
TMS320C6000 DSP/BIOS 5.x
Application Programming Interface

(API) Reference Guide

Literature Number: SPRU403P
February 2009

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and
deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be
subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related require-
ments concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-
related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against
any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection
with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-
designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

This is a draft version printed from file: apipref.fm on 2/20/09
Preface

Read This First

About This Manual
DSP/BIOS gives developers of mainstream applications on Texas
Instruments TMS320C6000TM DSP devices the ability to develop embedded
real-time software. DSP/BIOS provides a small firmware real-time library and
easy-to-use tools for real-time tracing and analysis.

You should read and become familiar with the TMS320 DSP/BIOS User’s
Guide, a companion volume to this API reference guide.

Before you read this manual, you may use the Code Composer Studio online
tutorial and the DSP/BIOS section of the online help to get an overview of
DSP/BIOS. This manual discusses various aspects of DSP/BIOS in depth
and assumes that you have at least a basic understanding of DSP/BIOS.

Notational Conventions
This document uses the following conventions:

❏ Program listings, program examples, and interactive displays are shown
in a special typeface. Examples use a bold version of the
special typeface for emphasis; interactive displays use a bold version
of the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error
messages, etc.).

Here is a sample program listing:

Void copy(HST_Obj *input, HST_Obj *output)

{

 PIP_Obj *in, *out;

 Uns *src, *dst;

 Uns size;

}

iii

 Related Documentation From Texas Instruments
❏ Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets.
Unless the square brackets are in a bold typeface, do not enter the
brackets themselves.

❏ Throughout this manual, 62 represents the two-digit numeric appropriate
to your specific DSP platform. For example, DSP/BIOS assembly
language API header files for the C6000 platform are described as having
a suffix of .h62. For the C64x or C67x DSP platform, substitute either 64
or 67 for each occurrence of 62.

❏ Information specific to a particular device is designated with one of the
following icons:

Related Documentation From Texas Instruments
The following books describe TMS320 devices and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments
Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number.

TMS320 DSP/BIOS User's Guide (literature number SPRU423) provides an over-
view and description of the DSP/BIOS real-time operating system.

TMS320C6000 Optimizing C Compiler User's Guide (literature number
SPRU187) describes the c6000 C/C++ compiler and the assembly optimizer.
This C/C++ compiler accepts ANSI standard C/C++ source code and produc-
es assembly language source code for the C6000 generation of devices.

TMS320C6000 Programmer's Guide (literature number SPRU189) describes
the c6000 CPU architecture, instruction set, pipeline, and interrupts for these
digital signal processors.

TMS320c6000 Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C6000 family of
digital signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host port,
multichannel buffered serial ports, direct memory access (DMA), clocking and
phase-locked loop (PLL), and the power-down modes.
iv

Related Documentation
TMS320C6000 Code Composer Studio Tutorial Online Help (literature number
SPRH125) introduces the Code Composer Studio integrated development
environment and software tools. Of special interest to DSP/BIOS users are
the Using DSP/BIOS lessons.

TMS320C6000 Chip Support LIbrary API Reference Guide (literature number
SPRU401) contains a reference for the Chip Support Library (CSL) application
programming interfaces (APIs). The CSL is a set of APIs used to configure
and control all on-chip peripherals.

Related Documentation
You can use the following books to supplement this reference guide:

The C Programming Language (second edition), by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company

Programming Embedded Systems in C and C++, by Michael Barr, Andy
Oram (Editor), published by O'Reilly & Associates; ISBN: 1565923545,
February 1999

Real-Time Systems, by Jane W. S. Liu, published by Prentice Hall; ISBN:
013099651, June 2000

Principles of Concurrent and Distributed Programming (Prentice Hall
International Series in Computer Science), by M. Ben-Ari, published by
Prentice Hall; ISBN: 013711821X, May 1990

American National Standard for Information Systems-Programming
Language C X3.159-1989, American National Standards Institute (ANSI
standard for C); (out of print)

Trademarks
MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments include:
TI, XDS, Code Composer, Code Composer Studio, Probe Point, Code
Explorer, DSP/BIOS, RTDX, Online DSP Lab, BIOSuite, SPOX, TMS320,
TMS320C28x, TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x,
TMS320C67x, TMS320C5000, and TMS320C6000.
Read This First v

 Trademarks
All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.

February 20, 2009
vi

This is a draft version printed from file: apirefTOC.fm on 2/20/09
Contents

1 API Functional Overview .1-1
This chapter provides an overview to the TMS320C6000 DSP/BIOS API functions.
1.1 DSP/BIOS Modules .1-2
1.2 Naming Conventions .1-4
1.3 Assembly Language Interface Overview .1-4
1.4 DSP/BIOS Tconf Overview. .1-4
1.5 List of Operations .1-6

2 Application Program Interface .2-1
This chapter describes the DSP/BIOS API modules and functions.
2.1 ATM Module .2-2
2.2 BCACHE Module .2-15
2.3 BUF Module .2-31
2.4 C62 and C64 Modules .2-42
2.5 CLK Module .2-51
2.6 DEV Module .2-71
2.7 ECM Module. .2-120
2.8 GBL Module .2-129
2.9 GIO Module .2-144
2.10 HOOK Module .2-163
2.11 HST Module .2-169
2.12 HWI Module .2-174
2.13 IDL Module .2-203
2.14 LCK Module .2-207
2.15 LOG Module .2-214
2.16 MBX Module .2-231
2.17 MEM Module .2-237
2.18 MPC Module. .2-261
2.19 MSGQ Module .2-271
2.20 PIP Module .2-307
2.21 POOL Module. .2-327
2.22 PRD Module .2-332
2.23 QUE Module .2-340
2.24 RTDX Module .2-357
2.25 SEM Module .2-373
2.26 SIO Module. .2-386
vii

 Contents
2.27 STS Module . 2-416
2.28 SWI Module. 2-426
2.29 SYS Module . 2-455
2.30 TRC Module . 2-471
2.31 TSK Module . 2-476
2.32 std.h and stdlib.h functions . 2-514

A Function Callability and Error Tables . A-1
This appendix provides tables describing TMS320C6000 errors and function callability.
A.1 Function Callability Table . A-2
A.2 DSP/BIOS Error Codes. A-11

B C6000 DSP/BIOS Register Usage . B-1
This appendix provides tables describing the TMS320C6000TM register conventions in terms of
preservation across multi-threaded context switching and preconditions.
B.1 Overview . B-2
B.2 Register Conventions . B-2

C C64x+ Exception Support . C-1
This appendix provides describes support for C64x+ exception handling.
C.1 C64x+ Exception Support . C-2
C.2 Using the DSP/BIOS EXC Module . C-3
C.3 Data Types and Macros . C-6
C.4 EXC Module . C-7
C.5 _MPC Module . C-16
viii

ix

This is a draft version printed from file: apireflof.fm on 2/20/09

Figures

2-1 Writers and Reader of a Message Queue .. 2-274
2-2 Components of the MSGQ Architecture ... 2-275
2-3 MSGQ Function Calling Sequence ... 2-275
2-4 Pipe Schematic ... 2-309
2-5 Allocators and Message Pools.. 2-328
2-6 Buffer Layout as Defined by STATICPOOL_Params .. 2-330
2-7 PRD Tick Cycles ... 2-337
2-8 Statistics Accumulation on the Host.. 2-419

x

This is a draft version printed from file: apireflot.fm on 2/20/09

Tables

1-1 DSP/BIOS Modules .. 1-2
1-2 DSP/BIOS Operations .. 1-6
2-1 Timer Counter Rates, Targets, and Resets... 2-53
2-2 High-Resolution Time Determination .. 2-54
2-4 HWI interrupts for the TMS320C6000 .. 2-183
2-5 Conversion Characters for LOG_printf ... 2-225
2-6 Typical Memory Segments for c6x EVM Boards... 2-249
2-7 Typical Memory Segment for c6711 DSK Boards .. 2-249
2-8 Statistics Units for HWI, PIP, PRD, and SWI Modules .. 2-417
2-9 Conversion Characters Recognized by SYS_printf ... 2-462
2-10 Conversion Characters Recognized by SYS_sprintf ... 2-464
2-11 Conversion Characters Recognized by SYS_vprintf ... 2-466
2-12 Conversion Characters Recognized by SYS_vsprintf .. 2-468
2-13 Events and Statistics Traced by TRC.. 2-471
A-1 Function Callability..A-2
A-2 RTS Function Calls ...A-10
A-3 Error Codes... A-11
B-1 Register and Status Bit Handling ..B-2

Chapter 1

API Functional Overview

This chapter provides an overview to the TMS320C6000 DSP/BIOS API functions.

1.1 DSP/BIOS Modules . 1–2
1.2 Naming Conventions. 1–4
1.3 Assembly Language Interface Overview. 1–4
1.4 DSP/BIOS Tconf Overview . 1–4
1.5 List of Operations . 1–6

Topic Page
1-1

DSP/BIOS Modules
1.1 DSP/BIOS Modules

Table 1-1. DSP/BIOS Modules

Module Description

ATM Module Atomic functions written in assembly language

BCACHE Module Cache operation manager (C64x+ only)

BUF Module Maintains buffer pools of fixed size buffers

C62 and C64 Modules Target-specific functions

CLK Module System clock manager

DEV Module Device driver interface

ECM Module Event combiner manager (C64x+ only)

EXC Module Exception manager (C64x+ only)

GBL Module Global setting manager

GIO Module I/O module used with IOM mini-drivers

HOOK Module Hook function manager

HST Module Host channel manager

HWI Module Hardware interrupt manager

IDL Module Idle function and processing loop manager

LCK Module Resource lock manager

LOG Module Event Log manager

MBX Module Mailboxes manager

MEM Module Memory manager

MPC Module Memory protection manager (C64x+ only)

MSGQ Module Variable-length message manager

PIP Module Buffered pipe manager

POOL Module Allocator interface module

PRD Module Periodic function manager

QUE Module Queue manager

RTDX Module Real-time data exchange manager

SEM Module Semaphores manager

SIO Module Stream I/O manager

STS Module Statistics object manager

SWI Module Software interrupt manager

SYS Module System services manager
1-2

DSP/BIOS Modules
TRC Module Trace manager

TSK Module Multitasking manager

std.h and stdlib.h functions Standard C library I/O functions

Module Description
API Functional Overview 1-3

Naming Conventions
1.2 Naming Conventions

The format for a DSP/BIOS operation name is a 3- or 4-letter prefix for
the module that contains the operation, an underscore, and the action.

1.3 Assembly Language Interface Overview

The assembly interface that was provided for some of the DSP/BIOS
APIs has been deprecated. They are no longer documented.

Assembly functions can call C functions. Remember that the C compiler
adds an underscore prefix to function names, so when calling a C
function from assembly, add an underscore to the beginning of the C
function name. For example, call _myfunction instead of myfunction. See
the TMS320C6000 Optimizing Compiler User’s Guide for more details.

When you are using the DSP/BIOS Configuration Tool, use a leading
underscore before the name of any C function you configure. (The
DSP/BIOS Configuration Tool generates assembly code, but does not
add the underscore automatically.) If you are using Tconf, do not add an
underscore before the function name; Tconf internally adds the
underscore needed to call a C function from assembly.

All DSP/BIOS APIs follow standard C calling conventions as documented
in the C programmer’s guide for the device you are using.

DSP/BIOS APIs save and restore context for each thread during a
context switch. Your code should simply follow standard C register usage
conventions. Code written in assembly language should be written to
conform to the register usage model specified in the C compiler manual
for your device. When writing assembly language, take special care to
make sure the C context is preserved. For example, if you change the
AMR register on the ‘C6000, you should be sure to change it back before
returning from your assembly language routine. See the Register Usage
appendix in this book to see how DSP/BIOS uses specific registers.

1.4 DSP/BIOS Tconf Overview

The section describing each modules in this manual lists properties that
can be configured in Tconf scripts, along with their types and default
values. The sections on manager properties and instance properties also
provide Tconf examples that set each property.

For details on Tconf scripts, see the DSP/BIOS Tconf User’s Guide
(SPRU007). The language used is JavaScript with an object model
specific to the needs of DSP/BIOS configuration.
1-4

DSP/BIOS Tconf Overview
In general, property names of Module objects are in all uppercase letters.
For example, "STACKSIZE". Property names of Instance objects begin
with a lowercase word. Subsequent words have their first letter
capitalized. For example, "stackSize".

Default values for many properties are dependent on the values of other
properties. The defaults shown are those that apply if related property
values have not been modified. The defaults shown are for ’C62x and
’C67x. Memory segment defaults are different for ’C64x. Default values
for many HWI properties are different for each instance.

The data types shown for the properties are not used as syntax in Tconf
scripts. However, they do indicate the type of values that are valid for
each property. The types used are as follows:

❏ Arg. Arg properties hold arguments to pass to program functions.
They may be strings, integers, labels, or other types as needed by
the program function.

❏ Bool. You may assign a value of either true or 1 to set a Boolean
property to true. You may assign a value of either false or 0 (zero) to
set a Boolean property to false. Do not set a Boolean property to the
quoted string "true" or "false".

❏ EnumInt. Enumerated integer properties accept a set of valid integer
values. These values are displayed in a drop-down list in the
DSP/BIOS Configuration Tool.

❏ EnumString. Enumerated string properties accept certain string
values. These values are displayed in a drop-down list in the
DSP/BIOS Configuration Tool.

❏ Extern. Properties that hold function names use the Extern type. In
order to specify a function Extern, use the prog.extern() method as
shown in the examples to refer to objects defined as asm, C, or C++
language symbols. The default language is C.

❏ Int16. Integer properties hold 16-bit unsigned integer values. The
value range accepted for a property may have additional limits.

❏ Int32. Long integer properties hold 32-bit unsigned integer values.
The value range accepted for a property may have additional limits.

❏ Numeric. Numeric properties hold either 32-bit signed or unsigned
values or decimal values, as appropriate for the property.

❏ Reference. Properties that reference other configures objects
contain an object reference. Use the prog.get() method to specify a
reference to another object.

❏ String. String properties hold text strings.
API Functional Overview 1-5

List of Operations
1.5 List of Operations

Table 1-2. DSP/BIOS Operations

ATM module operations

BCACHE module operations (C64x+ only)

Function Operation

ATM_andi, ATM_andu Atomically AND memory location with mask and return previous value

ATM_cleari, ATM_clearu Atomically clear memory location and return previous value

ATM_deci, ATM_decu Atomically decrement memory and return new value

ATM_inci, ATM_incu Atomically increment memory and return new value

ATM_ori, ATM_oru Atomically OR memory location with mask and return previous value

ATM_seti, ATM_setu Atomically set memory and return previous value

Function Operation

BCACHE_getMar Get a MAR register value

BCACHE_getMode Get L1D, L1P, or L2 cache operating mode

BCACHE_getSize Get the L1D, L1P, and L2 cache sizes

BCACHE_inv Invalidate the specified memory range in caches

BCACHE_invL1pAll Invalidates all lines in L1P cache

BCACHE_setMar Set a MAR register value

BCACHE_setMode Set L1D, L1P, or L2 cache operating mode

BCACHE_setSize Set the L1D, L1P, and L2 cache sizes

BCACHE_wait Waits for a previous cache operation to complete

BCACHE_wb Writes back a range of memory from caches

BCACHE_wbAll Performs a global write back from caches

BCACHE_wbInv Writes back and invalidates a range of memory

BCACHE_wbInvAll Performs a global write back and invalidate
1-6

List of Operations
BUF module operations

C62 operations

CLK module operations

Function Operation

BUF_alloc Allocate a fixed memory buffer out of the buffer pool

BUF_create Dynamically create a buffer pool

BUF_delete Delete a dynamically created buffer pool

BUF_free Free a fixed memory buffer into the buffer pool

BUF_maxbuff Check the maximum number of buffers used from the buffer pool

BUF_stat Determine the status of a buffer pool (buffer size, number of free buffers, total
number of buffers in the pool)

Function Operation

Disable certain maskable interrupts

Enable certain maskable interrupts

C function to plug an interrupt vector

Function Operation

CLK_countspms Number of hardware timer counts per millisecond

CLK_cpuCyclesPerHtime Return multiplier for converting high-res time to CPU cycles

CLK_cpuCyclesPerLtime Return multiplier for converting low-res time to CPU cycles

CLK_gethtime Get high-resolution time

CLK_getltime Get low-resolution time

CLK_getprd Get period register value

CLK_reconfig Reset timer period and registers

CLK_start Restart the low-resolution timer

CLK_stop Halt the low-resolution timer
API Functional Overview 1-7

List of Operations
DEV module operations

Function Operation

DEV_createDevice Dynamically creates device with user-defined parameters

DEV_deleteDevice Deletes the dynamically created device

DEV_match Match a device name with a driver

Dxx_close Close device

Dxx_ctrl Device control operation

Dxx_idle Idle device

Dxx_init Initialize device

Dxx_issue Send a buffer to the device

Dxx_open Open device

Dxx_ready Check if device is ready for I/O

Dxx_reclaim Retrieve a buffer from a device

DGN Driver Software generator driver

DGS Driver Stackable gather/scatter driver

DHL Driver Host link driver

DIO Driver Class driver

DNL Driver Null driver

DOV Driver Stackable overlap driver

DPI Driver Pipe driver

DST Driver Stackable split driver

DTR Driver Stackable streaming transformer driver
1-8

List of Operations
ECM module operations (C64x+ only)

EXC module operations (C64x+ only)

GBL module operations

Function Operation

ECM_disableEvent Disable a system event in its event combiner mask

ECM_dispatch Run functions for a combined event

ECM_dispatchPlug Specify function and attributes for a system event

ECM_enableEvent Enable a system event in its event combiner mask

Function Operation

EXC_clearLastStatus Clears latest exception status values

EXC_dispatch Function run by HWI_NMI to process exceptions

EXC_evtEvtClear Clears an event from the event flag register

EXC_evtExpEnable Enables an event type to an exception

EXC_exceptionHandler Services non-software exceptions

EXC_exceptionHook Hook fxn called by EXC_exceptionHandler

EXC_external Handles exceptions external to the CPU

EXC_externalHook Hook fxn called by EXC_external

EXC_getLastStatus Gets latest exception status values

EXC_internal Handles exceptions internal to the CPU

EXC_internalHook Hook fxn called by EXC_internal

EXC_nmi Handles legacy NMI exceptions

EXC_nmiHook Hook fxn called by EXC_nmi

Function Operation

GBL_getClkin Get configured value of board input clock in KHz

GBL_getFrequency Get current frequency of the CPU in KHz

GBL_getProcId Get configured processor ID used by MSGQ
API Functional Overview 1-9

List of Operations
GIO module operations

HOOK module operations

HST module operations

GBL_getVersion Get DSP/BIOS version information

GBL_setFrequency Set frequency of CPU in KHz for DSP/BIOS

GBL_setProcId Set configured value of processor ID used by MSGQ

Function Operation

GIO_abort Abort all pending input and output

GIO_control Device-specific control call

GIO_create Allocate and initialize a GIO object

GIO_delete Delete underlying IOM mini-drivers and free GIO object and its structure

GIO_flush Drain output buffers and discard any pending input

GIO_new Initialize a pre-allocated GIO object

GIO_read Synchronous read command

GIO_submit Submit a GIO packet to the mini-driver

GIO_write Synchronous write command

Function Operation

HOOK_getenv Get environment pointer for a given HOOK and TSK combination

HOOK_setenv Set environment pointer for a given HOOK and TSK combination

Function Operation

HST_getpipe Get corresponding pipe object

Function Operation
1-10

List of Operations
HWI module operations

IDL module operations

LCK module operations

Function Operation

HWI_applyWugenMasks Apply specified masks to WUGEN interrupt mask registers

HWI_disable Globally disable hardware interrupts

HWI_disableWugen Disable an event in the WUGEN interrupt mask registers

HWI_dispatchPlug Plug the HWI dispatcher

HWI_enable Globally enable hardware interrupts

HWI_enableWugen Enable an event in the WUGEN interrupt mask registers

HWI_enter Hardware interrupt service routine prolog

HWI_eventMap Assign interrupt selection number to HWI object

HWI_exit Hardware interrupt service routine epilog

HWI_getWugenMasks Get masks from WUGEN interrupt mask registers

HWI_ierToWugenMasks Compute WUGEN masks from IER register

HWI_isHWI Check to see if called in the context of an HWI

HWI_restore Restore global interrupt enable state

Function Operation

IDL_run Make one pass through idle functions

Function Operation

LCK_create Create a resource lock

LCK_delete Delete a resource lock

LCK_pend Acquire ownership of a resource lock

LCK_post Relinquish ownership of a resource lock
API Functional Overview 1-11

List of Operations
LOG module operations

MBX module operations

MEM module operations

Function Operation

LOG_disable Disable a log

LOG_enable Enable a log

LOG_error/LOG_message Write a message to the system log

LOG_event Append an unformatted message to a log

LOG_event5 Append a 5-argument unformatted message to a log

LOG_printf Append a formatted message to a message log

LOG_printf4 Append a 4-argument formatted message to a message log

LOG_reset Reset a log

Function Operation

MBX_create Create a mailbox

MBX_delete Delete a mailbox

MBX_pend Wait for a message from mailbox

MBX_post Post a message to mailbox

Function Operation

MEM_alloc, MEM_valloc,
MEM_calloc

Allocate from a memory heap

MEM_define Define a new memory heap

MEM_free Free a block of memory

MEM_getBaseAddress Get base address of a memory heap

MEM_increaseTableSize Increase the internal MEM table size
1-12

List of Operations
MPC module operations (C64x+ only)

_MPC module operations (C64x+ only)

MSGQ module operations

MEM_redefine Redefine an existing memory heap

MEM_stat Return the status of a memory heap

MEM_undefine Undefine an existing memory segment

Function Operation

MPC_getPA Get permission attributes of address

MPC_getPageSize Get size of page containing address

MPC_getPrivMode Get current CPU privilege mode

MPC_setBufferPA Set permission attributes for a buffer

MPC_setPA Set permission attributes for an address

MPC_setPrivMode Set CPU privilege mode

Function Operation

_MPC_getLastMPFAR Gets MPFAR for a memory controller

_MPC_getLastMPFSR Gets MPFSR for a memory controller

_MPC_exceptionHandler Assigned to EXC_exceptionHook.

_MPC_externalHandler Assigned to EXC_externalHook

_MPC_internalHandler Assigned to EXC_internalHook

_MPC_userHook Hook for user-defined function

Function Operation

MSGQ_alloc Allocate a message. Performed by writer.

MSGQ_close Closes a message queue. Performed by reader.

MSGQ_count Return the number of messages in a message queue

Function Operation
API Functional Overview 1-13

List of Operations
PIP module operations

MSGQ_free Free a message. Performed by reader.

MSGQ_get Receive a message from the message queue. Performed by reader.

MSGQ_getAttrs Get attributes of a message queue.

MSGQ_getDstQueue Get destination message queue field in a message.

MSGQ_getMsgId Return the message ID from a message.

MSGQ_getMsgSize Return the message size from a message.

MSGQ_getSrcQueue Extract the reply destination from a message.

MSGQ_isLocalQueue Return whether queue is local.

MSGQ_locate Synchronously find a message queue. Performed by writer.

MSGQ_locateAsync Asynchronously find a message queue. Performed by writer.

MSGQ_open Opens a message queue. Performed by reader.

MSGQ_put Place a message on a message queue. Performed by writer.

MSGQ_release Release a located message queue. Performed by writer.

MSGQ_setErrorHandler Set up handling of internal MSGQ errors.

MSGQ_setMsgId Sets the message ID in a message.

MSGQ_setSrcQueue Sets the reply destination in a message.

Function Operation

PIP_alloc Get an empty frame from a pipe

PIP_free Recycle a frame that has been read back into a pipe

PIP_get Get a full frame from a pipe

PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe

PIP_getReaderNumFrames Get the number of pipe frames available for reading

PIP_getReaderSize Get the number of words of data in a pipe frame

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe

PIP_getWriterNumFrames Get the number of pipe frames available to be written to

PIP_getWriterSize Get the number of words that can be written to a pipe frame

Function Operation
1-14

List of Operations
PRD module operations

QUE module operations

PIP_peek Get the pipe frame size and address without actually claiming the pipe frame

PIP_put Put a full frame into a pipe

PIP_reset Reset all fields of a pipe object to their original values

PIP_setWriterSize Set the number of valid words written to a pipe frame

Function Operation

PRD_getticks Get the current tick counter

PRD_start Arm a periodic function for one-time execution

PRD_stop Stop a periodic function from execution

PRD_tick Advance tick counter, dispatch periodic functions

Function Operation

QUE_create Create an empty queue

QUE_delete Delete an empty queue

QUE_dequeue Remove from front of queue (non-atomically)

QUE_empty Test for an empty queue

QUE_enqueue Insert at end of queue (non-atomically)

QUE_get Get element from front of queue (atomically)

QUE_head Return element at front of queue

QUE_insert Insert in middle of queue (non-atomically)

QUE_new Set a queue to be empty

QUE_next Return next element in queue (non-atomically)

QUE_prev Return previous element in queue (non-atomically)

QUE_put Put element at end of queue (atomically)

QUE_remove Remove from middle of queue (non-atomically)

Function Operation
API Functional Overview 1-15

List of Operations
RTDX module operations

SEM module operations

Function Operation

RTDX_channelBusy Return status indicating whether a channel is busy

RTDX_CreateInputChannel Declare input channel structure

RTDX_CreateOutputChannel Declare output channel structure

RTDX_disableInput Disable an input channel

RTDX_disableOutput Disable an output channel

RTDX_enableInput Enable an input channel

RTDX_enableOutput Enable an output channel

RTDX_isInputEnabled Return status of the input data channel

RTDX_isOutputEnabled Return status of the output data channel

RTDX_read Read from an input channel

RTDX_readNB Read from an input channel without blocking

RTDX_sizeofInput Return the number of bytes read from an input channel

RTDX_write Write to an output channel

Function Operation

SEM_count Get current semaphore count

SEM_create Create a semaphore

SEM_delete Delete a semaphore

SEM_new Initialize a semaphore

SEM_pend Wait for a counting semaphore

SEM_pendBinary Wait for a binary semaphore

SEM_post Signal a counting semaphore

SEM_postBinary Signal a binary semaphore

SEM_reset Reset semaphore
1-16

List of Operations
SIO module operations

STS module operations

Function Operation

SIO_bufsize Size of the buffers used by a stream

SIO_create Create stream

SIO_ctrl Perform a device-dependent control operation

SIO_delete Delete stream

SIO_flush Idle a stream by flushing buffers

SIO_get Get buffer from stream

SIO_idle Idle a stream

SIO_issue Send a buffer to a stream

SIO_put Put buffer to a stream

SIO_ready Determine if device for stream is ready

SIO_reclaim Request a buffer back from a stream

SIO_reclaimx Request a buffer and frame status back from a stream

SIO_segid Memory section used by a stream

SIO_select Select a ready device

SIO_staticbuf Acquire static buffer from stream

Function Operation

STS_add Add a value to a statistics object

STS_delta Add computed value of an interval to object

STS_reset Reset the values stored in an STS object

STS_set Store initial value of an interval to object
API Functional Overview 1-17

List of Operations
SWI module operations

SYS module operations

Function Operation

SWI_andn Clear bits from SWI’s mailbox and post if becomes 0

SWI_andnHook Specialized version of SWI_andn

SWI_create Create a software interrupt

SWI_dec Decrement SWI’s mailbox and post if becomes 0

SWI_delete Delete a software interrupt

SWI_disable Disable software interrupts

SWI_enable Enable software interrupts

SWI_getattrs Get attributes of a software interrupt

SWI_getmbox Return SWI’s mailbox value

SWI_getpri Return an SWI’s priority mask

SWI_inc Increment SWI’s mailbox and post

SWI_isSWI Check to see if called in the context of a SWI

SWI_or Set or mask in an SWI’s mailbox and post

SWI_orHook Specialized version of SWI_or

SWI_post Post a software interrupt

SWI_raisepri Raise an SWI’s priority

SWI_restorepri Restore an SWI’s priority

SWI_self Return address of currently executing SWI object

SWI_setattrs Set attributes of a software interrupt

Function Operation

SYS_abort Abort program execution

SYS_atexit Stack an exit handler

SYS_error Flag error condition
1-18

List of Operations
TRC module operations

TSK module operations

SYS_exit Terminate program execution

SYS_printf, SYS_sprintf,
SYS_vprintf, SYS_vsprintf

Formatted output

SYS_putchar Output a single character

Function Operation

TRC_disable Disable a set of trace controls

TRC_enable Enable a set of trace controls

TRC_query Test whether a set of trace controls is enabled

Function Operation

TSK_checkstacks Check for stack overflow

TSK_create Create a task ready for execution

TSK_delete Delete a task

TSK_deltatime Update task STS with time difference

TSK_disable Disable DSP/BIOS task scheduler

TSK_enable Enable DSP/BIOS task scheduler

TSK_exit Terminate execution of the current task

TSK_getenv Get task environment

TSK_geterr Get task error number

TSK_getname Get task name

TSK_getpri Get task priority

TSK_getsts Get task STS object

TSK_isTSK Check to see if called in the context of a TSK

TSK_itick Advance system alarm clock (interrupt only)

TSK_self Returns a handle to the current task

TSK_setenv Set task environment

TSK_seterr Set task error number

TSK_setpri Set a task execution priority

Function Operation
API Functional Overview 1-19

List of Operations
C library stdlib.h

DSP/BIOS std.h special utility C macros

TSK_settime Set task STS previous time

TSK_sleep Delay execution of the current task

TSK_stat Retrieve the status of a task

TSK_tick Advance system alarm clock

TSK_time Return current value of system clock

TSK_yield Yield processor to equal priority task

Function Operation

atexit Registers one or more exit functions used by exit

calloc Allocates memory block initialized with zeros

exit Calls the exit functions registered in atexit

free Frees memory block

getenv Searches for a matching environment string

malloc Allocates memory block

realloc Resizes previously allocated memory block

Function Operation

ArgToInt(arg) Casting to treat Arg type parameter as integer (Int) type on the given target

ArgToPtr(arg) Casting to treat Arg type parameter as pointer (Ptr) type on the given target

Function Operation
1-20

Chapter 2

Application Program Interface

This chapter describes the DSP/BIOS API modules and functions.

2.1 ATM Module . 2–2
2.2 BCACHE Module . 2–15
2.3 BUF Module . 2–31
2.4 C62 and C64 Modules . 2–42
2.5 CLK Module . 2–51
2.6 DEV Module . 2–71
2.7 ECM Module . 2–120
2.8 GBL Module . 2–129
2.9 GIO Module. 2–144
2.10 HOOK Module . 2–163
2.11 HST Module . 2–169
2.12 HWI Module . 2–174
2.13 IDL Module . 2–203
2.14 LCK Module . 2–207
2.15 LOG Module . 2–214
2.16 MBX Module . 2–231
2.17 MEM Module. 2–237
2.18 MPC Module . 2–261
2.19 MSGQ Module . 2–271
2.20 PIP Module . 2–307
2.21 POOL Module . 2–327
2.22 PRD Module . 2–332
2.23 QUE Module . 2–340
2.24 RTDX Module . 2–357
2.25 SEM Module . 2–373
2.26 SIO Module . 2–386
2.27 STS Module . 2–416
2.28 SWI Module . 2–426
2.29 SYS Module . 2–455
2.30 TRC Module . 2–471
2.31 TSK Module . 2–476
2.32 std.h and stdlib.h functions . 2–514

Topic Page
2-1

ATM Module
2.1 ATM Module

The ATM module includes assembly language functions.

Functions ❏ ATM_andi, ATM_andu. AND memory and return previous value

❏ ATM_cleari, ATM_clearu. Clear memory and return previous value

❏ ATM_deci, ATM_decu. Decrement memory and return new value

❏ ATM_inci, ATM_incu. Increment memory and return new value

❏ ATM_ori, ATM_oru. OR memory and return previous value

❏ ATM_seti, ATM_setu. Set memory and return previous value

Description ATM provides a set of assembly language functions that are used to
manipulate variables with interrupts disabled. These functions can
therefore be used on data shared between tasks, and on data shared
between tasks and interrupt routines.
2-2

ATM_andi
C Interface

Syntax ival = ATM_andi(idst, isrc);

Parameters volatile Int *idst; /* pointer to integer */
Int isrc; /* integer mask */

Return Value Int ival; /* previous value of *idst */

Description ATM_andi atomically ANDs the mask contained in isrc with a destination
memory location and overwrites the destination value *idst with the result
as follows:

`interrupt disable`
ival = *idst;
*idst = ival & isrc;
`interrupt enable`
return(ival);

ATM_andi is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_andu
ATM_ori

ATM_andi Atomically AND Int memory location and return previous value
Application Program Interface 2-3

ATM_andu
C Interface

Syntax uval = ATM_andu(udst, usrc);

Parameters volatile Uns *udst; /* pointer to unsigned */
Uns usrc; /* unsigned mask */

Return Value Uns uval; /* previous value of *udst */

Description ATM_andu atomically ANDs the mask contained in usrc with a
destination memory location and overwrites the destination value *udst
with the result as follows:

`interrupt disable`
uval = *udst;
*udst = uval & usrc;
`interrupt enable`
return(uval);

ATM_andu is written in assembly language, efficiently disabling
interrupts on the target processor during the call.

See Also ATM_andi
ATM_oru

ATM_andu Atomically AND Uns memory location and return previous value
2-4

ATM_cleari
C Interface

Syntax ival = ATM_cleari(idst);

Parameters volatile Int *idst; /* pointer to integer */

Return Value Int ival; /* previous value of *idst */

Description ATM_cleari atomically clears an Int memory location and returns its
previous value as follows:

`interrupt disable`
ival = *idst;
*dst = 0;
`interrupt enable`
return (ival);

ATM_cleari is written in assembly language, efficiently disabling
interrupts on the target processor during the call.

See Also ATM_clearu
ATM_seti

ATM_cleari Atomically clear Int memory location and return previous value
Application Program Interface 2-5

ATM_clearu
C Interface

Syntax uval = ATM_clearu(udst);

Parameters volatile Uns *udst; /* pointer to unsigned */

Return Value Uns uval; /* previous value of *udst */

Description ATM_clearu atomically clears an Uns memory location and returns its
previous value as follows:

`interrupt disable`
uval = *udst;
*udst = 0;
`interrupt enable`
return (uval);

ATM_clearu is written in assembly language, efficiently disabling
interrupts on the target processor during the call.

See Also ATM_cleari
ATM_setu

ATM_clearu Atomically clear Uns memory location and return previous value
2-6

ATM_deci
C Interface

Syntax ival = ATM_deci(idst);

Parameters volatile Int *idst; /* pointer to integer */

Return Value Int ival; /* new value after decrement */

Description ATM_deci atomically decrements an Int memory location and returns its
new value as follows:

`interrupt disable`
ival = *idst - 1;
*idst = ival;
`interrupt enable`
return (ival);

ATM_deci is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

Decrementing a value equal to the minimum signed integer results in a
value equal to the maximum signed integer.

See Also ATM_decu
ATM_inci

ATM_deci Atomically decrement Int memory and return new value
Application Program Interface 2-7

ATM_decu
C Interface

Syntax uval = ATM_decu(udst);

Parameters volatile Uns *udst; /* pointer to unsigned */

Return Value Uns uval; /* new value after decrement */

Description ATM_decu atomically decrements a Uns memory location and returns its
new value as follows:

`interrupt disable`
uval = *udst - 1;
*udst = uval;
`interrupt enable`
return (uval);

ATM_decu is written in assembly language, efficiently disabling
interrupts on the target processor during the call.

Decrementing a value equal to the minimum unsigned integer results in
a value equal to the maximum unsigned integer.

See Also ATM_deci
ATM_incu

ATM_decu Atomically decrement Uns memory and return new value
2-8

ATM_inci
C Interface

Syntax ival = ATM_inci(idst);

Parameters volatile Int *idst; /* pointer to integer */

Return Value Int ival; /* new value after increment */

Description ATM_inci atomically increments an Int memory location and returns its
new value as follows:

`interrupt disable`
ival = *idst + 1;
*idst = ival;
`interrupt enable`
return (ival);

ATM_inci is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

Incrementing a value equal to the maximum signed integer results in a
value equal to the minimum signed integer.

See Also ATM_deci
ATM_incu

ATM_inci Atomically increment Int memory and return new value
Application Program Interface 2-9

ATM_incu
C Interface

Syntax uval = ATM_incu(udst);

Parameters volatile Uns *udst; /* pointer to unsigned */

Return Value Uns uval; /* new value after increment */

Description ATM_incu atomically increments an Uns memory location and returns its
new value as follows:

`interrupt disable`
uval = *udst + 1;
*udst = uval;
`interrupt enable`
return (uval);

ATM_incu is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

Incrementing a value equal to the maximum unsigned integer results in a
value equal to the minimum unsigned integer.

See Also ATM_decu
ATM_inci

ATM_incu Atomically increment Uns memory and return new value
2-10

ATM_ori
C Interface

Syntax ival = ATM_ori(idst, isrc);

Parameters volatile Int *idst; /* pointer to integer */
Int isrc; /* integer mask */

Return Value Int ival; /* previous value of *idst */

Description ATM_ori atomically ORs the mask contained in isrc with a destination
memory location and overwrites the destination value *idst with the result
as follows:

`interrupt disable`
ival = *idst;
*idst = ival | isrc;
`interrupt enable`
return(ival);

ATM_ori is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_andi
ATM_oru

ATM_ori Atomically OR Int memory location and return previous value
Application Program Interface 2-11

ATM_oru
C Interface

Syntax uval = ATM_oru(udst, usrc);

Parameters volatile Uns *udst; /* pointer to unsigned */
Uns usrc; /* unsigned mask */

Return Value Uns uva; /* previous value of *udst */

Description ATM_oru atomically ORs the mask contained in usrc with a destination
memory location and overwrites the destination value *udst with the
result as follows:

`interrupt disable`
uval = *udst;
*udst = uval | usrc;
`interrupt enable`
return(uval);

ATM_oru is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_andu
ATM_ori

ATM_oru Atomically OR Uns memory location and return previous value
2-12

ATM_seti
C Interface

Syntax iold = ATM_seti(idst, inew);

Parameters volatile Int *idst; /* pointer to integer */
Int inew; /* new integer value */

Return Value Int iold; /* previous value of *idst */

Description ATM_seti atomically sets an Int memory location to a new value and
returns its previous value as follows:

`interrupt disable`
ival = *idst;
*idst = inew;
`interrupt enable`
return (ival);

ATM_seti is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_setu
ATM_cleari

ATM_seti Atomically set Int memory and return previous value
Application Program Interface 2-13

ATM_setu
C Interface

Syntax uold = ATM_setu(udst, unew);

Parameters volatile Uns *udst; /* pointer to unsigned */
Uns unew; /* new unsigned value */

Return Value Uns uold; /* previous value of *udst */

Description ATM_setu atomically sets an Uns memory location to a new value and
returns its previous value as follows:

`interrupt disable`
uval = *udst;
*udst = unew;
`interrupt enable`
return (uval);

ATM_setu is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_clearu
ATM_seti

ATM_setu Atomically set Uns memory and return previous value
2-14

BCACHE Module
2.2 BCACHE Module

The BCACHE module provides DSP/BIOS support for the C64x+ L1/L2
cache. This module is available only for C64x+ devices.

Functions ❏ BCACHE_getMar. Get a MAR register value.
❏ BCACHE_getMode. Get L1D, L1P, or L2 cache operating mode
❏ BCACHE_getSize. Get the L1D, L1P, and L2 cache sizes
❏ BCACHE_inv. Invalidate the specified memory range in caches
❏ BCACHE_invL1pAll. Invalidates all lines in L1P cache
❏ BCACHE_setMar. Set a MAR register value
❏ BCACHE_setMode. Set L1D, L1P, or L2 cache operating mode
❏ BCACHE_setSize. Set the L1D, L1P, and L2 cache sizes
❏ BCACHE_wait. Waits for a previous cache operation to complete
❏ BCACHE_wb. Writes back a range of memory from caches
❏ BCACHE_wbAll. Performs a global write back from caches
❏ BCACHE_wbInv. Writes back and invalidates a range of memory
❏ BCACHE_wbInvAll. Performs a global write back and invalidate

Constants, Types, and
Structures

/* Enumerated list of L1 cache sizes */
typedef enum {
 BCACHE_L1_0K = 0,
 BCACHE_L1_4K = 1,
 BCACHE_L1_8K = 2,
 BCACHE_L1_16K = 3,
 BCACHE_L1_32K= 4
} BCACHE_L1_Size;

/* Enumerated list of L2 cache sizes */
typedef enum {
 BCACHE_L2_0K = 0,
 BCACHE_L2_32K = 1,
 BCACHE_L2_64K = 2,
 BCACHE_L2_128K = 3,
 BCACHE_L2_256K = 4
} BCACHE_L2_Size;

/* Enumerated list of cache modes for L1/L2 caches */
typedef enum {
 BCACHE_NORMAL,
 BCACHE_FREEZE,
 BCACHE_BYPASS
} BCACHE_Mode;
Application Program Interface 2-15

BCACHE Module
/* Enumerated list of caches */
typedef enum {
 BCACHE_L1D,
 BCACHE_L1P,
 BCACHE_L2
} BCACHE_Level;

/* Enumerated list of MAR values */
typedef enum {
 BCACHE_MAR_DISABLE = 0,
 BCACHE_MAR_ENABLE = 1,
} BCACHE_Mar;

/* L1 and L2 cache size structure */
typedef struct BCACHE_Size {
 BCACHE_L1_Size l1psize;
 BCACHE_L1_Size l1dsize;
 BCACHE_L2_Size l2size;
} BCACHE_Size;

Description The BCACHE module supports the C64x+ caches. The caches on these
devices are Level 1 Program (L1P), Level 1 Data (L1D), and Level 2 (L2).
See the TMS320C64x+ DSP Megamodule Reference Guide (SPRU871)
for information about the L1P, L1D, and L2 caches.

This module provides API functions that perform cache coherency
operations at the cache line level or globally. The cache coherency
operations are:

❏ Invalidate. Makes valid cache lines invalid and discards the content
of the affected cache lines.

❏ Writeback. Writes the contents of cache lines to a lower-level
memory, such as the L2 cache and/or external memory, without
discarding the lines in the original cache.

❏ Writeback-Invalidation. Writes the contents of cache lines to lower-
level memory, and then discards the contents of the lines in the
original cache.

This module also provides API functions that get and set the size and
mode of the caches. You can also get and set registers that indicate
whether a particular memory range is cacheable.

This module has no configuration interface.
2-16

BCACHE_getMar
C Interface

Syntax marVal = BCACHE_getMar(baseAddr)

Parameters Ptr baseAddr; /* address of memory range */

Return Value BCACHE_MarmarVal; /* value of specified MAR register */

Description This function is available only for C64x+ devices.

BCACHE_getMar gets the value of the specified MAR register.

The C64x+ L2 memory includes a set of registers that define the
cacheability of external memory ranges. The registers, referred to as
MARs (Memory Attribute Registers), are defined as shown in Table 4-33.

For baseAddr parameter, specify the base address of the memory range
for which you want to know the cacheability of the memory. Do not use
the base address of the MAR register itself.

This function returns the value of the MAR bit that indicates whether the
corresponding memory range is cacheable. The value is 0 for non-
cacheable memory and 1 for cacheable memory. The BCACHE_Mar
type provides the following constants for testing this bit:

/* Enumerated list of MAR values */
typedef enum {
 BCACHE_MAR_DISABLE = 0,
 BCACHE_MAR_ENABLE = 1,
} BCACHE_Mar;

You can use the BCACHE_setMar function to set the value of a MAR.

Constraints and
Calling Context

❏ none

See Also BCACHE_setMar

BCACHE_getMar Get a MAR register value
Application Program Interface 2-17

BCACHE_getMode
C Interface

Syntax cacheMode = BCACHE_getMode(level)

Parameters BCACHE_Level level; /* cache to use */

Return Value BCACHE_Mode cacheMode; /* current mode */

Description This function is available only for C64x+ devices.

BCACHE_getMode gets the cache operating mode for the specified L1D,
L1P, or L2 cache.

The level parameter specifies which cache to use. The BCACHE_Level
type provides the following constants for specifying a cache:

/* Enumerated list of caches */
typedef enum {
 BCACHE_L1D,
 BCACHE_L1P,
 BCACHE_L2
} BCACHE_Level;

This function returns the current cache mode for the specified cache. See
the TMS320C64x+ DSP Megamodule Reference Guide (SPRU871) for
information about cache modes. The BCACHE_Mode type provides the
following constants for cache modes:

/* Enumerated list of cache modes for L1/L2 caches */
typedef enum {
 BCACHE_NORMAL,
 BCACHE_FREEZE,
 BCACHE_BYPASS
} BCACHE_Mode;

Freeze mode is supported for all caches. Bypass mode is supported only
for the L2 cache.

You can use the BCACHE_setMode function to set the mode of a cache.

Constraints and
Calling Context

❏ none

See Also BCACHE_setMode

BCACHE_getMode Get L1D, L1P, or L2 cache operating mode
2-18

BCACHE_getSize
C Interface

Syntax BCACHE_getSize(*size)

Parameters BCACHE_Size *size; /* sizes of caches */

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_getSize gets the size of the L1D, L1P, and L2 caches.

The size parameter is a pointer to a structure that returns the size of the
caches. The structure is defined as follows:

/* L1 and L2 cache size structure */
typedef struct BCACHE_Size {
 BCACHE_L1_Size l1psize;
 BCACHE_L1_Size l1dsize;
 BCACHE_L2_Size l2size;
} BCACHE_Size;

You can use the BCACHE_setSize function to set the cache sizes.

Constraints and
Calling Context

❏ none

See Also BCACHE_setSize

BCACHE_getSize Get the L1D, L1P, and L2 cache sizes
Application Program Interface 2-19

BCACHE_inv
C Interface

Syntax BCACHE_inv(blockPtr, byteCnt, wait)

Parameters Ptr blockPtr; /* start address of range to be invalidated */
size_t byteCnt; /* number of bytes to be invalidated */
Bool wait; /* wait until the operation is completed */

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_inv invalidates a range of memory from all caches. When you
invalidate a cache line, its contents are discarded and the cache tags the
line as "dirty" so that next time that particular address is read, it is
obtained from external memory.

The blockPtr points to an address in non-cache memory that may be
cached in L1P, L1D, L2, or not at all. If the blockPtr does not correspond
to the start of a cache line, the start of that cache line is used.

If the byteCnt is not equal to a whole number of cache lines, the byteCnt
is rounded up to the next size that equals a whole number of cache lines.
L1P cache lines are 32 bytes. L1D cache lines are 64 bytes. L2 cache
lines are 128 bytes.

If the wait parameter is true, then this function waits until the invalidation
operation is complete to return. If the wait parameter is false, this function
returns immediately. You can use BCACHE_wait later to ensure that this
operation is complete.

This function always waits for other cache operations to finish before
performing its actions.

All lines in the specified range are invalidated in any cache location where
that address is cached. See the TMS320C64x+ DSP Megamodule
Reference Guide (SPRU871) for more on cache line invalidation.

Constraints and
Calling Context

❏ none

See Also BCACHE_invL1pAll
BCACHE_wait
BCACHE_wbInv
BCACHE_wbInvAll

BCACHE_inv Invalidate the specified memory range in caches
2-20

BCACHE_invL1pAll
C Interface

Syntax BCACHE_invL1pAll()

Parameters Void

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_invL1pAll invalidates the L1P cache completely. This discards
the entire contents of the L1P cache.

This function always waits for other cache operations to finish before
performing its actions. This function always waits until its invalidation
operation is complete to return.

See the TMS320C64x+ DSP Megamodule Reference Guide (SPRU871)
for more on cache invalidation.

Constraints and
Calling Context

❏ none

See Also BCACHE_inv
BCACHE_wbInv
BCACHE_wbInvAll

BCACHE_invL1pAll Invalidates all lines in L1P cache
Application Program Interface 2-21

BCACHE_setMar
C Interface

Syntax BCACHE_setMar(baseAddr, byteSize, value)

Parameters Ptr baseAddr; /* base address of the range */
size_t byteSize; /* size in bytes used to determine range */
BCACHE_MAR value; /* the value to which MARs should be set */

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_setMar sets the value of the specified MAR register or
registers.

The C64x+ L2 memory includes a set of registers that define the
cacheability of external memory ranges. The registers, referred to as
MARs (Memory Attribute Registers), are defined as shown in Table 4-33.

For baseAddr parameter, specify the base address of the memory range
for which you want to set the cacheability of the memory. Do not use the
base address of the MAR register itself.

The byteSize allows you to specify the size of the memory range.
Together, the baseAddr and byteSize are use to determine the number
of MAR registers to set. For example, suppose you have the following
values:

baseAddr = 0x80000000
byteSize = 0x10000000

This would mean BCACHE_setMar should set MAR128 through
MAR144 because:

MAR128 corresponds to 0x80000000-0x80FFFFFF
MAR129 corresponds to 0x81000000-0x81FFFFFF
 . . .
MAR144 corresponds to 0x90000000-0x90FFFFFF

However if byteSize were 0x00001000, this function would set only
MAR128.

This function sets the value of the MAR bit that indicates whether the
corresponding memory range is cacheable. The value is 0 for non-
cacheable memory and 1 for cacheable memory. The BCACHE_Mar
type provides the following constants for setting this bit:

BCACHE_setMar Set a MAR register value
2-22

BCACHE_setMar
/* Enumerated list of MAR values */
typedef enum {
 BCACHE_MAR_DISABLE = 0,
 BCACHE_MAR_ENABLE = 1,
} BCACHE_Mar;

You can use the BCACHE_getMar function to get the value of a MAR.

Constraints and
Calling Context

❏ none

See Also BCACHE_getMar
Application Program Interface 2-23

BCACHE_setMode
C Interface

Syntax oldCacheMode = BCACHE_setMode(level, newCacheMode)

Parameters BCACHE_Level level; /* cache to use */
BCACHE_Mode newCacheMode; /* the new mode to be applied */

Return Value BCACHE_Mode oldCacheMode; /* the previous mode */

Description This function is available only for C64x+ devices.

BCACHE_setMode sets the cache operating mode for the specified L1D,
L1P, or L2 cache.

The level parameter specifies which cache to set. The BCACHE_Level
type provides the following constants for specifying a cache:

/* Enumerated list of caches */
typedef enum {
 BCACHE_L1D,
 BCACHE_L1P,
 BCACHE_L2
} BCACHE_Level;

The newCacheMode parameter indicates the new mode to use for the
specified cache. See the TMS320C64x+ DSP Megamodule Reference
Guide (SPRU871) for information about cache modes. The
BCACHE_Mode type provides the following constants for cache modes:

/* Enumerated list of cache modes for L1/L2 caches */
typedef enum {
 BCACHE_NORMAL,
 BCACHE_FREEZE,
 BCACHE_BYPASS
} BCACHE_Mode;

Freeze mode is supported for all caches. Bypass mode is supported only
for the L2 cache.

This function returns the previous cache mode using the same constants
as for the newCacheMode parameter.

You can use the BCACHE_getMode function to get the mode of a cache.

Constraints and
Calling Context

❏ none

See Also BCACHE_getMode

BCACHE_setMode Set L1D, L1P, or L2 cache operating mode
2-24

BCACHE_setSize
C Interface

Syntax BCACHE_setSize(*size)

Parameters BCACHE_Size *size; /* sizes of caches */

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_setSize sets the size of the L1D, L1P, and L2 caches.

The size parameter is a pointer to a structure that specifies the new sizes
of the caches. The structure is defined as follows:

/* L1 and L2 cache size structure */
typedef struct BCACHE_Size {
 BCACHE_L1_Size l1psize;
 BCACHE_L1_Size l1dsize;
 BCACHE_L2_Size l2size;
} BCACHE_Size;

The size of the L1D and L1P cache may be 0 KB, 4 KB, 8 KB, 16 KB, or
32 KB. The size of the L2 cache may be 0 KB, 32 KB, 64 KB, 128 KB, or
256 KB.

When you change the L1D or L2 cache size, that cache writes-back and
invalidates its current contents. When you change the L1P cache size,
the L1P cache invalidates its current contents. See the TMS320C64x+
DSP Megamodule Reference Guide (SPRU871) for information about
data loss issues when changing the cache size.

You can use the BCACHE_getSize function to get the cache sizes.

Constraints and
Calling Context

❏ none

See Also BCACHE_getSize

BCACHE_setSize Set the L1D, L1P, and L2 cache sizes
Application Program Interface 2-25

BCACHE_wait
C Interface

Syntax BCACHE_wait()

Parameters Void

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_wait will wait for a previously issued cache operation
(invalidate, writeback, or writeback with invalidate) to complete. If no
cache operation is pending, the function simply returns.

You can use this function if you set the wait parameter to false in the
previous BCACHE function and, at some later point, want to make sure
that operation is complete.

The BCACHE APIs use this function internally check to see if all cache
operations are complete before performing their own operations. Thus,
you would only need to use this function before statements that may
affect a cache but that do not use the BCACHE APIs.

For the OMAP 2430/3430, BCACHE_wait reads the addresses specified
by the GBL.BCACHEREADADDR0 to GBL.BCACHEREADADDR2
parameters described in the GBL Module Properties section. Reading a
non-cached address is necessary to ensure that the writeback has fully
completed.

You do not need to call this function for global cache operations such as
BCACHE_wbAll. Those functions always wait for the operation to finish
before returning.

Constraints and
Calling Context

❏ none

See Also BCACHE_inv
BCACHE_wb
BCACHE_wbInv

BCACHE_wait Waits for a previous cache operation to complete
2-26

BCACHE_wb
C Interface

Syntax BCACHE_wb(blockPtr, byteCnt, wait)

Parameters Ptr blockPtr; /* start address of range to writeback */
size_t byteCnt; /* number of bytes to writeback */
Bool wait; /* wait until the operation is completed */

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_wb writes back the range of memory from all caches that can
be written back. When you perform a writeback, the contents of the cache
lines are written to lower-level memory.

The blockPtr points to an address in non-cache memory that may be
cached in L1P, L1D, L2, or not at all. If the blockPtr does not correspond
to the start of a cache line, the start of that cache line is used.

If the byteCnt is not equal to a whole number of cache lines, the byteCnt
is rounded up to the next size that equals a whole number of cache lines.
L1D cache lines are 64 bytes. L2 cache lines are 128 bytes.

If the wait parameter is true, then this function waits until the invalidation
operation is complete to return. If the wait parameter is false, this function
returns immediately. You can use BCACHE_wait later to ensure that this
operation is complete.

❏ In L1P no changes are made.

❏ In L1D all lines in the range are left valid in the L1D cache and data
in the range is written back to L2 and/or external memory.

❏ In L2 all lines in the range are left valid in the L2 cache and data in
the range is written back to external memory.

This function always waits for other cache operations to finish before
performing its actions.

Constraints and
Calling Context

❏ none

See Also BCACHE_inv
BCACHE_wbAll
BCACHE_wbInv
BCACHE_wbInvAll

BCACHE_wb Writes back a range of memory from caches
Application Program Interface 2-27

BCACHE_wbAll
C Interface

Syntax BCACHE_wbAll()

Parameters Void

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_wbAll performs a global writeback.

❏ There is no effect on the L1P cache.

❏ All lines are left valid in the L1D cache and the data in the L1D cache
is written back to L2 or external.

❏ All lines are left valid in the L2 cache and the data in the L2 cache is
written back to external.

This function always waits for other cache operations to finish before
performing its actions. This function always waits until its writeback
operation is complete to return.

See the TMS320C64x+ DSP Megamodule Reference Guide (SPRU871)
for more on cache writebacks.

Constraints and
Calling Context

❏ none

See Also BCACHE_wb
BCACHE_wbInv
BCACHE_wbInvAll

BCACHE_wbAll Performs a global write back from caches
2-28

BCACHE_wbInv
C Interface

Syntax BCACHE_wbInv(blockPtr, byteCnt, wait)

Parameters Ptr blockPtr; /* start address of range to writeback/inv */
size_t byteCnt; /* number of bytes to writeback/invalidate */
Bool wait; /* wait until the operation is completed */

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_wbInv writes back and invalidates the range of memory in all
caches. When you perform a writeback, the contents of the cache lines
are written to lower-level memory. When you invalidate a cache line, its
contents are discarded.

The blockPtr points to an address in non-cache memory that may be
cached in L1P, L1D, L2, or not at all. If the blockPtr does not correspond
to the start of a cache line, the start of that cache line is used.

If the byteCnt is not equal to a whole number of cache lines, the byteCnt
is rounded up to the next size that equals a whole number of cache lines.
L1P cache lines are 32 bytes. L1D cache lines are 64 bytes. L2 cache
lines are 128 bytes.

If the wait parameter is true, then this function waits until the writeback
and invalidate operation is complete to return. If the wait parameter is
false, this function returns immediately. You can use BCACHE_wait later
to ensure that this operation is complete.

❏ In L1P all lines in the range are invalidated but not written back.

❏ In L1D all lines in the range are invalidated in the L1D cache and data
in the range is written back to L2 and/or external memory.

❏ In L2 all lines in the range are invalidated in the L2 cache and data in
the range is written back to external memory.

This function always waits for other cache operations to finish before
performing its actions.

Constraints and
Calling Context

❏ none

See Also BCACHE_inv
BCACHE_wb
BCACHE_wbInvAll

BCACHE_wbInv Writes back and invalidates a range of memory
Application Program Interface 2-29

BCACHE_wbInvAll
C Interface

Syntax BCACHE_wbInvAll()

Parameters Void

Return Value Void

Description This function is available only for C64x+ devices.

BCACHE_wbInvAll performs a global writeback and invalidate.

❏ All lines are invalidated in L1P cache.

❏ All lines are linvalidated in the L1D cache and the data in the L1D
cache is written back to L2 and/or external.

❏ All lines are invalidated in the L2 cache and the data in the L2 cache
is written back to external.

This function always waits for other cache operations to finish before
performing its actions. This function always waits until its writeback and
invalidation operations are complete to return.

See the TMS320C64x+ DSP Megamodule Reference Guide (SPRU871)
for more on cache writebacks.

Constraints and
Calling Context

❏ none

See Also BCACHE_invL1pAll
BCACHE_wbAll
BCACHE_wbInv

BCACHE_wbInvAll Performs a global write back and invalidate
2-30

BUF Module
2.3 BUF Module

The BUF module maintains buffer pools of fixed-size buffers.

Functions ❏ BUF_alloc. Allocate a fixed-size buffer from the buffer pool

❏ BUF_create. Dynamically create a buffer pool

❏ BUF_delete. Delete a dynamically-created buffer pool

❏ BUF_free. Free a fixed-size buffer back to the buffer pool

❏ BUF_maxbuff. Get the maximum number of buffers used in a pool

❏ BUF_stat. Get statistics for the specified buffer pool

Constants, Types, and
Structures

typedef unsigned int MEM_sizep;

#define BUF_ALLOCSTAMP 0xcafe
#define BUF_FREESTAMP 0xbeef

typedef struct BUF_Obj {
 Ptr startaddr; /* Start addr of buffer pool */
 MEM_sizep size; /* Size before alignment */
 MEM_sizep postalignsize; /* Size after align */
 Ptr nextfree; /* Ptr to next free buffer */
 Uns totalbuffers; /* # of buffers in pool*/
 Uns freebuffers; /* # of free buffers in pool */
 Int segid; /* Mem seg for buffer pool */
} BUF_Obj, *BUF_Handle;

typedef struct BUF_Attrs {
 Int segid; /* segment for element allocation */
} BUF_Attrs;

BUF_Attrs BUF_ATTRS = {/* default attributes */
 0,
};

typedef struct BUF_Stat {
 MEM_sizep postalignsize; /* Size after align */
 MEM_sizep size; /* Original size of buffer */
 Uns totalbuffers; /* Total buffers in pool */
 Uns freebuffers; /* # of free buffers in pool */
} BUF_Stat;

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the BUF
Manager Properties and BUF Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.
Application Program Interface 2-31

BUF Module
Module Configuration Parameters

Instance Configuration Parameters

Description The BUF module maintains pools of fixed-size buffers. These buffer
pools can be created statically or dynamically. Dynamically-created
buffer pools are allocated from a dynamic memory heap managed by the
MEM module. Applications typically allocate buffer pools statically when
size and alignment constraints are known at design time. Run-time
allocation is used when these constraints vary during execution.

Within a buffer pool, all buffers have the same size and alignment.
Although each frame has a fixed length, the application can put a variable
amount of data in each frame, up to the length of the frame. You can
create multiple buffer pools, each with a different buffer size.

Buffers can be allocated and freed from a pool as needed at run-time
using the BUF_alloc and BUF_free functions.

The advantages of allocating memory from a buffer pool instead of from
the dynamic memory heaps provided by the MEM module include:

❏ Deterministic allocation times. The BUF_alloc and BUF_free
functions require a constant amount of time. Allocating and freeing
memory through a heap is not deterministic.

