable.

You can optionally specify a single target and a platform listed in the config.bld
on the command line.

 xs ti.sysbios.genx -t ti.targets.C64
 –p ti.platforms.dsk6416 <myExamples>

By default, the examples are generated without debug support. If you want to
generate the examples for debugging, you can use the –r option to select a
profile for building the examples. For example, the following command line
generates the examples for debugging:

xs ti.sysbios.genx -t ti.targets.C64 -p ti.platforms.sim6xxx
-r debug <myExamples>

The –r options are: debug, whole_program, and whole_program_debug. The
default is whole_program. The "debug" profile allows you to step through the
sources if sources are available. The "whole_program" profile has negligible
debug symbols. The "whole_program_debug" profile has more debug symbols
and improves the debug experience when compared to "whole_program". It is
recommended that production code be built with whole_program or
whole_program_debug.

Using DSP/BIOS as a Standalone Product

13

Many examples use the same DSP/BIOS configuration. Use incremental builds
to build the examples if you want to prevent unnecessary builds of the
configuration package.

To use makefiles to build the examples, use commands like the following:

• Use the top-level makefile to build all examples.
 cd <myExamples>
 gmake

• To build one example, build <myExamples>/common/<platform_dir> first.
Many examples depend on <myExamples>/common/<platform_dir>.

 cd <myExamples>\common\<platform_dir>
 gmake

• Use gmake to build the individual examples:
 cd <myExamples>\hello\<platform_dir>
 gmake

NOTE: During the installation, the XDCROOT environment variable is set by the
installer. In addition, %XDCROOT% is added to the beginning of the system and
user path(s). However, the <examples>/common/common.mak file references
the specific version of XDCtools it was installed with. If you update your
XDCtools installation and want to rebuild the examples with the new version, you
need to update the XDCROOT definition in the
<examples>/common/common.mak file.

See the README for individual examples for more details on how to build them.

You can use <myExamples>/common/common.mak to pass additional linker
(e.g. --xml_link_info) and compiler options (e.g. –pdr) to the makefiles used by all
examples.

Using DSP/BIOS as a Standalone Product

14

<myExamples> has the following structure when built. The expected output is in
testcase.k files.

2.6 Configuring DSP/BIOS

DSP/BIOS configuration allows clients to specify modules to be used in an
application, create static objects, and modify their properties as part of the
application build process. DSP/BIOS configuration also allows clients to modify
program-level configuration parameters such as stack size and the section map.

2.6.1 DSP/BIOS Configuration Script

DSP/BIOS configuration is done through a script. The script is a file with “.cfg”
extension that contains a RTSC script. Such scripts are an extension of
JavaScript. Please see <xdc_install_dir>/packages/xdc/cdk/langref/xdcScript.pdf
for details.

The DSP/BIOS configuration script by itself is not sufficient to create a DSP/BIOS
configuration; you must also specify the target and platform that DSP/BIOS will
be running on. The script is the client’s portable input into a DSP/BIOS
configuration package.

In the simple case, this script can list all the modules used. See
<myExamples>/common/common.cfg. Creating static objects and manipulating
them is an optimization and is the focus of the static example.

1) Create a <cfgScript>. This file can be located along with the application code
(static example has its own static.cfg script) or maintained separately (hello

<myExamples
>

common hello

sim6xxxCfg evmDM6446Cfg

sim6xxx evmDM6446

Top level makefile

makefile

common.mak

common.cfg hello.c

makefile makefile

hello.pjt hello.pjt

compile.opt

linker.cmd

compile.opt

linker.cmd

Other stuff Other stuff

hello.out

hello.map

hello.obj

hello.out

hello.map

hello.obj

depend.pjt

sim6xxx evmDM6446

makefile

depend.pjt

hello.k

README

Using DSP/BIOS as a Standalone Product

15

example uses common/common.cfg). For example client.cfg may be located
at C:\MyProjects\client\client.cfg.

2) Edit this file using any text editor. Refer to the DSP/BIOS 6 documentation
for details on configuration parameters.

2.6.2 Create and Build a DSP/BIOS Configuration Package

A DSP/BIOS configuration package is created using xdc.tools.configuro.

The configuration package is specific to a DSP/BIOS configuration script,
platform/target pair and development environment.

