
DSP/BIOS 5.30 Textual Configuration
(Tconf) User’s Guide

Literature Number: SPRU007H
May 2006

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services
at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to TI's terms and conditions of sale supplied
at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI's standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily per-
formed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate de-
sign and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under
any TI patent right, copyright, mask work right, or other TI intellectual property right relating to
any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations,
and notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

This is a draft version printed from file: tcfpref.fm on 5/15/06
Preface

Read This First

About This Manual
DSP/BIOS allows you to develop embedded real-time software
applications for Texas Instruments TMS320 DSP devices. DSP/BIOS
provides a small firmware real-time library and easy-to-use tools for real-
time tracing and analysis.

This book described the Tconf configuration scripts used with DSP/BIOS.
It is intended as an addendum to the TMS320 DSP/BIOS User’s Guide.
In addition, the TMS320 DSP/BIOS API Reference Guide for your
platform provides details about DSP/BIOS modules.

Important: This manual is for use with DSP/BIOS 5.30. See Appendix
A for conversion information.

Notational Conventions
This document uses the following conventions:

❏ Program listings, program examples, and interactive displays are
shown in a special typeface. Examples use a bold version
of the special typeface for emphasis; interactive displays use a bold
version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts,
command output, error messages, etc.).

❏ Square brackets ([and]) identify an optional parameter. If you use
an optional parameter, you specify the information within the
brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

❏ BIOS_INSTALL_DIR is the top-level folder of the DSP/BIOS
installation. It is best to define this environment variable to point to
your DSP/BIOS installation. However, only the example applications
actually require this environment variable.
iii

 Trademarks
Trademarks
The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments
include: TI, XDS, Code Composer, Code Composer Studio, Probe Point,
Code Explorer, DSP/BIOS, RTDX, Online DSP Lab, DaVinci, TMS320,
TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x,
TMS320C67x, TMS320C5000, and TMS320C6000.

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds.

Solaris, SunOS, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc.

All other brand, product names, and service names are trademarks or
registered trademarks of their respective companies or organizations.

Licences
The Tconf (xdctools) distribution includes the following third-party
software components: the Java Runtime Environment, Cygwin, and the
Rhino JavaScript interpreter.

The Java Runtime Environment (JRE) is available from Sun
Microsystems at http://java.sun.com/.

The Cygwin DLL and utilities offer a Linux-like environment on Windows
and are available at http://www.cygwin.com/.

The Rhino open-source implementation of JavaScript is available at
http://www.mozilla.org/rhino. The source code used by the tconf utility is
available in the js.jar Java archive included with the utility.

For licensing information about these components, see the readme files
included with the components and the web sites for the components. For
Rhino licensing information, see http://www.mozilla.org/MPL.
iv

This is a draft version printed from file: tcfTOC.fm on 5/15/06
Contents

1 DSP/BIOS Tconf Overview .1-1
This chapter introduces Tconf, which is used to configure DSP/BIOS applications.
1.1 DSP/BIOS Configuration Roadmap .1-2
1.2 DSP/BIOS Configuration Benefits .1-3

1.2.1 Benefits of Static Configuration .1-3
1.2.2 The DSP/BIOS Configuration Tool vs. a Text Editor1-4

1.3 Creating a Tconf Script .1-5

2 Running Tconf Scripts .1-1
This chapter describes how to run Tconf scripts.
2.1 Running a Tconf Script .1-2

2.1.1 Generated Files .1-2
2.2 The tconf Command-Line Utility .1-4

2.2.1 Environment Array Variables .1-5
2.2.2 Argument Array Variables .1-7

2.3 Tconf Operation Modes .1-8
2.3.1 Command Line Mode .1-8
2.3.2 The GUI Script Debugger. .1-8
2.3.3 Interactive Tconf. .1-10

3 Tconf Language and Object Model .1-1
This chapter describes the Tconf language, the object model it uses, and some extensions to
JavaScript available in Tconf.
3.1 JavaScript Language Highlights .1-2

3.1.1 Language Overview .1-2
3.1.2 Common Misconceptions About JavaScript. .1-2
3.1.3 JavaScript and Java References .1-3

3.2 The Target Content Object Model (TCOM) .1-4
3.3 Methods for Loading Other Scripts. .1-5
3.4 Enabling DSP/BIOS Components .1-6
3.5 Configuration Coding Guidelines .1-7
3.6 Object and Property Naming and Referencing. .1-8

3.6.1 Module and Instance Property Names .1-10
3.6.2 Namespace Management .1-10

3.7 Property Types .1-11
3.8 File Manipulation with Java .1-13
v

Contents
3.9 The print() Method .1-13
3.10 Error Handling .1-14

3.10.1 More About Errors .1-14
3.10.2 More About Exceptions .1-15

4 Tconf Platform Files .1-1
This chapter describes how Tconf scripts should specify the platform to use and how Tconf scripts
interact with other files and with operating system issues.
4.1 Using TI-Supplied Platform Files .1-2

4.1.1 Referencing a Platform File with utils.loadPlatform()1-3
4.2 Creating Custom Platform Files .1-4

4.2.1 Creating a Platform for External Distribution .1-6
4.3 Setting Platform Params. .1-7

4.3.1 Example for ’C2812 .1-10
4.3.2 Example for ’C5416 .1-11
4.3.3 Example for ’C5510 .1-12
4.3.4 Example for OMAP 1510 .1-12
4.3.5 Example for ’C6416 .1-12
4.3.6 Example for ’C6713 .1-13
4.3.7 Example for ’C64+ Devices .1-13
4.3.8 Example for ’C67+ Devices .1-14

4.4 Using Custom Platform Files .1-15

5 Tconf Object Model Reference .1-1
This chapter provides reference information about the Target Content Object Model.
5.1 Target Content Object Model Quick Reference .1-2
5.2 Config Class .1-4
5.3 Board Class .1-8
5.4 Cpu Class .1-11
5.5 Program Class .1-16
5.6 Memory Class. .1-22
5.7 Extern Class .1-23
5.8 Module Class .1-24
5.9 Instance Class .1-28

6 The DSP/BIOS Configuration Tool (Gconf) .1-1
This chapter describes use of the DSP/BIOS Graphical Configuration Tool.
6.1 Tconf Pane in the Graphical Editor. .1-2
6.2 Tconf Integration with the DSP/BIOS Configuration Tool. .1-3

6.2.1 Limitations of Tconf Integration .1-3
6.2.2 Prog.gen() Method Argument Rules. .1-4
6.2.3 Insertion Marker Rules .1-4

6.3 DSP/BIOS Configuration Tool Menu Operations .1-5
6.4 The Gconf.ini File .1-11
6.5 Gconf.exe Command Line .1-12
6.6 Error Handling .1-12
Contents vi

Contents
A Updating DSP/BIOS Configurations .1-1
This appendix describes how to convert application configurations created with previous versions
of DSP/BIOS.
A.1 Overview. .1-2
A.2 The cdb2tcf Utility .1-2
A.3 Converting from CDB Configurations .1-5
A.4 Converting from Existing Tconf Configurations .1-9

B Configurations for Supported Platforms and Devices .1-1
This appendix provides lists of the platforms and devices supported by DSP/BIOS and their mem-
ory configurations.
B.1 Platform Memory Configurations .1-2
B.2 Deprecated Platform Memory Configurations .1-14
B.3 Device Memory Configurations .1-21
Contents vii

viii

This is a draft version printed from file: tcfLOF.fm on 5/15/06

Figures

1-1 DSP/BIOS Configuration... 1-2
2-1 Rhino GUI Debugger Window... 1-9
3-1 Target Content Object Model (TCOM) .. 1-4
5-1 Target Content Object Model (TCOM) .. 1-2
6-1 DSP/BIOS Configuration Tool ... 1-2

This is a draft version printed from file: tcfLOT.fm on 5/15/06
Tables

4-1 Target-Dependent Properties of regs... 1-8
5-1 Target Content Object Model Summary... 1-2
5-2 Config Class Summary .. 1-4
5-3 Board Class Summary ... 1-8
5-4 Cpu Class Summary ...1-11
5-5 Program Class Summary... 1-16
5-6 Memory Class Summary.. 1-22
5-7 Extern Class Summary .. 1-23
5-8 Module Class Summary... 1-24
5-9 Instance Class Summary ... 1-28
ix

x

Chapter 1

DSP/BIOS Tconf Overview

This chapter introduces Tconf, which is used to configure DSP/BIOS
applications.

1.1 DSP/BIOS Configuration Roadmap . 1–2

1.2 DSP/BIOS Configuration Benefits . 1–3

1.3 Creating a Tconf Script . 1–5

Topic Page
1-1

DSP/BIOS Configuration Roadmap
1.1 DSP/BIOS Configuration Roadmap

DSP/BIOS configuration allows you to create and configure static objects
and properties for use by the DSP/BIOS API as part of your application
design. For information about DSP/BIOS objects and properties, see the
TMS320 DSP/BIOS API Reference Guide for your platform.

Typically, you use the graphical DSP/BIOS Configuration Tool (Gconf) to
create your initial configuration. This tool acts as a macro recorder for
Tconf scripts (TCF files). You see the script change in the right pane of
the tool as you change the configuration. Later, you can edit the Tconf
script generated by the DSP/BIOS Configuration Tool with a text editor.

Tconf scripts are now the source files for DSP/BIOS configurations. The
CDB files previously used as configuration source files can now only be
opened in read-only mode or converted to TCF files.

When you save a configuration with the DSP/BIOS Configuration Tool,
the files shown in gray in Figure 1-1 are generated. See Section 2.1.1,
Generated Files, page 2-2 for more details.

Figure 1-1 DSP/BIOS Configuration

Text Editor
DSP/BIOS TextConf Script
u t i l s . l o a d P l a t f o r m (" t i . p l a t f o r m s . t a r g e t ") ;
 add objects
 change properties
 ...more...
prog.gen();

Platform File
(Platform.tci) run scrip t w ith

tconf u t i l i ty

tconf
Utility

Linker
Command

File
(*cfg.cmd)

Configuration
C Source
(*cfg_c.c)

Configuration
Database

(*.cdb)

Configuration
Assembly

Source
(*cfg.s##)

Configuration
C Header
(*cfg.h)

Configuration
Assembly

Header
(*cfg.h##)
1-2

DSP/BIOS Configuration Benefits
The roadmap for future configuration is to provide the same capabilities
for all target content written for TI DSPs as those that are available for
DSP/BIOS modules. This is part of a broad component re-use strategy.
Tconf is just one utility in a set of component tools to be provided in the
eXpress DSP Component (XDC) Tools to enable component re-use. For
more information about the XDC Tools and future content see
https://www-a.ti.com/downloads/sds_support/targetcontent/rtsc/index.html

The XDC Tools (including the Tconf utility) are supported for Microsoft
Windows and UNIX (Solaris and x86 Linux).

1.2 DSP/BIOS Configuration Benefits

The following sections describe the benefits of the static (design-time)
configuration and reasons to use the DSP/BIOS Configuration Tool vs. a
text editor to modify a Tconf script.

1.2.1 Benefits of Static Configuration

The DSP/BIOS API also supports dynamic creation of objects at run-
time. Creating objects at run-time is easier, but extra code is required to
support the object creation and deletion.

Design-time configuration provides the following benefits over run-time
configuration:

❏ Improves run-time performance by reducing the time your program
spends performing system setup.

❏ Reduces program size by eliminating run-time code required to
dynamically create and configure objects. For a typical module, the
functions to create and delete objects make up 50% of the code in
the module.

❏ Optimizes internal data structures.

❏ Detects errors earlier by validating object properties before program
compilation.

❏ Automatically sets a variety of properties that are dependent on other
properties. This helps ensure that your configuration is valid.

❏ Provides object names the DSP/BIOS Analysis Tools can show at
run-time. Objects created at run-time are either not shown or have
generated names.
DSP/BIOS Tconf Overview 1-3

DSP/BIOS Configuration Benefits
1.2.2 The DSP/BIOS Configuration Tool vs. a Text Editor

Both the DSP/BIOS Configuration Tool and direct text editing of scripts
have advantages in certain situations. You can use either configuration
method alone, or you can switch between these methods to perform
tasks in the environment best suited to each task.

The DSP/BIOS Configuration Tool provides the following advantages
over editing Tconf scripts with a text editor:

❏ The Windows Explorer-like interface makes it easy to see a list of the
available properties for each module and its objects.

❏ You are prevented from making a number of errors through drop-
down lists of valid values and through disabled commands and fields.

❏ Syntax errors cannot occur when generating configuration files.

❏ You do not need to learn the Tconf script syntax.

Using a text editor to manually edit a Tconf script has the following
benefits:

❏ Supported on UNIX, Linux, and Windows. (The DSP/BIOS
Configuration Tool is not supported on UNIX and Linux.)

❏ Allows you to import sub-scripts (TCI files) so that you can
modularize platform-specific, application-specific, or other categories
of settings. This makes it easier to port and maintain applications. For
example, if a set of applications all run on a target with minimal
memory, all applications can import a TCI file that minimizes the
DSP/BIOS memory footprint.

❏ Enables use of standard code editing tools. For example, text-based
configuration makes it easier to merge changes from multiple
developers, compare configurations used by multiple applications,
cut and paste between program configurations, and perform
repetitive tasks such as creating several similar objects.

❏ Supports branching, looping, and other programming constructs
within a configuration procedure.

❏ Allows you to ensure that symbol definitions in the configuration and
program sources always match. You can do this by defining variables
for use in scripts and generating a C header file from the script to be
included by the program source code.
1-4

Creating a Tconf Script
1.3 Creating a Tconf Script

To configure an application in DSP/BIOS, you need a Tconf script.

Typically, you use the graphical DSP/BIOS Configuration Tool (Gconf) to
create your initial configuration. This tool acts as a macro recorder for
Tconf scripts (TCF files). You see the script change in the right pane of
the tool as you change the configuration. Later, you can edit the Tconf
script generated by the DSP/BIOS Configuration Tool with a text editor.

Tconf scripts contain statements in the JavaScript language (see Section
3.1, JavaScript Language Highlights). These statements are executed to
perform design-time (static) application configuration.

❏ If you already have a CDB-based configuration, you need to convert
that configuration to a Tconf script. Please read Section A.3,
Converting from CDB Configurations for instructions.

❏ If you already have a Tconf script for a version of DSP/BIOS prior to
DSP/BIOS 5.0, read Section A.3, Converting from CDB
Configurations for changes you may need to make to your scripts.

This section shows how to use a text editor to create a Tconf script that
configures a simple application that prints "Hello World!" to a LOG object
named "trace". The source file hello.c of the application is as follows:

#include <std.h>

#include <log.h>

#include "hellocfg.h"

/* ======== main ======== */

Void main()

{

 LOG_printf(&trace, "Hello World!");

 /* fall into DSP/BIOS idle loop */

 return;

}

The CDB file for the hello application is about 500 KB. Examining this
configuration with the DSP/BIOS Configuration Tool would involve
browsing through each module and object. In contrast, the equivalent
Tconf script contains only a few lines, because it defines only differences
between the default DSP/BIOS configuration and the objects used by the
application.
DSP/BIOS Tconf Overview 1-5

Creating a Tconf Script
To write a Tconf script for an application, follow these steps:

1) Create a text file with an extension of .tcf.
In this example the name of the script is hello.tcf. It is not required
that the application source files and the Tconf script have the same
base name, but this naming convention simplifies the scripts and
their maintenance.

2) Load a platform.
A typical Tconf script begins by loading a platform. In this example,
the loaded platform is dsk6416, one of the TI-supplied platforms.
Later, in Chapter 4, Tconf Platform Files, we describe how you can
create and use your own customized platforms.

Loading a platform defines the target device, external and internal
memory objects, various DSP/BIOS default objects, and more.

 utils.loadPlatform("ti.platforms.dsk6416");

If you need to port an application to another platform, the platform
name in the utils.loadPlatform() method is the only part of the hello.tcf
script you need to change.

3) Add statements to create objects and set their properties.
For this application, we first enable components of the DSP/BIOS
kernel that are required for this application. See Section 3.4,
Enabling DSP/BIOS Components for information on enabling and
disabling components of the DSP/BIOS kernel.

 bios.enableRealTimeAnalysis(prog);

 bios.enableRtdx(prog);

Then, we create the "trace" LOG object, which is referred to in
hello.c. We also set its size and the type of the log. The last statement
in this section sets the size of LOG_system, the system LOG object.

 var trace;

 trace = bios.LOG.create("trace");

 trace.bufLen = 1024;

 trace.logType = "circular";

 bios.LOG_system.bufLen = 512;

4) Type the following lines at the end of the file.

 // !GRAPHICAL_CONFIG_TOOL_SCRIPT_INSERT_POINT!

 if (config.hasReportedError == false) {

 prog.gen();

 }
1-6

Creating a Tconf Script
The comment indicates the location for the DSP/BIOS Configuration
Tool to insert Tconf statements to match your configuration settings.

The prog.gen() method generates the appropriate CDB, source,
header, and linker command files for use in building your application.
Section 2.1, Running a Tconf Script describes all these generated
files. One of the generated files is the hellocfg.h header file, which is
included in hello.c. This header file defines the trace variable, which
is used in the LOG_printf function call.

The error check prevents an attempt to generate files if any errors
occur when running the configuration script.

As a result of these steps, we have the following complete script for the
hello application:

/* Load the DSK6416 platform. */

utils.loadPlatform("ti.platforms.dsk6416");

/* Enable needed DSP/BIOS features */

bios.enableRealTimeAnalysis(prog);

bios.enableRtdx(prog);

/* Create and initialize a LOG object */

var trace;

trace = bios.LOG.create("trace");

trace.bufLen = 1024;

trace.logType = "circular";

/* Set the buffer length of LOG_system buffer */

bios.LOG_system.bufLen = 512;

// !GRAPHICAL_CONFIG_TOOL_SCRIPT_INSERT_POINT!

if (config.hasReportedError == false) {

 prog.gen();

}

DSP/BIOS Tconf Overview 1-7

1-8

Chapter 2

Running Tconf Scripts

This chapter describes how to run Tconf scripts.

2.1 Running a Tconf Script . 2–2

2.2 The tconf Command-Line Utility . 2–4

2.3 Tconf Operation Modes . 2–8

Topic Page
2-1

Running a Tconf Script
2.1 Running a Tconf Script

Tconf scripts are run by the tconf command-line utility. This utility is
available on Solaris, Linux, and Microsoft Windows.

The tconf executable file is located in the xdctools subfolder of the
DSP/BIOS installation folder (BIOS_INSTALL_DIR\xdctools). You may
want to add this folder to your PATH variable so that you can run tconf
without specifying the full path to the utility each time. (See the
SetupGuide.html file in the DSP/BIOS installation folder for information
about setting the PATH.)

To run the configuration script hello.tcf we developed in Section 1.3,
Creating a Tconf Script, and to generate files that you compile with the
source files of your application, type the following command on your
command line:

 tconf -Dconfig.importPath="C:/dspbios/bios_5_20/packages" hello.tcf

2.1.1 Generated Files

When a Tconf script executes successfully, or more specifically when the
prog.gen() method is called, Tconf generates a set of files to be compiled
with your source code.

The names of these generated files depend upon the argument supplied
to prog.gen(). In our example script, we invoked prog.gen() with no
argument. If no argument is supplied, the base name for the generated
files defaults to the base name of the executed Tconf script—in this
example, "hello".

If a string argument is supplied to prog.gen(), that string becomes the
base filename for generated files. Using a string argument with
prog.gen() is not supported if you are building projects with CCStudio. An
alternate way to specify output filenames is to set the
config.programName property to the filename string you want.

The following files are generated by the DSP/BIOS Configuration Tool,
the Tconf prog.gen() method. In these filenames, "##" is a 2-digit target
instruction set architecture (ISA—such as 55 or 64), and program is the
base name of the Tconf script (hello in our example):

❏ <program>cfg_c.c. Source file to define DSP/BIOS structures and
properties.

❏ <program>cfg.h. Includes DSP/BIOS module header files and
declares external variables for objects in the configuration file.
2-2

Running a Tconf Script
❏ <program>cfg.s##. Assembly source file for DSP/BIOS settings.
Since in our example we loaded dsk6416 platform, based on 64
architecture, the name of this file is hellocfg.s64.

❏ <program>cfg.h##. Assembly language header file included by
programcfg.s##. In our example, the name of this file is hellocfg.h64.

❏ <program>cfg.cmd. Linker command file.

❏ <program>.cdb. Configuration Data Base (CDB) file. Read-only file.
No longer used as a source file.
Running Tconf Scripts 2-3

The tconf Command-Line Utility
2.2 The tconf Command-Line Utility

The previous section described the simplest and the most frequent usage
of the Tconf command-line utility. This section gives a more detailed
overview of the Tconf utility’s options and environment variables.

Syntax tconf [-h] [-g] [-p <dir>] [-Dname=value]
 [-js <js options ...>] [script [args ...]]

Options -g Invoke the Rhino JavaScript debugging tool starting at
the beginning of the application’s TCF file. Within the
Rhino debugger, Break on Exception and Break on
Function Entry are enabled.

-g=i Invoke the Rhino JavaScript debugging tool starting at
the beginning of the tconfini.tcf initialization script. Within
the Rhino debugger, only Break on Exception is
enabled. As a result, if you click Run, the script runs to
conclusion without stopping unless an exception occurs.

-b Run in batch mode. If there is no TCF file specified on
the command line, simply exit rather than starting the
interactive shell.

-p <dir> The preferred method for specifying the search path is
the -Dconfig.importPath option. (If you choose to use -p
instead, the -p option adds the specified folder to the
search path used to find internal Tconf files. The search
path looks first in the current folder, then in the folder
containing the tconf executable file, and then in any
folder named using the -p option. See Section 2.2.1,
Environment Array Variables, page 2-5 for information
about how the search path is used.)

-Dname=value Define variables that can be examined in the script via
the global environment array. You can define multiple
variables by using the –D option multiple times. The
gconf.exe command-line also supports this -D option.
See Section 2.2.1, Environment Array Variables, page
2-5 for details about the environment array.

-js Separate run-time options from JavaScript shell options.
JavaScript shell options include:

-w Enable warning reporting.

-f file Run script in the specified file.
2-4

The tconf Command-Line Utility
script Specify a script to run.

args … Specify arguments to pass to the script via the global
arguments array. See Section 2.2.2, Argument Array
Variables, page 2-7 for details about the arguments
array.

-h Display command-line syntax.

Tconf provides several built-in arrays of variables that are set
automatically or based on options in the tconf command line. These
arrays are the environment[] array and the arguments[] array.

2.2.1 Environment Array Variables

Tconf creates an array called "environment" and automatically defines a
number of variables within that array and sets the initial values for some
of them. These variables may also be set by using the -D option on the
tconf command line.

Automatically set variables can be used by scripts to obtain information
about file names, file locations, and the hardware platform. For example,
the following statement gets the name of the script file passed to the tconf
utility on the command line.

myScript = environment["config.scriptName"];

The following variables are automatically part of the environment array.

❏ environment["config.importPath"]. This variable defines search
locations that Tconf uses to find various files, including platform files
and imported scripts. The platform files supplied with DSP/BIOS are
located in BIOS_INSTALL_DIR\packages. This folder is added to
config.importPath during the Tconf initialization, so in most cases you
do not need to set the value of this variable. However, if you create
your own platform files or Tconf scripts to be included by other Tconf
scripts, and those files are located elsewhere, you should set
config.importPath to point to the location of new files.