❏ Callable from all thread types. Allocating and freeing buffers is
atomic and non-blocking. As a result, BUF_alloc and BUF_free can
be called from all types of DSP/BIOS threads: HWI, SWI, TSK, and
IDL. In contrast, HWI and SWI threads cannot call MEM_alloc.

❏ Optimized for fixed-length allocation. In contrast MEM_alloc is
optimized for variable-length allocation.

Name Type Default (Enum Options)

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

bufSeg Reference prog.get("IDRAM")

bufCount Int32 1

size Int32 8

align Int32 4

len Int32 8

postalignsize Int32 8
2-32

BUF Module
❏ Less fragmentation. Since the buffers are of fixed-size, the pool
does not become fragmented.

BUF Manager
Properties

The following global properties can be set for the BUF module in the BUF
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment to contain all BUF objects.
(A BUF object may be stored in a different location than the buffer
pool memory itself.)
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.BUF.OBJMEMSEG = prog.get("myMEM");

BUF Object Properties The following properties can be set for a buffer pool object in the BUF
Object Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script. To create an BUF object in a configuration script, use the
following syntax:

var myBuf = bios.BUF.create("myBUF");

The Tconf examples that follow assume the object has been created as
shown.

❏ comment. Type a comment to identify this BUF object.
Tconf Name: comment Type: String
Example: myBuf.comment = "my BUF";

❏ Memory segment for buffer pool. Select the memory segment in
which the buffer pool is to be created. The linker decides where in the
segment the buffer pool starts.
Tconf Name: bufSeg Type: Reference
Example: myBuf.bufSeg = prog.get("myMEM");

❏ Buffer count. Specify the number of fixed-length buffers to create in
this pool.
Tconf Name: bufCount Type: Int32
Example: myBuf.bufCount = 128;

❏ Buffer size. Specify the size (in MADUs) of each fixed-length buffer
inside this buffer pool. The default size shown is the minimum valid
value for that platform. This size may be adjusted to accommodate
the alignment in the "Buffer size after alignment" property.
Tconf Name: size Type: Int32
Example: myBuf.size = 8;
Application Program Interface 2-33

BUF Module
❏ Buffer alignment. Specify the alignment boundary for fixed-length
buffers in the pool. Each buffer is aligned on boundaries with a
multiple of this number. The default size shown is the minimum valid
value for that platform. The value must be a power of 2.
Tconf Name: align Type: Int32
Example: myBuf.align = 4;

❏ Buffer pool length. The actual length of the buffer pool (in MADUs)
is calculated by multiplying the Buffer count by the Buffer size after
alignment. You cannot modify this value directly.
Tconf Name: len Type: Int32
Example: myBuf.len = 8;

❏ Buffer size after alignment. This property shows the modified
Buffer size after applying the alignment. For example, if the Buffer
size is 9 and the alignment is 4, the Buffer size after alignment is 12
(the next whole number multiple of 4 after 9).
Tconf Name: postalignsize Type: Int32
Example: myBuf.postalignsize = 8;
2-34

BUF_alloc
C Interface

Syntax bufaddr = BUF_alloc(buf);

Parameters BUF_Handle buf; /* buffer pool object handle */

Return Value Ptr bufaddr; /* pointer to free buffer */

Reentrant yes

Description BUF_alloc allocates a fixed-size buffer from the specified buffer pool and
returns a pointer to the buffer. BUF_alloc does not initialize the allocated
buffer space.

The buf parameter is a handle to identify the buffer pool object, from
which the fixed size buffer is to be allocated. If the buffer pool was created
dynamically, the handle is the one returned by the call to BUF_create. If
the buffer pool was created statically, the handle can be referenced as
shown in the example that follows.

If buffers are available in the specified buffer pool, BUF_alloc returns a
pointer to the buffer. If no buffers are available, BUF_alloc returns NULL.

The BUF module manages synchronization so that multiple threads can
share the same buffer pool for allocation and free operations.

The time required to successfully execute BUF_alloc is deterministic
(constant over multiple calls).

Example extern BUF_Obj bufferPool;
BUF_Handle buffPoolHandle = &bufferPool;

Ptr buffPtr;

/* allocate a buffer */
buffPtr = BUF_alloc(buffPoolHandle);
if (buffPtr == NULL) {
 SYS_abort("BUF_alloc failed");
}

See Also BUF_free
MEM_alloc

BUF_alloc Allocate a fixed-size buffer from a buffer pool
Application Program Interface 2-35

BUF_create
C Interface

Syntax buf = BUF_create(numbuff, size, align, attrs);

Parameters Uns numbuff; /* number of buffers in the pool */
MEM_sizep size; /* size of a single buffer in the pool */
Uns align; /* alignment for each buffer in the pool */
BUF_Attrs *attrs; /* pointer to buffer pool attributes */

Return Value BUF_Handle buf; /* buffer pool object handle */

Reentrant no

Description BUF_create creates a buffer pool object dynamically. The parameters
correspond to the properties available for statically-created buffer pools,
which are described in the BUF Object Properties topic.

The numbuff parameter specifies how many fixed-length buffers the pool
should contain. This must be a non-zero number.

The size parameter specifies how long each fixed-length buffer in the
pool should be in MADUs. This must be a non-zero number. The size you
specify is adjusted as needed to meet the alignment requirements, so the
actual buffer size may be larger. The MEM_sizep type is defined as
follows:

typedef unsigned int MEM_sizep;

The align parameter specifies the alignment boundary for buffers in the
pool. Each buffer is aligned on a boundary with an address that is a
multiple of this number. The value must be a power of 2. The size of
buffers created in the pool is automatically increased to accommodate
the alignment you specify.

BUF_create ensures that the size and alignment are set to at least the
minimum values permitted for the platform. The minimum size permitted
is 8 MADUs. The minimum alignment permitted is 4.

The attrs parameter points to a structure of type BUF_Attrs, which is
defined as follows:

typedef struct BUF_Attrs {
 Int segid; /* segment for element allocation*/
} BUF_Attrs;

BUF_create Dynamically create a buffer pool
2-36

BUF_create
The segid element can be used to specify the memory segment in which
buffer pool should be created. If attrs is NULL, the new buffer pool is
created the default attributes specified in BUF_ATTRS, which uses the
default memory segment.

BUF_create calls MEM_alloc to dynamically create the BUF object's data
structure and the buffer pool.

BUF_create returns a handle to the buffer pool of type BUF_Handle. If
the buffer pool cannot be created, BUF_create returns NULL. The pool
may not be created if the numbuff or size parameter is zero or if the
memory available in the specified heap is insufficient.

The time required to successfully execute BUF_create is not
deterministic (that is, the time varies over multiple calls).

Constraints and
Calling Context

❏ BUF_create cannot be called from a SWI or HWI.

❏ The product of the size (after adjusting for the alignment) and
numbuff parameters should not exceed the maximum Uns value.

❏ The alignment should be greater than the minimum value and must
be a power of 2. If it is not, proper creation of buffer pool is not
guaranteed.

Example BUF_Handle myBufpool;
BUF_Attrs myAttrs;

myAttrs = BUF_ATTRS;
myBufpool=BUF_create(5, 4, 2, &myAttrs);
if(myBufpool == NULL){
 LOG_printf(&trace,"BUF_create failed!");
}

See Also BUF_delete
Application Program Interface 2-37

BUF_delete
C Interface

Syntax status = BUF_delete(buf);

Parameters BUF_Handle buf; /* buffer pool object handle */

Return Value Uns status; /* returned status */

Reentrant no

Description BUF_delete frees the buffer pool object and the buffer pool memory
referenced by the handle provided.

The buf parameter is the handle that identifies the buffer pool object. This
handle is the one returned by the call to BUF_create. BUF_delete cannot
be used to delete statically created buffer pool objects.

BUF_delete returns 1 if it has successfully freed the memory for the
buffer object and buffer pool. It returns 0 (zero) if it was unable to delete
the buffer pool.

BUF_delete calls MEM_free to delete the BUF object and to free the
buffer pool memory. MEM_free must acquire a lock to the memory before
proceeding. If another task already holds a lock on the memory, there is
a context switch.

The time required to successfully execute BUF_delete is not
deterministic (that is, the time varies over multiple calls).

Constraints and
Calling Context

❏ BUF_delete cannot be called from a SWI or HWI.

❏ BUF_delete cannot be used to delete statically created buffer pool
objects. No check is performed to ensure that this is the case.

❏ BUF_delete assumes that all the buffers allocated from the buffer
pool have been freed back to the pool.

Example BUF_Handle myBufpool;
Uns delstat;

delstat = BUF_delete(myBufpool);
if(delstat == 0){
 LOG_printf(&trace,"BUF_delete failed!");
}

See Also BUF_create

BUF_delete Delete a dynamically-created buffer pool
2-38

BUF_free
C Interface

Syntax status = BUF_free(buf, bufaddr);

Parameters BUF_Handle buf; /* buffer pool object handle */
Ptr bufaddr; /* address of buffer to free */

Return Value Bool status; /* returned status */

Reentrant yes

Description BUF_free frees the specified buffer back to the specified buffer pool. The
newly freed buffer is then available for further allocation by BUF_alloc.

The buf parameter is the handle that identifies the buffer pool object. This
handle is the one returned by the call to BUF_create.

The bufaddr parameter is the pointer returned by the corresponding call
to BUF_alloc.

BUF_free always returns TRUE if DSP/BIOS real-time analysis is
disabled (in the GBL Module Properties). If real-time analysis is enabled,
BUF_free returns TRUE if the bufaddr parameter is within the range of
the specified buffer pool; otherwise it returns FALSE.

The BUF module manages synchronization so that multiple threads can
share the same buffer pool for allocation and free operations.

The time required to successfully execute BUF_free is deterministic
(constant over multiple calls).

Example extern BUF_Obj bufferPool;
BUF_Handle buffPoolHandle = &bufferPool;
Ptr buffPtr;

...

BUF_free(buffPoolHandle, buffPtr);

See Also BUF_alloc
MEM_free

BUF_free Free a fixed memory buffer into the buffer pool
Application Program Interface 2-39

BUF_maxbuff
C Interface

Syntax count = BUF_maxbuff(buf);

Parameters BUF_Handle buf; /* buffer pool object Handle */

Return Value Uns count; /*maximum number of buffers used */

Reentrant no

Description BUF_maxbuff returns the maximum number of buffers that have been
allocated from the specified buffer pool at any time. The count measures
the number of buffers in use, not the total number of times buffers have
been allocated.

The buf parameter is the handle that identifies the buffer pool object. This
handle is the one returned by the call to BUF_create.

BUF_maxbuff distinguishes free and allocated buffers via a stamp
mechanism. Allocated buffers are marked with the BUF_ALLOCSTAMP
stamp (0xcafe). If the application happens to change this stamp to the
BUF_FREESTAMP stamp (0xbeef), the count may be inaccurate. Note
that this is not an application error. This stamp is only used for
BUF_maxbuff, and changing it does not affect program execution.

The time required to successfully execute BUF_maxbuff is not
deterministic (that is, the time varies over multiple calls).

Constraints and
Calling Context

❏ BUF_maxbuff cannot be called from a SWI or HWI.

❏ The application must implement synchronization to ensure that other
threads do not perform BUF_alloc during the execution of
BUF_maxbuff. Otherwise, the count returned by BUF_maxbuff may
be inaccurate.

Example extern BUF_Obj bufferPool;
BUF_Handle buffPoolHandle = &bufferPool;
Int maxbuff;

maxbuff = BUF_maxbuff(buffPoolHandle);
LOG_printf(&trace, "Max buffers used: %d", maxbuff);

See Also

BUF_maxbuff Check the maximum number of buffers from the buffer pool
2-40

BUF_stat
C Interface

Syntax BUF_stat(buf,statbuf);

Parameters BUF_Handle buf; /* buffer pool object handle */
BUF_Stat *statbuf; /* pointer to buffer status structure */

Return Value none

Reentrant yes

Description BUF_stat returns the status of the specified buffer pool.

The buf parameter is the handle that identifies the buffer pool object. This
handle is the one returned by the call to BUF_create.

The statbuf parameter must be a structure of type BUF_Stat. The
BUF_stat function fills in all the fields of the structure. The BUF_Stat type
has the following fields:

typedef struct BUF_Stat {
 MEM_sizep postalignsize; /* Size after align */
 MEM_sizep size; /* Original size of buffer */
 Uns totalbuffers; /* Total # of buffers in pool */
 Uns freebuffers; /* # of free buffers in pool */
} BUF_Stat;

Size values are expressed in Minimum Addressable Data Units
(MADUs). BUF_stat collects statistics with interrupts disabled to ensure
the correctness of the statistics gathered.

The time required to successfully execute BUF_stat is deterministic
(constant over multiple calls).

Example extern BUF_Obj bufferPool;
BUF_Handle buffPoolHandle = &bufferPool;
BUF_Stat stat;

BUF_stat(buffPoolHandle, &stat);
LOG_printf(&trace, "Free buffers Available: %d",
 stat.freebuffers);

See Also MEM_stat

BUF_stat Determine the status of a buffer pool
Application Program Interface 2-41

C62 and C64 Modules
2.4 C62 and C64 Modules

The C62 and C64 modules include target-specific functions for the
TMS320C6000 family. Use the C62 APIs for ’C62x, ’C67x, and ’C67+
devices. Use the ’C64 APIs for ’C64x and ’C64x+ devices.

Functions ❏ C62_disableIER. ASM macro to disable selected interrupts in IER

❏ C62_enableIER. ASM macro to enable selected interrupts in IER

❏ C62_plug. Plug interrupt vector

❏ C64_disableIER. ASM macro to disable selected interrupts in IER

❏ C64_enableIER. ASM macro to enable selected interrupts in IER

❏ C64_plug. Plug interrupt vector

Description The C62 and C64 modules provide certain target-specific functions and
definitions for the TMS320C6000 family of processors.

See the c62.h or c64.h files for a complete list of definitions for hardware
flags for C. The c62.h and c64.h files contain C language macros,
#defines for various TMS320C6000 registers, and structure definitions.
The c62.h62 and c64.h64 files also contain assembly language macros
for saving and restoring registers in HWIs.
2-42

C62_disableIER
C Interface

Syntax oldmask = C62_disableIER(mask);

Parameters Uns mask; /* disable mask */

Return Value Uns oldmask; /* actual bits cleared by disable mask */

Description C62_disableIER disables interrupts by clearing the bits specified by
mask in the Interrupt Enable Register (IER).

C62_disableIER returns a mask of bits actually cleared. This return value
should be passed to C62_enableIER to re-enable interrupts.

See C62_enableIER for a description and code examples for safely
protecting a critical section of code from interrupts.

See Also C62_enableIER

C62_disableIER Disable certain maskable interrupts
Application Program Interface 2-43

C64_disableIER
C Interface

Syntax oldmask = C64_disableIER(mask);

Parameters Uns mask; /* disable mask */

Return Value Uns oldmask; /* actual bits cleared by disable mask */

Description C64_disableIER disables interrupts by clearing the bits specified by
mask in the Interrupt Enable Register (IER).

C64_disableIER returns a mask of bits actually cleared. This return value
should be passed to C64_enableIER to re-enable interrupts.

See C64_enableIER for a description and code examples for safely
protecting a critical section of code from interrupts.

See Also C64_enableIER

C64_disableIER Disable certain maskable interrupts
2-44

C62_enableIER
C Interface

Syntax C62_enableIER(oldmask);

Parameters Uns oldmask; /* enable mask */

Return Value Void

Description C62_disableIER and C62_enableIER disable and enable specific
internal interrupts by modifying the Interrupt Enable Register (IER).
C62_disableIER clears the bits specified by the mask parameter in the
IER and returns a mask of the bits it cleared. C62_enableIER sets the bits
specified by the oldmask parameter in the IER.

C62_disableIER and C62_enableIER are usually used in tandem to
protect a critical section of code from interrupts. The following code
examples show a region protected from all interrupts:

/* C example */
Uns oldmask;

oldmask = C62_disableIER(~0);
 `do some critical operation; `
 `do not call TSK_sleep, SEM_post, etc.`
C62_enableIER(oldmask);

Note:

DSP/BIOS kernel calls that can cause a task switch (for example,
SEM_post and TSK_sleep) should be avoided within a
C62_disableIER / C62_enableIER block since the interrupts can be
disabled for an indeterminate amount of time if a task switch occurs.

Alternatively, you can disable DSP/BIOS task scheduling for this block by
enclosing it with TSK_disable / TSK_enable. You can also use
C62_disableIER / C62_enableIER to disable selected interrupts, allowing
other interrupts to occur. However, if another HWI does occur during this
region, it could cause a task switch. You can prevent this by using
TSK_disable / TSK_enable around the entire region:

C62_enableIER Enable certain maskable interrupts
Application Program Interface 2-45

C62_enableIER
Uns oldmask;

TSK_disable();
oldmask = C62_disableIER(INTMASK);
 `do some critical operation;`
 `NOT OK to call TSK_sleep, SEM_post, etc.`
C62_enableIER(oldmask);
TSK_enable();

Note:

If you use C_disableIER / C62_enableIER to disable only some
interrupts, you must surround this region with SWI_disable /
SWI_enable, to prevent an intervening HWI from causing a SWI or TSK
switch.

The second approach is preferable if it is important not to disable all
interrupts in your system during the critical operation.

See Also C62_disableIER
2-46

C64_enableIER
C Interface

Syntax C64_enableIER(oldmask);

Parameters Uns oldmask; /* enable mask */

Return Value Void

Description C64_disableIER and C64_enableIER are used to disable and enable
specific internal interrupts by modifying the Interrupt Enable Register
(IER). C64_disableIER clears the bits specified by the mask parameter in
the Interrupt Mask Register and returns a mask of the bits it cleared.
C64_enableIER sets the bits specified by the oldmask parameter in the
Interrupt Mask Register.

C64_disableIER and C64_enableIER are usually used in tandem to
protect a critical section of code from interrupts. The following code
examples show a region protected from all maskable interrupts:

/* C example */
Uns oldmask;

oldmask = C64_disableIER(~0);
 `do some critical operation; `
 `do not call TSK_sleep, SEM_post, etc.`
C64_enableIER(oldmask);

Note:

DSP/BIOS kernel calls that can cause a task switch (for example,
SEM_post and TSK_sleep) should be avoided within a
C64_disableIER and C64_enableIER block since the interrupts can be
disabled for an indeterminate amount of time if a task switch occurs.

Alternatively, you can disable DSP/BIOS task scheduling for this block by
enclosing it with TSK_disable / TSK_enable. You can also use
C64_disableIER and C64_enableIER to disable selected interrupts,
allowing other interrupts to occur. However, if another HWI does occur
during this region, it could cause a task switch. You can prevent this by
using TSK_disable / TSK_enable around the entire region:

C64_enableIER Enable certain maskable interrupts
Application Program Interface 2-47

C64_enableIER
Uns oldmask;

TSK_disable();
oldmask = C64_disableIER(INTMASK);
 `do some critical operation;`
 `NOT OK to call TSK_sleep, SEM_post, etc.`
C64_enableIER(oldmask);
TSK_enable();

Note:

If you use C64_disableIER and C64_enableIER to disable only some
interrupts, you must surround this region with SWI_disable /
SWI_enable, to prevent an intervening HWI from causing a SWI or TSK
switch.

The second approach is preferable if it is important not to disable all
interrupts in your system during the critical operation.

See Also C64_disableIER

2-48

C62_plug
C Interface
Syntax C62_plug(vecid, fxn, dmachan);
Parameters Int vecid; /* interrupt id */

Fxn fxn; /* pointer to HWI function */
Int dmachan; /* DMA channel to use for performing plug */

Return Value Void

Description C62_plug writes an Interrupt Service Fetch Packet (ISFP) into the
Interrupt Service Table (IST), at the address corresponding to vecid. The
op-codes written in the ISFP create a branch to the function entry point
specified by fxn:
stw b0, *SP--[1]
mvk fxn, b0
mvkh fxn, b0
b b0
ldw *++SP[1],b0
nop 4

The dmachan necessary depends upon whether the IST is stored in
internal or external RAM:
❏ IST is in internal RAM. If the CPU cannot access internal program

RAM, a DMA channel must be used and the dmachan parameter
must be a valid DMA channel. For example, ’C6x0x devices cannot
access internal program RAM.
If the CPU can access internal program RAM, the dmachan
parameter should be set to -1, which causes a CPU copy. For
example, ’C6x11 devices can access internal program RAM.

❏ IST is in external RAM. The dmachan parameter should be set to -1.

If a DMA channel is specified by the dmachan parameter, C62_plug
assumes that the DMA channel is available for use, and stops the DMA
channel before programming it. If the DMA channel is shared with other
code, a sempahore or other DSP/BIOS signaling method should be used
to provide mutual exclusion before calling C62_plug.

C62_plug does not enable the interrupt. Use C62_enableIER to enable
specific interrupts.

Constraints and
Calling Context

❏ vecid must be a valid interrupt ID in the range of 0-15.

❏ dmachan must be 0, 1, 2, or 3 if the IST is in internal program
memory and the device is a ’C6x0x.

See Also C62_enableIER
HWI_dispatchPlug

C62_plug C function to plug an interrupt vector
Application Program Interface 2-49

C64_plug
C Interface
Syntax C64_plug(vecid, fxn, dmachan);

Parameters Int vecid; /* interrupt id */
Fxn fxn; /* pointer to HWI function */
Int dmachan; /* DMA channel to use for performing plug */

Return Value Void

Description C64_plug writes an Interrupt Service Fetch Packet (ISFP) into the
Interrupt Service Table (IST), at the address corresponding to vecid. The
op-codes written in the ISFP create a branch to the function entry point
specified by fxn:
stw b0, *SP--[1]
mvk fxn, b0
mvkh fxn, b0
b b0
ldw *++SP[1],b0
nop 4

C64_plug hooks up the specified function as the branch target for a
hardware interrupt (fielded by the CPU) at the vector address
corresponding to vecid. C64_plug does not enable the interrupt. Use or
C64_enableIER to enable specific interrupts.
For C64x devices, you may set dmachan to -1 to specify a CPU copy,
regardless of where the IST is stored. Alternately, you may specify a
DMA channel. If you use dmachan to specify a DMA channel, C64_plug
assumes that the DMA channel is available for use, and stops the DMA
channel before programming it. If the DMA channel is shared with other
code, use a semaphore or other DSP/BIOS signaling method to provide
mutual exclusion before calling C64_plug or HWI_dispatchPlug.
For C64x+ devices, dmachan is ignored. However, there is a case where
DMA is automatically used on C64x+ devices. If the vector table location
is L1P SRAM, then IDMA1 is used for the vector copy. In this case, the
API waits for any activity to finish on IDMA1 before using it. It then waits
for the vector copy DMA activity to complete before returning. Since the
stack is used for the source location of the DMA copy, C64_plug must be
called while a stack from internal memory (L1 or L2) is active (and only
when the vector table is in L1P SRAM).

Constraints and
Calling Context

❏ vecid must be a valid interrupt ID in the range of 0-15.

See Also C64_enableIER
HWI_dispatchPlug

C64_plug C function to plug an interrupt vector
2-50

CLK Module
2.5 CLK Module

The CLK module is the clock manager.

Functions ❏ CLK_countspms. Timer counts per millisecond

❏ CLK_cpuCyclesPerHtime. Return high-res time to CPU cycles factor

❏ CLK_cpuCyclesPerLtime. Return low-res time to CPU cycles factor

❏ CLK_gethtime. Get high-resolution time

❏ CLK_getltime. Get low-resolution time

❏ CLK_getprd. Get period register value

❏ CLK_reconfig. Reset timer period and registers using CPU frequency

❏ CLK_start. Restart low-resolution timer

❏ CLK_stop. Stop low-resolution timer

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the CLK
Manager Properties and CLK Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

TIMERSELECT String "Timer 0"

ENABLECLK Bool true

HIRESTIME Bool true

ENABLEHTIME Bool true (’C64x+ only)

SPECIFYRATE Bool usually false (’C64x+ only)

INPUTCLK Numeric 166.6667 (varies by platform)

RESETTIMER Bool true (’C64x+ only)

TIMMODE EnumString "32-bit unchained"
("32-bit chained", "externally
programmed") (’C64x+ only)

MICROSECONDS Int16 1000

CONFIGURETIMER Bool false

PRD Int16 33250, 37500, or 75000
(varies by platform)
Application Program Interface 2-51

CLK Module
Instance Configuration Parameters

Description The CLK module provides methods for gathering timing information and
for invoking functions periodically. The CLK module provides real-time
clocks with functions to access the low-resolution and high-resolution
times. These times can be used to measure the passage of time in
conjunction with STS accumulator objects, as well as to add timestamp
messages in event logs.

DSP/BIOS provides the following timing methods:

❏ Timer Counter. This DSP/BIOS counter changes at a relatively fast
platform-specific rate. This counter is used only if the Clock Manager
is enabled in the CLK Manager Properties.

❏ Low-Resolution Time. This time is incremented when the timer
counter reaches its target value. When this time is incremented, any
functions defined for CLK objects are run.

❏ High-Resolution Time. For some platforms, the timer counter is
also used to determine the high-resolution time. For other platforms,
a different timer is used for the high-resolution time.

❏ Periodic Rate. The PRD functions can be run at a multiple of the
clock interrupt rate (the low-resolution rate) if you enable the "Use
CLK Manager to Drive PRD" in the PRD Manager Properties.

❏ System Clock. The PRD rate, in turn, can be used to run the system
clock, which is used to measure TSK-related timeouts and ticks. If
you set the "TSK Tick Driven By" in the TSK Manager Properties to
"PRD", the system clock ticks at the specified multiple of the clock
interrupt rate (the low-resolution rate).

TCRTDDR EnumInt 0 (0 to 0xffffffff) (’C64x+ only)

POSTINITFXN Extern prog.extern("FXN_F_nop") (’C672x
only)

CONONDEBUG Bool false (’C672x only)

STARTBOTH Bool false (’C672x only)

Name Type Default

comment String "<add comments here>"

fxn Extern prog.extern("FXN_F_nop")

order Int16 0

Name Type Default
2-52

CLK Module
Timer Counter The timer counter changes at a relatively fast rate until it reaches a target
value. When the target value is reached, the timer counter is reset, a
timer interrupt occurs, the low-resolution time is incremented, and any
functions defined for CLK objects are run.

Table 2-1 shows the rate at which the timer counter changes, its target
value, and how the value is reset once the target value has been
reached.

Low-Resolution Time When the value of the timer counter is reset to the value in the right-
column of Table 2-1, the following actions happen:

❏ A timer interrupt occurs

❏ As a result of the timer interrupt, the HWI object for the selected timer
runs the CLK_F_isr function.

❏ The CLK_F_isr function causes the low-resolution time to be
incremented by 1.

❏ The CLK_F_isr function causes all the CLK Functions to be
performed in sequence in the context of that HWI.

Table 2-1. Timer Counter Rates, Targets, and Resets

Platform Timer Counter Rate
Target
Value Value Reset

’C6201, ’C6211,
’C6713

Incremented every 4 CPU cycles. PRD value Counter reset to 0.

’C672x and
devices with
Real-Time Inter-
rupt Module (RTI)

Incremented at SYSCLK / 4. Compare
register
value (same
as PRD)

Counter reset to 0.

’C6416 Incremented every 8 CPU cycles. PRD value Counter reset to 0.

’C64x+ Incremented at CLKOUT / ((TDDR+1) * 8),
where CLKOUT is the DSP clock speed in
MHz (see GBL Module Properties) and TDDR
is the value in the prescalar register (see CLK
Manager Properties).

PRD value Counter reset to 0.
Application Program Interface 2-53

CLK Module
Note: Specifying On-device Timer

The configuration allows you to specify which on-device timer you want
to use. DSP/BIOS requires the default setting in the Interrupt Selector
Register for the selected timer. For example, interrupt 14 must be
configured for Timer 0, interrupt 15 must be configured for Timer 1, and
interrupt 11 must be configured for Timer 2.

Therefore, the low-resolution clock ticks at the timer interrupt rate and
returns the number of timer interrupts that have occurred. You can use
the CLK_getltime function to get the low-resolution time and the
CLK_getprd function to get the value of the period register property.

You can use GBL_setFrequency, CLK_stop, CLK_reconfig, and
CLK_start to change the low-resolution timer rate.

The low-resolution time is stored as a 32-bit value. Its value restarts at 0
when the maximum value is reached.

On C64x+ devices, the low-resolution timer uses the least-significant 32
bits of the 64-bit GP/WD Timer. This time is configured for dual 32-bit
unchained timer mode operation (except for some early C64x+
simulators). The upper 32 bits of the timer are available to your
application. However, you must observe the following precautions:

❏ Do not modify TCR12, which controls the operation of the low-
resolution timer.

❏ Do not modify PRD1 and PRD2, which determine the period of the
low-resolution timer interrupt.

❏ Do not modify the TIMMODE nor the TIM12RS_ bits of the Timer
Global Control Register (TGCR).

High-Resolution Time The high-resolution time is determined as follows for your platform:

Table 2-2. High-Resolution Time Determination

Platform Description

’C6201, ’C6211,
’C6713

Number of times the timer counter has been incremented.

’C672x and
devices with RTI
module

Number of times the timer counter has been incremented.

’C6416 Number of times the timer counter has been incremented.
2-54

CLK Module
You can use the CLK_gethtime function to get the high-resolution time
and the CLK_countspms function to get the number of hardware timer
counter register ticks per millisecond.

The high-resolution time is stored as a 32-bit value. For platforms that
use the same timer counter as the low-resolution time, the 32-bit high-
resolution time is actually calculated by multiplying the low-resolution
time by the value of the PRD property and adding number of timer
counter increments since the last timer counter reset.

The high-resolution value restarts at 0 when the maximum value is
reached.

CLK Functions The CLK functions performed when a timer interrupt occurs are
performed in the context of the hardware interrupt that caused the system
clock to tick. Therefore, the amount of processing performed within CLK
functions should be minimized and these functions can only invoke
DSP/BIOS calls that are allowable from within an HWI.

Note:

CLK functions should not call HWI_enter and HWI_exit as these are
called internally by the HWI dispatcher when it runs CLK_F_isr.
Additionally, CLK functions should not use the interrupt keyword or the
INTERRUPT pragma in C functions.

The HWI object that runs the CLK_F_isr function is configured to use the
HWI dispatcher. You can modify the dispatcher-specific properties of this
HWI object. For example, you can change the interrupt mask value and
the cache control value. See the HWI Module, page 2–174, for a
description of the HWI dispatcher and these HWI properties. You may not
disable the use of the HWI dispatcher for the HWI object that runs the
CLK_F_isr function.

CLK Manager
Properties

The following global properties can be set for the CLK module in the CLK
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

’C64x+ A separate DSP/BIOS counter for the high-resolution time
runs at the CLKOUT rate. This timer counter is stored in 32
bits.

Table 2-2. High-Resolution Time Determination

Platform Description
Application Program Interface 2-55

CLK Module
❏ Object Memory. The memory segment that contains the CLK
objects created in the configuration.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.CLK.OBJMEMSEG = prog.get("myMEM");

❏ CPU Interrupt. Shows which HWI interrupt is used to drive the timer
services. The value is changed automatically when you change the
Timer Selection. This is an informational property only.
Tconf Name: N/A

❏ Timer Selection. The on-device timer to use. Changing this setting
also automatically changes the CPU Interrupt used to drive the timer
services and the function property of the relevant HWI objects.
Tconf Name: TIMERSELECT Type: String
Options: "Timer 0", "Timer 1"
Example: bios.CLK.TIMERSELECT = "Timer 0";

❏ Enable CLK Manager. If this property is set to true, the on-device
timer hardware is used to drive the high- and low-resolution times
and to trigger execution of CLK functions. On platforms where the
separate ENABLEHTIME property is available, setting the
ENABLECLK property to true and the ENABLEHTIME property to
false enables only the low-resolution timer.
Tconf Name: ENABLECLK Type: Bool
Example: bios.CLK.ENABLECLK = true;

❏ Use high resolution time for internal timings. If this property is set
to true, the high-resolution timer is used to monitor internal periods.
Otherwise the less intrusive, low-resolution timer is used.
Tconf Name: HIRESTIME Type: Bool
Example: bios.CLK.HIRESTIME = true;

❏ Enable high resolution timer. If this property is set to true, this
parameter enables the high-resolution timer. This property is
available only for the ’C64x+. For platforms that use only one timer,
the high-resolution and low-resolution timers are both enabled and
disabled by the "Enable CLK Manager" property.
Tconf Name: ENABLEHTIME Type: Bool
Example: bios.CLK.ENABLEHTIME = true;
2-56

CLK Module
❏ Specify input clock rate. (C64x+ only) If this property is set to true,
you can specify the Input frequency (INPUTCLK) property.
Otherwise, the default clock frequency is used. The default is
dependant on the platform.
Tconf Name: SPECIFYRATE Type: Bool
Example: bios.CLK.SPECIFYRATE = true;

❏ Input frequency (MHz). Set this property to the low-resolution
timer’s input clock frequency. This is the timer used by CLK_getltime.
Tconf Name: INPUTCLK Type: Numeric
Example: bios.CLK.INPUTCLK = 166.6667;

❏ Reset Timer and TIMMODE. (C64x+ only) This property is checked
by the DSP/BIOS CLK startup code. If it is set to true (the default),
DSP/BIOS initializes the timer to the mode specified by the Timer
Mode (TIMMODE) property. This property is provided because some
applications share the timer with DSP/BIOS and need to assume
responsibility for initializing the timer mode. On some DaVinci
devices, for example, the ARM operating system and DSP/BIOS
share a timer. In this configuration, the ARM is responsible for
initializing and resetting the timer, so you should set the
RESETTIMER property for DSP/BIOS to false.
Tconf Name: RESETTIMER Type: Bool
Example: bios.CLK.RESETTIMER = true;

❏ Timer Mode. (C64x+ only) This property specifies the timer mode.
There is no benefit to selecting either the "32-bit chained" or
"externally programmed" mode. These modes are provided only for
some early C64x+ simulators that did not support 32-bit unchained
mode. See “Low-Resolution Time” on page 2-53 for more about the
timer mode.
Tconf Name: TIMMODE Type: EnumString
Options: "32-bit chained", "32-bit unchained", and "externally

programmed"
Example: bios.CLK.TIMMODE = "32-bit unchained";

❏ Microseconds/Int. The number of microseconds between timer
interrupts. The period register is set to a value that achieves the
desired period as closely as possible.
Tconf Name: MICROSECONDS Type: Int16
Example: bios.CLK.MICROSECONDS = 1000;
Application Program Interface 2-57

CLK Module
❏ Directly configure on-device timer registers. If this property is set
to true, the period register can be directly set to the desired value. In
this case, the Microseconds/Int property is computed based on the
value in period register and the CPU clock speed in the GBL Module
Properties.
Tconf Name: CONFIGURETIMER Type: Bool
Example: bios.CLK.CONFIGURETIMER = false;

❏ TDDR register. The value of the on-device timer prescalar.

Tconf Name: TCRTDDR Type: EnumInt
Example: bios.CLK.TCRTDDR = 2;

❏ PRD Register. This value specifies the interrupt period and is used
to configure the PRD register. The default value varies depending on
the platform.
Tconf Name: PRD Type: Int16
Example: bios.CLK.PRD = 33250;

❏ Timer 1 Init Function. (’C672x and RTI timer module devices only)
This function runs during the DSP/BIOS timer startup process. It is
intended to be used to perform Timer 1 setup. This function should
set all Timer 1 related registers and should enable the Timer 1
interrupt in the IER. The sequence of events performed during the
CLK module startup is as follows:
a) Perform Timer 0 setup.
b) Set the COMP1 and CPUC1 registers to the same value as the

COMP0 and CPUC0 registers.
c) Call the Timer 1 Init Function specified by this property.
d) Enable the Timer 0 interrupt and start Timer 0. If the "Start Both

Timer 0 and Timer 1" property is true, Timer 1 is also enabled
and started.

Tconf Name: POSTINITFXN Type: Extern
Example: bios.CLK.POSTINITFXN =

prog.extern("FXN_F_nop");

Platform Options Size Registers

’C64x+ 00h to 0ffffffffh 32 bits PRD3:PRD4
2-58

CLK Module
❏ Continue Counting in Debug Mode. (’C672x and RTI timer module
devices only) If this property is set to true, the timer counter continues
to count in debug mode even when the program is halted at a
breakpoint.
Tconf Name: CONONDEBUG Type: Bool
Example: bios.CLK.CONONDEBUG = false;

❏ Start Both Timer 0 and Timer 1. (’C672x and RTI timer module
devices only) If this property is set to true, DSP/BIOS starts both
Timer 0 and timer 1 during the DSP/BIOS CLK module startup. This
causes the Timer 0 clock and the Timer 1 clock to be synchronized.
Tconf Name: STARTBOTH Type: Bool
Example: bios.CLK.STARTBOTH = false;

❏ Instructions/Int. The number of instruction cycles represented by
the period specified above. This is an informational property only.
Tconf Name: N/A

CLK Object Properties The Clock Manager allows you to create an arbitrary number of CLK
objects. Clock objects have functions, which are executed by the Clock
Manager every time a timer interrupt occurs. These functions can invoke
any DSP/BIOS operations allowable from within an HWI except
HWI_enter or HWI_exit.

To create a CLK object in a configuration script, use the following syntax:

var myClk = bios.CLK.create("myClk");

The following properties can be set for a clock function object in the CLK
Object Properties dialog in the DSP/BIOS Configuration Tool or in a
Tconf script. The Tconf examples assume the myClk object has been
created as shown.

❏ comment. Type a comment to identify this CLK object.
Tconf Name: comment Type: String
Example: myClk.comment = "Runs timeFxn";

❏ function. The function to be executed when the timer hardware
interrupt occurs. This function must be written like an HWI function; it
must be written in C or assembly and must save and restore any
registers this function modifies. However, this function can not call
HWI_enter or HWI_exit because DSP/BIOS calls them internally
before and after this function runs.

These functions should be very short as they are performed
frequently.
Application Program Interface 2-59

CLK Module
Since all CLK functions are performed at the same periodic rate,
functions that need to run at a multiple of that rate should either count
the number of interrupts and perform their activities when the counter
reaches the appropriate value or be configured as PRD objects.

If this function is written in C and you are using the DSP/BIOS
Configuration Tool, use a leading underscore before the C function
name. (The DSP/BIOS Configuration Tool generates assembly
code, which must use leading underscores when referencing C
functions or labels.) If you are using Tconf, do not add an underscore
before the function name; Tconf adds the underscore needed to call
a C function from assembly internally.
Tconf Name: fxn Type: Extern
Example: myClk.fxn = prog.extern("timeFxn");

❏ order. You can change the sequence in which CLK functions are
executed by specifying the order property of all the CLK functions.
Tconf Name: order Type: Int16
Example: myClk.order = 2;
2-60

CLK_countspms
C Interface

Syntax ncounts = CLK_countspms();

Parameters Void

Return Value LgUns ncounts;

Reentrant yes

Description CLK_countspms returns the number of high-resolution timer counts per
millisecond.

CLK_countspms can be used to compute an absolute length of time from
the number of low resolution timer interrupts. For example, the following
code computes time in milliseconds.

 timeAbs = (CLK_getltime() * CLK_getprd()) / CLK_countspms();

The equation below computes time in milliseconds since the last wrap of
the high-resolution timer counter.

timeAbs = CLK_gethtime() / CLK_countspms();

See Also CLK_gethtime
CLK_getprd
CLK_cpuCyclesPerHtime
CLK_cpuCyclesPerLtime
GBL_getClkin
STS_delta

CLK_countspms Number of hardware timer counts per millisecond
Application Program Interface 2-61

CLK_cpuCyclesPerHtime
C Interface

Syntax ncycles = CLK_cpuCyclesPerHtime(Void);

Parameters Void

Return Value Float ncycles;

Reentrant yes

Description CLK_cpuCyclesPerHtime returns the multiplier required to convert from
high-resolution time to CPU cycles. High-resolution time is returned by
CLK_gethtime.

For example, the following code returns the number of CPU cycles and
the absolute time elapsed during processing.

time1 = CLK_gethtime();
... processing ...
time2 = CLK_gethtime();
CPUcycles = (time2 - time1) * CLK_cpuCyclesPerHtime();
/* calculate absolute time in milliseconds */
TimeAbsolute = CPUCycles / GBL_getFrequency();

See Also CLK_gethtime
CLK_getprd
GBL_getClkin

CLK_cpuCyclesPerHtime Return multiplier for converting high-res time to CPU cycles
2-62

CLK_cpuCyclesPerLtime
C Interface

Syntax ncycles = CLK_cpuCyclesPerLtime(Void);

Parameters Void

Return Value Float ncycles;

Reentrant yes

Description CLK_cpuCyclesPerLtime returns the multiplier required to convert from
low-resolution time to CPU cycles. Low-resolution time is returned by
CLK_gethtime.

For example, the following code returns the number of CPU cycles and
milliseconds elapsed during processing.

time1 = CLK_getltime();
... processing ...
time2 = CLK_getltime();
CPUcycles = (time2 - time1) * CLK_cpuCyclesPerLtime();
/* calculate absolute time in milliseconds */
TimeAbsolute = CPUCycles / GBL_getFrequency();

See Also CLK_getltime
CLK_getprd
GBL_getClkin

CLK_cpuCyclesPerLtime Return multiplier for converting low-res time to CPU cycles
Application Program Interface 2-63

CLK_gethtime
C Interface

Syntax currtime = CLK_gethtime();

Parameters Void

Return Value LgUns currtime /* high-resolution time */

Reentrant no

Description CLK_gethtime returns the number of high-resolution clock cycles that
have occurred as a 32-bit value. When the number of cycles reaches the
maximum value that can be stored in 32 bits, the value wraps back to 0.

See “High-Resolution Time” on page 2-54 for information about how this
rate is set.

CLK_gethtime provides a value with greater accuracy than
CLK_getltime, but which wraps back to 0 more frequently. For example,
if the timer tick rate is 200 MHz, then regardless of the period register
value, the CLK_gethtime value wraps back to 0 approximately every 86
seconds.

CLK_gethtime can be used in conjunction with STS_set and STS_delta
to benchmark code. CLK_gethtime can also be used to add a time stamp
to event logs.

Constraints and
Calling Context

❏ CLK_gethtime cannot be called from the program’s main() function.

Example /* ======== showTime ======== */

 Void showTicks
 {
 LOG_printf(&trace, "time = %d", CLK_gethtime());
 }

See Also CLK_getltime
PRD_getticks
STS_delta

CLK_gethtime Get high-resolution time
2-64

CLK_getltime
C Interface

Syntax currtime = CLK_getltime();

Parameters Void

Return Value LgUns currtime /* low-resolution time */

Reentrant yes

Description CLK_getltime returns the number of timer interrupts that have occurred
as a 32-bit time value. When the number of interrupts reaches the
maximum value that can be stored in 32 bits, value wraps back to 0 on
the next interrupt. See “Low-Resolution Time” on page 2-53 for
information about the other 32 bits of this value for C64x+ devices.

The low-resolution time is the number of timer interrupts that have
occurred. See “Low-Resolution Time” on page 2-53 for information about
how this rate is set.

The default low resolution interrupt rate is 1 millisecond/interrupt. By
adjusting the period register, you can set rates from less than 1
microsecond/interrupt to more than 1 second/interrupt.

CLK_gethtime provides a value with more accuracy than CLK_getltime,
but which wraps back to 0 more frequently. For example, if the timer tick
rate is 200 MHz, and you use the default period register value of 50000,
the CLK_gethtime value wraps back to 0 approximately every 86
seconds, while the CLK_getltime value wraps back to 0 approximately
every 49.7 days.

CLK_getltime is often used to add a time stamp to event logs for events
that occur over a relatively long period of time.

Constraints and
Calling Context

❏ CLK_getltime cannot be called from the program’s main() function.

Example /* ======== showTicks ======== */

 Void showTicks
 {
 LOG_printf(&trace, "time = 0x%x", CLK_getltime());
 }

See Also CLK_gethtime
PRD_getticks
STS_delta

CLK_getltime Get low-resolution time
Application Program Interface 2-65

CLK_getprd
C Interface

Syntax period = CLK_getprd();

Parameters Void

Return Value Uns period /* period register value */

Reentrant yes

Description CLK_getprd returns the number of high-resolution timer counts per low-
resolution interrupt.

CLK_getprd can be used to compute an absolute length of time from the
number of low-resolution timer interrupts. For example, the following
code computes time in milliseconds.

 timeAbs = (CLK_getltime() * CLK_getprd()) / CLK_countspms();

See Also CLK_countspms
CLK_gethtime
CLK_cpuCyclesPerHtime
CLK_cpuCyclesPerLtime
GBL_getClkin
STS_delta

CLK_getprd Get period register value
2-66

CLK_reconfig
C Interface

Syntax status = CLK_reconfig();

Parameters Void

Return Value Bool status /* FALSE if failed */

Reentrant yes

Description This function needs to be called after a call to GBL_setFrequency. It
computes values for the timer period and the prescalar registers using
the new CPU frequency. The new values for the period and prescalar
registers ensure that the CLK interrupt runs at the statically configured
interval in microseconds.

The return value is FALSE if the timer registers cannot accommodate the
current frequency or if some other internal error occurs.

When calling CLK_reconfig outside of main(), you must also call
CLK_stop and CLK_start to stop and restart the timer. Use the following
call sequence:

/* disable interrupts if an interrupt could lead to
 another call to CLK_reconfig or if interrupt
 processing relies on having a running timer */
HWI_disable() or SWI_disable()
GBL_setFrequency(cpuFreqInKhz);
CLK_stop();
CLK_reconfig();
CLK_start();
HWI_restore() or SWI_enable()

When calling CLK_reconfig from main(), the timer has not yet been
started. (The timer is started as part of BIOS_startup(), which is called
internally after main.) As a result, you can use the following simplified call
sequence in main():

GBL_setFrequency(cpuFreqInKhz);
CLK_reconfig(Void);

Note that GBL_setFrequency does not affect the PLL, and therefore has
no effect on the actual frequency at which the DSP is running. It is used
only to make DSP/BIOS aware of the DSP frequency you are using.

CLK_reconfig Reset timer period and registers using current CPU frequency
Application Program Interface 2-67

CLK_reconfig
Constraints and
Calling Context

❏ When calling CLK_reconfig from anywhere other than main(), you
must also use CLK_stop and CLK_start.

❏ Call HWI_disable/HWI_restore or SWI_disable/SWI_enable around
a block that stops, configures, and restarts the timer as needed to
prevent re-entrancy or other problems. That is, you must disable
interrupts if an interrupt could lead to another call to CLK_reconfig or
if interrupt processing relies on having a running timer to ensure that
these non-reentrant functions are not interrupted.

❏ If you do not stop and restart the timer, CLK_reconfig can only be
called from the program’s main() function.

❏ If you use CLK_reconfig, you should also use GBL_setFrequency.

See Also GBL_getFrequency
GBL_setFrequency
CLK_start
CLK_stop
2-68

CLK_start
C Interface

Syntax CLK_start();

Parameters Void

Return Value Void

Reentrant no

Description This function starts the low-resolution timer if it has been halted by
CLK_stop. The period and prescalar registers are updated to reflect any
changes made by a call to CLK_reconfig. This function then resets the
timer counters and starts the timer.

CLK_start should only be used in conjunction with CLK_reconfig and
CLK_stop. See the section on CLK_reconfig for details and the allowed
calling sequence.

Note that all ’C6000 platforms except the ’C64x+ use the same timer to
drive low-resolution and high-resolution times. On such platforms, both
times are affected by this API.

❏ Call HWI_disable/HWI_restore or SWI_disable/SWI_enable around
a block that stops, configures, and restarts the timer as needed to
prevent re-entrancy or other problems. That is, you must disable
interrupts if an interrupt could lead to another call to CLK_start or if
interrupt processing relies on having a running timer to ensure that
these non-reentrant functions are not interrupted

❏ This function cannot be called from main().

See Also CLK_reconfig
CLK_stop
GBL_setFrequency

CLK_start Restart the low-resolution timer
Application Program Interface 2-69

CLK_stop
C Interface

Syntax CLK_stop();

Parameters Void

Return Value Void

Reentrant no

Description This function stops the low-resolution timer. It can be used in conjunction
with CLK_reconfig and CLK_start to reconfigure the timer at run-time.

Note that all ’C6000 platforms except the ’C64x+ use the same timer to
drive low-resolution and high-resolution times. On such platforms, both
times are affected by this API.

CLK_stop should only be used in conjunction with CLK_reconfig and
CLK_start, and only in the required calling sequence. See the section on
CLK_reconfig for details.

❏ Call HWI_disable/HWI_restore or SWI_disable/SWI_enable around
a block that stops, configures, and restarts the timer as needed to
prevent re-entrancy or other problems. That is, you must disable
interrupts if an interrupt could lead to another call to CLK_stop or if
interrupt processing relies on having a running timer to ensure that
these non-reentrant functions are not interrupted

❏ This function cannot be called from main().

See Also CLK_reconfig
CLK_start
GBL_setFrequency

CLK_stop Halt the low-resolution timer
2-70

DEV Module
2.6 DEV Module

The DEV module provides the device interface.

Functions ❏ DEV_createDevice. Dynamically create device

❏ DEV_deleteDevice. Delete dynamically-created device

❏ DEV_match. Match device name with driver
❏ Dxx_close. Close device
❏ Dxx_ctrl. Device control
❏ Dxx_idle. Idle device
❏ Dxx_init. Initialize device
❏ Dxx_issue. Send frame to device
❏ Dxx_open. Open device
❏ Dxx_ready. Device ready
❏ Dxx_reclaim. Retrieve frame from device

Description DSP/BIOS provides two device driver models that enable applications to
communicate with DSP peripherals: IOM and SIO/DEV.

The components of the IOM model are illustrated in the following figure.
It separates hardware-independent and hardware-dependent layers.
Class drivers are hardware independent; they manage device instances,
synchronization and serialization of I/O requests. The lower-level mini-
driver is hardware-dependent. See the DSP/BIOS Driver Developer’s
Guide (SPRU616) for more information on the IOM model.

Application / Framework

SIO APIsPIP APIs

PIO Adapter DIO Adapter
GIO APIs

IOM Mini-Driver(s)

Device
Driver

On-Chip Peripheral Hardware

Chip Support Library (CSL)

Off-Chip Peripheral Hardware

Class
Driver

Mini-
Driver
Application Program Interface 2-71

DEV Module
The SIO/DEV model provides a streaming I/O interface. In this model, the
application indirectly invokes DEV functions implemented by the driver
managing the physical device attached to the stream, using generic
functions provided by the SIO module. See the DSP/BIOS User’s Guide
(SPRU423) for more information on the SIO/DEV model.

The model used by a device is identified by its function table type. A type
of IOM_Fxns is used with the IOM model. A type of DEV_Fxns is used
with the DEV/SIO model.

The DEV module provides the following capabilities:

❏ Device object creation. You can create device objects through
static configuration or dynamically through the DEV_createDevice
function. The DEV_deleteDevice and DEV_match functions are also
provided for managing device objects.

❏ Driver function templates. The Dxx functions listed as part of the
DEV module are templates for driver functions. These are the
functions you create for drivers that use the DEV/SIO model.

Constants, Types, and
Structures

#define DEV_INPUT 0
#define DEV_OUTPUT 1

typedef struct DEV_Frame { /* frame object */
 QUE_Elem link; /* queue link */
 Ptr addr; /* buffer address */
 size_t size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} DEV_Frame;

typedef struct DEV_Obj { /* device object */
 QUE_Handle todevice; /* downstream frames here */
 QUE_Handle fromdevice; /* upstream frames here */
 size_t bufsize; /* buffer size */
 Uns nbufs; /* number of buffers */
 Int segid; /* buffer segment ID */
 Int mode; /* DEV_INPUT/DEV_OUTPUT */
 Int devid; /* device ID */
 Ptr params; /* device parameters */
 Ptr object; /* ptr to dev instance obj */
 DEV_Fxns fxns; /* driver functions */
 Uns timeout; /* SIO_reclaim timeout value */
 Uns align; /* buffer alignment */
 DEV_Callback *callback; /* pointer to callback */
} DEV_Obj;
2-72

DEV Module
typedef struct DEV_Fxns { /* driver function table */
 Int (*close)(DEV_Handle);
 Int (*ctrl)(DEV_Handle, Uns, Arg);
 Int (*idle)(DEV_Handle, Bool);
 Int (*issue)(DEV_Handle);
 Int (*open)(DEV_Handle, String);
 Bool (*ready)(DEV_Handle, SEM_Handle);
 size_t (*reclaim)(DEV_Handle);
} DEV_Fxns;

typedef struct DEV_Callback {
 Fxn fxn; /* function */
 Arg arg0; /* argument 0 */
 Arg arg1; /* argument 1 */
} DEV_Callback;

typedef struct DEV_Device { /* device specifier */
 String name; /* device name */
 Void * fxns; /* device function table*/
 Int devid; /* device ID */
 Ptr params; /* device parameters */
 Uns type; /* type of the device */
 Ptr devp; /* pointer to device handle */
} DEV_Device;

typedef struct DEV_Attrs {
 Int devid; /* device id */
 Ptr params; /* device parameters */
 Uns type; /* type of the device */
 Ptr devp; /* device global data ptr */
} DEV_Attrs;

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the DEV
Manager Properties and DEV Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Instance Configuration Parameters

Name Type Default (Enum Options)

comment String "<add comments here>"

initFxn Arg 0x00000000

fxnTable Arg 0x00000000

fxnTableType EnumString "DEV_Fxns" ("IOM_Fxns")

deviceId Arg 0x00000000

params Arg 0x00000000

deviceGlobalDataPtr Arg 0x00000000
Application Program Interface 2-73

DEV Module
DEV Manager
Properties

The default configuration contains managers for the following built-in
device drivers:

❏ DGN Driver (software generator driver). pseudo-device that
generates one of several data streams, such as a sin/cos series or
white noise. This driver can be useful for testing applications that
require an input stream of data.

❏ DHL Driver (host link driver). Driver that uses the HST interface to
send data to and from the Host Channel Control Analysis Tool.

❏ DIO Adapter (class driver). Driver used with the device driver
model.

❏ DPI Driver (pipe driver). Software device used to stream data
between DSP/BIOS tasks.

To configure devices for other drivers, use Tconf to create a User-defined
Device (UDEV) object. There are no global properties for the user-
defined device manager.

The following additional device drivers are supplied with DSP/BIOS:
❏ DGS Driver. Stackable gather/scatter driver
❏ DNL Driver. Null driver
❏ DOV Driver. Stackable overlap driver
❏ DST Driver. Stackable “split” driver
❏ DTR Driver. Stackable streaming transformer driver

DEV Object Properties The following properties can be set for a user-defined device in the UDEV
Object Properties dialog in the DSP/BIOS Configuration Tool or in a
Tconf script. To create a user-defined device object in a configuration
script, use the following syntax:

var myDev = bios.UDEV.create("myDev");

The Tconf examples assume the myDev object is created as shown.

❏ comment. Type a comment to identify this object.
Tconf Name: comment Type: String
Example: myDev.comment = "My device";

❏ init function. Specify the function to run to initialize this device.
Use a leading underscore before the function name if the function is
written in C and you are using the DSP/BIOS Configuration Tool. If
you are using Tconf, do not add an underscore before the function
name; Tconf adds the underscore needed to call a C function from
assembly internally.
Tconf Name: initFxn Type: Arg
Example: myDev.initFxn = prog.extern("myInit");
2-74

DEV Module
❏ function table ptr. Specify the name of the device functions table for
the driver or mini-driver. This table is of type DEV_Fxns or IOM_Fxns
depending on the setting for the function table type property.
Tconf Name: fxnTable Type: Arg
Example: myDev.fxnTable =

prog.extern("mydevFxnTable");

❏ function table type. Choose the type of function table used by the
driver to which this device interfaces. Use the IOM_Fxns option if you
are using the DIO class driver to interface to a mini-driver with an
IOM_Fxns function table. Otherwise, use the DEV_Fxns option for
other drivers that use a DEV_Fxns function table and Dxx functions.
You can create a DIO object only if a UDEV object with the IOM_Fxns
function table type exists.
Tconf Name: fxnTableType Type: EnumString
Options: "DEV_Fxns", "IOM_Fxns"
Example: myDev.fxnTableType = "DEV_Fxns";

❏ device id. Specify the device ID. If the value you provide is non-zero,
the value takes the place of a value that would be appended to the
device name in a call to SIO_create. The purpose of such a value is
driver-specific.
Tconf Name: deviceId Type: Arg
Example: myDev.deviceId = prog.extern("devID");

❏ device params ptr. If this device uses additional parameters,
provide the name of the parameter structure. This structure should
have a name with the format DXX_Params where XX is the two-letter
code for the driver used by this device.

Use a leading underscore before the structure name if the structure
is declared in C and you are using the DSP/BIOS Configuration Tool.
Tconf Name: params Type: Arg
Example: myDev.params = prog.extern("myParams");

❏ device global data ptr. Provide a pointer to any global data to be
used by this device. This value can be set only if the function table
type is IOM_Fxns.
Tconf Name: deviceGlobalDataPtr Type: Arg
Example: myDev.deviceGlobalDataPtr = 0x00000000;
Application Program Interface 2-75

DEV_createDevice
C Interface

Syntax status = DEV_createDevice(name, fxns, initFxn, attrs);

Parameters String name; /* name of device to be created */
Void *fxns; /* pointer to device function table */
Fxn initFxn; /* device init function */
DEV_Attrs *attrs; /* pointer to device attributes */

Return Value Int status; /* result of operation */

Reentrant no

Description DEV_createDevice allows an application to create a user-defined device
object at run-time. The object created has parameters similar to those
defined statically for the DEV Object Properties. After being created, the
device can be used as with statically-created DEV objects.

The name parameter specifies the name of the device. The device name
should begin with a slash (/) for consistency with statically-created
devices and to permit stacking drivers. For example "/codec" might be the
name. The name must be unique within the application. If the specified
device name already exists, this function returns failure.

The fxns parameter points to the device function table. The function table
may be of type DEV_Fxns or IOM_Fxns.

The initFxn parameter specifies a device initialization function. The
function passed as this parameter is run if the device is created
successfully. The initialization function is called with interrupts disabled.
If several devices may use the same driver, the initialization function (or
a function wrapper) should ensure that one-time initialization actions are
performed only once.

The attrs parameter points to a structure of type DEV_Attrs. This
structure is used to pass additional device attributes to
DEV_createDevice. If attrs is NULL, the device is created with default
attributes. DEV_Attrs has the following structure:

typedef struct DEV_Attrs {
 Int devid; /* device id */
 Ptr params; /* device parameters */
 Uns type; /* type of the device */
 Ptr devp; /* device global data ptr */
} DEV_Attrs;

DEV_createDevice Dynamically create device
2-76

DEV_createDevice
The devid item specifies the device ID. If the value you provide is non-
zero, the value takes the place of a value that would be appended to the
device name in a call to SIO_create. The purpose of such a value is
driver-specific. The default value is NULL.

The params item specifies the name of a parameter structure that may
be used to provide additional parameters. This structure should have a
name with the format DXX_Params where XX is the two-letter code for
the driver used by this device. The default value is NULL.

The type item specifies the type of driver used with this device. The
default value is DEV_IOMTYPE. The options are:

The devp item specifies the device global data pointer, which points to
any global data to be used by this device. This value can be set only if the
table type is IOM_Fxns.The default value is NULL.

If an initFxn is specified, that function is called as a result of calling
DEV_createDevice. In addition, if the device type is DEV_IOMTYPE, the
mdBindDev function in the function table pointed to by the fxns parameter
is called as a result of calling DEV_createDevice. Both of these calls are
made with interrupts disabled.

DEV_createDevice returns one of the following status values:

DEV_createDevice calls SYS_error if mdBindDev returns a failure
condition. The device is not created if mdBindDev fails, and
DEV_createDevice returns the IOM error returned by the mdBindDev
failure.

Constraints and
Calling Context

❏ This function cannot be called from a SWI or HWI.

❏ This function can only be used if dynamic memory allocation is
enabled.

Type Use With

DEV_IOMTYPE Mini-drivers used in the IOM model.
DEV_SIOTYPE DIO adapter with SIO streams or

other DEV/SIO drivers

Constant Description

SYS_OK Success.

SYS_EINVAL A device with the specified name already exists.

SYS_EALLOC The heap is not large enough to allocate the device.
Application Program Interface 2-77

DEV_createDevice
❏ The device function table must be consistent with the type specified
in the attrs structure. DSP/BIOS does not check to ensure that the
types are consistent.

Example Int status;

/* Device attributes of device "/pipe0" */
DEV_Attrs dpiAttrs = {
 NULL,
 NULL,
 DEV_SIOTYPE,
 0
};

status = DEV_createDevice("/pipe0", &DPI_FXNS,
 (Fxn)DPI_init, &dpiAttrs);
if (status != SYS_OK) {
 SYS_abort("Unable to create device");
}

See Also SIO_create
2-78

DEV_deleteDevice
C Interface

Syntax status = DEV_deleteDevice(name);

Parameters String name; /* name of device to be deleted */

Return Value Int status; /* result of operation */

Reentrant no

Description DEV_deleteDevice deallocates the specified dynamically-created device
and deletes it from the list of devices in the application.