View options supported by xdc.tools.configuro as follows:

xs xdc.tools.configuro --help

Use xdc.tools.configuro to create and build a DSP/BIOS configuration package.
The configuration package <myCfgPkg> can be located anywhere on your
system.

xs xdc.tools.configuro -–cb -t<target> -p<platform>
 -o <myCfgPkg> -r whole_program <cfgScript>

For example:

xs xdc.tools.configuro -–cb –t ti.targets.C64
 –p ti.platforms.sim6xxx
 –o C:\MyProjects\client\configPkg
 -r whole_program C:\MyProjects\client\client.cfg

This step of running xdc.tools.configuro can be integrated into a makefile. See
the XDCtools Getting Started Guide for details on running xdc.tools.configuro in a
makefile. Also see the makefiles used by the examples.

The configuration package needs to be rebuilt for any change in the <cfgScript>.

2.7 Building an Executable

2.7.1 Executable Build Flow Changes

A compiler.opt file located in the DSP/BIOS configuration package needs to be
added to the compiler options using -@ for ti targets.

The linker.cmd file located in the DSP/BIOS configuration package needs to be
added to linker options. This file specifies the obj files and command file.

Add the RTS library to linker options from Code Gen tools specified in your
config.bld. NOTE: The RTS library must come after the linker.cmd file in the link
order. Ensure this is the case in your makefile.

Using DSP/BIOS as a Standalone Product

16

2.7.2 C Source File Changes

• #include <xdc/std.h> to get RTSC types.

• #include <xdc/cfg/global.h> to get access to Program.globals generated by
the DSP/BIOS configuration.

• Include module header files.

2.8 Microsoft Visual Studio C++ 2005 Installation Notes

Skip this section if you are not going to build your application on Windows using
the windows emulation support in DSP/BIOS 6.

Building on Microsoft Windows requires Microsoft Visual Studio C++ 2005
Express Edition to be installed on your computer. Download and install the
following components (available for free) from the Microsoft Web Site
http://msdn.microsoft.com/vstudio/express/

• Microsoft Visual C++ 2005 Express Edition

• Microsoft Visual C++ 2005 Express Service Pack 1

• Microsoft Platform SDK for Visual C++ 2005 Express
(Microsoft Windows Server 2003 R2 Platform SDK)

Make sure to set the environment variables required for Visual Studio C++. Run
the following batch script at the DOS prompt before building the examples:

C:\Program Files\Microsoft Visual Studio 8\Common7\Tools\vsvars
32.bat

Update the Win32.rootDir in your config.bld script to point to your Visual C++
installation folder. The rootDir must not contain spaces or backslash characters.
You must use the short pathname to the Visual C++ installation folder. Use the
following command in a DOS Shell to display the short pathname of the Visual
C++ installation folder. (Enter the command all on one line.) Then replace all
backslash characters with forward slashes.

for /f "delims=" %i in ("C:\Program Files\Microsoft Visual
Studio 8") do @echo %~fsi

For example, here is how Win32.rootDir would be set on a typical system:

Win32.rootDir = "C:/PROGRA~1/MID05A~1";

Update the Win32.vcPath["VC8"].sdkPath in your config.bld script to point to your
Platform SDK installation folder. As with the Win32.rootDir, the sdkPath must not
contain spaces or backslash characters, and you must use the short pathname to
the installation folder.

For example, here is how the sdkPath would be set on a typical system:

Win32.vcPath["VC8"].sdkPath = " C:/PROGRA~1/MI9547~1";

http://msdn.microsoft.com/vstudio/express/

	DSP/BIOS 6.20 Getting Started Guide
	Read This First
	Contents
	Using DSP/BIOS with CCSv4
	1.1 Installing DSP/BIOS as Part of CCSv4
	1.2 Creating Projects that Use DSP/BIOS 6.20
	1.3 Configuration Templates
	1.4 Additional Ways to Create Configurations
	1.5 Rules for Working with CCS Build Settings
	1.6 Using XGCONF to Configure DSP/BIOS Modules and Objects
	1.7 XDCtools and RTSC Documentation

	Using DSP/BIOS as a Standalone Product
	2.1 Using DSP/BIOS as a Standalone Product
	2.2 Installing DSP/BIOS as a Standalone Product
	2.2.1 Installing XDCtools
	2.2.2 Installing DSP/BIOS 6

	2.3 Setting Up the XDCPATH Environment Variable
	2.4 Managing the config.bld File
	2.5 Generating and Building DSP/BIOS Examples
	2.6 Configuring DSP/BIOS
	2.6.1 DSP/BIOS Configuration Script
	2.6.2 Create and Build a DSP/BIOS Configuration Package

	2.7 Building an Executable
	2.7.1 Executable Build Flow Changes
	2.7.2 C Source File Changes

	2.8 Microsoft Visual Studio C++ 2005 Installation Notes