For example, if you created your customized platforms in the
d:/platforms folder, you would set config.importPath to d:/platforms
as follows:

 tconf -Dconfig.importPath="d:/platforms" hello.tcf

The command above adds d:/platforms to the beginning of the list of
the searched directories, but it does not remove any of the directories
already in config.importPath. If you need to add more than one folder
Running Tconf Scripts 2-5

The tconf Command-Line Utility
to config.importPath, separate them with semicolons (;). For
example, this command adds two directories to config.importPath:

tconf -Dconfig.importPath="c:/include;d:/platforms" hello.tcf

Note that forward slashes (/) must be used on the tconf command
line; backslashes (\) are not permitted.

The -Dconfig.importPath option can also be specified in Code
Composer Studio on the DspBiosBuilder tab of the Build Options
dialog.

❏ environment["config.rootDir"]. Contains the folder location of
the executable file for the tconf utility. This location is typically
BIOS_INSTALL_DIR\xdctools. This variable is always available
within a script.

❏ environment["config.scriptName"]. Contains the name of the
script passed to the tconf utility on the command line. This variable is
always available within a script. If no script was passed, this variable
is set to an empty string ("").

❏ environment["config.path"]. Contains the set of directories used
to locate internal Tconf components (including the tconf executable
and necessary DLLs). This variable is always available within a
script. This path may be added to using the -p option on the tconf
command line.

❏ environment["config.compilerOpts"]. This variable may define
the compiler options used to build the program. The options that may
be specified are as follows:

■ -me (big endian)

■ -ml (large data model)

■ --memory_model=huge

■ -mf (far code model)

If this variable is defined, it sets a corresponding property of the
Program object. For example, the following specifies that the
program is compiled in big-endian mode:

 tconf -Dconfig.compilerOpts="-me"

❏ environment["config._arch_"]. A variable of this format may be
defined using the -D option on the tconf command line, where arch
may be 28, 54, 55, 62, 64, or 67. If such a variable is defined, it
specifies the CPU architecture. Since the CPU is specified by the
variable name, the variable need not be set to a value. For example:

 tconf -Dconfig._55_
2-6

The tconf Command-Line Utility
Together, the config.compilerOpts and config._arch_ variables
support the creation of portable Tconf scripts. The parts of the script
that depend upon the compiler options and the architecture can read
these variables and configure DSP/BIOS accordingly. For example:

 if (environment["config._55_"]) {

 if environment["config.compilerOpts"]=="-ml") {

 bios.GBL.MEMORYMODEL = "LARGE";

 }

 }

❏ environment["config.tiRoot"]. This variable was used in the
previous Tconf releases. However, it is deprecated and will not be
supported in subsequent releases.

You can also define additional environment variables and access them
from the script. This command line defines three global variables for use
within Tconf. The third variable is defined as an empty string.

tconf -Dvar1=value1 -Dvar2=value2 -Dvar3

To access these variables within tconf, use the following expressions:

environment["var1"]

environment["var2"]

environment["var3"]

2.2.2 Argument Array Variables

Tconf creates an array called "arguments" and automatically stores in it
arguments passed to the script on the tconf command line. These
variables can be used to modify the behavior of a script depending on the
command line used to run it.

For example, suppose a command line like the following is used:

tconf myscript.tcf 4 2 1

The following statements could then be used in myscript.tcf to set
variables used when creating various DSP/BIOS objects:

numOfTasksToCreate = arguments[0];

numOfReaders = arguments[1];

numOfWriters = arguments[2];
Running Tconf Scripts 2-7

Tconf Operation Modes
2.3 Tconf Operation Modes

The Tconf utility provides the following three operation modes:

❏ DSP/BIOS Configuration Tool. See Chapter 6.

❏ command-line mode. See Section 2.3.1.

❏ GUI debugger. See Section 2.3.2.

❏ interactive mode. See Section 2.3.3.

2.3.1 Command Line Mode

If a script is listed on the command line, as we did in Section 2.1, Running
a Tconf Script for hello.tcf, Tconf processes the script without entering a
JavaScript shell or a GUI debugger.

If the script uses the prog.gen() method, configuration files are generated
as a result of running the script. This mode is used for automated
program build processes.

The full command-line syntax for this mode is:

 tconf [-p <dir>] [-Dname=value] [-js <jsshell opts>] script [args ...]

Please notice, that the script filename must be supplied.

2.3.2 The GUI Script Debugger

If the -g option is used on the command line, tconf opens the Rhino GUI
debugger. Rhino is an open-source implementation of JavaScript written
entirely in Java (http://www.mozilla.org/rhino).

The full command-line syntax for the GUI debugger is:

 tconf -g[=i] [-p <dir>] [-Dname=value] [-js <jsshell opts>] [script [args ...]]

You can use the Rhino debugger to step through the execution of a TCF
file. To start this debugger, do either of the following:

❏ Set the Graphical debugger option (-g) in the Debug category of the
DspBiosBuilder tab of the Project->Build Options window. The
Rhino debugger will open when you build the project in CCStudio.

❏ Right-click the script name in the Project Manager, then select the
DSP/BIOS Config->Run in Graphical Debugger pop-up menu
option. (The Text Edit option in the same menu allows you to open
the Tconf script in a text editor, instead of using the DSP/BIOS
Configuration Tool environment.)
2-8

Tconf Operation Modes
In the Rhino environment, you can use File->Run to run a script file.
Output from the print() statement is displayed in the JavaScript Console
window. You can Step Into and Step Over script functions. This debugger
also allows you to watch variables, evaluate arbitrary expressions, and
view the current context for the "this" variable and local variables.

Figure 2-1 Rhino GUI Debugger Window

Here are some important hints for using the Rhino debugger:

❏ The Debug menu contains three check boxes: Break on Exception,
Break on Function Enter, and Break on Function Return. If the -g
option is used on the tconf command line, Break on Exception and
Break on Function Enter are enabled within the debugger. Only
Break on Exception is enabled if you use the -g=i option.

❏ If you use -g on the command line, the debugger automatically runs
the initialization file and breaks at the start of the application’s TCF
file. If you use -g=i on the command line, the debugger opens initially
Running Tconf Scripts 2-9

Tconf Operation Modes
to the start of the tconfini.tcf initialization file. With the -g=i option, if
you click Run without creating a breakpoint, the script runs to
completion without breaks unless an exception occurs.

❏ When Break on Exception is enabled, non-fatal errors are displayed
in exception dialog boxes as they occur.

❏ Break on Function Enter and Break on Function Return cause the
debugger to stop at entry and exit of each JavaScript function. You
may want to deselect these options if you just want to run to a specific
breakpoint you have set.

❏ You can set a breakpoint by clicking in the gray column next to the
line number of the script. You can only set breakpoints on lines that
contain executable statements.

❏ Choose Windows->Console to open the Console window, which
receives standard out and standard error. The Tconf script errors
seen in the DSP/BIOS Configuration Tool or the CCStudio Build
window are shown in the Console window.

❏ We recommend that you set a breakpoint at the following error check
in your TCF file to see any displayed messages in the Console
window before the debugger finishes running the script.

 if (config.hasReportedError == false) {

 prog.gen();

 }

❏ Use Windows->Tile or Windows->Cascade to open windows for
the main TCF script, all its included TCI files, and internal Tconf files.

❏ The Rhino debugger allows you to browse and view Tconf objects,
however the list is not always clear or complete. You can add print()
statements to the TCF script. The results of print() statements are
displayed in the Console window.

2.3.3 Interactive Tconf
If no script is listed on the command line, Tconf enters the interactive
JavaScript shell and reads and executes statements you type at the js>
prompt. It echoes the results of print statements and expressions to your
terminal window.

The full command-line syntax for interactive Tconf is:

tconf [-p <dir>] [-Dname=value] [-js <jsshell opts>]

The tconf utility provides an interactive JavaScript debugging shell. You
enter the interactive shell if you use the tconf command without
specifying a script or using either the -g or -b option.
2-10

Tconf Operation Modes
Once you enter interactive mode, you can run a script from the interactive
shell using the built-in utils.importFile() method. For example:

% tconf

js> utils.importFile("hello.tcf")

The result of this statement are generated files, just as if the script were
executed from the command line. However, after the execution ends, you
are still in the shell.

Alternatively, instead of loading a script, you can create a configuration
by simply typing commands. For each line or group of lines that
constitutes a complete expression, complete statement, or complete
statement block, the debugging shell displays the result on the next line.
For example, a portion of a debugging session might look like the
following:

% tconf

js> utils.loadPlatform("ti.platforms.dsk6416");

[object Program:prog_0]

js> bios.enableRealTimeAnalysis(prog);

js> bios.enableRtdx(prog);

js> var trace;

js> trace = bios.LOG.create("trace");

[object Instance:trace]

js> prog.gen();

true

You can also print the value of an expression using the print() method:

js> textvar = "hello world";

js> print(textvar);

To load the contents of a script file into the JavaScript environment, use
a command like the following:

js> load("filename.tci");

Any statements in the loaded file that are not contained within a function
run when the file is loaded. Functions in the loaded file become available
for execution by other statements.

To exit from the interactive shell, type quit or press CTRL+C. The quit
command cannot be executed in a Tconf script; it is only available in the
interactive shell. The keywords quit and exit are reserved for future use
in Tconf.
Running Tconf Scripts 2-11

2-12

Chapter 3

Tconf Language and Object Model

This chapter describes the Tconf language, the object model it uses, and
some extensions to JavaScript available in Tconf.

3.1 JavaScript Language Highlights . 3–2

3.2 The Target Content Object Model (TCOM) . 3–4

3.3 Methods for Loading Other Scripts . 3–5

3.4 Enabling DSP/BIOS Components . 3–6

3.5 Configuration Coding Guidelines . 3–7

3.6 Object and Property Naming and Referencing. 3–8

3.7 Property Types . 3–11

3.8 File Manipulation with Java . 3–13

3.9 The print() Method . 3–13

3.10 Error Handling . 3–14

Topic Page
3-1

JavaScript Language Highlights
3.1 JavaScript Language Highlights

Tconf scripts contain statements in the JavaScript language. These
statements are executed to perform design-time application
configuration.

This document does not provide details on the syntax of the JavaScript
language. However, several concepts are important when using
JavaScript for Tconf. This section provides an overview of such concepts.
See Section 3.1.3, JavaScript and Java References, page 3-3 for
JavaScript reference sources.

3.1.1 Language Overview

JavaScript syntax, operators, and flow-control statements are similar to
those in the C language. C programmers can easily read JavaScript. It
includes if, else, switch, break, for, while, do, and return statements.

JavaScript is a loosely-typed language. Variables in JavaScript are more
flexible than variables in C or Java. Variables do not need to be explicitly
declared, and the same variable can alternately store any data type.
These types are number, string, Boolean value, array, object, function
(which is actually an object itself), and null. Operators automatically
convert values between data types as necessary.

Variables can be local to a function or global to the entire JavaScript
environment. Variable and object names may not contain spaces or
punctuation other than "_" or "$". In addition, variable and object names
can include numbers but must not begin with a number.

JavaScript does not have pointers and does not deal with memory
addresses.

3.1.2 Common Misconceptions About JavaScript

If you've used JavaScript before, you have probably added scripts to a
web page. It's important to clear up misconceptions some programmers
may have about JavaScript when used outside the context of web pages:

❏ JavaScript is a general-purpose, cross-platform programming
language. While it was developed for use in web-browsers, it has a
number of features that make it useful for application configuration. It
is easy to learn and use, the syntax is similar to C, it is object-
oriented, and it is widely documented.

❏ JavaScript is standardized. The language is also called ECMAScript,
and the ECMA-262 standard defines the language (see
3-2

JavaScript Language Highlights
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM). The basic
syntax and semantics of the language are stable and standardized.

❏ When you use JavaScript in a web page, the objects you use are
defined by the Document Object Model (DOM). These objects
include window, document, form, and image. The DOM is not part of
the JavaScript standard; nor is the DOM part of Tconf.

❏ Other object models can be defined for use with JavaScript. Instead
of the DOM, DSP/BIOS provides the Target Content Object Model
(TCOM), with object classes that include Board, Cpu, and Module.

❏ JavaScript is not a part of Java. These are two different languages
that have similar names for historical marketing reasons. However,
Tconf does allow scripts to call Java functions to provide file services.
JavaScript itself does not provide file services for security reasons on
web browsers.

❏ DSP/BIOS runs JavaScript only on the host PC, UNIX, or Linux
machine. JavaScript code is never run on the target DSP.

3.1.3 JavaScript and Java References

This document does not provide details on the syntax of the JavaScript
language or on the Java packages that can be used. For reference
information, we recommend the following sources:

❏ JavaScript, The Definitive Guide, 3rd Edition, David Flanagan;
O’Reilly 1998

❏ ECMA-262 standard:
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

❏ Rhino JavaScript interpreter: http://www.mozilla.org/rhino

❏ Java 2 SDK: http://java.sun.com/j2se/1.3/docs

❏ java.io package:
http://java.sun.com/j2se/1.3/docs/api/java/io/package-summary.html
Tconf Language and Object Model 3-3

The Target Content Object Model (TCOM)
3.2 The Target Content Object Model (TCOM)

Modern scripting languages separate the language syntax from the
object model. This division is true of such languages as VBScript,
JavaScript, and TCL. The major benefit of this division is that the script
language can be standardized independently from its application domain.

Object models typically define a single top-level object designed to allow
navigation via an object hierarchy to all other objects. For example, in a
web browser, the object model is called the Document Object Model
(DOM) and the top-level object is the "window".

For Tconf, the object model is called the Target Content Object Model
(TCOM) and the top-level object is the Config object.

The DOM model cannot be used with Tconf, and the TCOM cannot be
used in a web page.

As with the DOM, the TCOM is a hierarchy of “container” objects. These
container objects may contain zero or more child objects. For example,
within each Program object, there is a Module container that contains an
array of Module objects. The TCOM object hierarchy is shown in the
following diagram.

Figure 3-1 Target Content Object Model (TCOM)

The top-level Config object contains the entire configuration. Each object
class has methods and properties. The entire object tree can be
navigated by JavaScript statements.

 Config

 board Board

 cpu Cpu

 program Program
 module Module

object
represents
hardware

=

object
represents
software

=

externExtern

instanceInstance

externMemory

externMemory
3-4

Methods for Loading Other Scripts
Notice that a configuration can contain multiple Board objects, Boards
can contain multiple Cpu objects, and Cpu objects can contain multiple
Program objects. Several methods are provided for populating the
hardware and software portions of the object model.

The examples in this document and the examples supplied with
DSP/BIOS deal only with configurations with only one Board object, only
one Cpu object, and only one Program object. This simplifies
configuration scripts, so that the users rarely need to directly access the
hardware-specific portions of TCOM. However, for completeness, we
describe both portions of TCOM here.

See Section 5.1, Target Content Object Model Quick Reference, page 5-
2 for a list of the properties and methods of each of these object classes.

3.3 Methods for Loading Other Scripts

A Tconf script can load another script file. When a script file is loaded, any
statements that are outside any function are executed. The functions
defined in the loaded script are available to be called by the script that
loaded the file.

Directory paths specified in JavaScript statements can use either "\\" or
"/" as a directory separator. (Directory paths on the tconf command line
must use "/".)

Tconf provides the following methods for loading script files:

❏ load(). An extension to JavaScript that runs JavaScript statements in
any file. The file path and full filename must be specified. For
example:

 load("..\\..\\project\\includes\\file.tci");

or

 load("../../project/includes/file.tci");

❏ utils.importFile(). A utility method that attempts to find and load the
specified file using a search path. For example:

 utils.importFile("minFootprint");

If you do not specify a file extension, this function looks for the
specified file with an extension of .tci. The search sequence used by
Tconf is as follows:

a) Any directories specified for config.importPath (in the order
specified)
Tconf Language and Object Model 3-5

Enabling DSP/BIOS Components
b) Current folder

c) BIOS_INSTALL_DIR\xdctools\include

d) BIOS_INSTALL_DIR\xdctools\packages

The last two locations contain files for internal use that should not be
modified or added to.

❏ utils.loadPlatform(). A utility method that loads a platform definition.
See Chapter 4, Tconf Platform Files for details about platform files.

In addition to setting platform-specific properties, the
utils.loadPlatform() method creates a namespace called "bios" that
can be used to shorten references to Module and Instance objects.
For example, the standard syntax to reference the bufLen property of
the LOG_system object is:

 prog.module("LOG").instance("LOG_system").bufLen

Within the "bios" namespace, Modules and Instances can be
referenced directly. For example:

 bios.LOG_system.bufLen = 128;

3.4 Enabling DSP/BIOS Components

It is important to note that the utils.loadPlatform() method loads only the
minimal set of DSP/BIOS components. Heaps, tasks, real-time analysis,
and RTDX are disabled after a platform is loaded. If any of the disabled
components is needed, it must be explicitly enabled.

The preferred way to enable or disable DSP/BIOS components is by
calling methods from the "bios" namespace:

bios.enableRealTimeAnalysis(prog); // enables RTA

bios.enableMemoryHeaps(prog); // enables heaps

bios.enableRtdx(prog); // enables RTDX

bios.enableTskManager(prog); // enables tasks

bios.disableRealTimeAnalysis(prog); // disables RTA

bios.disableMemoryHeaps(prog); // disables heaps

bios.disableRtdx(prog); // disables RTDX

bios.disableTskManager(prog); // disables tasks

The "prog" variable refers to a Program object from the TCOM. This
variable is set by the Tconf environment during initialization.
3-6

Configuration Coding Guidelines
Alternatively, DSP/BIOS components can be enabled and disabled by
directly setting the properties of DSP/BIOS modules.

bios.GBL.ENABLEINST = true; // enables RTA

bios.MEM.NOMEMORYHEAPS = false; // enables heaps

bios.RTDX.ENABLERTDX = true; // enables RTDX

bios.TSK.ENABLETSK = true; // enables task

bios.GBL.ENABLEINST = false; // disables RTA

bios.MEM.NOMEMORYHEAPS = true; // disables heaps

bios.RTDX.ENABLERTDX = false; // disables RTDX

bios.TSK.ENABLETSK = false; // disables tasks

If you enable heaps in one or more memory segments, you need to
explicitly set the configuration parameters that reference memory
segments with heaps. For example, the property MEM.BIOSOBJSEG of
the MEM module defines the memory segments for DSP/BIOS objects
created at run-time. That parameter is initially set to MEM_NULL. After
heaps are enabled as shown in the previous example and the segment
MEM_DYN (for example) has a heap enabled, MEM.BIOSOBJSEG still
points to MEM_NULL. It has to be explicitly set as follows to use the
MEM_DYN heap:

bios.MEM.BIOSOBJSEG = prog.get("MEM_DYN");

Similarly, MEM.MALLOCSEG and TSK.STACKSEG need to be set
explicitly in order to use heaps and tasks.

3.5 Configuration Coding Guidelines

When using Tconf, we recommend using the following coding
conventions.

❏ There is one TCF script per application. That script has the same
name as the application. For example, if the main source file is hello.c
and the executable is hello.out, the name of the main configuration
script should be hello.tcf.

❏ Use a file extension of .tci for scripts included by the main script. A
different file extension is recommended for included files to support
different handling of the main script and included scripts by program
build utilities, such as gmake.

❏ Split the main configuration script into platform-dependent and
platform-independent pieces. This simplifies porting to new
platforms, since only a platform-dependent part needs to be
changed.
Tconf Language and Object Model 3-7

Object and Property Naming and Referencing
❏ Further determine and define as separate files the pieces of the main
script common for many applications. This minimizes code
duplication.

❏ Create .tci files from the identified parts of the main configuration
script. The main configuration script includes these .tci files.

The examples supplied with DSP/BIOS have TCF scripts organized
according to these guidelines.

See DSP/BIOS Tconf Language Coding Standards (SPRAA67), which is
included in the DSP/BIOS installation, for lexical coding conventions
recommended for use with Tconf.

3.6 Object and Property Naming and Referencing

JavaScript is object-oriented. The object model is separate from the
JavaScript language, but object handling syntax is part of the language.

Objects have properties to define their characteristics. Such properties
are actually variables local to the object. You access properties using the
dot (.) notation. For example, use config.hasReportedError to refer
to the hasReportedError property of the Config object.

Objects also have methods that define actions the object can perform.
Methods are also accessed using the dot notation. For example,
config.destroy() deletes the Config object. Such methods are
actually functions that are local to the object.

The Target Content Object Model (TCOM) defines object classes that
contain an array of zero or more objects. For example, within each Board
object, there is a cpu container that contains an array of Cpu objects. You
can use the bracket ([]) notation or the name of an object to reference
an individual object. For example, these notations all reference the
clockRate property of a Cpu object:

config.boards()[0].cpus()[0].clockRate

config.boards()["board_0"].cpus()["cpu_0"].clockRate

If global variables have been declared for board_0 and cpu_0, then the
following additional expressions reference the same property:

board_0.cpus()[0].clockRate

board_0.cpus()["cpu_0"].clockRate

cpu_0.clockRate
3-8

Object and Property Naming and Referencing
While the clockRate property and other properties from the hardware
portions of the TCOM can still be accessed using all the notations
mentioned here, the preferred way for setting these properties is through
the parameters of the generic platform. The generic platform and its
parameters are described in Section 4.2, Creating Custom Platform
Files, page 4-4.

The utils.loadPlatform() method creates a namespace with variables to
reference all Module and Instance objects. This simplifies object
references as shown by the following references to the LOG_system
instance:

❏ Full reference path:

 config.boards()[0].cpus()[0].programs()[0].module("LOG").instance("LOG_system")

❏ Reference path using the prog variable automatically created to
reference the first Program object:

 prog.module("LOG").instance("LOG_system")

❏ Reference path using the "bios" namespace created by the
utils.loadPlatform() method.

 bios.LOG_system

The examples in this document and in DSP/BIOS almost exclusively refer
to Module and Instance objects through the "bios" namespace.

Many methods expect an object as a parameter or return an object.
When an object is assigned to a variable, that variable internally contains
a reference to the object. Objects are not copied when they are assigned;
they are stored in one place and referenced by variables. Thus, if multiple
variables reference an object, changes to the object made via one
variable affect the same object when referenced by another variable.

Some methods return an array of objects. Standard array properties,
such as length, can be used with arrays of objects. For example, this
statement gets the number of objects in the TSK.instances() array:

numtasks = bios.TSK.instances().length

These statements create a string listing the names of all Module objects:

list = "";

modules = prog.modules();

for (i = 0; i < modules.length; i++) {

 list += modules[i].name + " ";

}

Tconf Language and Object Model 3-9

Object and Property Naming and Referencing
The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods, such as join(), sort(), and
reverse(), to sort lists of objects. For example, this statement sets a
variable to an array of Instance objects with their names in ASCII order:

alphatasks = bios.TSK.instances().sort()

3.6.1 Module and Instance Property Names

Normally, all objects in a class have the same set of properties. However,
each type of Module and Instance object has a different set of properties.
Therefore, Tconf handles the properties of Module and Instance objects
differently than those of other object classes.

The names of the properties are listed in the DSP/BIOS Application
Programming Interface Reference Guide for your platform.

You can set and get these property values as you would with properties
of other object classes. For example, the following statement sets the
size of the LOG_system buffer.

bios.LOG_system.bufLen = 16;

In general, property names of Module objects are in all uppercase letters.
For example, "MEM.STACKSIZE". Property names of Instance objects
begin with a lowercase word. Subsequent words have their first letter
capitalized. For example, "TSK_idle.stackSize".

3.6.2 Namespace Management

A namespace is the context within which all variables must have unique
names. Program objects define a global namespace for all objects
contained within the Program object. As a result, all Module, Instance,
and Extern objects within a Program object must have unique names.