The name parameter specifies the device to delete. This name must
match a name used with DEV_createDevice.

Before deleting a device, delete any SIO streams that use the device.
SIO_delete cannot be called after the device is deleted.

If the device type is DEV_IOMTYPE, the mdUnBindDev function in the
function table pointed to by the fxns parameter of the device is called as
a result of calling DEV_deleteDevice. This call is made with interrupts
disabled.

DEV_createDevice returns one of the following status values:

DEV_deleteDevice calls SYS_error if mdUnBindDev returns a failure
condition. The device is deleted even if mdUnBindDev fails, but
DEV_deleteDevice returns the IOM error returned by mdUnBindDev.

Constraints and
Calling Context

❏ This function cannot be called from a SWI or HWI.

❏ This function can be used only if dynamic memory allocation is
enabled.

❏ The device name must match a dynamically-created device.
DSP/BIOS does not check that the device was not created statically.

Example status = DEV_deleteDevice("/pipe0");

See Also SIO_delete

DEV_deleteDevice Delete a dynamically-created device

Constant Description

SYS_OK Success.

SYS_ENODEV No device with the specified name exists.
Application Program Interface 2-79

DEV_match
C Interface

Syntax substr = DEV_match(name, device);

Parameters String name; /* device name */
DEV_Device **device; /* pointer to device table entry */

Return Value String substr; /* remaining characters after match */

Description DEV_match searches the device table for the first device name that
matches a prefix of name. The output parameter, device, points to the
appropriate entry in the device table if successful and is set to NULL on
error. The DEV_Device structure is defined in dev.h.

The substr return value contains a pointer to the characters remaining
after the match. This string is used by stacking devices to specify the
name(s) of underlying devices (for example, /scale10/sine might match
/scale10, a stacking device, which would, in turn, use /sine to open the
underlying generator device).

See Also SIO_create

DEV_match Match a device name with a driver
2-80

Dxx_close
Important Note: This API will no longer be supported in the next major
release of DSP/BIOS. We recommend that you use the IOM driver
interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

C Interface

Syntax status = Dxx_close(device);

Parameters DEV_Handle device; /* device handle */

Return Value Int status; /* result of operation */

Description Dxx_close closes the device associated with device and returns an error
code indicating success (SYS_OK) or failure. device is bound to the
device through a prior call to Dxx_open.

SIO_delete first calls Dxx_idle to idle the device. Then it calls Dxx_close.

Once device has been closed, the underlying device is no longer
accessible via this descriptor.

Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also Dxx_idle
Dxx_open
SIO_delete

Dxx_close Close device
Application Program Interface 2-81

Dxx_ctrl
Important Note: This API will no longer be supported in the next major
release of DSP/BIOS. We recommend that you use the IOM driver
interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

C Interface

Syntax status = Dxx_ctrl(device, cmd, arg);

Parameters DEV_Handle device /* device handle */
Uns cmd; /* driver control code */
Arg arg; /* control operation argument */

Return Value Int status; /* result of operation */

Description Dxx_ctrl performs a control operation on the device associated with
device and returns an error code indicating success (SYS_OK) or failure.
The actual control operation is designated through cmd and arg, which
are interpreted in a driver-dependent manner.

Dxx_ctrl is called by SIO_ctrl to send control commands to a device.

Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also SIO_ctrl

Dxx_ctrl Device control operation
2-82

Dxx_idle
Important Note: This API will no longer be supported in the next major
release of DSP/BIOS. We recommend that you use the IOM driver
interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

C Interface

Syntax status = Dxx_idle(device, flush);

Parameters DEV_Handle device; /* device handle */
Bool flush; /* flush output flag */

Return Value Int status; /* result of operation */

Description Dxx_idle places the device associated with device into its idle state and
returns an error code indicating success (SYS_OK) or failure. Devices
are initially in this state after they are opened with Dxx_open.

Dxx_idle returns the device to its initial state. Dxx_idle should move any
frames from the device->todevice queue to the device->fromdevice
queue. In SIO_ISSUERECLAIM mode, any outstanding buffers issued to
the stream must be reclaimed in order to return the device to its true initial
state.

Dxx_idle is called by SIO_idle, SIO_flush, and SIO_delete to recycle
frames to the appropriate queue.

flush is a boolean parameter that indicates what to do with any pending
data of an output stream. If flush is TRUE, all pending data is discarded
and Dxx_idle does not block waiting for data to be processed. If flush is
FALSE, the Dxx_idle function does not return until all pending output data
has been rendered. All pending data in an input stream is always
discarded, without waiting.

Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also SIO_delete
SIO_idle
SIO_flush

Dxx_idle Idle device
Application Program Interface 2-83

Dxx_init
Important Note: This API will no longer be supported in the next major
release of DSP/BIOS. We recommend that you use the IOM driver
interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

C Interface

Syntax Dxx_init();

Parameters Void

Return Value Void

Description Dxx_init is used to initialize the device driver module for a particular
device. This initialization often includes resetting the actual device to its
initial state.

Dxx_init is called at system startup, before the application’s main()
function is called.

Dxx_init Initialize device
2-84

Dxx_issue
Important Note: This API will no longer be supported in the next major
release of DSP/BIOS. We recommend that you use the IOM driver
interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

C Interface

Syntax status = Dxx_issue(device);

Parameters DEV_Handle device; /* device handle */

Return Value Int status; /* result of operation */

Description Dxx_issue is used to notify a device that a new frame has been placed
on the device->todevice queue. If the device was opened in DEV_INPUT
mode, Dxx_issue uses this frame for input. If the device was opened in
DEV_OUTPUT mode, Dxx_issue processes the data in the frame, then
outputs it. In either mode, Dxx_issue ensures that the device has been
started and returns an error code indicating success (SYS_OK) or failure.

Dxx_issue does not block. In output mode it processes the buffer and
places it in a queue to be rendered. In input mode, it places a buffer in a
queue to be filled with data, then returns.

Dxx_issue is used in conjunction with Dxx_reclaim to operate a stream.
The Dxx_issue call sends a buffer to a stream, and the Dxx_reclaim
retrieves a buffer from a stream. Dxx_issue performs processing for
output streams, and provides empty frames for input streams. The
Dxx_reclaim recovers empty frames in output streams, retrieves full
frames, and performs processing for input streams.

SIO_issue calls Dxx_issue after placing a new input frame on the
device->todevice. If Dxx_issue fails, it should return an error code. Before
attempting further I/O through the device, the device should be idled, and
all pending buffers should be flushed if the device was opened for
DEV_OUTPUT.

In a stacking device, Dxx_issue must preserve all information in the
DEV_Frame object except link and misc. On a device opened for
DEV_INPUT, Dxx_issue should preserve the size and the arg fields. On
a device opened for DEV_OUTPUT, Dxx_issue should preserve the
buffer data (transformed as necessary), the size (adjusted as appropriate
by the transform) and the arg field. The DEV_Frame objects themselves
do not need to be preserved, only the information they contain.

Dxx_issue Send a buffer to the device
Application Program Interface 2-85

Dxx_issue
Dxx_issue must preserve and maintain buffers sent to the device so they
can be returned in the order they were received, by a call to Dxx_reclaim.

Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also Dxx_reclaim
SIO_issue
2-86

Dxx_open
Important Note: This API will no longer be supported in the next major
release of DSP/BIOS. We recommend that you use the IOM driver
interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

C Interface

Syntax status = Dxx_open(device, name);

Parameters DEV_Handle device; /* driver handle */
String name; /* device name */

Return Value Int status; /* result of operation */

Description Dxx_open is called by SIO_create to open a device. Dxx_open opens a
device and returns an error code indicating success (SYS_OK) or failure.

The device parameter points to a DEV_Obj whose fields have been
initialized by the calling function (that is, SIO_create). These fields can be
referenced by Dxx_open to initialize various device parameters.
Dxx_open is often used to attach a device-specific object to
device->object. This object typically contains driver-specific fields that
can be referenced in subsequent Dxx driver calls.

name is the string remaining after the device name has been matched by
SIO_create using DEV_match.

See Also Dxx_close
SIO_create

Dxx_open Open device
Application Program Interface 2-87

Dxx_ready
Important Note: This API will no longer be supported in the next major
release of DSP/BIOS. We recommend that you use the IOM driver
interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

C Interface

Syntax status = Dxx_ready(device, sem);

Parameters DEV_Handle device; /* device handle */
SEM_Handle sem; /* semaphore to post when ready */

Return Value Bool status; /* TRUE if device is ready */

Description Dxx_ready is called by SIO_select and SIO_ready to determine if the
device is ready for an I/O operation. In this context, ready means a call
that retrieves a buffer from a device does not block. If a frame exists,
Dxx_ready returns TRUE, indicating that the next SIO_get, SIO_put, or
SIO_reclaim operation on the device does not cause the calling task to
block. If there are no frames available, Dxx_ready returns FALSE. This
informs the calling task that a call to SIO_get, SIO_put, or SIO_reclaim
for that device would result in blocking.

Dxx_ready registers the device’s ready semaphore with the SIO_select
semaphore sem. In cases where SIO_select calls Dxx_ready for each of
several devices, each device registers its own ready semaphore with the
unique SIO_select semaphore. The first device that becomes ready calls
SEM_post on the semaphore.

SIO_select calls Dxx_ready twice; the second time, sem = NULL. This
results in each device’s ready semaphore being set to NULL. This
information is needed by the Dxx HWI that normally calls SEM_post on
the device’s ready semaphore when I/O is completed; if the device ready
semaphore is NULL, the semaphore should not be posted.

SIO_ready calls Dxx_ready with sem = NULL. This is equivalent to the
second Dxx_ready call made by SIO_select, and the underlying device
driver should just return status without registering a semaphore.

See Also SIO_select

Dxx_ready Check if device is ready for I/O
2-88

Dxx_reclaim
Important Note: This API will no longer be supported in the next major
release of DSP/BIOS. We recommend that you use the IOM driver
interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

C Interface

Syntax status = Dxx_reclaim(device);

Parameters DEV_Handle device; /* device handle */

Return Value Int status; /* result of operation */

Description Dxx_reclaim is used to request a buffer back from a device. Dxx_reclaim
does not return until a buffer is available for the client in the
device->fromdevice queue. If the device was opened in DEV_INPUT
mode then Dxx_reclaim blocks until an input frame has been filled with
the number of MADUs requested, then processes the data in the frame
and place it on the device->fromdevice queue. If the device was opened
in DEV_OUTPUT mode, Dxx_reclaim blocks until an output frame has
been emptied, then place the frame on the device->fromdevice queue. In
either mode, Dxx_reclaim blocks until it has a frame to place on the
device->fromdevice queue, or until the stream’s timeout expires, and it
returns an error code indicating success (SYS_OK) or failure.

If device->timeout is not equal to SYS_FOREVER or 0, the task
suspension time can be up to 1 system clock tick less than timeout due
to granularity in system timekeeping.

If device->timeout is SYS_FOREVER, the task remains suspended until
a frame is available on the device’s fromdevice queue. If timeout is 0,
Dxx_reclaim returns immediately.

If timeout expires before a buffer is available on the device’s fromdevice
queue, Dxx_reclaim returns SYS_ETIMEOUT. Otherwise Dxx_reclaim
returns SYS_OK for success, or an error code.

If Dxx_reclaim fails due to a time out or any other reason, it does not
place a frame on the device->fromdevice queue.

Dxx_reclaim is used in conjunction with Dxx_issue to operate a stream.
The Dxx_issue call sends a buffer to a stream, and the Dxx_reclaim
retrieves a buffer from a stream. Dxx_issue performs processing for

Dxx_reclaim Retrieve a buffer from a device
Application Program Interface 2-89

Dxx_reclaim
output streams, and provides empty frames for input streams. The
Dxx_reclaim recovers empty frames in output streams, and retrieves full
frames and performs processing for input streams.

SIO_reclaim calls Dxx_reclaim, then it gets the frame from the
device->fromdevice queue.

In a stacking device, Dxx_reclaim must preserve all information in the
DEV_Frame object except link and misc. On a device opened for
DEV_INPUT, Dxx_reclaim should preserve the buffer data (transformed
as necessary), the size (adjusted as appropriate by the transform), and
the arg field. On a device opened for DEV_OUTPUT, Dxx_reclaim should
preserve the size and the arg field. The DEV_Frame objects themselves
do not need to be preserved, only the information they contain.

Dxx_reclaim must preserve buffers sent to the device. Dxx_reclaim
should never return a buffer that was not received from the client through
the Dxx_issue call. Dxx_reclaim always preserves the ordering of the
buffers sent to the device, and returns with the oldest buffer that was
issued to the device.

Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also Dxx_issue
SIO_issue
SIO_get
SIO_put
2-90

DGN Driver
Important Note: This driver will no longer be supported in the next
major release of DSP/BIOS. We recommend that you use the IOM
driver interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

Description The DGN driver manages a class of software devices known as
generators, which produce an input stream of data through successive
application of some arithmetic function. DGN devices are used to
generate sequences of constants, sine waves, random noise, or other
streams of data defined by a user function.The number of active
generator devices in the system is limited only by the availability of
memory.

Configuring a
DGN Device

To create a DGN device object in a configuration script, use the following
syntax:

var myDgn = bios.DGN.create("myDgn");

See the DGN Object Properties for the device you created.

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the DGN
Object Properties heading. For descriptions of data types, see Section
1.4, DSP/BIOS Tconf Overview, page 1-4.

Instance Configuration Parameters

DGN Driver Software generator driver

Name Type Default (Enum Options)

comment String "<add comments here>"

device EnumString "user" ("sine", "random", "constant",
"printHex", "printInt", "printFloat"
(’C67x only))

useDefaultParam Bool false

deviceId Arg prog.extern("DGN_USER", "asm")

constant Numeric 1 (1.0 for ’C67x)

seedValue Int32 1

lowerLimit Numeric -32767 (0.0 for ’C67x)

upperLimit Numeric 32767 (1.0 for ’C67x)

gain Numeric 32767 (1.0 for ’C67x)

frequency Numeric 1 (1000.0 for ’C67x)
Application Program Interface 2-91

DGN Driver
Data Streaming The DGN driver places no inherent restrictions on the size or memory
segment of the data buffers used when streaming from a generator
device. Since generators are fabricated entirely in software and do not
overlap I/O with computation, no more than one buffer is required to
attain maximum performance.

Since DGN generates data “on demand,” tasks do not block when calling
SIO_get, SIO_put, or SIO_reclaim on a DGN data stream. High-priority
tasks must, therefore, be careful when using these streams since lower-
or even equal-priority tasks do not get a chance to run until the high-
priority task suspends execution for some other reason.

DGN Driver Properties There are no global properties for the DGN driver manager.

DGN Object Properties The following properties can be set for a DGN device on the DGN Object
Properties dialog in the DSP/BIOS Configuration Tool or in a Tconf script.
To create a DGN device object in a script, use the following syntax:

var myDgn = bios.DGN.create("myDgn");

The Tconf examples assume the myDgn object is created as shown.

❏ comment. Type a comment to identify this object.
Tconf Name: comment Type: String
Example: myDgn.comment = "DGN device";

❏ Device category. The device category—user, sine, random,
constant, printHex, printInt, and printFloat (’C67x only)—determines
the type of data stream produced by the device. A sine, random, or
constant device can be opened for input data streaming only. A
printHex or printInt or printFloat device can be opened for output data
streaming only.

■ user. Uses a custom function to produce or consume a data
stream.

■ sine. Produce a stream of sine wave samples.

■ random. Produces a stream of random values.

■ constant. Produces a constant stream of data.

phase Numeric 0 (0.0 for ’C67x)

rate Int32 256 (44000 for ’C67x)

fxn Extern prog.extern("FXN_F_nop")

arg Arg 0x00000000

Name Type Default (Enum Options)
2-92

DGN Driver
■ printHex. Writes the stream data buffers to the trace buffer in
hexadecimal format.

■ printInt. Writes the stream data buffers to the trace buffer in
integer format.

■ printFloat. Writes the stream data buffers to the trace buffer in
float format. (’C67x only)

Tconf Name: device Type: EnumString
Options: "user", "sine", "random", "constant", "printHex",

"printInt", "printFloat" (’C67x only)
Example: myDgn.device = "user";

❏ Use default parameters. Set this property to true if you want to use
the default parameters for the Device category you selected.
Tconf Name: useDefaultParam Type: Bool
Example: myDgn.useDefaultParam = false;

❏ Device ID. This property is set automatically when you select a
Device category.
Tconf Name: deviceId Type: Arg
Example: myDgn.deviceId = prog.extern("DGN_USER",

"asm");

❏ Constant value. The constant value to be generated if the Device
category is constant.
Tconf Name: constant Type: Numeric
Example: myDgn.constant = 1;

❏ Seed value. The initial seed value used by an internal pseudo-
random number generator if the Device category is random. Used to
produce a uniformly distributed sequence of numbers ranging
between Lower limit and Upper limit.
Tconf Name: seedValue Type: Int32
Example: myDgn.seedValue = 1;

❏ Lower limit. The lowest value to be generated if the Device category
is random.
Tconf Name: lowerLimit Type: Numeric
Example: myDgn.lowerLimit = -32767;

❏ Upper limit. The highest value to be generated if the Device
category is random.
Tconf Name: upperLimit Type: Numeric
Example: myDgn.upperLimit = 32767;
Application Program Interface 2-93

DGN Driver
❏ Gain. The amplitude scaling factor of the generated sine wave if the
Device category is sine. This factor is applied to each data point. To
improve performance, the sine wave magnitude (maximum and
minimum) value is approximated to the nearest power of two. This is
done by computing a shift value by which each entry in the table is
right-shifted before being copied into the input buffer. For example, if
you set the Gain to 100, the sine wave magnitude is 128, the nearest
power of two.
Tconf Name: gain Type: Numeric
Example: myDgn.gain = 32767;

❏ Frequency. The frequency of the generated sine wave (in cycles per
second) if the Device category is sine. DGN uses a static (256 word)
sine table to approximate a sine wave. Only frequencies that divide
evenly into 256 can be represented exactly with DGN. A “step” value
is computed at open time for stepping through this table:

 step = (256 * Frequency / Rate)

Tconf Name: frequency Type: Numeric
Example: myDgn.frequency = 1;

❏ Phase. The phase of the generated sine wave (in radians) if the
Device category is sine.
Tconf Name: phase Type: Numeric
Example: myDgn.phase = 0;

❏ Sample rate. The sampling rate of the generated sine wave (in
sample points per second) if the Device category is sine.
Tconf Name: rate Type: Int32
Example: myDgn.rate = 256;

❏ User function. If the Device category is user, specifies the function
to be used to compute the successive values of the data sequence
in an input device, or to be used to process the data stream, in an
output device. If this function is written in C and you are using the
DSP/BIOS Configuration Tool, use a leading underscore before the
C function name. If you are using Tconf, do not add an underscore
before the function name; Tconf adds the underscore needed to call
a C function from assembly internally.
Tconf Name: fxn Type: Extern
Example: myDgn.fxn = prog.extern("usrFxn");

❏ User function argument. An argument to pass to the User function.

A user function must have the following form:

 fxn(Arg arg, Ptr buf, Uns nmadus)
2-94

DGN Driver
where buf contains the values generated or to be processed. buf and
nmadus correspond to the buffer address and buffer size (in
MADUs), respectively, for an SIO_get operation.
Tconf Name: arg Type: Arg
Example: myDgn.arg = prog.extern("myArg");
Application Program Interface 2-95

DGS Driver
Important Note: This driver will no longer be supported in the next
major release of DSP/BIOS. We recommend that you use the IOM
driver interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

Description The DGS driver manages a class of stackable devices which compress
or expand a data stream by applying a user-supplied function to each
input or output buffer. This driver might be used to pack data buffers
before writing them to a disk file or to unpack these same buffers when
reading from a disk file. All (un)packing must be completed on frame
boundaries as this driver (for efficiency) does not maintain remainders
across I/O operations.

On opening a DGS device by name, DGS uses the unmatched portion of
the string to recursively open an underlying device.

This driver requires a transform function and a packing/unpacking ratio
which are used when packing/unpacking buffers to/from the underlying
device.

Configuring a DGS
Device

To create a DGS device object in a configuration script, use the following
syntax:

var myDgs = bios.UDEV.create("myDgs");

Modify the myDgs properties as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DGS_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero).

❏ device params ptr. Type 0 (zero) to use the default parameters. To
use different values, you must declare a DGS_Params structure (as
described after this list) containing the values to use for the
parameters.

DGS Driver Stackable gather/scatter driver
2-96

DGS Driver
DGS_Params is defined in dgs.h as follows:

/* ======== DGS_Params ======== */
typedef struct DGS_Params { /* device parameters */
 Fxn createFxn;
 Fxn deleteFxn;
 Fxn transFxn;
 Arg arg;
 Int num;
 Int den;
} DGS_Params;

The device parameters are:

❏ create function. Optional, default is NULL. Specifies a function that
is called to create and/or initialize a transform specific object. If non-
NULL, the create function is called in DGS_open upon creating the
stream with argument as its only parameter. The return value of the
create function is passed to the transform function.

❏ delete function. Optional, default is NULL. Specifies a function to be
called when the device is closed. It should be used to free the object
created by the create function.

❏ transform function. Required, default is localcopy. Specifies the
transform function that is called before calling the underlying device's
output function in output mode and after calling the underlying
device’s input function in input mode. Your transform function should
have the following interface:

dstsize = myTrans(Arg arg, Void *src, Void *dst, Int srcsize)

where arg is an optional argument (either argument or created by the
create function), and *src and *dst specify the source and destination
buffers, respectively. srcsize specifies the size of the source buffer
and dstsize specifies the size of the resulting transformed buffer
(srcsize * numerator/denominator).

❏ arg. Optional argument, default is 0. If the create function is non-
NULL, the arg parameter is passed to the create function and the
create function's return value is passed as a parameter to the
transform function; otherwise, argument is passed to the transform
function.

❏ num and den (numerator and denominator). Required, default is 1
for both parameters. These parameters specify the size of the
transformed buffer. For example, a transformation that compresses
two 32-bit words into a single 32-bit word would have numerator = 1
and denominator = 2 since the buffer resulting from the
transformation is 1/2 the size of the original buffer.
Application Program Interface 2-97

DGS Driver
Transform Functions The following transform functions are already provided with the DGS
driver:

❏ u32tou8/u8tou32. These functions provide conversion to/from
packed unsigned 8-bit integers to unsigned 32-bit integers. The
buffer must contain a multiple of 4 number of 32-bit/8-bit unsigned
values.

❏ u16tou32/u32tou16. These functions provide conversion to/from
packed unsigned 16-bit integers to unsigned 32-bit integers. The
buffer must contain an even number of 16-bit/32-bit unsigned values.

❏ i16toi32/i32toi16. These functions provide conversion to/from
packed signed 16-bit integers to signed 32-bit integers. The buffer
must contain an even number of 16-bit/32-bit integers.

❏ u8toi16/i16tou8. These functions provide conversion to/from a
packed 8-bit format (two 8-bit words in one 16-bit word) to a one word
per 16 bit format.

❏ i16tof32/f32toi16. These functions provide conversion to/from
packed signed 16-bit integers to 32-bit floating point values. The
buffer must contain an even number of 16-bit integers/32-bit floats.

❏ localcopy. This function simply passes the data to the underlying
device without packing or compressing it.

Data Streaming DGS devices can be opened for input or output. DGS_open allocates
buffers for use by the underlying device. For input devices, the size of
these buffers is (bufsize * numerator) / denominator. For output devices,
the size of these buffers is (bufsize * denominator) / numerator. Data is
transformed into or out of these buffers before or after calling the
underlying device’s output or input functions respectively.

You can use the same stacking device in more that one stream, provided
that the terminating device underneath it is not the same. For example, if
u32tou8 is a DGS device, you can create two streams dynamically as
follows:

stream = SIO_create("/u32tou8/codec", SIO_INPUT, 128, NULL);
...
stream = SIO_create("/u32tou8/port", SIO_INPUT, 128, NULL);

You can also create the streams with Tconf. To do that, add two new SIO
objects. Enter /codec (or any other configured terminal device) as the
Device Control String for the first stream. Then select the DGS device
configured to use u32tou8 in the Device property. For the second stream,
enter /port as the Device Control String. Then select the DGS device
configured to use u32tou8 in the Device property.
2-98

DGS Driver
Example The following code example declares DGS_PRMS as a DGS_Params
structure:

#include <dgs.h>

DGS_Params DGS_PRMS {
 NULL, /* optional create function */
 NULL, /* optional delete function */
 u32tou8, /* required transform function */
 0, /* optional argument */
 4, /* numerator */
 1 /* denominator */
}

By typing _DGS_PRMS for the Parameters property of a device, the
values above are used as the parameters for this device.

See Also DTR Driver
Application Program Interface 2-99

DHL Driver
Important Note: This driver will no longer be supported in the next
major release of DSP/BIOS. We recommend that you use the IOM
driver interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

Description The DHL driver manages data streaming between the host and the DSP.
Each DHL device has an underlying HST object. The DHL device allows
the target program to send and receive data from the host through an
HST channel using the SIO streaming API rather than using pipes. The
DHL driver copies data between the stream’s buffers and the frames of
the pipe in the underlying HST object.

Configuring a DHL
Device

To add a DHL device you must first create an HST object and make it
available to the DHL driver. To do this, use the following syntax:

var myHst = bios.HST.create("myHst");
myHst.availableForDHL = true;

Also be sure to set the mode property to "output" or "input" as needed by
the DHL device. For example:

myHst.mode = "output";

Once there are HST channels available for DHL, you can create a DHL
device object in a configuration script using the following syntax:

var myDhl = bios.DHL.create("myDhl");

Then, you can set this object’s properties to select which HST channel,
of those available for DHL, is used by this DHL device. If you plan to use
the DHL device for output to the host, be sure to select an HST channel
whose mode is output. Otherwise, select an HST channel with input
mode.

Note that once you have selected an HST channel to be used by a DHL
device, that channel is now owned by the DHL device and is no longer
available to other DHL channels.

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the DHL
Driver Properties and DHL Object Properties headings. For descriptions
of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-4.

DHL Driver Host link driver
2-100

DHL Driver
Module Configuration Parameters

Instance Configuration Parameters

Data Streaming DHL devices can be opened for input or output data streaming. A DHL
device used by a stream created in output mode must be associated with
an output HST channel. A DHL device used by a stream created in input
mode must be associated with an input HST channel. If these conditions
are not met, a SYS_EBADOBJ error is reported in the system log during
startup when the BIOS_start routine calls the DHL_open function for the
device.

To use a DHL device in a statically-created stream, set the deviceName
property of the SIO object to match the name of the DHL device you
configured.

mySio.deviceName = prog.get("myDhl");

To use a DHL device in a stream created dynamically with SIO_create,
use the DHL device name (as it appears in your Tconf script) preceded
by “/” (forward slash) as the first parameter of SIO_create:

stream = SIO_create(“/dhl0”, SIO_INPUT, 128, NULL);

To enable data streaming between the target and the host through
streams that use DHL devices, you must bind and start the underlying
HST channels of the DHL devices from the Host Channels Control in
Code Composer Studio, just as you would with other HST objects.

DHL devices copy the data between the frames in the HST channel’s
pipe and the stream’s buffers. In input mode, it is the size of the frame in
the HST channel that drives the data transfer. In other words, when all
the data in a frame has been transferred to stream buffers, the DHL
device returns the current buffer to the stream’s fromdevice queue,
making it available to the application. (If the stream buffers can hold more
data than the HST channel frames, the stream buffers always come back
partially full.) In output mode it is the opposite: the size of the buffers in
the stream drives the data transfer so that when all the data in a buffer

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

hstChannel Reference prog.get("myHST")

mode EnumString "output" ("input")
Application Program Interface 2-101

DHL Driver
has been transferred to HST channel frames, the DHL device returns the
current frame to the channel’s pipe. In this situation, if the HST channel’s
frames can hold more data than the stream’s buffers, the frames always
return to the HST pipe partially full.

The maximum performance in a DHL device is obtained when you
configure the frame size of its HST channel to match the buffer size of the
stream that uses the device. The second best alternative is to configure
the stream buffer (or HST frame) size to be larger than, and a multiple of,
the size of the HST frame (or stream buffer) size for input (or output)
devices. Other configuration settings also work since DHL does not
impose restrictions on the size of the HST frames or the stream buffers,
but performance is reduced.

Constraints ❏ HST channels used by DHL devices are not available for use with
PIP APIs.

❏ Multiple streams cannot use the same DHL device. If more than one
stream attempts to use the same DHL device, a SYS_EBUSY error
is reported in the system LOG during startup when the BIOS_start
routing calls the DHL_open function for the device.

DHL Driver Properties The following global property can be set for the DHL - Host Link Driver on
the DHL Properties dialog in the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object memory. Enter the memory segment from which to allocate
DHL objects. Note that this does not affect the memory segments
from where the underlying HST object or its frames are allocated.
The memory segment for HST objects and their frames can be set
using HST Manager Properties and HST Object Properties.
Tconf Name: OBJMEMSEG Type: Reference
Example: DHL.OBJMEMSEG = prog.get("myMEM");

DHL Object Properties The following properties can be set for a DHL device using the DHL
Object Properties dialog in the DSP/BIOS Configuration Tool or in a
Tconf script. To create a DHL device object in a configuration script, use
the following syntax:

var myDhl = bios.DHL.create("myDhl");

The Tconf examples assume the myDhl object has been created as
shown.

❏ comment. Type a comment to identify this object.
Tconf Name: comment Type: String
Example: myDhl.comment = "DHL device";
2-102

DHL Driver
❏ Underlying HST Channel. Select the underlying HST channel from
the drop-down list. The "Make this channel available for a new DHL
device" property in the HST Object Properties must be set to true for
that HST object to be known here.
Tconf Name: hstChannel Type: Reference
Example: myDhl.hstChannel = prog.get("myHST");

❏ Mode. This informational property shows the mode (input or output)
of the underlying HST channel. This becomes the mode of the DHL
device.
Tconf Name: mode Type: EnumString
Options: "input", "output"
Example: myDhl.mode = "output";
Application Program Interface 2-103

DIO Adapter
Description The DIO adapter allows GIO-compliant mini-drivers to be used through
SIO module functions. Such mini-drivers are described in the DSP/BIOS
Device Driver Developer's Guide (SPRU616).

Configure Mini-driver To create a DIO device object in a configuration script, first use the
following syntax:

var myUdev = bios.UDEV.create("myUdev");

Set the DEV Object Properties for the device as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DIO_FXNS

❏ function table type. IOM_Fxns

❏ device id. Type 0 (zero).

❏ device params ptr. Type 0 (zero).

Once there is a UDEV object with the IOM_Fxns function table type in the
configuration, you can create a DIO object with the following syntax and
then set properties for the object:

var myDio = bios.Dio.create("myDio");

DIO Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the DIO
Driver Properties and DIO Object Properties headings. For descriptions
of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

DIO Adapter SIO Mini-driver adapter

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

STATICCREATE Bool false

Name Type Default

comment String "<add comments here>"

useCallBackFxn Bool false

deviceName Reference prog.get("UDEV0")

chanParams Arg 0x00000000
2-104

DIO Adapter
Description The mini-drivers described in the DSP/BIOS Device Driver Developer's
Guide (SPRU616) are intended for use with the GIO module. However,
the DIO driver allows them to be used with the SIO module instead of the
GIO module.

The following figure summarizes how modules are related in an
application that uses the DIO driver and a mini-driver:

DIO Driver Properties The following global properties can be set for the DIO - Class Driver on
the DIO Properties dialog in the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object memory. Enter the memory segment from which to allocate
DIO objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.DIO.OBJMEMSEG = prog.get("myMEM");

❏ Create All DIO Objects Statically. Set this property to true if you
want DIO objects to be created completely statically. If this property
is false (the default), MEM_calloc is used internally to allocate space
for DIO objects. If this property is true, you must create all SIO and
DIO objects using the DSP/BIOS Configuration Tool or Tconf. Any

Application
TSK or SW I threads

SIO Module API

DIO adapter

IOM mini-driver
(IOM_Fxns function table)

DEV module
(DEV_match, DEV_Fxns,

DEV_Handle, DEV_Callback)
Application Program Interface 2-105

DIO Adapter
calls to SIO_create fail. Setting this property to true reduces the
application’s code size (so long as the application does not call
MEM_alloc or its related functions elsewhere).
Tconf Name: STATICCREATE Type: Bool
Example: bios.DIO.STATICCREATE = false;

DIO Object Properties The following properties can be set for a DIO device using the DIO Object
Properties dialog in the DSP/BIOS Configuration Tool or in a Tconf script.
To create a DIO device object in a configuration script, use the following
syntax:

var myDio = bios.DIO.create("myDio");

The Tconf examples assume the myDio object has been created as
shown.

❏ comment. Type a comment to identify this object.
Tconf Name: comment Type: String
Example: myDio.comment = "DIO device";

❏ use callback version of DIO function table. Set this property to
true if you want to use DIO with a callback function. Typically, the
callback function is SWI_andnHook or a similar function that posts a
SWI. Do not set this property to true if you want to use DIO with a TSK
thread.
Tconf Name: useCallBackFxn Type: Bool
Example: myDio.useCallBackFxn = false;

❏ fxnsTable. This informational property shows the DIO function table
used as a result of the settings in the "use callback version of DIO
function table" and "Create ALL DIO Objects Statically" properties.
The four possible setting combinations of these two properties
correspond to the four function tables: DIO_tskDynamicFxns,
DIO_tskStaticFxns, DIO_cbDynamicFxns, and DIO_cbStaticFxns.
Tconf Name: N/A

❏ device name. Name of the device to use with this DIO object.
Tconf Name: deviceName Type: Reference
Example: myDio.deviceName = prog.get("UDEV0");

❏ channel parameters. This property allows you to pass an optional
argument to the mini-driver create function. See the chanParams
parameter of the GIO_create function.
Tconf Name: chanParams Type: Arg
Example: myDio.chanParams = 0x00000000;
2-106

DNL Driver
Important Note: This driver will no longer be supported in the next
major release of DSP/BIOS. We recommend that you use the IOM
driver interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

Description The DNL driver manages “empty” devices which nondestructively
produce or consume data streams. The number of empty devices in the
system is limited only by the availability of memory; DNL instantiates a
new object representing an empty device on opening, and frees this
object when the device is closed.

The DNL driver does not define device ID values or a params structure
which can be associated with the name used when opening an empty
device. The driver also ignores any unmatched portion of the name
declared in the system configuration file when opening a device.

Configuring a
DNL Device

To create a DNL device object in a configuration script, use the following
syntax:

var myDnl = bios.UDEV.create("myDnl");

Set DEV Object Properties for the device you created as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DNL_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero).

❏ device params ptr. Type 0 (zero).

Data Streaming DNL devices can be opened for input or output data streaming. Note that
these devices return buffers of undefined data when used for input.

The DNL driver places no inherent restrictions on the size or memory
segment of the data buffers used when streaming to or from an empty
device. Since DNL devices are fabricated entirely in software and do not
overlap I/O with computation, no more that one buffer is required to attain
maximum performance.

Tasks do not block when using SIO_get, SIO_put, or SIO_reclaim with a
DNL data stream.

DNL Driver Null driver
Application Program Interface 2-107

DOV Driver
Important Note: This driver will no longer be supported in the next
major release of DSP/BIOS. We recommend that you use the IOM
driver interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

Description The DOV driver manages a class of stackable devices that generate an
overlapped stream by retaining the last N minimum addressable data
units (MADUs) of each buffer input from an underlying device. These N
points become the first N points of the next input buffer. MADUs are
equivalent to a 8-bit word in the data address space of the processor on
C6x platforms.

Configuring a
DOV Device

To create a DOV device object in a configuration script, use the following
syntax:

var myDov = bios.UDEV.create("myDov");

Set the DEV Object Properties for the device you created as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DOV_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero).

❏ device params ptr. Type 0 (zero) or the length of the overlap as
described after this list.

If you enter 0 for the Device ID, you need to specify the length of the
overlap when you create the stream with SIO_create by appending the
length of the overlap to the device name. If you statically create the
stream (with Tconf) instead, enter the length of the overlap in the Device
Control String for the stream.

For example, if you statically create a device called overlap, and use 0 as
its Device ID, you can open a stream with:

stream = SIO_create("/overlap16/codec",SIO_INPUT,128,NULL);

This causes SIO to open a stack of two devices. /overlap16 designates
the device called overlap, and 16 tells the driver to use the last 16 MADUs
of the previous frame as the first 16 MADUs of the next frame. codec
specifies the name of the physical device which corresponds to the actual
source for the data.

DOV Driver Stackable overlap driver
2-108

DOV Driver
If, on the other hand you add a device called overlap and enter 16 as its
Device ID, you can open the stream with:

stream = SIO_create("/overlap/codec", SIO_INPUT, 128, NULL);

This causes the SIO Module to open a stack of two devices. /overlap
designates the device called overlap, which you have configured to use
the last 16 MADUs of the previous frame as the first 16 MADUs of the
next frame. As in the previous example, codec specifies the name of the
physical device that corresponds to the actual source for the data.

If you create the stream statically and enter 16 as the Device ID property,
leave the Device Control String blank.

In addition to the configuration properties, you need to specify the value
that DOV uses for the first overlap, as in the example:

#include <dov.h>

static DOV_Config DOV_CONFIG = {
 (Char) 0
}
DOV_Config *DOV = &DOV_CONFIG;

If floating point 0.0 is required, the initial value should be set to (Char) 0.0.

Data Streaming DOV devices can only be opened for input. The overlap size, specified in
the string passed to SIO_create, must be greater than 0 and less than the
size of the actual input buffers.

DOV does not support any control calls. All SIO_ctrl calls are passed to
the underlying device.

You can use the same stacking device in more that one stream, provided
that the terminating device underneath it is not the same. For example, if
overlap is a DOV device with a Device ID of 0:

stream = SIO_create("/overlap16/codec", SIO_INPUT, 128, NULL);
...
stream = SIO_create("/overlap4/port", SIO_INPUT, 128, NULL);

or if overlap is a DOV device with positive Device ID:

stream = SIO_create("/overlap/codec", SIO_INPUT, 128, NULL);
...
stream = SIO_create("/overlap/port", SIO_INPUT, 128, NULL);

To create the same streams statically (rather than dynamically with
SIO_create), add SIO objects with Tconf. Enter the string that identifies
the terminating device preceded by “/” (forward slash) in the SIO object’s
Device Control Strings (for example, /codec, /port). Then select the
stacking device (overlap, overlapio) from the Device property.
Application Program Interface 2-109

DOV Driver
See Also DTR Driver
DGS Driver
2-110

DPI Driver
Important Note: This driver will no longer be supported in the next
major release of DSP/BIOS. We recommend that you use the IOM
driver interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

Description The DPI driver is a software device used to stream data between tasks
on a single processor. It provides a mechanism similar to that of UNIX
named pipes; a reader and a writer task can open a named pipe device
and stream data to/from the device. Thus, a pipe simply provides a
mechanism by which two tasks can exchange data buffers.

Any stacking driver can be stacked on top of DPI. DPI can have only one
reader and one writer task.

It is possible to delete one end of a pipe with SIO_delete and recreate
that end with SIO_create without deleting the other end.

Configuring a
DPI Device

To add a DPI device, right-click on the DPI - Pipe Driver folder, and select
Insert DPI. From the Object menu, choose Rename and type a new name
for the DPI device.

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the DPI
Object Properties heading. For descriptions of data types, see Section
1.4, DSP/BIOS Tconf Overview, page 1-4.

Instance Configuration Parameters

Data Streaming After adding a DPI device called pipe0 in the configuration, you can use
it to establish a communication pipe between two tasks. You can do this
dynamically, by calling in the function for one task:

inStr = SIO_create("/pipe0", SIO_INPUT, bufsize, NULL);
...
SIO_get(inStr, bufp);

DPI Driver Pipe driver

Name Type Default

comment String "<add comments here>"

allowVirtual Bool false
Application Program Interface 2-111

DPI Driver
And in the function for the other task:

outStr = SIO_create("/pipe0", SIO_OUTPUT, bufsize, NULL);
...
SIO_put(outStr, bufp, nmadus);

or by adding with Tconf two streams that use pipe0, one in output mode
(outStream) and the other one in input mode(inStream). Then, from the
reader task call:

extern SIO_Obj inStream;
SIO_handle inStr = &inStream
...
SIO_get(inStr, bufp);

and from the writer task call:

extern SIO_Obj outStream;
SIO_handle outStr = &outStream
...
SIO_put(outStr, bufp, nmadus);

The DPI driver places no inherent restrictions on the size or memory
segments of the data buffers used when streaming to or from a pipe
device, other than the usual requirement that all buffers be the same size.

Tasks block within DPI when using SIO_get, SIO_put, or SIO_reclaim if
a buffer is not available. SIO_select can be used to guarantee that a call
to one of these functions do not block. SIO_select can be called
simultaneously by both the input and the output sides.

DPI and the
SIO_ISSUERECLAIM
Streaming Model

In the SIO_ISSUERECLAIM streaming model, an application reclaims
buffers from a stream in the same order as they were previously issued.
To preserve this mechanism of exchanging buffers with the stream, the
default implementation of the DPI driver for ISSUERECLAIM copies the
full buffers issued by the writer to the empty buffers issued by the reader.

A more efficient version of the driver that exchanges the buffers across
both sides of the stream, rather than copying them, is also provided. To
use this variant of the pipe driver for ISSUERECLAIM, edit the C source
file dpi.c provided in the C:\ti\c6000\bios\src\drivers folder. Comment out
the following line:

#define COPYBUFS

Rebuild dpi.c. Link your application with this version of dpi.obj instead of
the default one. To do this, add this version of dpi.obj to your project
explicitly. This buffer exchange alters the way in which the streaming
2-112

DPI Driver
mechanism works. When using this version of the DPI driver, the writer
reclaims first the buffers issued by the reader rather than its own issued
buffers, and vice versa.

This version of the pipe driver is not suitable for applications in which
buffers are broadcasted from a writer to several readers. In this situation
it is necessary to preserve the ISSUERECLAIM model original
mechanism, so that the buffers reclaimed on each side of a stream are
the same that were issued on that side of the stream, and so that they are
reclaimed in the same order that they were issued. Otherwise, the writer
reclaims two or more different buffers from two or more readers, when the
number of buffers it issued was only one.

Converting a Single
Processor Application
to a Multiprocessor
Application

It is trivial to convert a single-processor application using tasks and pipes
into a multiprocessor application using tasks and communication
devices. If using SIO_create, the calls in the source code would change
to use the names of the communication devices instead of pipes. (If the
communication devices were given names like /pipe0, there would be no
source change at all.) If the streams were created statically with Tconf
instead, you would need to change the Device property for the stream in
the configuration template, save and rebuild your application for the new
configuration. No source change would be necessary.

Constraints Only one reader and one writer can open the same pipe.

DPI Driver Properties There are no global properties for the DPI driver manager.

DPI Object Properties The following property can be set for a DPI device in the DPI Object
Properties dialog in the DSP/BIOS Configuration Tool or in a Tconf script.
To create a DPI device object in a configuration script, use the following
syntax:

var myDpi = bios.DPI.create("myDpi");

The Tconf examples assume the myDpi object has been created as
shown.

❏ comment. Type a comment to identify this object.
Tconf Name: comment Type: String
Example: myDpi.comment = "DPI device";

❏ Allow virtual instances of this device. Set this property to true if
you want to be able to use SIO_create to dynamically create multiple
streams to use this DPI device. DPI devices are used by SIO stream
objects, which you create with Tconf or the SIO_create function.

If this property is set to true, when you use SIO_create, you can
create multiple streams that use the same DPI driver by appending
numbers to the end of the name. For example, if the DPI object is
Application Program Interface 2-113

DPI Driver
named "pipe", you can call SIO_create to create pipe0, pipe1, and
pipe2. Only integer numbers can be appended to the name.

If this property is set to false, when you use SIO_create, the name of
the SIO object must exactly match the name of the DPI object. As a
result, only one open stream can use the DPI object. For example, if
the DPI object is named "pipe", an attempt to use SIO_create to
create pipe0 fails.
Tconf Name: allowVirtual Type: Bool
Example: myDpi.allowVirtual = false;
2-114

DST Driver
Important Note: This driver will no longer be supported in the next
major release of DSP/BIOS. We recommend that you use the IOM
driver interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

Description This stacking driver can be used to input or output buffers that are larger
than the physical device can actually handle. For output, a single (large)
buffer is split into multiple smaller buffers which are then sent to the
underlying device. For input, multiple (small) input buffers are read from
the device and copied into a single (large) buffer.

Configuring a
DST Device

To create a DST device object in a configuration script, use the following
syntax:

var myDst = bios.UDEV.create("myDst");

Set the DEV Object Properties for the device you created as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DST_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero) or the number of small buffers
corresponding to a large buffer as described after this list.

❏ device params ptr. Type 0 (zero).

If you enter 0 for the Device ID, you need to specify the number of small
buffers corresponding to a large buffer when you create the stream with
SIO_create, by appending it to the device name.

Example 1: For example, if you create a user-defined device called split with Tconf,
and enter 0 as its Device ID property, you can open a stream with:

stream = SIO_create("/split4/codec", SIO_INPUT, 1024, NULL);

This causes SIO to open a stack of two devices: /split4 designates the
device called split, and 4 tells the driver to read four 256-word buffers
from the codec device and copy the data into 1024-word buffers for your
application. codec specifies the name of the physical device which
corresponds to the actual source for the data.

DST Driver Stackable split driver
Application Program Interface 2-115

DST Driver
Alternatively, you can create the stream with Tconf (rather than by calling
SIO_create at run-time). To do so, first create and configure two user-
defined devices called split and codec. Then, create an SIO object. Type
4/codec as the Device Control String. Select split from the Device list.

Example 2: Conversely, you can open an output stream that accepts 1024-word
buffers, but breaks them into 256-word buffers before passing them to
/codec, as follows:

stream = SIO_create("/split4/codec",SIO_OUTPUT,1024, NULL);

To create this output stream with Tconf, you would follow the steps for
example 1, but would select output for the Mode property of the SIO
object.

Example 3: If, on the other hand, you add a device called split and enter 4 as its
Device ID, you need to open the stream with:

stream = SIO_create("/split/codec", SIO_INPUT, 1024, NULL);

This causes SIO to open a stack of two devices: /split designates the
device called split, which you have configured to read four buffers from
the codec device and copy the data into a larger buffer for your
application. As in the previous example, codec specifies the name of the
physical device that corresponds to the actual source for the data.

When you type 4 as the Device ID, you do not need to type 4 in the
Device Control String for an SIO object created with Tconf. Type
only/codec for the Device Control String.

Data Streaming DST stacking devices can be opened for input or output data streaming.

Constraints ❏ The size of the application buffers must be an integer multiple of the
size of the underlying buffers.

❏ This driver does not support any SIO_ctrl calls.
2-116

DTR Driver
Important Note: This driver will no longer be supported in the next
major release of DSP/BIOS. We recommend that you use the IOM
driver interface instead. See the DSP/BIOS Driver Developer’s Guide
(SPRU616).

Description The DTR driver manages a class of stackable devices known as
transformers, which modify a data stream by applying a function to each
point produced or consumed by an underlying device. The number of
active transformer devices in the system is limited only by the availability
of memory; DTR instantiates a new transformer on opening a device, and
frees this object when the device is closed.

Buffers are read from the device and copied into a single (large) buffer.

Configuring a
DTR Device

To create a DTR device object in a configuration script, use the following
syntax:

var myDtr = bios.UDEV.create("myDtr");

Set the DEV Object Properties for the device you created as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DTR_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero), _DTR_multiply, or _DTR_multiplyInt16.

If you type 0, you need to supply a user function in the device
parameters. This function is called by the driver as follows to perform
the transformation on the data stream:

 if (user.fxn != NULL) {
 (*user.fxn)(user.arg, buffer, size);
 }

If you type _DTR_multiply, a built-in data scaling operation is
performed on the data stream to multiply the contents of the buffer by
the scale.value of the device parameters.

If you type _DTR_multiplyInt16, a built-in data scaling operation is
performed on the data stream to multiply the contents of the buffer by
the scale.value of the device parameters. The data stream is
assumed to contain values of type Int16. This API is provided for
fixed-point processors only.

DTR Driver Stackable streaming transformer driver
Application Program Interface 2-117

DTR Driver
❏ device params ptr. Enter the name of a DTR_Params structure
declared in your C application code. See the information following
this list for details.

The DTR_Params structure is defined in dtr.h as follows:

/* ======== DTR_Params ======== */
typedef struct { /* device parameters */
 struct {
 DTR_Scale value; /* scaling factor */
 } scale;
 struct {
 Arg arg; /* user-defined argument */
 Fxn fxn; /* user-defined function */
 } user;
} DTR_Params;

In the following code example, DTR_PRMS is declared as a
DTR_Params structure:

#include <dtr.h>
...
struct DTR_Params DTR_PRMS = {
 10.0,
 NULL,
 NULL
};

By typing _DTR_PRMS as the Parameters property of a DTR device, the
values above are used as the parameters for this device.

You can also use the default values that the driver assigns to these
parameters by entering _DTR_PARAMS for this property. The default
values are:

DTR_Params DTR_PARAMS = {
 { 1 }, /* scale.value */
 { (Arg)NULL, /* user.arg */
 (Fxn)NULL }, /* user.fxn */
};

scale.value is a floating-point quantity multiplied with each data point in
the input or output stream.

If you do not configure one of the built-in scaling functions for the device
ID, use user.fxn and user.arg in the DTR_Params structure to define a
transformation that is applied to inbound or outbound blocks of data,
where buffer is the address of a data block containing size points; if the
value of user.fxn is NULL, no transformation is performed at all.
2-118

DTR Driver
if (user.fxn != NULL) {
 (*user.fxn)(user.arg, buffer, size);
}

Data Streaming DTR transformer devices can be opened for input or output and use the
same mode of I/O with the underlying streaming device. If a transformer
is used as a data source, it inputs a buffer from the underlying streaming
device and then transforms this data in place. If the transformer is used
as a data sink, it outputs a given buffer to the underlying device after
transforming this data in place.

The DTR driver places no inherent restrictions on the size or memory
segment of the data buffers used when streaming to or from a
transformer device; such restrictions, if any, would be imposed by the
underlying streaming device.

Tasks do not block within DTR when using the SIO Module. A task can,
of course, block as required by the underlying device.
Application Program Interface 2-119

ECM Module
2.7 ECM Module

The ECM module is the Event Combiner Manager for C64x+ devices,
which have maskable (customizable) CPU interrupts.

Functions ❏ ECM_disableEvent. Disable the specified event at run-time.

❏ ECM_dispatch. Handle events from the event combiner.

❏ ECM_dispatchPlug. Create an ECM dispatcher table entry.

❏ ECM_enableEvent. Enable the specified event at run-time.

Constants, Types,
and Structures

typedef struct ECM_Attrs {
 Arg arg; /* function argument */
 Bool unmask; /* unmask == 1 means enable event */
} ECM_Attrs;

typedef Void (*ECM_Fxn) (Arg);

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the ECM
Manager Properties section. For descriptions of data types, see Section
1.4, DSP/BIOS Tconf Overview, page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Description The ECM module provides an interface to the C64x+ interrupt controller.
This controller supports up to 128 system events. There are 12 maskable
CPU interrupts (and their corresponding pins). The "interrupt selector"
allows you to route any of the 128 system events to any maskable CPU
interrupt. In addition, an "event combiner" allows you to combine up to 32
system events into a single event that is routed to a single CPU interrupt.

Name Type Default

ENABLE Bool false

Name Type Default

comment String "<add comments here>"

fxn Extern prog.extern("_UTL_halt")

arg Arg 0x00000000

unmask Bool false
2-120

ECM Module
DSP/BIOS supports the C64x+ interrupt selector through the HWI
Module. You can route one of the 128 system events to a specific HWI
object by specifying the event number as the "interrupt selection number"
in the HWI Object Properties. This one-to-one mapping supports up to 12
maskable interrupts.

See the "System Event Mapping" table in the TMS320C64x+ DSP
Megamodule Reference Guide (SPRU871) for information about
interrupt selection numbers and their corresponding events. In addition,
the device-specific data manual contains information about events listed
as "Available events" in the table in SPRU871.

If the 16 HWI objects are sufficient for the number of HWI functions your
application needs to run, you need not enable the ECM module. You do
not need to know whether your C function will be run by the HWI module
or ECM module when you write the function. (The ECM module uses the
HWI dispatcher, and so its functions cannot be completely written in
assembly.)

DSP/BIOS additionally supports the C64x+ event combiner by adding the
ECM module to extend HWI functionality. In the DSP/BIOS Configuration
Tool, the ECM manager is nested within the HWI manager. The ECM
module allows you to specify the function and argument to be used when
one of these system events is triggered.

The first four ECM events (0-3) are used to tie ECM events to HWI
objects. The HWI objects that have an interrupt selection number from 0
to 3 run flagged (pending) events in the corresponding event combiner
group if the ECM manager is enabled.

To combine events, do the following:

1) Set "Enable event combiner manager" in the ECM Manager
Properties to true.

2) Set "unmask event source" in the ECM Object Properties to true for
events you want to run in a combined event. The events are
described in the TMS320C64x+ DSP Megamodule Reference Guide
(SPRU871).

3) Specify the function and any argument for each ECM event you
unmask. By default, all ECM events run UTL_halt (which runs an
infinite loop with all processor interrupts disabled) and pass their
event number as an argument.

4) Write your ECM functions just as you would if an HWI object were
running the function. The HWI dispatcher is used internally to run
ECM functions, so your function should be written in C/C++.
Application Program Interface 2-121

ECM Module
5) In the HWI Object Properties for a particular object, assign the
interrupt selection number for the group of unmasked ECM events
you want it to run. For example, if you assign an interrupt selection
number of 3 to HWI_INT10, that interrupt runs all unmasked ECM
events that have been received (flagged) in the range of 96 to 127.
HWI objects that run a combined event call the ECM_dispatch
function.

6) Set "Use Dispatcher" to true for the HWI object that runs the
combined event.

You can use the APIs in the ECM module to enable and disable ECM
events at run-time and to handle combined events.

See the ECM_dispatch topic description for more about how ECM groups
are triggered and run.

ECM Manager
Properties

The following global properties can be set for the ECM module in the
ECM Manager Properties dialog of the DSP/BIOS Configuration Tool or
in a Tconf script:

❏ Enable event combiner manager. Set this property to true to
enable use of the ECM module.
Tconf Name: ENABLE Type: Bool
Example: bios.ECM.ENABLE = false;

ECM Object Properties The following properties can be set for an ECM object in the ECM Object
Properties dialog in the DSP/BIOS Configuration Tool or a Tconf script.
You cannot create or delete ECM objects.

❏ comment. A comment to identify this ECM object.
Tconf Name: comment Type: String
Example: bios.ECM.instance("EVENT4").comment =

"event for combiner";

Table 2–3 ECM Events

Interrupt Selection
Number ECM Module Objects

ECM Event
Range

0 EVENT4 to EVENT31 4 - 31

1 EVENT32 to EVENT63 32 - 63

2 EVENT64 to EVENT95 64 - 95

3 EVENT96 to EVENT127 96 - 127
2-122

ECM Module
❏ function. The function to execute for this system event. This function
must be written in C (or be a C function that calls assembly), but must
not call the HWI_enter/HWI_exit macro pair. Write this function as if
it were an HWI function that used the HWI dispatcher. This function
can post a SWI, but the SWI will not run until all the combined events
have finished running.
Tconf Name: fxn Type: Extern
Example: bios.ECM.instance("EVENT4").fxn =

prog.extern("myEvent4");

❏ arg. This argument is passed to the function as its only parameter.
You can use either a literal integer or a symbol defined by the
application.
Tconf Name: arg Type: Arg
Example: bios.ECM.instance("EVENT4").arg = 3;

❏ unmask event source. Set this property to true to enable this event
within its corresponding combined event (HWI interrupt selection
numbers 0 to 3).
Tconf Name: unmask Type: Bool
Example: bios.ECM.instance("EVENT4").unmask =

true;
Application Program Interface 2-123

ECM_disableEvent
C Interface

Syntax ECM_disableEvent(eventID);

Parameters Uns eventID; /* individual event number from 4 to 127 */

Return Value Void

Description This function is available only for C64x+ devices, which have an event
combiner for CPU interrupts.

This function sets the Event Mask bit that corresponds to the specified
eventID to disabled (0). If you use this function, when the combined event
that contains this individual event is run, the function for this individual
event will not run, even though the event has occurred.

Information about the function and argument assigned to the event is still
stored. You can use this function to temporarily disable individual events
at run-time.

Constraints and
Calling Context

❏ none

Example ECM_disableEvent(42);

See Also ECM_enableEvent
ECM_dispatchPlug

ECM_disableEvent Disable a system event in its event combiner mask
2-124

ECM_dispatch
C Interface

Syntax ECM_dispatch(eventID);

Parameters Uns eventID; /* event number from 0 to 3 */

Return Value Void

Description This function is available only for C64x+ devices, which have an event
combiner for CPU interrupts.

This function runs a combined event. That is, it runs all enabled and
flagged system events within the range that corresponds to the eventID
specified. If the ECM manager is enabled, this is the default function used
by any HWI objects that have an interrupt selection number from 0 to 3.

Here is an example of the steps that occur when an ECM group is
processed:

1) Suppose event 14 (an IDMA channel 1 interrupt) occurs. This flags
EVENT14 in the Event Flag register so that it is marked pending.

2) Suppose that the ECM module is enabled and EVENT14 is
unmasked (enabled).

3) EVENT14 is in event combiner group 0, which combines EVENT4
through EVENT31.

4) The occurrence of EVENT14 causes an interrupt for its associated
HWI object. Any unmasked event in the combiner group would also
trigger that HWI object.

5) The HWI object runs ECM_dispatch with an argument of 0.

6) ECM_dispatch makes a copy of the list of unmasked and flagged
events in event combiner group 0. There may be more events than
EVENT14 that are pending by the time this check is made. (The
numeric order of the CPU interrupts from low to high determines the
priority for processing HWI interrupts.)

7) The ECM manager runs functions for events that are: in the combiner
group range, are unmasked, and have been flagged as pending.

The events that meet this criteria have their functions run from left to
right (high to low numbers) in the register. There is no way to set
priorities amongst combined events. The set of functions run to
completion without preemption.

ECM_dispatch Run functions for a combined event
Application Program Interface 2-125

ECM_dispatch
8) Since other interrupts for combined events can occur while the ECM
manager is running a combined event, the ECM manager next
checks to see if any events in the same combiner group have
occurred during processing. If so, it processes those events by
repeating the previous step.

The ECM_dispatch function uses the HWI dispatcher internally.

Constraints and
Calling Context

❏ ECM_dispatch should be called only as the function for an HWI
object that has an interrupt selection number of 0 through 3. As such,
it is always called in the context of an HWI.

Example ECM_dispatch(2);

See Also ECM_dispatchPlug
2-126

ECM_dispatchPlug
C Interface

Syntax ECM_dispatchPlug(eventId, fxn, *attrs);

Parameters Uns eventID; /* event number from 4 to 127 */
ECM_Fxn fxn; /* function to be plugged */
ECM_Attrs *attrs /* attributes */

Return Value Void

Description This function is available only for C64x+ devices, which have an event
combiner for CPU interrupts.

This function places an entry in a table used by the ECM manager that
specifies the function, arg, and unmask properties for a particular ECM
object. This allows run-time changes to the values in the static
configuration of an ECM object.

The types used in the parameters to this function are defined as follows.

typedef Void (*ECM_Fxn) (Arg);

typedef struct ECM_Attrs {
 Arg arg; /* function argument */
 Bool unmask; /* unmask == 1 means enable event */
} ECM_Attrs;

The specified system event is enabled by this function only if you set
unmask to 1 in the ECM_Attrs structure and if you have performed the
other steps to enable the ECM manager and map an eventID from 0 to 3
to an HWI object’s interrupt selection number.

Constraints and
Calling Context

❏ none

Example ECM_Attrs ecmattrs = ECM_ATTRS;
ecmattrs.unmask = 1;

ECM_dispatchPlug(4, (Fxn)isrfunc, &ecmattrs);
C64_enable(0x10);

See Also ECM_disableEvent
ECM_enableEvent

ECM_dispatchPlug Specify function and attributes for a system event
Application Program Interface 2-127

ECM_enableEvent
C Interface

Syntax ECM_enableEvent(eventID);

Parameters Uns eventID; /* event number from 4 to 127 */

Return Value Void

Description This function is available only for C64x+ devices, which have an event
combiner for CPU interrupts.

This function sets the Event Mask bit that corresponds to the specified
eventID to enabled (1). If you previously used ECM_disableEvent for this
event, information about the function and argument assigned to the event
is still retained. You can use this function to temporarily enable individual
events at run-time.

The function for this event does not actually run until this individual event
has occurred and its event combiner group is triggered.