For example, if the first statement is performed, the second statement
fails because the name "audio" is already used.

bios.SWI.create("audio"); /* OK */

bios.PIP.create("audio"); /* fails */

Any object in a namespace can be retrieved by name. This simplifies
object lookup in scripts. For example, these statements look for an object
named "audio" and check to see whether it is an Instance object before
modifying a property.
3-10

Property Types
In the following example, “instanceof” is a JavaScript operator that
returns true if the object is of the specified class. “Instance” is the name
of a class.

audio = prog.get("audio");

if (audio instanceof Instance) {

 audio.priority = 1;

}

3.7 Property Types

The DSP/BIOS Application Programming Interface Reference Guide for
your platform lists the type of value expected for each property and
identifies properties used only for certain DSP platforms. Most types are
automatically converted to and from the corresponding JavaScript type.

❏ Arg. Arg properties hold arguments to pass to program functions.

❏ Bool. DSP/BIOS configurations store Boolean (true/false) values as
1 for true and 0 for false. JavaScript handles both Boolean and
integer values. You may use JavaScript to assign either a true value
or an integer 1 value to a Boolean Module or Instance property in
order to set it to true. Do not set a Boolean value to the quoted string
"true" or "false".

For example, both of these statements disable use of the CLK
manager to drive the PRD tick:

 bios.PRD.USECLK = 0;

 bios.PRD.USECLK = false;

❏ EnumInt. Enumerated integer properties accept a set of valid integer
values.

❏ EnumString. Enumerated string properties accept a set of valid
string values.

❏ Extern. Properties that hold function names use the Extern type. In
order to provide a function label, use an Extern object (for "external
declaration") in JavaScript. All Extern objects within a Program object
must have unique names.

Extern objects may be defined as asm, C, or C++ language symbols.
The default language is C.
Tconf Language and Object Model 3-11

Property Types
For example, the following statements create Extern objects for
program functions or get the specified object if it already exists. They
assign the object to the specified property.

 bios.task0.fxn = prog.extern("audioFxn", "C");

 bios.SYS.ABORTFXN = prog.extern("error");

❏ Int16. Integer properties hold 16-bit unsigned integer values. The
value range accepted for a property may have additional limits.

❏ Int32. Long integer properties hold 32-bit unsigned integer values.
The value range accepted for a property may have additional limits.

❏ Numeric. Numeric properties hold either 32-bit signed or unsigned
values or decimal values, as appropriate to the property. When
comparing non-integer values, use sufficient digits after the decimal
point to match the actual value stored as a Numeric value. For
example, if the value of myFloat is 3.456789, the following
comparison would evaluate as false:

 if (myFloat == 3.4568) { /* FALSE */

 ...

 }

❏ Reference. Properties that reference other objects contain an object
reference. For example, properties that specify a MEM segment
reference an Instance object contained by the MEM Module object.
The following statement gets a reference to a MEM Instance and
assigns it to the SWI Object Memory property:

 bios.SWI.OBJMEMSEG = bios.MEM.instance("EDATA");

❏ String. String properties hold text strings.
3-12

File Manipulation with Java
3.8 File Manipulation with Java

For security reasons, JavaScript does not provide any file services. In a
web browser, the lack of file services prevents most forms of file access
on your computer. In Tconf, file services are provided through the Rhino
JavaScript interpreter via LiveConnect. The implementation provides
unrestricted use of the java.io package.

Calls to the java.io library from a script look just like JavaScript function
calls. Only the function called is written in Java. For example, these
statements return the path to a file if it exists:

var file = new java.io.File(fileName);

if (file.exists()) {

 return (file.getPath());

}

For documentation of the java.io package, see version 1.3.1 of the Java
2 SDK documentation at http://java.sun.com/j2se/1.3/docs. In particular,
see the java.io page at
http://java.sun.com/j2se/1.3/docs/api/java/io/package-summary.html.

3.9 The print() Method

The print() method is an extension to JavaScript that sends the result of
the expression passed to the method to the stdout location. Within the
Rhino environment, output from the print() statement is displayed in the
JavaScript Console window.

In this example, if any array of objects has been assigned to obj, these
statements print a list of the objects in the array.

for (var i in obj) {

 print("obj." + i + " = " + obj[i])

}

This example uses the print() method to get an array of Board objects and
print a list of all the Board objects:

boards = config.boards();

for (i = 0; i < boards.length; i++) {

 print("board[" + i + "] = " + board[i].name);

}

Tconf Language and Object Model 3-13

Error Handling
3.10 Error Handling

Three levels of errors are reported by the host configuration objects.
From least to most significant, the levels are:

❏ Warning. Probable but unconfirmed error, action completed.

Warnings are disabled by default, but can be enabled with the
config.warn() method or the –w command-line switch. Warnings are
written to the stderr location if they are enabled.

❏ Error. Confirmed error, action failed.

The error status of a script is tracked by the config.hasReportedError
property. Error messages are always written to the stderr location.

❏ Exception. Confirmed error, action failed, non-local return.

Scripts can throw exceptions. Exceptions thrown by a script or TCOM
object can be caught in a script. Uncaught exceptions cause a script
to terminate execution. Exceptions are always written to the stderr
location, even if they are caught by a script.

In interactive tconf, stderr messages are shown as separate lines without
the js> command prompt. In the GUI debugger, stderr messages are
shown in the JavaScript Console window.

The exit status from the tconf utility is 0 (success) unless a script
specified on the command line could not be run (for example, because
the file was not found). If the script runs and results in errors, the tconf
exit status is non-zero.

3.10.1 More About Errors

If an error occurs, the config.hasReportedError property is set to true. A
script can check this property to determine whether one or more errors
has occurred. Error messages are always written to the stderr location.

The following example uses the config.hasReportedError property to
determine whether an output configuration file should be generated.

if (config.hasReportedError == false) {

 prog.gen();

}

else {

 print("An error has occurred.");

}

3-14

Error Handling
3.10.2 More About Exceptions

To throw an exception, scripts use the "throw" keyword. This example
throws an exception if the lowest-priority task is not the TSK_idle task.
The exception goes to stderr.

function increasingPri(a, b)

{

 return(a.priority - b.priority);

}

tasklist = prog.module("TSK").instances();

tasklist.sort(increasingPri);

if (tasklist[0].name != "TSK_idle") {

 throw new Error("Idle task should be lowest priority!");

}

To catch an exception, a script can use a “try-catch” block. The syntax for
such a block is as follows:

try {

 // something that might throw an exception //

}

catch (e) {

 // e is the error object thrown //

}

For example, the following statements attempt to load a JavaScript file. If
the file does not exist, an exception is thrown. When the exception is
caught, a message is sent to stderr and the script continues executing. If
this script did not catch the exception, the script would terminate
execution when the exception occurred.

try {

 fileName = prog.name + "_test.tci";

 load(fileName);

}

catch (e) {

 throw new Error(e + "\nNo " + fileName + " file.");

}

Tconf Language and Object Model 3-15

3-16

Chapter 4

Tconf Platform Files

This chapter describes how Tconf scripts should specify the platform to
use and how Tconf scripts interact with other files and with operating
system issues.

Important: This manual is for use with DSP/BIOS 5.30. See Appendix
A for conversion information.

4.1 Using TI-Supplied Platform Files . 4–2

4.2 Creating Custom Platform Files. 4–4

4.3 Setting Platform Params. 4–7

4.4 Using Custom Platform Files . 4–15

Topic Page
4-1

Using TI-Supplied Platform Files
4.1 Using TI-Supplied Platform Files

If you use the DSP/BIOS Configuration Tool as described in Chapter 6 to
select a platform and create the initial configuration, the reference to a
platform file is created automatically in your script.

You can skip the rest of this chapter unless you intend to write TCF scripts
from scratch using a text editor or you will need to create custom platform
configuration files.

As shown in Section 1.3, Creating a Tconf Script, a Tconf script typically
starts with a call to the utils.loadPlatform() method. The method loads a
platform file using a logical naming convention that matches a partial file
path. For example:

utils.loadPlatform("ti.platforms.dsk6416");

A platform configuration contains Tconf statements that specify board
parameters from a software standpoint—for example, the CPU, clock
speed, CPU-specific registers, and external memory size and start
address.

DSP/BIOS provides a number of platform configuration files. You typically
do not need to edit platform configuration files; you simply reference a
platform with the utils.loadPlatform() method in your TCF script.

The platform files shipped with DSP/BIOS are located in the following
location:

 BIOS_INSTALL_DIR/packages/ti/platforms/<boardname>/Platform.tci

where <boardname> is the name of a board such as dsk6416. All
provided platform files have a filename of Platform.tci; the folder that
contains a particular file identifies it.

The logical platform name used in the utils.loadPlatform() method must
match the physical folder location of the desired Platform.tci file. For
example, if the <boardname> above is dsk6416, the logical platform
name is ti.platforms.dsk6416, which matches the /ti/platforms/dsk6416
location.

After you load a platform, you have loaded a minimal DSP/BIOS
configuration. One element of that configuration is the memory
segments. The table of memory segments for all platforms is provided in
Section B.1, Platform Memory Configurations.

If you want to change the memory configuration, you should do it in the
Platform.tci file you use, not in the application’s TCF script or with the
DSP/BIOS Configuration Tool.
4-2

Using TI-Supplied Platform Files
4.1.1 Referencing a Platform File with utils.loadPlatform()

The search sequence use by utils.loadPlatform() to locate platform files
is as follows:

1) User-specified locations, if any, in config.importPath.

2) Default locations in config.importPath, including the current folder.

3) BIOS_INSTALL_DIR\xdctools\include

4) BIOS_INSTALL_DIR\xdctools\packages

If the argument to utils.loadPlatform() contains names separated by a
period (.), each name represents a subfolder. The resulting relative path
is appended to the items in the preceding search sequence during the
attempt to locate the Platform.tci file. For example, suppose the following
statement is at the beginning of a script:

utils.loadPlatform("ti.platforms.dsk6416")

Tconf appends /ti/platforms/dsk6416 to each item in its search sequence,
and is therefore able to find the Platform.tci file in the folder
BIOS_INSTALL_DIR/packages/ti/platforms/dsk6416/ when you specify
that BIOS_INSTALL_DIR/packages should be in the default search path.

The BIOS_INSTALL_DIR/packages folder is automatically added to the
search path if you are using CCStudio to build a project or the DSP/BIOS
Configuration Tool to save a configuration. You only need to explicitly add
BIOS_INSTALL_DIR to the search path if you are running tconf from the
command line or a batch file.

Previous versions of DSP/BIOS contained platform specification files
with an extension of *.tcp. This convention has been replaced with the
use of Platform.tci files stored in platform-specific directories. In previous
versions of DSP/BIOS, you used the utils.loadPlatform method to load
platform files with filenames of <Platform_name>.tcp. For example,
utils.loadPlatform("Dsk6416") would load the Dsk6416.tcp file. Tconf
currently supports this syntax by locating a ti/platforms/dsk6416 folder
containing a Platform.tci file. A message is provided that indicates that
this syntax is deprecated and may not be supported in the future.
Tconf Platform Files 4-3

Creating Custom Platform Files
4.2 Creating Custom Platform Files

If you have a custom board, you can create your own platform
configuration and use it just as the supplied TI platform configurations.
This saves time by allowing you to define DSP, memory, and clock
settings for your hardware once and then reuse the configuration for each
application. This encapsulation of board parameters also facilitates the
writing of configuration scripts that are portable to other boards.

DSP/BIOS provides more than ten platform configuration template files
in the BIOS_INSTALL_DIR\packages\mycompany\platforms\myboard
folder. These templates allow you to create a new platform configuration
by changing a few values.

To create a new platform definition using a template, follow these steps:

1) Open the readme.txt file in the
BIOS_INSTALL_DIR\packages\mycompany\platforms\myboard
folder. This file helps you select the right template based on the DSP
used on your board. Find your DSP in the "Devices" column and
determine the corresponding configuration template from the
"Platforms" column.

2) In the same folder, use a text editor to open the TCI file that has a
filename that matches the recommended configuration template.

3) Choose File->Save As to save this template to a separate TCI file.
(The name doesn't matter at this point. You will change it later.)

4) Edit the mem_ext, device_regs, and params structures to match the
external memory, register, and CPU settings for your board. Follow
the instructions in the file's comments.

■ The mem_ext array should contain memory objects that describe
external memories on your board that can be accessed by DSP.
See the MEM Object Properties topic in the online help or API
Reference Guide for your platform for more information.

■ The device_regs structure contains platform-specific
parameters. See Section 4.3, Setting Platform Params for more
information.

■ In the params structure, you only need to change only two
properties. The first, clockRate, must match the rate of the CPU
clock. The second, deviceName, must match the name of the
DSP on your board (as listed in the Devices column in the
readme.txt file from Step 1). See Section 4.3, Setting Platform
Params for more information.

5) Save your changes and close the TCI file.
4-4

Creating Custom Platform Files
6) If your platform will be widely distributed (for example, if you are a
board vendor), see Section 4.2.1, Creating a Platform for External
Distribution from this point on. Otherwise, continue to the next step.

7) In Windows Explorer, browse to the
BIOS_INSTALL_DIR\packages\myplatforms folder. Create a new
folder and give it the name of your board. For example, osk2420.

8) Copy your edited configuration template file to this new folder, and
rename the copied file Platform.tci.

9) Open the Platform.tci file and edit the "!NAME!" tag. Change it to use
the name of your board. This must exactly match the name you gave
the new folder in Step 7. For example, if Platform.tci is in
BIOS_INSTALL_DIR\packages\myplatforms\osk2420, the !NAME!
tag line must read as follows. (Don't uncomment the !NAME! and
!DESCRIPTION! tags.)

 * !NAME! myplatforms.osk2420

Alternately, you could name the platform "osk2420" and add
packages\myplatforms to your config.importPath definition.

10) Edit the text description in the "!DESCRIPTION..." comment. Do not
change the text between the two exclamation marks (for example,
!DESCRIPTION 55XX!). Write a description to be displayed when
this platform is highlighted in the New DSP/BIOS Configuration
dialog. For example:

 * !DESCRIPTION 55XX! OSK2420 as configured by our group

11) Save and close the Platform.tci file.

12) In CCStudio, choose File->New->DSP/BIOS Configuration.

13) Click the Browse Platforms button and browse to the
BIOS_INSTALL_DIR\packages\myplatforms folder. You should see
the folder named for your board in the list. Then, click OK.

You should see your board listed in the New DSP/BIOS Configuration
dialog. If it is not listed, be sure the Browse Platforms location points
to the folder above the platform-named folder you created. Also
check the tags in the Platform.tci file against the instructions above.

14) Select the platform and click OK to begin creating your configuration.

Alternately, you can use the content created in Step 4 to define the
platform in the application's TCF script by copying the edited
configuration template to the beginning of your application's script.
Examples that define a platform in this manner are provided with the
DSP/BIOS examples for simulators. See the
Tconf Platform Files 4-5

Creating Custom Platform Files
BIOS_INSTALL_DIR\packages\ti\bios\examples\basic\bigtime\sim6416\
bigtime.tcf file for an example. This method is best used when a single
application will use this platform configuration.

4.2.1 Creating a Platform for External Distribution

If your platform definition will be widely distributed (for example, if you are
a board vendor), you should follow these special rules for storing and
editing your Platform.tci file so that namespace conflicts will not occur
between your platforms and other vendor's platforms.

1) First, create your platform file by following Steps 1 through 5 in the
general platform creation instructions.

2) In Windows Explorer, browse to the BIOS_INSTALL_DIR\packages
folder.

3) Create a new folder with the name of your company. For example,
"boardDepot".

4) Within this company-named folder, create a folder called "platforms".

5) Within the "platforms" folder, create a new folder and give it the same
name as your board. For example, osk2420.

6) Copy your edited configuration template file to the folder named for
your board and rename the copied file Platform.tci.

7) Open the Platform.tci file and edit the "!NAME!" tag. Change it to the
full logical name of your platform. This must exactly match the path
from your company-named folder to the board-named folder. For
example, if Platform.tci is in
BIOS_INSTALL_DIR\packages\boardDepot\platforms\osk2420, the
!NAME! tag line must read as follows. (Don't uncomment the !NAME!
and !DESCRIPTION! tags.)

 * !NAME! boardDepot.platforms.osk2420

8) Edit the text description in the "!DESCRIPTION..." comment. Do not
change the text between the two exclamation marks (for example,
!DESCRIPTION 55XX!). Write a description to be displayed when
this platform is highlighted in the New DSP/BIOS Configuration
dialog. For example:

 * !DESCRIPTION 55XX! OSK2420 as configured by BoardDepot

9) Save and close the Platform.tci file.

10) In CCStudio, choose File->New->DSP/BIOS Configuration.
4-6

Setting Platform Params
11) Click the Browse Platforms button and browse to the
BIOS_INSTALL_DIR\packages folder. You should see the folder
named for your company in the list. Click OK.

You should see your board listed in the appropriate tab of the New
DSP/BIOS Configuration dialog. If it is not, make sure the Browse
Platforms location points to the folder above your company-named
folder. Also check the tags in the Platform.tci file against the
instructions above.

12) When you distribute your Platform.tci file, you should ensure it is
installed in the same location within the DSP/BIOS distribution. If you
use another location, you must instruct users to browse to that
location with this Gconf dialog. The most important part of these
steps is that the !NAME! tag logical name must match the folder tree
levels below the location users browse to (with backslashes replaced
by periods).

4.3 Setting Platform Params

Most of the work done by a Platform.tci file is to set up the "params"
JavaScript object. A sample params declaration looks like this:

params = {

 clockRate: 600,

 catalogname: "ti.catalog.c6000",

 devicename: "6416",

 regs: device_regs,

 mem: mem_ext

};

The params object has the following properties.

❏ clockRate. Float. Specifies the CPU’s clock rate in MHz. This
property must be set.

❏ deviceName. String. Specifies the name of the DSP in use. This
property must be set. The list of devices and their configurations is
provided in Section B.3, Device Memory Configurations. Devices
listed there are valid values for this property.

❏ catalogName. String. Specifies the catalog for the DSP. This
property must be set. The following TI catalogs are supplied with
DSP/BIOS: "ti.catalog.c2800", "ti.catalog.c5400", "ti.catalog.c5500"
(includes OMAPs), and "ti.catalog.c6000".
Tconf Platform Files 4-7

Setting Platform Params
❏ regs. An object with target-dependent properties listed in Table 4-1.
This property is required for the devices listed in Table 4-1, and can
be left unset for other devices. For example:

 device_regs = {

 l2Mode: "4-way cache (32k)"

 };

❏ mem. An array that describes the external memory. This property is
optional. For example:

 var mem_ext = [];

 mem_ext[0] = {

 comment: "Defines space for DSP's off-chip memory",

 name: "EXT_1",

 base: 0x80000000,

 len: 0x01000000,

 space: "code/data"

 };

Tconf does not check the consistency of the "regs" and "mem" settings.
You must ensure that the properties of the off-chip part of the memory
map correspond to the values in the platform definition.

Table 4-1 Target-Dependent Properties of regs

DSP Properties Description

28x Int pllcr The four least significant bits of this register (pllcr[3:0]) define the
clocking ratio between pins X1/XCLKIN and X2, and the system
clock. Valid values for this register and further descriptions can be
found in Section 3.8 of the data manual for the TMS320F2812 DSP
(SPRS174).

54x
DM270
DM310
DM320

Int clkmd; The clkmd property defines the behavior of the clock generator.
The clock generator is described in Section 3.10 of the data man-
ual for any C54x device (for example, SPRS095 for C5416). The
DSP/BIOS configuration parameter GBL.CLKMD, which corre-
sponds to the register clkmd, is mentioned in Chapter 2 of the
C5000 DSP/BIOS API Reference Guide (SPRU404).

54x
DM270
DM310
DM320

Int pmst; The Processor Mode Status (PMST) register is used in DSP/BIOS
configurations mainly to define memory map. This register is
described in Section 3.5 of the data manual for any C54x device
(for example, SPRS095 for C5416), and in Chapter 2 of the C5000
DSP/BIOS API Reference Guide (SPRU404).
4-8

Setting Platform Params
54x
DM270
DM310
DM320

Int swwsr,
swcr;

The Software Wait-State Register (SWWSR) and the Software
Wait Control Register (SWCR) control the software-programmable
wait-state generator. These registers are described in Section 3.6
of the data manual for any C54x device (for example, SPRS095 for
C5416), and in Chapter 2 of the C5000 DSP/BIOS API Reference
Guide (SPRU404).

54x
DM270
DM310
DM320

Int bscr; The Bank Switching Control Register (BSCR) controls programma-
ble bank-switching logic. This register is described in Section 3.6 of
the data manual for any C54x device (for example, SPRS095 for
C5416), and in Chapter 2 of the C5000 DSP/BIOS API Reference
Guide (SPRU404).

5501
5502
DA295
DA300

Int pllm, plldiv0; The pllm and plldiv0 registers define the behavior of the system
clock generator on the C5502. The pllm register multiplies and the
plldiv0 register divides the input clock. The combination of pllm and
plldiv0 can generate outputClock = (pllm/plldiv0)*inputClock. They
are described in the Section 3.9 of the datasheet for the C5502
(SPRS166).

5561 Int st3_55; st3_55 is the status register. Its main purpose in DSP/BIOS config-
uration is to define the memory map on the C5561 device. This
register is described in the Chapter 2 of the C55xx CPU Reference
Guide (SPRU371).

5503
5507
5509A
5510A
DA255

Int clkmd; Defines the behavior of the clock generator. The DSP/BIOS config-
uration parameter GBL.CLKMD, which corresponds to the register
clkmd, is mentioned in Chapter 2 of the C5000 DSP/BIOS API Ref-
erence Guide (SPRU404).

6x1x
DRI300
DM64x
64+

String l2Mode; Defines the mode for the L2 cache. This property corresponds to
the GBL.C621XCCFGL2MODE parameter on C621x and C671x
devices, and the GBL.C641XCCFGL2MODE parameter on the
C641x devices. It is described in Chapter 2 of the C6000
DSP/BIOS API Reference Guide (SPRU403).

64+ String l1PMode,
String l1DMode

Defines the mode for the L1 program cache and L1 data cache.
The valid values are "0k", "4k", "8k", "16k", and "32k".

Table 4-1 Target-Dependent Properties of regs

DSP Properties Description
Tconf Platform Files 4-9

Setting Platform Params
After the "params" object is set up, the last statement of Platform.tci
invokes the utils.loadPlatform() method as follows:

/* Customize generic platform with parameters above. */

utils.loadPlatform("ti.platforms.generic", params);

When the first argument to utils.loadPlatform() is "ti.platforms.generic",
the params object is required as the second argument.

The following subsections provide example Platform.tci files for various
devices.

4.3.1 Example for ’C2812

var mem_ext = [];

mem_ext[0] = {

 comment: "Defines space for the DSP's off-chip memory",

 name: "SRAM",

 base: 0x80000,

 len: 0x10000,

 space: "data"

};

var device_regs = {

 pllcr: 0xa

};

var params = {

 clockRate: 150;

 catalogname:"ti.catalog.c2800",

 devicename:"2812",

 regs: device_regs,

 mem: mem_ext

};

utils.loadPlatform("ti.platforms.generic", params);
4-10

Setting Platform Params
4.3.2 Example for ’C5416

var mem_ext = [];

mem_ext[0] = { comment: "External program memory 0",

 name:"EPROG0",

 base:0x18000,

 len: 0x8000,

 space: "code"

};

mem_ext[1] = { comment: "External program memory 1",

 name:"EPROG1",

 base:0x28000,

 len: 0x8000,

 space: "code"

};

mem_ext[2] = { comment: "External program memory 2",

 name:"EPROG2",

 base:0x38000,

 len: 0x8000,

 space: "code"

};

mem_ext[3] = { comment: "Interrupt Vectors",

 name:"VECT",

 base:0xff80,

 len: 0x0080,

 space: "code"

};

var device_regs = {

 clkmd: 0x9007,

 pmst: 0xffa0,

 swwsr: 0x4492,

 swcr: 0x0,

 bscr: 0xa002

};

var params = {

 clockRate: 160;

 catalogname:"ti.catalog.c5400",

 devicename:"5416",

 regs: device_regs,

 mem: mem_ext

};

utils.loadPlatform("ti.platforms.generic", params);
Tconf Platform Files 4-11

Setting Platform Params
4.3.3 Example for ’C5510

var mem_5510 = [];

mem_5510[0] = { name: "SDRAM",

 base: 0x50000, /* byte address */

 len: 0x3b0000, /* length in bytes */

 space: "code/data"

};

var regs_5510 = {

 clkmd: 0x2cd0,

};

var params = {

 clockRate: 200;

 catalogname:"ti.catalog.c5500",

 devicename:"5510",

 regs: regs_5510,

 mem: mem_5510

};

utils.loadPlatform("ti.platforms.generic", params);

4.3.4 Example for OMAP 1510
var params = {

 clockRate: 120,

 catalogname:"ti.catalog.c5500",

 devicename:"1510",

};

utils.loadPlatform("ti.platforms.generic", params);

4.3.5 Example for ’C6416
var device_regs ={

 l2mode: "4-way cache (0k)"

}

var params = {

 clockRate: 600,

 devicename:"6416",

 catalogname:"ti.catalog.c6000",

 regs: device_regs

}

utils.loadPlatform("ti.platforms.generic", params);
4-12

Setting Platform Params
4.3.6 Example for ’C6713

var mem_ext = [];

mem_ext[0] = { name: "SDRAM",

 base: 0x80000000,

 len: 0x00800000,

 space: "code/data"

};

var device_regs = {

 l2Mode: "SRAM"

};

var params = {

 clockRate: 225.0000,

 catalogname:"ti.catalog.c6000",

 devicename:"6713",

 regs: device_regs,

 mem: mem_ext

};

utils.loadPlatform("ti.platforms.generic", params);

4.3.7 Example for ’C64+ Devices

var mem_ext = [];

mem_ext[0] = {

 comment: "256Mbytes of the DSP's off-chip memory",

 name: "EXT",

 base: 0x80000000,

 len: 0x10000000,

 space: "code/data"

};

var device_regs = {

 l1PMode: "32k",

 l2DMode: "32k",

 l2Mode: "0k"

};

var params = { clockRate: 600,

 catalogName: "ti.catalog.c6000",

 deviceName: "DM420",

 regs: device_regs,

 mem: mem_ext

};

utils.loadPlatform("ti.platforms.generic", params);
Tconf Platform Files 4-13

Setting Platform Params
4.3.8 Example for ’C67+ Devices

var mem_ext = [];

mem_ext[0] = {

 comment: "Defines space for DSP's SDRAM off-chip memory",

 name: "EXT0",

 base: 0x80000000,

 len: 0x01000000,

 space: "code/data"

};

mem_ext[1] = {

 comment: "Defines space for DSP's SRAM off-chip memory",

 name: "EXT1",

 base: 0x90000000,

 len: 0x01000000,

 space: "code/data"

};

var params = { clockRate: 300,

 catalogName: "ti.catalog.c6000",

 deviceName: "6727",

 mem: mem_ext

};

utils.loadPlatform("ti.platforms.generic", params);
4-14

Using Custom Platform Files
4.4 Using Custom Platform Files

To use a custom platform located in the mycompany/platforms/myboard
tree, place the following statement at the beginning of your *.tcf script. If
you have renamed mycompany or myboard, change this statement as
needed.

utils.loadPlatform("mycompany.platforms.myboard");

If, for any reason, you cannot store your platform files under
BIOS_INSTALL_DIR/packages, you need to add the path to your
platforms by setting config.importPath. For example, if your c:/BIOS-5-
20/packages/myplatforms folder contains a subfolder called
mycompany/board1 containing a Platform.tci file, you would set your
config.importPath as follows:

 tconf -Dconfig.importPath="c:BIOS-5-20/packages/myplatforms" hello.tcf

Your script should then load your platform file as follows:

utils.loadPlatform("mycompany.board1");
Tconf Platform Files 4-15

4-16

Chapter 5

Tconf Object Model Reference

This chapter provides reference information about the Target Content
Object Model.

5.1 Target Content Object Model Quick Reference 5–2

5.2 Config Class. 5–4

5.3 Board Class . 5–8

5.4 Cpu Class . 5–11

5.5 Program Class . 5–16

5.6 Memory Class . 5–22

5.7 Extern Class. 5–23

5.8 Module Class . 5–24

5.9 Instance Class . 5–28

Topic Page
5-1

Target Content Object Model Quick Reference
5.1 Target Content Object Model Quick Reference

The Target Content Object Model (TCOM) is a hierarchy of “container”
objects. These container objects may contain zero or more child objects.
For example, within each Module object, there is a container that
contains a set of Instance objects. The TCOM is shown in the following
diagram.

Figure 5-1 Target Content Object Model (TCOM)

This table summarizes the methods and properties of the objects in the
Target Content Object Model. For details, see the sections on each class.

 Config

 board Board

 cpu Cpu

 program Program
 module Module

object
represents
hardware

=

object
represents
software

=

externExtern

instanceInstance

externMemory

externMemory

Table 5-1 Target Content Object Model Summary

Object
Type

Objects
Contained Methods Properties See Page

Config Board

board()
boards()
create()
destroy()
warn()

hasReportedError
name Page 5–4

Board Cpu
Memory

cpus()
create()
destroy()
getMemoryMap()

boardFamily
boardRevision
config
name

Page 5–8
5-2

Target Content Object Model Quick Reference
Note that the create() and destroy() methods act on different objects.
While the create() methods create a child object for the specified object,
the destroy() methods destroy the specified object itself.

Cpu Program
Memory

create()
destroy()
getMemoryMap()
program()
programs()

board
clockRate
deviceName
id
name
attrs.cpuCore
attrs.cpuCoreRevision
attrs.dataWordSize
attrs.minDataUnitSize
attrs.minProgUnitSize

Page 5–11

Program Module
Extern

extern()
externs()
destroy()
gen()
get()
module()
modules()

cpu
name
prog.build.target.model.codeModel
prog.build.target.model.dataModel
prog.build.target.model.endian

Page 5–16

Memory -- none -- -- none --

comment
name
space
base
len

Page 5–22

Extern
-- none --

-- none -- language
name Page 5–23

Module Instance
create()
instance()
instances()

-defined in API Reference-
name
program

Page 5–24

Instance
-- none --

destroy()
references()

-defined in API Reference-
module
name

Page 5–28

Table 5-1 Target Content Object Model Summary (Continued)

Object
Type

Objects
Contained Methods Properties See Page
Tconf Object Model Reference 5-3

Config Class
5.2 Config Class

Table 5-2 Config Class Summary

The Config object is the top-level container for an entire system
configuration. Each configuration has one and only one Config object.
The Config object has methods and properties for debugging, error
handling, and host configuration memory management.

A default Config object and a global variable called "config" are
automatically created by the startup script. Should you ever need to
create a Config object explicitly, use a statement similar to the following:

/* create global context for configuration scripts */

var config = new Config("config_0");

board() Method

Syntax: board("name")

Parameters: name Name of object to get. Required.

Returns: object, or null if error occurs

Description: The board() method returns the Board object specified by the name
parameter.

If there is no Board object with the specified name, board() returns null.

Object Type Contains Methods Properties

Config Board

board()
boards()
create()
destroy()
warn()

hasReportedError
name
5-4

Config Class
boards() Method

Syntax: boards()

Parameters: none

Returns: Array of all Board objects contained in the Config object

Description: The boards() method gets an array of all the Boards contained within the
Config object.

This method is performed within the generic platform definition.
Application scripts should not need to use this method.

Example: /* get an array of all boards in config */

boards = config.boards();

/* print a list of the names of all boards in config */

for (i = 0; i < boards.length; i++) {

 print("board[" + i + "] = " + board[i].name);

}

create() Method

Syntax: create("board_name" [, "board_type"])

Parameters: board_name Required name for new Board object.

board_type Optional sub-type of board.

Returns: new Board object, or null if error occurs

Description: The config.create() method creates a new Board object within the Config
object.

This method is performed within the generic platform definition.
Application scripts should not need to use this method.

The first parameter is the name to give the new Board object. The name
must be unique among the boards. This parameter is required.

The second parameter defines the sub-type of board to create. This
parameter is optional. If you provide a board_type that matches an
JavaScript constructor function that has been loaded, that constructor
runs to define properties for the Board object and to create the standard
Cpu object for the board.

The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods to get sorted lists of objects.
Tconf Object Model Reference 5-5

Config Class
destroy() Method

Syntax: destroy()

Parameters: none

Returns: true if successful; false if failed

Description: The destroy() method destroys the specified Config object.

This method fails and returns false if the object is either referenced by
another object or contains objects.

Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

You will probably not need to use the destroy() method when writing
configuration scripts from scratch.

Examples: /* Fails if config contains a board */

config.destroy();

/* So, destroy the previously created board */

board.destroy();

/* Succeeds if config is now empty and unreferenced */

config.destroy();

warn() Method

Syntax: warn()

Parameters: true or false

Returns: Previous warning setting (true or false)

Description: The warn() method enables and disables warnings.

Warnings are disabled by default, but can be enabled with the warn()
method or the –w command-line switch. See Section 3.10, Error
Handling, page 3-14 for information about warnings, errors, and
exceptions.

If you enable warnings, you will notice that the Rhino interpreter provides
a warning if the "var" keyword is omitted from a variable declaration. You
can ignore these messages. Omitting the "var" keyword is permitted by
the standard and is common practice in JavaScript.

In command-line mode, warnings are written to the stderr location. In
interactive tconf, warnings are shown as separate lines without the js>
command prompt. In the GUI debugger, warnings are shown in the
JavaScript Console window.
5-6

Config Class
Example: config.warn(true);

hasReportedError
Property

The hasReportedError property contains a Boolean value that indicates
whether any error or exception has occurred during the current session.

This property is gettable only. It is initially set to false and becomes true
if an error or exception occurs. This property is never reset to false during
a session.

Warnings do not affect the value of this property.

Example: if (config.hasReportedError == true) {

 print("Error has occurred");

}

name Property The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created.

There is only one Config object, so its name is unique by definition.
Tconf Object Model Reference 5-7

Board Class
5.3 Board Class

Table 5-3 Board Class Summary

A configuration may contain one or more Board objects. Board objects
may contain one or more Cpu and Memory objects. Board objects have
properties for storing information about the board hardware used.

A default Board object is created by the utils.loadPlatform() method.
Additional Board objects can be created with the config.create() method.

cpu() Method

Syntax: cpu("name")

Parameters: name Name of object to get. Required.

Returns: object, or null if error occurs

Description: The cpu() method returns the Cpu object specified by the name
parameter.

If there is no object with the specified name in the specified Board object,
cpu() returns null.

cpus() Method

Syntax: cpus()

Parameters: none

Returns: Array of all Cpu objects contained in the specified Board object

Description: The cpus() method gets an array of all the cpus contained within the
Board object.

Example: /* get board containing this cpu */

var cpu = config.boards()[0].cpus()[0];

var board = cpu.board;

/* get all cpus on this board */

var cpus = board.cpus();

Object Type Contains Methods Properties

Board Cpu
Memory

cpu()
cpus()
destroy()
getMemoryMap()

boardFamily
boardRevision
config
name
5-8

Board Class
destroy() Method

Syntax: destroy()

Parameters: none

Returns: True if successful; false if failed.

Description: The destroy() method destroys the specified object.

This method fails and returns false if the object is either referenced by
another object or contains objects.

Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

You will probably not need to use the destroy() method when writing
configuration scripts from scratch.

Examples: /* Fails if config contains a board */

config.destroy();

/* So, destroy the previously created board */

board.destroy();

/* Succeeds if config is now empty and unreferenced */

config.destroy();

/* Two ways to destroy a board named DSK6416 */

boards.DSK6416.destroy()

boards["DSK6416"].destroy();

getMemoryMap()
Method

Syntax: getMemoryMap()

Parameters: none

Returns: The full physical memory map of the platform, including on-chip and off-
chip segments.

Description: This method returns the full physical memory map of the platform. This
map is an array of both on-chip and off-chip memory segments. The map
is returned as an array of Memory objects.

The board.getMemoryMap() function for a particular board is defined in
the platform definition. For an example, see the generic platform file. In
the supplied platform definitions, on-chip memory is before off-chip
memory in the array.
Tconf Object Model Reference 5-9

Board Class
boardFamily Property The boardFamily property contains a string that identifies the type of
board. Example strings are “evm62”, “dsk54”, and "sim55".

This property is gettable only. It is set if the board_type argument to the
config.create() method matches a constructor function, and that
constructor function sets the boardFamily property.

Example: /* load platform-dependent configuration info */

try {

 utils.importFile("dss_" + prog.cpu.board.boardFamily);

}

catch (e) {

 throw new Error(e + "\nDSS doesn't support the '" +

 prog.cpu.board.boardFamily + "' board");

}

boardRevision
Property

The boardRevision property contains an optionally defined string that
identifies the board revision number. Example strings are "1.0" and "2.1".

This property is gettable only. It is set if the board_type argument to the
config.create() method matches a constructor function, and that
constructor function sets the boardRevision property.

config Property The config property holds the Config object that contains the Board.

Since there is only one Config object, this Config object contains all
Boards in the configuration.

This property is gettable only. It is set when the Board object is created.

name Property The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created.

Names of Board objects must be unique.
5-10

Cpu Class
5.4 Cpu Class

Table 5-4 Cpu Class Summary

A Board object may contain one or more Cpu objects. Cpu objects may
contain one or more Program and one or more Memory objects. Cpu
objects have properties for storing information about the Cpu type and
memory handling behavior.

Configurations for multi-core DSPs should have a single Cpu object.
Configurations for boards with multiple DSPs should have multiple Cpu
objects.

A default Cpu object is created by the startup script. Additional Cpu
objects can be created with the create() method of a Board object.

create() Method

Syntax: create("prog_name"])

Parameters: prog_name Required name for new Program object.

Returns: new Program object, or null if error occurs

Description: The create() method for a Cpu object creates a new Program object
within the Cpu object.

The parameter is the name to give the new Program object. The name
must be unique among the Program objects for this Board and within the
Program object's namespace. This parameter is required.

The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods to get sorted lists of objects.

Object Type Contains Methods Properties

Cpu Program
Memory

create()
destroy()
getMemoryMap()
program()
programs()

board
clockRate
deviceName
id
name
attrs.cpuCore
attrs.cpuCoreRevision
attrs.dataWordSize
attrs.minDataUnitSize
attrs.minProgUnitSize
Tconf Object Model Reference 5-11

Cpu Class
Example: /* create a C54 Cpu object for the board */

utils.importFile("C54");

config.boards()[0].create("cpu_0", "C54");

/* create a Program object for the default Cpu */

config.boards()[0].cpus()[0].create("myApp");

/* create "short-cut" for program config scripts */

var prog = config.boards()[0].cpus()[0].programs()[0];

destroy() Method

Syntax: destroy()

Parameters: none

Returns: true if successful; false if failed

Description: The destroy() method destroys the specified object.

This method fails and returns false if the object is either referenced by
another object or contains objects.

Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

You will probably not need to use the destroy() method when writing
configuration scripts from scratch.

Examples: config.boards["DSK6416"].cpus["C6416"].destroy();

getMemoryMap() Method

Syntax: getMemoryMap()

Parameters: none

Returns: The on-chip memory map of the platform.

Description: This method returns the on-chip memory map of the platform. The map
is returned as an array of Memory objects.

The cpu.getMemoryMap() function for a particular cpu is defined in the
*tci file for the particular DSP. For an example, see the C5402.tci file.
5-12

Cpu Class
program() Method

Syntax: program("name")

Parameters: name Name of Program object to get. Required.

Returns: object, or null if error occurs

Description: The program() method returns the Program object specified by the name
parameter.

If there is no object with the specified name in the Cpu object, program()
returns null.

programs() Method

Syntax: programs()

Parameters: none

Returns: Array of all Program objects contained in the specified Cpu object

Description: The programs() method gets an array of all the Program objects
contained within the specified Cpu object.

Example: /* create "short-cut" for program config scripts */

var prog = config.boards()[0].cpus()[0].programs()[0];

board Property The board property holds the Board object that contains the Cpu object.

This property is gettable only. It is set when the Cpu object is created.

Examples: utils.importFile("myApp_" + prog.cpu.board.boardFamily);

function checkMIPS(cpu) {

 /* get board containing this cpu */

 var board = cpu.board;

 /* get all cpus on this board */

 var cpus = board.cpus();

 var MIPS = cpu.MIPS;

 for (var i = 0; i < cpus.length; i++) {

 /* check all cpus against cpu.MIPS */

 if (cpus[i].MIPS != MIPS) {

 throw new Error("All " + board.name +

 " Cpus must run at the same rate.");

 }

 }

}

Tconf Object Model Reference 5-13

Cpu Class
clockRate Property The clockRate property of an object holds the value of the clock rate of
the board in MHz. This property is typically set in the platform definition.

Example: /* Define clock rate for CPU in MHz */

config.board("dsk5402").cpu("cpu_0").clockRate = 100.0;

deviceName Property The deviceName property specifies a name for this particular CPU on the
board. The name may be a number, such as 5402 or 6416. Some
deviceNames also contain letters, such as DM640 and OMAP1510.

id Property The id property specifies a unique id for this particular CPU on the board.
This property is intended for future use.

name Property The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created.

Names of Cpu objects must be unique within the Board object that
contains them.

attrs.cpuCore
Property

The attrs.cpuCore property contains the two-digit Cpu platform followed
by two zeros. Currently, it may be set to one of the following: 2800, 5400,
5500, 6200, 6400, or 6700.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.cpuCore property.

attrs.cpuCoreRevision
Property

The attrs.cpuCoreRevision property contains an optional revision
number of a particular Cpu part. Example values are 1.0, 2.1, and R2.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.cpuCoreRevision property.
5-14

Cpu Class
attrs.dataWordSize
Property

The attrs.dataWordSize property contains the size of a word (int) on this
Cpu in 8-bit units. On 'C5000 platforms, attrs.dataWordSize is two 8-bit
units. On 'C6000 platforms, attrs.dataWordSize is four 8-bit units.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.dataWordSize property.

Example: In this example, the application's data frame size (FRAME_SIZE) is
measured in 16-bit samples. However, DSP/BIOS pipe objects
(DSS_rxPipe) have frame sizes measured in the platform-dependent
word size. So, the attrs.dataWordSize property (in 8-bit units) is used to
convert from the application's frame size to the DSP/BIOS frame size.

var FRAME_SIZE = 64; /* in 16-bit units */

var WORD_SIZE = prog.cpu.attrs.dataWordSize;

 /* in 8-bit units */

/* convert appl frame size to platform word size */

DSS_rxPipe.framesize = (2 * FRAME_SIZE) / WORD_SIZE;

DSS_rxPipe.numframes = 2;

So, on 'C5000 platforms, DSS_rxPipe.framesize equals (2 * 64) / 2, or 64.
On 'C6000 platforms, DSS_rxPipe.framesize equals (2 * 64) / 4, or 32.

attrs.minDataUnitSize
Property

The attrs.minDataUnitSize property contains the size of the smallest
addressable data value (in 8-bit units). On 'C5000 platforms, the
attrs.minDataUnitSize is two 8-bit units. On 'C6000 platforms, the
attrs.minDataUnitSize is one 8-bit unit.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.minDataUnitSize property.

attrs.minProgUnitSize
Property

The attrs.minProgUnitSize property contains the size of the smallest
addressable program value (in 8-bit units). On 'C54x platforms, the
attrs.minProgUnitSize is two 8-bit units. On 'C55x platforms, the
attrs.minProgUnitSize is one 8-bit unit. On 'C6000 platforms, the
attrs.minProgUnitSize is one 8-bit unit.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.minProgUnitSize property.
Tconf Object Model Reference 5-15

Program Class
5.5 Program Class

Table 5-5 Program Class Summary

A Cpu object may contain one or more Program objects. Program objects
may contain one or more Module objects. Program objects may also
contain an array of Extern (external declaration) objects. Program objects
have properties for storing information about the program compilation
model.

Program objects also have a method for generating files to be used in
building the application. Generating files allows the settings made via
Tconf to be linked with the program and used with the DSP/BIOS Real-
Time Analysis Tools.

The create() method of a Program object cannot be used to create
Module objects.

A default Program object is created by the startup script. This startup
script also creates a global variable called "prog" that references this
object. Additional Program objects can be created with the create()
method of a Cpu object.

Program objects define a namespace within which all objects must have
unique names. See Section 3.6.2, Namespace Management, page 3-10
for details.

create() Method

Description: The only way to create a Module object is to load a platform definition or
CDB file with the utils.loadPlatform() method. Do not use the create()
method of the Program object to create Module objects.

destroy() Method

Syntax: destroy()

Parameters: none

Object
Type Contains Methods Properties

Program Module
Extern

extern()
externs()
destroy()
gen()
get()
module()
modules()

cpu
name
prog.build.target.model.codeModel
prog.build.target.model.dataModel
prog.build.target.model.endian
5-16

Program Class
Returns: true if successful; false if failed

Description: The destroy() method destroys the specified object.

This method fails and returns false if the object is either referenced by
another object or contains objects.

Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

You will probably not need to use the destroy() method when writing
configuration scripts from scratch.

extern() Method

Syntax: extern("name", "language")

Parameters: name Name of Extern object to create or get. Required.

language Optional language for which to declare this symbol

Returns: Extern object created or specified

Description: In order to specify a function name as the value of a Module or Instance
property, you must create an Extern object (for "external declaration"). All
Extern objects within a Program object must have unique names.

If no Extern object exists with the specified name, the extern() method
creates and returns a new Extern object. If an Extern object already
exists with the specified name, the extern() method returns the object.

The optional language parameter allows you to specify whether the
symbol should be defined as an asm, C, or C++ symbol. If no language
is specified, the default is C.

You do not need to use an underscore prefix in a Tconf script for the
names of any Extern objects you create.

Examples: myTask.fxn = prog.extern("myTaskFxn", "C");

mySwi.fxn = prog.extern("mySwiFxn", "asm");

SYS.ABORTFXN = prog.extern("error");

externs() Method

Syntax: externs()

Parameters: none

Returns: Array of all Extern objects contained in the Program object
Tconf Object Model Reference 5-17

Program Class
Description: The externs() method gets an array of all the Extern objects contained
within the specified Program object.

Example: The following statements print a list of the Extern objects contained by a
Program:

externs = prog.externs();

for (var i = 0; i < externs.length; i++)

 print(externs[i].name);

}

gen() Method

Syntax: gen("prog_name");

Parameters: prog_name Optional name of output application.

Returns: True if successful; false if not successful

Description: After you have created a Tconf script, you must create its generated files.

On Windows, you must also add the CDB file to your Code Composer
Studio project. Then, you can build your DSP/BIOS application with Code
Composer Studio. The CDB file also makes configuration information
available to the DSP/BIOS Real-Time Analysis Tools.

The gen() methods generates the files needed to build the configuration
into the application. See Section 2.1.1, Generated Files, page 2-2 for
descriptions of the generated files.