Constraints and
Calling Context

❏ none

Example ECM_enableEvent(42);

See Also ECM_disableEvent
ECM_dispatchPlug

ECM_enableEvent Enable a system event in its event combiner mask
2-128

GBL Module
2.8 GBL Module

This module is the global settings manager.

Functions ❏ GBL_getClkin. Gets configured value of board input clock in KHz.

❏ GBL_getFrequency. Gets current frequency of the CPU in KHz.

❏ GBL_getProcId. Gets configured processor ID used by MSGQ.

❏ GBL_getVersion. Gets DSP/BIOS version information.

❏ GBL_setFrequency. Set frequency of CPU in KHz for DSP/BIOS.

❏ GBL_setProcId. Set configured value of processor ID.

Configuration
Properties

The following list shows the properties for this module that can be
configured in a Tconf script, along with their types and default values. For
details, see the GBL Module Properties heading. For descriptions of data
types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-4.

Module Configuration Parameters

Name Type Default (Enum Options)

BOARDNAME String "c6xxx"

PROCID Int16 0

CLKIN Uint32 20000 KHz

CLKOUT Int16 ’C6201: 133.00
’C6211: 150
’C64x: 600
’C67x: 300
’C64x+: 1
’C672x: 300

SPECIFYRTSLIB Bool false

RTSLIB String ""

ENDIANMODE EnumString "little" ("big")

CALLUSERINITFXN Bool false

USERINITFXN Extern prog.extern("FXN_F_nop")

ENABLEINST Bool true

INSTRUMENTED Bool true

ENABLEALLTRC Bool true

CSRPCC EnumString "mapped" ("cache enable",
"cache freeze", "cache
bypass")

C621XCONFIGUREL2 Bool false
Application Program Interface 2-129

GBL Module
C641XCONFIGUREL2 Bool false

C621XCCFGL2MODE EnumString "SRAM" ("1-way cache", "2-
way cache", "3-way cache",
"4-way cache")

C641XCCFGL2MODE EnumString "4-way cache (0k)" ("4-way
cache (32k)", "4-way cache
(64k)", "4-way cache (128k)",
"4-way cache (256k)")

C621XMAR Numeric 0x0000

C641XMAREMIFB Numeric 0x0000

C641XMARCE0 Numeric 0x0000

C641XMARCE1 Numeric 0x0000

C641XMARCE2 Numeric 0x0000

C641XMARCE3 Numeric 0x0000

C641XCCFGP EnumString "urgent" ("high", "medium",
"low")

C641XSETL2ALLOC Bool false

C641XL2ALLOC0 EnumInt 6

C641XL2ALLOC1 EnumInt 2 (0 to 7)

C641XL2ALLOC2 EnumInt 2 (0 to 7)

C641XL2ALLOC3 EnumInt 2 (0 to 7)

C64PLUSCONFIGURE Bool false

C64PLUSL1PCFG EnumString 32k ("0k", "4k", "8k", "16k",
"32k")

C64PLUSL1DCFG EnumString 32k ("0k", "4k", "8k", "16k",
"32k")

C64PLUSL2CFG EnumString 0k ("0k", "32k", "64k", "128k",
"256k")

C64PLUSMAR0to31 Numeric 0x0

C64PLUSMAR32to63 Numeric 0x0

C64PLUSMAR64to95 Numeric 0x0

C64PLUSMAR96to127 Numeric 0x0

C64PLUSMAR128to159 Numeric 0x0

C64PLUSMAR160to191 Numeric 0x0

C64PLUSMAR192to223 Numeric 0x0

C64PLUSMAR224to255 Numeric 0x0

Name Type Default (Enum Options)
2-130

GBL Module
Description This module does not manage any individual objects, but rather allows
you to control global or system-wide settings used by other modules.

GBL Module
Properties

The following Global Settings can be made:

❏ Target Board Name. The name of the board or board family.
Tconf Name: BOARDNAME Type: String
Example: bios.GBL.BOARDNAME = "c6xxx";

❏ Processor ID (PROCID). ID used to communicate with other
processors using the MSGQ Module. The procId is also defined in
the MSGQ_TransportObj array that is part of the MSGQ_Config
structure. This value can be obtained with GBL_getProcId and
modified by GBL_setProcId (but only within the User Init Function).
Tconf Name: PROCID Type: Int16
Example: bios.GBL.PROCID = 0;

❏ Board Clock In KHz (Informational Only). Frequency of the input
clock in KHz. You should set this property to match the actual board
clock rate. This property does not change the rate of the board; it is
informational only. The configured value can be obtained at run-time
using the GBL_getClkin API. The default value is 20000 KHz.

Tconf Name: CLKIN Type: Uint32
Example: bios.GBL.CLKIN = 20000;

❏ DSP Speed In MHz (CLKOUT). This number, times 1000000, is the
number of instructions the processor can execute in 1 second. You
should set this property to match the actual rate. This property does
not change the rate of the board. This value is used by the CLK
manager to calculate register settings for the on-device timers.
Tconf Name: CLKOUT Type: Int16
Example: bios.GBL.CLKOUT = 133.0000;

❏ Specify RTS Library. Determines whether a user can specify the
run-time support library to which the application is linked. The RTS
library contains the printf, malloc, and other standard C library

GEMTRUECOMPEN Bool false (OMAP 2430/3430 only)

BCACHEREADADDR0 Numeric 0x0 (OMAP 2430/3430 only)

BCACHEREADADDR1 Numeric 0x0 (OMAP 2430/3430 only)

BCACHEREADADDR2 Numeric 0x0 (OMAP 2430/3430 only)

Name Type Default (Enum Options)
Application Program Interface 2-131

GBL Module
functions. For information about using this library, see “std.h and
stdlib.h functions” on page 2-514. If you do not choose to specify a
library, the default library for your platform is used.
Tconf Name: SPECIFYRTSLIB Type: Bool
Example: bios.GBL.SPECIFYRTSLIB = false;

❏ Run-Time Support Library. The name of the run-time support
(RTS) library to which the application is linked. These libraries are
located in the <BIOS_INSTALL_DIR>\xdctools\packages\ti\targets
tree. The library you select is used in the linker command file
generated from the Tconf script when you build your application.
Tconf Name: RTSLIB Type: String
Example: bios.GBL.RTSLIB = "";

❏ DSP Endian Mode. This setting controls which libraries are used to
link the application. If you change this setting, you must set the
compiler and linker options to correspond. This property must match
the setting in the DSP’s CSR register.
Tconf Name: ENDIANMODE Type: EnumString
Options: "little", "big"
Example: bios.GBL.ENDIANMODE = "little";

❏ Call User Init Function. Set this property to true if you want an
initialization function to be called early during program initialization,
after .cinit processing and before the main() function.
Tconf Name: CALLUSERINITFXN Type: Bool
Example: bios.GBL.CALLUSERINITFXN = false;

❏ User Init Function. Type the name of the initialization function. This
function runs early in the initialization process and is intended to be
used to perform hardware setup that needs to run before DSP/BIOS
is initialized. The code in this function should not use any DSP/BIOS
API calls, unless otherwise specified for that API, since a number of
DSP/BIOS modules have not been initialized when this function runs.
In contrast, the Initialization function that may be specified for HOOK
Module objects runs later and is intended for use in setting up data
structures used by other functions of the same HOOK object.
Tconf Name: USERINITFXN Type: Extern
Example: bios.GBL.USERINITFXN =

prog.extern("FXN_F_nop");
2-132

GBL Module
❏ Enable Real Time Analysis. If this property is true, target-to-host
communication is enabled by the addition of IDL objects to run the
IDL_cpuLoad, LNK_dataPump, and RTA_dispatch functions. If this
property is false, these IDL objects are removed and target-to-host
communications are not supported. As a result, support for
DSP/BIOS implicit instrumentation is removed.
Tconf Name: ENABLEINST Type: Bool
Example: bios.GBL.ENABLEINST = true;

❏ Use Instrumented BIOS Library. Specifies whether to link with the
instrumented or non-instrumented version of the DSP/BIOS library.
The non-instrumented versions are somewhat smaller but do not
provide support for LOG, STS, and TRC instrumentation. The
libraries are located in <BIOS_INSTALL_DIR>\packages\ti\bios\lib.
By default, the instrumented version of the library for your platform is
used.
Tconf Name: INSTRUMENTED Type: Bool
Example: bios.GBL.INSTRUMENTED = true;

❏ Enable All TRC Trace Event Classes. Set this property to false if
you want all types of tracing to be initially disabled when the program
is loaded. If you disable tracing, you can still use the RTA Control
Panel or the TRC_enable function to enable tracing at run-time.
Tconf Name: ENABLEALLTRC Type: Bool
Example: bios.GBL.ENABLEALLTRC = true;

❏ Program Cache Control - CSR(PCC). This property in the DSP
family tab specifies the cache mode for the DSP at program initiation.
Tconf Name: CSRPCC Type: EnumString
Options: "mapped", "cache enable", "cache freeze", "cache

bypass"
Example: bios.GBL.CSRPCC = "mapped";

621x/671x tab ❏ Configure L2 Memory Settings. You can set this property to true for
DSPs that have a L1/L2 cache (for example, the c6211). The other
L2 properties on this tab are available if this property is true.
Tconf Name: C621XCONFIGUREL2 Type: Bool
Example: bios.GBL.C621XCONFIGUREL2 = false;
Application Program Interface 2-133

GBL Module
❏ L2 Mode - CCFG(L2MODE). (621x/671x and 641x tabs) Sets the L2
cache mode. See the c6000 Peripherals Manual for details.
Tconf Name: C621XCCFGL2MODE Type: EnumString
Options: "SRAM", "1-way cache", "2-way cache", "3-way

cache", "4-way cache"
Example: bios.GBL.C621XCCFGL2MODE =

"4-way cache (0k)";

❏ MAR 0-15 - bitmask used to initialize MARs. Only bit 0 of each of
these 32-bit registers is modifiable by the user. All other bits are
reserved. Specify a bitmask for the 16 modifiable bits in registers
MAR0 through MAR15. The lowest bit of the bitmask you specify
corresponds to the smallest MAR number in this range. That is, bit 0
corresponds to the 0 bit of MAR0 and bit 15 corresponds to the 0 bit
of MAR15.
Tconf Name: C621XMAR Type: Numeric
Example: bios.GBL.C621XMAR = 0x0000;

641x tab ❏ Configure L2 Memory Settings. You can set this property to true for
DSPs that have a L1/L2 cache (for example, the c6211). The other
L2 properties on this tab are available if this property is true.
Tconf Name: C641XCONFIGUREL2 Type: Bool
Example: bios.GBL.C621XCONFIGUREL2 = false;

❏ L2 Mode - CCFG(L2MODE). Sets the L2 cache mode. See the
c6000 Peripherals Manual for details.
Tconf Name: C641XCCFGL2MODE Type: EnumString
Options: "4-way cache (0k)", "4-way cache (32k)",

"4-way cache (64k)", "4-way cache (128k)", "4-way
cache (256k)"

Example: bios.GBL.C641XCCFGL2MODE =
"4-way cache (0k)";

❏ MAR96-101 - bitmask controls EMIFB CE space.
MAR128-143 - bitmask controls EMIFA CE0 space.
MAR144-159 - bitmask controls EMIFA CE1 space.
MAR160-175 - bitmask controls EMIFA CE2 space.
MAR176-191 - bitmask controls EMIFA CE3 space.
Only bit 0 of each of these 32-bit registers is modifiable by the user.
All other bits are reserved. Specify a bitmask for the modifiable bits
in registers MAR96 through MAR101. The lowest bit of the bitmask
2-134

GBL Module
you specify corresponds to the smallest MAR number in this range.
For example, in C641XMARCE0, bit 0 corresponds to the 0 bit of
MAR128 and bit 15 corresponds to the 0 bit of MAR143.
Tconf Name: C641XMAREMIFB Type: Numeric
Tconf Name: C641XMARCE0 Type: Numeric
Tconf Name: C641XMARCE1 Type: Numeric
Tconf Name: C641XMARCE2 Type: Numeric
Tconf Name: C641XMARCE3 Type: Numeric
Example: bios.GBL.C641XMAREMIFB = 0x0000;

❏ L2 Requestor Priority - CCFG(P). Specifies the CPU/DMA cache
priority. See the c6000 Peripherals Manual for details.
Tconf Name: C641XCCFGP Type: EnumString
Options: "urgent", "high", "medium", "low"
Example: bios.GBL.C641XCCFGP = "urgent";

❏ Configure Priority Queues. Set this property to true if you want to
configure the maximum number of transfer requests on the L2 priority
queues.
Tconf Name: C641XSETL2ALLOC Type: Bool
Example: bios.GBL.C641XSETL2ALLOC = false;

❏ Max L2 Transfer Requests on URGENT Queue (L2ALLOC0).
Select a number from 0 to 7 for the maximum number of L2 transfer
requests permitted on the URGENT queue.
Tconf Name: C641XL2ALLOC0 Type: EnumInt
Options: 0 to 7
Example: bios.GBL.C641XL2ALLOC0 = 6;

❏ Max L2 Transfer Requests on HIGH Queue (L2ALLOC1). Select a
number from 0 to 7 for the maximum number of L2 transfer requests
permitted on the HIGH priority queue.
Tconf Name: C641XL2ALLOC1 Type: EnumInt
Options: 0 to 7
Example: bios.GBL.C641XL2ALLOC1 = 2;

❏ Max L2 Transfer Requests on MEDIUM Queue (L2ALLOC2).
Select a number from 0 to 7 for the maximum number of L2 transfer
requests permitted on the MEDIUM priority queue.
Tconf Name: C641XL2ALLOC2 Type: EnumInt
Options: 0 to 7
Example: bios.GBL.C641XL2ALLOC2 = 2;
Application Program Interface 2-135

GBL Module
❏ Max L2 Transfer Requests on LOW Queue (L2ALLOC3). Select a
number from 0 to 7 for the maximum number of L2 transfer requests
permitted on the LOW priority queue.
Tconf Name: C641XL2ALLOC3 Type: EnumInt
Options: 0 to 7
Example: bios.GBL.C641XL2ALLOC3 = 2;

64PLUS tab ❏ 64P - Configure Memory Cache Settings. You can set this property
to true if you want to configure the cache settings for the ’C64x+
initialization. Checking this box enables the cache size and MAR
bitmask properties that follow on this tab.
Tconf Name: C64PLUSCONFIGURE Type: Bool
Example: bios.GBL.C64PLUSCONFIGURE = false;

❏ 64P L1PCFG Mode. Select the initial size for the L1P cache. See the
c6000 Peripherals Manual for details.
Tconf Name: C64PLUSL1PCFG Type: EnumString
Options: "0k", "4k", "8k", "16k", "32k"
Example: bios.GBL.C64PLUSL1PCFG = "32k";

❏ 64P L1DCFG Mode. Select the initial size for the L1D cache.
Tconf Name: C64PLUSL1DCFG Type: EnumString
Options: "0k", "4k", "8k", "16k", "32k"
Example: bios.GBL.C64PLUSL1DCFG = "32k";

❏ 64P L2CFG Mode. Select the initial size for the L2 cache.
Tconf Name: C64PLUSL2CFG Type: EnumString
Options: "0k", "32k", "64k", "128k", "256k"
Example: bios.GBL.C64PLUSL2CFG = "32k";

❏ MAR - bitmasks. Only bit 0 of each of these 32-bit registers is
modifiable by the user. All other bits are reserved. Specify a bitmask
for the 32 modifiable bits in the registers specified for the property.
The lowest bit of the bitmask you specify corresponds to the smallest
2-136

GBL Module
MAR number in this range. For example, in C64PLUSMAR128to159,
bit 0 corresponds to the 0 bit of MAR128 and bit 31 corresponds to
the 0 bit of MAR159.
Tconf Name: C64PLUSMAR0to31 Type: Numeric
Tconf Name: C64PLUSMAR32to63 Type: Numeric
Tconf Name: C64PLUSMAR64to95 Type: Numeric
Tconf Name: C64PLUSMAR96to127 Type: Numeric
Tconf Name: C64PLUSMAR128to159 Type: Numeric
Tconf Name: C64PLUSMAR160to191 Type: Numeric
Tconf Name: C64PLUSMAR192to223 Type: Numeric
Tconf Name: C64PLUSMAR224to255 Type: Numeric
Example: bios.GBL.C64PLUSMAR0to31 = 0x0;

❏ GEM True Completion Bit. Set this property to true to enable the
GEM True Completion bit. This controls how cache writeback
completion works. See the OMAP2430/3430 cache documentation
for more information on how to ensure that a cache writeback is
complete. Checking this box enables the BCACHE read address
properties that follow. (OMAP 2430/3430 only)
Tconf Name: GEMTRUECOMPEN Type: Bool
Example: bios.GBL.GEMTRUECOMPEN = false;

❏ BCACHE Read Address 0-2. Specify the first, second, and third
addresses to read back during BCACHE_wait. Reading a non-
cached address is necessary to ensure that a writeback has fully
completed. DSP/BIOS provides properties to specify up to three
"read addresses" because there are three memory regions for which
you may want to ensure that writebacks are fully complete: SDRAM,
flash, and OCM (on chip memory). For example, you can specify an
address in SDRAM and an address in OCM for the first two
properties and leave the last property at 0x0 if you do not use flash
memory. The addresses are not read if the value is zero. See the
OMAP2430/3430 cache documentation for more information.
(OMAP 2430/3430 only)
Tconf Name: BCACHEREADADDR0 Type: Numeric
Tconf Name: BCACHEREADADDR1 Type: Numeric
Tconf Name: BCACHEREADADDR2 Type: Numeric
Example: bios.GBL.BCACHEREADADDR0 = 0x0;
Application Program Interface 2-137

GBL_getClkin
C Interface

Syntax clkin = GBL_getClkin(Void);

Parameters Void

Return Value Uint32 clkin; /* CLKIN frequency */

Reentrant yes

Description Returns the configured value of the board input clock (CLKIN) frequency
in KHz.

See Also CLK_countspms
CLK_getprd

GBL_getClkin Get configured value of board input clock in KHz
2-138

GBL_getFrequency
C Interface

Syntax frequency = GBL_getFrequency(Void);

Parameters Void

Return Value Uint32 frequency; /* CPU frequency in KHz */

Reentrant yes

Description Returns the current frequency of the DSP CPU in an integer number of
KHz. This is the frequency set by GBL_setFrequency, which must also
be an integer. The default value is the value of the CLKOUT property,
which is configured as one of the GBL Module Properties.

See Also GBL_getClkin
GBL_setFrequency

GBL_getFrequency Get current frequency of the CPU in KHz
Application Program Interface 2-139

GBL_getProcId
C Interface

Syntax procid = GBL_getProcId(Void);

Parameters Void

Return Value Uint16 procid; /* processor ID */

Reentrant yes

Description Returns the configured value of the processor ID (PROCID) for this
processor. This numeric ID value is used by the MSGQ module when
determining which processor to communicate with.

The procId is also defined in the MSGQ_TransportObj array that is part
of the MSGQ_Config structure. The same processor ID should be
defined for this processor in both locations.

During the User Init Function, the application may modify the statically
configured processor ID by calling GBL_setProcId. In this case, the User
Init Function may need to call GBL_getProcId first to get the statically
configured processor ID.

See Also MSGQ Module: Static Configuration
GBL_setProcId

GBL_getProcId Get configured value of processor ID
2-140

GBL_getVersion
C Interface

Syntax version = GBL_getVersion(Void);

Parameters Void

Return Value Uint16 version; /* version data */

Reentrant yes

Description Returns DSP/BIOS kernel version information as a 4-digit hex number.
For example: 0x5100. Note that the kernel version is different from the
DSP/BIOS product version.

When comparing versions, compare the highest digits that are different.
The digits in the version information are as follows:

The version returned by GBL_getVersion matches the version in the
DSP/BIOS header files. (For example, tsk.h.) If the header file version is
as follows, GBL_getVersion returns 0x5001. If there are three items, the
last item uses two digits (for example, 01) in the returned hex number.

* @(#) DSP/BIOS_Kernel 5,0,1 05-30-2004 (cuda-l06)

GBL_getVersion Get DSP/BIOS version information

Bits Compatibility with Older DSP/BIOS Versions

12-15
(first hex digit)

Not compatible. Changes to application C,
assembly, or configuration (Tconf) code may be
required. For example, moving from 0x5100 to
0x6100 may require code changes.

8-11
(second hex digit)

No code changes required but you should
recompile. For example, moving from 0x5100 to
0x5200 requires recompilation.

0-7
(third and fourth hex
digits)

No code changes or recompile required. You
should re-link if either of these digits are differ-
ent. For example, moving from 0x5100 to
0x5102 requires re-linking.
Application Program Interface 2-141

GBL_setFrequency
C Interface

Syntax GBL_setFrequency(frequency);

Parameters Uint32 frequency; /* CPU frequency in KHz */

Return Value Void

Reentrant yes

Description This function sets the value of the CPU frequency known to DSP/BIOS.

Note that GBL_setFrequency does not affect the PLL, and therefore has
no effect on the actual frequency at which the DSP is running. It is used
only to make DSP/BIOS aware of the DSP frequency you are using.

If you call GBL_setFrequency to update the CPU frequency known to
DSP/BIOS, you should follow the sequence shown in the CLK_reconfig
topic to reconfigure the timer.

The frequency must be an integer number of KHz.

Constraints and
Calling Context

❏ If you change the frequency known to DSP/BIOS, you should also
reconfigure the timer (with CLK_reconfig) so that the actual
frequency is the same as the frequency known to DSP/BIOS.

See Also CLK_reconfig
GBL_getClkin
GBL_getFrequency

GBL_setFrequency Set frequency of the CPU in KHz
2-142

GBL_setProcId
C Interface

Syntax GBL_setProcId(procId);

Parameters Uint16 procId; /* processor ID */

Return Value Void

Reentrant no

Description Sets the processor ID (PROCID) for this processor. This numeric ID
value is used by the MSGQ module to determine which processor to
communicate with.

The procId is also defined in the MSGQ_TransportObj array that is part
of the MSGQ_Config structure.

This function can only be called in the User Init Function configured as
part of the GBL Module Properties. That is, this function may only be
called at the beginning of DSP/BIOS initialization.

The application may determine the true processor ID for the device
during the User Init Function and call GBL_setProcId with the correct
processor ID. This is useful in applications that run a single binary image
on multiple DSP processors.

How the application determines the correct processor ID is application-
or board-specific. For example, you might use GPIO. You can call
GBL_getProcId from the User Init Function to get the statically configured
processor ID.

Constraints and
Calling Context

❏ This function can only be called in the User Init Function configured
as part of the GBL Module Properties.

See Also MSGQ Manager Properties
GBL_getProcId

GBL_setProcId Set configured value of processor ID
Application Program Interface 2-143

GIO Module
2.9 GIO Module

The GIO module is the Input/Output Module used with IOM mini-drivers
as described in DSP/BIOS Device Driver Developer's Guide (SPRU616).

Functions ❏ GIO_abort. Abort all pending input and output.

❏ GIO_control. Device specific control call.

❏ GIO_create. Allocate and initialize a GIO object.

❏ GIO_delete. Delete underlying mini-drivers and free up the GIO
object and any associated IOM packet structures.

❏ GIO_flush. Drain output buffers and discard any pending input.

❏ GIO_new. Initialize a GIO object using pre-allocated memory.

❏ GIO_read. Synchronous read command.

❏ GIO_submit. Submits a packet to the mini-driver.

❏ GIO_write. Synchronous write command.

Constants, Types,
and Structures

/* Modes for GIO_create */
#define IOM_INPUT 0x0001
#define IOM_OUTPUT 0x0002
#define IOM_INOUT (IOM_INPUT | IOM_OUTPUT)

/* IOM Status and Error Codes */
#define IOM_COMPLETED SYS_OK /* I/O successful */
#define IOM_PENDING 1 /* I/O queued and pending */
#define IOM_FLUSHED 2 /* I/O request flushed */
#define IOM_ABORTED 3 /* I/O aborted */
#define IOM_EBADIO -1 /* generic failure */
#define IOM_ETIMEOUT -2 /* timeout occurred */
#define IOM_ENOPACKETS -3 /* no packets available */
#define IOM_EFREE -4 /* unable to free resources */
#define IOM_EALLOC -5 /* unable to alloc resource */
#define IOM_EABORT -6 /* I/O aborted uncompleted*/
#define IOM_EBADMODE -7 /* illegal device mode */
#define IOM_EOF -8 /* end-of-file encountered */
#define IOM_ENOTIMPL -9 /* operation not supported */
#define IOM_EBADARGS -10 /* illegal arguments used */
#define IOM_ETIMEOUTUNREC -11
 /* unrecoverable timeout occurred */
#define IOM_EINUSE -12 /* device already in use */
2-144

GIO Module
/* Command codes for IOM_Packet */
#define IOM_READ 0
#define IOM_WRITE 1
#define IOM_ABORT 2
#define IOM_FLUSH 3
#define IOM_USER 128 /* 0-127 reserved for system */

/* Command codes reserved for control */
#define IOM_CHAN_RESET 0 /* reset channel only */
#define IOM_CHAN_TIMEDOUT 1
 /* channel timeout occurred */
#define IOM_DEVICE_RESET 2 /* reset entire device */
#define IOM_CNTL_USER 128
 /* 0-127 reserved for system */

/* Structure passed to GIO_create */
typedef struct GIO_Attrs {
 Int nPackets; /* number of asynch I/O packets */
 Uns timeout; /* for blocking (SYS_FOREVER) */
} GIO_Attrs;

/* Struct passed to GIO_submit for synchronous use*/
typedef struct GIO_AppCallback {
 GIO_TappCallback fxn;
 Ptr arg;
} GIO_AppCallback;

typedef struct GIO_Obj {
 IOM_Fxns *fxns; /* ptr to function table */
 Uns mode; /* create mode */
 Uns timeout; /* timeout for blocking */
 IOM_Packet syncPacket; /* for synchronous use */
 QUE_Obj freeList; /* frames for asynch I/O */
 Ptr syncObj; /* ptr to synchro. obj */
 Ptr mdChan; /* ptr to channel obj */
} GIO_Obj, *GIO_Handle;

typedef struct IOM_Fxns
{
 IOM_TmdBindDev mdBindDev;
 IOM_TmdUnBindDev mdUnBindDev;
 IOM_TmdControlChan mdControlChan;
 IOM_TmdCreateChan mdCreateChan;
 IOM_TmdDeleteChan mdDeleteChan;
 IOM_TmdSubmitChan mdSubmitChan;
} IOM_Fxns;
Application Program Interface 2-145

GIO Module
typedef struct IOM_Packet { /* frame object */
 QUE_Elem link; /* queue link */
 Ptr addr; /* buffer address */
 size_t size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} IOM_Packet;

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the GIO
Manager Properties heading. For descriptions of data types, see Section
1.4, DSP/BIOS Tconf Overview, page 1-4.

Module Configuration Parameters

Description The GIO module provides a standard interface to mini-drivers for devices
such as UARTs, codecs, and video capture/display devices. The creation
of such mini-drivers is not covered in this manual; it is described in
DSP/BIOS Device Driver Developer's Guide (SPRU616).

The GIO module is independent of the actual mini-driver being used. It
allows the application to use a common interface for I/O requests. It also
handles response synchronization. It is intended as common "glue" to
bind applications to device drivers.

Name Type Default

ENABLEGIO Bool false

CREATEFXN Extern prog.extern("FXN_F_nop")

DELETEFXN Extern prog.extern("FXN_F_nop")

PENDFXN Extern prog.extern("FXN_F_nop"

POSTFXN Extern prog.extern("FXN_F_nop")
2-146

GIO Module
The following figure shows how modules are related in an application that
uses the GIO module and an IOM mini-driver:

The GIO module is the basis of communication between applications and
mini-drivers. The DEV module is responsible for maintaining the table of
device drivers that are present in the system. The GIO module obtains
device information by using functions such as DEV_match.

GIO Manager
Properties

The following global properties can be set for the GIO module in the GIO
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Enable General Input/Output Manager. Set this property to true to
enable use of the GIO module. If your application does not use GIO,
you should leave it disabled to prevent additional modules (such as
SEM) from being linked into your application.
Tconf Name: ENABLEGIO Type: Bool
Example: bios.GIO.ENABLEGIO = false;

❏ Create Function.The function the GIO module should use to create
a synchronization object. This function is typically SEM_create. If you
use another function, that function should have a prototype that
matches that of SEM_create: Ptr CREATEFXN(Int count, Ptr attrs);
Tconf Name: CREATEFXN Type: Extern
Example: bios.GIO.CREATEFXN =

prog.extern("SEM_create");

Application
typically TSK threads;

SW I threads possible with customization

GIO Module API DEV module
(device driver table)

IOM mini-driver
(IOM_Fxns function table)
Application Program Interface 2-147

GIO Module
❏ Delete Function.The function the GIO module should use to delete
a synchronization object. This function is typically SEM_delete. If you
use another function, that function should have a prototype that
matches that of SEM_delete: Void DELETEFXN(Ptr semHandle);
Tconf Name: DELETEFXN Type: Extern
Example: bios.GIO.DELETEFXN =

prog.extern("SEM_delete");

❏ Pend Function.The function the GIO module should use to pend on
a synchronization object. This function is typically SEM_pend. If you
use another function, that function should have a prototype that
matches that of SEM_pend: Bool PENDFXN(Ptr semHandle, Uns
timeout);
Tconf Name: PENDFXN Type: Extern
Example: bios.GIO.PENDFXN =

prog.extern("SEM_pend");

❏ Post Function.The function the GIO module should use to post a
synchronization object. This function is typically SEM_post. If you
use another function, that function should have a prototype that
matches that of SEM_post: Void POSTFXN(Ptr semHandle);
Tconf Name: POSTFXN Type: Extern
Example: bios.GIO.POSTFXN =

prog.extern("SEM_post");

GIO Object Properties GIO objects cannot be created statically. In order to create a GIO object,
the application should call GIO_create or GIO_new.
2-148

GIO_abort
C Interface

Syntax status = GIO_abort(gioChan);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Description An application calls GIO_abort to abort all input and output from the
device. When this call is made, all pending calls are completed with a
status of GIO_ABORTED. An application uses this call to return the
device to its initial state. Usually this is done in response to an
unrecoverable error at the device level.

GIO_abort returns IOM_COMPLETED upon successfully aborting all
input and output requests. If an error occurs, the device returns a
negative value. For a list of error values, see “Constants, Types, and
Structures” on page 2-144.

A call to GIO_abort results in a call to the mdSubmit function of the
associated mini-driver. The IOM_ABORT command is passed to the
mdSubmit function. The mdSubmit call is typically a blocking call, so
calling GIO_abort can result in the thread blocking.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create or GIO_new.

❏ GIO_abort cannot be called from a SWI or HWI unless the underlying
mini-driver is a non-blocking driver and the GIO Manager properties
are set to use non-blocking synchronization methods.

Example /* abort all I/O requests given to the device*/
gioStatus = GIO_abort(gioChan);

GIO_abort Abort all pending input and output
Application Program Interface 2-149

GIO_control
C Interface
Syntax status = GIO_control(gioChan, cmd, args);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */
Int cmd; /* control functionality to perform */
Ptr args; /* data structure to pass control information */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Description An application calls GIO_control to configure or perform control
functionality on the communication channel.

The cmd parameter may be one of the command code constants listed
in “Constants, Types, and Structures” on page 2-144. A mini-driver may
add command codes for additional functionality.

The args parameter points to a data structure defined by the device to
allow control information to be passed between the device and the
application. This structure can be generic across a domain or specific to
a mini-driver. In some cases, this argument may point directly to a buffer
holding control data. In other cases, there may be a level of indirection if
the mini-driver expects a data structure to package many components of
data required for the control operation. In the simple case where no data
is required, this parameter may just be a predefined command value.

GIO_control returns IOM_COMPLETED upon success. If an error
occurs, the device returns a negative value. For a list of error values, see
“Constants, Types, and Structures” on page 2-144.

A call to GIO_control results in a call to the mdControl function of the
associated mini-driver. The mdControl call is typically a blocking call, so
calling GIO_control can result in blocking.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create or GIO_new.

❏ GIO_control cannot be called from a SWI or HWI unless the
underlying mini-driver is a non-blocking driver and the GIO Manager
properties are set to use non-blocking synchronization methods.

Example /* Carry out control/configuration on the device*/
gioStatus = GIO_control(gioChan, XXX_RESET, &args);

GIO_control Device specific control call
2-150

GIO_create
C Interface

Syntax gioChan = GIO_create(name, mode, *status, chanParams, *attrs)

Parameters String name /* name of the device to open */
Int mode /* mode in which the device is to be opened */
Int *status /* address to place driver return status */
Ptr chanParams /* optional */
GIO_Attrs *attrs /* pointer to a GIO_Attrs structure */

Return Value GIO_Handle gioChan; /* handle to an instance of the device */

Description An application calls GIO_create to create a GIO_Obj object and open a
communication channel. This function initializes the I/O channel and
opens the lower-level device driver channel. The GIO_create call also
creates the synchronization objects it uses and stores them in the
GIO_Obj object.

The name argument is the name specified for the device when it was
created in the configuration or at runtime.

The mode argument specifies the mode in which the device is to be
opened. This may be IOM_INPUT, IOM_OUTPUT, or IOM_INOUT.

If the status returned by the device is non-NULL, a status value is placed
at the address specified by the status parameter.

The chanParams parameter is a pointer that may be used to pass device
or domain-specific arguments to the mini-driver. The contents at the
specified address are interpreted by the mini-driver in a device-specific
manner.

The attrs parameter is a pointer to a structure of type GIO_Attrs.

typedef struct GIO_Attrs {
 Int nPackets; /* number of asynch I/O packets */
 Uns timeout; /* for blocking calls (SYS_FOREVER) */
} GIO_Attrs;

If attrs is NULL, a default set of attributes is used. The default for
nPackets is 2. The default for timeout is SYS_FOREVER.

The GIO_create call allocates a list of IOM_Packet items as specified by
the nPackets member of the GIO_Attrs structure and stores them in the
GIO_Obj object it creates.

GIO_create Allocate and initialize a GIO object
Application Program Interface 2-151

GIO_create
GIO_create returns a handle to the GIO_Obj object created upon a
successful open. The handle returned by this call should be used by the
application in subsequent calls to GIO functions. This function returns a
NULL handle if the device could not be opened. For example, if a device
is opened in a mode not supported by the device, this call returns a NULL
handle.

A call to GIO_create results in a call to the mdCreateChan function of the
associated mini-driver.

Constraints and
Calling Context

❏ A GIO stream can only be used by one task simultaneously.
Catastrophic failure can result if more than one task calls GIO_read
on the same input stream, or more than one task calls GIO_write on
the same output stream.

❏ GIO_create cannot be called from the context of a SWI or HWI
thread.

❏ This function can be called only after the device has been loaded and
initialized.

Example /* Create a device instance */
gioAttrs = GIO_ATTRS;
gioChan = GIO_create("\Codec0", IOM_INPUT, NULL, NULL,
 &gioAttrs);
GIO_new
2-152

GIO_delete
C Interface

Syntax status = GIO_delete(gioChan);

Parameters GIO_Handle gioChan; /* handle to device instance to be closed */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Description An application calls GIO_delete to close a communication channel
opened prior to this call with GIO_create. This function deallocates all
memory allocated for this channel and closes the underlying device. All
pending input and output are cancelled and the corresponding interrupts
are disabled.

The gioChan parameter is the handle returned by GIO_create or
GIO_new.

This function returns IOM_COMPLETED if the channel is successfully
closed. If an error occurs, the device returns a negative value. For a list
of error values, see “Constants, Types, and Structures” on page 2-144.

A call to GIO_delete results in a call to the mdDelete function of the
associated mini-driver.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create or GIO_new.

Example /* close the device instance */
GIO_delete(gioChan);

GIO_delete Delete underlying mini-drivers and free GIO object and its structures
Application Program Interface 2-153

GIO_flush
C Interface

Syntax status = GIO_flush(gioChan);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Description An application calls GIO_flush to flush the input and output channels of
the device. All input data is discarded; all pending output requests are
completed. When this call is made, all pending input calls are completed
with a status of IOM_FLUSHED, and all output calls are completed
routinely.

The gioChan parameter is the handle returned by GIO_create or
GIO_new.

This call returns IOM_COMPLETED upon successfully flushing all input
and output. If an error occurs, the device returns a negative value. For a
list of error values, see “Constants, Types, and Structures” on page 2-
144.

A call to GIO_flush results in a call to the mdSubmit function of the
associated mini-driver. The IOM_FLUSH command is passed to the
mdSubmit function. The mdSubmit call is typically a blocking call, so
calling GIO_flush can result in the thread blocking while waiting for output
calls to be completed.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create or GIO_new.

❏ GIO_flush cannot be called from a SWI or HWI unless the underlying
mini-driver is a non-blocking driver and the GIO Manager properties
are set to use non-blocking synchronization methods.

Example /* Flush all I/O given to the device*/
GIO_flush(gioChan);

GIO_flush Drain output buffers and discard any pending input
2-154

GIO_new
C Interface

Syntax gioChan = GIO_new(gioChan, name, mode, *status, optArgs,
packetBuf[], syncObject, *attrs);

Parameters GIO_Handle gioChan /* Handle to GIO Obj */
String name /* name of the device to open */
Int mode /* mode in which the device is to be opened */
Int *status /* address to place driver return status */
Ptr optArgs /* optional args to mdCreateChan */
IOM_packet packetBuf[] /* to be initialized to zero */
Ptr syncObject /* sync Object */
GIO_Attrs *attrs /* pointer to a GIO_Attrs structure */

Return Value GIO_Handle gioChan; /* handle to the initialized GIO object */

Description An application calls GIO_new to initialize a GIO_Obj object and open a
communication channel. This function initializes the I/O channel and
opens the lower-level device driver channel. The GIO_new call does not
allocate any memory. It requires pre-allocated memory.

The "gioChan" parameter is a handle to a structure of type GIO_Obj that
your program has declared. GIO_new initializes this structure.

typedef struct GIO_Obj {
 IOM_Fxns *fxns; /* ptr to function table */
 Uns mode; /* create mode */
 Uns timeout; /* timeout for blocking */
 IOM_Packet syncPacket; /* for synchronous use */
 QUE_Obj freeList; /* frames for asynch I/O */
 Ptr syncObj; /* ptr to synchro. obj */
 Ptr mdChan; /* ptr to channel obj */
} GIO_Obj, *GIO_Handle;

The "name" parameter is the name previously specified for the device. It
is used to find a matching name in the device table.

The "mode" parameter specifies the mode in which the device is to be
opened. This may be IOM_INPUT, IOM_OUTPUT, or IOM_INOUT.

If the status returned by the device is non-NULL, a status value is placed
at the address specified by the "status" parameter.

GIO_new Initialize a GIO object with pre-allocated memory
Application Program Interface 2-155

GIO_new
The "optArgs" parameter is a pointer that may be used to pass device or
domain-specific arguments to the mini-driver. The contents at the
specified address are interpreted by the mini-driver in a device-specific
manner.

Use the "packetBuf[]" array to pass a list of IOM_Packet items. The
number of items should match the nPackets member of the GIO_Attrs
structure passed to the "attrs" parameter. GIO_new initializes these
IOM_Packet items.

The "syncObject" parameter is usually a SEM handle.

The "attrs" parameter is a pointer to a structure of type GIO_Attrs.

typedef struct GIO_Attrs {
 Int nPackets; /* number of asynch I/O packets */
 Uns timeout; /* for blocking calls (SYS_FOREVER) */
} GIO_Attrs;

If attrs is NULL, a default set of attributes is used. The default for
nPackets is 2. The default for timeout is SYS_FOREVER. GIO_new
initializes the packets, but does not allocate them.

GIO_new returns the non-NULL handle to the GIO_Obj when
initialization is successful. The handle returned by this call should be
used by the application in subsequent calls to GIO functions. Usually, this
is the same handle passed to GIO_new. However, GIO_new returns a
NULL handle if the device could not be initialized. For example, if a
device is opened in a mode not supported by the device, this call returns
a NULL handle.

A call to GIO_new results in a call to the mdCreateChan function of the
associated mini-driver.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized.

Example /* Initialize a device object */
output = GIO_new(&outObj, "/printf", IOM_OUTPUT,
 &status, NULL, outPacketBuf, outSem, &attrs);
GIO_create
2-156

GIO_read
C Interface

Syntax status = GIO_read(gioChan, bufp, *pSize);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */
Ptr bufp /* pointer to data structure for buffer data */
size_t *pSize /* pointer to size of bufp structure */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Description An application calls GIO_read to read a specified number of MADUs
(minimum addressable data units) from the communication channel.

The gioChan parameter is the handle returned by GIO_create or
GIO_new.

The bufp parameter points to a device-defined data structure for passing
buffer data between the device and the application. This structure may
be generic across a domain or specific to a single mini-driver. In some
cases, this parameter may point directly to a buffer that holds the read
data. In other cases, this parameter may point to a structure that
packages buffer information, size, offset to be read from, and other
device-dependent data. For example, for video capture devices this
structure may contain pointers to RGB buffers, their sizes, video format,
and a host of data required for reading a frame from a video capture
device. Upon a successful read, this argument points to the returned
data.

The pSize parameter points to the size of the buffer or data structure
pointed to by the bufp parameter. When the function returns, this
parameter points to the number of MADUs read from the device. This
parameter is relevant only if the bufp parameter points to a raw data
buffer. In cases where it points to a device-defined structure it is
redundant—the size of the structure is known to the mini-driver and the
application. At most, it can be used for error checking.

GIO_read returns IOM_COMPLETED upon successfully reading the
requested number of MADUs from the device. If an error occurs, the
device returns a negative value. For a list of error values, see “Constants,
Types, and Structures” on page 2-144.

A call to GIO_read results in a call to the mdSubmit function of the
associated mini-driver. The IOM_READ command is passed to the
mdSubmit function. The mdSubmit call is typically a blocking call, so
calling GIO_read can result in the thread blocking.

GIO_read Synchronous read command
Application Program Interface 2-157

GIO_read
Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create or GIO_new.

❏ GIO_read cannot be called from a SWI, HWI, or main() unless the
underlying mini-driver is a non-blocking driver and the GIO Manager
properties are set to use non-blocking synchronization methods.

Example /* Read from the device */
size = sizeof(readStruct);
status = GIO_read(gioChan, &readStruct, &size);
2-158

GIO_submit
C Interface

Syntax status = GIO_submit(gioChan, cmd, bufp, *pSize, *appCallback);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */
Uns cmd /* specified mini-driver command */
Ptr bufp /* pointer to data structure for buffer data */
size_t *pSize /* pointer to size of bufp structure */
GIO_AppCallback *appCallback /* pointer to callback structure */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Description GIO_submit is not typically called by applications. Instead, it is used
internally and for user-defined extensions to the GIO module.

GIO_read and GIO_write are macros that call GIO_submit with
appCallback set to NULL. This causes GIO to complete the I/O request
synchronously using its internal synchronization object (by default, a
semaphore). If appCallback is non-NULL, the specified callback is called
without blocking. This API is provided to extend GIO functionality for use
with SWI threads without changing the GIO implementation.

The gioChan parameter is the handle returned by GIO_create or
GIO_new.

The cmd parameter is one of the command code constants listed in
“Constants, Types, and Structures” on page 2-144. A mini-driver may
add command codes for additional functionality.

The bufp parameter points to a device-defined data structure for passing
buffer data between the device and the application. This structure may
be generic across a domain or specific to a single mini-driver. In some
cases, this parameter may point directly to a buffer that holds the data. In
other cases, this parameter may point to a structure that packages buffer
information, size, offset to be read from, and other device-dependent
data.

The pSize parameter points to the size of the buffer or data structure
pointed to by the bufp parameter. When the function returns, this
parameter points to the number of MADUs transferred to or from the
device. This parameter is relevant only if the bufp parameter points to a
raw data buffer. In cases where it points to a device-defined structure it
is redundant—the size of the structure is known to the mini-driver and the
application. At most, it can be used for error checking.

GIO_submit Submit a GIO packet to the mini-driver
Application Program Interface 2-159

GIO_submit
The appCallback parameter points to either a callback structure that
contains the callback function to be called when the request completes,
or it points to NULL, which causes the call to be synchronous. When a
queued request is completed, the callback routine (if specified) is invoked
(i.e. blocking).

GIO_submit returns IOM_COMPLETED upon successfully carrying out
the requested functionality. If the request is queued, then a status of
IOM_PENDING is returned. If an error occurs, the device returns a
negative value. For a list of error values, see “Constants, Types, and
Structures” on page 2-144.

A call to GIO_submit results in a call to the mdSubmit function of the
associated mini-driver. The specified command is passed to the
mdSubmit function.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create or GIO_new.

❏ This function can be called within the program’s main() function only
if the GIO channel is asynchronous (non-blocking).

Example /* write asynchronously to the device*/
size = sizeof(userStruct);
status = GIO_submit(gioChan, IOM_WRITE, &userStruct,
 &size, &callbackStruct);

/* write synchronously to the device */
size = sizeof(userStruct);
status = GIO_submit(gioChan, IOM_WRITE, &userStruct,
 &size, NULL);
2-160

GIO_write
C Interface

Syntax status = GIO_write(gioChan, bufp, *pSize);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */
Ptr bufp /* pointer to data structure for buffer data */
size_t *pSize /* pointer to size of bufp structure */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Description The application uses this function to write a specified number of MADUs
to the communication channel.

The gioChan parameter is the handle returned by GIO_create or
GIO_new.

The bufp parameter points to a device-defined data structure for passing
buffer data between the device and the application. This structure may
be generic across a domain or specific to a single mini-driver. In some
cases, this parameter may point directly to a buffer that holds the write
data. In other cases, this parameter may point to a structure that
packages buffer information, size, offset to be written to, and other
device-dependent data. For example, for video capture devices this
structure may contain pointers to RGB buffers, their sizes, video format,
and a host of data required for reading a frame from a video capture
device. Upon a successful read, this argument points to the returned
data.

The pSize parameter points to the size of the buffer or data structure
pointed to by the bufp parameter. When the function returns, this
parameter points to the number of MADUs written to the device. This
parameter is relevant only if the bufp parameter points to a raw data
buffer. In cases where it points to a device-defined structure it is
redundant—the size of the structure is known to the mini-driver and the
application. At most, it can be used for error checking.

GIO_write returns IOM_COMPLETED upon successfully writing the
requested number of MADUs to the device. If an error occurs, the device
returns a negative value. For a list of error values, see “Constants, Types,
and Structures” on page 2-144.

A call to GIO_write results in a call to the mdSubmit function of the
associated mini-driver. The IOM_WRITE command is passed to the
mdSubmit function. The mdSubmit call is typically a blocking call, so
calling GIO_write can result in blocking.

GIO_write Synchronous write command
Application Program Interface 2-161

GIO_write
Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create or GIO_new.

❏ This function can be called within the program’s main() function only
if the GIO channel is asynchronous (non-blocking).

❏ GIO_write cannot be called from a SWI or HWI unless the underlying
mini-driver is a non-blocking driver and the GIO Manager properties
are set to use non-blocking synchronization methods.

Example /* write synchronously to the device*/
size = sizeof(writeStruct);
status = GIO_write(gioChan, &writeStrct, &size);
2-162

HOOK Module
2.10 HOOK Module

The HOOK module is the Hook Function manager.

Functions ❏ HOOK_getenv. Get environment pointer for a given HOOK and TSK
combination.

❏ HOOK_setenv. Set environment pointer for a given HOOK and TSK
combination.

Constants, Types,
and Structures

typedef Int HOOK_Id; /* HOOK instance id */

typedef Void (*HOOK_InitFxn)(HOOK_Id id);
typedef Void (*HOOK_CreateFxn)(TSK_Handle task);
typedef Void (*HOOK_DeleteFxn)(TSK_Handle task);
typedef Void (*HOOK_ExitFxn)(Void);
typedef Void (*HOOK_ReadyFxn)(TSK_Handle task);
typedef Void (*HOOK_SwitchFxn)(TSK_Handle prev,
 TSK_Handle next);

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the
HOOK Object Properties heading. For descriptions of data types, see
Section 1.4, DSP/BIOS Tconf Overview, page 1-4.

Instance Configuration Parameters

 Description The HOOK module is an extension to the TSK function hooks defined in
the TSK Manager Properties. It allows multiple sets of hook functions to
be performed at key execution points. For example, an application that
integrates third-party software may need to perform both its own hook
functions and the hook functions required by the third-party software.

Name Type Default

comment String "<add comments here>"

initFxn Extern prog.extern("FXN_F_nop")

createFxn Extern prog.extern("FXN_F_nop")

deleteFxn Extern prog.extern("FXN_F_nop")

exitFxn Extern prog.extern("FXN_F_nop")

callSwitchFxn Bool false

switchFxn Extern prog.extern("FXN_F_nop")

callReadyFxn Bool false

readyFxn Extern prog.extern("FXN_F_nop")

order Int16 2
Application Program Interface 2-163

HOOK Module
In addition, each HOOK object can maintain private data environments
for each task for use by its hook functions.

The key execution points at which hook functions can be executed are
during program initialization and at several TSK execution points.

The HOOK module manages objects that reference a set of hook
functions. Each HOOK object is assigned a numeric identifier during
DSP/BIOS initialization. If your program calls HOOK API functions, you
must implement an initialization function for the HOOK instance that
records the identifier in a variable of type HOOK_Id. DSP/BIOS passes
the HOOK object’s ID to the initialization function as the lone parameter.

The following function, myInit, could be configured as the Initialization
function for a HOOK object using Tconf.

#include <hook.h>
HOOK_Id myId;

Void myInit(HOOK_Id id)
{
 myId = id;
}

The HOOK_setenv function allows you to associate an environment
pointer to any data structure with a particular HOOK object and TSK
object combination.

There is no limit to the number of HOOK objects that can be created.
However, each object requires a small amount of memory in the .bss
section to contain the object.

A HOOK object initially has all of its functions set to FXN_F_nop. You can
set some hook functions and use this no-op function for the remaining
events. Since the switch and ready events occur frequently during real-
time processing, a separate property controls whether any function is
called.

When you create a HOOK object, any TSK module hook functions you
have specified are automatically placed in a HOOK object called
HOOK_KNL. To set any properties of this object other than the
Initialization function, use the TSK module. To set the Initialization
function property of the HOOK_KNL object, use the HOOK module.

When an event occurs, all HOOK functions for that event are called in the
order set by the order property in the configuration. When you select the
HOOK manager in the DSP/BIOS Configuration Tool, you can change
the execution order by dragging objects within the ordered list.
2-164

HOOK Module
HOOK Manager
Properties

There are no global properties for the HOOK manager. HOOK objects
are placed in the C Variables Section (.bss).

HOOK Object
Properties

The following properties can be set for a HOOK object in the DPI Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script.
To create a HOOK object in a configuration script, use the following
syntax:

var myHook = bios.HOOK.create("myHook");

The Tconf examples that follow assume the object has been created as
shown.

❏ comment. A comment to identify this HOOK object.
Tconf Name: comment Type: String
Example: myHook.comment = "HOOK funcs";

❏ Initialization function. The name of a function to call during
program initialization. Such functions run during the BIOS_init portion
of application startup, which runs before the program’s main()
function. Initialization functions can call most functions that can be
called from the main() function. However, they should not call TSK
module functions, because the TSK module is initialized after
initialization functions run. In addition to code specific to the module
hook, this function should be used to record the object’s ID, if it is
needed in a subsequent hook function. This initialization function is
intended for use in setting up data structures used by other functions
of the same HOOK object. In contrast, the User Init Function property
of the GBL Module Properties runs early in the initialization process
and is intended to be used to perform hardware setup that needs to
run before DSP/BIOS is initialized.
Tconf Name: initFxn Type: Extern
Example: myHook.initFxn = prog.extern("myInit");

❏ Create function. The name of a function to call when any task is
created. This includes tasks that are created statically and those
created dynamically using TSK_create. The TSK_create topic
describes the prototype required for the Create function. If this
function is written in C and you are using the DSP/BIOS
Configuration Tool, use a leading underscore before the C function
name. If you are using Tconf, do not add an underscore before the
function name; Tconf adds the underscore needed to call a C
function from assembly internally.
Tconf Name: createFxn Type: Extern
Example: myHook.createFxn =

prog.extern("myCreate");
Application Program Interface 2-165

HOOK Module
❏ Delete function. The name of a function to call when any task is
deleted at run-time with TSK_delete.
Tconf Name: deleteFxn Type: Extern
Example: myHook.deleteFxn =

prog.extern("myDelete");

❏ Exit function. The name of a function to call when any task exits.
The TSK_exit topic describes the Exit function.
Tconf Name: exitFxn Type: Extern
Example: myHook.exitFxn = prog.extern("myExit");

❏ Call switch function. Set this property to true if you want a function
to be called when any task switch occurs.
Tconf Name: callSwitchFxn Type: Bool
Example: myHook.callSwitchFxn = false;

❏ Switch function. The name of a function to call when any task switch
occurs. This function can give the application access to both the
current and next task handles. The TSK Module topic describes the
Switch function.
Tconf Name: switchFxn Type: Extern
Example: myHook.switchFxn =

prog.extern("mySwitch");

❏ Call ready function. Set this property to true if you want a function
to be called when any task becomes ready to run.
Tconf Name: callReadyFxn Type: Bool
Example: myHook.callReadyFxn = false;

❏ Ready function. The name of a function to call when any task
becomes ready to run. The TSK Module topic describes the Ready
function.
Tconf Name: readyFxn Type: Extern
Example: myHook.readyFxn =

prog.extern("myReady");

❏ order. Set this property for all HOOK function objects match the
order in which HOOK functions should be executed.
Tconf Name: order Type: Int16
Example: myHook.order = 2;
2-166

HOOK_getenv
C Interface

Syntax environ = HOOK_getenv(task, id);

Parameters TSK_Handle task; /* task object handle */
HOOK_Id id; /* HOOK instance id */

Return Value Ptr environ; /* environment pointer */

Reentrant yes

Description HOOK_getenv returns the environment pointer associated with the
specified HOOK and TSK objects. The environment pointer, environ,
references the data structure specified in a previous call to
HOOK_setenv.

See Also HOOK_setenv
TSK_getenv

HOOK_getenv Get environment pointer for a given HOOK and TSK combination
Application Program Interface 2-167

HOOK_setenv
C Interface

Syntax HOOK_setenv(task, id, environ);

Parameters TSK_Handle task; /* task object handle */
HOOK_Id id; /* HOOK instance id */
Ptr environ; /* environment pointer */

Return Value Void

Reentrant yes

Description HOOK_setenv sets the environment pointer associated with the specified
HOOK and TSK objects to environ. The environment pointer, environ,
should reference an data structure to be used by the hook functions for a
task or tasks.

Each HOOK object may have a separate environment pointer for each
task. A HOOK object may also point to the same data structure for all tasks,
depending on its data sharing needs.

The HOOK_getenv function can be used to get the environ pointer for a
particular HOOK and TSK object combination.

See Also HOOK_getenv
TSK_setenv

HOOK_setenv Set environment pointer for a given HOOK and TSK combination
2-168

HST Module
2.11 HST Module

Important Note: This module is being deprecated and will no longer be
supported in the next major release of DSP/BIOS.

The HST module is the host channel manager.

Functions ❏ HST_getpipe. Get corresponding pipe object

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the HST
Manager Properties and HST Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Description The HST module manages host channel objects, which allow an
application to stream data between the target and the host. Host
channels are statically configured for input or output. Input channels (also
called the source) read data from the host to the target. Output channels
(also called the sink) transfer data from the target to the host.

Name Type Default (Enum Options)

OBJMEMSEG Reference prog.get("IDRAM")

HOSTLINKTYPE EnumString "RTDX" ("NONE")

Name Type Default (Enum Options)

comment String "<add comments here>"

mode EnumString "output" ("input")

bufSeg Reference prog.get("IDRAM")

bufAlign Int16 4

frameSize Int16 128

numFrames Int16 2

statistics Bool false

availableForDHL Bool false

notifyFxn Extern prog.extern("FXN_F_nop")

arg0 Arg 3
Application Program Interface 2-169

HST Module
Note:

HST channel names cannot begin with a leading underscore (_).

Each host channel is internally implemented using a data pipe (PIP)
object. To use a particular host channel, the program uses HST_getpipe
to get the corresponding pipe object and then transfers data by calling the
PIP_get and PIP_free operations (for input) or PIP_alloc and PIP_put
operations (for output).

During early development, especially when testing SWI processing
algorithms, programs can use host channels to input canned data sets
and to output the results. Once the algorithm appears sound, you can
replace these host channel objects with I/O drivers for production
hardware built around DSP/BIOS pipe objects. By attaching host
channels as probes to these pipes, you can selectively capture the I/O
channels in real time for off-line and field-testing analysis.

The notify function is called in the context of the code that calls PIP_free
or PIP_put. This function can be written in C or assembly. The code that
calls PIP_free or PIP_put should preserve any necessary registers.

The other end of the host channel is managed by the LNK_dataPump IDL
object. Thus, a channel can only be used when some CPU capacity is
available for IDL thread execution.

HST Manager
Properties

The following global properties can be set for the HST module in the HST
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment containing HST objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.HST.OBJMEMSEG = prog.get("myMEM");

❏ Host Link Type. The underlying physical link to be used for host-
target data transfer. If None is selected, no instrumentation or host
channel data is transferred between the target and host in real time.
The Analysis Tool windows are updated only when the target is
halted (for example, at a breakpoint). The program code size is
smaller when the Host Link Type is set to None because RTDX code
is not included in the program.
Tconf Name: HOSTLINKTYPE Type: EnumString
Options: "RTDX", "NONE"
Example: bios.HST.HOSTLINKTYPE = "RTDX";
2-170

HST Module
HST Object Properties A host channel maintains a buffer partitioned into a fixed number of fixed
length frames. All I/O operations on these channels deal with one frame
at a time; although each frame has a fixed length, the application can put
a variable amount of data in each frame.

The following properties can be set for a host file object in the HST Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script.
To create an HST object in a configuration script, use the following
syntax:

var myHst = bios.HST.create("myHst");

The Tconf examples that follow assume the object has been created as
shown.

❏ comment. A comment to identify this HST object.
Tconf Name: comment Type: String
Example: myHst.comment = "my HST";

❏ mode. The type of channel: input or output. Input channels are used
by the target to read data from the host; output channels are used by
the target to transfer data from the target to the host.
Tconf Name: mode Type: EnumString
Options: "output", "input"
Example: myHst.mode = "output";

❏ bufseg. The memory segment from which the buffer is allocated; all
frames are allocated from a single contiguous buffer (of size
framesize x numframes).
Tconf Name: bufSeg Type: Reference
Example: myHst.bufSeg = prog.get("myMEM");

❏ bufalign. The alignment (in words) of the buffer allocated within the
specified memory segment.
Tconf Name: bufAlign Type: Int16
Options: must be >= 4 and a power of 2
Example: myHst.bufAlign = 4;

❏ framesize. The length of each frame (in words)
Tconf Name: frameSize Type: Int16
Example: myHst.frameSize = 128;

❏ numframes. The number of frames
Tconf Name: numFrames Type: Int16
Example: myHst.numFrames = 2;
Application Program Interface 2-171

HST Module
❏ statistics. Set this property to true if you want to monitor this channel
with an STS object. You can display the STS object for this channel
to see a count of the number of frames transferred with the Statistics
View Analysis Tool.
Tconf Name: statistics Type: Bool
Example: myHst.statistics = false;

❏ Make this channel available for a new DHL device. Set this
property to true if you want to use this HST object with a DHL device.
DHL devices allow you to manage data I/O between the host and
target using the SIO module, rather than the PIP module. See the
DHL Driver topic for more details.
Tconf Name: availableForDHL Type: Bool
Example: myHst.availableForDHL = false;

❏ notify. The function to execute when a frame of data for an input
channel (or free space for an output channel) is available. To avoid
problems with recursion, this function should not directly call any of
the PIP module functions for this HST object.
Tconf Name: notifyFxn Type: Extern
Example: myHst.notifyFxn =

prog.extern("hstNotify");

❏ arg0, arg1. Two 32-bit arguments passed to the notify function. They
can be either unsigned 32-bit constants or symbolic labels.
Tconf Name: arg0 Type: Arg
Tconf Name: arg1 Type: Arg
Example: myHst.arg0 = 3;
2-172

HST_getpipe
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS.

C Interface
Syntax pipe = HST_getpipe(hst);

Parameters HST_Handle hst /* host object handle */

Return Value PIP_Handle pip /* pipe object handle*/

Reentrant yes

Description HST_getpipe gets the address of the pipe object for the specified host
channel object.

Example Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

 in = HST_getpipe(input);
 out = HST_getpipe(output);
 if (PIP_getReaderNumFrames == 0 ||
 PIP_getWriterNumFrames == 0) {
 error;
 }

 /* get input data and allocate output frame */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output frame */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);
 size = PIP_getReaderSize();
 out->writerSize = size;

 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input frame */
 PIP_put(out);
 PIP_free(in);
}

See Also PIP_alloc

HST_getpipe Get corresponding pipe object
Application Program Interface 2-173

HWI Module
2.12 HWI Module

The HWI module is the hardware interrupt manager.