If you are going to build your project with Code Composer Studio, use the
prog.gen() method as follows without specifying an output filename.

prog.gen();

If you do not plan to build in Code Composer Studio, you can optionally
use the prog_name argument to specify an output filename for the
generated files. It is generally recommended that the filename match
your target program .out filename. For example, if your target program
executable is hello.out, use the following statement:

prog.gen("hello");

The prog_name parameter can also specify a folder location to contain
the generated files.

When you omit the prog_name parameter, the default prog_name is the
name of the Program object.
5-18

Program Class
If you specify a prog_name parameter, all generated files begin with that
prefix. The "cfg" suffix is appended to the filename for all generated files,
and the appropriate file extensions all are added to all files.

The gen() method stores the files it creates in your current folder.

Example: prog.gen("myAppl");

get() Method

Syntax: get("name")

Parameters: name Name of object to get. Required.

Returns: object, or null if error occurs

Description: The get() method returns the object specified by the name parameter.

The get() method can return any object in the namespace of the object
for which it is called. For example, you can use the get() method for a
Program object to get any Module (such as LOG), Instance object (such
as LOG_system), or Extern object. In contrast, the module() method can
return only Module objects and the instance() method can return only
Instance objects. For more information about namespaces, see Section
3.6.2, Namespace Management, page 3-10.

If there is no object with the specified name in the namespace of the
container whose get() method is used, get() returns null.

Example: In this example, “instanceof” is a JavaScript operator that returns true if
the object is of the specified class. “Instance” is the name of a class.

/* lookup existing object named "audio" */

audio = prog.get("audio");

/* if audio is an Instance object */

if (audio instanceof Instance) {

 audio.priority = 1; /* set its priority */

}

module() Method

Syntax: module("name")

Parameters: name Name of Module object to get. Required.

Returns: object, or null if error occurs

Description: The module() method returns the object specified by the name
parameter.
Tconf Object Model Reference 5-19

Program Class
If there is no object with the specified name in the Program object,
module() returns null.

The get() method can return any object in the namespace of the Program
object for which it is called. For example, you can use the get() method
for a Program object to get any Module (such as LOG) or Instance object
(such as LOG_system). In contrast, the module() method can return only
Module objects. For more information about namespaces, see Section
3.6.2, Namespace Management, page 3-10.

modules() Method

Syntax: modules()

Parameters: none

Returns: Array of all Module objects contained in the specified Program object

Description: The modules() method gets an array of all the Module objects contained
within the specified Program object.

Example: list = "";

modules = prog.modules();

for (i = 0; i < modules.length; i++) {

 list += modules[i].name + " ";

}

cpu Property The cpu property holds the Cpu object that contains the Program object.

This property is gettable only. It is set when the Program object is created.

Example: if (prog.cpu.attrs.cpuCore == "5500") {

 /* C5500-specific statements */

}

name Property The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created. Names of
Program objects must be unique within the Cpu object that contains
them.

codeModel Property The prog.build.target.model.codeModel property contains "near" or "far"
to indicate the code addressing model used by the program. On 'C6000
platforms, the value is always "far". On all other platforms, the default is
"near".

This property is set automatically if you use the utils.loadPlatform()
method. To set this property to "far", you may use the following –D option
on the tconf command line:

tconf -Dconfig.compilerOpts="-mf"
5-20

Program Class
Example: bios.GBL.CALLMODEL =
 prog.build.target.model.codeModel;

dataModel Property The prog.build.target.model.dataModel property contains "small" or
"large" to indicate the data addressing model used by the program. The
default is "small" on all platforms.

This property is set automatically if you use the utils.loadPlatform()
method. To set this property to "large", you may use the following –D
option on the tconf command line:

tconf -Dconfig.compilerOpts="-ml"

Example: bios.GBL.MEMORYMODEL =
 prog.build.target.model.dataModel;

endian Property The prog.build.target.model.endian property contains "little" or "big" to
indicate the byte addressing model used by the program. The default is
"little" on all platforms.

This property is set automatically if you use the utils.loadPlatform()
method. To set this property to "big", you may use the following –D option
on the tconf command line:

tconf -Dconfig.compilerOpts="-me"

Example: bios.GBL.ENDIANMODE = prog.build.target.model.endian;
Tconf Object Model Reference 5-21

Memory Class
5.6 Memory Class

Table 5-6 Memory Class Summary

A Board or Cpu object may contain one or more Memory objects.
Memory objects do not contain any objects. Memory objects represent
memory on the board or CPU.

There is no method to create a Memory object. Instead, Memory objects
are defined as elements in a mem[] array. For example:

/* Define external memory on board */

config.board("dsk5402").mem = [];

config.board("dsk5402").mem[0] = {

 comment: "External Program Memory",

 name: "EPROG",

 space: "code",

 base: 0x8000,

 len: 0x7f80

};

config.board("dsk5402").mem[1] = {

 comment: "External Data Memory",

 name: "EDATA",

 space: "data",

 base: 0x8000,

 len: 0x8000

};

The getMemoryMap() method of the Board and Cpu objects allows you
to get the array of defined Memory objects.

Memory objects are typically created only in a platform definition.

base Property The base property holds the location of the base of the memory segment.
It is typically specified using a hex value.

comment Property The comment property holds a text description about the memory
segment.

Object Type Contains Methods Properties

Memory -- none --

base
comment
len
name
space
5-22

Extern Class
len Property The len property holds the length of the memory segment. It is typically
specified using a hex value.

name Property The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created. Names of
Memory objects must be unique within the Board or Cpu object that
contains them.

space Property The space property specifies the type of memory space as a string. It
may be "code", "data", "code/data", or any other value appropriate for the
platform.

5.7 Extern Class

Table 5-7 Extern Class Summary

A Program object may contain one or more Extern objects. Extern objects
do not contain any objects.

Extern objects represent external declarations made in program code
that need to be referenced in the configuration. The following example
statements create Extern objects:

myTask.fxn = prog.extern("myTaskFxn", "C");

mySwi.fxn = prog.extern("mySwiFxn", "asm");

bios.SYS.ABORTFXN = prog.extern("error");

The extern() method of the Program object (see Section 5.5, Program
Class, page 5-16) creates a new Extern object only if none exists with the
specified name. If an Extern object already exists with the specified
name, the extern() method returns the object. The externs() method of
the Program object gets an array of all Extern objects contained within
the specified Program object.

language Property The language property of an object identifies the language in which the
name is declared. It may be "C", "C++", or "asm". This property is gettable
only. It is set when the object is created. The default is "C".

name Property The name property of an object holds the name of that object. An
underscore prefix is not needed in Tconf scripts for the names of any
Extern objects. This property is gettable only. It is set when the object is
created. Names of Extern objects must be unique within the Program
object that contains them.

Object Type Contains Methods Properties

Extern -- none -- language
name
Tconf Object Model Reference 5-23

Module Class
5.8 Module Class

Table 5-8 Module Class Summary

A Program object may contain one or more Module objects. Module
objects may contain one or more Instance objects. Module objects
represent a target module within a single program.

The only way to create a Module object is to use the utils.loadPlatform()
method. Do not use the create() method of the Program object to create
Module objects.

The utils.loadPlatform() method defines a variable for each Module
object within the "bios" namespace. For example, DSP/BIOS contains
modules named LOG, TSK, and MEM. These correspond to Module
objects named LOG, TSK, and MEM. To access them in a script, use
bios.LOG, bios.TSK, and bios.MEM.

Module objects have properties that are specific to the type of module
and are defined within the platform definition that has been loaded.

create() Method

Syntax: create("instance_name"])

Parameters: instance_name Required name for new Instance object.

Returns: new Instance object, or null if error occurs

Description: The create() method for a Module creates a new Instance object within
the Module object.

The parameter is the name to give the new Instance object. The name
must be unique among the Module, Instance, and Extern objects for this
program. This parameter is required.

The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods to get sorted lists of objects.

Object Type Contains Methods Properties

Module Instance
create()
instance()
instances()

defined in API Reference
name
program
5-24

Module Class
Examples: inputPipe = bios.PIP.create("input");

inputPipe.notifyWriterFxn = prog.extern("writerFxn");

inputPipe.notifyWriterArg0 = 0;

inputPipe.bufAlign = 32;

traceLog = bios.LOG.create("trace");

traceLog.buflen = 32;

instance() Method

Syntax: instance("name")

Parameters: name Name of object to get. Required.

Returns: object, or null if error occurs

Description: The instance() method returns the Instance object specified by the name
parameter.

If there is no object with the specified name in the Module, instance()
returns null.

Note that while individual objects within any container object may be
referred to as "instances," there is also a specific object class called
"Instance," which is the child of the Module class. Thus, the instance()
method of the Module class returns an "Instance object." Because of the
potential for confusion, this document refers to individual objects that are
not of the "Instance" class as "objects," not as "object instances" or
"instances."

Example: log = bios.LOG.instance("LOG_system");

instances() Method

Syntax: instances()

Parameters: none

Returns: Array of all objects contained within this object

Description: The instances() method returns an array of all the Instance objects
contained in the Module object whose method is used. This allows scripts
to loop through all the instances.

Note that while individual objects within any container object may be
referred to as "instances," there is also a specific object class called
"Instance," which is the child of the Module class. Thus, the instances()
method of the Module class returns an array of "Instance objects."
Tconf Object Model Reference 5-25

Module Class
Because of the potential for confusion, this document refers to individual
objects that are not of the "Instance" class as "objects," not as "object
instances" or "instances."

Example: /* loop through all MEM objects and remove any heaps */

var memObjs = bios.MEM.instances();

for (var i = 0; i < memObjs.length; i++) {

 /* can't remove MEM_NULL heap */

 if (memObjs[i] != MEM_NULL

 && memObjs[i].createHeap == 1) {

 memObjs[i].createHeap = 0;

 }

}

name Property The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created.

Names of Module objects must be unique within the namespace of the
Program object that contains them. Program objects define a namespace
that includes all Extern, Module, and Instance objects contained by the
Program object. Extern, Module, and Instance objects within two different
Program objects can have duplicate names.

The names of Extern, Module, and Instance objects are the same as their
C identifiers.

Example: /* assemble a list of the module names in prog */

list = "";

modules = prog.modules();

for (i = 0; i < modules.length; i++) {

 list += modules[i].name + " ";

}

program Property The program property holds the Program object that contains the Module
object. This property is gettable only. It is set when the Module object is
created.
5-26

Module Class
API Properties Normally, all objects in a class have the same set of properties. However,
each module and each instance type has a different set of properties.
Therefore, properties for Module and Instance objects are handled
differently than those of other object classes.

Refer to the following reference guides for lists of property names used
in Tconf scripts for DSP/BIOS Module and Instance objects:

❏ TMS320C5000 DSP/BIOS Application Programming Interface
Reference Guide (literature number SPRU404)

❏ TMS320C6000 DSP/BIOS Application Programming Interface
Reference Guide (literature number SPRU403)

❏ TMS320C28x DSP/BIOS Application Programming Interface
Reference Guide (literature number SPRU625)

In general, the properties of Module objects are in all uppercase letters.
For example, "MEM.STACKSIZE". See the DSP/BIOS Application
Programming Interface Reference Guide for your platform for property
names to use in Tconf scripts. You can set and get these property values
as you would properties of other object classes.

Example: bios.GBL.CALLMODEL =
 prog.build.target.model.codeModel;

bios.CLK.MICROSECONDS = 25000;
Tconf Object Model Reference 5-27

Instance Class
5.9 Instance Class

Table 5-9 Instance Class Summary

A Module object may contain one or more Instance objects. Instance
objects do not contain any objects. Instance objects represent a single
target object.

Loading a platform definition defines Module and Instance objects in the
JavaScript environment. The create() method of a Module object can
also be used to create Instance objects.

Instance objects have properties that are specific to the type of module
that contains them and are defined within the platform definition that has
been loaded. If setting a property fails because of a rule defined for
setting that property, an error is reported but no exception is thrown.

Note that while individual objects within any container object may be
referred to as "instances," there is also a specific object class called
"Instance," which is the child of the Module class. Thus, the instances()
method of the Module class returns an array of "Instance objects."
Because of the potential for confusion, this document refers to individual
objects that are not of the "Instance" class as "objects," not as "object
instances" or "instances."

create() Method Instance objects cannot contain other objects, therefore the create()
method of an Instance object fails and returns an error.

destroy() Method

Syntax: destroy()

Parameters: none

Returns: true if successful; false if failed

Description: The destroy() method destroys the specified object.

This method fails and returns false if the object is either referenced by
another object or contains objects.

Object Type Contains Methods Properties

Instance destroy()
references()

defined in API Reference
module
name
5-28

Instance Class
Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

You will probably not need to use the destroy() method when writing
configuration scripts from scratch,.

references() Method

Syntax: references()

Parameters: none

Returns: Array of all objects that directly reference this object

Description: The references() method returns an array of objects that directly
reference the object whose method is used. Scripts can use the returned
array to attempt to delete referring objects or to display meaningful errors.

Example: /* display list of all objects that reference IDATA */

refs = bios.IDATA.references();

for (i = 0; i < refs.length; i++) {

 print(bios.IDATA.name +

 " is referenced by " + refs[i].name);

}

module Property The module property holds the Module object that contains the Instance
object. This property is gettable only. It is set when the Instance object is
created.

Example: thread_type = myThread.module.name;

name Property The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created.

Names of Instance objects must be unique within the namespace of the
Program object that contains them. Program objects define a namespace
that includes all Extern, Module, and Instance objects contained by the
Program object. Extern, Module, and Instance objects within two different
Program objects can have duplicate names.

The names of Extern, Module, and Instance objects are the same as their
C identifiers.
Tconf Object Model Reference 5-29

Instance Class
Example: /* assemble a list of the module names in prog */

list = "";

modules = prog.modules();

for (i = 0; i < modules.length; i++) {

 list += modules[i].name + " ";

}

API Properties Normally, all objects in a class have the same set of properties. However,
each DSP/BIOS module and each instance type has a different set of
properties. Therefore, properties for Module and Instance objects are
handled differently than those of other object classes.

Refer to the following reference guides for lists of property names used
in Tconf scripts for DSP/BIOS Module and Instance objects:

❏ TMS320C5000 DSP/BIOS Application Programming Interface
Reference Guide (literature number SPRU404)

❏ TMS320C6000 DSP/BIOS Application Programming Interface
Reference Guide (literature number SPRU403)

❏ TMS320C28x DSP/BIOS Application Programming Interface
Reference Guide (literature number SPRU625)

In general, properties of Instance objects begin with a lowercase word.
Subsequent words have their first letter capitalized. For example,
"TSK_idle.stackSize".

See the DSP/BIOS Application Programming Interface Reference Guide
for your platform for property names to use in Tconf scripts. You can set
and get these property values as you would properties of other object
classes.

Example: trace = bios.LOG.create("trace");

trace.bufLen = 32;

trace.logType = "circular";
5-30

Chapter 6

The DSP/BIOS Configuration Tool
(Gconf)

This chapter describes use of the DSP/BIOS Graphical Configuration
Tool.

Detailed help information for the DSP/BIOS Configuration Tool is
provided in the DSP/BIOS online help. This chapter provides a summary
of how to use the DSP/BIOS Configuration Tool and some specific
information relating to its interaction with Tconf.

6.1 Tconf Pane in the Graphical Editor . 6–2

6.2 Tconf Integration with the DSP/BIOS Configuration Tool 6–3

6.3 DSP/BIOS Configuration Tool Menu Operations 6–5

6.4 The Gconf.ini File . 6–11

6.5 Gconf.exe Command Line . 6–12

6.6 Error Handling . 6–12

Topic Page
6-1

Tconf Pane in the Graphical Editor
6.1 Tconf Pane in the Graphical Editor

The DSP/BIOS Configuration Tool (Gconf) provides a graphical editor for
Tconf scripts.

In previous versions of DSP/BIOS, the DSP/BIOS Configuration Tool
worked with CDB files as source files. It now treats TCF files as source
files, making Tconf the basis for DSP/BIOS configuration whether you
edit them with the graphical tool or a text editor.

The new right pane of the DSP/BIOS Configuration Tool acts as a "macro
recorder" for Tconf. Changes you make in the object tree and property
dialogs are reflected in the script.

Figure 6-1 DSP/BIOS Configuration Tool

In the left pane of the DSP/BIOS Configuration Tool, you use the
right-click menu to create and delete objects, set properties of modules
and objects, and set priorities of threads.

The center pane shows property names and values or thread priorities.

The right pane shows the Tconf script. It shows the statements for the
changes you make in the left pane. You cannot edit script statements in
the right pane, but you can use the right-click menu to add blank lines and
comments to the script.

This tool is designed to run in Code Composer Studio. It can also be run
standalone by running the gconf.exe executable, which is located in
BIOS_INSTALL_DIR\packages\ti\bios\config\gconf\bin.
6-2

Tconf Integration with the DSP/BIOS Configuration Tool
6.2 Tconf Integration with the DSP/BIOS Configuration Tool

When you write a Tconf script with a text editor, error checking is done
when you run the script (for example, by building with CCStudio).

In contrast, when you use the DSP/BIOS Configuration Tool, error
checking is done initially when it opens a TCF script and then for each
change you make to the configuration. The exception is the MEM objects,
whose properties are validated when you save the configuration.
(Internally, the tool holds the old CDB file model in memory to check
configurations for correctness.

Internally, the tool operates on a CDB object model that is created when
the TCF file is executed. The CDB objects contain the validation rules
that are used to check each graphical configuration action.

The DSP/BIOS Configuration Tool can open legacy CDB files in
read-only mode for browsing older configurations or convert them from
CDB files to TCF scripts. This behavior is not available in some versions
of CCStudio; however, it can be performed when running the gconf.exe
program outside the CCStudio environment.

6.2.1 Limitations of Tconf Integration

The DSP/BIOS Configuration Tool has the following limitations regarding
the integration of Tconf with graphical configuration:

❏ You cannot edit script statements in the right pane. (You can add
comments and blank lines for readability using the right-click menu.)

❏ You can only see and modify the top-level TCF file. Any TCI files that
are imported affect the configuration in the left pane but are not
visible in the right pane.

❏ A TCF script must contain the following items in either the top-level
TCF script or an included TCI file:

■ A call to utils.loadPlatform that specifies the logical platform file
to load.

■ A location or insertion marker to indicate where new Tconf
statements are to be added.

■ A call to prog.gen() to generate the output files.

❏ You cannot use a filename in the prog.gen() method to modify the
output filenames for generated files. An alternative is to set the
config.programName property, which can specify a unique
name/location for generated files for project configurations (for
example, Debug, Release, and Custom).
The DSP/BIOS Configuration Tool (Gconf) 6-3

Tconf Integration with the DSP/BIOS Configuration Tool
❏ Double-clicking a TCF file in Windows Explorer to open gconf.exe in
standalone mode is likely to result in problems locating include files
and platform files. The best way to run the DSP/BIOS Configuration
Tool is within CCStudio using a project file. The recommended way
to for launch gconf.exe in standalone mode is to create a Windows
shortcut that specifies gconf.exe command-line options.

❏ The DspBiosBuilder tab in the CCStudio File->Build Options dialog
allows you to set options for the project. It passes these options to
gconf.exe via the tcfopts.dat file, which it writes to the project folder.
See the help for the DspBiosBuilder tab for more details.

❏ Not all Tconf command-line options are supported by the DSP/BIOS
Configuration Tool. Only the -D<name>=<value> options are
supported. Your script can be written to make a number of choices
that depend upon the -D options passed to it.

6.2.2 Prog.gen() Method Argument Rules

The prog.gen() method at the end of a TCF script for a project to be built
with CCStudio should not use a parameter to specify the filenames of the
generated files. However, a parameter is actually allowed if it does not
affect the output filenames. That is, if the parameter matches the name
of current TCF file without the ".tcf" extension. For example, if the TCF
file is called bigtime.tcf, the prog.gen method may be as follows:

prog.gen(bigtime);

6.2.3 Insertion Marker Rules

A TCF script must contain the insertion marker shown below in order for
the DSP/BIOS Configuration Tool to successfully insert script statements.

// !GRAPHICAL_CONFIG_TOOL_SCRIPT_INSERT_POINT!

If this marker is not present, the DSP/BIOS Configuration Tool places one
above the "prog.gen()" statement when you perform the first edit
operation.
6-4

DSP/BIOS Configuration Tool Menu Operations
6.3 DSP/BIOS Configuration Tool Menu Operations

You can use menu commands within the DSP/BIOS Configuration Tool to
perform the actions described in the following sections. These
descriptions provide more information about the interaction with Tconf
than the online help descriptions.

File->Open You can open both CDB and TCF files with the DSP/BIOS Configuration
Tool. Note that when running the tool inside some versions of CCStudio,
you cannot open CDB files. In such cases, you can run the gconf.exe
program outside the CCStudio environment to open a CDB file.

To open a file, choose File->Open.

❏ TCF files. When you open a TCF file, the DSP/BIOS Configuration
Tool looks for a Tconf search path using the following priority order:

■ The command line to gconf.exe. An easy way to use this is to
create a desktop shortcut and to specify command line
arguments for the shortcut.

■ A file named tcfopts.dat in the same folder as the TCF file. This
file is created when you initially save a TCF file with the
DSP/BIOS Configuration Tool, or if you use the DspBiosBuilder
tab in the CCStudio Build Options dialog.

■ If no other search path is specified, a dialog prompts you for one.
The default is the "packages" folder above the folder that
contains gconf.exe.

❏ CDB files. When the DSP/BIOS Configuration Tool opens a CDB file,
it asks if you want to convert the CDB. If you choose to convert, you
are prompted to browse to the location of the CCStudio installation.
The tool then runs the cdb2tcf conversion utility. In some cases you
may be prompted to correct errors found by cdb2tcf. The TCF file
produced will contain an "in place" generic platform definition.

In CCStudio, you can also right-click on a TCF file in a Project View to
choose from a DSP/BIOS Config right-click menu that allows you to use
Graphical Edit, Text Edit, or Run in Graphical Debugger.

An error occurs if you attempt to open a TCF file that does not contain a
valid configuration. Valid configurations must load a platform and run the
prog.gen() method.
The DSP/BIOS Configuration Tool (Gconf) 6-5

DSP/BIOS Configuration Tool Menu Operations
File->New To create a new TCF-based configuration, follow these steps:

1) Choose File->New->DSP/BIOS Configuration. This opens the New
DSP/BIOS Configuration dialog, which allows you to select a
platform and enable DSP/BIOS features.

2) Select the tab for your DSP family.

3) Select the platform file for your DSP board.

When you highlight a template, a description is shown to the right of
the dialog. You can click the buttons above the description to view the
templates with large icons, small icons, or a list that includes file sizes
and modification dates.

4) Select the DSP/BIOS features you want to enable in your
configuration. All the features listed are disabled by default. Leaving
a feature disabled significantly reduces the code size, memory
usage, and other resource usage of the resulting application. See the
online help for this dialog for details about the options.

5) Click OK to open the new configuration.

DSP/BIOS provides platform files for common boards produced by Texas
Instruments. Path information to the platform you select is stored in a
tcfopts.dat file in the same folder as the TCF file when you save it.

File->Save Whenever you save a Tconf script, the script is run and files are
generated from it. These files are described in Section 2.1.1, Generated
Files. Additional files are created or copied when you use File->Save As.

Errors may be reported when you save a TCF file if you made changes
to MEM objects. MEM object locations and sizes are not verified for
overlaps on the fly. This allows you to make changes to the sizes and
locations of several objects without encountering numerous errors within
the DSP/BIOS Configuration Tool. Instead, any errors that remain after
your changes are reported when you save the configuration.

File->Save As As with File->Save, the Tconf script is run and files are generated from it.
These files are described in Section 2.1.1, Generated Files.

In addition, a file called tcfopts.dat is generated the first time you save a
configuration in a particular folder.

If you use File->Save As to save a configuration in a different folder, the
tcfopts.dat file and any TCI files in the original folder are copied to the
new folder so that they will be available to the TCF in its new location. In
addition, relative paths are resolved to absolute paths in the TCF script.
6-6

DSP/BIOS Configuration Tool Menu Operations
These steps are necessary to move the Tconf script with its context intact.
Even with these measures, there are cases where errors will occur, such
as if an included TCI script contains a relative path reference.

Edit->Copy and
Edit->Paste

These commands copy and paste the object using the clipboard.

These commands are useful if you want to create several similar objects
of a particular type. You can only cut, copy, and paste objects within a
single module. You cannot paste an object into a different module’s
folder. You cannot cut, copy, or paste a module manager.

Copying an object to the clipboard replaces the contents previously
stored there. You are prompted for an object name when you paste an
object, since objects must have unique names.

You can use the CTRL+C and CTRL+V keyboard shortcuts to copy and
paste text within a property dialog.

View->Toolbar and
View->Status Bar

These commands are available only if you run gconf.exe as a standalone
program. Within CCStudio, the DSP/BIOS Configuration Tool shares the
CCStudio standard toolbar, and status information is shown at the top of
the configuration window.

In standalone mode, the DSP/BIOS Configuration Tool has its own
toolbar and a status bar at the bottom of the window. You can use these
commands to hide or redisplay these items.
The DSP/BIOS Configuration Tool (Gconf) 6-7

DSP/BIOS Configuration Tool Menu Operations
Object->Insert Select a module and use this
command to insert an object into
the module. You can also
right-click on a module and
choose the Insert command from
the right-click menu. You are
prompted to type a name for the
object when you insert it.

Inserting an object adds a
statement using the create()
method to the TCF script at the
insertion point. For example:

bios.LOG.create("myLOG");

Object->Delete Select an object and use this command to delete the object. You can also
right-click on an object and choose the Delete command from the
right-click menu.

If you delete an object that you created during this session, the Tconf
statement that creates it and any statements that set its properties are
simply deleted from the script.

However, if you delete an object that was created during a previous
session, a Tconf statement that destroys the object is added at the
insertion point. For example:

bios.TSK.instance("TSK1").destroy();
6-8

DSP/BIOS Configuration Tool Menu Operations
Object->Rename Select an object and use this command to rename the object. You are
prompted for a new name. You can also right-click on an object and
choose the Rename command from the right-click menu.

If you rename an object that you created during this session, the Tconf
statement that creates it and any statements that set its properties are
deleted from the script, and new statements are added at the insertion
point to create the object and set its properties.

However, if you rename an object that was created during a previous
session, a Tconf statement that destroys the object is added at the
insertion point, and new statements are added to recreate the object and
set its properties. For example:

bios.TSK.instance("TSK1").destroy();

bios.TSK.create("renamedTSK");

bios.TSK.instance("renamedTSK").priority = 3;

Object->Properties This command opens the Property dialog for the selected object. You can
also right-click on an object and choose the Properties command from
the right-click menu. When you click OK, statements are added to the
script at the insertion point to set the properties you changed. For
example:

bios.LOG.instance("LOG1").bufLen = 512;

There are no properties for the top level folders (for example, System).

Object->Show
Dependency

This command opens a dialog that lists other objects that depend on this
object. For example, using this command on a MEM object lists other
objects that use this MEM object. Using this command on an HWI object
lists the interrupt sources related to this object.

Ordered Collection vs.
Property/Value Views

By default, the center pane shows the priorities and execution order for
threads in the Scheduling category.

To change the default, right-click on a module in the Scheduling category
and select Property/value view. The center pane will now list properties
and values for that module manager.
The DSP/BIOS Configuration Tool (Gconf) 6-9

DSP/BIOS Configuration Tool Menu Operations
Comments and Blank
Lines in TCF Pane

Although you cannot edit the Tconf statements within the DSP/BIOS
Configuration Tool, you can add comment lines and blank lines.

To add a comment, left-click on the line you want to place a comment
above. Then, right-click and select Insert Comment from the right-click
menu. Type your comment text in the dialog box, and click OK.

You can delete a comment by left-clicking on the comment line,
right-clicking, and selecting Delete Comment from the right-click menu.
You can also choose to edit a comment line.

Similarly, you can add a blank line to a TCF script by left-clicking on the
line you want to place a blank line above. Then, right-click and select
Insert Blank Line from the right-click menu.

To edit the statements in a Tconf script, save and close the script in the
DSP/BIOS Configuration Tool. Then, open the script with a text editor.
You can later reopen the script with the DSP/BIOS Configuration Tool.
You may encounter messages when you reopen the script with the
DSP/BIOS Configuration Tool if any edited statements generate errors or
warnings.
6-10

The Gconf.ini File
6.4 The Gconf.ini File

The DSP/BIOS Configuration Tool (gconf.exe) saves information to the
gconf.ini file in BIOS_INSTALL_DIR\packages\ti\bios\config\gconf\bin
when it exits:

❏ Settings. The last positions and sizes of the Hierarchy (tree view)
pane, the Object Properties pane and the Script pane. You should not
attempt to edit these values.

❏ Old seed path. When you open a legacy CDB file, a dialog box
prompts for the seed path of the legacy CDB being opened. This is
typically CCS_INSTALL_DIR\<ISA>\bios\include. This dialog is
always displayed when you open a legacy CDB file. The default is the
most recently used Old seed path stored in gconf.ini.

❏ Current seed path. You can add this setting can to gconf.ini by
manually editing the file. It is used to find the base CDB file to perform
an integrity check. The default location is the
BIOS_INSTALL_DIR\packages\ti\bios\config\cdb folder.

❏ Platforms. When you create a new TCF file, you can use the Browse
Platforms button in the File->New dialog to point to a platform folder
other than the default. The default is BIOS_INSTALL_DIR\packages.
The gconf.ini file stores the last folder you browsed for platforms for
use in future sessions.

This is a sample gconf.ini file:

[Settings]

HierarchyPanePosition=0000000000000000FD0000008A01000088

ObjectPanePosition=0000000000000000B50000009F01000055

ScriptPanePosition=0000000000000000340100008A010000C0

[Old seed path]

TMS320C62XX=C:\CCStudio_v3.1\C6000\bios\include

[Current seed path]

TMS320C62XX=C:\bios_5_20\packages\ti\bios\config\cdb

[Platforms]

Search Directory=C:\bios_5_20\packages
The DSP/BIOS Configuration Tool (Gconf) 6-11

Gconf.exe Command Line
6.5 Gconf.exe Command Line

You can run the DSP/BIOS Configuration Tool (gconf.exe) from a
command line. For example, you might create a desktop shortcut, a batch
file, or a makefile to run it.

The syntax is:

gconf.exe script_name.tcf [-tcfopts="opts"]

When you run gconf.exe from a command line, you can use the
-D<name>=<value> pairs supported for the Tconf command line. To
specify such pairs, use the -tcfopts option as follows:

-tcfopts="-Dconfig.importPath=.;..;../common;C:/bios_5_20/packages; -Dfoo=bar"

Any relative paths are relative to the location of the TCF file being
opened.

If you use a command inside a Windows shortcut, you must place a
backslash (\) before each quote mark ("). For example:

-tcfopts=\"-Dconfig.importPath=.;..;../common;C:/bios_5_20/packages; -Dfoo=bar\"

Here are examples of full gconf.exe command lines:

gconf.exe C:\bios_5_20\packages\ti\bios\examples\basic\clk\dsk6713\clk.tcf
-tcfopts=\"-Dconfig.importPath=.;..;../../../common; C:/bios_5_20/packages;\"

6.6 Error Handling

If you open a TCF file that generates errors, those errors are reported in
a dialog box. Examples of problems that may be detected are:

❏ File doesn’t match the requirements for editing in the DSP/BIOS
Configuration Tool. For example, it does not have a utils.loadPlatform
method or a prog.gen method.

❏ A JavaScript error occurred. For example, a property may be set to
an invalid value or a syntax error may occur.

❏ The file may be invalid. For example, it may be a zero-length file or
not a JavaScript file.

❏ The TCI scripts imported by the TCF may not be locatable.

If you see a dialog that reports errors, click the Copy to Clipboard button
so that you can paste the errors somewhere you can refer to them later.
Then, open the TCF file in a text editor and correct the problems.
6-12

Appendix A

Updating DSP/BIOS Configurations

This appendix describes how to convert application configurations
created with previous versions of DSP/BIOS.

A.1 Overview. A–2

A.2 The cdb2tcf Utility . A–2

A.3 Converting from CDB Configurations . A–5

A.4 Converting from Existing Tconf Configurations A–9

Topic Page
A-1

Overview
A.1 Overview

In previous versions of DSP/BIOS, the DSP/BIOS Configuration Tool was
the only mechanism for creating and storing configuration information.
Such configurations were stored in CDB files. In DSP/BIOS releases
beginning with DSP/BIOS 5.0, configurations are stored in Tconf script
files, but you can still use the DSP/BIOS Configuration Tool to create and
modify your configurations.

The cdb2tcf conversion tool is provided to help you convert existing CDB-
based configurations to new script-based configurations. With cdb2tcf,
you generate Tconf scripts that configure DSP/BIOS for use with your
applications. The cdb2tcf utility is available for Windows, Linux and
Solaris. Additionally, the cdb2tcf tool can be run by opening a CDB file
when running the DSP/BIOS Configuration Tool in standalone mode.

If you already have Tconf configuration scripts, this appendix also
describes how to edit existing files to use them with newer DSP/BIOS
versions (5.0 and later).

A.2 The cdb2tcf Utility

Syntax cdb2tcf [-h] [-a <n>] [-d]
[-i <custom_tci_file> <custom_cdb_file>]
[-l <logfile>] app.cdb

Options -h Displays help information and exits.

-a <n> Sets the information verbosity levels of the generated
script, including comments and references to unused
DSP/BIOS elements. Valid values for this option are:

0. (default) No comments in the generated TCF
script.

1. Comments about old values that have been
changed are provided in the TCF script.

-d Create a TCI file (a file to be imported by a TCF script)
containing only the differences between a configuration
template and your configuration, rather than a complete
TCF script. This option is typically used if you created
your own configuration template from a TI-supplied
configuration template, and then you developed multiple
application configurations based on your template. If you
want to maintain such configurations, you can first run
cdb2tcf with '-d' to create a TCI file with a description of
A-2

The cdb2tcf Utility
your configuration template, and then run cdb2tcf with
the option '-i' for each of your application configurations.
Each generated TCF script includes the TCI file instead
of repeating the same set of instructions. See Section
A.3.2, Converting a Custom Base Seed for an example.

-i <custom tci file> <custom cdb file>
This option ensures that a <custom tci_file>, generated
by a prior execution of cdb2tcf using the -d option, is
included in the generated TCF script. See Section A.3.2,
Converting a Custom Base Seed for an example.

-l <log file> The name of an optional log file. The log file contains
messages about the progress of the conversion, and
possible warnings and errors. If the log file is not
specified, messages are sent to standard output.

Return Code Returns zero if the conversion succeeds, non-zero if error.

Description The cdb2tcf utility converts an application’s CDB file to a Tconf TCF
script. The generated TCF script has the same name as the application
CDB file (for example, sample.cdb results in sample.tcf).

The cdb2tcf utility looks for the BIOS_INSTALL_DIR environment
variable to determine to which DSP/BIOS version to use to convert
configurations. If BIOS_INSTALL_DIR is not set, cdb2tcf assumes that
you want to convert to the DSP/BIOS version from which the cdb2tcf
executable is run.

CDB file basics:

An application's CDB file is generated from a configuration template. A
configuration template contains configuration information that represents
a platform with some additional DSP/BIOS settings switched on. You can
determine the configuration template that was used to create your
configuration by opening the CDB file in a text editor and looking at the
third line of the file. An application's configuration extends the
configuration template settings with additional DSP/BIOS objects and
program configuration parameters. CDB files may also contain CSL
mapping declarations.

The cdb2tcf utility generates a TCF script that produces the same
configuration as the original CDB file. It separates the configuration into
the following sections so that you can easily reuse or extend your
configuration. Comments identify the sections. The sections may contain
in-line statements or include separate .tci files.
Updating DSP/BIOS Configurations A-3

The cdb2tcf Utility
❏ Minimum DSP/BIOS configuration. Loads the initial configuration
using the ti.platforms.generic platform with the parameters
appropriate for the chip configuration. This configures the minimal set
of DSP/BIOS modules possible.

❏ Base configuration. Adds statements to extend the generic platform
configuration to match the configuration template selected when the
DSP/BIOS Configuration Tool was originally used to create the
original configuration.

❏ Custom configuration (if options -i and -d were used). If a custom
configuration template was used as the basis for creating the
configuration, this optional section extends the TI configuration to
match the custom template.

❏ Application configuration. This section configures objects used by
the application. This might include such things as DSP/BIOS tasks
and logs.

❏ CSL configuration (optional). If the application CDB file contains
CSL configuration, these are placed in an isolated in a csl.c file. CSL
configuration is no longer part of DSP/BIOS configuration.

Examples cdb2tcf app.cdb

This command generates the full application TCF script from the
application CDB file.

cdb2tcf -d customseed.cdb

This command generates a customseed.tci file with the list of changes a
user made in Gconf when the file customseed.cdb was originally created.

cdb2tcf -i customseed.tci customseed.cdb app.cdb

This command generates the full application app.tcf script which includes
customseed.tci and the differences between customseed.cdb and
app.cdb.
A-4

Converting from CDB Configurations
A.3 Converting from CDB Configurations

If your existing CDB file was created using one of the configuration
templates (base seeds) provided with Code Composer Studio, cdb2tcf
can convert that file to a new DSP/BIOS compatible Tconf script. Your
command line needs to supply the path to your application’s CDB file.

The resulting Tconf script is created in the current folder.

A.3.1 Example for Base Seed Conversion

In the following examples, it is assumed that the application configuration
file app.cdb is in your current folder, and cdb2tcf is in your $PATH. To
create app.tcf, type the following command on the command line:

cdb2tcf app.cdb

The original configuration file, app.cdb is saved as app.cdb.bak. This is
done to avoid having the original configuration file rewritten, because
when tconf executes the generated script, it rewrites app.cdb as an
intermediate step. If the file app.tcf already exists, cdb2tcf exits without
overwriting it and displays an error message.

If cdb2tcf displays the following (or similar) error message:

"Error: Seed file C:/CCStudio_v3.2/bios_5_30_00_03/packag-
es/ti/bios/config/update/4.82.50/c64xx.cdb cannot be found

Your should check to see if the directory identified in the error exists. If
not, unzip the file update.zip, which is available in the "update" directory.
Check to see whether the missing file is created when you unzip the
update.zip file. Once the directory and file exist, try using cdb2tcf again.

The created Tconf script consists of several parts separated by
comments so that you can easily distinguish the purpose of each part.

❏ Load generic platform with specific parameters. First, the script
loads the generic platform with parameters derived from the
appropriate fields in app.cdb. The first statement in the script enables
the use of old memory names. See Section 4.2, Creating Custom
Platform Files, page 4-4 for more information.

❏ Enable DSP/BIOS components. The generic platform enables only
the minimal subset of DSP/BIOS components, which means that
heaps, tasks, real-time analysis, and RTDX are disabled. The base
seeds enabled all DSP/BIOS components. Therefore, the second
part of the script enables all DSP/BIOS components.
Updating DSP/BIOS Configurations A-5

Converting from CDB Configurations
❏ Apply user changes. The third part of the script makes the changes
you made to the original base seed.

/* ========= app.tcf ========= */

/* load generic platform with specific parameters */

environment["ti.bios.oldMemoryNames"] = true;

var params = {};

params.clockRate = 140;

params.deviceName = "5510";

params.catalogName = "ti.catalog.c5500";

params.regs = {};

params.regs.clkmd = 9106;

utils.loadPlatform("ti.platforms.generic", params);

/* enable DSP/BIOS components */

bios.GBL.ENABLEINST = true;

bios.MEM.NOMEMORYHEAPS = false;

bios.RTDX.ENABLERTDX = true;

bios.HST.HOSTLINKTYPE = "RTDX";

bios.TSK.ENABLETSK = true;

bios.DARAM.createHeap = true;

/* apply user changes */

bios.RTDX.MODE = "Simulator";

...

prog.gen();
A-6

Converting from CDB Configurations
A.3.2 Converting a Custom Base Seed

If you created your own custom configuration template (base seed) from
one of the base seeds available in CCS, and if you used that custom base
seed as a starting point for many different applications, cdb2tcf allows
you to create a *.tci file that corresponds to that custom base seed. Using
that file, you can:

❏ Convert CDB-based configurations to Tconf configuration, but retain
the separation between code that defines your custom configuration
and the application code.

❏ Continue developing new applications starting from the custom
configuration.

To convert your CDB files to Tconf scripts in this case, you need to invoke
cdb2tcf twice. First, you use cdb2tcf to create a script that corresponds to
your custom configuration. Then, you create a configuration script
relative to the custom configuration. To do this, follow these steps:

1) Invoke cdb2tcf with the -d option and one argument. The argument is
the path to your custom base seed. For example, to create the
custom.tci script, type the following on the command line:

 cdb2tcf -d custom.cdb

The generated script does not load any platform nor does it contain
the statement that generates the source files from the configuration.
It contains only the statements that correspond to the difference
between the original TI base seed and your custom base seed.

2) Next, invoke cdb2tcf again. This time, use a command similar to the
following to specify that the configuration for your application is
derived from custom.cdb, and that you want to import the file
custom.tci generated previously. The file to be imported is specified
using the option -i. This command creates a script file called app.tcf.

 cdb2tcf -i custom.tci custom.cdb app.cdb
Updating DSP/BIOS Configurations A-7

Converting from CDB Configurations
The generated script contains the same parts as the app.tcf file in Section
A.3.1, Example for Base Seed Conversion, except for the statement that
imports custom.tci. The custom seed configuration is included after the
platform is loaded and the DSP/BIOS components are enabled:

/* ========= app.tcf ========= */

/* load generic platform with specific parameters */

environment["ti.bios.oldMemoryNames"] = true;

var params = {};

params.clockRate = 720;

params.deviceName = "6416";

params.catalogName = "ti.catalog.c6000";

params.regs = {};

params.regs.l2Mode = "4-way cache (0k)";

utils.loadPlatform("ti.platforms.generic", params);

/* enable DSP/BIOS components */

bios.GBL.ENABLEINST = true;

bios.MEM.NOMEMORYHEAPS = false;

bios.RTDX.ENABLERTDX = true;

bios.HST.HOSTLINKTYPE = "RTDX";

bios.TSK.ENABLETSK = true;

bios.GBL.ENDIANMODE = "little";

bios.GBL.C641XCONFIGUREL2 = true;

bios.ISRAM.createHeap = true;

bios.ISRAM.heapSize = 0x8000;

/* import the custom seed */

utils.importFile("custom.tci");

/* apply user changes */

bios.CLK.TIMERSELECT = "Timer 1";

...

prog.gen();

If, instead, you do not want to continue using a separate custom
configuration template, you can generate the new application
configuration directly:

cdb2tcf -d app.cdb

The resulting app.tcf has the three parts described in Section A.3.1,
Example for Base Seed Conversion, except that changes made to the
base seed to create custom.cdb and changes from custom.cdb to
app.cdb are grouped together in the third part of the script.
A-8

Converting from Existing Tconf Configurations
A.4 Converting from Existing Tconf Configurations

If you used Tconf with a previous release of DSP/BIOS, you may need to
make some changes so that your scripts continue to function with
DSP/BIOS.

A.4.1 Changes to the loadPlatform() Method

In earlier versions of DSP/BIOS, the loadPlatform() method expected its
first argument to be a platform name with the first character capitalized,
for example "Dsk5510".

We now recommend that new applications use the new syntax for loading
platforms. The new syntax is documented in Section 4.1, Using TI-
Supplied Platform Files, page 4-2. It requires that the name of the
platform includes the whole path from the folder specified in
config.importPath, for example:

utils.loadPlatform("ti.platforms.dsk5510");

DSP/BIOS still supports the old loadPlatform() syntax. For example, if
your script calls "loadPlatform("Dsk5510")", the loadPlatform() method
finds and loads the Platform.tci file in the ti/platforms/dsk5510 folder.
Tconf provides a warning to indicate that you are using a deprecated form
of loadPlatform(). The Platform.tci files internally use the new form of
loadPlatform() with the appropriate parameters.

This release provides Platform.tci files for most boards supported in
previous releases of DSP/BIOS. If you wrote a custom .tcp file, you
cannot use it with DSP/BIOS. Translating it to a Platform.tci file that uses
the generic platform is fairly straightforward. See Section 4.2, Creating
Custom Platform Files, page 4-4. You can use your new .tci file in three
ways:

❏ Copy your custom Platform.tci file to a new folder and continue to use
the loadPlatform() method. Your new folder should be named
something like mycompany/platforms/boardname and you should
include the root for this folder in your tconf importPath. For example,
if the folder is c:/local/mycompany/platforms/my5510, you should
use tconf -Dconfig.importPath=”c:/local”.

For example, if your original script used this statement:

 utils.loadPlatform("My5510");

You should change it to:

 utils.loadPlatform(“mycompany.platforms.my5510”);
Updating DSP/BIOS Configurations A-9

Converting from Existing Tconf Configurations
❏ Copy your .tci file to a common folder and change your scripts to use
“importFile” instead of “loadPlatform”. In the example below, you
would change the name of the tci file to Dsk5510.tci. Note that your
common folder must be in the Tconf import path (for example, tconf
-Dconfig.importPath="c:/commmondir;...").

For example, if your original script used this statement:

 utils.loadPlatform("My5510");

You should change it to:

 utils.importFile("My5510");

❏ Not Recommended. Copy your custom Platform.tci file to the
ti/platforms/my5510 folder. If you do this, your scripts will not need to
change. However, this is not recommended, since it is better to keep
user scripts and code outside standard DSP/BIOS installation
directories.

A.4.2 New Memory Configurations and Names

Some memory parameters (mostly names) have been changed in
DSP/BIOS versions 5.0 and later. However, in order to support older
scripts, DSP/BIOS allows the use of both memory naming sets through
the flag ti.bios.oldMemoryNames. Note that the deprecated/*.tci files
described in the previous section use the oldMemoryNames flag to allow
existing scripts to work.

There are two ways to activate the support for the old memory
configurations:

❏ When you run tconf, use the -D option to set the flag:

 tconf -Dti.bios.oldMemoryNames app.tcf

❏ At the beginning of the configuration script add the following
statement:

 environment["ti.bios.oldMemoryNames"] = true;

For the scripts that use ‘C670x/’C671x devices and the corresponding
seeds 6xxx.cdb and c6x1x.cdb, setting the ti.bios.oldMemoryNames flag
is not necessary, since the memory configurations for these devices have
not changed.

For a list of platforms for which the memory configurations changed, refer
to Section B.1, Platform Memory Configurations for new configurations
and to Section B.2, Deprecated Platform Memory Configurations for old
memory configurations.
A-10

Converting from Existing Tconf Configurations
A.4.3 Changes to the loadSeed() Method

The loadSeed() function has been deprecated. The number of seed files
provided with DSP/BIOS has been reduced to the minimum number
needed to support Tconf. You can continue to use loadSeed() if your
script uses one of the remaining seed files. Check the ti/bios/config/cdb
folder for the available seed files. If the seed file you are using is no longer
provided, you must modify your script to use the importFile() method with
a .tci file that you will need to create.