Functions ❏ HWI_applyWugenMasks. Set WUGEN interrupt mask registers.

❏ HWI_disable. Disable hardware interrupts

❏ HWI_disableWugen. Disable an interrupt in WUGEN registers.
❏ HWI_dispatchPlug. Plug the HWI dispatcher
❏ HWI_enable. Enable hardware interrupts

❏ HWI_enableWugen. Enable an interrupt in WUGEN registers.
❏ HWI_enter. Hardware ISR prolog

❏ HWI_eventMap. Assign interrupt source number to an HWI object.
❏ HWI_exit. Hardware ISR epilog

❏ HWI_getWugenMasks. Get WUGEN interrupt mask registers.

❏ HWI_ierToWugenMasks. Compute WUGEN masks to match IER
register.

❏ HWI_isHWI. Check current thread calling context.
❏ HWI_restore. Restore hardware interrupt state

Constants, Types, and
Structures

typedef struct HWI_Attrs {
 Uns intrMask; /* IER bitmask, 1="self" (default) */
 Uns ccMask /* CSR CC bitmask, 1="leave alone" */
 Arg arg; /* fxn arg (default = 0)*/
} HWI_Attrs;

HWI_Attrs HWI_ATTRS = {
 1, /* interrupt mask (1 => self) */
 1, /* CSR bit mask (1 => leave alone) */
 0 /* argument to ISR */
};

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the HWI
Manager Properties and HWI Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters.

Name Type Default (Enum Options)

RESETVECTOR Bool false

EXTPIN4POLARITY EnumString "low-to-high" ("high-to-low")
2-174

HWI Module
Instance Configuration Parameters

HWI instances are provided as a default part of the configuration and
cannot be created. In the items that follow, HWI_INT* may be any
provided instance. Default values for many HWI properties are different
for each instance.

EXTPIN5POLARITY EnumString "low-to-high" ("high-to-low")

EXTPIN6POLARITY EnumString "low-to-high" ("high-to-low")

EXTPIN7POLARITY EnumString "low-to-high" ("high-to-low")

ENABLEEXC Bool true (C64x+ only)

Name Type Default (Enum Options)

Name Type Default (Enum Options)

comment String "<add comments here>"

interruptSource EnumString "Reset" (Non_Maskable", "Reserved", "Timer 0", "Timer 1",
"Host_Port_Host_to_DSP", "EMIF_SDRAM_Timer",
"PCI_WAKEUP", "AUX_DMA_HALT", "External_Pin_4",
"External_Pin_5", "External_Pin_6", "External_Pin_7",
"DMA_Channel_0", "DMA_Channel_1", "DMA_Channel_2",
"DMA_Channel_3", "MCSP_0_Transmit", "MCSP_0_Receive",
"MCSP_1_Transmit", "MCSP_2_Receive", "MCSP_2_Transmit",
"MCSP_2_Receive") (Not used for C64x+)

interruptSelectNumber Int (varies by specific target)

fxn Extern prog.extern("HWI_unused,"asm")

monitor EnumString "Nothing" ("Data Value", "Stack Pointer", "Top of SW Stack", "A0"
... "A15", "B0" ..."B15")

addr Arg 0x00000000

dataType EnumString "signed" ("unsigned")

operation EnumString "STS_add(*addr)" ("STS_delta(*addr)", "STS_add(-*addr)",
"STS_delta(-*addr)", "STS_add(|*addr|)", "STS_delta(|*addr|)")

useDispatcher Bool false

arg Arg 0

interruptMask EnumString "self" ("all", "none", "bitmask")

interruptBitMask Numeric 0x0010 *

cacheControl Bool true (Not used for C64x+)

progCacheMask EnumString "mapped" ("cache enable", "cache freeze", "cache bypass")
(Not used for C64x+)

dataCacheMask EnumString "mapped" ("cache enable", "cache freeze", "cache bypass")
(Not used for C64x+)
Application Program Interface 2-175

HWI Module
* Depends on interrupt ID

Description The HWI module manages hardware interrupts. Using Tconf, you can
assign routines that run when specific hardware interrupts occur. Some
routines are assigned to interrupts automatically by the HWI module. For
example, the interrupt for the timer that you select for the CLK global
properties is automatically configured to run a function that increments
the low-resolution time. See the CLK Module for more details.

You can also dynamically assign routines to interrupts at run-time using
the HWI_dispatchPlug function or the C62_plug or C64_plug functions.

DSP/BIOS supports the C64x+ interrupt selector through the HWI
Module. You can route one of the 128 system events to a specific HWI
object by specifying the event number as the "interrupt selection number"
in the HWI Object Properties. This one-to-one mapping supports up to 12
maskable interrupts. The C64x+ event combiner is supported by the
ECM Module. If the 16 HWI objects are sufficient for the number of HWI
functions your application needs to run, you need not enable the ECM
module. You do not need to know whether your C function will be run by
the HWI module or ECM module when you write the function. (The ECM
module uses the HWI dispatcher, and so its functions cannot be
completely written in assembly.)

Interrupt routines can be written completely in assembly, completely in C,
or in a mix of assembly and C. In order to support interrupt routines
written completely in C, an HWI dispatcher is provided that performs the
requisite prolog and epilog for an interrupt routine.

Note: RTS Functions Callable from TSK Threads Only
Many runtime support (RTS) functions use lock and unlock functions to
prevent reentrancy. However, DSP/BIOS SWI and HWI threads cannot
call LCK_pend and LCK_post. As a result, RTS functions that call
LCK_pend or LCK_post must not be called in the context of a SWI or
HWI thread. For a list or RTS functions that should not be called from
a SWI or an HWI function, see “LCK_pend” on page 2-211.

The C++ "new" operator calls malloc, which in turn calls LCK_pend. As a
result, the "new" operator cannot be used in the context of a SWI or HWI
thread.
2-176

HWI Module
HWI Dispatcher vs. HWI_enter/exit

The HWI dispatcher is the preferred method for handling an interrupt.
When enabled, the HWI objects that run functions for the CLK and RTDX
modules use the dispatcher.

When an HWI object does not use the dispatcher, the HWI_enter
assembly macro must be called prior to any DSP/BIOS API calls that
affect other DSP/BIOS objects, such as posting a SWI or a semaphore,
and the HWI_exit assembly macro must be called at the very end of the
function’s code.

When an HWI object is configured to use the dispatcher, the dispatcher
handles the HWI_enter prolog and HWI_exit epilog, and the HWI function
can be completely written in C. It would, in fact, cause a system crash for
the dispatcher to call a function that contains the HWI_enter/HWI_exit
macro pair. Using the dispatcher allows you to save code space by
including only one instance of the HWI_enter/HWI_exit code.

Note:

CLK functions should not call HWI_enter and HWI_exit as these are
called internally by the HWI dispatcher when it runs CLK_F_isr.
Additionally, CLK functions should not use the interrupt keyword or the
INTERRUPT pragma in C functions.

Notes
In the following notes, references to the usage of HWI_enter/HWI_exit
also apply to usage of the HWI dispatcher since, in effect, the dispatcher
calls HWI_enter/HWI_exit.

❏ Do not call SWI_disable or SWI_enable within an HWI function.

❏ Do not call HWI_enter, HWI_exit, or any other DSP/BIOS functions
from a non-maskable interrupt (NMI) service routine. In addition, the
HWI dispatcher cannot be used with the NMI service routine.

In general, due to details of the ’C6000 architecture, NMI disrupts the
code it interrupts to the point that it cannot be returned to. Therefore,
NMI should not be used to respond to run-time events. NMI should
be used only for exceptional processing that does not return to the
code it interrupted.

❏ Do not call HWI_enter/HWI_exit from a HWI function that is invoked
by the dispatcher.
Application Program Interface 2-177

HWI Module
❏ The DSP/BIOS API calls that require an HWI function to use
HWI_enter and HWI_exit are:
■ SWI_andn
■ SWI_andnHook
■ SWI_dec
■ SWI_inc
■ SWI_or
■ SWI_orHook
■ SWI_post
■ PIP_alloc
■ PIP_free
■ PIP_get
■ PIP_put
■ PRD_tick
■ SEM_post
■ MBX_post
■ TSK_yield
■ TSK_tick

Any PIP API call can cause the pipe’s notifyReader or notifyWriter
function to run. If an HWI function calls a PIP function, the notification
functions run as part of the HWI function.

An HWI function must use HWI_enter and HWI_exit or must be
dispatched by the HWI dispatcher if it indirectly runs a function
containing any of the API calls listed above.

If your HWI function and the functions it calls do not call any of these
API operations, you do not need to disable SWI scheduling by calling
HWI_enter and HWI_exit.

Registers and Stack

Whether a hardware interrupt is dispatched by the HWI dispatcher or
handled with the HWI_enter/HWI_exit macros, a common interrupt stack
(called the system stack) is used for the duration of the HWI. This same
stack is also used by all SWI routines.

The register mask argument to HWI_enter and HWI_exit allows you to
save and restore registers used within the function. Other arguments, for
example, allow the HWI to control the settings of the IEMASK and the
cache control field.
2-178

HWI Module
Note:

By using HWI_enter and HWI_exit as an HWI function’s prolog and
epilog, an HWI function can be interrupted; that is, a hardware interrupt
can interrupt another interrupt. You can use the IEMASK parameter for
the HWI_enter API to prevent this from occurring.

HWI Manager
Properties

DSP/BIOS manages the hardware interrupt vector table and provides
basic hardware interrupt control functions; for example, enabling and
disabling the execution of hardware interrupts.

The following global properties can be set for the HWI module in the HWI
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Generate RESET vector at address 0. Check this box in order to
place an additional reset vector at address 0. You need to enable this
property only if you generated your vector table somewhere other
than address 0 but want the reset vector to be at address 0. This
option is available only if address 0 exists in the memory
configuration and the .hwi_vec section is not placed in a memory
segment containing address 0.
Tconf Name: RESETVECTOR Type: Bool
Example: bios.HWI.RESETVECTOR = false;

❏ External Interrupt Pin 4-7 Polarity. Choose whether the device
connected to this pin causes an interrupt when a high-to-low
transition occurs, or when a low-to-high transition occurs.
Tconf Name: EXTPIN4POLARITY Type: EnumString
Tconf Name: EXTPIN5POLARITY Type: EnumString
Tconf Name: EXTPIN6POLARITY Type: EnumString
Tconf Name: EXTPIN7POLARITY Type: EnumString
Options: "low-to-high", "high-to-low"
Example: bios.HWI.EXTPIN4POLARITY =

"low-to-high";

❏ Enable EXC module exception processing. C64x+ only. Leave
this property set to true if you plan to use the EXC or MPC Module.
By default, the EXC module is enabled.
Tconf Name: ENABLEEXC Type: Bool
Example: bios.HWI.ENABLEEXC = true;
Application Program Interface 2-179

HWI Module
HWI Object Properties The following properties can be set for an HWI object in the HWI Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script.
The HWI objects for the platform are provided in the default configuration
and cannot be created.

❏ comment. A comment is provided to identify each HWI object.
Tconf Name: comment Type: String
Example: bios.HWI_INT4.comment = "myISR";

❏ interrupt source. Select the pin, DMA channel, timer, or other
source of the interrupt. Only the most common sources are listed. If
your source is not listed here as an option, use the interrupt selection
number property instead. (Not used for C64x+ devices.)
Tconf Name: interruptSource Type: EnumString
Options: "Reset", "Non_Maskable", "Reserved", "Timer 0",

"Timer 1", "Host_Port_Host_to_DSP",
"EMIF_SDRAM_Timer", "PCI_WAKEUP",
"AUX_DMA_HALT", "External_Pin_4",
"External_Pin_5", "External_Pin_6", "External_Pin_7",
"DMA_Channel_0", "DMA_Channel_1",
"DMA_Channel_2", "DMA_Channel_3",
"MCSP_0_Transmit", "MCSP_0_Receive",
"MCSP_1_Transmit", "MCSP_2_Receive",
"MCSP_2_Transmit", "MCSP_2_Receive"

Example: bios.HWI_INT4.interruptSource =
"External_Pin_4";

❏ interrupt selection number. The source number associated with an
interrupt. This property overrides the interrupt source selection, and
should be used if your interrupt source is not listed as an option for
the previous property. This value is used to program the interrupt
multiplexer registers or the interrupt selector. You can use the
HWI_eventMap API to change this property at run-time. To use this
property with the C64x+ event combiner, see Section 2.7, ECM
Module.
Tconf Name: interruptSelectionNumber Type: Int
Example: bios.HWI_INT4.interruptSelectionNumber=4;

❏ function. The function to execute. Interrupt routines that use the
dispatcher can be written completely in C or any combination of
assembly and C but must not call the HWI_enter/HWI_exit macro
pair. Interrupt routines that don’t use the dispatcher must be written
at least partially in assembly language. Within an HWI function that
does not use the dispatcher, the HWI_enter assembly macro must be
called prior to any DSP/BIOS API calls that affect other DSP/BIOS
objects, such as posting a SWI or a semaphore. HWI functions can
2-180

HWI Module
post SWIs, but they do not run until your HWI function (or the
dispatcher) calls the HWI_exit assembly macro, which must be the
last statement in any HWI function that calls HWI_enter.
Tconf Name: fxn Type: Extern
Example: bios.HWI_INT4.fxn = prog.extern("myHWI",

"asm");

❏ monitor. If set to anything other than Nothing, an STS object is
created for this HWI that is passed the specified value on every
invocation of the HWI function. The STS update occurs just before
entering the HWI routine.

Be aware that when the monitor property is enabled for a particular
HWI object, a code preamble is inserted into the HWI routine to make
this monitoring possible. The overhead for monitoring is 20 to 30
instructions per interrupt, per HWI object monitored. Leaving this
instrumentation turned on after debugging is not recommended,
since HWI processing is the most time-critical part of the system.
Options: "Nothing", "Data Value", "Stack Pointer", "Top of SW
Stack", "A0" ... "A15", "B0" ..."B15"
Example: bios.HWI_INT4.monitor = "Nothing";

❏ addr. If the monitor property above is set to Data Address, this
property lets you specify a data memory address to be read; the
word-sized value is read and passed to the STS object associated
with this HWI object.
Tconf Name: addr Type: Arg
Example: bios.HWI_INT4.addr = 0x00000000;

❏ type. The type of the value to be monitored: unsigned or signed.
Signed quantities are sign extended when loaded into the
accumulator; unsigned quantities are treated as word-sized positive
values.
Tconf Name: dataType Type: EnumString
Options: "signed", "unsigned"
Example: bios.HWI_INT4.dataType = "signed";

❏ operation. The operation to be performed on the value monitored.
You can choose one of several STS operations.
Tconf Name: operation Type: EnumString
Options: "STS_add(*addr)", "STS_delta(*addr)", "STS_add(-

*addr)", "STS_delta(-*addr)", "STS_add(|*addr|)",
"STS_delta(|*addr|)"

Example: bios.HWI_INT4.operation =
"STS_add(*addr)";
Application Program Interface 2-181

HWI Module
❏ Use Dispatcher. A check box that controls whether the HWI
dispatcher is used. The HWI dispatcher cannot be used for the non-
maskable interrupt (NMI) service routine.
Tconf Name: useDispatcher Type: Bool
Example: bios.HWI_INT4.useDispatcher = false;

❏ Arg. This argument is passed to the function as its only parameter.
You can use either a literal integer or a symbol defined by the
application. This property is available only when using the HWI
dispatcher.
Tconf Name: arg Type: Arg
Example: bios.HWI_INT4.arg = 3;

❏ Interrupt Mask. Specifies which interrupts the dispatcher should
disable before calling the function. This property is available only
when using the HWI dispatcher.
■ The "self" option causes the dispatcher to disable only the

current interrupt.
■ The "all" option disables all interrupts.
■ The "none" option disables no interrupts.
■ The "bitmask" option causes the interruptBitMask property to be

used to specify which interrupts to disable.
Tconf Name: interruptMask Type: EnumString
Options: "self", "all", "none", "bitmask"
Example: bios.HWI_INT4.interruptMask = "self";

❏ Interrupt Bit Mask. An integer property that is writable when the
interrupt mask is set to "bitmask". This should be a hexadecimal
integer bitmask specifying the interrupts to disable.
Tconf Name: interruptBitMask Type: Numeric
Example: bios.HWI_INT4.interruptBitMask = 0x0010;

Options: "self", "all", "none", "bitmask"

❏ Don’t modify cache control. (Not used for C64x+) A check box that
chooses between not modifying the cache at all or enabling the
individual drop-down menus for program and data cache control
masks. This property is available only when using the HWI
dispatcher. This property and the two that follow are not used for
C64x+ because the HWI dispatcher does not perform cache control
for C64x+.
Tconf Name: cacheControl Type: Bool
Example: bios.HWI_INT4.cacheControl = true;
2-182

HWI Module
❏ Program Cache Control Mask. (Not used for C64x+) A drop-down
menu that becomes writable when the “don’t modify cache control”
property is set to false. The choices are the same choices available
from the GBL properties.
Tconf Name: progCacheMask Type: EnumString
Options: "mapped", "cache enable", "cache freeze", "cache

bypass"
Example: bios.HWI_INT4.progCacheMask = "mapped";

❏ Data Cache Control Mask. (Not used for C64x+) A drop-down menu
that becomes writable when the “don’t modify cache control” property
is set to false. The choices are the same choices available from the
“program cache control mask” menu.
Tconf Name: dataCacheMask Type: EnumString
Options: "mapped", "cache enable", "cache freeze", "cache

bypass"
Example: bios.HWI_INT4.dataCacheMask = "mapped";

Although it is not possible to create new HWI objects, most interrupts
supported by the device architecture have a precreated HWI object. Your
application can require that you select interrupt sources other than the
default values in order to rearrange interrupt priorities or to select
previously unused interrupt sources.

In addition to the precreated HWI objects, some HWI objects are
preconfigured for use by certain DSP/BIOS modules. For example, the
CLK module configures an HWI object that uses the dispatcher. As a
result, you can modify the dispatcher’s parameters for the CLK HWI, such
as the cache setting or the interrupt mask. However, you cannot disable
use of the dispatcher for the CLK HWI.

Table 2-4 lists these precreated objects and their default interrupt
sources. The HWI object names are the same as the interrupt names.

Table 2-4. HWI interrupts for the TMS320C6000

Name Default Interrupt Source
HWI_RESET Reset

HWI_NMI NMI

HWI_RESERVED0
HWI_RESERVED1
HWI_INT4 INT4

HWI_INT5 INT5

HWI_INT6 INT6
Application Program Interface 2-183

HWI Module
HWI_INT7 INT7

HWI_INT8 INT8

HWI_INT9 INT9

HWI_INT10 INT10

HWI_INT11 INT11

HWI_INT12 INT12

HWI_INT13 INT13

HWI_INT14 INT14

HWI_INT15 INT15

Name Default Interrupt Source
2-184

HWI_applyWugenMasks
C Interface

Syntax HWI_applyWugenMasks(mask[]);

Parameters Uint32 mask[]; /* array of masks to apply to WUGEN registers */

Return Value Void

Reentrant yes

Description This function is available only for OMAP 2430/3430 devices.

HWI_applyWugenMasks applies the specified masks to the WUGEN
interrupt mask registers. The WUGEN registers are the Wakeup
Generator registers.

If a bit in a mask is enabled, the corresponding interrupt in the WUGEN
will be blocked.

The mask[] array should contain the following masks in four integers:

❏ First mask consists of IRQ 0-31

❏ Second mask consists of IRQ 32-47

❏ Third mask consists of DMA requests

❏ Fourth mask consists of hpi access wake-up

For details about WUGEN registers, see literature item number
SWPU090 (for OMAP 2430) and number SWPU100 (for OMAP 3430).

Constraints and
Calling Context

❏ This function should be called with interrupts disabled. This ensures
that when interrupts are re-enabled, the pending interrupt with the
highest priority is executed first.

See Also HWI_getWugenMasks
HWI_disableWugen
HWI_enableWugen
HWI_ierToWugenMasks

HWI_applyWugenMasks Apply specified masks to WUGEN interrupt mask registers
Application Program Interface 2-185

HWI_disable
C Interface

Syntax oldCSR = HWI_disable();

Parameters Void

Return Value Uns oldCSR;

Reentrant yes

Description HWI_disable disables hardware interrupts by clearing the GIE bit in the
Control Status Register (CSR). Call HWI_disable before a portion of a
function that needs to run without interruption. When critical processing
is complete, call HWI_restore or HWI_enable to reenable hardware
interrupts.

Interrupts that occur while interrupts are disabled are postponed until
interrupts are reenabled. However, if the same type of interrupt occurs
several times while interrupts are disabled, the interrupt’s function is
executed only once when interrupts are reenabled.

A context switch can occur when calling HWI_enable or HWI_restore if
an enabled interrupt occurred while interrupts are disabled.

HWI_disable may be called from main(). However, since HWI interrupts
are already disabled in main(), such a call has no effect.

Example old = HWI_disable();
 'do some critical operation'
HWI_restore(old);

See Also HWI_enable
HWI_restore
SWI_disable
SWI_enable

HWI_disable Disable hardware interrupts
2-186

HWI_disableWugen
C Interface

Syntax HWI_disableWugen(eventid);

Parameters Int eventid; /* event number associated with the interrupt */

Return Value Void

Reentrant yes

Description This function is available only for OMAP 2430/3430 devices.

HWI_disableWugen disables the interrupt source you specify. It sets the
appropriate bit in the WUGEN registers.

Use the eventid parameter to specify an event using the event number
associated with an interrupt.

Constraints and
Calling Context

None

See Also HWI_enableWugen
HWI_applyWugenMasks
HWI_getWugenMasks
HWI_ierToWugenMasks

HWI_disableWugen Disable an event in the WUGEN interrupt mask registers
Application Program Interface 2-187

HWI_dispatchPlug
C Interface

Syntax HWI_dispatchPlug(vecid, fxn, dmachan, attrs);

Parameters Int vecid; /* interrupt id */
Fxn fxn; /* pointer to HWI function */
Int dmachan; /* DMA channel to use for performing plug */
HWI_Attrs *attrs /*pointer to HWI dispatcher attributes */

Return Value Void

Reentrant yes

Description HWI_dispatchPlug fills the HWI dispatcher table with the function
specified by the fxn parameter and the attributes specified by the attrs
parameter.

If the specified interrupt (vecid) was not configured to be dispatched (via
Tconf or Gconf configuration), then HWI_dispatchPlug writes an Interrupt
Service Fetch Packet (ISFP) into the Interrupt Service Table (IST), at the
address corresponding to vecid. The op-codes written in the ISFP create
a branch to the HWI dispatcher. If the interrupt was previously configured
to be dispatched, then the HWI dispatcher table is still updated using the
fxn and attrs parameters, but a new ISFP is not written to the IST.

The dmachan is needed only for ’C6x0x devices if the IST is located in
internal program RAM. Since the ’C6x0x CPU cannot write to internal
program RAM, it needs to use DMA to write to IPRAM. This is not the
case for ’C6x1x and ’C64x devices.

For ’C6x0x devices, if the IST is stored in external RAM, a DMA (Direct
Memory Access) channel is not necessary and the dmachan parameter
can be set to -1 to cause a CPU copy instead. A DMA channel can still
be used to plug a vector in external RAM. A DMA channel must be used
to plug a vector in internal program RAM.

For ’C6x11 and ’C64x devices, you may set the dmachan parameter to
-1 to specify a CPU copy, regardless of where the IST is stored.
Alternately, you may specify the DMA channel.

For ’C64x+ devices, the dmachan is ignored. However, there is a case
where DMA is automatically used by HWI_dispatchPlug on ’C64x+
devices. If the vector table location is L1P SRAM, then IDMA1 is used for
the vector copy. In this case, HWI_dispatchPlug waits for any activity to
finish on IDMA1 before using it. It then waits for the vector copy DMA

HWI_dispatchPlug Plug the HWI dispatcher
2-188

HWI_dispatchPlug
activity to complete before returning. Since the stack is used for the
source location of the DMA copy, HWI_dispatchPlug must be called while
a stack from internal memory (L1 or L2) is active (and only when the
vector table is in L1P SRAM).

If you use the dmachan parameter to specify a DMA channel,
HWI_dispatchPlug assumes that the DMA channel is available for use,
and stops the DMA channel before programming it. If the DMA channel
is shared with other code, use a semaphore or other DSP/BIOS signaling
method to provide mutual exclusion before calling HWI_dispatchPlug,
C62_plug, or C64_plug.

HWI_dispatchPlug does not enable the interrupt. Use C62_enableIER or
C64_enableIER to enable specific interrupts.

If attrs is NULL, the HWI’s dispatcher properties are assigned a default
set of attributes. Otherwise, the HWI’s dispatcher properties are specified
by a structure of type HWI_Attrs defined as follows.

typedef struct HWI_Attrs {
 Uns intrMask; /* IER bitmask, 1="self" (default) */
 Uns ccMask /* CSR CC bitmask, 1="leave alone" */
 Arg arg; /* fxn arg (default = 0)*/
} HWI_Attrs;

The intrMask element is a bitmask that specifies which interrupts to mask
off while executing the HWI. Bit positions correspond to those of the IER.
A value of 1 indicates an interrupt is being plugged. The default value is 1.

For most C6000 platforms, the ccMask element is a bitfield that
corresponds to the cache control bitfield in the CSR. A value of 1
indicates that the HWI dispatcher should not modify the cache control
settings at all. The default value is 1.

For C64x+ devices, the ccMask element is ignored, since no cache
handling occurs within the HWI dispatcher.

The default values are defined as follows:

HWI_Attrs HWI_ATTRS = {
 1, /* interrupt mask (1 => self) */
 1, /* CSR bit mask (1 => leave alone) */
 0 /* argument to ISR */
};

The arg element is a generic argument that is passed to the plugged
function as its only parameter. The default value is 0.

Constraints and
Calling Context

❏ vecid must be a valid interrupt ID in the range of 0-15.
Application Program Interface 2-189

HWI_dispatchPlug
❏ dmachan must be 0, 1, 2, or 3 if the IST is in internal program
memory and the device is a ’C6x0x.

See Also HWI_enable
HWI_restore
C62_plug
C64_plug
HWI_eventMap
SWI_disable
SWI_enable
2-190

HWI_enable
C Interface

Syntax HWI_enable();

Parameters Void

Return Value Void

Reentrant yes

Description HWI_enable enables hardware interrupts by setting the GIE bit in the
Control Status Register (CSR).

Hardware interrupts are enabled unless a call to HWI_disable disables
them. DSP/BIOS enables hardware interrupts after the program’s main()
function runs. Your main() function can enable individual interrupt mask
bits, but it should not call HWI_enable to globally enable interrupts.

Interrupts that occur while interrupts are disabled are postponed until
interrupts are reenabled. However, if the same type of interrupt occurs
several times while interrupts are disabled, the interrupt’s function is
executed only once when interrupts are reenabled. A context switch can
occur when calling HWI_enable/HWI_restore if an enabled interrupt
occurs while interrupts are disabled.

Any call to HWI_enable enables interrupts, even if HWI_disable has been
called several times.

Constraints and
Calling Context

❏ HWI_enable cannot be called from the program’s main() function.

Example HWI_disable();
"critical processing takes place"
HWI_enable();
"non-critical processing"

See Also HWI_disable
HWI_restore
SWI_disable
SWI_enable

HWI_enable Enable interrupts
Application Program Interface 2-191

HWI_enableWugen
C Interface

Syntax HWI_enableWugen(eventid);

Parameters Int eventid; /* event number associated with the interrupt */

Return Value Void

Reentrant yes

Description This function is available only for OMAP 2430/3430 devices.

HWI_enableWugen enables the interrupt source you specify. It clears the
appropriate bit in the WUGEN registers.

Use the eventid parameter to specify an event using the event number
associated with an interrupt.

Constraints and
Calling Context

None

See Also HWI_disableWugen
HWI_applyWugenMasks
HWI_getWugenMasks
HWI_ierToWugenMasks

HWI_enableWugen Enable an event in the WUGEN interrupt mask registers
2-192

HWI_enter
C Interface

Syntax none

Parameters none

Return Value none

Assembly Interface

Syntax HWI_enter AMASK, BMASK, CMASK, IEMASK, CCMASK

Preconditions interrupts are globally disabled (that is, GIE == 0)

Postconditions amr = 0
GIE = 1
dp (b14) = .bss

Modifies a0, a1, a2, a3, amr, b0, b1, b2, b3, b14, b15, csr, ier

Reentrant yes

Description HWI_enter is an API (assembly macro) used to save the appropriate
context for a DSP/BIOS hardware interrupt (HWI).

The arguments to HWI_enter are bitmasks that define the set of registers
to be saved and bitmasks that define which interrupts are to be masked
during the execution of the HWI.

HWI_enter is used by HWIs that are user-dispatched, as opposed to
HWIs that are handled by the HWI dispatcher. HWI_enter must not be
issued by HWIs that are handled by the HWI dispatcher.

If the HWI dispatcher is not used by an HWI object, HWI_enter must be
used in the HWI before any DSP/BIOS API calls that could trigger other
DSP/BIOS objects, such as posting a SWI or semaphore. HWI_enter is
used in tandem with HWI_exit to ensure that the DSP/BIOS SWI or TSK
manager is called at the appropriate time. Normally, HWI_enter and
HWI_exit must surround all statements in any DSP/BIOS assembly
language HWIs that call C functions.

Common masks are defined in the device-specific assembly macro file
c6x.h62. This file defines C6X_ATEMPS, C6X_BTEMPS, and
C6X_CTEMPS. These masks specify the C temporary registers and
should be used when saving the context for an HWI that is written in C.

HWI_enter Hardware ISR prolog
Application Program Interface 2-193

HWI_enter
The c62.h62 and c64.h64 files define deprecated C62_ and C64_ masks
for backward compatibility. Code that uses the old C62_ABTEMPS mask
will compile correctly, but will generate a warning.

The input parameter CCMASK specifies the program cache control
(PCC) and data cache control (DCC) codes you need to use in the
context of the HWI. Some typical values for this mask are defined in
c6x.h62. The PCC code and DCC code can be ORed together (for
example, C6X_PCC_ENABLE | C6X_PCC_DISABLE) to generate
CCMASK.

The following parameters and constants are available for HWI_enter.
These match the parameters used for HWI_exit, except that IEMASK
corresponds to IERRESTOREMASK.

❏ AMASK, BMASK. Register mask specifying A, B registers to save

■ C6X_ATEMPS, C6X_BTEMPS. Masks to use if calling a C
function from within an HWI; defined in c6x.h62.

■ C6X_A0 to C6X_A15, C6X_B0 to C6X_B15. For ’C62x and
’C67x platforms. Individual register constants; can be ORed
together for more precise control than using C6X_ATEMPS and
C6X_BTEMPS.

■ C6X_A0 to C6X_A31, C6X_B0 to C6X_B31. For ’C64x, ’C64x+,
and ’C67+ platforms. Individual register constants; can be ORed
together for more precise control than using C6X_ATEMPS and
C6X_BTEMPS

❏ CMASK. Register mask specifying control registers to save

■ C6X_CTEMPS. Mask to use if calling a C function from within an
HWI. Defined in c6x.h62.

■ C6X_AMR, C6X_CSR, C6X_IER, C6X_IST, C6X_IRP,
C6X_NRP. Individual register constants; can be ORed together
for more precise control than using C6X_CTEMPS.

❏ IEMASK. Bit mask specifying IER bits to disable. Any bit mask can
be specified, with bits having a one-to-one correspondence with the
assigned values in the IER. The following convenience macros can
be ORed together to specify the mask of interrupts to disable

■ C6X_NMIE

■ C6X_IE4 to C6X_IE15
2-194

HWI_enter
❏ CCMASK. Bit mask specifying cache control bits in the CSR. The
following macros directly correspond to the possible modes of the
program cache specified in the CSR. (Although the HWI dispatcher
does not support cache control for C64x+ devices, the CCMASK is
used for C64x+ devices with HWI_enter.)

■ C6X_PCC_DISABLE

■ C6X_PCC_ENABLE

■ C6X_PCC_FREEZE

■ C6X_PCC_BYPASS

Note that if HWI_enter modifies CSR bits, those changes are lost when
interrupt processing is complete. HWI_exit restores the CSR to its value
when interrupt processing began no matter what the value of CCMASK.

Constraints and
Calling Context

❏ This API should not be used in the NMI HWI function.

❏ This API must not be called if the HWI object that runs this function
uses the HWI dispatcher.

❏ This API cannot be called from the program’s main() function.

❏ This API cannot be called from a SWI, TSK, or IDL function.

❏ This API cannot be called from a CLK function.

❏ Unless the HWI dispatcher is used, this API must be called within any
hardware interrupt function (except NMI’s HWI function) before the
first operation in an HWI that uses any DSP/BIOS API calls that might
post or affect a SWI or semaphore. Such functions must be written in
assembly language. Alternatively, the HWI dispatcher can be used
instead of this API, allowing the function to be written completely in C
and allowing you to reduce code size.

❏ If an interrupt function calls HWI_enter, it must end by calling
HWI_exit.

❏ Do not use the interrupt keyword or the INTERRUPT pragma in C
functions that run in the context of an HWI.

❏

Example CLK_isr:

HWI_enter C6X_ATEMPS, C6X_BTEMPS, C6X_CTEMPS, 0XF0, \
C6X_PCC_ENABLE|C6X_PCC_DISABLE
PRD_tick
HWI_exit C6X_ATEMPS, C6X_BTEMPS, C6X_CTEMPS, 0XF0, \
C6X_PCC_ENABLE|C6X_PCC_DISABLE

See Also HWI_exit
Application Program Interface 2-195

HWI_eventMap
C Interface

Syntax HWI_eventMap(vectID, eventID);

Parameters Int vectID; /* number of HWI object (indexed from 0) */
Int eventID; /* event or interrupt selection number */

Return Value Void

Reentrant yes

Description This function is available only for C6000 devices.

HWI_eventMap associates an interrupt source selection number (or an
eventId) to a specific HWI vector ID. This causes the specified interrupt
event to invoke the specified HWI object.

This API allows you to remap an interrupt source to a particular HWI
object at run-time. To statically configure the same thing, use the
interruptSelectionNumber or interruptSource HWI instance property.

The vectID parameter is the Hardware Vector number. For example,
HWI_INT4 has a vectID of 4, and HWI_INT5 has a vectID of 5.

The eventID parameter should match the event ID. For C64x+ platforms,
these events are listed the "System Event Mapping" table in the
TMS320C64x+ DSP Megamodule Reference Guide (SPRU871).
Device-specific data manuals contain additional information about event
numbers. For other C6000 devices, you can select the interrupt source
you want in the DSP/BIOS Configuration Tool to see its corresponding
interrupt selection number.

This API is protected by calls to HWI_disable/HWI_restore, so it can be
called from any thread, including an HWI thread.

Constraints and
Calling Context

None

Example // maps interrupt selection number 1 to HWI object 14
HWI_eventMap(14, 1);

See Also HWI_dispatchPlug
C62_plug
C64_plug

HWI_eventMap Assign interrupt selection number to HWI object
2-196

HWI_exit
C Interface
Syntax none

Parameters none

Return Value none

Assembly Interface

Syntax HWI_exit AMASK BMASK CMASK IERRESTOREMASK CCMASK

Preconditions b14 = pointer to the start of .bss
amr = 0

Postconditions none

Modifies a0, a1, amr, b0, b1, b2, b3, b14, b15, csr, ier, irp

Reentrant yes

Description HWI_exit is an API (assembly macro) which is used to restore the context
that existed before a DSP/BIOS hardware interrupt (HWI) was invoked.

HWI_exit is used by HWIs that are user-dispatched, as opposed to HWIs
that are handled by the HWI dispatcher. HWI_exit must not be issued by
HWIs that are handled by the HWI dispatcher.

If the HWI dispatcher is not used by an HWI object, HWI_exit must be the
last statement in an HWI that uses DSP/BIOS API calls which could
trigger other DSP/BIOS objects, such as posting a SWI or semaphore.

HWI_exit restores the registers specified by AMASK, BMASK, and
CMASK. These masks are used to specify the set of registers that were
saved by HWI_enter.

HWI_enter and HWI_exit must surround all statements in any DSP/BIOS
assembly language HWIs that call C functions only for HWIs that are not
dispatched by the HWI dispatcher.

HWI_exit calls the DSP/BIOS SWI manager if DSP/BIOS itself is not in
the middle of updating critical data structures, or if no currently
interrupted HWI is also in a HWI_enter/HWI_exit region. The DSP/BIOS
SWI manager services all pending SWI handlers (functions).

HWI_exit Hardware ISR epilog
Application Program Interface 2-197

HWI_exit
Of the interrupts in IERRESTOREMASK, HWI_exit only restores those
enabled upon entering the HWI. HWI_exit does not affect the status of
interrupt bits that are not in IERRESTOREMASK.

❏ If upon exiting an HWI you do not wish to restore an interrupt that was
disabled with HWI_enter, do not set that interrupt bit in the
IERRESTOREMASK in HWI_exit.

❏ If upon exiting an HWI you wish to enable an interrupt that was
disabled upon entering the HWI, set the corresponding bit in IER
register. (Including a bit in IER in the IERRESTOREMASK of
HWI_exit does not enable the interrupt if it was disabled when the
HWI was entered.)

For a list of parameters and constants available for use with HWI_exit,
see the description of HWI_enter. In addition, see the c6x.h62 file.

To be symmetrical, even though CCMASK has no effect on HWI_exit,
you should use the same CCMASK that is used in HWI_enter for
HWI_exit. HWI_exit restores the CSR to its value when interrupt
processing began no matter what the value of CCMASK.

Constraints and
Calling Context

❏ This API should not be used for the NMI HWI function.

❏ This API must not be called if the HWI object that runs the function
uses the HWI dispatcher.

❏ If the HWI dispatcher is not used, this API must be the last operation
in an HWI that uses any DSP/BIOS API calls that might post or affect
a SWI or semaphore. The HWI dispatcher can be used instead of this
API, allowing the function to be written completely in C and allowing
you to reduce code size.

❏ The AMASK, BMASK, and CMASK parameters must match the
corresponding parameters used for HWI_enter.

❏ This API cannot be called from the program’s main() function.

❏ This API cannot be called from a SWI, TSK, or IDL function.

❏ This API cannot be called from a CLK function.

Example CLK_isr:

HWI_enter C6X_ATEMPS, C6X_BTEMPS, C6X_CTEMPS, 0XF0, \
C6X_PCC_ENABLE|C6X_PCC_DISABLE
PRD_tick
HWI_exit C6X_ATEMPS, C6X_BTEMPS, C6X_CTEMPS, 0XF0, \
C6X_PCC_ENABLE|C6X_PCC_DISABLE

See Also HWI_enter
2-198

HWI_getWugenMasks
C Interface

Syntax HWI_getWugenMasks(mask[]);

Parameters Uint32 mask[]; /* array of WUGEN masks */

Return Value Void

Reentrant yes

Description This function is available only for OMAP 2430/3430 devices.

HWI_getWugenMasks gets the WUGEN interrupt mask registers.

If a bit in a mask is enabled, the corresponding interrupt in the WUGEN
is blocked.

After this function returns, the mask[] array will contain the following
masks in four integers:

❏ First mask consists of IRQ 0-31

❏ Second mask consists of IRQ 32-47

❏ Third mask consists of DMA requests

❏ Fourth mask consists of hpi access wake-up

Constraints and
Calling Context

None

See Also HWI_disableWugen
HWI_enableWugen
HWI_applyWugenMasks
HWI_ierToWugenMasks

HWI_getWugenMasks Get masks from WUGEN interrupt mask registers
Application Program Interface 2-199

HWI_ierToWugenMasks
C Interface

Syntax HWI_ierToWugenMasks(mask[]);

Parameters Uint32 mask[]; /* array of WUGEN masks */

Return Value Void

Reentrant yes

Description This function is available only for OMAP 2430/3430 devices.

HWI_ierToWugenMasks computes the WUGEN masks needed to allow
the interrupts set in the IER register to propagate through the WUGEN.

This function does not enable external DMA requests that are routed
directly to the EDMA but are not set in the IER registers. In fact, these will
be blocked in the masks returned by this function. To enable such DMA
requests as a wakeup event, you must set the corresponding bits in the
WUGEN masks returned by this function, before using the masks in a call
to HWI_applyWugenMasks().

The mask[] array contains the following masks in four integers:

❏ First mask consists of IRQ 0-31

❏ Second mask consists of IRQ 32-47

❏ Third mask consists of DMA requests

❏ Fourth mask consists of hpi access wake-up

This function does not set any WUGEN registers, it simply computes the
mask[] values. To apply the computed WUGEN masks, call
HWI_applyWugenMasks with the mask[] array values returned by
HWI_ierToWugenMasks.

Constraints and
Calling Context

None

See Also HWI_disableWugen
HWI_enableWugen
HWI_applyWugenMasks
HWI_getWugenMasks

HWI_ierToWugenMasks Compute WUGEN masks from IER register
2-200

HWI_isHWI
C Interface

Syntax result = HWI_isHWI(Void);

Parameters Void

Return Value Bool result; /* TRUE if in HWI context, FALSE otherwise */

Reentrant yes

Description This macro returns TRUE when it is called within the context of an HWI
or CLK function. This macro returns FALSE in all other contexts.

In previous versions of DSP/BIOS, calling HWI_isHWI() from main()
resulted in TRUE. This is no longer the case; main() is identified as part
of the TSK context.

See Also SWI_isSWI
TSK_isTSK

HWI_isHWI Check to see if called in the context of an HWI
Application Program Interface 2-201

HWI_restore
C Interface

Syntax HWI_restore(oldCSR);

Parameters Uns oldCSR;

Returns Void

Reentrant yes

Description HWI_restore sets the global interrupt enable (GIE) bit in the Control
Status Register (CSR) using the least significant bit of the oldCSR
parameter. If bit 0 is 0, the GIE bit is not modified. If bit 0 is 1, the GIE bit
is set to 1, which enables interrupts.

When you call HWI_disable, the previous contents of the register are
returned. You can use this returned value with HWI_restore.

A context switch may occur when calling HWI_restore if HWI_restore
reenables interrupts and if a higher-priority HWI occurred while interrupts
were disabled.

HWI_restore may be called from main(). However, since HWI_enable
cannot be called from main(), interrupts are always disabled in main(),
and a call to HWI_restore has no effect.

Constraints and
Calling Context

❏ HWI_restore must be called with interrupts disabled. The parameter
passed to HWI_restore must be the value returned by HWI_disable.

Example oldCSR = HWI_disable(); /* disable interrupts */
 'do some critical operation'
HWI_restore(oldCSR);
 /* re-enable interrupts if they
 were enabled at the start of the
 critical section */

See Also HWI_enable
HWI_disable

HWI_restore Restore global interrupt enable state
2-202

IDL Module
2.13 IDL Module

The IDL module is the idle thread manager.

Functions ❏ IDL_run. Make one pass through idle functions.

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the IDL
Manager Properties and IDL Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.
Module Configuration Parameters

Instance Configuration Parameters

Description The IDL module manages the lowest-level threads in the application. In
addition to user-created functions, the IDL module executes DSP/BIOS
functions that handle host communication and CPU load calculation.

There are four kinds of threads that can be executed by DSP/BIOS
programs: hardware interrupts (HWI Module), software interrupts (SWI
Module), tasks (TSK Module), and background threads (IDL module).
Background threads have the lowest priority, and execute only if no
hardware interrupts, software interrupts, or tasks need to run.

An application’s main() function must return before any DSP/BIOS
threads can run. After the return, DSP/BIOS runs the idle loop. Once an
application is in this loop, HWI hardware interrupts, SWI software
interrupts, PRD periodic functions, TSK task functions, and IDL
background threads are all enabled.

The functions for IDL objects registered with the configuration are run in
sequence each time the idle loop runs. IDL functions are called from the

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

AUTOCALCULATE Bool true

LOOPINSTCOUNT Int32 1000

Name Type Default

comment String "<add comments here>"

fxn Extern prog.extern("FXN_F_nop")

calibration Bool true

order Int16 0
Application Program Interface 2-203

IDL Module
IDL context. IDL functions can be written in C or assembly and must
follow the C calling conventions described in the compiler manual.

When RTA is enabled (see page 2–133), an application contains an
IDL_cpuLoad object, which runs a function that provides data about the
CPU utilization of the application. In addition, the LNK_dataPump
function handles host I/O in the background, and the RTA_dispatch
function handles run-time analysis communication.

The IDL Function Manager allows you to insert additional functions that
are executed in a loop whenever no other processing (such as HWIs or
higher-priority tasks) is required.

IDL Manager
Properties

The following global properties can be set for the IDL module in the IDL
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment that contains the IDL
objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.IDL.OBJMEMSEG = prog.get("myMEM");

❏ Auto calculate idle loop instruction count. When this property is
set to true, the program runs the IDL functions one or more times at
system startup to get an approximate value for the idle loop
instruction count. This value, saved in the global variable
CLK_D_idletime, is read by the host and used in the CPU load
calculation. By default, the instruction count includes all IDL
functions, not just LNK_dataPump, RTA_dispatcher, and
IDL_cpuLoad. You can remove an IDL function from the calculation
by setting the "Include in CPU load calibration" property for an IDL
object to false.

Remember that functions included in the calibration are run before
the main() function runs. These functions should not access data
structures that are not initialized before the main() function runs. In
particular, functions that perform any of the following actions should
not be included in the idle loop calibration:
■ enabling hardware interrupts or the SWI or TSK schedulers
■ using CLK APIs to get the time
■ accessing PIP objects
■ blocking tasks
■ creating dynamic objects
Tconf Name: AUTOCALCULATE Type: Bool
Example: bios.IDL.AUTOCALCULATE = true;
2-204

IDL Module
❏ Idle Loop Instruction Count. This is the number of instruction
cycles required to perform the IDL loop and the default IDL functions
(LNK_dataPump, RTA_dispatcher, and IDL_cpuLoad) that
communicate with the host. Since these functions are performed
whenever no other processing is needed, background processing is
subtracted from the CPU load before it is displayed.
Tconf Name: LOOPINSTCOUNT Type: Int32
Example: bios.IDL.LOOPINSTCOUNT = 1000;

IDL Object Properties Each idle function runs to completion before another idle function can
run. It is important, therefore, to ensure that each idle function completes
(that is, returns) in a timely manner.

To create an IDL object in a configuration script, use the following syntax.
The Tconf examples assume the object is created as shown here.

var myIdl = bios.IDL.create("myIdl");

The following properties can be set for an IDL object:

❏ comment. Type a comment to identify this IDL object.
Tconf Name: comment Type: String
Example: myIdl.comment = "IDL function";

❏ function. The function to execute. If this function is written in C and
you use the DSP/BIOS Configuration Tool, use a leading underscore
before the C function name. (The DSP/BIOS Configuration Tool
generates assembly code, which must use leading underscores
when referencing C functions or labels.) If you use Tconf, do not add
an underscore before the function name; Tconf adds the underscore
to call a C function from assembly internally.
Tconf Name: fxn Type: Extern
Example: myIdl.fxn = prog.extern("myIDL");

❏ Include in CPU load calibration. You can remove an individual IDL
function from the CPU load calculation by setting this property to
false. The CPU load calibration is performed only if the "Auto
calculate idle loop instruction count" property is true in the IDL
Manager Properties. You should remove a function from the
calculation if it blocks or depends on variables or structures that are
not initialized until the main() function runs.
Tconf Name: calibration Type: Bool
Example: myIdl.calibration = true;

❏ order. Set this property for all IDL objects so that the numbers match
the sequence in which IDL functions should be executed.
Tconf Name: order Type: Int16
Example: myIdl.order = 2;
Application Program Interface 2-205

IDL_run
C Interface

Syntax IDL_run();

Parameters Void

Return Value Void

Description IDL_run makes one pass through the list of configured IDL objects,
calling one function after the next. IDL_run returns after all IDL functions
have been executed one time. IDL_run is not used by most DSP/BIOS
applications since the IDL functions are executed in a loop when the
application returns from main. IDL_run is provided to allow easy
integration of the real-time analysis features of DSP/BIOS (for example,
LOG and STS) into existing applications.

IDL_run must be called to transfer the real-time analysis data to and from
the host computer. Though not required, this is usually done during idle
time when no HWI or SWI threads are running.

Note:

BIOS_init and BIOS_start must be called before IDL_run to ensure that
DSP/BIOS has been initialized. For example, the DSP/BIOS boot file
contains the following system calls around the call to main:

BIOS_init(); /* initialize DSP/BIOS */
main();
BIOS_start() /* start DSP/BIOS */
IDL_loop(); /* call IDL_run in an infinite loop */

Constraints and
Calling Context

❏ IDL_run cannot be called by an HWI or SWI function.

IDL_run Make one pass through idle functions
2-206

LCK Module
2.14 LCK Module

The LCK module is the resource lock manager.

Functions ❏ LCK_create. Create a resource lock

❏ LCK_delete. Delete a resource lock

❏ LCK_pend. Acquire ownership of a resource lock

❏ LCK_post. Relinquish ownership of a resource lock

Constants, Types,
and Structures

typedef struct LCK_Obj *LCK_Handle; /* resource handle */

/* lock object */
typedef struct LCK_Attrs LCK_Attrs;

struct LCK_Attrs {
 Int dummy;
};

LCK_Attrs LCK_ATTRS = {0}; /* default attribute values */

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the LCK
Manager Properties and LCK Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameter.

Description The lock module makes available a set of functions that manipulate lock
objects accessed through handles of type LCK_Handle. Each lock
implicitly corresponds to a shared global resource, and is used to
arbitrate access to this resource among several competing tasks.

The LCK module contains a pair of functions for acquiring and
relinquishing ownership of resource locks on a per-task basis. These
functions are used to bracket sections of code requiring mutually
exclusive access to a particular resource.

LCK lock objects are semaphores that potentially cause the current task
to suspend execution when acquiring a lock.

LCK Manager
Properties

The following global property can be set for the LCK module on the LCK
Manager Properties dialog in the DSP/BIOS Configuration Tool or in a
Tconf script:

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")
Application Program Interface 2-207

LCK Module
❏ Object Memory. The memory segment that contains the LCK
objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.LCK.OBJMEMSEG = prog.get("myMEM");

LCK Object Properties To create a LCK object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.

var myLck = bios.LCK.create("myLck");

The following property can be set for a LCK object in the LCK Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this LCK object.
Tconf Name: comment Type: String
Example: myLck.comment = "LCK object";
2-208

LCK_create
C Interface

Syntax lock = LCK_create(attrs);

Parameters LCK_Attrs attrs; /* pointer to lock attributes */

Return Value LCK_Handle lock; /* handle for new lock object */

Description LCK_create creates a new lock object and returns its handle. The lock
has no current owner and its corresponding resource is available for
acquisition through LCK_pend.

If attrs is NULL, the new lock is assigned a default set of attributes.
Otherwise the lock’s attributes are specified through a structure of type
LCK_Attrs.

Note:

At present, no attributes are supported for lock objects.

All default attribute values are contained in the constant LCK_ATTRS,
which can be assigned to a variable of type LCK_Attrs prior to calling
LCK_create.

LCK_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Module, page
2–241.

Constraints and
Calling Context

❏ LCK_create cannot be called from a SWI or HWI.

❏ You can reduce the size of your application program by creating
objects with Tconf rather than using the XXX_create functions.

See Also LCK_delete
LCK_pend
LCK_post

LCK_create Create a resource lock
Application Program Interface 2-209

LCK_delete
C Interface

Syntax LCK_delete(lock);

Parameters LCK_Handle lock; /* lock handle */

Return Value Void

Description LCK_delete uses MEM_free to free the lock referenced by lock.

LCK_delete calls MEM_free to delete the LCK object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ LCK_delete cannot be called from a SWI or HWI.

❏ No task should be awaiting ownership of the lock.

❏ No check is performed to prevent LCK_delete from being used on a
statically-created object. If a program attempts to delete a lock object
that was created using Tconf, SYS_error is called.

See Also LCK_create
LCK_pend
LCK_post

LCK_delete Delete a resource lock
2-210

LCK_pend
C Interface

Syntax status = LCK_pend(lock, timeout);

Parameters LCK_Handle lock; /* lock handle */
Uns timeout; /* return after this many system clock ticks */

Return Value Bool status; /* TRUE if successful, FALSE if timeout */

Description LCK_pend acquires ownership of lock, which grants the current task
exclusive access to the corresponding resource. If lock is already owned
by another task, LCK_pend suspends execution of the current task until
the resource becomes available.

The task owning lock can call LCK_pend any number of times without risk
of blocking, although relinquishing ownership of the lock requires a
balancing number of calls to LCK_post.

LCK_pend results in a context switch if this LCK timeout is greater than
0 and the lock is already held by another thread.

LCK_pend returns TRUE if it successfully acquires ownership of lock,
returns FALSE if a timeout occurs before it can acquire ownership.
LCK_pend returns FALSE if it is called from the context of a SWI or HWI,
even if the timeout is zero.

Note: RTS Functions Callable from TSK Threads Only
Many run-time support (RTS) functions use lock and unlock functions
to prevent reentrancy. However, DSP/BIOS SWI and HWI threads
cannot call LCK_pend and LCK_post. As a result, RTS functions that
call LCK_pend or LCK_post must not be called in the context of a SWI
or HWI thread.

To determine whether a particular RTS function uses LCK_pend or
LCK_post, refer to the source code for that function shipped with Code
Composer Studio. The following table lists some RTS functions that call
LCK_pend and LCK_post in certain versions of Code Composer Studio:

LCK_pend Acquire ownership of a resource lock

fprintf printf vfprintf sprintf

vprintf vsprintf clock strftime

minit malloc realloc free

calloc rand srand getenv
Application Program Interface 2-211

LCK_pend
The C++ new operator calls malloc, which in turn calls LCK_pend. As a
result, the new operator cannot be used in the context of a SWI or HWI
thread.

Constraints and
Calling Context

❏ The lock must be a handle for a resource lock object created through
a prior call to LCK_create.

❏ LCK_pend should not be called from a SWI or HWI thread.

❏ LCK_pend should not be called from main().

See Also LCK_create
LCK_delete
LCK_post
2-212

LCK_post
C Interface

Syntax LCK_post(lock);

Parameters LCK_Handle lock; /* lock handle */

Return Value Void

Description LCK_post relinquishes ownership of lock, and resumes execution of the
first task (if any) awaiting availability of the corresponding resource. If the
current task calls LCK_pend more than once with lock, ownership
remains with the current task until LCK_post is called an equal number of
times.

LCK_post results in a context switch if a higher priority thread is currently
pending on the lock.

Constraints and
Calling Context

❏ lock must be a handle for a resource lock object created through a
prior call to LCK_create.

❏ LCK_post should not be called from a SWI or HWI thread.

❏ LCK_post should not be called from main().

See Also LCK_create
LCK_delete
LCK_pend

LCK_post Relinquish ownership of a resource LCK
Application Program Interface 2-213

LOG Module
2.15 LOG Module

The LOG module captures events in real time.

Functions ❏ LOG_disable. Disable the system log.

❏ LOG_enable. Enable the system log.

❏ LOG_error. Write a user error event to the system log.

❏ LOG_event. Append unformatted message to message log.

❏ LOG_event5. Append 5-argument unformatted message to log.

❏ LOG_message. Write a user message event to the system log.

❏ LOG_printf. Append formatted message to message log.

❏ LOG_printf4. Append 4-argument formatted message to log.

❏ LOG_reset. Reset the system log.

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the LOG
Manager Properties and LOG Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

TS Bool false

Name Type Default (Enum Options)

comment String "<add comments here>"

bufSeg Reference prog.get("IDRAM")

bufLen EnumInt 64 (0, 8, 16, 32, 64, ..., 32768)

logType EnumString "circular" ("fixed)

dataType EnumString "printf" ("raw data")

format String "0x%x, 0x%x, 0x%x"
2-214

LOG Module
Description The Event Log is used to capture events in real time while the target
program executes. You can use the system log, or create user-defined
logs. If the logtype is circular, the log buffer of size buflen contains the last
buflen elements. If the logtype is fixed, the log buffer contains the first
buflen elements.

The system log stores messages about system events for the types of log
tracing you have enabled. See the TRC Module, page 2–471, for a list of
events that can be traced in the system log.

You can add messages to user logs or the system log by using
LOG_printf or LOG_event. To reduce execution time, log data is always
formatted on the host.

LOG_error writes a user error event to the system log. This operation is
not affected by any TRC trace bits; an error event is always written to the
system log. LOG_message writes a user message event to the system
log, provided that both TRC_GBLHOST and TRC_GBLTARG (the host
and target trace bits, respectively) traces are enabled.

When a problem is detected on the target, it is valuable to put a message
in the system log. This allows you to correlate the occurrence of the
detected event with the other system events in time. LOG_error and
LOG_message can be used for this purpose.

Log buffers are of a fixed size and reside in data memory. Individual
messages use four words of storage in the log’s buffer. The first word
holds a sequence number that allows the Event Log to display logs in the
correct order. The remaining three words contain data specified by the
call that wrote the message to the log.

See the Code Composer Studio online tutorialfor examples of how to use
the LOG Manager.

LOG Manager
Properties

The following global property can be set for the LOG module in the LOG
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment that contains the LOG
objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.LOG.OBJMEMSEG = prog.get("myMEM");

❏ timestamped LOGs. If enabled, timestamps are added to LOG
records created by LOG APIs. The timestamp uses the same counter
used by CLK_gethtime. When timestamping is enabled, each LOG
record is 8 words. When timestamping is disabled, each LOG record
is 4 words. You must enable timestamping in order to use the
Application Program Interface 2-215

LOG Module
LOG_event5 and LOG_printf4 APIs. When you enable
timestamping, the logs cannot be handled by the DSP/BIOS plug-ins
in CCStudio. However, timestamped logs are supported by the
System Analyzer Tool.
Tconf Name: TS Type: Bool
Example: bios.LOG.TS = false;

LOG Object Properties To create a LOG object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.

var myLog = bios.LOG.create("myLog");

The following properties can be set for a log object on the LOG Object
Properties dialog in the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this LOG object.
Tconf Name: comment Type: String
Example: myLog.comment = "trace LOG";

❏ bufseg. The name of a memory segment to contain the log buffer.
Tconf Name: bufSeg Type: Reference
Example: myLog.bufSeg = prog.get("myMEM");

❏ buflen. The length of the log buffer (in words).
Tconf Name: bufLen Type: EnumInt
Options: 0, 8, 16, 32, 64, ..., 32768
Example: myLog.bufLen = 64;

❏ logtype. The type of the log: circular or fixed. Events added to a full
circular log overwrite the oldest event in the buffer, whereas events
added to a full fixed log are dropped.

■ Fixed. The log stores the first messages it receives and stops
accepting messages when its message buffer is full.

■ Circular. The log automatically overwrites earlier messages
when its buffer is full. As a result, a circular log stores the last
events that occur.

Tconf Name: logType Type: EnumString
Options: "circular", "fixed"
Example: myLog.logType = "circular";

❏ datatype. Choose printf if you use LOG_printf to write to this log and
provide a format string.
2-216

LOG Module
Choose raw data if you want to use LOG_event to write to this log
and have the Event Log apply a printf-style format string to all records
in the log.
Tconf Name: dataType Type: EnumString
Options: "printf", "raw data"
Example: myLog.dataType = "printf";

❏ format. If you choose raw data as the datatype, type a printf-style
format string for this property. Provide up to three (3) conversion
characters (such as %d) to format words two, three, and four in all
records in the log. Do not put quotes around the format string. The
format string can use %d, %u, %x, %o, %s, %r, and %p conversion
characters; it cannot use other types of conversion characters. See
LOG_printf, page 2–225, and LOG_event, page 2–221, for
information about the structure of a log record.
Tconf Name: format Type: String
Example: myLog.format = "0x%x, 0x%x, 0x%x";
Application Program Interface 2-217

LOG_disable
C Interface

Syntax LOG_disable(log);

Parameters LOG_Handle log; /* log object handle */

Return Value Void

Reentrant no

Description LOG_disable disables the logging mechanism and prevents the log
buffer from being modified.

Example LOG_disable(&trace);

See Also LOG_enable
LOG_reset

LOG_disable Disable a message log
2-218

LOG_enable
C Interface

Syntax LOG_enable(log);

Parameters LOG_Handle log; /* log object handle */

Return Value Void

Reentrant no

Description LOG_enable enables the logging mechanism and allows the log buffer to
be modified.

Example LOG_enable(&trace);

See Also LOG_disable
LOG_reset

LOG_enable Enable a message log
Application Program Interface 2-219

LOG_error
C Interface

Syntax LOG_error(format, arg0);

Parameters String format; /* printf-style format string */
Arg arg0; /* copied to second word of log record */

Return Value Void

Reentrant yes

Description LOG_error writes a program-supplied error message to the system log,
which is defined in the default configuration by the LOG_system object.
LOG_error is not affected by any TRC bits; an error event is always
written to the system log.

The format argument can contain any of the conversion characters
supported for LOG_printf. See LOG_printf for details.

Example Void UTL_doError(String s, Int errno)
{
 LOG_error("SYS_error called: error id = 0x%x", errno);
 LOG_error("SYS_error called: string = '%s'", s);
}

See Also LOG_event
LOG_message
LOG_printf
TRC_disable
TRC_enable

LOG_error Write an error message to the system log
2-220

LOG_event
C Interface

Syntax LOG_event(log, arg0, arg1, arg2);

Parameters LOG_Handle log; /* log objecthandle */
Arg arg0; /* copied to second word of log record */
Arg arg1; /* copied to third word of log record */
Arg arg2; /* copied to fourth word of log record */

Return Value Void

Reentrant yes

Description LOG_event copies a sequence number and three arguments to the
specified log buffer. Each log message uses four words. The contents of
the four words written by LOG_event are shown here:

You can format the log by using LOG_printf instead of LOG_event.

If you want the Event Log to apply the same printf-style format string to
all records in the log, use Tconf to choose raw data for the datatype
property and type a format string for the format property (see “LOG
Object Properties” on page 2-216).

If the logtype is circular, the log buffer of size buflen contains the last
buflen elements. If the logtype is fixed, the log buffer contains the first
buflen elements.

Any combination of threads can write to the same log. Internally,
hardware interrupts are temporarily disabled during a call to LOG_event.
Log messages are never lost due to thread preemption.

Example LOG_event(&trace, (Arg)value1, (Arg)value2,
 (Arg)CLK gethtime());

See Also LOG_error
LOG_printf
TRC_disable
TRC_enable

LOG_event Append an unformatted message to a message log

Sequence # arg0 arg1 arg2LOG_event
Application Program Interface 2-221

LOG_event5
C Interface

Syntax LOG_event5(log, arg0, arg1, arg2, arg3, arg4);

Parameters LOG_Handle log; /* log objecthandle */
Arg arg0; /* copied to second word of log record */
Arg arg1; /* copied to third word of log record */
Arg arg2; /* copied to fourth word of log record */
Arg arg3; /* copied to fifth word of log record */
Arg arg4; /* copied to sixth word of log record */

Return Value Void

Reentrant yes

Description LOG_event5 copies a sequence number, timestamp, and up to five
arguments to the specified log buffer.

In order to use LOG_event5, you must have configured the LOG.TS
(timestamped logs) property to be true. The default is false. See LOG
Manager Properties for details.

If you enable timestamped logs, you cannot view log data with the
DSP/BIOS plug-ins in CCStudio. You can access them with the System
Analyzer tool.

When you enable timestamped LOGs, each log record contains eight
words. The contents of the eight words written by LOG_event5 are shown
here:

You can use a combination of calls to LOG_event, LOG_event5,
LOG_printf, and LOG_printf4 to the same log so long as timestamped
logs are enabled.

If you want the Event Log to apply the same printf-style format string to
all records in the log, use Tconf to choose raw data for the datatype
property and type a format string for the format property (see “LOG
Object Properties” on page 2-216).

LOG_event5 Append an unformatted 5-argument message to a message log
2-222

LOG_event5
If the logtype is circular, the log buffer of size buflen contains the last
buflen elements. If the logtype is fixed, the log buffer contains the first
buflen elements.

Any combination of threads can write to the same log. Internally,
hardware interrupts are temporarily disabled during a call to
LOG_event5. Log messages are never lost due to thread preemption.

Example LOG_event5(&trace, (Arg)value0, (Arg)value1, (Arg)value2,
 (Arg)value3, (Arg)CLK gethtime());

See Also LOG_event
LOG_printf4
Application Program Interface 2-223

LOG_message
C Interface

Syntax LOG_message(format, arg0);

Parameters String format; /* printf-style format string */
Arg arg0; /* copied to second word of log record */

Return Value Void

Reentrant yes

Description LOG_message writes a program-supplied message to the system log,
provided that both the host and target trace bits are enabled.

The format argument passed to LOG_message can contain any of the
conversion characters supported for LOG_printf. See LOG_printf, page
2–225, for details.

Example Void UTL_doMessage(String s, Int errno)
{
 LOG_message("SYS_error called: error id = 0x%x", errno);
 LOG_message("SYS_error called: string = '%s'", s);
}

See Also LOG_error
LOG_event
LOG_printf
TRC_disable
TRC_enable

LOG_message Write a program-supplied message to the system log
2-224

LOG_printf
C Interface

Syntax LOG_printf(log, format);
 or
LOG_printf(log, format,arg0);
 or
LOG_printf(log, format, arg0, arg1);

Parameters LOG_Handle log; /* log object handle */
String format; /* printf format string */
Arg arg0; /* value for first format string token */
Arg arg1; /* value for second format string token */

Return Value Void

Reentrant yes

Description As a convenience for C (as well as assembly language) programmers,
the LOG module provides a variation of the ever-popular printf.
LOG_printf copies a sequence number, the format address, and two
arguments to the specified log buffer.

To reduce execution time, log data is always formatted on the host. The
format string is stored on the host and accessed by the Event Log.

The arguments passed to LOG_printf must be integers, strings, or a
pointer (if the special %r or %p conversion character is used).

The format string can use any conversion character found in Table 2-5.

Table 2-5. Conversion Characters for LOG_printf

LOG_printf Append a formatted message to a message log

Conversion Character Description

%d Signed integer

%u Unsigned integer

%x Unsigned hexadecimal integer

%o Unsigned octal integer
Application Program Interface 2-225

LOG_printf
If you want the Event Log to apply the same printf-style format string to
all records in the log, use Tconf to choose raw data for the datatype
property of this LOG object and typing a format string for the format
property.

%s Character string
This character can only be used with constant string pointers.
That is, the string must appear in the source and be passed to
LOG_printf. For example, the following is supported:

char *msg = "Hello world!";
LOG_printf(&trace, "%s", msg);

However, the following example is not supported:
char msg[100];
strcpy(msg, "Hello world!");
LOG_printf(&trace, "%s", msg);

If the string appears in the COFF file and a pointer to the
string is passed to LOG_printf, then the string in the COFF
file is used by the Event Log to generate the output.
If the string can not be found in the COFF file, the format
string is replaced with *** ERROR: 0x%x 0x%x ***\n,
which displays all arguments in hexadecimal.

%r Symbol from symbol table
This is an extension of the standard printf format tokens. This
character treats its parameter as a pointer to be looked up in
the symbol table of the executable and displayed. That is, %r
displays the symbol (defined in the executable) whose value
matches the value passed to %r. For example:

Int testval = 17;
LOG_printf("%r = %d", &testval, testval);

displays:
testval = 17

If no symbol is found for the value passed to %r, the Event
Log uses the string <unknown symbol>.

%p pointer

Conversion Character Description
2-226

LOG_printf
Each log message uses four words. The contents of the message written
by LOG_printf are shown here:

You configure the characteristics of a log in Tconf. If the logtype is
circular, the log buffer of size buflen contains the last buflen elements. If
the logtype is fixed, the log buffer contains the first buflen elements.

Any combination of threads can write to the same log. Internally,
hardware interrupts are temporarily disabled during a call to LOG_printf.
Log messages are never lost due to thread preemption.

Constraints and
Calling Context

❏ LOG_printf supports only 0, 1, or 2 arguments after the format string.

❏ The format string address is put in b6 as the third value for
LOG_event.

Example LOG_printf(&trace, "hello world");
LOG_printf(&trace, "Size of Int is: %d", sizeof(Int));

See Also LOG_error
LOG_event
TRC_disable
TRC_enable

Sequence # Format
addressarg0 arg1LOG_printf
Application Program Interface 2-227

LOG_printf4
C Interface

Syntax LOG_printf4(log, format, arg0, arg1, arg2, arg3);

Parameters LOG_Handle log; /* log object handle */
String format; /* printf format string */
Arg arg0; /* value for first format string token */
Arg arg1; /* value for second format string token */
Arg arg2; /* value for third format string token */
Arg arg3; /* value for fourth format string token */

Return Value Void

Reentrant yes

Description This variant on the LOG_printf function allows you to provide up to 4
arguments to be formatted by the format string. Four arguments are not
required—you may use 0, 1, 2, 3, or 4 arguments.

This function behaves the same as LOG_printf with the following
exceptions:

LOG_printf4 copies a sequence number, format address, timestamp, and
up to four arguments to the specified log buffer.

In order to use LOG_printf4, you must have configured the LOG.TS
(timestamped logs) property to be true. The default is false. See LOG
Manager Properties for details.

If you enable timestamped logs, you cannot view log data with the
DSP/BIOS plug-ins in CCStudio. You can access them with the System
Analyzer tool.

When you enable timestamped LOGs, each log record contains eight
words. The contents of the eight words written by LOG_printf4 are shown
here:

LOG_printf4 Append a formatted message with up to 4 arguments to message log
2-228

LOG_printf4
You can use a combination of calls to LOG_event, LOG_event5,
LOG_printf, and LOG_printf4 to the same log so long as timestamped
logs are enabled.

Constraints and
Calling Context

❏ none

Example LOG_printf4(&trace, "hello world");
LOG_printf4(&trace, "Data: %d %d %d %d", data1, data2,
data3, data4);

See Also LOG_event5
LOG_printf
Application Program Interface 2-229

LOG_reset
C Interface

Syntax LOG_reset(log);

Parameters LOG_Handle log /* log object handle */

Return Value Void

Reentrant no

Description LOG_reset enables the logging mechanism and allows the log buffer to
be modified starting from the beginning of the buffer, with sequence
number starting from 0.

LOG_reset does not disable interrupts or otherwise protect the log from
being modified by an HWI or other thread. It is therefore possible for the
log to contain inconsistent data if LOG_reset is preempted by an HWI or
other thread that uses the same log.

Example LOG_reset(&trace);

See Also LOG_disable
LOG_enable

LOG_reset Reset a message log
2-230

MBX Module
2.16 MBX Module

The MBX module is the mailbox manager.

Functions ❏ MBX_create. Create a mailbox

❏ MBX_delete. Delete a mailbox

❏ MBX_pend. Wait for a message from mailbox

❏ MBX_post. Post a message to mailbox

Constants, Types,
and Structures

typedef struct MBX_Obj *MBX_Handle;
 /* handle for mailbox object */

struct MBX_Attrs { /* mailbox attributes */
 Int segid;
};

MBX_Attrs MBX_ATTRS = {/* default attribute values */
 0,
};

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the MBX
Manager Properties and MBX Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Description The MBX module makes available a set of functions that manipulate
mailbox objects accessed through handles of type MBX_Handle.
Mailboxes can hold up to the number of messages specified by the
Mailbox Length property in Tconf.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default

comment String "<add comments here>"

messageSize Int16 1

length Int16 1

elementSeg Reference prog.get("IDRAM")
Application Program Interface 2-231

MBX Module
MBX_pend waits for a message from a mailbox. Its timeout parameter
allows the task to wait until a timeout. A timeout value of SYS_FOREVER
causes the calling task to wait indefinitely for a message. A timeout value
of zero (0) causes MBX_pend to return immediately. MBX_pend’s return
value indicates whether the mailbox was signaled successfully.

MBX_post is used to send a message to a mailbox. The timeout
parameter to MBX_post specifies the amount of time the calling task
waits if the mailbox is full. If a task is waiting at the mailbox, MBX_post
removes the task from the queue and puts it on the ready queue. If no
task is waiting and the mailbox is not full, MBX_post simply deposits the
message and returns.

MBX Manager
Properties

The following global property can be set for the MBX module on the MBX
Manager Properties dialog in the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment that contains the MBX
objects created with Tconf.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.MBX.OBJMEMSEG = prog.get("myMEM");

MBX Object Properties To create an MBX object in a configuration script, use the following
syntax. The Tconf examples that follow assume the object has been
created as shown here.

var myMbx = bios.MBX.create("myMbx");

The following properties can be set for an MBX object in the MBX Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this MBX object.
Tconf Name: comment Type: String
Example: myMbx.comment = "my MBX";

❏ Message Size. The size (in MADUs, 8-bit bytes) of the messages
this mailbox can contain.
Tconf Name: messageSize Type: Int16
Example: myMbx.messageSize = 1;

❏ Mailbox Length. The number of messages this mailbox can contain.
Tconf Name: length Type: Int16
Example: myMbx.length = 1;

❏ Element memory segment. The memory segment to contain the
mailbox data buffers.
Tconf Name: elementSeg Type: Reference
Example: myMbx.elementSeg = prog.get("myMEM");
2-232

MBX_create
C Interface

Syntax mbx = MBX_create(msgsize, mbxlength, attrs);

Parameters size_t msgsize; /* size of message */
Uns mbxlength;/* length of mailbox */
MBX_Attrs *attrs; /* pointer to mailbox attributes */

Return Value MBX_Handle mbx; /* mailbox object handle */

Description MBX_create creates a mailbox object which is initialized to contain up to
mbxlength messages of size msgsize. If successful, MBX_create returns
the handle of the new mailbox object. If unsuccessful, MBX_create
returns NULL unless it aborts (for example, because it directly or
indirectly calls SYS_error, and SYS_error causes an abort).

If attrs is NULL, the new mailbox is assigned a default set of attributes.
Otherwise, the mailbox’s attributes are specified through a structure of
type MBX_Attrs.

All default attribute values are contained in the constant MBX_ATTRS,
which can be assigned to a variable of type MBX_Attrs prior to calling
MBX_create.

MBX_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Module, page
2–241.

Constraints and
Calling Context

❏ MBX_create cannot be called from a SWI or HWI.

❏ You can reduce the size of your application program by creating
objects with Tconf rather than using the XXX_create functions.

See Also MBX_delete
SYS_error

MBX_create Create a mailbox
Application Program Interface 2-233

MBX_delete
C Interface

Syntax MBX_delete(mbx);

Parameters MBX_Handle mbx; /* mailbox object handle */

Return Value Void

Description MBX_delete frees the mailbox object referenced by mbx.

MBX_delete calls MEM_free to delete the MBX object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ No tasks should be pending on mbx when MBX_delete is called.

❏ MBX_delete cannot be called from a SWI or HWI.

❏ No check is performed to prevent MBX_delete from being used on a
statically-created object. If a program attempts to delete a mailbox
object that was created using Tconf, SYS_error is called.

See Also MBX_create

MBX_delete Delete a mailbox
2-234

MBX_pend
C Interface

Syntax status = MBX_pend(mbx, msg, timeout);

Parameters MBX_Handle mbx; /* mailbox object handle */
Ptr msg; /* message pointer */
Uns timeout; /* return after this many system clock ticks */

Return Value Bool status; /* TRUE if successful, FALSE if timeout */

Description If the mailbox is not empty, MBX_pend copies the first message into msg
and returns TRUE. Otherwise, MBX_pend suspends the execution of the
current task until MBX_post is called or the timeout expires. The actual
time of task suspension can be up to 1 system clock tick less than timeout
due to granularity in system timekeeping.

If timeout is SYS_FOREVER, the task remains suspended until
MBX_post is called on this mailbox. If timeout is 0, MBX_pend returns
immediately.

If timeout expires (or timeout is 0) before the mailbox is available,
MBX_pend returns FALSE. Otherwise MBX_pend returns TRUE.

A task switch occurs when calling MBX_pend if the mailbox is empty and
timeout is not 0, or if a higher priority task is blocked on MBX_post.

Constraints and
Calling Context

❏ This API can be called from a TSK with any timeout value, but if
called from an HWI or SWI the timeout must be 0.

❏ If you need to call MBX_pend within a TSK_disable/TSK_enable
block, you must use a timeout of 0.

❏ MBX_pend cannot be called from the program’s main() function.

See Also MBX_post

MBX_pend Wait for a message from mailbox
Application Program Interface 2-235

MBX_post
C Interface

Syntax status = MBX_post(mbx, msg, timeout);

Parameters MBX_Handle mbx; /* mailbox object handle */
Ptr msg; /* message pointer */
Uns timeout; /* return after this many system clock ticks */

Return Value Bool status; /* TRUE if successful, FALSE if timeout */

Description MBX_post checks to see if there are any free message slots before
copying msg into the mailbox. MBX_post readies the first task (if any)
waiting on mbx.

If the mailbox is full and timeout is SYS_FOREVER, the task remains
suspended until MBX_pend is called on this mailbox. If timeout is 0,
MBX_post returns immediately. Otherwise, the task is suspended for
timeout system clock ticks. The actual time of task suspension can be up
to 1 system clock tick less than timeout due to granularity in system
timekeeping.

If timeout expires (or timeout is 0) before the mailbox is available,
MBX_post returns FALSE. Otherwise MBX_post returns TRUE.

A task switch occurs when calling MBX_post if a higher priority task is
made ready to run, or if there are no free message slots and timeout is
not 0.

Constraints and
Calling Context

❏ If you need to call MBX_post within a TSK_disable/TSK_enable
block, you must use a timeout of 0.

❏ This API can be called from a TSK with any timeout value, but if
called from an HWI or SWI the timeout must be 0.

❏ MBX_post can be called from the program’s main() function.
However, the number of calls should not be greater than the number
of messages the mailbox can hold. Additional calls have no effect.

See Also MBX_pend

MBX_post Post a message to mailbox
2-236

MEM Module
2.17 MEM Module

The MEM module is the memory segment manager.

Functions ❏ MEM_alloc. Allocate from a memory segment.
❏ MEM_calloc. Allocate and initialize to 0.
❏ MEM_define. Define a new memory segment.
❏ MEM_free. Free a block of memory.

❏ MEM_getBaseAddress. Get base address of memory heap.

❏ MEM_increaseTableSize. Increase the internal MEM table size.
❏ MEM_redefine. Redefine an existing memory segment.
❏ MEM_stat. Return the status of a memory segment.
❏ MEM_undefine. Undefine an existing memory segment.
❏ MEM_valloc. Allocate and initialize to a value.

Constants, Types,
and Structures

MEM->MALLOCSEG = 0; /* segid for malloc, free */

#define MEM_HEADERSIZE /* free block header size */
#define MEM_HEADERMASK /* mask to align on
 MEM_HEADERSIZE */
#define MEM_ILLEGAL /* illegal memory address */

MEM_Attrs MEM_ATTRS ={ /* default attribute values */
 0
};
typedef struct MEM_Segment {
 Ptr base; /* base of the segment */
 MEM_sizep length; /* size of the segment */
 Uns space; /* memory space */
} MEM_Segment;

typedef struct MEM_Stat {
 MEM_sizep size; /* original size of segment */
 MEM_sizep used; /* MADUs used in segment */
 size_t length; /* largest contiguous block */
} MEM_Stat;

typedef unsigned int MEM_sizep;

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. The defaults shown are
for ’C62x and ’C67x. The memory segment defaults are different for
’C64x. For details, see the MEM Manager Properties and MEM Object
Properties headings. For descriptions of data types, see Section 1.4,
DSP/BIOS Tconf Overview, page 1-4.
Application Program Interface 2-237

MEM Module
Module Configuration Parameters.

Name Type Default (Enum Options)

REUSECODESPACE Bool false

ARGSSIZE Numeric 0x0004

STACKSIZE Numeric 0x0100

NOMEMORYHEAPS Bool false

BIOSOBJSEG Reference prog.get("IDRAM")

MALLOCSEG Reference prog.get("IDRAM")

USEMPC Bool false (C64x+ only)

ARGSSEG Reference prog.get("IDRAM")

STACKSEG Reference prog.get("IDRAM")

GBLINITSEG Reference prog.get("IDRAM")

TRCDATASEG Reference prog.get("IDRAM")

SYSDATASEG Reference prog.get("IDRAM")

OBJSEG Reference prog.get("IDRAM")

BIOSSEG Reference prog.get("IPRAM")

SYSINITSEG Reference prog.get("IPRAM")

HWISEG Reference prog.get("IPRAM")

HWIVECSEG Reference prog.get("IPRAM")

RTDXTEXTSEG Reference prog.get("IPRAM")

USERCOMMANDFILE Bool false

TEXTSEG Reference prog.get("IPRAM")

SWITCHSEG Reference prog.get("IDRAM")

BSSSEG Reference prog.get("IDRAM")

FARSEG Reference prog.get("IDRAM")

CINITSEG Reference prog.get("IDRAM")

PINITSEG Reference prog.get("IDRAM")

CONSTSEG Reference prog.get("IDRAM")

DATASEG Reference prog.get("IDRAM")

CIOSEG Reference prog.get("IDRAM")

ENABLELOADADDR Bool false

LOADBIOSSEG Reference prog.get("IPRAM")

LOADSYSINITSEG Reference prog.get("IPRAM")

LOADGBLINITSEG Reference prog.get("IDRAM")

LOADTRCDATASEG Reference prog.get("IDRAM")

LOADTEXTSEG Reference prog.get("IPRAM")
2-238

MEM Module
Instance Configuration Parameters

Description The MEM module provides a set of functions used to allocate storage
from one or more disjointed segments of memory. These memory
segments are specified with Tconf.

MEM always allocates an even number of MADUs and always aligns
buffers on an even boundary. This behavior is used to insure that free
buffers are always at least two MADUs in length. This behavior does not
preclude you from allocating two 512 buffers from a 1K region of on-
device memory, for example. It does, however, mean that odd allocations
consume one more MADU than expected.

If small code size is important to your application, you can reduce code
size significantly by removing the capability to dynamically allocate and
free memory. To do this, set the "No Dynamic Memory Heaps" property
for the MEM manager to true. If you remove this capability, your program
cannot call any of the MEM functions or any object creation functions
(such as TSK_create). You need to create all objects to be used by your
program statically (with Tconf). You can also create or remove the
dynamic memory heap from an individual memory segment in the
configuration.

LOADSWITCHSEG Reference prog.get("IDRAM")

LOADCINITSEG Reference prog.get("IDRAM")

LOADPINITSEG Reference prog.get("IDRAM")

LOADCONSTSEG Reference prog.get("IDRAM")

LOADHWISEG Reference prog.get("IPRAM")

LOADHWIVECSEG Reference prog.get("IPRAM")

LOADRTDXTEXTSEG Reference prog.get("IPRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

base Numeric 0x00000000

len Numeric 0x00000000

createHeap Bool true

heapSize Numeric 0x08000

enableHeapLabel Bool false

heapLabel Extern prog.extern("segment_name","asm")

space EnumString "data" ("code", "code/data")

Name Type Default (Enum Options)
Application Program Interface 2-239

MEM Module
Software modules in DSP/BIOS that allocate storage at run-time use
MEM functions; DSP/BIOS does not use the standard C function malloc.
DSP/BIOS modules use MEM to allocate storage in the segment
selected for that module with Tconf.

The MEM Manager property, Segment for malloc()/free(), is used to
implement the standard C malloc, free, and calloc functions. These
functions actually use the MEM functions (with segid = Segment for
malloc/free) to allocate and free memory.

Note:

The MEM module does not set or configure hardware registers
associated with a DSP’s memory subsystem. Such configuration is the
responsibility of the user and is typically handled by software loading
programs, or in the case of Code Composer Studio, the startup or
menu options. For example, to access external memory on a c6000
platform, the External Memory Interface (EMIF) registers must first be
set appropriately before any access. The earliest opportunity for EMIF
initialization within DSP/BIOS would be during the user initialization
hook (see Global Settings in the API Reference Guide).

MEM Manager
Properties

The DSP/BIOS Memory Section Manager allows you to specify the
memory segments required to locate the various code and data sections
of a DSP/BIOS application.

The following global properties can be set for the MEM module in the
MEM Manager Properties dialog of the DSP/BIOS Configuration Tool or
in a Tconf script:

General tab ❏ Reuse Startup Code Space. If this property is set to true, the startup
code section (.sysinit) can be reused after startup is complete.
Tconf Name: REUSECODESPACE Type: Bool
Example: bios.MEM.REUSECODESPACE = false;

❏ Argument Buffer Size. The size of the .args section. The .args
section contains the argc, argv, and envp arguments to the program's
main() function. Code Composer loads arguments for the main()
function into the .args section. The .args section is parsed by the boot
file.
Tconf Name: ARGSSIZE Type: Numeric
Example: bios.MEM.ARGSSIZE = 0x0004;
2-240

MEM Module
❏ Stack Size. The size of the global stack in MADUs. The upper-left
corner of the DSP/BIOS Configuration Tool window shows the
estimated minimum global stack size required for this application (as
a decimal number).

This size is shown as a hex value in Minimum Addressable Data
Units (MADUs). An MADU is the smallest unit of data storage that
can be read or written by the CPU. For the c6000 this is an 8-bit byte.
Tconf Name: STACKSIZE Type: Numeric
Example: bios.MEM.STACKSIZE = 0x0400;

❏ No Dynamic Memory Heaps. Put a checkmark in this box to
completely disable the ability to dynamically allocate memory and the
ability to dynamically create and delete objects. If this property is set
to true, the program may not call the MEM_alloc, MEM_valloc,
MEM_calloc, and malloc or the XXX_create function for any
DSP/BIOS module. If this property is set to true, the Segment For
DSP/BIOS Objects, Segment for malloc()/free(), and Stack segment
for dynamic tasks properties are set to MEM_NULL.

When you set this property to true, heaps already specified in MEM
segments are removed from the configuration. If you later reset this
property to false, recreate heaps by configuring properties for
individual MEM objects as needed.
Tconf Name: NOMEMORYHEAPS Type: Bool
Example: bios.MEM.NOMEMORYHEAPS = false;

❏ Segment For DSP/BIOS Objects. The default memory segment to
contain objects created at run-time with an XXX_create function. The
XXX_Attrs structure passed to the XXX_create function can override
this default. If you select MEM_NULL for this property, creation of
DSP/BIOS objects at run-time via the XXX_create functions is
disabled.
Tconf Name: BIOSOBJSEG Type: Reference
Example: bios.MEM.BIOSOBJSEG = prog.get("myMEM");

❏ Segment For malloc() / free(). The memory segment from which
space is allocated when a program calls malloc and from which
space is freed when a program calls free. If you select MEM_NULL
for this property, dynamic memory allocation at run-time is disabled.
Tconf Name: MALLOCSEG Type: Reference
Example: bios.MEM.MALLOCSEG = prog.get("myMEM");
Application Program Interface 2-241

MEM Module
❏ Enable Memory Protection Controller module. C64x+ only. Set
this property to true to enable the MPC Module. By default, this
module is disabled. If you plan to use the MPC module, you should
also leave the EXC module enabled. This is set in the "Enable EXC
module exception processing" field in the HWI Manager Properties.
Tconf Name: USEMPC Type: Bool
Example: bios.MEM.USEMPC = false;

BIOS Data tab ❏ Argument Buffer Section (.args). The memory segment containing
the .args section.
Tconf Name: ARGSSEG Type: Reference
Example: bios.MEM.ARGSSEG = prog.get("myMEM");

❏ Stack Section (.stack). The memory segment containing the global
stack. This segment should be located in RAM.
Tconf Name: STACKSEG Type: Reference
Example: bios.MEM.STACKSEG = prog.get("myMEM");

❏ DSP/BIOS Init Tables (.gblinit). The memory segment containing
the DSP/BIOS global initialization tables.
Tconf Name: GBLINITSEG Type: Reference
Example: bios.MEM.GBLINITSEG = prog.get("myMEM");

❏ TRC Initial Value (.trcdata). The memory segment containing the
TRC mask variable and its initial value. This segment must be placed
in RAM.
Tconf Name: TRCDATASEG Type: Reference
Example: bios.MEM.TRCDATASEG = prog.get("myMEM");

❏ DSP/BIOS Kernel State (.sysdata). The memory segment
containing system data about the DSP/BIOS kernel state.
Tconf Name: SYSDATASEG Type: Reference
Example: bios.MEM.SYSDATASEG = prog.get("myMEM");

❏ DSP/BIOS Conf Sections (.obj). The memory segment containing
configuration properties that can be read by the target program.
Tconf Name: OBJSEG Type: Reference
Example: bios.MEM.OBJSEG = prog.get("myMEM");

BIOS Code tab ❏ BIOS Code Section (.bios). The memory segment containing the
DSP/BIOS code.
Tconf Name: BIOSSEG Type: Reference
Example: bios.MEM.BIOSSEG = prog.get("myMEM");
2-242

MEM Module
❏ Startup Code Section (.sysinit). The memory segment containing
DSP/BIOS startup initialization code; this memory can be reused
after main starts executing.
Tconf Name: SYSINITSEG Type: Reference
Example: bios.MEM.SYSINITSEG = prog.get("myMEM");

❏ Function Stub Memory (.hwi). The memory segment containing
dispatch code for HWIs that are configured to be monitored in the
HWI Object Properties.
Tconf Name: HWISEG Type: Reference
Example: bios.MEM.HWISEG = prog.get("myMEM");

❏ Interrupt Service Table Memory (.hwi_vec). The memory segment
containing the Interrupt Service Table (IST). The IST can be placed
anywhere on the memory map, but a copy of the RESET vector
always remains at address 0x00000000.
Tconf Name: HWIVECSEG Type: Reference
Example: bios.MEM.HWIVECSEG = prog.get("myMEM");

❏ RTDX Text Segment (.rtdx_text). The memory segment containing
the code sections for the RTDX module.
Tconf Name: RTDXTEXTSEG Type: Reference
Example: bios.MEM.RTDXTEXTSEG =

prog.get("myMEM");

Compiler Sections tab ❏ User .cmd File For Compiler Sections. Put a checkmark in this box
if you want to have full control over the memory used for the sections
that follow. You must then create a linker command file that begins
by including the linker command file created by the configuration.
Your linker command file should then assign memory for the items
normally handled by the following properties. See the TMS320C6000
Optimizing Compiler User’s Guide for more details.
Tconf Name: USERCOMMANDFILE Type: Bool
Example: bios.MEM.USERCOMMANDFILE = false;

❏ Text Section (.text). The memory segment containing the
executable code, string literals, and compiler-generated constants.
This segment can be located in ROM or RAM.
Tconf Name: TEXTSEG Type: Reference
Example: bios.MEM.TEXTSEG = prog.get("myMEM");
Application Program Interface 2-243

MEM Module
❏ Switch Jump Tables (.switch). The memory segment containing
the jump tables for switch statements. This segment can be located
in ROM or RAM.
Tconf Name: SWITCHSEG Type: Reference
Example: bios.MEM.SWITCHSEG = prog.get("myMEM");

❏ C Variables Section (.bss). The memory segment containing global
and static C variables. At boot or load time, the data in the .cinit
section is copied to this segment. This segment should be located in
RAM.
Tconf Name: BSSSEG Type: Reference
Example: bios.MEM.BSSSEG = prog.get("myMEM");

❏ C Variables Section (.far). The memory segment containing global
and static variables declared as far variables.
Tconf Name: FARSEG Type: Reference
Example: bios.MEM.FARSEG = prog.get("myMEM");

❏ Data Initialization Section (.cinit). The memory segment
containing tables for explicitly initialized global and static variables
and constants. This segment can be located in ROM or RAM.
Tconf Name: CINITSEG Type: Reference
Example: bios.MEM.CINITSEG = prog.get("myMEM");

❏ C Function Initialization Table (.pinit). The memory segment
containing the table of global object constructors. Global constructors
must be called during program initialization. The C/C++ compiler
produces a table of constructors to be called at startup. The table is
contained in a named section called .pinit. The constructors are
invoked in the order that they occur in the table. This segment can be
located in ROM or RAM.
Tconf Name: PINITSEG Type: Reference
Example: bios.MEM.PINITSEG = prog.get("myMEM");

❏ Constant Sections (.const, .printf). These sections can be located
in ROM or RAM. The .const section contains string constants and
data defined with the const C qualifier. The DSP/BIOS .printf section
contains other constant strings used by the Real-Time Analysis tools.
The .printf section is not loaded onto the target. Instead, the (COPY)
directive is used for this section in the .cmd file. The .printf section is
managed along with the .const section, since it must be grouped with
the .const section to make sure that no addresses overlap. If you
specify these sections in your own .cmd file, you’ll need to do
something like the following:
2-244

MEM Module
 GROUP {
 .const: {}
 .printf (COPY): {}
 } > IRAM

Tconf Name: CONSTSEG Type: Reference
Example: bios.MEM.CONSTSEG = prog.get("myMEM");

❏ Data Section (.data). This memory segment contains program data.
This segment can be located in ROM or RAM.
Tconf Name: DATASEG Type: Reference
Example: bios.MEM.DATASEG = prog.get("myMEM");

❏ Data Section (.cio). This memory segment contains C standard I/O
buffers.
Tconf Name: CIOSEG Type: Reference
Example: bios.MEM.CIOSEG = prog.get("myMEM");

Load Address tab ❏ Specify Separate Load Addresses. If you put a checkmark in this
box, you can select separate load addresses for the sections listed
on this tab.

Load addresses are useful when, for example, your code must be
loaded into ROM, but would run faster in RAM. The linker allows you
to allocate sections twice: once to set a load address and again to set
a run address.

If you do not select a separate load address for a section, the section
loads and runs at the same address.

If you do select a separate load address, the section is allocated as
if it were two separate sections of the same size. The load address is
where raw data for the section is placed. References to items in the
section refer to the run address. The application must copy the
section from its load address to its run address. For details, see the
topics on Runtime Relocation and the .label Directive in the Code
Generation Tools help or manual.
Tconf Name: ENABLELOADADDR Type: Bool
Example: bios.MEM.ENABLELOADADDR = false;

❏ Load Address - BIOS Code Section (.bios). The memory segment
containing the load allocation of the section that contains DSP/BIOS
code.
Tconf Name: LOADBIOSSEG Type: Reference
Example: bios.MEM.LOADBIOSSEG =

prog.get("myMEM");
Application Program Interface 2-245

MEM Module
❏ Load Address - Startup Code Section (.sysinit). The memory
segment containing the load allocation of the section that contains
DSP/BIOS startup initialization code.
Tconf Name: LOADSYSINITSEG Type: Reference
Example: bios.MEM.LOADSYSINITSEG =

prog.get("myMEM");

❏ Load Address - DSP/BIOS Init Tables (.gblinit). The memory
segment containing the load allocation of the section that contains
the DSP/BIOS global initialization tables.
Tconf Name: LOADGBLINITSEG Type: Reference
Example: bios.MEM.LOADGBLINITSEG =

prog.get("myMEM");

❏ Load Address - TRC Initial Value (.trcdata). The memory segment
containing the load allocation of the section that contains the TRC
mask variable and its initial value.
Tconf Name: LOADTRCDATASEG Type: Reference
Example: bios.MEM.LOADTRCDATASEG =

prog.get("myMEM");

❏ Load Address - Text Section (.text). The memory segment
containing the load allocation of the section that contains the
executable code, string literals, and compiler-generated constants.
Tconf Name: LOADTEXTSEG Type: Reference
Example: bios.MEM.LOADTEXTSEG =

prog.get("myMEM");

❏ Load Address - Switch Jump Tables (.switch). The memory
segment containing the load allocation of the section that contains
the jump tables for switch statements.
Tconf Name: LOADSWITCHSEG Type: Reference
Example: bios.MEM.LOADSWITCHSEG =

prog.get("myMEM");

❏ Load Address - Data Initialization Section (.cinit). The memory
segment containing the load allocation of the section that contains
tables for explicitly initialized global and static variables and
constants.
Tconf Name: LOADCINITSEG Type: Reference
Example: bios.MEM.LOADCINITSEG =

prog.get("myMEM");
2-246

MEM Module
❏ Load Address - C Function Initialization Table (.pinit). The
memory segment containing the load allocation of the section that
contains the table of global object constructors.
Tconf Name: LOADPINITSEG Type: Reference
Example: bios.MEM.LOADPINITSEG =

prog.get("myMEM");

❏ Load Address - Constant Sections (.const, .printf). The memory
segment containing the load allocation of the sections that contain
string constants, data defined with the const C qualifier, and other
constant strings used by the Real-Time Analysis tools. The .printf
section is managed along with the .const section to make sure that
no addresses overlap.
Tconf Name: LOADCONSTSEG Type: Reference
Example: bios.MEM.LOADCONSTSEG =

prog.get("myMEM");

❏ Load Address - Function Stub Memory (.hwi). The memory
segment containing the load allocation of the section that contains
dispatch code for HWIs configured to be monitored.
Tconf Name: LOADHWISEG Type: Reference
Example: bios.MEM.LOADHWISEG = prog.get("myMEM");

❏ Load Address - Interrupt Service Table Memory (.hwi_vec). The
memory segment containing the load allocation of the section that
contains the Interrupt Service Table (IST).
Tconf Name: LOADHWIVECSEG Type: Reference
Example: bios.MEM.LOADHWIVECSEG =

prog.get("myMEM");

❏ Load Address - RTDX Text Segment (.rtdx_text). The memory
segment containing the load allocation of the section that contains
the code sections for the RTDX module.
Tconf Name: LOADRTDXTEXTSEG Type: Reference
Example: bios.MEM.LOADRTDXTEXTSEG =

prog.get("myMEM");

MEM Object
Properties

A memory segment represents a contiguous length of code or data
memory in the address space of the processor.

To create a MEM object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.

var myMem = bios.MEM.create("myMem");
Application Program Interface 2-247

MEM Module
The following properties can be set for a MEM object in the MEM Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this MEM object.
Tconf Name: comment Type: String
Example: myMem.comment = "my MEM";

❏ base. The address at which this memory segment begins. This value
is shown in hex.
Tconf Name: base Type: Numeric
Example: myMem.base = 0x00000000;

❏ len. The length of this memory segment in MADUs. This value is
shown in hex.
Tconf Name: len Type: Numeric
Example: myMem.len = 0x00000000;

❏ create a heap in this memory. If this property is set to true, a heap
is created in this memory segment. Memory can by allocated
dynamically from a heap. In order to remove the heap from a memory
segment, you can select another memory segment that contains a
heap for properties that dynamically allocate memory in this memory
segment. The properties you should check are in the Memory
Section Manager (the Segment for DSP/BIOS objects and Segment
for malloc/free properties) and the Task Manager (the Default stack
segment for dynamic tasks property). If you disable dynamic memory
allocation in the Memory Section Manager, you cannot create a heap
in any memory segment.
Tconf Name: createHeap Type: Bool
Example: myMem.createHeap = true;

❏ heap size. The size of the heap in MADUs to be created in this
memory segment. You cannot control the location of the heap within
its memory segment except by making the segment and heap the
same sizes. Note that if the base of the heap ends up at address 0x0,
the base address of the heap is offset by MEM_HEADERSIZE and
the heap size is reduced by MEM_HEADERSIZE.
Tconf Name: heapSize Type: Numeric
Example: myMem.heapSize = 0x08000;

❏ enter a user defined heap identifier. If this property is set to true,
you can define your own identifier label for this heap.
Tconf Name: enableHeapLabel Type: Bool
Example: myMem.enableHeapLabel = false;
2-248

MEM Module
❏ heap identifier label. If the property above is set to true, type a name
for this segment’s heap.
Tconf Name: heapLabel Type: Extern
Example: myMem.heapLabel =

prog.extern("seg_name", "asm");

❏ space. Type of memory segment. This is set to code for memory
segments that store programs, and data for memory segments that
store program data.
Tconf Name: space Type: EnumString
Options: "code", "data", "code/data"
Example: myMem.space = "data";

The predefined memory segments in a configuration file, particularly
those for external memory, are dependent on the board template you
select. In general, Table 2-6 and Table 2-7 list segments that can be
defined for the c6000:

Table 2-6. Typical Memory Segments for c6x EVM Boards

Table 2-7. Typical Memory Segment for c6711 DSK Boards

Name Memory Segment Type

IPRAM Internal (on-device) program memory

IDRAM Internal (on-device) data memory

SBSRAM External SBSRAM on CE0

SDRAM0 External SDRAM on CE2

SDRAM1 External SDRAM on CE3

Name Memory Segment Type

SDRAM External SDRAM
Application Program Interface 2-249

MEM_alloc
C Interface

Syntax addr = MEM_alloc(segid, size, align);

Parameters Int segid; /* memory segment identifier */
size_t size; /* block size in MADUs */
size_t align; /* block alignment */

Return Value Void *addr; /* address of allocated block of memory */

Description MEM_alloc allocates a contiguous block of storage from the memory
segment identified by segid and returns the address of this block.

The segid parameter identifies the memory segment to allocate memory
from. This identifier can be an integer or a memory segment name
defined in the configuration. Files created by the configuration define
each configured segment name as a variable with an integer value.

The block contains size MADUs and starts at an address that is a multiple
of align. If align is 0 or 1, there is no alignment constraint.

MEM_alloc does not initialize the allocated memory locations.

If the memory request cannot be satisfied, MEM_alloc calls SYS_error
with SYS_EALLOC and returns MEM_ILLEGAL.

MEM functions that allocate and deallocate memory internally lock the
memory by calling the LCK_pend and LCK_post functions. If another task
already holds a lock to the memory, there is a context switch. For this
reason, MEM_alloc cannot be called from the context of a SWI or HWI.
MEM_alloc checks the context from which it is called. It calls SYS_error
and returns MEM_ILLEGAL if it is called from the wrong context.

A number of other DSP/BIOS APIs call MEM_alloc internally, and thus
also cannot be called from the context of a SWI or HWI. See the
“Function Callability Table” on page A-2 for a detailed list of calling
contexts for each DSP/BIOS API.

Constraints and
Calling Context

❏ segid must identify a valid memory segment.
❏ MEM_alloc cannot be called from a SWI or HWI.
❏ MEM_alloc cannot be called if the TSK scheduler is disabled.
❏ align must be 0, or a power of 2 (for example, 1, 2, 4, 8).

See Also MEM_calloc
MEM_free
MEM_valloc

MEM_alloc Allocate from a memory segment
2-250

MEM_calloc
C Interface

Syntax addr = MEM_calloc(segid, size, align)

Parameters Int segid; /* memory segment identifier */
size_t size; /* block size in MADUs */
size_t align; /* block alignment */

Return Value Void *addr; /* address of allocated block of memory */

Description MEM_calloc is functionally equivalent to calling MEM_valloc with value
set to 0. MEM_calloc allocates a contiguous block of storage from the
memory segment identified by segid and returns the address of this
block.

The segid parameter identifies the memory segment from which memory
is to be allocated. This identifier can be an integer or a memory segment
name defined in the configuration. The files created by the configuration
define each configured segment name as a variable with an integer
value.

The block contains size MADUs and starts at an address that is a multiple
of align. If align is 0 or 1, there is no alignment constraint.

If the memory request cannot be satisfied, MEM_calloc calls SYS_error
with SYS_EALLOC and returns MEM_ILLEGAL.

MEM functions that allocate and deallocate memory internally lock the
memory by calling the LCK_pend and LCK_post functions. If another task
already holds a lock to the memory, there is a context switch. For this
reason, MEM_calloc cannot be called from the context of a SWI or HWI.

Constraints and
Calling Context

❏ segid must identify a valid memory segment.

❏ MEM_calloc cannot be called from a SWI or HWI.

❏ MEM_calloc cannot be called if the TSK scheduler is disabled.

❏ align must be 0, or a power of 2 (for example, 1, 2, 4, 8).

See Also MEM_alloc
MEM_free
MEM_valloc
SYS_error
std.h and stdlib.h functions

MEM_calloc Allocate from a memory segment and set value to 0
Application Program Interface 2-251

MEM_define
C Interface

Syntax segid = MEM_define(base, length, attrs);

Parameters Ptr base; /* base address of new segment */
MEM_sizep length; /* length (in MADUs) of new segment */
MEM_Attrs *attrs; /* segment attributes */

Return Value Int segid; /* ID of new segment */

Reentrant yes

Description MEM_define defines a new memory segment for use by the DSP/BIOS
MEM Module.

The new segment contains length MADUs starting at base. A new table
entry is allocated to define the segment, and the entry’s index into this
table is returned as the segid.

The new block should be aligned on a MEM_HEADERSIZE boundary,
and the length should be a multiple of MEM_HEADERSIZE.

If attrs is NULL, the new segment is assigned a default set of attributes.
Otherwise, the segment’s attributes are specified through a structure of
type MEM_Attrs.

Note:

No attributes are supported for segments, and the type MEM_Attrs is
defined as a dummy structure.

If there are undefined slots available in the internal table of memory
segment identifiers, one of those slots is (re)used for the new segment.
If there are no undefined slots available in the internal table, the table size
is increased via MEM_alloc. See MEM_increaseTableSize to manage
performance in this situation.

Constraints and
Calling Context

❏ At least one segment must exist at the time MEM_define is called.

❏ MEM_define internally locks the memory by calling LCK_pend and
LCK_post. If another task already holds a lock to the memory, there
is a context switch. For this reason, MEM_define cannot be called
from the context of a SWI or HWI. It can be called from main() or a
TSK. The duration that the API holds the memory lock is variable.

MEM_define Define a new memory segment
2-252

MEM_define
❏ The length parameter must be a multiple of MEM_HEADERSIZE and
must be at least equal to MEM_HEADERSIZE.

❏ The base Ptr cannot be NULL.

See Also MEM_redefine
MEM_undefine
Application Program Interface 2-253

MEM_free
C Interface

Syntax status = MEM_free(segid, addr, size);

Parameters Int segid; /* memory segment identifier */
Ptr addr; /* block address pointer */
size_t size; /* block length in MADUs*/

Return Value Bool status; /* TRUE if successful */

Description MEM_free places the memory block specified by addr and size back into
the free pool of the segment specified by segid. The newly freed block is
combined with any adjacent free blocks. This space is then available for
further allocation by MEM_alloc. The segid can be an integer or a
memory segment name defined in the configuration.

MEM functions that allocate and deallocate memory internally lock the
memory by calling the LCK_pend and LCK_post functions. If another task
already holds a lock to the memory, there is a context switch. For this
reason, MEM_free cannot be called from the context of a SWI or HWI.

Constraints and
Calling Context

❏ addr must be a valid pointer returned from a call to MEM_alloc.

❏ segid and size are those values used in a previous call to MEM_alloc.

❏ MEM_free cannot be called by HWI or SWI functions.

❏ MEM_free cannot be called if the TSK scheduler is disabled.

See Also MEM_alloc
std.h and stdlib.h functions

MEM_free Free a block of memory
2-254

MEM_getBaseAddress
C Interface

Syntax addr = MEM_getBaseAddress(segid);

Parameters Int segid; /* memory segment identifier */

Return Value Ptr addr; /* heap base address pointer */

Description MEM_getBaseAddress returns the base address of the memory heap
with the segment ID specified by the segid parameter.

Constraints and
Calling Context

❏ The segid can be an integer or a memory segment name defined in
the configuration.

See Also MEM Object Properties

MEM_getBaseAddress Get base address of a memory heap
Application Program Interface 2-255

MEM_increaseTableSize
C Interface

Syntax status = MEM_increaseTableSize(numEntries);

Parameters Uns numEntries; /* number of segments to increase table by */

Return Value Int status; /* TRUE if successful */

Reentrant yes

Description MEM_increaseTableSize allocates numEntries of undefined memory
segments. When MEM_define is called, undefined memory segments
are re-used. If no undefined memory segments exist, one is allocated. By
using MEM_increaseTableSize, the application can avoid the use of
MEM_alloc (thus improving performance and determinism) within the
MEM_define call.

MEM_increaseTableSize internally locks memory by calling LCK_pend
and LCK_post. If another task already holds a lock to the memory, there
is a context switch. For this reason, MEM_increaseTableSize cannot be
called from the context of a SWI or HWI. It can be called from main() or a
TSK. The duration that the API holds the memory lock is variable.

MEM_increaseTableSize returns SYS_OK to indicate success and
SYS_EALLOC if an allocation error occurred.

Constraints and
Calling Context

❏ Do not call from the context of a SWI or HWI.

See Also MEM_define
MEM_undefine

MEM_increaseTableSize Increase the internal MEM table size
2-256

MEM_redefine
C Interface

Syntax MEM_redefine(segid, base, length);

Parameters Int segid; /* segment to redefine */
Ptr base; /* base address of new block */
MEM_sizep length; /* length (in MADUs) of new block */

Return Value Void

Reentrant yes

Description MEM_redefine redefines an existing memory segment managed by the
DSP/BIOS MEM Module. All pointers in the old segment memory block
are automatically freed, and the new segment block is completely
available for allocations.

The new block should be aligned on a MEM_HEADERSIZE boundary,
and the length should be a multiple of MEM_HEADERSIZE.

Constraints and
Calling Context

❏ MEM_redefine internally locks the memory by calling LCK_pend and
LCK_post. If another task already holds a lock to the memory, there
is a context switch. For this reason, MEM_redefine cannot be called
from the context of a SWI or HWI. It can be called from main() or a
TSK. The duration that the API holds the memory lock is variable.

❏ The length parameter must be a multiple of MEM_HEADERSIZE and
must be at least equal to MEM_HEADERSIZE.

❏ The base Ptr cannot be NULL.

See Also MEM_define
MEM_undefine

MEM_redefine Redefine an existing memory segment
Application Program Interface 2-257

MEM_stat
C Interface

Syntax status = MEM_stat(segid, statbuf);

Parameters Int segid; /* memory segment identifier */
MEM_Stat *statbuf; /* pointer to stat buffer */

Return Value Bool status; /* TRUE if successful */

Description MEM_stat returns the status of the memory segment specified by segid
in the status structure pointed to by statbuf.

typedef struct MEM_Stat {
 MEM_sizep size; /* original size of segment */
 MEM_sizep used; /* MADUs used in segment */
 size_t length; /* largest contiguous block */
} MEM_Stat;

All values are expressed in terms of minimum addressable units
(MADUs).

MEM_stat returns TRUE if segid corresponds to a valid memory
segment, and FALSE otherwise. If MEM_stat returns FALSE, the
contents of statbuf are undefined. If the segment has been undefined with
MEM_undefine, this function returns FALSE.

MEM functions that access memory internally lock the memory by calling
the LCK_pend and LCK_post functions. If another task already holds a
lock to the memory, there is a context switch. For this reason, MEM_stat
cannot be called from the context of a SWI or HWI.

Constraints and
Calling Context

❏ MEM_stat cannot be called from a SWI or HWI.

❏ MEM_stat cannot be called if the TSK scheduler is disabled.

MEM_stat Return the status of a memory segment
2-258

MEM_undefine
C Interface

Syntax MEM_undefine(segid);

Parameters Int segid; /* segment to undefine */

Return Value Void

Reentrant yes

Description MEM_undefine removes a memory segment from the internal memory
tables. Once a memory segment has been undefined, the segid cannot
be used in any of the MEM APIs (except MEM_stat). Note: The undefined
segid might later be returned by a subsequent MEM_define call.

MEM_undefine internally locks the memory by calling LCK_pend and
LCK_post. If another task already holds a lock to the memory, there is a
context switch. For this reason, MEM_undefine cannot be called from the
context of a SWI or HWI. It can be called from main() or a TSK. The
duration that the API holds the memory lock is variable.

Constraints and
Calling Context

❏ Do not call from the context of a SWI or HWI.

❏ MEM_undefine does not free the actual memory buffer managed by
the memory segment.

See Also MEM_define
MEM_redefine

MEM_undefine Undefine an existing memory segment
Application Program Interface 2-259

MEM_valloc
C Interface

Syntax addr = MEM_valloc(segid, size, align, value);

Parameters Int segid; /* memory segment identifier */
size_t size; /* block size in MADUs */
size_t align; /* block alignment */
Char value; /* character value */

Return Value Void *addr; /* address of allocated block of memory */

Description MEM_valloc uses MEM_alloc to allocate the memory before initializing it
to value.

The segid parameter identifies the memory segment from which memory
is to be allocated. This identifier can be an integer or a memory segment
name defined in the configuration. The files created by the configuration
define each configured segment name as a variable with an integer
value.

The block contains size MADUs and starts at an address that is a multiple
of align. If align is 0 or 1, there is no alignment constraint.

If the memory request cannot be satisfied, MEM_valloc calls SYS_error
with SYS_EALLOC and returns MEM_ILLEGAL.

MEM functions that allocate and deallocate memory internally lock the
memory by calling the LCK_pend and LCK_post functions. If another task
already holds a lock to the memory, there is a context switch. For this
reason, MEM_valloc cannot be called from the context of a SWI or HWI.

Constraints and
Calling Context

❏ segid must identify a valid memory segment.

❏ MEM_valloc cannot be called from a SWI or HWI.

❏ MEM_valloc cannot be called if the TSK scheduler is disabled.

❏ align must be 0, or a power of 2 (for example, 1, 2, 4, 8).

See Also MEM_alloc
MEM_calloc
MEM_free
SYS_error
std.h and stdlib.h functions

MEM_valloc Allocate from a memory segment and set value
2-260

MPC Module
2.18 MPC Module

The MPC module is the Memory Protection Controller manager for
C64x+ devices.

Functions ❏ MPC_getPA. Get permission attributes of address.

❏ MPC_getPageSize. Get size of page containing address.

❏ MPC_getPrivMode. Get current CPU privilege mode.

❏ MPC_setBufferPA. Set permission attributes for a buffer.

❏ MPC_setPA. Set permission attributes for an address.

❏ MPC_setPrivMode. Set CPU privilege mode.

Constants, Types,
and Structures

/* MPPA Permission Attribute Register bitmasks */
typedef Uns MPC_Perm;

/* macros for valid values for MPC_Perm */
#define MPC_MPPA_UX 0x00000001 /* User eXecute */
#define MPC_MPPA_UW 0x00000002 /* User Write */
#define MPC_MPPA_UR 0x00000004 /* User Read */
#define MPC_MPPA_SX 0x00000008 /* Supervisor eXecute */
#define MPC_MPPA_SW 0x00000010 /* Supervisor Write */
#define MPC_MPPA_SR 0x00000020 /* Supervisor Read */
#define MPC_MPPA_LOCAL 0x00000100 /* LOCAL CPU */

Configuration
Properties

The MPC module has no configuration properties of its own. To enable
the MPC module, set the “Enable Memory Protection Controller module”
field in the MEM Manager Properties to true.

Description Memory protection can protect operating system data structures from
poorly behaving code and aid in debugging by providing greater
information about illegal memory accesses. The C64x+ Megamodule
Memory Protection Architecture provides for memory protection through
a combination of CPU privilege levels and a memory system permission
structure.

❏ CPU privilege levels. Code running on the CPU executes in one of
two privilege modes: Supervisor Mode or User Mode. The privilege
of a thread determines what permissions that thread might have. You
can use MPC_getPrivMode and MPC_setPrivMode to get and set
the CPU privilege level.

■ Supervisor code is considered "more trusted" than User code.
Examples of Supervisor threads include operating system
kernels and hardware device drivers. Supervisor Mode is
generally granted access to peripheral registers and the memory
protection configuration.
Application Program Interface 2-261

MPC Module
■ User code includes, for example, vocoders and end
applications. User Mode is generally confined to the memory
spaces that the OS specifically designates for its use.

❏ Permission structure. The Memory Protection model defines three
fundamental functional access types: Read, Write, and Execute.
Read and Write refer to data accesses by the CPU or the IDMA
engine. Execute refers to accesses associated with a program fetch.
You can enable/disable these access types on a per page basis for
both User and Supervisor mode. Use MPC_getPA,
MPC_setBufferPA and MPC_setPA to get and set the permissions.

See the chapter on "Memory Protection" in the TMS320C64x+ DSP
Megamodule Reference Guide (SPRU871) for information.

Handling Invalid Accesses

The MPC hardware generates exceptions when an access that violates
permissions occurs. The DSP/BIOS MPC module is associated with an
"_MPC" module (note the underscore) that contains code that reports
permission violations.

When enabled, the MPC module assigns _MPC exception handling
functions to the EXC exception handling hooks (see Section C.4, EXC
Module and Section C.5, _MPC Module). The MPC module enables and
handles only MPC-related events.

If you use any MPC module APIs in your application source code, add the
following line to your source file:

#include <mpc.h>

In addition to the MPC APIs, the “_MPC” APIs includes handler functions
used with the EXC module hooks. Note the initial underscore in this
module name. If you use any _MPC module APIs in your application
source code, add the following line to your source file:

#include <_mpc.h>

Enabling the MPC module causes the Program Memory Controller
(PMC), Data Memory Controller (DMC), and Unified Memory Controller
(UMC) CPU events to be enabled to generate exceptions. The
corresponding DMA events are not enabled.

If you want other exceptions to be generated, you need to enable those
system events and write functions to handle them. For details, see the
EXC Module. Since the MPC module takes control of the EXC function
2-262

MPC Module
hooks, the MPC module also provides a function hook that you can
assign to handle additional exception processing (see _MPC_userHook).

When enabled, the MPC module assigns the following functions to the
EXC function hooks.

❏ EXC_exceptionHook = _MPC_exceptionHandler

❏ EXC_externalHook = _MPC_externalHandler

❏ EXC_internalHook = _MPC_internalHandler

❏ EXC_nmiHook = (not used)

If you need to further process external exceptions, including ones already
handled by the MPC module, you can write a function and assign it to the
function pointer _MPC_userHook.

MPC Manager
Properties

By default, the MPC module is disabled. To enable it, set the “Enable
Memory Protection Controller module” field in the MEM Manager
Properties to true. You can also enable the MPC module in a Tconf script
with the following statement:

bios.MEM.USEMPC = true;

You can use MPC APIs without enabling the EXC Module, but you must
have the EXC module enabled to allow MPC-related violations to
generate an exception and report information about the exception. The
EXC module is enabled by default.

Note that the MPC module does not have its own “module” in the
configuration tools, and there are no "MPC objects". It is a module in the
DSP/BIOS kernel. The MEM module is used as a container for the single
MPC configuration property.
Application Program Interface 2-263

MPC_getPA
C Interface

Syntax status = MPC_getPA(addr, space, *perm);

Parameters Ptr addr; /* address to request permissions for */
Int space; /* memory space of addr */
MPC_Perm *perm; /* pointer to storage for desired PA */

Return Value Int status /* SYS_OK or SYS_EINVAL */

Description This function is available only for C64x+ devices.

MPC_getPA reads the permission attributes (PA) associated with the
specified location.

The addr parameter specifies an address for which you want to know the
permissions. Due to the page granularity of the PA mask, all memory
locations contained in the page in which addr resides have the same
permission attributes.

The space parameter identifies whether the address is in program, data,
I/O, or other memory. Since the C64x+ has a single memory space, use
zero (0) for this parameter. Other values may be supported in future
versions of DSP/BIOS.

The perm parameter is a pointer to a bitmask of type MPC_Perm. You
can use the following constants to interpret the bitmask:

#define MPC_MPPA_UX 0x00000001 /* User eXecute */
#define MPC_MPPA_UW 0x00000002 /* User Write */
#define MPC_MPPA_UR 0x00000004 /* User Read */
#define MPC_MPPA_SX 0x00000008 /* Supervisor eXecute */
#define MPC_MPPA_SW 0x00000010 /* Supervisor Write */
#define MPC_MPPA_SR 0x00000020 /* Supervisor Read */
#define MPC_MPPA_LOCAL 0x00000100 /* LOCAL CPU */

This function returns SYS_OK if the operation is successful and
SYS_EINVAL if the address and space you specify are invalid.

Constraints and
Calling Context

❏ none

See Also MPC_setBufferPA
MPC_setPA

MPC_getPA Get permission attributes of address
2-264

MPC_getPageSize
C Interface

Syntax status = MPC_getPageSize(addr, space, *pageSize);

Parameters Ptr addr; /* address to request page size for */
Int space; /* memory space of addr */
Uns *pageSize;/* pointer to storage for desired page size */

Return Value Int status /* SYS_OK or SYS_EINVAL */

Description This function is available only for C64x+ devices.

MPC_getPageSize returns the page size associated with the specified
address.

The addr parameter specifies an address for which you want to know the
page size.

The space parameter identifies whether the address is in program, data,
I/O, or other memory. Since the C64x+ has a single memory space, use
zero (0) for this parameter. Other values may be supported in future
versions of DSP/BIOS.

The pageSize parameter is a pointer to a location that will receive the
page size of the specified location. The page size is measured in MAUs
(minimum addressable units).

This function returns SYS_OK if the operation is successful and
SYS_EINVAL if the address and space you specify are invalid.

Constraints and
Calling Context

❏ none

See Also MPC_setBufferPA

MPC_getPageSize Get size of page containing address
Application Program Interface 2-265

MPC_getPrivMode
C Interface

Syntax privMode = MPC_getPrivMode(Void);

Parameters Void

Return Value Uns privMode /* MPC_SV or MPC_US */

Description This function is available only for C64x+ devices.

MPC_getPrivMode returns the current CPU privilege mode. The return
value matches one of the following constants:

❏ MPC_SV. Supervisor mode

❏ MPC_US. User mode

Constraints and
Calling Context

❏ none

See Also MPC_setPrivMode

MPC_getPrivMode Get current CPU privilege mode
2-266

MPC_setBufferPA
C Interface

Syntax status = MPC_setBufferPA(baseAddr, size, space, perm);

Parameters Ptr baseAddr; /* base address of buffer to set permissions for */
Uns size; /* size in MAUs of buffer */
Int space; /* memory space of baseAddr */
MPC_Perm perm; /* permission attributes to set */

Return Value Int status /* SYS_OK or SYS_EINVAL */

Description This function is available only for C64x+ devices.