You can replace the utils.loadSeed() statement with utils.importFile()
where the import file contains the results from the following steps.
(DSK6711 is used in this example; replace it with your platform as
needed.)

1) Replace this statement:

 utils.loadSeed("dsk6711.cdb");

with the following:

 utils.importFile("dsk6711.tci");

2) Copy the dsk6711.cdb file to a temp or working folder.

3) Open the dsk6711.cdb file with a text editor to find which seed this
file was derived from. The seed version is shown in the first or second
line of the file. For example, if you see a line of the form “!# c6211.cdb
4.90.270”, the original seed file is c6211.cdb.

4) Use the following command to generate the dsk6711.tcf file.

 cdb2tcf C:\ti\c6000\bios\include\c6211.cdb dsk6711.cdb

5) Open the dsk6711.tcf file with a text editor, and remove the
“prog.gen()” statement from this file.

6) Rename this file “dsk6711.tci”.

7) Copy dsk6711.tci to a common folder. Include this common folder in
the importPath for tconf so that utils.importFile() can find this file.
Updating DSP/BIOS Configurations A-11

A-12

Appendix B

Configurations for Supported
Platforms and Devices

This appendix provides lists of the platforms and devices supported by
DSP/BIOS and their memory configurations.

B.1 Platform Memory Configurations. B–2

B.2 Deprecated Platform Memory Configurations B–14

B.3 Device Memory Configurations . B–21

Topic Page
B-1

Platform Memory Configurations
B.1 Platform Memory Configurations

The platforms supplied with DSP/BIOS bring the following memory
segments into a configuration:

Platform Internal memory External memory

ezdsp2808 name: H0SARAM
base: 0xa000
size: 0x2000
space: code

name: BOOTROM
base: 0x3ff000
size: 0xfc0
space: code

name: FLASH
base: 0x3e8000
size: 0x10000
space: code

name: MSARAM
base: 0x0
size: 0x800
space: data

name: LSARAM
base: 0x8000
size: 0x2000
space: data

name: OTP
base: 0x3d7800
size: 0x400
space: code

name: PIEVECT
base: 0xd00
size: 0x100
space: data
B-2

Platform Memory Configurations
ezdsp2812,
sim28xx

name: H0SARAM
base: 0x3f8000
size: 0x2000
space: code

name: BOOTROM
base: 0x3ff000
size: 0xfc0
space: code

name: FLASH
base: 0x3d8000
size: 0x20000
space: code

name: MSARAM
base: 0x0
size: 0x800
space: data

name: LSARAM
base: 0x8000
size: 0x2000
space: data

name: OTP
base: 0x3d7800
size: 0x400
space: code

name: PIEVECT
base: 0xd00
size: 0x100
space: data

name: SRAM
base: 0x100000
size: 0x10000
space: data

Platform Internal memory External memory
Configurations for Supported Platforms and Devices B-3

Platform Memory Configurations
sim2810 name: H0SARAM
base: 0x3f8000
size: 0x2000
space: code

name: BOOTROM
base: 0x3ff000
size: 0xfc0
space: code

name: FLASH
base: 0x3e8000
size: 0x10000
space: code

name: MSARAM
base: 0x0
size: 0x800
space: data

name: LSARAM
base: 0x8000
size: 0x2000
space: data

name: OTP
base: 0x3d7800
size: 0x400
space: code

name: PIEVECT
base: 0xd00
size: 0x100
space: data

Platform Internal memory External memory
B-4

Platform Memory Configurations
dsk5402 name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM
base: 0x80
size: 0x1f80
space: data

name: P_DARAM
base: 0x2000
size: 0x2000
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

name: EDATA
base: 0x8000
size: 0x7000
space: data

name: EPROG
base: 0x8000
size: 0x7f80
space: code

dsk5416 name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

Platform Internal memory External memory
Configurations for Supported Platforms and Devices B-5

Platform Memory Configurations
dsk5416 (cont.) name: D_DARAM03
base: 0x80
size: 0x7000
space: data

name: D_DARAM47
base: 0x8000
size: 0x8000
space: data

name: P_DARAM03
base: 0x7080
size: 0xf00
space: code

name: VECT
base: 0x7f80
size: 0x80
space: code

name: P_ROM
base: 0xc000
size: 0x3f00
space: code

name: P_DARAM47
base: 0x18000
size: 0x8000
space: code

name: P_SARAM03
base: 0x28000
size: 0x8000
space: code

name: P_SARAM47
base: 0x38000
size: 0x8000
space: code

Platform Internal memory External memory
B-6

Platform Memory Configurations
evm5471 name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM
base: 0x80
size: 0x1f80
space: data

name: D_APIDARAM
base: 0x2000
size: 0x2000
space: data

name: D_SARAM0
base: 0x4000
size: 0x2000
space: data

name: D_SARAM1
base: 0x6000
size: 0x2000
space: data

name: P_DARAM
base: 0x80
size: 0x1f80
space: code

name: P_APIDARAM
base: 0x2000
size: 0x2000
space: code

name: P_SARAM0
base: 0x4000
size: 0x2000
space: code

name: EDATA
base: 0x8000
size: 0x8000
space: data

name: EPROG
base: 0x8000
size: 0x7f80
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

Platform Internal memory External memory
Configurations for Supported Platforms and Devices B-7

Platform Memory Configurations
sim54xx name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM
base: 0x80
size: 0x1f80
space: data

name: P_DARAM
base: 0x2000
size: 0x2000
space: code

name: EDATA
base: 0x4000
size: 0xb000
space: data

name: EPROG
base: 0x4000
size: 0xbf80
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

evm5509,
evm5509A

name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: SARAM
base: 0x8000
size: 0x17f80
space: code/data

name: VECT
base: 0x1ff80
size: 0x80
space: code/data

name: SDRAM
base: 0x20000
size: 0x1e0000
space: code/data

name: FLASH
base: 0x200000
size: 0x100000
space: code/data

dsk5510 name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: SARAM1
base: 0x8000
size: 0x8000
space: code/data

name: SDRAM
base: 0x28000
size: 0x1d8000
space: code/data

name: FLASH
base: 0x200000
size: 0x40000
space: code/data

Platform Internal memory External memory
B-8

Platform Memory Configurations
dsk5510 (cont.) name: SARAM
base: 0x10000
size: 0x10000
space: code/data

name: SARAM2
base: 0x20000
size: 0x7f80
space: code/data

name: VECT
base: 0x27f80
size: 0x80
space: code/data

sim55xx name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: SARAM1
base: 0x8000
size: 0x8000
space: code/data

name: SARAM
base: 0x10000
size: 0x10000
space: code/data

name: SARAM2
base: 0x20000
size: 0x7f80
space: code/data

name: VECT
base: 0x27f80
size: 0x80
space: code/data

teb5561 name: DARAM
base: 0x60
size: 0x7fa0
space: data

name: SARAM
base: 0x8000
size: 0x7f80
space: code/data

Platform Internal memory External memory
Configurations for Supported Platforms and Devices B-9

Platform Memory Configurations
teb5561 (cont.) name: SARAM1
base: 0x10000
size: 0x10000
space: data

name: SARAM2
base: 0x20000
size: 0x10000
space: data

name: VECT
base: 0xff80
size: 0x80
space: code/data

name: SHRAM
base: 0x7c0000
size: 0x3f800
space: code/data

sdbTitan name: SARAM
base: 0x8000
size: 0x7f80
space: code/data

name: DARAM01
base: 0x80
size: 0x3f80
space: code/data

name: VECT
base: 0xff80
size: 0x80
space: code/data

name: DARAM23
base: 0x4000
size: 0x4000
space: data

name: SDRAM
base: 0x200000
size: 0x200000
space: code/data

Platform Internal memory External memory
B-10

Platform Memory Configurations
innovator1510,
h2omap1610,
h3omap1710,
h4omap2420

name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: SARAM
base: 0x8000
size: 0xbf80
space: code/data

name: VECT
base: 0x13f80
size: 0x80
space: code/data

osk5912 name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: SARAM
base: 0x8000
size: 0xbf80
space: code/data

name: VECT
base: 0x13f80
size: 0x80
space: code/data

name: SDRAM
base: 0x200000
size: 0x080000
space: code/data

dsk6211 name: IRAM
base: 0x0
size: 0x10000
space: code/data

name: SDRAM
base: 0x80000000
size: 0x400000
space: code/data

sim62xx name: IPRAM
base: 0x0
size: 0x10000
space: code

name: IDRAM
base: 0x80000000
size: 0x10000
space: data

name: SBSRAM
base: 0x40000
size: 0x40000
space: code/data

name: SDRAM0
base: 0x2000000
size: 0x400000
space: code/data

name: SDRAM1
base: 0x3000000
size: 0x400000
space: code/data

Platform Internal memory External memory
Configurations for Supported Platforms and Devices B-11

Platform Memory Configurations
dsk6416,
teb6416,
sim64xx

name: IRAM
base: 0x0
size: 0x100000
space: code/data

name: SDRAM
base: 0x80000000
size: 0x1000000
space: code/data

evmDM642 name: IRAM
base: 0x0
size: 0x40000
space: code/data

name: SDRAM
base: 0x80000000
size: 0x2000000
space: code/data

dsk6711,
sim67xx

name: IRAM
base: 0x0
size: 0x10000
space: code/data

name: SDRAM
base: 0x80000000
size: 0x1000000
space: code/data

dsk6713 name: IRAM
base: 0x0
size: 0x40000
space: code/data

name: SDRAM
base: 0x80000000
size: 0x800000
space: code/data

padk6727 name: IRAM
base: 0x10000000
size: 0x40000
space: code/data

name: SDRAM
base: 0x80000000
size: 0x8000000
space: code/data

dsk6455 name: IRAM
base: 0x800000
size: 0x200000
space: code/data

name: DDR2
base: 0x20000000
size: 0x10000000
space: code/data

dskTCI6482 name: IRAM
base: 0x800000
size: 0x200000
space: code/data

name: DDR
base: 0x20000000
size: 0x10000000
space: code/data

sim64Pxx name: IRAM
base: 0x800000
size: 0x200000
space: code/data

name: DDR
base: 0x80000000
size: 0x10000000
space: code/data

Platform Internal memory External memory
B-12

Platform Memory Configurations
evmDM420 name: IRAM
base: 0x11800000
size: 0x10000
space: code/data

name: ARM_RAM
base: 0x10008000
size: 0x4000
space: data

name: L1DSRAM
base: 0x11f04000
size: 0xc000
space: data

name: IMCOP
base: 0x11100000
size: 0x1f400
space: data

name: DDR2
base: 0x80000000
size: 0x10000000
space: code/data

evmDM6446 name: IRAM
base: 0x11800000
size: 0x10000
space: code/data

name: ARM_RAM
base: 0x10008000
size: 0x4000
space: data

name: L1DSRAM
base: 0x11f04000
size: 0xc000
space: data

name: VICP
base: 0x11100000
size: 0x1f400
space: data

name: DDR2
base: 0x80000000
size: 0x10000000
space: code/data

sdp2430 name: IRAM
base: 0x10800000
size: 0x10000
space: code/data

name: L1DSRAM
base: 0x10f04000
size: 0xc000
space: data

name: DDR
base: 0x80000000
size: 0x8000000
space: code/data

Platform Internal memory External memory
Configurations for Supported Platforms and Devices B-13

Deprecated Platform Memory Configurations
B.2 Deprecated Platform Memory Configurations

In the DSP/BIOS releases before 5.0, some TI-supplied platforms had
different memory configurations. Please refer to this table, if you had
scripts that load platforms using the old platform names. For example,
"Dsk6416" instead of a new name "ti.platforms.dsk6416".

Platform Internal memory External memory

dsk5402 name: USERREGS
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: IDATA
base: 0x80
size: 0x1f80
space: data

name: IPROG
base: 0x2000
size: 0x2000
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

name: EDATA
base: 0x8000
size: 0x8000
space: data

name: EPROG
base: 0x8000
size: 0x7f80
space: code
B-14

Deprecated Platform Memory Configurations
dsk5416 name: USERREGS
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: IDATA
base: 0x80
size: 0x7000
space: data

name: DARAM47
base: 0x8000
size: 0x8000
space: data

name: IPROG
base: 0x7080
size: 0xf00
space: code

name: VECT
base: 0x7f80
size: 0x80
space: code

name: SARAM03
base: 0x28000
size: 0x8000
space: code

name: SARAM47
base: 0x38000
size: 0x8000
space: code

Platform Internal memory External memory
Configurations for Supported Platforms and Devices B-15

Deprecated Platform Memory Configurations
evm5471 name: USERREGS
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: IDATA
base: 0x80
size: 0x1f80
space: data

name: APIRAM1
base: 0x2000
size: 0x1800
space: data

name: APIRAM2
base: 0x3800
size: 0x800
space: data

name: IDATA1
base: 0x6000
size: 0x2000
space: data

name: IPROG
base: 0x4000
size: 0x2000
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

name: EDATA
base: 0x8000
size: 0x8000
space: data

name: EPROG
base: 0x6000
size: 0x9f80
space: code

Platform Internal memory External memory
B-16

Deprecated Platform Memory Configurations
sim54xx name: USERREGS
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: IDATA
base: 0x80
size: 0x1f80
space: data

name: IPROG
base: 0x2000
size: 0x2000
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

name: EDATA
base: 0x8000
size: 0x4000
space: data

name: EPROG
base: 0xc000
size: 0x3f80
space: code

Platform Internal memory External memory
Configurations for Supported Platforms and Devices B-17

Deprecated Platform Memory Configurations
evm5509 name: VECT
base: 0x80
size: 0x80
space: code/data

name: DARAM
base: 0x100
size: 0x7f00
space: code/data

name: SARAM_A
base: 0x8000
size: 0x8000
space: code/data

name: SARAM
base: 0x10000
size: 0x8000
space: code/data

name: SARAM_B
base: 0x18000
size: 0x8000
space: code/data

name: SDRAM
base: 0x20000
size: 0x1d8000
space: code/data

name: FLASH
base: 0x200000
size: 0x100000
space: code/data

dsk5510 name: VECT
base: 0x80
size: 0x80
space: code/data

name: DARAM
base: 0x100
size: 0x7f00
space: code/data

name: SARAM_A
base: 0x8000
size: 0x8000
space: code/data

name: SARAM
base: 0x10000
size: 0x10000
space: code/data

name: SARAM_B
base: 0x20000
size: 0x8000
space: code/data

name: SDRAM
base: 0x28000
size: 0x1d8000
space: code/data

name: FLASH
base: 0x200000
size: 0x40000
space: code/data

Platform Internal memory External memory
B-18

Deprecated Platform Memory Configurations
teb5561 name: VECT
base: 0x80
size: 0x80
space: code/data

name: DARAM
base: 0x100
size: 0x7f00
space: data

name: SARAM
base: 0x8000
size: 0x7f80
space: code/data

name: SARAM1
base: 0x10000
size: 0x10000
space: data

name: SARAM2
base: 0x20000
size: 0x10000
space: data

name: SHRAM
base: 0x7c0000
size: 0x3f800
space: code/data

innovator1510 name: VECT
base: 0x80
size: 0x80
space: code/data

name: DARAM
base: 0x100
size: 0x7f00
space: code/data

name: SARAM
base: 0x8000
size: 0xc000
space: code/data

name: PDROM
base: 0x7fc000
size: 0x4000
space: code/data

Platform Internal memory External memory
Configurations for Supported Platforms and Devices B-19

Deprecated Platform Memory Configurations
sim55xx name: VECT
base: 0x80
size: 0x80
space: code/data

name: DARAM
base: 0x100
size: 0x7f00
space: code/data

name: SARAM_A
base: 0x8000
size: 0x8000
space: code/data

name: SARAM
base: 0x10000
size: 0x10000
space: code/data

name: SARAM_B
base: 0x20000
size: 0x8000
space: code/data

sim62xx name: IPRAM
base: 0x0
size: 0x10000
space: code

name: IDRAM
base: 0x80000000
size: 0x10000
space: data

dsk6416,
teb6416

name: ISRAM
base: 0x0
size: 0x100000
space: code/data

name: SDRAM
base: 0x80000000
size: 0x1000000
space: code/data

evmDM642 name: ISRAM
base: 0x0
size: 0x40000
space: code/data

name: SDRAM
base: 0x80000000
size: 0x2000000
space: code/data

sim64xx name: ISRAM
base: 0x0
size: 0x100000
space: code/data

Platform Internal memory External memory
B-20

Device Memory Configurations
B.3 Device Memory Configurations

The following table lists devices supported in DSP/BIOS and their
memory configurations. Please consult release notes for any additional
devices and their configurations.

The 54xx memory configurations are valid for the following values of the
relevant bits in the PMST register: MP/MC=0, OVLY=1, DROM=1.
Depending on the values of the PMST register in your configuration,
some listed memory segments may not be a part of your configuration.

The 55xx and OMAP memory configurations are valid for the following
values of the relevant bits in the ST3 register: MP/MC=0. Depending on
the values of the ST3 register in your configuration, some listed memory
segments may not be a part of your configuration.

The 6x memory configurations assume that no internal memory is used
for L2 cache. For 64+ devices, both L1P and L1D cache are set to
maximum size.

Device Name Memory configuration

TNETV1050, TNETV1055 name: SARAM
base: 0x8000
size: 0x7f80
space: code/data

name: DARAM01
base: 0x80
size: 0x3f80
space: code/data

name: VECT
base: 0xff80
size: 0x80
space: code/data

name: DARAM23
base: 0x4000
size: 0x4000
space: data
Configurations for Supported Platforms and Devices B-21

Device Memory Configurations
2801 name: BOOTROM
base: 0x3fc000
size: 0x3fc0
space: code

name: FLASH
base: 0x3f4000
size: 0x4000
space: code

name: MSARAM
base: 0x0
size: 0x800
space: data

name: LSARAM
base: 0x8000
size: 0x1000
space: data

name: OTP
base: 0x3d7800
size: 0x400
space: code

name: PIEVECT
base: 0xd00
size: 0x100
space: data

2806 name: BOOTROM
base: 0x3fc000
size: 0x3fc0
space: code

name: FLASH
base: 0x3f0000
size: 0x8000
space: code

name: MSARAM
base: 0x0
size: 0x800
space: data

Device Name Memory configuration
B-22

Device Memory Configurations
2806 (cont.) name: OTP
base: 0x3d7800
size: 0x400
space: code

name: L1SARAM
base: 0x9000
size: 0x1000
space: code

name: PIEVECT
base: 0xd00
size: 0x100
space: data

name: L0SARAM
base: 0x8000
size: 0x1000
space: data

2808 name: H0SARAM
base: 0xa000
size: 0x2000
space: code

name: BOOTROM
base: 0x3ff000
size: 0xfc0
space: code

name: FLASH
base: 0x3e8000
size: 0x10000
space: code

name: MSARAM
base: 0x0
size: 0x800
space: data

name: LSARAM
base: 0x8000
size: 0x2000
space: data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-23

Device Memory Configurations
2808 (cont.) name: OTP
base: 0x3d7800
size: 0x400
space: code

name: PIEVECT
base: 0xd00
size: 0x100
space: data

2810 name: H0SARAM
base: 0x3f8000
size: 0x2000
space: code

name: BOOTROM
base: 0x3ff000
size: 0xfc0
space: code

name: FLASH
base: 0x3e8000
size: 0x10000
space: code

name: MSARAM
base: 0x0
size: 0x800
space: data

name: LSARAM
base: 0x8000
size: 0x2000
space: data

name: OTP
base: 0x3d7800
size: 0x400
space: code

name: PIEVECT
base: 0xd00
size: 0x100
space: data

Device Name Memory configuration
B-24

Device Memory Configurations
2811, 2812 name: H0SARAM
base: 0x3f8000
size: 0x2000
space: code

name: BOOTROM
base: 0x3ff000
size: 0xfc0
space: code

name: FLASH
base: 0x3d8000
size: 0x20000
space: code

name: MSARAM
base: 0x0
size: 0x800
space: data

name: LSARAM
base: 0x8000
size: 0x2000
space: data

name: OTP
base: 0x3d7800
size: 0x400
space: code

name: PIEVECT
base: 0xd00
size: 0x100
space: data

5401 name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-25

Device Memory Configurations
5401 (cont.) name: D_DARAM
base: 0x1000
size: 0x1000
space: data

name: D_ROM
base: 0xf000
size: 0xf00
space: data

name: P_DARAM
base: 0x2000
size: 0x1000
space: code

name: P_ROM
base: 0xf000
size: 0xf00
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

5402 name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM
base: 0x80
size: 0x1f80
space: data

name: D_ROM
base: 0xf000
size: 0xf00
space: data

Device Name Memory configuration
B-26

Device Memory Configurations
5402 (cont.) name: P_DARAM
base: 0x2000
size: 0x2000
space: code

name: P_ROM
base: 0xf000
size: 0xf00
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

5402A name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM
base: 0x80
size: 0x1f80
space: data

name: P_DARAM
base: 0x2000
size: 0x2000
space: code

name: P_ROM
base: 0xc000
size: 0x3f00
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-27

Device Memory Configurations
5404 name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM
base: 0x80
size: 0x1f80
space: data

name: D_ROM
base: 0xc000
size: 0x4000
space: data

name: P_DARAM
base: 0x2000
size: 0x2000
space: code

name: P_ROM0
base: 0x8000
size: 0x7f00
space: code

name: P_ROM1
base: 0x18000
size: 0x8000
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

Device Name Memory configuration
B-28

Device Memory Configurations
5405 name: D_ROM
base: 0xf000
size: 0xf00
space: data

name: P_ROM
base: 0xf000
size: 0xf00
space: code

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: VECT
base: 0xff80
size: 0x80
space: code

name: P_DARAM
base: 0x2000
size: 0x2000
space: code

name: D_DARAM
base: 0x80
size: 0x1f80
space: data

name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

5407 name: D_SPRAM
base: 0x60
size: 0x1a
space: data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-29

Device Memory Configurations
5407 (cont.) name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM04
base: 0x6000
size: 0x4000
space: data

name: D_ROM
base: 0xc000
size: 0x4000
space: data

name: P_DARAM02
base: 0x80
size: 0x5f80
space: code

name: P_ROM0
base: 0x6000
size: 0x9f00
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

name: P_ROM1
base: 0x18000
size: 0x8000
space: code

name: P_ROM2
base: 0x28000
size: 0x8000
space: code

name: P_ROM3
base: 0x38000
size: 0x6000
space: code

Device Name Memory configuration
B-30

Device Memory Configurations
5409 name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM
base: 0x80
size: 0x3f80
space: data

name: D_ROM
base: 0xc000
size: 0x3f00
space: data

name: P_DARAM
base: 0x4000
size: 0x4000
space: code

name: P_ROM
base: 0xc000
size: 0x3f00
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-31

Device Memory Configurations
5409A name: P_ROM
base: 0xc000
size: 0x3f00
space: code

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: VECT
base: 0xff80
size: 0x80
space: code

name: P_DARAM
base: 0x4000
size: 0x4000
space: code

name: D_DARAM
base: 0x80
size: 0x3f80
space: data

name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

Device Name Memory configuration
B-32

Device Memory Configurations
5410 name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM
base: 0x80
size: 0x1f80
space: data

name: D_SARAM2
base: 0x8000
size: 0x8000
space: data

name: P_SARAM1
base: 0x2000
size: 0x6000
space: code

name: P_SARAM2
base: 0x18000
size: 0x8000
space: code

name: VECT
base: 0xff80
size: 0x80
space: code

name: P_ROM
base: 0xc000
size: 0x3f80
space: code

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-33

Device Memory Configurations
5410A name: D_DARAM03
base: 0x80
size: 0x3f80
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: VECT
base: 0xff80
size: 0x80
space: code

name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: P_DARAM47
base: 0x18000
size: 0x8000
space: code

name: P_ROM
base: 0xc000
size: 0x3f00
space: code

name: P_DARAM03
base: 0x4000
size: 0x4000
space: code

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM47
base: 0x8000
size: 0x8000
space: data