MPC_setBufferPA writes specified permission attributes for the specified
buffer.

The baseAddr parameter specifies the start of an address for which you
want to set the permissions.

The size parameter specifies the length of the buffer in MAUs. Due to the
page granularity of the PA, memory locations not contained in the buffer
but which exist on the same page as the beginning or end of the buffer
are set with the same permission attributes. Using a size of 1 is
equivalent to calling MPC_setPA. You can find the page size for a
particular address by calling MPC_getPageSize.

The space parameter identifies whether the address is in program, data,
I/O, or other memory. Since the C64x+ has a single memory space, use
zero (0) for this parameter. Other values may be supported in future
versions of DSP/BIOS.

The perm parameter is a bitmask of type MPC_Perm. You can set any
number of bits in the PA mask. You can use the following constants to set
the bitmask:

#define MPC_MPPA_UX 0x00000001 /* User eXecute */
#define MPC_MPPA_UW 0x00000002 /* User Write */
#define MPC_MPPA_UR 0x00000004 /* User Read */
#define MPC_MPPA_SX 0x00000008 /* Supervisor eXecute */
#define MPC_MPPA_SW 0x00000010 /* Supervisor Write */
#define MPC_MPPA_SR 0x00000020 /* Supervisor Read */
#define MPC_MPPA_LOCAL 0x00000100 /* LOCAL CPU */

This function returns SYS_OK if the operation is successful and
SYS_EINVAL if some or all of the buffer address range you specify is
invalid.

MPC_setBufferPA Set permission attributes for a buffer
Application Program Interface 2-267

MPC_setBufferPA
Constraints and
Calling Context

❏ none

Example #define IRAM_CODE_BASE 0x00800000
#define IRAM_CODE_LEN 0x00008000

MPC_Perm perm;

/* Set code space to execute-only (user & supervisor)*/
perm = MPC_MPPA_UX | MPC_MPPA_SX | MPC_MPPA_LOCAL;

MPC_setBufferPA((Ptr)IRAM_CODE_BASE, IRAM_CODE_LEN,
 0, perm);

See Also MPC_getPA
MPC_getPageSize
MPC_setPA
2-268

MPC_setPA
C Interface

Syntax status = MPC_setPA(addr, space, perm);

Parameters Ptr addr; /* address to set permissions for */
Int space; /* memory space of addr */
MPC_Perm perm; /* permission attributes to set */

Return Value Int status /* SYS_OK or SYS_EINVAL */

Description This function is available only for C64x+ devices.

MPC_setPA sets the permission attributes (PA) associated with the
specified location.

The addr parameter specifies the address for which you want to set the
permissions.

The space parameter identifies whether the address is in program, data,
I/O, or other memory. Since the C64x+ has a single memory space, use
zero (0) for this parameter. Other values may be supported in future
versions of DSP/BIOS.

The perm parameter is a bitmask of type MPC_Perm. You can set any
number of bits in the PA mask. Due to the page granularity of the PA
mask, all memory locations contained in the page in which addr resides
are set with perm. You can use the following constants to set the bitmask:

#define MPC_MPPA_UX 0x00000001 /* User eXecute */
#define MPC_MPPA_UW 0x00000002 /* User Write */
#define MPC_MPPA_UR 0x00000004 /* User Read */
#define MPC_MPPA_SX 0x00000008 /* Supervisor eXecute */
#define MPC_MPPA_SW 0x00000010 /* Supervisor Write */
#define MPC_MPPA_SR 0x00000020 /* Supervisor Read */
#define MPC_MPPA_LOCAL 0x00000100 /* LOCAL CPU */

This function returns SYS_OK if the operation is successful and
SYS_EINVAL if the address and space you specify are invalid.

To set permissions for a range of addresses, use the MPC_setBufferPA
API, instead.

Constraints and
Calling Context

❏ none

See Also MPC_getPA
MPC_setBufferPA

MPC_setPA Set permission attributes for an address
Application Program Interface 2-269

MPC_setPrivMode
C Interface

Syntax MPC_setPrivMode(privMode);

Parameters Uns privMode; /* privilege mode to set */

Return Value Void

Description This function is available only for C64x+ devices.

MPC_setPrivMode modifies the current CPU privilege mode. You can set
the mode using one of the following constants:

❏ MPC_SV. Supervisor mode

❏ MPC_US. User mode

MPC_setPrivMode relies on support by the EXC_dispatch function, so
the EXC Module must be enabled. The source code fore EXC_dispatch
is provided with DSP/BIOS in the exc_asm.s64P file.

Constraints and
Calling Context

❏ none

Example /* temporarily set privilege mode to permit access */
MPC_setPrivMode(MPC_SV);
ptr = MEM_alloc(L1D_HEAP, 0x100, 0);
MPC_setPrivMode(MPC_US);

See Also MPC_getPrivMode

MPC_setPrivMode Set CPU privilege mode
2-270

MSGQ Module
2.19 MSGQ Module

The MSGQ module allows for the structured sending and receiving of
variable length messages. This module can be used for homogeneous or
heterogeneous multi-processor messaging.

Functions ❏ MSGQ_alloc. Allocate a message. Performed by writer.

❏ MSGQ_close. Closes a message queue. Performed by reader.

❏ MSGQ_count. Return the number of messages in a message queue.

❏ MSGQ_free. Free a message. Performed by reader.

❏ MSGQ_get. Receive a message from the message queue.
Performed by reader.

❏ MSGQ_getAttrs: Returns the attributes of a local message queue.

❏ MSGQ_getDstQueue. Get destination message queue.

❏ MSGQ_getMsgId. Return the message ID from a message.

❏ MSGQ_getMsgSize. Return the message size from a message.

❏ MSGQ_getSrcQueue. Extract the reply destination from a message.

❏ MSGQ_isLocalQueue. Returns TRUE if local message queue.

❏ MSGQ_locate. Synchronously find a message queue. Performed by
writer.

❏ MSGQ_locateAsync. Asynchronously find a message queue.
Performed by writer.

❏ MSGQ_open. Opens a message queue. Performed by reader.

❏ MSGQ_put. Place a message on a message queue. Performed by
writer.

❏ MSGQ_release. Release a located message queue. Performed by
writer.

❏ MSGQ_setErrorHandler. Set up handling of internal MSGQ errors.

❏ MSGQ_setMsgId. Sets the message ID in a message.

❏ MSGQ_setSrcQueue. Sets the reply destination in a message.

Constants, Types, and
Structures

/* Attributes used to open message queue */
typedef struct MSGQ_Attrs {
 Ptr notifyHandle;
 MSGQ_Pend pend;
 MSGQ_Post post;
} MSGQ_Attrs;
Application Program Interface 2-271

MSGQ Module
MSGQ_Attrs MSGQ_ATTRS = {
 NULL, /* notifyHandle */
 (MSGQ_Pend)SYS_zero, /* NOP pend */
 FXN_F_nop /* NOP post */
};

/* Attributes for message queue location */
typedef struct MSGQ_LocateAttrs {
 Uns timeout;
} MSGQ_LocateAttrs;

MSGQ_LocateAttrs MSGQ_LOCATEATTRS = {SYS_FOREVER};

/* Attrs for asynchronous message queue location */
typedef struct MSGQ_LocateAsyncAttrs {
 Uint16 poolId;
 Arg arg;
} MSGQ_LocateAttrs;

MSGQ_LocateAsyncAttrs MSGQ_LOCATEASYNCATTRS = {0, 0};

/* Configuration structure */
typedef struct MSGQ_Config {
 MSGQ_Obj *msgqQueues; /* Array of MSGQ handles */
 MSGQ_TransportObj *transports; /* Transport array */
 Uint16 numMsgqQueues; /* Number of MSGQ handles */
 Uint16 numProcessors; /* Number of processors */
 Uint16 startUninitialized; /* 1st MSGQ to init */
 MSGQ_Queue errorQueue; /* Receives transport err */
 Uint16 errorPoolId; /* Alloc errors from poolId */
} MSGQ_Config;

/* Asynchronous locate message */
typedef struct MSGQ_AsyncLocateMsg {
 MSGQ_MsgHeader header;
 MSGQ_Queue msgqQueue;
 Arg arg;
} MSGQ_AsyncLocateMsg;

/* Asynchronous error message */
typedef struct MSGQ_AsyncErrorMsg {
 MSGQ_MsgHeader header;
 MSGQ_MqtError errorType;
 Uint16 mqtId;
 Uint16 parameter;
} MSGQ_AsyncErrorMsg;
2-272

MSGQ Module
/* Transport object */
typedef struct MSGQ_TransportObj {
 MSGQ_MqtInit initFxn; /* Transport init func */
 MSGQ_TransportFxns *fxns; /* Interface funcs */
 Ptr params; /* Setup parameters */
 Ptr object; /* Transport-specific object */
 Uint16 procId; /* Processor Id talked to */
} MSGQ_TransportObj;

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the
MSGQ Manager Properties heading. For descriptions of data types, see
Section 1.4, DSP/BIOS Tconf Overview, page 1-4.

Module Configuration Parameters

Description The MSGQ module allows for the structured sending and receiving of
variable length messages. This module can be used for homogeneous or
heterogeneous multi-processor messaging. The MSGQ module with a
substantially similar API is implemented in DSP/BIOS Link for certain TI
general-purpose processors (GPPs), particularly those used in OMAP
devices.

MSGQ provides more sophisticated messaging than other modules. It is
typically used for complex situations such as multi-processor messaging.
The following are key features of the MSGQ module:

❏ Writers and readers can be relocated to another processor with no
runtime code changes.

❏ Timeouts are allowed when receiving messages.

❏ Readers can determine the writer and reply back.

❏ Receiving a message is deterministic when the timeout is zero.

❏ Sending a message is non-blocking.

❏ Messages can reside on any message queue.

❏ Supports zero-copy transfers.

❏ Can send and receive from HWIs, SWIs and TSKs.

❏ Notification mechanism is specified by application.

❏ Allows QoS (quality of service) on message buffer pools. For
example, using specific buffer pools for specific message queues.

Name Type Default (Enum Options)

ENABLEMSGQ Bool false
Application Program Interface 2-273

MSGQ Module
Messages are sent and received via a message queue. A reader is a
thread that gets (reads) messages from a message queue. A writer is a
thread that puts (writes) a message to a message queue. Each message
queue has one reader and can have many writers. A thread may read
from or write to multiple message queues.

Figure 2-1. Writers and Reader of a Message Queue

Conceptually, the reader thread owns a message queue. The processor
where the reader resides opens a message queue. Writer threads locate
existing message queues to get access to them.

Messages must be allocated from the MSGQ module. Once a message
is allocated, it can be sent on any message queue. Once a message is
sent, the writer loses ownership of the message and should not attempt
to modify the message. Once the reader receives the message, it owns
the message. It may either free the message or re-use the message.

Messages in a message queue can be of variable length. The only
requirement is that the first field in the definition of a message must be a
MSGQ_MsgHeader element.

typedef struct MyMsg {
 MSGQ_MsgHeader header;
 ...
} MyMsg;

The MSGQ API uses the MSGQ_MsgHeader internally. Your application
should not modify or directly access the fields in the MSGQ_MsgHeader.

The MSGQ module has the following components:

❏ MSGQ API. Applications call the MSGQ functions to open and use a
message queue object to send and receive messages. For an
overview, see “MSGQ APIs” on page 2-275. For details, see the
sections on the individual APIs.

MSGQ
object

W riter 1

Reader

W riter 2
2-274

MSGQ Module
❏ Allocators. Messages sent via MSGQ must be allocated by an
allocator. The allocator determines where and how the memory for
the message is allocated. For more about allocators, see the
DSP/BIOS User’s Guide (SPRU423F).

❏ Transports. Transports are responsible for locating and sending
messages with other processors. For more about transports, see the
DSP/BIOS User’s Guide (SPRU423F).

Figure 2-2. Components of the MSGQ Architecture

For more about using the MSGQ module—including information about
multi-processor issues and a comparison of data transfer modules—see
the DSP/BIOS User’s Guide (SPRU423F).

MSGQ APIs The MSGQ APIs are used to open and close message queues and to
send and receive messages. The MSGQ APIs shield the application from
having to contain any knowledge about transports and allocators.

The following figure shows the call sequence of the main MSGQ
functions:

Figure 2-3. MSGQ Function Calling Sequence

The reader calls the following APIs:

MSGQ APIs

Allocators

Drivers

Transports

MSGQ_open()
MSGQ_locate()

MSGQ_alloc()

MSGQ_close()
MSGQ_release()

MSGQ_free()

MSGQ_get()
MSGQ_put()

startup
run
termination
Application Program Interface 2-275

MSGQ Module
❏ MSGQ_open
❏ MSGQ_get
❏ MSGQ_free
❏ MSGQ_close

A writer calls the following APIs:

❏ MSGQ_locate or MSGQ_locateAsync

❏ MSGQ_alloc

❏ MSGQ_put

❏ MSGQ_release

Wherever possible, the MSGQ APIs have been written to have a
deterministic execution time. This allows application designers to be
certain that messaging will not consume an unknown number of cycles.

In addition, the MSGQ functions support use of message queues from all
types of DSP/BIOS threads: HWIs, SWIs, and TSKs. That is, calls that may
be synchronous (blocking) have an asynchronous (non-blocking)
alternative.

Static Configuration In order to use the MSGQ module and the allocators it depends upon, you
must statically configure the following:

❏ ENABLEMSGQ property of the MSGQ module using Tconf (see
“MSGQ Manager Properties” on page 2-280)

❏ MSGQ_config variable in application code (see below)

❏ PROCID property of the GBL module using Tconf (see “GBL Module
Properties” on page 2-131)

❏ ENABLEPOOL property of the POOL module using Tconf (see “POOL
Manager Properties” on page 2-331)

❏ POOL_config variable in application code (see “Static Configuration”
on page 2-328)

An application must provide a filled in MSGQ_config variable in order to
use the MSGQ module.

MSGQ_Config MSGQ_config;

The MSGQ_Config type has the following structure:
2-276

MSGQ Module
typedef struct MSGQ_Config {
 MSGQ_Obj *msgqQueues; /* Array of message queue handles */
 MSGQ_TransportObj *transports; /* Array of transports */
 Uint16 numMsgqQueues; /* Number of message queue handles*/
 Uint16 numProcessors; /* Number of processors */
 Uint16 startUninitialized; /* First msgq to init */
 MSGQ_Queue errorQueue; /* Receives async transport errors*/
 Uint16 errorPoolId; /* Alloc error msgs from poolId */
} MSGQ_Config;

The fields in the MSGQ_Config structure are described in the following
table:

Internally, MSGQ references its configuration via the MSGQ_config
variable. If the MSGQ module is enabled (via Tconf) but the application
does not provide the MSGQ_config variable, the application cannot be
linked successfully.

In the MSGQ_Config structure, an array of MSGQ_TransportObj items
defines transport objects with the following structure:

typedef struct MSGQ_TransportObj {
 MSGQ_MqtInit initFxn; /* Transport init func */
 MSGQ_TransportFxns *fxns; /* Interface funcs */
 Ptr params; /* Setup parameters */
 Ptr object; /* Transport-specific object */
 Uint16 procId; /* Processor Id talked to */
} MSGQ_TransportObj;

Field Type Description

msgqQueues MSGQ_Obj * Array of message queue objects. The fields of each object do
not need to be initialized.

transports MSGQ_TransportObj * Array of transport objects. The fields of each object must be
initialized.

numMsgqQueues Uint16 Length of the msgqQueues array.

numProcessors Uint16 Length of the transports array.

startUninitialized Uint16 Index of the first message queue to initialize in the msgq-
Queue array. This should be set to 0.

errorQueue MSGQ_Queue Message queue to receive transport errors. Initialize to
MSGQ_INVALIDMSGQ.

errorPoolId Uint16 Allocator to allocate transport errors. Initialize to
POOL_INVALIDID.
Application Program Interface 2-277

MSGQ Module
The following table describes the fields in the MSGQ_TransportObj
structure:

If no parameter structure is specified (that is, NULL is used) for the
MSGQ_TransportObj, the transport uses its default parameters.

The order of the transports array is by processor. The first entry
communicates with processor 0, the next entry with processor 1, and so
on. On processor n, the nth entry in the transport array should be
MSGQ_NOTRANSPORT, since there is no transport to itself. The
following example shows a configuration for a single-processor
application (that is, processor 0). Note that the 0th entry is
MSGQ_NOTRANSPORT

#define NUMMSGQUEUES 4 /* # of local message queues*/
#define NUMPROCESSORS 1 /* Single processor system */

static MSGQ_Obj msgQueues[NUMMSGQUEUES];
static MSGQ_TransportObj transports[NUMPROCESSOR] =
 {MSGQ_NOTRANSPORT};

MSGQ_Config MSGQ_config = {
 msgQueues,
 transports,
 NUMMSGQUEUES,
 NUMPROCESSORS,
 0,
 MSGQ_INVALIDMSGQ,
 POOL_INVALIDID
};

Field Type Description

initFxn MSGQ_MqtInit Initialization function for this transport. This function is called during
DSP/BIOS startup. More explicitly it is called before main().

fxns MSGQ_TransportFxns * Pointer to the transport's interface functions.

params Ptr Pointer to the transport's parameters. This field is transport-specific.
Please see documentation provided with your transport for a
description of this field.

info Ptr State information needed by the transport. This field is initialized
and managed by the transport. Refer to the specific transport imple-
mentation to determine how to use this field

procId Uint16 Numeric ID of the processor that this transport communicates with.
The current processor must have a procId field that matches the
GBL.PROCID property.
2-278

MSGQ Module
Managing Transports
at Run-Time

As described in the previous section, MSGQ uses an array of transports
of type MSGQ_TransportObj in the MSGQ_config variable. This array is
processor ID based. For example, MSGQ_config->transports[0] is the
transport to processor 0. Therefore, if a single binary is used on multiple
processors, the array must be changed at run-time.

As with the GBL_setProcId API, the transports array can be managed in
the User Init Function (see GBL Module Properties). DSP/BIOS only
uses MSGQ_config and the transports array after the User Init Function
returns.

There are several ways to manage the transports array. Two common
ways are as follows:

❏ Create a static two-dimensional transports array and select the
correct one. Assume a single image will be used for two processors
(procId 0 and 1) in a system with NUMPROCESSORS (3 in this
example) processors. The transports array in the single image might
look like this:

 MSGQ_TransportObj transports[2][NUMPROCESSORS] =
 { { MSGQ_NOTRANSPORT, // proc 0 talk to proc 0
 {...}, // proc 0 talk to proc 1
 {...}, // proc 0 talk to proc 2
 },
 { {...}, // proc 1 talk to proc 0
 MSGQ_NOTRANSPORT, // proc 1 talk to proc 1
 {...}, // proc 1 talk to proc 2
 }
 }

In the User Init Function, the application would call GBL_setProcId
with the correct processor ID. Then it would assign the correct
transport array to MSGQ_config. For example, for processor 1, it
would do the following:

 MSGQ_config.transports = transports[1];

Note that this approach does not scale well as the number of
processors in the system increases.

❏ Fill in the transports array in the User Init Function. In the User
Init Function, you can fill in the contents of the transports array. You
would still statically define a 1-dimensional transports array as
follows:

 MSGQ_TransportObj transports[NUMPROCESSORS];

This array would not be initialized. The initialization would occur in
the User Init Function. For example on processor 1, it would fill in the
transports array as follows.
Application Program Interface 2-279

MSGQ Module
 transports[0].initFxn = ...
 transports[0].fxns = ...
 transports[0].object = ...
 transports[0].params = ...
 transports[0].procId = 0;
 transports[1] = MSGQ_NOTRANSPORT;//no self-transport
 transports[2].initFxn = ...
 transports[2].fxns = ...
 ...
 transports[2].procId = 2;
 MSGQ_config.transport = transports;

Note that some of the parameters may not be able to be determined
easily at run-time, therefore you may need to use a mixture of these two
options.

Message Queue
Management

When a message queue is closed, the threads that located the closing
message queue are not notified. No messages should be sent to a closed
message queue. Additionally, there should be no active call to
MSGQ_get or MSGQ_getAttrs to a message queue that is being closed.
When a message queue is closed, all unread messages in the message
queue are freed.

MSGQ Manager
Properties

To configure the MSGQ manager, the MSGQ_Config structure must be
defined in the C code. See “Static Configuration” on page 2-276.

The following global property must also be set in order to use the MSGQ
module:

❏ Enable Message Queue Manager. If ENABLEMSGQ is TRUE,
each transport and message queue specified in the MSGQ_config
structure (see “Static Configuration” on page 2-276) is initialized.
Tconf Name: ENABLEMSGQ Type: Bool
Example: bios.MSGQ.ENABLEMSGQ = true;
2-280

MSGQ_alloc
C Interface

Syntax status = MSGQ_alloc(poolId, msg, size);

Parameters Uint16 poolId; /* allocate the message from this allocator */
MSGQ_Msg *msg; /* pointer to the returned message */
Uint16 size; /* size of the requested message */

Return Value Int status; /* status */

Reentrant yes

Description MSGQ_alloc returns a message from the specified allocator. The size is
in minimum addressable data units (MADUs).

This function is performed by a writer. This call is non-blocking and can
be called from a HWI, SWI or TSK.

All messages must be allocated from an allocator. Once a message is
allocated it can be sent. Once a message is received, it must either be
freed or re-used.

The poolId must correspond to one of the allocators specified by the
allocators field of the POOL_Config structure specified by the application.
(See “Static Configuration” on page 2-328.)

If a message is allocated, SYS_OK is returned. Otherwise, SYS_EINVAL
is returned if the poolId is invalid, and SYS_EALLOC is returned if no
memory is available to meet the request.

Constraints and
Calling Context

❏ All message definitions must have MSGQ_MsgHeader as its first
field. For example:

 struct MyMsg {
 MSGQ_MsgHeader header; /* Required field */
 ... /* User fields */
 }

Example /* Allocate a message */
status = MSGQ_alloc(STATICPOOLID, (MSGQ_Msg *)&msg,
 sizeof(MyMsg));
if (status != SYS_OK) {
 SYS_abort("Failed to allocate a message");
}

See Also MSGQ_free

MSGQ_alloc Allocate a message
Application Program Interface 2-281

MSGQ_close
C Interface

Syntax status = MSGQ_close(msgqQueue);

Parameters MSGQ_Queue msgqQueue; /* Message queue to close */

Return Value Int status; /* status */

Reentrant yes

Description MSGQ_close closes a message queue. If any messages are in the
message queue, they are deleted.

This function is performed by the reader.

Threads that have located (with MSGQ_locate or MSGQ_locateAsync)
the message queue being closed are not notified about the closure.

If successful, this function returns SYS_OK.

Constraints and
Calling Context

❏ The message queue must have been returned from MSGQ_open.

See Also MSGQ_open

MSGQ_close Close a message queue
2-282

MSGQ_count
C Interface

Syntax status = MSGQ_count(msgqQueue, count);

Parameters MSGQ_Queue msgqQueue; /* Message queue to count */
Uns *count; /* Pointer to returned count */

Return Value Int status; /* status */

Reentrant yes

Description This API determines the number of messages in a specific message
queue. Only the processor that opened the message queue should call
this API to determine the number of messages in the reader’s message
queue. This API is not thread safe with MSGQ_get when accessing the
same message queue, so the caller of MSGQ_count must prevent any
calls to MSGQ_get.

If successful, this function returns SYS_OK.

Constraints and
Calling Context

❏ The message queue must have been returned from a MSGQ_open
call.

Example status = MSGQ_count(readerMsgQueue, &count);
if (status != SYS_OK) {
 return;
}
LOG_printf(&trace, "There are %d messages.", count);

See Also MSGQ_open

MSGQ_count Return the number of messages in a message queue
Application Program Interface 2-283

MSGQ_free
C Interface

Syntax status = MSGQ_free(msg);

Parameters MSGQ_Msg msg; /* Message to be freed */

Return Value Int status; /* status */

Reentrant yes

Description MSGQ_free frees a message back to the allocator.

If successful, this function returns SYS_OK.

This call is non-blocking and can be called from a HWI, SWI or TSK.

Constraints and
Calling Context

❏ The message must have been allocated via MSGQ_alloc.

Example status = MSGQ_get(readerMsgQueue, (MSGQ_Msg *)msg,
 SYS_FOREVER);
if (status != SYS_OK) {
 SYS_printf("MSGQ_get call failed.");
}
// process message

MSGQ_free(msg);

See Also MSGQ_alloc

MSGQ_free Free a message
2-284

MSGQ_get
C Interface

Syntax status = MSGQ_get(msgqQueue, msg, timeout);

Parameters MSGQ_Queue msgqQueue; /* Message queue */
MSGQ_Msg *msg; /* Pointer to the returned message */
Uns timeout; /* Duration to block if no message */

Return Value Int status; /* status */

Reentrant yes

Description MSGQ_get returns a message sent via MSGQ_put. The order of retrieval
is FIFO.

This function is performed by the reader. Once a message has been
received, the reader is responsible for freeing or re-sending the
message.

If no messages are present, the pend() function specified in the
MSGQ_Attrs passed to MSGQ_open for this message queue is called.
The pend() function blocks up to the timeout value (SYS_FOREVER =
forever). The timeout units are system clock ticks.

This function is deterministic if timeout is zero. MSGQ_get can be called
from a TSK with any timeout. It can be called from a HWI or SWI if the
timeout is zero.

If successful, this function returns SYS_OK. Otherwise,
SYS_ETIMEOUT is returned if the timeout expires before the message
is received.

Constraints and
Calling Context

❏ Only one reader of a message queue is allowed concurrently.

❏ The message queue must have been returned from a MSGQ_open
call.

Example status = MSGQ_get(readerMsgQueue, (MSGQ_Msg *)&msg, 0);
if (status != SYS_OK) {
 /* No messages to process */
 return;
}

See Also MSGQ_put
MSGQ_open

MSGQ_get Receive a message from the message queue
Application Program Interface 2-285

MSGQ_getAttrs
C Interface

Syntax status = MSGQ_getAttrs(msgqQueue, attrs);

Parameters MSGQ_Queue msgqQueue; /* Message queue */
MSGQ_Attrs *attrs; /* Attributes of message queue */

Return Value Int status /* status */

Reentrant yes

Description MSGQ_getAttrs fills in the attrs structure passed to it with the attributes
of a local message queue. These attributes are set by MSGQ_open.

The API returns SYS_OK unless the message queue is not local (that is,
it was opened on another processor). If the message queue is not local,
the API returns SYS_EINVAL and does not change the contents of the
passed in attrs structure.

Example status = MSGQ_getAttrs (msgqQueue, &attrs);
if (status != SYS_OK) {
 return;
}
notifyHandle = attrs.notifyHandle;

Constraints and
Calling Context

❏ The message queue must have been returned from a MSGQ_open
call and must be valid.

❏ This function can be called from a HWI, SWI or TSK.

See Also MSGQ_open

MSGQ_getAttrs Returns the attributes of a message queue
2-286

MSGQ_getDstQueue
C Interface

Syntax MSGQ_getDstQueue(msg, msgqQueue);

Parameters MSGQ_Msg msg; /* Message */
MSGQ_Queue *msgqQueue; /* Message queue */

Return Value Void

Reentrant yes

Description This API allows the application to determine the destination message
queue of a message. This API is generally used by transports to
determine the final destination of a message. This API can also be used
by the application once the message is received.

This function can be called from a HWI, SWI or TSK.

Constraints and
Calling Context

❏ The message must have been sent via MSGQ_put.

MSGQ_getDstQueue Get destination message queue field in a message
Application Program Interface 2-287

MSGQ_getMsgId
C Interface

Syntax msgId = MSGQ_getMsgId(msg);

Parameters MSGQ_Msg msg; /* Message */

Return Value Uint16 msgId; /* Message ID */

Reentrant yes

Description MSGQ_getMsgId returns the message ID from a received message. This
message ID is specified via the MSGQ_setMsgId function.

This function can be called from a HWI, SWI or TSK.

Example /* Make sure the message is the one expected */
if (MSGQ_getMsgId((MSGQ_Msg)msg) != MESSAGEID) {
 SYS_abort("Unexpected message");
}

See Also MSGQ_setMsgId

MSGQ_getMsgId Return the message ID from a message
2-288

MSGQ_getMsgSize
C Interface

Syntax size = MSGQ_getMsgSize(msg);

Parameters MSGQ_Msg msg; /* Message */

Return Value Uint16 size; /* Message size */

Reentrant yes

Description MSGQ_getMsgSize returns the size of the message buffer out of the
received message. The size is in minimum addressable data units
(MADUs).

This function can be used to determine if a message can be re-used.

This function can be called from a HWI, SWI or TSK.

See Also MSGQ_alloc

MSGQ_getMsgSize Return the message size from a message
Application Program Interface 2-289

MSGQ_getSrcQueue
C Interface

Syntax status = MSGQ_getSrcQueue(msg, msgqQueue);

Parameters MSGQ_Msg msg; /* Received message */
MSGQ_Queue *msgqQueue; /* Message queue */

Return Value Int status; /* status */

Reentrant yes

Description Many times a receiver of a message wants to reply to the sender of the
message (for example, to send an acknowledgement). When a valid
msgqQueue is specified in MSGQ_setSrcQueue, the receiver of the
message can extract the message queue via MSGQ_getSrcQueue.

This is basically the same as a MSGQ_locate function without knowing
the name of the message queue. This function can be used even if the
queueName used with MSGQ_open was NULL or non-unique.

Note: The msgqQueue may not be the sender's message queue handle.
The sender is free to use any created message queue handle.

This function can be called from a HWI, SWI or TSK.

If successful, this function returns SYS_OK.

Example /* Get the handle and send the message back. */
status = MSGQ_getSrcQueue((MSGQ_Msg)msg, &replyQueue);
if (status != SYS_OK) {
 /* Free the message and abort */
 MSGQ_free((MSGQ_Msg)msg);
 SYS_abort("Failed to get handle from message");
}
status = MSGQ_put(replyQueue, (MSGQ_Msg)msg);

See Also MSGQ_getAttrs
MSGQ_setSrcQueue

MSGQ_getSrcQueue Extract the reply destination from a message
2-290

MSGQ_isLocalQueue
C Interface

Syntax flag = MSGQ_isLocalQueue(msgqQueue);

Parameters MSGQ_Queue msgqQueue; /* Message queue */

Return Value Bool flag; /* status */

Reentrant yes

Description This API determines whether the message queue is local (that is, opened
on this processor) or remote (that is, opened on a different processor).

If the message queue is local, the flag returned is TRUE. Otherwise, it is
FALSE.

Constraints and
Calling Context

❏ This function can be called from a HWI, SWI or TSK.

Example flag = MSGQ_isLocalQueue(readerMsgQueue);
if (flag == TRUE) {
 /* Message queue is local */
 return;
}

See Also MSGQ_open

MSGQ_isLocalQueue Return whether message queue is local or on other processor
Application Program Interface 2-291

MSGQ_locate
C Interface

Syntax status = MSGQ_locate(queueName, msgqQueue, locateAttrs);

Parameters String queueName; /* Name of message queue to locate */
MSGQ_Queue *msgqQueue; /* Return located message queue here */
MSGQ_LocateAttrs *locateAttrs; /* Locate attributes */

Return Value Int status; /* status */

Reentrant yes

Description The MSGQ_locate function is used to locate an opened message queue.
This function is synchronous (that is, it can block if timeout is non-zero).

This function is performed by a writer. The reader must have already
called MSGQ_open for this queueName.

MSGQ_locate firsts searches the local message queues for a name
match. If a match is found, that message queue is returned. If no match
is found, the transports are queried one at a time. If a transport locates
the queueName, that message queue is returned. If the transport does
not locate the message queue, the next transport is queried. If no
transport can locate the message queue, an error is returned.

In a multiple-processor environment, transports can block when they are
queried if you call MSGQ_locate. The timeout in the MSGQ_LocateAttrs
structure specifies the maximum time each transport can block. The
default is SYS_FOREVER (that is, each transport can block forever).
Remember that if you specify 1000 clock ticks as the timeout, the total
blocking time could be 1000 * number of transports.

Note that timeout is not a fixed amount of time to wait. It is the maximum
time each transport waits for a positive or negative response. For
example, suppose your timeout is 1000, but the response (found or not
found) comes back in 600 ticks. The transport returns the response then;
it does not wait for another 400 ticks to recheck for a change.

If you do not want to allow blocking, call MSGQ_locateAsync instead of
MSGQ_locate.

The locateAttrs parameter is of type MSGQ_LocateAttrs. This type has
the following structure:

MSGQ_locate Synchronously find a message queue
2-292

MSGQ_locate
typedef struct MSGQ_LocateAttrs {
 Uns timeout;
} MSGQ_LocateAttrs;

The timeout is the maximum time a transport can block on a synchronous
locate in system clock ticks. The default attributes are as follows:

MSGQ_LocateAttrs MSGQ_LOCATEATTRS = {SYS_FOREVER};

If successful, this function returns SYS_OK. Otherwise, it returns
SYS_ENOTFOUND to indicate that it could not locate the specified
message queue.

Constraints and
Calling Context

❏ Cannot be called from main().

❏ Cannot be called in a SWI or HWI context.

Example status = MSGQ_locate("reader", &readerMsgQueue, NULL);
 if (status != SYS_OK) {
 SYS_abort("Failed to locate reader message queue");
}

See Also MSGQ_locateAsync
MSGQ_open
Application Program Interface 2-293

MSGQ_locateAsync
C Interface

Syntax status = MSGQ_locateAsync(queueName, replyQueue, locateAsyncAttrs);

Parameters String queueName; /* Name of message queue to locate */
MSGQ_Queue replyQueue; /* Msgq to send locate message */
MSGQ_LocateAsyncAttrs *locateAsyncAttrs; /* Locate attributes */

Return Value Int status; /* status */

Reentrant yes

Description MSGQ_locateAsync firsts searches the local message queues for a
name match. If one is found, an asynchronous locate message is sent to
the specified message queue (in the replyQueue parameter). If it is not,
all transports are asked to start an asynchronous locate search. After all
transports have been asked to start the search, the API returns.

If a transport locates the message queue, an asynchronous locate
message is sent to the specified replyQueue. If no transport can locate
the message queue, no message is sent.

This function is performed by a writer. The reader must have already
called MSGQ_open for this queueName. An asynchronous locate can be
performed from a SWI or TSK. It cannot be performed in main().

The message ID for an asynchronous locate message is:

/* Asynchronous locate message ID */
#define MSGQ_ASYNCLOCATEMSGID 0xFF00

The MSGQ_LocateAsyncAttrs structure has the following fields:

typedef struct MSGQ_LocateAsyncAttrs {
 Uint16 poolId;
 Arg arg;
} MSGQ_LocateAttrs;

The default attributes are as follows:

MSGQ_LocateAsyncAttrs MSGQ_LOCATEASYNCATTRS = {0, 0};

The locate message is allocated from the allocator specified by the
locateAsyncAttrs->poolId field.

The locateAsyncAttrs->arg value is included in the asynchronous locate
message. This field allows you to correlate requests with the responses.

MSGQ_locateAsync Asynchronously find a message queue
2-294

MSGQ_locateAsync
Once the application receives an asynchronous locate message, it is
responsible for freeing the message. The asynchronous locate message
received by the replyQueue has the following structure:

typedef struct MSGQ_AsyncLocateMsg {
 MSGQ_MsgHeader header;
 MSGQ_Queue msgqQueue;
 Arg arg;
} MSGQ_AsyncLocateMsg;

This function returns SYS_OK to indicated that an asynchronous locate
was started. This status does not indicate whether or not the locate will
be successful. The SYS_EALLOC status is returned if the message
could not be allocated.

Constraints and
Calling Context

❏ The allocator must be able to allocate an asynchronous locate
message.

❏ Cannot be called in the context of main().

Example The following example shows an asynchronous locate performed in a
task. Time spent blocking is dictated by the timeout specified in the
MSGQ_get call. (Error handling statements were omitted for brevity.)

status = MSGQ_open("myMsgQueue", &myQueue, &msgqAttrs);

locateAsyncAttrs = MSGQ_LOCATEATTRS;
locateAsyncAttrs.poolId = STATICPOOLID;

MSGQ_locateAsync("msgQ1", myQueue, &locateAsyncAttrs);
status = MSGQ_get(myQueue, &msg, SYS_FOREVER);
if (MSGQ_getMsgId((MSGQ_Msg)msg) ==
 MSGQ_ASYNCLOCATEMSGID) {
 readerQueue = msg->msgqQueue;
}
MSGQ_free((MSGQ_Msg)msg);

See Also MSGQ_locate
MSGQ_free
MSGQ_open

Field Type Description

header MSGQ_MsgHeader Required field for every message.

msgqQueue MSGQ_Queue Located message queue handle.

Arg Arg Value specified in MSGQ_LocateAttrs
for this asynchronous locate.
Application Program Interface 2-295

MSGQ_open
C Interface

Syntax status = MSGQ_open(queueName, msgqQueue, attrs);

Parameters String queueName; /* Unique name of the message queue */
MSGQ_Queue *msgqQueue; /* Pointer to returned message queue */
MSGQ_Attrs *attrs; /* Attributes of the message queue */

Return Value Int status; /* status */

Reentrant yes

Description MSGQ_open is the function to open a message queue. This function
selects and returns a message queue from the array provided in the static
configuration (that is, MSGQ_config->msgqQueues).

This function is on the processor where the reader resides. The reader
then uses this message queue to receive messages.

If successful, this function returns SYS_OK. Otherwise, it returns
SYS_ENOTFOUND to indicate that no empty spot was available in the
message queue array.

If the application will use MSGQ_locate or MSGQ_locateAsync to find
this message queue, the queueName must be unique. If the application
will never need to use the locate APIs, the queueName may be NULL or
a non-unique name.

Instead of using a fixed notification mechanism, such as SEM_pend and
SEM_post, the MSGQ notification mechanism is supplied in the attrs
parameter, which is of type MSGQ_Attrs. If attrs is NULL, the new
message queue is assigned a default set of attributes. The structure for
MSGQ_Attrs is as follows:

typedef struct MSGQ_Attrs {
 Ptr notifyHandle;
 MSGQ_Pend pend;
 MSGQ_Post post;
} MSGQ_Attrs;

The MSGQ_Attrs fields are as follows:

MSGQ_open Open a message queue

Field Type Description

notifyHandle Ptr Handle to use in the pend() and post() functions.
2-296

MSGQ_open
The default attributes are:

MSGQ_Attrs MSGQ_ATTRS = {
 NULL, /* notifyHandle */
 (MSGQ_Pend)SYS_zero, /* NOP pend */
 FXN_F_nop /* NOP post */
};

The following typedefs are provided by the MSGQ module to allow easier
casting of the pend and post functions:

 typedef Bool (*MSGQ_Pend)(Ptr notifyHandle, Uns timeout);
 typedef Void (*MSGQ_Post)(Ptr notifyHandle);

The post() function you specify is always called within MSGQ_put when
a writer sends a message.

A reader calls MSGQ_get to receive a message. If there is a message, it
returns that message, and the pend() function is not called. The pend()
function is only called if there are no messages to receive.

The pend() and post() functions must act in a binary manner. For
instance, SEM_pend and SEM_post treat the semaphore as a counting
semaphore instead of binary. So SEM_pend and SEM_post are an
invalid pend/post pair. The following example, in which the reader calls
MSGQ_get with a timeout of SYS_FOREVER, shows why:

1) A writer sends 10 messages, making the count 10 in the semaphore.

2) The reader then calls MSGQ_get 10 times. Each call returns a
message without calling the pend() function.

3) The reader then calls MSGQ_get again. Since there are no
messages, the pend() function is called. Since the semaphore count
was 10, SEM_pend returns TRUE immediately from the pend().
MSGQ would check for messages and there would still be none, so
pend() would be called again. This would repeat 9 more times until
the count was zero.

If the pend() function were binary (for example, a binary semaphore), the
pend() function would be called at most two times in step 3.

So instead of using SEM_pend and SEM_post for synchronous
(blocking) opens, you should use SEM_pendBinary and
SEM_postBinary.

Pend MSGQ_Pend Function pointer to a user-specified pend function.

Post MSGQ_Post Function pointer to a user-specified post function.
Application Program Interface 2-297

MSGQ_open
The following notification attributes could be used if the reader is a SWI
function (which cannot block):

MSGQ_Attrs attrs = MSGQ_ATTRS; // default attributes
// leave attrs.pend as a NOP
attrs.notifyHandle = (Ptr)swiHandle;
attrs.post = (MSGQ_Pend)SWI_post;

The following notification attributes could be used if the reader is a TSK
function (which can block):

MSGQ_Attrs attrs = MSGQ_ATTRS; // default attributes
attrs.notifyHandle = (Ptr)semHandle;
attrs.pend = (MSGQ_Pend)SEM_pendBinary;
attrs.post = (MSGQ_Post)SEM_postBinary;

Constraints and
Calling Context

❏ The message queue returned is to be used by the caller of
MSGQ_get. It should not be used by writers to that message queue
(that is, callers of MSGQ_put). Writers should use the message
queue returned by MSGQ_locate, MSGQ_locateAsync, or
MSGQ_getSrcQueue.

❏ If a post() function is specified, the function must be non-blocking.

❏ If a pend() function is specified, the function must be non-blocking
when timeout is zero.

❏ Each message queue must have a unique name if the application will
use MSGQ_locate or MSGQ_locateAsync.

❏ The queueName must be persistent. The MSGQ module references
this name internally; that is, it does not make a copy of the name.

Example /* Open the reader message queue.
 * Using semaphores as notification mechanism */
msgqAttrs = MSGQ_ATTRS;
msgqAttrs.notifyHandle = (Ptr)readerSemHandle;
msgqAttrs.pend = (MSGQ_Pend)SEM_pendBinary;
msgqAttrs.post = (MSGQ_Post)SEM_postBinary;
status = MSGQ_open("reader", &readerMsgQueue,
 &msgqAttrs);
if (status != SYS_OK) {
 SYS_abort("Failed to open the reader message queue");
}

See Also MSGQ_close
MSGQ_locate
MSGQ_locateAsync
SEM_pendBinary
SEM_postBinary
2-298

MSGQ_put
C Interface

Syntax status = MSGQ_put(msgqQueue, msg);

Parameters MSGQ_Queue msgqQueue; /* Destination message queue */
MSGQ_Msg msg; /* Message */

Return Value Int status; /* status */

Reentrant yes

Description MSGQ_put places a message into the specified message queue.

This function is performed by a writer. This function is non-blocking, and
can be called from a HWI, SWI or TSK.

The post() function for the destination message queue is called as part of
the MSGQ_put. The post() function is specified MSGQ_open call in the
MSGQ_Attrs parameter.

If successful, this function returns SYS_OK. Otherwise, it may return an
error code returned by the transport.

There are several features available when sending a message.

❏ A msgId passed to MSGQ_setMsgId can be used to indicate the type
of message it is. Such a type is completely application-specific,
except for IDs defined for MSGQ_setMsgId. The reader of a
message can use MSGQ_getMsgId to get the ID from the message.

❏ The source message queue parameter to MSGQ_setSrcQueue
allows the sender of the message to specify a source message
queue. The receiver of the message can use MSGQ_getSrcQueue
to extract the embedded message queue from the message. A
client/server application might use this mechanism because it allows
the server to reply to a message without first locating the sender. For
example, each client would have its own message queue that it
specifies as the source message queue when it sends a message to
the server. The server can use MSGQ_getSrcQueue to get the
message queue to reply back to.

If MSGQ_put returns an error, the user still owns the message and is
responsible for freeing the message (or re-sending it).

Constraints and
Calling Context

❏ The msgqQueue must have been returned from MSGQ_locate,
MSGQ_locateAsync or MSGQ_getSrcQueue (or MSGQ_open if the
reader of the message queue wants to send themselves a message).

MSGQ_put Place a message on a message queue
Application Program Interface 2-299

MSGQ_put
❏ If MSGQ_put does not return SYS_OK, the message is still owned by
the caller and must either be freed or re-used.

Example /* Send the message back. */
status = MSGQ_put(replyMsgQueue, (MSGQ_Msg)msg);
if (status != SYS_OK) {
 /* Need to free the message */
 MSGQ_free((MSGQ_Msg)msg);
 SYS_abort("Failed to send the message");
}

See Also MSGQ_get
MSGQ_open
MSGQ_setMsgId
MSGQ_getMsgId
MSGQ_setSrcQueue
MSGQ_getSrcQueue
2-300

MSGQ_release
C Interface

Syntax status = MSGQ_release(msgqQueue);

Parameters MSGQ_Queue msgqQueue; /* Message queue to release */

Return Value Int status; /* status */

Reentrant yes

Description This function releases a located message queue. That is, it releases a
message queue returned from MSGQ_locate or MSGQ_locateAsync.

This function is performed by a writer.

If successful, this function returns SYS_OK. Otherwise, it may return an
error code returned by the transport.

Constraints and
Calling Context

❏ The handle must have been returned from MSGQ_locate or
MSGQ_locateAsync.

See Also MSGQ_locate
MSGQ_locateAsync

MSGQ_release Release a located message queue
Application Program Interface 2-301

MSGQ_setErrorHandler
C Interface

Syntax status = MSGQ_setErrorHandler(errorQueue, poolId);

Parameters MSGQ_Queue errorQueue; /* Message queue to receive errors */
Uint16 poolId; /* Allocator to allocate error messages */

Return Value Int status; /* status */

Reentrant yes

Description Asynchronous errors that need to be communicated to the application
may occur in a transport. If an application calls MSGQ_setErrorHandler,
all asynchronous errors are then sent to the message queue specified.

The specified message queue receives asynchronous error messages (if
they occur) via MSGQ_get.

poolId specifies the allocator the transport should use to allocate error
messages. If the transports cannot allocate a message, no action is
performed.

If this function is not called or if errorHandler is set to
MSGQ_INVALIDMSGQ, no error messages will be allocated and sent.

This function can be called multiple times with only the last handler being
active.

If successful, this function returns SYS_OK.

The message ID for an asynchronous error message is:

/* Asynchronous error message ID */
#define MSGQ_ASYNCERRORMSGID 0xFF01

The following is the structure for an asynchronous error message:

typedef struct MSGQ_AsyncErrorMsg {
 MSGQ_MsgHeader header;
 MSGQ_MqtError errorType;
 Uint16 mqtId;
 Uint16 parameter;
} MSGQ_AsyncErrorMsg;

MSGQ_setErrorHandler Set up handling of internal MSGQ errors
2-302

MSGQ_setErrorHandler
The following table describes the fields in the MSGQ_AsyncErrorMsg
structure:

The following table lists the valid errorType values and the meanings of
their arg fields:

MSGQ_open
MSGQ_get

Field Type Description

header MSGQ_MsgHeader Required field for every message

errorType MSGQ_MqtError Error ID

mqtId Uint16 ID of the transport that sent the
error message

parameter Uint16 Error-specific field

errorType mqtId parameter

MSGQ_MQTERROREXIT ID of the transport that is exiting. Not used.

MSGQ_MQTFAILEDPUT ID of the transport that failed to
send a message.

ID of destination queue. The
parameter is 16 bits, so only the
lower 16 bits of the msgqQueue is
logged. The top 16 bits of the
msgQueue contain the destination
processor ID, which is also the
mqtId. You can OR the mqtId
shifted over by 16 bits with the
parameter to get the full destina-
tion msgqQueue.

MSGQ_MQTERRORINTERNAL Generic internal error. Transport defined.

MSGQ_MQTERRORPHYSICAL Problem with the physical link. Transport defined.

MSGQ_MQTERRORALLOC Transport could not allocate mem-
ory.

Size of the requested memory.
Application Program Interface 2-303

MSGQ_setMsgId
C Interface

Syntax MSGQ_setMsgId(msg, msgId);

Parameters MSGQ_MSG msg; /* Message */
Uint16 msgId; /* Message id */

Return Value Void

Reentrant yes

Description Inside each message is a message id field. This API sets this field. The
value of msgId is application-specific. MSGQ_getMsgId can be used to
extract this field from a message.

When a message is allocated, the value of this field is
MSGQ_INVALIDMSGID. When MSGQ_setMsgId is called, it updates
the field accordingly. This API can be called multiple times on a message.

If a message is sent to another processor, the message Id field is
converted by the transports accordingly (for example, endian conversion
is performed).

The message IDs used when sending messages are application-specific.
They can have any value except values in the following ranges:

❏ Reserved for the MSGQ module messages: 0xFF00 - 0xFF7F

❏ Reserved for internal transport usage: 0xFF80 - 0xFFFE

❏ Used to signify an invalid message ID: 0xFFFF

The following table lists the message IDs currently used by the MSGQ
module.

Constraints and
Calling Context

❏ Message must have been allocated originally from MSGQ_alloc.

MSGQ_setMsgId Set the message ID in a message

Constant Defined in msgq.h Value Description

MSGQ_ASYNCLOCATEMSGID 0xFF00 Used to denote an asynchronous locate message.

MSGQ_ASYNCERRORMSGID 0xFF01 Used to denote an asynchronous transport error.

MSGQ_INVALIDMSGID 0xFFFF Used as initial value when message is allocated.
2-304

MSGQ_setMsgId
Example /* Fill in the message */
msg->sequenceNumber = 0;
MSGQ_setMsgId((MSGQ_Msg)msg, MESSAGEID);

/* Send the message */
status = MSGQ_put(readerMsgQueue, (MSGQ_Msg)msg);
 if (status != SYS_OK) {
 SYS_abort("Failed to send the message");
}

See Also MSGQ_getMsgId
MSGQ_setErrorHandler
Application Program Interface 2-305

MSGQ_setSrcQueue
C Interface

Syntax MSGQ_setSrcQueue(msg, msgqQueue);

Parameters MSGQ_MSG msg; /* Message */
MSGQ_Queue msgqQueue; /* Message queue */

Return Value Void

Reentrant yes

Description This API allows the sender to specify a message queue that the receiver
of the message can reply back to (via MSGQ_getSrcQueue). The
msgqQueue must have been returned by MSGQ_open.

Inside each message is a source message queue field. When a message
is allocated, the value of this field is MSGQ_INVALIDMSGQ. When this
API is called, it updates the field accordingly. This API can be called
multiple times on a message.

If a message is sent to another processor, the source message queue
field is managed by the transports accordingly.

Constraints and
Calling Context

❏ Message must have been allocated originally from MSGQ_alloc.

❏ msgqQueue must have been returned from MSGQ_open.

Example /* Fill in the message */
msg->sequenceNumber = 0;
MSGQ_setSrcQueue((MSGQ_Msg)msg, writerMsgQueue);

/* Send the message */
status = MSGQ_put(readerMsgQueue, (MSGQ_Msg)msg);
 if (status != SYS_OK) {
 SYS_abort("Failed to send the message");
}

See Also MSGQ_getSrcQueue

MSGQ_setSrcQueue Set the reply destination in a message
2-306

PIP Module
2.20 PIP Module

Important Note: The PIP module is being deprecated and will no
longer be supported in the next major release of DSP/BIOS. We
recommend that you use the SIO module instead.

The PIP module is the buffered pipe manager.

Functions ❏ PIP_alloc. Get an empty frame from the pipe.

❏ PIP_free. Recycle a frame back to the pipe.

❏ PIP_get. Get a full frame from the pipe.

❏ PIP_getReaderAddr. Get the value of the readerAddr pointer of the
pipe.

❏ PIP_getReaderNumFrames. Get the number of pipe frames
available for reading.

❏ PIP_getReaderSize. Get the number of words of data in a pipe
frame.

❏ PIP_getWriterAddr. Get the value of the writerAddr pointer of the
pipe.

❏ PIP_getWriterNumFrames. Get the number of pipe frames available
to write to.

❏ PIP_getWriterSize. Get the number of words that can be written to a
pipe frame.

❏ PIP_peek. Get the pipe frame size and address without actually
claiming the pipe frame.

❏ PIP_put. Put a full frame into the pipe.

❏ PIP_reset. Reset all fields of a pipe object to their original values.

❏ PIP_setWriterSize. Set the number of valid words written to a pipe
frame.

PIP_Obj Structure
Members

❏ Ptr readerAddr. Pointer to the address to begin reading from after
calling PIP_get.

❏ Uns readerSize. Number of words of data in the frame read with
PIP_get.

❏ Uns readerNumFrames. Number of frames available to be read.

❏ Ptr writerAddr. Pointer to the address to begin writing to after calling
PIP_alloc.
Application Program Interface 2-307

PIP Module
❏ Uns writerSize. Number of words available in the frame allocated
with PIP_alloc.

❏ Uns writerNumFrames. Number of frames available to be written to.

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the PIP
Manager Properties and PIP Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Description The PIP module manages data pipes, which are used to buffer streams
of input and output data. These data pipes provide a consistent software
data structure you can use to drive I/O between the DSP device and all
kinds of real-time peripheral devices.

Each pipe object maintains a buffer divided into a fixed number of fixed
length frames, specified by the numframes and framesize properties. All
I/O operations on a pipe deal with one frame at a time; although each
frame has a fixed length, the application can put a variable amount of
data in each frame up to the length of the frame.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

bufSeg Reference prog.get("IDRAM")

bufAlign Int16 1

frameSize Int16 8

numFrames Int16 2

monitor EnumString "reader" ("writer", "none")

notifyWriterFxn Extern prog.extern("FXN_F_nop")

notifyWriterArg0 Arg 0

notifyWriterArg1 Arg 0

notifyReaderFxn Extern prog.extern("FXN_F_nop")

notifyReaderArg0 Arg 0

notifyReaderArg1 Arg 0
2-308

PIP Module
A pipe has two ends, as shown in Figure 2-4. The writer end (also called
the producer) is where your program writes frames of data. The reader
end (also called the consumer) is where your program reads frames of
data

Figure 2-4. Pipe Schematic

Internally, pipes are implemented as a circular list; frames are reused at
the writer end of the pipe after PIP_free releases them.

The notifyReader and notifyWriter functions are called from the context
of the code that calls PIP_put or PIP_free. These functions can be written
in C or assembly. To avoid problems with recursion, the notifyReader and
notifyWriter functions normally should not directly call any of the PIP
module functions for the same pipe. Instead, they should post a SWI that
uses the PIP module functions. However, PIP calls may be made from
the notifyReader and notifyWriter functions if the functions have been
protected against re-entrancy.

ReaderWriter

1. PIP_alloc
2. Writes data into allocated frame
3. PIP_put (runs notifyReader)

1. PIP_get
2. Reads data from frame just received

3. PIP_free (runs notifyWriter)
Application Program Interface 2-309

PIP Module
Note:

When DSP/BIOS starts up, it calls the notifyWriter function internally for
each created pipe object to initiate the pipe’s I/O.

The code that calls PIP_free or PIP_put should preserve any necessary
registers.

Often one end of a pipe is controlled by an HWI and the other end is
controlled by a SWI function, such as SWI_andnHook.

HST objects use PIP objects internally for I/O between the host and the
target. Your program only needs to act as the reader or the writer when
you use an HST object, because the host controls the other end of the
pipe.

Pipes can also be used to transfer data within the program between two
application threads.

PIP Manager
Properties

The pipe manager manages objects that allow the efficient transfer of
frames of data between a single reader and a single writer. This transfer
is often between an HWI and a SWI, but pipes can also be used to
transfer data between two application threads.

The following global property can be set for the PIP module in the PIP
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment that contains the PIP
objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.PIP.OBJMEMSEG = prog.get("myMEM");

PIP Object Properties A pipe object maintains a single contiguous buffer partitioned into a fixed
number of fixed length frames. All I/O operations on a pipe deal with one
frame at a time; although each frame has a fixed length, the application
can put a variable amount of data in each frame (up to the length of the
frame).

To create a PIP object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.

var myPip = bios.PIP.create("myPip");
2-310

PIP Module
The following properties can be set for a PIP object in the PIP Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this PIP object.
Tconf Name: comment Type: String
Example: myPip.comment = "my PIP";

❏ bufseg. The memory segment that the buffer is allocated within; all
frames are allocated from a single contiguous buffer (of size
framesize x numframes).
Tconf Name: bufSeg Type: Reference
Example: myPip.bufSeg = prog.get("myMEM");

❏ bufalign. The alignment (in words) of the buffer allocated within the
specified memory segment.
Tconf Name: bufAlign Type: Int16
Example: myPip.bufAlign = 1;

❏ framesize. The length of each frame (in words)
Tconf Name: frameSize Type: Int16
Example: myPip.frameSize = 8;

❏ numframes. The number of frames
Tconf Name: numFrames Type: Int16
Example: myPip.numFrames = 2;

❏ monitor. The end of the pipe to be monitored by a hidden STS
object. Can be set to reader, writer, or nothing. In the Statistics View
analysis tool, your choice determines whether the STS display for
this pipe shows a count of the number of frames handled at the
reader or writer end of the pipe.
Tconf Name: monitor Type: EnumString
Options: "reader", "writer", "none"
Example: myPip.monitor = "reader";

❏ notifyWriter. The function to execute when a frame of free space is
available. This function should notify (for example, by calling
SWI_andnHook) the object that writes to this pipe that an empty
frame is available.

The notifyWriter function is performed as part of the thread that called
PIP_free or PIP_alloc. To avoid problems with recursion, the
Application Program Interface 2-311

PIP Module
notifyWriter function should not directly call any of the PIP module
functions for the same pipe.
Tconf Name: notifyWriterFxn Type: Extern
Example: myPip.notifyWriterFxn =

prog.extern("writerFxn");

❏ nwarg0, nwarg1. Two Arg type arguments for the notifyWriter
function.
Tconf Name: notifyWriterArg0 Type: Arg
Tconf Name: notifyWriterArg1 Type: Arg
Example: myPip.notifyWriterArg0 = 0;

❏ notifyReader. The function to execute when a frame of data is
available. This function should notify (for example, by calling
SWI_andnHook) the object that reads from this pipe that a full frame
is ready to be processed.

The notifyReader function is performed as part of the thread that
called PIP_put or PIP_get. To avoid problems with recursion, the
notifyReader function should not directly call any of the PIP module
functions for the same pipe.
Tconf Name: notifyReaderFxn Type: Extern
Example: myPip.notifyReaderFxn =

prog.extern("readerFxn");

❏ nrarg0, nrarg1. Two Arg type arguments for the notifyReader
function.
Tconf Name: notifyReaderArg0 Type: Arg
Tconf Name: notifyReaderArg1 Type: Arg
Example: myPip.notifyReaderArg0 = 0;
2-312

PIP_alloc
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax PIP_alloc(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Reentrant no

Description PIP_alloc allocates an empty frame from the pipe you specify. You can
write to this frame and then use PIP_put to put the frame into the pipe.

If empty frames are available after PIP_alloc allocates a frame, PIP_alloc
runs the function specified by the notifyWriter property of the PIP object.
This function should notify (for example, by calling SWI_andnHook) the
object that writes to this pipe that an empty frame is available. The
notifyWriter function is performed as part of the thread that calls PIP_free
or PIP_alloc. To avoid problems with recursion, the notifyWriter function
should not directly call any PIP module functions for the same pipe.

Constraints and
Calling Context

❏ Before calling PIP_alloc, a function should check the
writerNumFrames member of the PIP_Obj structure by calling
PIP_getWriterNumFrames to make sure it is greater than 0 (that is,
at least one empty frame is available).

❏ PIP_alloc can only be called one time before calling PIP_put. You
cannot operate on two frames from the same pipe simultaneously.

Note:

Registers used by notifyWriter functions might also be modified.

PIP_alloc Allocate an empty frame from a pipe
Application Program Interface 2-313

PIP_alloc
Example Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

 in = HST_getpipe(input);
 out = HST_getpipe(output);

 if (PIP_getReaderNumFrames(in) == 0 ||
 PIP_getWriterNumFrames(out) == 0) {
 error;
 }

 /* get input data and allocate output frame */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output frame */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);
 size = PIP_getReaderSize(in);
 PIP_setWriterSize(out, size);
 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input frame */
 PIP_put(out);
 PIP_free(in);
}

The example for HST_getpipe, page 2–173, also uses a pipe with host
channel objects.

See Also PIP_free
PIP_get
PIP_put
HST_getpipe
2-314

PIP_free
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax PIP_free(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Reentrant no

Description PIP_free releases a frame after you have read the frame with PIP_get.
The frame is recycled so that PIP_alloc can reuse it.

After PIP_free releases the frame, it runs the function specified by the
notifyWriter property of the PIP object. This function should notify (for
example, by calling SWI_andnHook) the object that writes to this pipe
that an empty frame is available. The notifyWriter function is performed
as part of the thread that called PIP_free or PIP_alloc. To avoid problems
with recursion, the notifyWriter function should not directly call any of the
PIP module functions for the same pipe.

Constraints and
Calling Context

❏ When called within an HWI, the code sequence calling PIP_free must
be either wrapped within an HWI_enter/HWI_exit pair or invoked by
the HWI dispatcher.

Note:
Registers used by notifyWriter functions might also be modified.

Example See the example for PIP_alloc, page 2–313. The example for
HST_getpipe, page 2–173, also uses a pipe with host channel objects.