5416 name: D_DARAM03
base: 0x80
size: 0x7000
space: data

Device Name Memory configuration
B-34

Device Memory Configurations
5416 (cont.) name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: VECT
base: 0x7f80
size: 0x80
space: code

name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: P_DARAM47
base: 0x18000
size: 0x8000
space: code

name: P_ROM
base: 0xc000
size: 0x3f00
space: code

name: P_DARAM03
base: 0x7080
size: 0xf00
space: code

name: P_SARAM47
base: 0x38000
size: 0x8000
space: code

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: D_DARAM47
base: 0x8000
size: 0x8000
space: data

name: P_SARAM03
base: 0x28000
size: 0x8000
space: code

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-35

Device Memory Configurations
5420 name: P_SARAM3
base: 0x18000
size: 0x8000
space: code

name: P_SARAM2
base: 0xc000
size: 0x3f80
space: code

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: P_SARAM1
base: 0x4000
size: 0x3f80
space: code

name: D_SARAM2
base: 0x8000
size: 0x4000
space: data

name: D_DARAM0
base: 0x80
size: 0x3f80
space: data

name: VECT
base: 0x7f80
size: 0x80
space: code

name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

Device Name Memory configuration
B-36

Device Memory Configurations
5470, 5471 name: P_SARAM2
base: 0x8000
size: 0x7f80
space: code

name: D_APIDARAM
base: 0x2000
size: 0x2000
space: data

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: P_SARAM1
base: 0x6000
size: 0x2000
space: code

name: D_SARAM2
base: 0xc000
size: 0x4000
space: data

name: P_SARAM0
base: 0x4000
size: 0x2000
space: code

name: D_SARAM1
base: 0x6000
size: 0x2000
space: data

name: D_SARAM0
base: 0x4000
size: 0x2000
space: data

name: VECT
base: 0xff80
size: 0x80
space: code

name: D_DARAM
base: 0x80
size: 0x1f80
space: data

name: D_SPRAM
base: 0x60
size: 0x1a
space: data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-37

Device Memory Configurations
5470, 5471 (cont.) name: P_DARAM
base: 0x80
size: 0x1f80
space: code

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

name: P_APIDARAM
base: 0x2000
size: 0x2000
space: code

54CST name: D_ROM
base: 0xc000
size: 0x4000
space: data

name: P_DARAM0
base: 0x80
size: 0x5f80
space: code

name: P_ROM
base: 0x6000
size: 0x9f80
space: code

name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: VECT
base: 0xff80
size: 0x80
space: code

name: D_DARAM
base: 0x6000
size: 0x4000
space: data

Device Name Memory configuration
B-38

Device Memory Configurations
54CST (cont.) name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

DM270 name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: VECT
base: 0x7f80
size: 0x80
space: code

name: D_SARAM
base: 0x8000
size: 0x4000
space: data

name: D_DARAM
base: 0x80
size: 0x3f80
space: data

name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: P_ROM2
base: 0xc000
size: 0x3f00
space: code

name: P_ROM1
base: 0x8000
size: 0x4000
space: code

name: D_ROM
base: 0xc000
size: 0x4000
space: data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-39

Device Memory Configurations
DM270 (cont.) name: P_DARAM
base: 0x4000
size: 0x3f80
space: code

name: P_SARAM
base: 0x1c000
size: 0x4000
space: code

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

DM310 name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: IMAGE_BUFFER_AC
base: 0x8000
size: 0x2000
space: data

name: VECT
base: 0x7f80
size: 0x80
space: code

name: IMAGE_BUFFER_B
base: 0xa000
size: 0x2000
space: data

name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: D_DARAM
base: 0x80
size: 0x3f80
space: data

name: D_ROM
base: 0xc000
size: 0x4000
space: data

Device Name Memory configuration
B-40

Device Memory Configurations
DM310 (cont.) name: P_ROM
base: 0xc000
size: 0x4000
space: code

name: P_DARAM
base: 0x3f80
size: 0x4000
space: code

name: P_SARAM
base: 0x18000
size: 0x8000
space: code

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

DM320 name: CSLREGS
base: 0x7a
size: 0x2
space: data

name: VECT
base: 0x7f80
size: 0x80
space: code

name: D_SARAM
base: 0x8000
size: 0x4000
space: data

name: D_SPRAM
base: 0x60
size: 0x1a
space: data

name: D_DARAM
base: 0x80
size: 0x3f80
space: data

name: D_ROM
base: 0xc000
size: 0x4000
space: data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-41

Device Memory Configurations
DM320 (cont.) name: P_ROM
base: 0x8000
size: 0x7f00
space: code

name: P_DARAM
base: 0x4000
size: 0x3f80
space: code

name: P_SARAM
base: 0x1c000
size: 0x4000
space: code

name: BIOSREGS
base: 0x7c
size: 0x4
space: data

1510, 1610, 5903, 5905, 5910,
5912

name: SARAM
base: 0x8000
size: 0xbf80
space: code/data

name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: PDROM
base: 0x7fc000
size: 0x4000
space: code/data

name: VECT
base: 0x13f80
size: 0x80
space: code/data

Device Name Memory configuration
B-42

Device Memory Configurations
1710, 2420 name: SARAM
base: 0x8000
size: 0xbf80
space: code/data

name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: PDROM
base: 0x7f8000
size: 0x8000
space: code/data

name: VECT
base: 0x13f80
size: 0x80
space: code/data

5501 name: ROM
base: 0x7fc000
size: 0x4000
space: code/data

name: DARAM
base: 0x60
size: 0x3f20
space: code/data

name: VECT
base: 0x3f80
size: 0x80
space: code/data

5502 name: ROM
base: 0x7fc000
size: 0x4000
space: code/data

name: DARAM
base: 0x60
size: 0x7f20
space: code/data

name: VECT
base: 0x7f80
size: 0x80
space: code/data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-43

Device Memory Configurations
5503 name: ROM
base: 0x7f8000
size: 0x8000
space: code/data

name: DARAM
base: 0x60
size: 0x7f20
space: code/data

name: VECT
base: 0x7f80
size: 0x80
space: code/data

5507 name: ROM
base: 0x7f8000
size: 0x8000
space: code/data

name: SARAM
base: 0x8000
size: 0x7f80
space: code/data

name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: VECT
base: 0xff80
size: 0x80
space: code/data

Device Name Memory configuration
B-44

Device Memory Configurations
5509, 5509A, DA255 name: ROM
base: 0x7f8000
size: 0x8000
space: code/data

name: SARAM
base: 0x8000
size: 0x17f80
space: code/data

name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: VECT
base: 0x1ff80
size: 0x80
space: code/data

5510, 5510A name: ROM
base: 0x7fc000
size: 0x4000
space: code/data

name: SARAM
base: 0x10000
size: 0x10000
space: code/data

name: DARAM
base: 0x60
size: 0x7fa0
space: code/data

name: SARAM2
base: 0x20000
size: 0x7f80
space: code/data

name: SARAM1
base: 0x8000
size: 0x8000
space: code/data

name: VECT
base: 0x27f80
size: 0x80
space: code/data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-45

Device Memory Configurations
5561 name: ROM
base: 0x7ff800
size: 0x800
space: code/data

name: SARAM
base: 0x8000
size: 0x7f80
space: code/data

name: DARAM
base: 0x60
size: 0x7fa0
space: data

name: SARAM2
base: 0x20000
size: 0x10000
space: data

name: SARAM1
base: 0x10000
size: 0x10000
space: data

name: VECT
base: 0xff80
size: 0x80
space: code/data

name: SHRAM
base: 0x7c0000
size: 0x3f800
space: code/data

2430, 3430 name: IRAM
base: 0x10800000
size: 0x10000
space: code/data

name: L1DSRAM
base: 0x10f04000
size: 0xc000
space: data

Device Name Memory configuration
B-46

Device Memory Configurations
5944, 5946, 5948 name: SARAM
base: 0x8000
size: 0xbf80
space: code/data

name: DARAM
base: 0x80
size: 0x7f80
space: code/data

name: PDROM
base: 0x7fc000
size: 0x4000
space: code/data

name: VECT
base: 0x13f80
size: 0x80
space: code/data

DA295, DA300 name: ROM
base: 0x7f8000
size: 0x8000
space: code/data

name: DARAM
base: 0x60
size: 0x17f20
space: code/data

name: VECT
base: 0x17f80
size: 0x80
space: code/data

6201, 6204, 6205, 6701 name: IPRAM
base: 0x0
size: 0x10000
space: code

name: IDRAM
base: 0x80000000
size: 0x10000
space: data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-47

Device Memory Configurations
6202 name: IPRAM
base: 0x0
size: 0x40000
space: code

name: IDRAM
base: 0x80000000
size: 0x20000
space: data

6203, 6203B name: IPRAM
base: 0x0
size: 0x60000
space: code

name: IDRAM
base: 0x80000000
size: 0x80000
space: data

6211, 6211B, 6711, 6711B,
6712

name: IRAM
base: 0x0
size: 0x10000
space: code/data

6410, DM640, DM641 name: IRAM
base: 0x0
size: 0x20000
space: code/data

6411, 6412, 6413, 6713,
DM642

name: IRAM
base: 0x0
size: 0x40000
space: code/data

6414, 6415, 6416 name: IRAM
base: 0x0
size: 0x100000
space: code/data

6418, DRI300 name: IRAM
base: 0x0
size: 0x80000
space: code/data

6722 name: IRAM
base: 0x10000000
size: 0x20000
space: code/data

Device Name Memory configuration
B-48

Device Memory Configurations
DA700, DA705, DA707,
DA710, 6726, 6727

name: IRAM
base: 0x10000000
size: 0x40000
space: code/data

6455, TCI6482 name: IRAM
base: 0x800000
size: 0x200000
space: code/data

TCI6486 name: LL2RAM
base: 0x800000
size: 0x98000
space: code/data

name: SL2RAM
base: 0x200000
size: 0xc0000
space: code/data

DM415, DM420, DM421,
DM425, DM426

name: ARM_RAM
base: 0x10008000
size: 0x4000
space: data

name: IRAM
base: 0x11800000
size: 0x10000
space: code/data

name: L1DSRAM
base: 0x11f04000
size: 0xc000
space: data

name: IMCOP
base: 0x11100000
size: 0x1f400
space: data

Device Name Memory configuration
Configurations for Supported Platforms and Devices B-49

Device Memory Configurations
DM6443, DM6446 name: ARM_RAM
base: 0x10008000
size: 0x4000
space: data

name: IRAM
base: 0x11800000
size: 0x10000
space: code/data

name: L1DSRAM
base: 0x11f04000
size: 0xc000
space: data

name: VICP
base: 0x11100000
size: 0x1f400
space: data

Device Name Memory configuration
B-50

This is a draft version printed from file: tcfIX.fm on 5/15/06
Index
A
advantages 1-4
Arg data type 1-11
arguments array 1-7
array

arguments 1-7
environment 1-5
methods 1-10
of objects 1-8, 1-9
properties 1-9

assembly header file 1-3
assembly source file 1-3

B
base property

Memory object 1-22
base seed

custom 1-7
big endian 1-21
bios namespace 1-6
Board object 1-8
board property

Cpu object 1-13
board() method

Config object 1-4
boardFamily property

Board object 1-10
boardRevision property

Board object 1-10
boards() method

Config object 1-5
Boolean values 1-11
bracket ([]) notation 1-8
branching 1-4
bscr property 1-9

C
C header file 1-2
C source file 1-2
C28x-specific properties 1-8

example 1-10
C54x-specific properties 1-8

example 1-11
C5502-specific properties 1-9
C5509-specific properties 1-9
C5510-specific properties 1-9

example 1-12
C5561-specific properties 1-9
C64+-specific properties 1-9

example 1-13
C6416-specific properties

example 1-12
C67+-specific properties

example 1-14
C6713-specific properties

example 1-13
C6x1x-specific properties 1-9
catalogName property 1-7
catch keyword 1-15
catching exceptions 1-15
CDB file 1-2

generating project files 1-18
size 1-5

CDB properties
Instance object 1-30
Module object 1-27

cdb2tcf
custom seed 1-7

cdb2tcf utility 1-2
clkmd property 1-8, 1-9
clockRate property 1-7

Cpu object 1-14
CMD file 1-3
codeModel property

Program object 1-20
command-line utilities 1-4
comment property

Memory object 1-22
comparison on floats 1-12
compilerOpts 1-6, 1-20
Config object 1-4
config property

Board object 1-10
config.importPath 1-2, 1-5, 1-3, 1-15
config.rootDir variable 1-6
Index-1

 Index
config.scriptName variable 1-6
config.tiRoot variable 1-7
containers 1-8
conventions

coding 1-7
converting configurations 1-1
Cpu object 1-11
cpu property

Program object 1-20
cpu() method

Board object 1-8
cpuCore property

Cpu object 1-14
cpuCoreRevision property

Cpu object 1-14
cpus() method

Board object 1-8
create() method

Config object 1-5
Cpu object 1-11
Instance object 1-28
Module object 1-24
Program object 1-16

creating scripts 1-6
CSL configuration 1-4
custom base seed 1-7

D
-D option 1-4
data types 1-2, 1-11

Arg 1-11
Boolean 1-11
EnumInt 1-11
EnumString 1-11
Extern 1-11
Int16 1-12
Int32 1-12
Numeric 1-12
Reference 1-12
String 1-12
word size 1-15

dataModel property
Program object 1-21

dataWordSize property
Cpu object 1-15

debugging
GUI debugger 1-8
interactive shell 1-10

decimal values 1-12
dependencies

on objects 1-29
design-time configuration 1-3
destroy() method

Board object 1-9

Config object 1-6
Cpu object 1-12
Instance object 1-28
Program object 1-16

deviceName property 1-7
directory path 1-4, 1-5
Document Object Model (DOM) 1-3, 1-4
documentation, other 1-3
dot (.) notation 1-8
DSP/BIOS 1-2
DSP/BIOS Configuration Tool

advantages 1-4
DSP/BIOS Tconf 1-2, 1-5
dynamic objects 1-3

E
ECMA-262 1-2
enabling DSP/BIOS components 1-6
endian property

Program object 1-21
enumerated data type 1-11
EnumInt data type 1-11
EnumString data type 1-11
environment array 1-4, 1-5
error handling 1-14
errors 1-14
examples

hello world 1-6
exceptions 1-14

catching 1-15
throwing 1-15

exit keyword 1-11
exit status 1-14
exiting from tconf 1-11
Extern data type 1-11
Extern object 1-11, 1-23

creating 1-17
extern() method

Program object 1-17
externs() method

Program object 1-17

F
far model 1-20, 1-21
file services 1-3, 1-13
files

assembly header 1-3
assembly source 1-3
C header 1-2
C source 1-2
CMD 1-3

floating values 1-12
Index-2

Index
function names 1-11

G
gen() method

example 1-7
Program object 1-18

get() method
Program object 1-19

getMemoryMap() method
Board object 1-9
Cpu object 1-12

global variables 1-8
on command line 1-4

GUI debugger 1-8
command line 1-8

guidelines
coding 1-7

H
hasReportedError property

Config object 1-7
header files 1-2
heaps

enabling 1-6
using after enabled 1-7

hierarchy of objects 1-4

I
id property

Cpu object 1-14
importFile() method 1-11, 1-5
importPath 1-2, 1-5, 1-3, 1-15
Instance object 1-28

CDB properties 1-10
instance() method

Module object 1-25
instanceof operator 1-11
instances() method

Module object 1-25
Int16 data type 1-12
Int32 data type 1-12
interactive tconf 1-10

command line 1-10

J
Java 1-3

documentation 1-3
Rhino written in 1-8

java.io package 1-13
JavaScript

documentation 1-3
language issues 1-2
misconceptions 1-2
overview 1-2
Rhino interpreter 1-8

L
l1DMode property 1-9
l1PMode property 1-9
l2Mode property 1-9
large model 1-21
len property

Memory object 1-23
linker command file 1-3
Linux

configuration methods 1-3
little endian 1-21
LiveConnect 1-13
load() method 1-5
loadPlatform() method 1-6

example 1-6
params argument 1-10

loadSeed() function 1-11
long integer 1-12
looping 1-4
loosely-typed language 1-2

M
mem property 1-8
memory 1-10
memory heaps

enabling 1-6
Memory object 1-22
methods 1-8
migration 1-4
minDataUnitSize property

Cpu object 1-15
minimal configuration 1-4
minProgUnitSize property

Cpu object 1-15
Module object 1-24

CDB properties 1-10
module property

Instance object 1-29
module() method

Program object 1-19
modules() method
Index-3

 Index
Program object 1-20
multiple boards 1-5

creating objects 1-5
multiple CPUs 1-5
multiple programs 1-5

creating objects 1-11

N
name property

Board object 1-10
Config object 1-7
Cpu object 1-14
Extern object 1-23
Memory object 1-23
Module object 1-26
Program object 1-20

names
namespace 1-10
TCI file 1-7
variables 1-2

namespace 1-10
bios 1-6
get() Method 1-19

naming conventions
files 1-7
properties 1-10

near model 1-20, 1-21
new applications 1-6
Numeric data type 1-12

O
object

as return value or parameter 1-9
hierarchy 1-4

object-orientation 1-8
oldMemoryNames flag 1-10
OMAP 1510-specific properties

example 1-12
operation modes 1-8
order of objects in array 1-10

P
params argument 1-7
path 1-6

adding directory to 1-4
separators 1-5

platform-dependent scripts 1-7
platform-independent scripts 1-7
pllcr property 1-8

plldiv0 property 1-9
pllm property 1-9
pmst property 1-8
pointers 1-2
porting 1-4
print() method 1-11, 1-13

Rhino GUI 1-9
prog.gen() method

example 1-7
Program object 1-16
program() method

Cpu object 1-13
programs() method

Cpu object 1-13
properties 1-8

naming conventions 1-10
of Modules and Instances 1-10

Q
quit command 1-11

R
real time analysis

enabling 1-6
Reference data type 1-12
references to objects 1-9
references() method

Instance object 1-29
regs property 1-8
reserved keywords 1-11
revision number of CPU 1-14
Rhino 1-8
rootDir variable 1-6
RTA

enabling 1-6
RTDX

enabling 1-6
running a script 1-5

S
script

creating 1-6
running 1-5

scripting languages 1-4
scriptName variable 1-6
search path 1-4
small model 1-21
source files 1-2
space property
Index-4

Index
Memory object 1-23
st3_55 property 1-9
static objects 1-2
stderr location 1-14
stdout location 1-13
String data type 1-12
swcr property 1-9
swwsr property 1-9

T
Target Content Object Model (TCOM) 1-3, 1-4

class containers 1-8
diagram 1-4
quick reference 1-2

tasks
enabling 1-6

TCF file
creating from scratch 1-6

TCI file
loading 1-5
naming 1-7

TConf
advantages 1-4

Tconf 1-2, 1-5
for new applications 1-6

tconf command-line utility 1-4
tconf utility 1-4

exit status 1-14
throw keyword 1-15
throwing exceptions 1-15
tiRoot variable 1-7

true/false values 1-11
try keyword 1-15

U
UNIX

configuration methods 1-3
utilities

tconf 1-4
utils.importFile() method 1-5
utils.loadPlatform() method 1-6

params argument 1-10
utils.loadSeed() function 1-11
utils.tcf file

methods provided 1-5

V
variable names 1-2

environment array 1-5
variable types 1-2, 1-11

W
warn() method 1-6
warnings 1-14

enabling 1-4
word size 1-15
writing scripts 1-6
Index-5

Index-6

	DSP/BIOS 5.30 Textual Configuration (Tconf) User’s Guide
	Read This First
	About This Manual
	Notational Conventions
	Trademarks
	Licences

	Contents
	Figures
	Tables
	DSP/BIOS Tconf Overview
	1.1 DSP/BIOS Configuration Roadmap
	1.2 DSP/BIOS Configuration Benefits
	1.2.1 Benefits of Static Configuration
	1.2.2 The DSP/BIOS Configuration Tool vs. a Text Editor

	1.3 Creating a Tconf Script

	Running Tconf Scripts
	2.1 Running a Tconf Script
	2.1.1 Generated Files

	2.2 The tconf Command-Line Utility
	2.2.1 Environment Array Variables
	2.2.2 Argument Array Variables

	2.3 Tconf Operation Modes
	2.3.1 Command Line Mode
	2.3.2 The GUI Script Debugger
	2.3.3 Interactive Tconf

	Tconf Language and Object Model
	3.1 JavaScript Language Highlights
	3.1.1 Language Overview
	3.1.2 Common Misconceptions About JavaScript
	3.1.3 JavaScript and Java References

	3.2 The Target Content Object Model (TCOM)
	3.3 Methods for Loading Other Scripts
	3.4 Enabling DSP/BIOS Components
	3.5 Configuration Coding Guidelines
	3.6 Object and Property Naming and Referencing
	3.6.1 Module and Instance Property Names
	3.6.2 Namespace Management

	3.7 Property Types
	3.8 File Manipulation with Java
	3.9 The print() Method
	3.10 Error Handling
	3.10.1 More About Errors
	3.10.2 More About Exceptions

	Tconf Platform Files
	4.1 Using TI-Supplied Platform Files
	4.1.1 Referencing a Platform File with utils.loadPlatform()

	4.2 Creating Custom Platform Files
	4.2.1 Creating a Platform for External Distribution

	4.3 Setting Platform Params
	4.3.1 Example for ’C2812
	4.3.2 Example for ’C5416
	4.3.3 Example for ’C5510
	4.3.4 Example for OMAP 1510
	4.3.5 Example for ’C6416
	4.3.6 Example for ’C6713
	4.3.7 Example for ’C64+ Devices
	4.3.8 Example for ’C67+ Devices

	4.4 Using Custom Platform Files

	Tconf Object Model Reference
	5.1 Target Content Object Model Quick Reference
	5.2 Config Class
	5.3 Board Class
	5.4 Cpu Class
	5.5 Program Class
	5.6 Memory Class
	5.7 Extern Class
	5.8 Module Class
	5.9 Instance Class

	The DSP/BIOS Configuration Tool (Gconf)
	6.1 Tconf Pane in the Graphical Editor
	6.2 Tconf Integration with the DSP/BIOS Configuration Tool
	6.2.1 Limitations of Tconf Integration
	6.2.2 Prog.gen() Method Argument Rules
	6.2.3 Insertion Marker Rules

	6.3 DSP/BIOS Configuration Tool Menu Operations
	6.4 The Gconf.ini File
	6.5 Gconf.exe Command Line
	6.6 Error Handling

	Updating DSP/BIOS Configurations
	A.1 Overview
	A.2 The cdb2tcf Utility
	A.3 Converting from CDB Configurations
	A.3.1 Example for Base Seed Conversion
	A.3.2 Converting a Custom Base Seed

	A.4 Converting from Existing Tconf Configurations
	A.4.1 Changes to the loadPlatform() Method
	A.4.2 New Memory Configurations and Names
	A.4.3 Changes to the loadSeed() Method

	Configurations for Supported Platforms and Devices
	B.1 Platform Memory Configurations
	B.2 Deprecated Platform Memory Configurations
	B.3 Device Memory Configurations

	Index