See Also PIP_alloc
PIP_get
PIP_put
HST_getpipe

PIP_free Recycle a frame that has been read to a pipe
Application Program Interface 2-315

PIP_get
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax PIP_get(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Reentrant no

Description PIP_get gets a frame from the pipe after some other function puts the
frame into the pipe with PIP_put.

If full frames are available after PIP_get gets a frame, PIP_get runs the
function specified by the notifyReader property of the PIP object. This
function should notify (for example, by calling SWI_andnHook) the object
that reads from this pipe that a full frame is available. The notifyReader
function is performed as part of the thread that calls PIP_get or PIP_put.
To avoid problems with recursion, the notifyReader function should not
directly call any PIP module functions for the same pipe.

Constraints and
Calling Context

❏ Before calling PIP_get, a function should check the
readerNumFrames member of the PIP_Obj structure by calling
PIP_getReaderNumFrames to make sure it is greater than 0 (that is,
at least one full frame is available).

❏ PIP_get can only be called one time before calling PIP_free. You
cannot operate on two frames from the same pipe simultaneously.

Note: Registers used by notifyReader functions might also be modified.

Example See the example for PIP_alloc, page 2–313. The example for
HST_getpipe, page 2–173, also uses a pipe with host channel objects.

See Also PIP_alloc
PIP_free
PIP_put
HST_getpipe

PIP_get Get a full frame from the pipe
2-316

PIP_getReaderAddr
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax readerAddr = PIP_getReaderAddr(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Ptr readerAddr

Reentrant yes

Description PIP_getReaderAddr is a C function that returns the value of the
readerAddr pointer of a pipe object. The readerAddr pointer is normally
used following a call to PIP_get, as the address to begin reading from.

Example Void audio(PIP_Obj *in, PIP_Obj *out)
{
 Uns *src, *dst;
 Uns size;

 if (PIP_getReaderNumFrames(in) == 0 ||
 PIP_getWriterNumFrames(out) == 0) {
 error; }
 PIP_get(in); /* get input data */
 PIP_alloc(out); /* allocate output buffer */

 /* copy input data to output buffer */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);
 size = PIP_getReaderSize(in);
 PIP_setWriterSize(out,size);
 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input buffer */
 PIP_put(out);
 PIP_free(in);
}

PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe
Application Program Interface 2-317

PIP_getReaderNumFrames
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax num = PIP_getReaderNumFrames(pipe);

Parameters PIP_Handle pipe; /* pip object handle */

Return Value Uns num; /* number of filled frames to be read */

Reentrant yes

Description PIP_getReaderNumFrames is a C function that returns the value of the
readerNumFrames element of a pipe object.

Before a function attempts to read from a pipe it should call
PIP_getReaderNumFrames to ensure at least one full frame is available.

Example See the example for PIP_getReaderAddr, page 2–317.

PIP_getReaderNumFrames Get the number of pipe frames available for reading
2-318

PIP_getReaderSize
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax num = PIP_getReaderSize(pipe);

Parameters PIP_Handle pipe; /* pipe object handle*/

Return Value Uns num; /* number of words to be read from filled frame */

Reentrant yes

Description PIP_getReaderSize is a C function that returns the value of the
readerSize element of a pipe object.

As a function reads from a pipe it should use PIP_getReaderSize to
determine the number of valid words of data in the pipe frame.

Example See the example for PIP_getReaderAddr, page 2–317.

PIP_getReaderSize Get the number of words of data in a pipe frame
Application Program Interface 2-319

PIP_getWriterAddr
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax writerAddr = PIP_getWriterAddr(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Ptr writerAddr;

Reentrant yes

Description PIP_getWriterAddr is a C function that returns the value of the writerAddr
pointer of a pipe object.

The writerAddr pointer is normally used following a call to PIP_alloc, as
the address to begin writing to.

Example See the example for PIP_getReaderAddr, page 2–317.

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe
2-320

PIP_getWriterNumFrames
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax num = PIP_getWriterNumFrames(pipe);

Parameters PIP_Handle pipe; /* pipe object handle*/

Return Value Uns num; /* number of empty frames to be written */

Reentrant yes

Description PIP_getWriterNumFrames is a C function that returns the value of the
writerNumFrames element of a pipe object.

Before a function attempts to write to a pipe, it should call
PIP_getWriterNumFrames to ensure at least one empty frame is
available.

Example See the example for PIP_getReaderAddr, page 2–317.

PIP_getWriterNumFrames Get number of pipe frames available to be written to
Application Program Interface 2-321

PIP_getWriterSize
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax num = PIP_getWriterSize(pipe);

Parameters PIP_Handle pipe; /* pipe object handle*/

Return Value Uns num; /* num of words to be written in empty frame */

Reentrant yes

Description PIP_getWriterSize is a C function that returns the value of the writerSize
element of a pipe object.

As a function writes to a pipe, it can use PIP_getWriterSize to determine
the maximum number words that can be written to a pipe frame.

Example if (PIP_getWriterNumFrames(rxPipe) > 0) {
 PIP_alloc(rxPipe);
 DSS_rxPtr = PIP_getWriterAddr(rxPipe);
 DSS_rxCnt = PIP_getWriterSize(rxPipe);
}

PIP_getWriterSize Get the number of words that can be written to a pipe frame
2-322

PIP_peek
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax framesize = PIP_peek(pipe, addr, rw);

Parameters PIP_Handle pipe; /* pipe object handle */
Ptr *addr; /* address of variable with frame address */
Uns rw; /* flag to indicate the reader or writer side */

Return Value Int framesize;/* the frame size */

Description PIP_peek can be used before calling PIP_alloc or PIP_get to get the pipe
frame size and address without actually claiming the pipe frame.

The pipe parameter is the pipe object handle, the addr parameter is the
address of the variable that keeps the retrieved frame address, and the
rw parameter is the flag that indicates what side of the pipe PIP_peek is
to operate on. If rw is PIP_READER, then PIP_peek operates on the
reader side of the pipe. If rw is PIP_WRITER, then PIP_peek operates on
the writer side of the pipe.

PIP_getReaderNumFrames or PIP_getWriterNumFrames can be called
to ensure that a frame exists before calling PIP_peek, although PIP_peek
returns –1 if no pipe frame exists.

PIP_peek returns the frame size, or –1 if no pipe frames are available. If
the return value of PIP_peek in frame size is not –1, then *addr is the
location of the frame address.

See Also PIP_alloc
PIP_free
PIP_get
PIP_put
PIP_reset

PIP_peek Get pipe frame size and address without actually claiming pipe frame
Application Program Interface 2-323

PIP_put
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax PIP_put(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Reentrant no

Description PIP_put puts a frame into a pipe after you have allocated the frame with
PIP_alloc and written data to the frame. The reader can then use PIP_get
to get a frame from the pipe.

After PIP_put puts the frame into the pipe, it runs the function specified
by the notifyReader property of the PIP object. This function should notify
(for example, by calling SWI_andnHook) the object that reads from this
pipe that a full frame is ready to be processed. The notifyReader function
is performed as part of the thread that called PIP_get or PIP_put. To
avoid problems with recursion, the notifyReader function should not
directly call any of the PIP module functions for the same pipe.

Note: Registers used by notifyReader functions might also be modified.

Constraints and
Calling Context

❏ When called within an HWI, the code sequence calling PIP_put must
be either wrapped within an HWI_enter/HWI_exit pair or invoked by
the HWI dispatcher.

Example See the example for PIP_alloc, page 2–313. The example for
HST_getpipe, page 2–173, also uses a pipe with host channel objects.

See Also PIP_alloc
PIP_free
PIP_get
HST_getpipe

PIP_put Put a full frame into the pipe
2-324

PIP_reset
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax PIP_reset(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Description PIP_reset resets all fields of a pipe object to their original values.

The pipe parameter specifies the address of the pipe object that is to be
reset.

Constraints and
Calling Context

❏ PIP_reset should not be called between the PIP_alloc call and the
PIP_put call or between the PIP_get call and the PIP_free call.

❏ PIP_reset should be called when interrupts are disabled to avoid the
race condition.

See Also PIP_alloc
PIP_free
PIP_get
PIP_peek
PIP_put

PIP_reset Reset all fields of a pipe object to their original values
Application Program Interface 2-325

PIP_setWriterSize
Important Note: This API is being deprecated and will no longer be
supported in the next major release of DSP/BIOS. We recommend that
you use the SIO module instead.

C Interface

Syntax PIP_setWriterSize(pipe, size);

Parameters PIP_Handle pipe; /* pipe object handle */
Uns size; /* size to be set */

Return Value Void

Reentrant no

Description PIP_setWriterSize is a C function that sets the value of the writerSize
element of a pipe object.

As a function writes to a pipe, it can use PIP_setWriterSize to indicate the
number of valid words being written to a pipe frame.

Example See the example for PIP_getReaderAddr, page 2–317.

PIP_setWriterSize Set the number of valid words written to a pipe frame
2-326

POOL Module
2.21 POOL Module

The POOL module describes the interface that allocators must provide.

Functions None; this module describes an interface to be implemented by
allocators

Constants, Types, and
Structures

POOL_Config POOL_config;

typedef struct POOL_Config {
 POOL_Obj *allocators; /* Array of allocators */
 Uint16 numAllocators; /* Num of allocators */
} POOL_Config;

typedef struct POOL_Obj {
 POOL_Init initFxn; /* Allocator init function */
 POOL_Fxns *fxns; /* Interface functions */
 Ptr params; /* Setup parameters */
 Ptr object; /* Allocator’s object */
} POOL_Obj, *POOL_Handle;

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the
POOL Manager Properties heading. For descriptions of data types, see
Section 1.4, DSP/BIOS Tconf Overview, page 1-4.

Module Configuration Parameters

Description The POOL module describes standard interface functions that allocators
must provide. The allocator interface functions are called internally by the
MSGQ module and not by user applications. A simple static allocator,
called STATICPOOL, is provided with DSP/BIOS. Other allocators can
be implemented by following the standard interface.

Note: This document does not discuss how to write an allocator.
Information about designing allocators will be provided in a future
document.

All messages sent via the MSGQ module must be allocated by an
allocator. The allocator determines where and how the memory for the
message is allocated.

An allocator is an instance of an implementation of the allocator interface.
An application may instantiate one or more instances of an allocator.

Name Type Default (Enum Options)

ENABLEPOOL Bool false
Application Program Interface 2-327

POOL Module
An application can use multiple allocators. The purpose of having
multiple allocators is to allow an application to regulate its message
usage. For example, an application can allocate critical messages from
one pool of fast on-chip memory and non-critical messages from another
pool of slower external memory.

Figure 2-5. Allocators and Message Pools

Static Configuration In order to use an allocator and the POOL module, you must statically
configure the following:

❏ ENABLEPOOL property of the POOL module using Tconf (see
“POOL Manager Properties” on page 2-331)

❏ POOL_config variable in application code (see below)

An application must provide a filled in POOL_config variable if it uses one
or more allocators.

POOL_Config POOL_config;

Where the POOL_Config structure has the following structure:

typedef struct POOL_Config {
 POOL_Obj *allocators; /* Array of allocators */
 Uint16 numAllocators; /* Num of allocators */
} POOL_Config;

The fields in this structure are as follows:

If the POOL module is enabled via Tconf and the application does not
provide the POOL_config variable, the application cannot be linked
successfully.

MSGQ APIs

Allocator0 AllocatorN

Msg Pool Message PoolMessage Pool

. . . Transports

Field Type Description

allocators POOL_Obj Array of allocator objects

numAllocators Uint16 Number of allocators in the allocator array.
2-328

POOL Module
The following is the POOL_Obj structure:

typedef struct POOL_Obj {
 POOL_Init initFxn; /* Allocator init function */
 POOL_Fxns *fxns; /* Interface functions */
 Ptr params; /* Setup parameters */
 Ptr object; /* Allocator’s object */
} POOL_Obj, *POOL_Handle;

The fields in the POOL_Obj structure are as follows:

One allocator implementation (STATICPOOL) is shipped with
DSP/BIOS. Additional allocator implementations can be created by
application writers.

STATICPOOL
Allocator

The STATICPOOL allocator takes a user-specified buffer and allocates
fixed-size messages from the buffer. The following are its configuration
parameters:

typedef struct STATICPOOL_Params {
 Ptr addr;
 size_t length;
 size_t bufferSize;
} STATICPOOL_Params;

Field Type Description

initFxn POOL_Init Initialization function for this allocator. This function will be
called during DSP/BIOS initialization. More explicitly it is
called before main().

fxns POOL_Fxns * Pointer to the allocator's interface functions.

params Ptr Pointer to the allocator's parameters. This field is allocator-
specific. Please see the documentation provided with your
allocator for a description of this field.

object Ptr State information needed by the allocator. This field is ini-
tialized and managed by the allocator. See the allocator
documentation to determine how to specify this field.
Application Program Interface 2-329

POOL Module
The following table describes the fields in this structure:

The following figure shows how the fields in STATICPOOL_Params
define the layout of the buffer:

Figure 2-6. Buffer Layout as Defined by STATICPOOL_Params

Since the STATICPOOL buffer is generally used in static systems, the
application must provide the memory for the STATICPOOL_Obj. So the
object field of the POOL_Obj must be set to STATICPOOL_Obj instead
of NULL.

The following is an example of an application that has two allocators (two
instances of the STATICPOOL implementation).

#define NUMMSGS 8 /* Number of msgs per allocator */

/* Size of messages in the two allocators. Must be a
 * multiple of 8 as required by static allocator. */
#define MSGSIZE0 64
#define MSGSIZE1 128

enum { /* Allocator ID and number of allocators */
 MQASTATICID0 = 0,
 MQASTATICID1,
 NUMALLOCATORS
};

Field Type Description

addr Ptr User supplied block of memory for allocating messages from.
The address will be aligned on an 8 MADU boundary for correct
structure alignment on all ISAs. If there is a chance the buffer is
not aligned, allow at least 7 extra MADUs of space to allow room
for the alignment. You can use the DATA_ALIGN pragma to
force alignment yourself.

length size_t Size of the block of memory pointed to by addr.

bufferSize size_t Size of the buffers in the block of memory. The bufferSize must
be a multiple of 8 to allow correct structure alignment.

message

. . .

message

length (in MADUs)

bufferSize

addr
2-330

POOL Module
#pragma DATA_ALIGN(staticBuf0, 8) /* As required */
#pragma DATA_ALIGN(staticBuf1, 8) /* As required */
static Char staticBuf0[MSGSIZE0 * NUMMSGS];
static Char staticBuf1[MSGSIZE1 * NUMMSGS];

static MQASTATIC_Params poolParams0 = {staticBuf0,
 sizeof(staticBuf0), MSGSIZE0};
static MQASTATIC_Params poolParams1 = {staticBuf1,
 sizeof(staticBuf1), MSGSIZE1};

static STATICPOOL_Obj poolObj0, poolObj1;

static POOL_Obj allocators[NUMALLOCATORS] =
 {{STATICPOOL_init, (POOL_Fxns *)&STATICPOOL_FXNS,
 &poolParams0, &poolObj0}
 {{STATICPOOL_init, (POOL_Fxns *)&STATICPOOL_FXNS,
 &poolParams1, &poolObj1}};

POOL_Config POOL_config =
 {allocators, NUMALLOCATORS};

POOL Manager
Properties

To configure the POOL manager, the POOL_Config structure must be
defined in the application code. See “Static Configuration” on page 2-328.

The following global property must also be set in order to use the POOL
module:

❏ Enable POOL Manager. If ENABLEPOOL is TRUE, each allocator
specified in the POOL_config structure (see “Static Configuration” on
page 2-328) is initialized and opened.
Tconf Name: ENABLEPOOL Type: Bool
Example: bios.POOL.ENABLEPOOL = true;
Application Program Interface 2-331

PRD Module
2.22 PRD Module

The PRD module is the periodic function manager.

Functions ❏ PRD_getticks. Get the current tick count.

❏ PRD_start. Arm a periodic function for one-time execution.

❏ PRD_stop. Stop a periodic function from execution.

❏ PRD_tick. Advance tick counter, dispatch periodic functions.

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the PRD
Manager Properties and PRD Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Description While some applications can schedule functions based on a real-time
clock, many applications need to schedule functions based on I/O
availability or some other programmatic event.

The PRD module allows you to create PRD objects that schedule
periodic execution of program functions. The period can be driven by the
CLK module or by calls to PRD_tick whenever a specific event occurs.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

USECLK Bool true

MICROSECONDS Int16 1000.0

Name Type Default (Enum Options)

comment String "<add comments here>"

period Int16 32767

mode EnumString "continuous" ("one-shot")

fxn Extern prog.extern("FXN_F_nop")

arg0 Arg 0

arg1 Arg 0

order Int16 0
2-332

PRD Module
There can be several PRD objects, but all are driven by the same period
counter. Each PRD object can execute its functions at different intervals
based on the period counter.

❏ To schedule functions based on a real-time clock. Set the clock
interrupt rate you want to use in the CLK Object Properties. Set the
"Use On-chip Clock (CLK)" property of the PRD Manager Properties
to true. Set the frequency of execution (in number of clock interrupt
ticks) in the period property for the individual period object.

❏ To schedule functions based on I/O availability or some other
event. Set the "Use On-chip Clock (CLK)" property of the PRD
Manager Properties to false. Set the frequency of execution (in
number of ticks) in the period property for the individual period object.
Your program should call PRD_tick to increment the tick counter.

The function executed by a PRD object is statically defined in the
configuration. PRD functions are called from the context of the function
run by the PRD_swi SWI object. PRD functions can be written in C or
assembly and must follow the C calling conventions described in the
compiler manual.

The PRD module uses a SWI object (called PRD_swi by default) which
itself is triggered on a periodic basis to manage execution of period
objects. Normally, this SWI object should have the highest SWI priority to
allow this SWI to be performed once per tick. This SWI is automatically
created (or deleted) by the configuration if one or more (or no) PRD
objects exist. The total time required to perform all PRD functions must
be less than the number of microseconds between ticks. Any more
lengthy processing should be scheduled as a separate SWI, TSK, or IDL
thread.

See the Code Composer Studio online tutorial for an example that
demonstrates the interaction between the PRD module and the SWI
module.

When the PRD_swi object runs its function, the following actions occur:

for ("Loop through period objects") {
 if ("time for a periodic function")
 "run that periodic function";
}

PRD Manager
Properties

The DSP/BIOS Periodic Function Manager allows the creation of an
arbitrary number of objects that encapsulate a function, two arguments,
and a period specifying the time between successive invocations of the
function. The period is expressed in ticks, and a tick is defined as a single
invocation of the PRD_tick operation. The time between successive
invocations of PRD_tick defines the period represented by a tick.
Application Program Interface 2-333

PRD Module
The following global properties can be set for the PRD module in the PRD
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment containing the PRD objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.PRD.OBJMEMSEG = prog.get("myMEM");

❏ Use CLK Manager to drive PRD. If this property is set to true, the
on-device timer hardware (managed by the CLK Module) is used to
advance the tick count; otherwise, the application must invoke
PRD_tick on a periodic basis. If the CLK module is used to drive
PRDs, the ticks are equal to the low-resolution time increment rate.
Tconf Name: USECLK Type: Bool
Example: bios.PRD.USECLK = true;

❏ Microseconds/Tick. The number of microseconds between ticks. If
the "Use CLK Manager to drive PRD field" property above is set to
true, this property is automatically set by the CLK module; otherwise,
you must explicitly set this property. The total time required to
perform all PRD functions must be less than the number of
microseconds between ticks.
Tconf Name: MICROSECONDS Type: Int16
Example: bios.PRD.MICROSECONDS = 1000.0;

PRD Object Properties To create a PRD object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.

var myPrd = bios.PRD.create("myPrd");

If you cannot create a new PRD object (an error occurs or the Insert PRD
item is inactive in the DSP/BIOS Configuration Tool), increase the Stack
Size property in the MEM Manager Properties before adding a PRD
object.

The following properties can be set for a PRD object in the PRD Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this PRD object.
Tconf Name: comment Type: String
Example: myPrd.comment = "my PRD";

❏ period (ticks). The function executes after this number of ticks have
elapsed.
Tconf Name: period Type: Int16
Example: myPrd.period = 32767;
2-334

PRD Module
❏ mode. If "continuous" is used, the function executes every "period"
number of ticks. If "one-shot" is used, the function executes just once
after "period" ticks.
Tconf Name: mode Type: EnumString
Options: "continuous", "one-shot"
Example: myPrd.mode = "continuous";

❏ function. The function to be executed. The total time required to
perform all PRD functions must be less than the number of
microseconds between ticks.
Tconf Name: fxn Type: Extern
Example: myPrd.fxn = prog.extern("prdFxn");

❏ arg0, arg1. Two Arg type arguments for the user-specified function
above.
Tconf Name: arg0 Type: Arg
Tconf Name: arg1 Type: Arg
Example: myPrd.arg0 = 0;

❏ period (ms). The number of milliseconds represented by the period
specified above. This is an informational property only.
Tconf Name: N/A

❏ order. Set this property to all PRD objects so that the numbers match
the sequence in which PRD functions should be executed.
Tconf Name: order Type: Int16
Example: myPrd.order = 2;
Application Program Interface 2-335

PRD_getticks
C Interface

Syntax num = PRD_getticks();

Parameters Void

Return Value LgUns num /* current tick counter */

Reentrant yes

Description PRD_getticks returns the current period tick count as a 32-bit value.

If the periodic functions are being driven by the on-device timer, the tick
value is the number of low resolution clock ticks that have occurred since
the program started running. When the number of ticks reaches the
maximum value that can be stored in 32 bits, the value wraps back to 0.
See the CLK Module, page 2–51, for more details.

If the periodic functions are being driven programmatically, the tick value
is the number of times PRD_tick has been called.

Example /* ======== showTicks ======== */
Void showTicks
{
 LOG_printf(&trace, "ticks = %d", PRD_getticks());
}

See Also PRD_start
PRD_tick
CLK_gethtime
CLK_getltime
STS_delta

PRD_getticks Get the current tick count
2-336

PRD_start
C Interface

Syntax PRD_start(prd);

Parameters PRD_Handle prd; /* prd object handle*/

Return Value Void

Reentrant no

Description PRD_start starts a period object that has its mode property set to one-
shot in the configuration. Unlike PRD objects that are configured as
continuous, one-shot PRD objects do not automatically continue to run.
A one-shot PRD object runs its function only after the specified number
of ticks have occurred after a call to PRD_start.

For example, you might have a function that should be executed a certain
number of periodic ticks after some condition is met.

When you use PRD_start to start a period object, the exact time the
function runs can vary by nearly one tick cycle. As Figure 2-7 shows,
PRD ticks occur at a fixed rate and the call to PRD_start can occur at any
point between ticks

Figure 2-7. PRD Tick Cycles

If PRD_start is called again before the period for the object has elapsed,
the object’s tick count is reset. The PRD object does not run until its
"period" number of ticks have elapsed.

Example /* ======== startPRD ======== */
Void startPrd(Int periodID)
 {
 if ("condition met") {
 PRD_start(&periodID);
 }
 }

See Also PRD_tick
PRD_getticks

PRD_start Arm a periodic function for one-shot execution

Tick Tick Tick

Time to first tick after PRD_start is called.
Application Program Interface 2-337

PRD_stop
C Interface

Syntax PRD_stop(prd);

Parameters PRD_Handle prd; /* prd object handle*/

Return Value Void

Reentrant no

Description PRD_stop stops a period object to prevent its function execution. In most
cases, PRD_stop is used to stop a period object that has its mode
property set to one-shot in the configuration.

Unlike PRD objects that are configured as continuous, one-shot PRD
objects do not automatically continue to run. A one-shot PRD object runs
its function only after the specified numbers of ticks have occurred after
a call to PRD_start.

PRD_stop is the way to stop those one-shot PRD objects once started
and before their period counters have run out.

Example PRD_stop(&prd);

See Also PRD_getticks
PRD_start
PRD_tick

PRD_stop Stop a period object to prevent its function execution
2-338

PRD_tick
C Interface

Syntax PRD_tick();

Parameters Void

Return Value Void

Reentrant no

Description PRD_tick advances the period counter by one tick. Unless you are driving
PRD functions using the on-device clock, PRD objects execute their
functions at intervals based on this counter.

For example, an HWI could perform PRD_tick to notify a periodic function
when data is available for processing.

Constraints and
Calling Context

❏ All the registers that are modified by this API should be saved and
restored, before and after the API is invoked, respectively.

❏ When called within an HWI, the code sequence calling PRD_tick
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

❏ Interrupts need to be disabled before calling PRD_tick.

See Also PRD_start
PRD_getticks

PRD_tick Advance tick counter, enable periodic functions
Application Program Interface 2-339

QUE Module
2.23 QUE Module

The QUE module is the atomic queue manager.

Functions ❏ QUE_create. Create an empty queue.

❏ QUE_delete. Delete an empty queue.

❏ QUE_dequeue. Remove from front of queue (non-atomically).

❏ QUE_empty. Test for an empty queue.

❏ QUE_enqueue. Insert at end of queue (non-atomically).

❏ QUE_get. Remove element from front of queue (atomically)

❏ QUE_head. Return element at front of queue.

❏ QUE_insert. Insert in middle of queue (non-atomically).

❏ QUE_new. Set a queue to be empty.

❏ QUE_next. Return next element in queue (non-atomically).

❏ QUE_prev. Return previous element in queue (non-atomically).

❏ QUE_put. Put element at end of queue (atomically).

❏ QUE_remove. Remove from middle of queue (non-atomically).

Constants, Types,
and Structures

typedef struct QUE_Obj *QUE_Handle; /* queue obj handle */
struct QUE_Attrs{ /* queue attributes */
 Int dummy; /* DUMMY */
};

QUE_Attrs QUE_ATTRS = { /* default attribute values */
 0,
};

typedef QUE_Elem; /* queue element */

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the QUE
Manager Properties and QUE Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")
2-340

QUE Module
Instance Configuration Parameters

Description The QUE module makes available a set of functions that manipulate
queue objects accessed through handles of type QUE_Handle. Each
queue contains an ordered sequence of zero or more elements
referenced through variables of type QUE_Elem, which are generally
embedded as the first field within a structure. The QUE_Elem item is
used as an internal pointer.

For example, the DEV_Frame structure, which is used by the SIO Module
and DEV Module to enqueue and dequeue I/O buffers, contains a field of
type QUE_Elem:

struct DEV_Frame { /* frame object */
 QUE_Elem link; /* must be first field! */
 Ptr addr; /* buffer address */
 size_t size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} DEV_Frame;

Many QUE module functions either are passed or return a pointer to an
element having the structure defined for QUE elements.

The functions QUE_put and QUE_get are atomic in that they manipulate
the queue with interrupts disabled. These functions can therefore be
used to safely share queues between tasks, or between tasks and SWIs
or HWIs. All other QUE functions should only be called by tasks, or by
tasks and SWIs or HWIs when they are used in conjunction with some
mutual exclusion mechanism (for example, SEM_pend / SEM_post,
TSK_disable / TSK_enable).

Once a queue has been created, use MEM_alloc to allocate elements for
the queue.

QUE Manager
Properties

The following global property can be set for the QUE module in the QUE
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment that contains the QUE
objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.QUE.OBJMEMSEG = prog.get("myMEM");

Name Type Default

comment String "<add comments here>"
Application Program Interface 2-341

QUE Module
QUE Object Properties To create a QUE object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.

var myQue = bios.QUE.create("myQue");

The following property can be set for a QUE object in the PRD Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this QUE object.
Tconf Name: comment Type: String
Example: myQue.comment = "my QUE";
2-342

QUE_create
C Interface

Syntax queue = QUE_create(attrs);

Parameters QUE_Attrs *attrs; /* pointer to queue attributes */

Return Value QUE_Handle queue; /* handle for new queue object */

Description QUE_create creates a new queue which is initially empty. If successful,
QUE_create returns the handle of the new queue. If unsuccessful,
QUE_create returns NULL unless it aborts (for example, because it
directly or indirectly calls SYS_error, and SYS_error is configured to
abort).

If attrs is NULL, the new queue is assigned a default set of attributes.
Otherwise, the queue’s attributes are specified through a structure of
type QUE_Attrs.

Note:
At present, no attributes are supported for queue objects, and the type
QUE_Attrs is defined as a dummy structure.

All default attribute values are contained in the constant QUE_ATTRS,
which can be assigned to a variable of type QUE_Attrs prior to calling
QUE_create.

You can also create a queue by declaring a variable of type QUE_Obj
and initializing the queue with QUE_new.

QUE_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Module, page
2–241.

Constraints and
Calling Context

❏ QUE_create cannot be called from a SWI or HWI.

❏ You can reduce the size of your application program by creating
objects with the Tconf rather than using the XXX_create functions.

See Also MEM_alloc
QUE_empty
QUE_delete
SYS_error

QUE_create Create an empty queue
Application Program Interface 2-343

QUE_delete
C Interface

Syntax QUE_delete(queue);

Parameters QUE_Handle queue; /* queue handle */

Return Value Void

Description QUE_delete uses MEM_free to free the queue object referenced by
queue.

QUE_delete calls MEM_free to delete the QUE object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ queue must be empty.

❏ QUE_delete cannot be called from a SWI or HWI.

❏ No check is performed to prevent QUE_delete from being used on a
statically-created object. If a program attempts to delete a queue
object that was created using Tconf, SYS_error is called.

See Also QUE_create
QUE_empty

QUE_delete Delete an empty queue
2-344

QUE_dequeue
C Interface

Syntax elem = QUE_dequeue(queue);

Parameters QUE_Handle queue; /* queue object handle */

Return Value Ptr elem; /* pointer to former first element */

Description QUE_dequeue removes the element from the front of queue and returns
elem.

The return value, elem, is a pointer to the element at the front of the QUE.
Such elements have a structure defined similarly to that in the example
in the QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Calling QUE_dequeue with an empty queue returns the queue itself.
However, QUE_dequeue is non-atomic. Therefore, the method
described for QUE_get of checking to see if a queue is empty and
returning the first element otherwise is non-atomic.

Note:

You should use QUE_get instead of QUE_dequeue if multiple threads
share a queue. QUE_get runs atomically and is never interrupted;
QUE_dequeue performs the same action but runs non-atomically. You
can use QUE_dequeue if you disable interrupts or use a
synchronization mechanism such as LCK or SEM to protect the queue.
An HWI or task that preempts QUE_dequeue and operates on the
same queue can corrupt the data structure.

QUE_dequeue is somewhat faster than QUE_get, but you should not
use it unless you know your QUE operation cannot be preempted by
another thread that operates on the same queue.

See Also QUE_get

QUE_dequeue Remove from front of queue (non-atomically)
Application Program Interface 2-345

QUE_empty
C Interface

Syntax empty = QUE_empty(queue);

Parameters QUE_Handle queue; /* queue object handle */

Return Value Bool empty; /* TRUE if queue is empty */

Description QUE_empty returns TRUE if there are no elements in queue, and FALSE
otherwise.

See Also QUE_get

QUE_empty Test for an empty queue
2-346

QUE_enqueue
C Interface

Syntax QUE_enqueue(queue, elem);

Parameters QUE_Handle queue; /* queue object handle */
Ptr elem; /* pointer to queue element */

Return Value Void

Description QUE_enqueue inserts elem at the end of queue.

The elem parameter must be a pointer to an element to be placed in the
QUE. Such elements have a structure defined similarly to that in the
example in the QUE Module topic. The first field in the structure must be
of type QUE_Elem and is used as an internal pointer.

Note:

Use QUE_put instead of QUE_enqueue if multiple threads share a
queue. QUE_put is never interrupted; QUE_enqueue performs the
same action but runs non-atomically. You can use QUE_enqueue if
you disable interrupts or use a synchronization mechanism such as
LCK or SEM to protect the queue.

QUE_enqueue is somewhat faster than QUE_put, but you should not
use it unless you know your QUE operation cannot be preempted by
another thread that operates on the same queue.

See Also QUE_put

QUE_enqueue Insert at end of queue (non-atomically)
Application Program Interface 2-347

QUE_get
C Interface

Syntax elem = QUE_get(queue);

Parameters QUE_Handle queue; /* queue object handle */

Return Value Void *elem; /* pointer to former first element */

Description QUE_get removes the element from the front of queue and returns elem.

The return value, elem, is a pointer to the element at the front of the QUE.
Such elements have a structure defined similarly to that in the example
in the QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Since QUE_get manipulates the queue with interrupts disabled, the
queue can be shared by multiple tasks, or by tasks and SWIs or HWIs.

Calling QUE_get with an empty queue returns the queue itself. This
provides a means for using a single atomic action to check if a queue is
empty, and to remove and return the first element if it is not empty:

if ((QUE_Handle)(elem = QUE_get(q)) != q)
 ` process elem `

Note:

Use QUE_get instead of QUE_dequeue if multiple threads share a
queue. QUE_get is never interrupted; QUE_dequeue performs the
same action but runs non-atomically. You can use QUE_dequeue if
you disable interrupts or use a synchronization mechanism such as
LCK or SEM to protect the queue.

QUE_dequeue is somewhat faster than QUE_get, but you should not
use it unless you know your QUE operation cannot be preempted by
another thread that operates on the same queue.

See Also QUE_create
QUE_empty
QUE_put

QUE_get Get element from front of queue (atomically)
2-348

QUE_head
C Interface

Syntax elem = QUE_head(queue);

Parameters QUE_Handle queue; /* queue object handle */

Return Value QUE_Elem *elem; /* pointer to first element */

Description QUE_head returns a pointer to the element at the front of queue. The
element is not removed from the queue.

The return value, elem, is a pointer to the element at the front of the QUE.
Such elements have a structure defined similarly to that in the example
in the QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Calling QUE_head with an empty queue returns the queue itself.

See Also QUE_create
QUE_empty
QUE_put

QUE_head Return element at front of queue
Application Program Interface 2-349

QUE_insert
C Interface

Syntax QUE_insert(qelem, elem);

Parameters Ptr qelem; /* element already in queue */
Ptr elem; /* element to be inserted in queue */

Return Value Void

Description QUE_insert inserts elem in the queue in front of qelem.

The qelem parameter is a pointer to an existing element of the QUE. The
elem parameter is a pointer to an element to be placed in the QUE. Such
elements have a structure defined similarly to that in the example in the
QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Note:

If the queue is shared by multiple tasks, or tasks and SWIs or HWIs,
QUE_insert should be used in conjunction with some mutual exclusion
mechanism (for example, SEM_pend/SEM_post, TSK_disable/
TSK_enable).

See Also QUE_head
QUE_next
QUE_prev
QUE_remove

QUE_insert Insert in middle of queue (non-atomically)
2-350

QUE_new
C Interface

Syntax QUE_new(queue);

Parameters QUE_Handle queue; /* pointer to queue object */

Return Value Void

Description QUE_new adjusts a queue object to make the queue empty. This
operation is not atomic. A typical use of QUE_new is to initialize a queue
object that has been statically declared instead of being created with
QUE_create. Note that if the queue is not empty, the element(s) in the
queue are not freed or otherwise handled, but are simply abandoned.

If you created a queue by declaring a variable of type QUE_Obj, you can
initialize the queue with QUE_new.

 See Also QUE_create
QUE_delete
QUE_empty

QUE_new Set a queue to be empty
Application Program Interface 2-351

QUE_next
C Interface

Syntax elem = QUE_next(qelem);

Parameters Ptr qelem; /* element in queue */

Return Value Ptr elem; /* next element in queue */

Description QUE_next returns elem which points to the element in the queue after
qelem.

The qelem parameter is a pointer to an existing element of the QUE. The
return value, elem, is a pointer to the next element in the QUE. Such
elements have a structure defined similarly to that in the example in the
QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Since QUE queues are implemented as doubly linked lists with a dummy
node at the head, it is possible for QUE_next to return a pointer to the
queue itself. Be careful not to call QUE_remove(elem) in this case.

Note:

If the queue is shared by multiple tasks, or tasks and SWIs or HWIs,
QUE_next should be used in conjunction with some mutual exclusion
mechanism (for example, SEM_pend/SEM_post, TSK_disable/
TSK_enable).

See Also QUE_get
QUE_insert
QUE_prev
QUE_remove

QUE_next Return next element in queue (non-atomically)
2-352

QUE_prev
C Interface

Syntax elem = QUE_prev(qelem);

Parameters Ptr qelem; /* element in queue */

Return Value Ptr elem; /* previous element in queue */

Description QUE_prev returns elem which points to the element in the queue before
qelem.

The qelem parameter is a pointer to an existing element of the QUE. The
return value, elem, is a pointer to the previous element in the QUE. Such
elements have a structure defined similarly to that in the example in the
QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Since QUE queues are implemented as doubly linked lists with a dummy
node at the head, it is possible for QUE_prev to return a pointer to the
queue itself. Be careful not to call QUE_remove(elem) in this case.

Note:

If the queue is shared by multiple tasks, or tasks and SWIs or HWIs,
QUE_prev should be used in conjunction with some mutual exclusion
mechanism (for example, SEM_pend/SEM_post, TSK_disable/
TSK_enable).

See Also QUE_head
QUE_insert
QUE_next
QUE_remove

QUE_prev Return previous element in queue (non-atomically)
Application Program Interface 2-353

QUE_put
C Interface

Syntax QUE_put(queue, elem);

Parameters QUE_Handle queue; /* queue object handle */
Void *elem; /* pointer to new queue element */

Return Value Void

Description QUE_put puts elem at the end of queue.

The elem parameter is a pointer to an element to be placed at the end of
the QUE. Such elements have a structure defined similarly to that in the
example in the QUE Module topic. The first field in the structure must be
of type QUE_Elem and is used as an internal pointer.

Since QUE_put manipulates queues with interrupts disabled, queues can
be shared by multiple tasks, or by tasks and SWIs or HWIs.

Note:

Use QUE_put instead of QUE_enqueue if multiple threads share a
queue. QUE_put is never interrupted; QUE_enqueue performs the
same action but runs non-atomically. You can use QUE_enqueue if
you disable interrupts or use a synchronization mechanism such as
LCK or SEM to protect the queue.

QUE_enqueue is somewhat faster than QUE_put, but you should not
use it unless you know your QUE operation cannot be preempted by
another thread that operates on the same queue.

See Also QUE_get
QUE_head

QUE_put Put element at end of queue (atomically)
2-354

QUE_remove
C Interface

Syntax QUE_remove(qelem);

Parameters Ptr qelem; /* element in queue */

Return Value Void

Description QUE_remove removes qelem from the queue.

The qelem parameter is a pointer to an existing element to be removed
from the QUE. Such elements have a structure defined similarly to that in
the example in the QUE Module topic. The first field in the structure must
be of type QUE_Elem and is used as an internal pointer.

Since QUE queues are implemented as doubly linked lists with a dummy
node at the head, be careful not to remove the header node. This can
happen when qelem is the return value of QUE_next or QUE_prev. The
following code sample shows how qelem should be verified before calling
QUE_remove.

QUE_Elem *qelem;.

/* get pointer to first element in the queue */
qelem = QUE_head(queue);

/* scan entire queue for desired element */
while (qelem != queue) {
 if(‘ qelem is the elem we’re looking for ‘) {
 break;
 }
 qelem = QUE_next(qelem);
}
/* make sure qelem is not the queue itself */
if (qelem != queue) {
 QUE_remove(qelem);
}

Note:

If the queue is shared by multiple tasks, or tasks and SWIs or HWIs,
QUE_remove should be used in conjunction with some mutual
exclusion mechanism (for example, SEM_pend/SEM_post,
TSK_disable/ TSK_enable).

QUE_remove Remove from middle of queue (non-atomically)
Application Program Interface 2-355

QUE_remove
Constraints and
Calling Context

QUE_remove should not be called when qelem is equal to the queue
itself.

See Also QUE_head
QUE_insert
QUE_next
QUE_prev
2-356

RTDX Module
2.24 RTDX Module

The RTDX modules manage the real-time data exchange settings.

RTDX Data Declaration
Macros

❏ RTDX_CreateInputChannel
❏ RTDX_CreateOutputChannel

Function Macros ❏ RTDX_disableInput
❏ RTDX_disableOutput
❏ RTDX_enableInput
❏ RTDX_enableOutput
❏ RTDX_read
❏ RTDX_readNB
❏ RTDX_sizeofInput
❏ RTDX_write

Channel Test Macros ❏ RTDX_channelBusy
❏ RTDX_isInputEnabled
❏ RTDX_isOutputEnabled

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the
RTDX Manager Properties and RTDX Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Description The RTDX module provides the data types and functions for:
❏ Sending data from the target to the host.
❏ Sending data from the host to the target.

Name Type Default (Enum Options)

ENABLERTDX Bool true

MODE EnumString "JTAG" ("HSRTDX", "Simula-
tor")

RTDXDATASEG Reference prog.get("IDRAM")

BUFSIZE Int16 1032

INTERRUPTMASK Int16 0x00000000

Name Type Default (Enum Options)

comment String "<add comments here>"

channelMode EnumString "output" ("input")
Application Program Interface 2-357

RTDX Module
Data channels are represented by global structures. A data channel can
be used for input or output, but not both. The contents of an input or
output structure are not known to the user. A channel structure has two
states: enabled and disabled. When a channel is enabled, any data
written to the channel is sent to the host. Channels are initially disabled.

The RTDX assembly interface, rtdx.i, is a macro interface file that can be
used to interface to RTDX at the assembly level.

RTDX Manager
Properties

The following target configuration properties can be set for the RTDX
module in the RTDX Manager Properties dialog of the DSP/BIOS
Configuration Tool or in a Tconf script:

❏ Enable Real-Time Data Exchange (RTDX). This property should be
set to true if you want to link RTDX support into your application.
Tconf Name: ENABLERTDX Type: Bool
Example: bios.RTDX.ENABLERTDX = true;

❏ RTDX Mode. Select the port configuration mode RTDX should use
to establish communication between the host and target. The default
is JTAG for most targets. Set this to simulator if you use a simulator.
The HS-RTDX emulation technology is also available. If this property
is set incorrectly, a message says “RTDX target application does not
match emulation protocol“ when you load the program.
Tconf Name: MODE Type: EnumString
Options: "JTAG", "HSRTDX", "Simulator"
Example: bios.RTDX.MODE = "JTAG";

❏ RTDX Data Segment (.rtdx_data). The memory segment used for
buffering target-to-host data transfers. The RTDX message buffer
and state variables are placed in this segment.
Tconf Name: RTDXDATASEG Type: Reference
Example: bios.RTDX.RTDXDATASEG =

prog.get("myMEM");

❏ RTDX Buffer Size (MADUs). The size of the RTDX target-to-host
message buffer, in minimum addressable data units (MADUs). The
default size is 1032 to accommodate a 1024-byte block and two
control words. HST channels using RTDX are limited by this value.
Tconf Name: BUFSIZE Type: Int16
Example: bios.RTDX.BUFSIZE = 1032;

❏ RTDX Interrupt Mask. This mask interrupts to be temporarily
disabled inside critical RTDX sections. The default value of zero (0)
disables all interrupts within critical RTDX sections. Such sections
are short (usually <100 cycles). Disabling interrupts also temporarily
disables other RTDX clients and prevents other RTDX function calls.
2-358

RTDX Module
You should allow all interrupts to be disabled inside critical RTDX
sections if your application makes any RTDX calls from SWI or TSK
threads. If your application does not make RTDX calls from SWI or
TSK threads, you may modify bits in this mask to enable specific
high-priority interrupts. See the RTDX documentation for details.
Tconf Name: INTERRUPTMASK Type: Int16
Example: bios.RTDX.INTERRUPTMASK = 0x00000000;

RTDX Object
Properties

To create an RTDX object in a configuration script, use the following
syntax. The Tconf examples that follow assume the object has been
created as shown here.

var myRtdx = bios.RTDX.create("myRtdx");

The following properties can be set for an RTDX object in the RTDX
Object Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:
❏ comment. Type a comment to identify this RTDX object.

Tconf Name: comment Type: String
Example: myRtdx.comment = "my RTDX";

❏ Channel Mode. Select output if the RTDX channel handles output
from the DSP to the host. Select input if the RTDX channel handles
input to the DSP from the host.
Tconf Name: channelMode Type: EnumString
Options: "input", "output"
Example: myRtdx.channelMode = "output";

Examples The rtdx.xls example is in the TI_DIR\examples\hostapps\rtdx
folder. The examples are described below.
❏ Ta_write.asm. Target to Host transmission example. This example

sends 100 consecutive integers starting from 0. In the rtdx.xls file,
use the h_read VB macro to view data on the host.

❏ Ta_read.asm. Host to target transmission example. This example
reads 100 integers. Use the h_write VB macro of the rtdx.xls file to
send data to the target.

❏ Ta_readNB.asm. Host to target transmission example. This
example reads 100 integers. Use the h_write VB macro of the
rtdx.xls file to send data to the target. This example demonstrates
how to use the non-blocking read, RTDX_readNB, function.

Note: Programs must be linked with C run-time libraries and contain
the symbol _main.
Application Program Interface 2-359

RTDX_channelBusy
C Interface

Syntax int RTDX_channelBusy(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Status: 0 = Channel is not busy. */
/* non-zero = Channel is busy. */

Reentrant yes

Description RTDX_channelBusy is designed to be used in conjunction with
RTDX_readNB. The return value indicates whether the specified data
channel is currently in use or not. If a channel is busy reading, the
test/control flag (TC) bit of status register 0 (STO) is set to 1. Otherwise,
the TC bit is set to O.

Constraints and
Calling Context

❏ RTDX_channelBusy cannot be called by an HWI function.

See Also RTDX_readNB

RTDX_channelBusy Return status indicating whether data channel is busy
2-360

RTDX_CreateInputChannel
C Interface

Syntax RTDX_CreateInputChannel(ichan);

Parameters ichan /* Label for the input channel */

Return Value none

Reentrant no

Description This macro declares and initializes to 0, the RTDX data channel for input.

Data channels must be declared as global objects. A data channel can
be used either for input or output, but not both. The contents of an input
or output data channel are unknown to the user.

A channel can be in one of two states: enabled or disabled. Channels are
initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They
can also be enabled or disabled remotely from Code Composer or its
COM interface.

Constraints and
Calling Context

❏ RTDX_CreateInputChannel cannot be called by an HWI function.

See Also RTDX_CreateOutputChannel

RTDX_CreateInputChannel Declare input channel structure
Application Program Interface 2-361

RTDX_CreateOutputChannel
C Interface

Syntax RTDX_CreateOutputChannel(ochan);

Parameters ochan /* Label for the output channel */

Return Value none

Reentrant no

Description This macro declares and initializes the RTDX data channels for output.

Data channels must be declared as global objects. A data channel can
be used either for input or output, but not both. The contents of an input
or output data channel are unknown to the user.

A channel can be in one of two states: enabled or disabled. Channels are
initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They
can also be enabled or disabled remotely from Code Composer Studio or
its OLE interface.

Constraints and
Calling Context

❏ RTDX_CreateOutputChannel cannot be called by an HWI function.

See Also RTDX_CreateInputChannel

RTDX_CreateOutputChannel Declare output channel structure
2-362

RTDX_disableInput
C Interface

Syntax void RTDX_disableInput(RTDX_inputChannel *ichan);

Parameters ichan /* Identifier for the input data channel */

Return Value void

Reentrant yes

Description A call to a disable function causes the specified input channel to be
disabled.

Constraints and
Calling Context

❏ RTDX_disableInput cannot be called by an HWI function.

See Also RTDX_disableOutput
RTDX_enableInput
RTDX_read

RTDX_disableInput Disable an input data channel
Application Program Interface 2-363

RTDX_disableOutput
C Interface

Syntax void RTDX_disableOutput(RTDX_outputChannel *ochan);

Parameters ochan /* Identifier for an output data channel */

Return Value void

Reentrant yes

Description A call to a disable function causes the specified data channel to be
disabled.

Constraints and
Calling Context

❏ RTDX_disableOutput cannot be called by an HWI function.

See Also RTDX_disableInput
RTDX_enableOutput
RTDX_read

RTDX_disableOutput Disable an output data channel
2-364

RTDX_enableInput
C Interface

Syntax void RTDX_enableInput(RTDX_inputChannel *ichan);

Parameters ochan /* Identifier for an output data channel */
ichan /* Identifier for the input data channel */

Return Value void

Reentrant yes

Description A call to an enable function causes the specified data channel to be
enabled.

Constraints and
Calling Context

❏ RTDX_enableInput cannot be called by an HWI function.

See Also RTDX_disableInput
RTDX_enableOutput
RTDX_read

RTDX_enableInput Enable an input data channel
Application Program Interface 2-365

RTDX_enableOutput
C Interface

Syntax void RTDX_enableOutput(RTDX_outputChannel *ochan);

Parameters ochan /* Identifier for an output data channel */

Return Value void

Reentrant yes

Description A call to an enable function causes the specified data channel to be
enabled.

Constraints and
Calling Context

❏ RTDX_enableOutput cannot be called by an HWI function.

See Also RTDX_disableOutput
RTDX_enableInput
RTDX_write

RTDX_enableOutput Enable an output data channel
2-366

RTDX_isInputEnabled
C Interface

Syntax RTDX_isInputEnabled(ichan);

Parameter ichan /* Identifier for an input channel. */

Return Value 0 /* Not enabled. */
non-zero /* Enabled. */

Reentrant yes

Description The RTDX_isInputEnabled macro tests to see if an input channel is
enabled and sets the test/control flag (TC bit) of status register 0 to 1 if
the input channel is enabled. Otherwise, it sets the TC bit to 0.

Constraints and
Calling Context

❏ RTDX_isInputEnabled cannot be called by an HWI function.

See Also RTDX_isOutputEnabled

RTDX_isInputEnabled Return status of the input data channel
Application Program Interface 2-367

RTDX_isOutputEnabled
C Interface

Syntax RTDX_isOutputEnabled(ohan);

Parameter ochan /* Identifier for an output channel. */

Return Value 0 /* Not enabled. */
non-zero /* Enabled. */

Reentrant yes

Description The RTDX_isOutputEnabled macro tests to see if an output channel is
enabled and sets the test/control flag (TC bit) of status register 0 to 1 if
the output channel is enabled. Otherwise, it sets the TC bit to 0.

Constraints and
Calling Context

❏ RTDX_isOutputEnabled cannot be called by an HWI function.

See Also RTDX_isInputEnabled

RTDX_isOutputEnabled Return status of the output data channel
2-368

RTDX_read
C Interface

Syntax int RTDX_read(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives the data */
bsize /* The size of the buffer in address units */

Return Value > 0 /* The number of address units of data */
/* actually supplied in buffer. */

0 /* Failure. Cannot post read request */
/* because target buffer is full. */

RTDX_READ_ERROR /* Failure. Channel currently busy or
not enabled. */

Reentrant yes

Description RTDX_read causes a read request to be posted to the specified input
data channel. If the channel is enabled, RTDX_read waits until the data
has arrived. On return from the function, the data has been copied into
the specified buffer and the number of address units of data actually
supplied is returned. The function returns RTDX_READ_ERROR
immediately if the channel is currently busy reading or is not enabled.

When RTDX_read is used, the target application notifies the RTDX Host
Library that it is ready to receive data and then waits for the RTDX Host
Library to write data to the target buffer. When the data is received, the
target application continues execution.

The specified data is to be written to the specified output data channel,
provided that channel is enabled. On return from the function, the data
has been copied out of the specified user buffer and into the RTDX target
buffer. If the channel is not enabled, the write operation is suppressed. If
the RTDX target buffer is full, failure is returned.

When RTDX_readNB is used, the target application notifies the RTDX
Host Library that it is ready to receive data, but the target application does
not wait. Execution of the target application continues immediately. Use
RTDX_channelBusy and RTDX_sizeofInput to determine when the
RTDX Host Library has written data to the target buffer.

Constraints and
Calling Context

❏ RTDX_read cannot be called by an HWI function.

See Also RTDX_channelBusy
RTDX_readNB

RTDX_read Read from an input channel
Application Program Interface 2-369

RTDX_readNB
C Interface

Syntax int RTDX_readNB(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives

the data */
bsize /* The size of the buffer in address units */

Return Value RTDX_OK /* Success.*/
0 (zero) /* Failure. The target buffer is full. */
RTDX_READ_ERROR /*Channel is currently busy reading. */

Reentrant yes

Description RTDX_readNB is a nonblocking form of the function RTDX_read.
RTDX_readNB issues a read request to be posted to the specified input
data channel and immediately returns. If the channel is not enabled or the
channel is currently busy reading, the function returns
RTDX_READ_ERROR. The function returns 0 if it cannot post the read
request due to lack of space in the RTDX target buffer.

When the function RTDX_readNB is used, the target application notifies
the RTDX Host Library that it is ready to receive data but the target
application does not wait. Execution of the target application continues
immediately. Use the RTDX_channelBusy and RTDX_sizeofInput
functions to determine when the RTDX Host Library has written data into
the target buffer.

When RTDX_read is used, the target application notifies the RTDX Host
Library that it is ready to receive data and then waits for the RTDX Host
Library to write data into the target buffer. When the data is received, the
target application continues execution.

Constraints and
Calling Context

❏ RTDX_readNB cannot be called by an HWI function.

See Also RTDX_channelBusy
RTDX_read
RTDX_sizeofInput

RTDX_readNB Read from input channel without blocking
2-370

RTDX_sizeofInput
C Interface

Syntax int RTDX_sizeofInput(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Number of sizeof units of data actually */
/* supplied in buffer */

Reentrant yes

Description RTDX_sizeofInput is designed to be used in conjunction with
RTDX_readNB after a read operation has completed. The function
returns the number of sizeof units actually read from the specified data
channel into the accumulator (register A).

Constraints and
Calling Context

❏ RTDX_sizeofInput cannot be called by an HWI function.

See Also RTDX_readNB

RTDX_sizeofInput Return the number of MADUs read from a data channel
Application Program Interface 2-371

RTDX_write
C Interface

Syntax int RTDX_write(RTDX_outputChannel *ochan, void *buffer, int bsize);

Parameters ochan /* Identifier for the output data channel */
buffer /* A pointer to the buffer containing the data */
bsize /* The size of the buffer in address units */

Return Value int /* Status: non-zero = Success. 0 = Failure. */

Reentrant yes

Description RTDX_write causes the specified data to be written to the specified
output data channel, provided that channel is enabled. On return from the
function, the data has been copied out of the specified user buffer and
into the RTDX target buffer. If the channel is not enabled, the write
operation is suppressed. If the RTDX target buffer is full, Failure is
returned.

Constraints and
Calling Context

❏ RTDX_write cannot be called by an HWI function.

See Also RTDX_read

RTDX_write Write to an output channel
2-372

SEM Module
2.25 SEM Module

The SEM module is the semaphore manager.

Functions ❏ SEM_count. Get current semaphore count

❏ SEM_create. Create a semaphore

❏ SEM_delete. Delete a semaphore

❏ SEM_new. Initialize a semaphore

❏ SEM_pend. Wait for a counting semaphore

❏ SEM_pendBinary. Wait for a binary semaphore

❏ SEM_post. Signal a counting semaphore

❏ SEM_postBinary. Signal a binary semaphore

❏ SEM_reset. Reset semaphore

Constants, Types,
and Structures

typedef struct SEM_Obj *SEM_Handle;
 /* handle for semaphore object */

struct SEM_Attrs { /* semaphore attributes */
 String name; /* printable name */
};

SEM_Attrs SEM_ATTRS = { /* default attribute values */
 "", /* name */
};

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the SEM
Manager Properties and SEM Object Properties topics. For descriptions
of data types, see Section 1.4, DSP/BIOS Tconf Overview, page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default

comment String "<add comments here>"

count Int16 0
Application Program Interface 2-373

SEM Module
Description The SEM module makes available a set of functions that manipulate
semaphore objects accessed through handles of type SEM_Handle.
Semaphores can be used for task synchronization and mutual exclusion.

Semaphores can be counting semaphores or binary semaphores. The
APIs for binary and counting semaphores cannot be mixed for a single
semaphore.

❏ Counting semaphores keep track of the number of times the
semaphore has been posted with SEM_post. This is useful, for
example, if you have a group of resources that are shared between
tasks. Such tasks might call SEM_pend to see if a resource is
available before using one. SEM_pend and SEM_post are for use
with counting semaphores.

❏ Binary semaphores can have only two states: available and
unavailable. They can be used to share a single resource between
tasks. They can also be used for a basic signaling mechanism, where
the semaphore can be posted multiple times and a subsequent call
to SEM_pendBinary clears the count and returns. Binary
semaphores do not keep track of the count; they simply track
whether the semaphore has been posted or not. SEM_pendBinary
and SEM_postBinary are for use with binary semaphores.

The MBX module uses a counting semaphore internally to manage the
count of free (or full) mailbox elements. Another example of a counting
semaphore is an ISR that might fill multiple buffers of data for
consumption by a task. After filling each buffer, the ISR puts the buffer on
a queue and calls SEM_post. The task waiting for the data calls
SEM_pend, which simply decrements the semaphore count and returns
or blocks if the count is 0. The semaphore count thus tracks the number
of full buffers available for the task. The GIO and SIO modules follow this
model and use counting semaphores.

The internal data structures used for binary and counting semaphores
are the same; the only change is whether semaphore values are
incremented and decremented or simply set to zero and non-zero.

SEM_pend and SEM_pendBinary are used to wait for a semaphore. The
timeout parameter allows the task to wait until a timeout, wait indefinitely,
or not wait at all. The return value is used to indicate if the semaphore
was signaled successfully.

SEM_post and SEM_postBinary are used to signal a semaphore. If a
task is waiting for the semaphore, SEM_post/SEM_postBinary removes
the task from the semaphore queue and puts it on the ready queue. If no
2-374

SEM Module
tasks are waiting, SEM_post simply increments the semaphore count
and returns. (SEM_postBinary sets the semaphore count to non-zero
and returns.)

SEM Manager
Properties

The following global property can be set for the SEM module in the SEM
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment that contains the SEM
objects created with Tconf.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.SEM.OBJMEMSEG = prog.get("myMEM");

SEM Object Properties To create a SEM object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.

var mySem = bios.SEM.create("mySem");

The following properties can be set for a SEM object in the SEM Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this SEM object.
Tconf Name: comment Type: String
Example: mySem.comment = "my SEM";

❏ Initial semaphore count. Set this property to the desired initial
semaphore count.
Tconf Name: count Type: Int16
Example: mySem.count = 0;
Application Program Interface 2-375

SEM_count
C Interface

Syntax count = SEM_count(sem);

Parameters SEM_Handle sem; /* semaphore handle */

Return Value Int count; /* current semaphore count */

Description SEM_count returns the current value of the semaphore specified by sem.

SEM_count Get current semaphore count
2-376

SEM_create
C Interface

Syntax sem = SEM_create(count, attrs);

Parameters Int count; /* initial semaphore count */
SEM_Attrs *attrs; /* pointer to semaphore attributes */

Return Value SEM_Handle sem; /* handle for new semaphore object */

Description SEM_create creates a new semaphore object which is initialized to
count. If successful, SEM_create returns the handle of the new
semaphore. If unsuccessful, SEM_create returns NULL unless it aborts
(for example, because it directly or indirectly calls SYS_error, and
SYS_error is configured to abort).

If attrs is NULL, the new semaphore is assigned a default set of
attributes. Otherwise, the semaphore’s attributes are specified through a
structure of type SEM_Attrs.

struct SEM_Attrs { /* semaphore attributes */
 String name; /* printable name */
};

Default attribute values are contained in the constant SEM_ATTRS,
which can be assigned to a variable of type SEM_Attrs before calling
SEM_create.

SEM_Attrs SEM_ATTRS = { /* default attribute values */
 "", /* name */
};

SEM_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, there
is a context switch. The segment from which the object is allocated is
described by the DSP/BIOS objects property in the MEM Module.

Constraints and
Calling Context

❏ count must be greater than or equal to 0.

❏ SEM_create cannot be called from a SWI or HWI.

❏ You can reduce the size of your application by creating objects with
Tconf rather than XXX_create functions.

See Also MEM_alloc
SEM_delete

SEM_create Create a semaphore
Application Program Interface 2-377

SEM_delete
C Interface

Syntax SEM_delete(sem);

Parameters SEM_Handle sem; /* semaphore object handle */

Return Value Void

Description SEM_delete uses MEM_free to free the semaphore object referenced by
sem.

SEM_delete calls MEM_free to delete the SEM object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ No tasks should be pending on sem when SEM_delete is called.

❏ SEM_delete cannot be called from a SWI or HWI.

❏ No check is performed to prevent SEM_delete from being used on a
statically-created object. If a program attempts to delete a
semaphore object that was created using Tconf, SYS_error is called.

See Also SEM_create

SEM_delete Delete a semaphore
2-378

SEM_new
C Interface

Syntax Void SEM_new(sem, count);

Parameters SEM_Handle sem; /* pointer to semaphore object */
Int count; /* initial semaphore count */

Return Value Void

Description SEM_new initializes the semaphore object pointed to by sem with count.
The function should be used on a statically created semaphore for
initialization purposes only. No task switch occurs when calling
SEM_new.

Constraints and
Calling Context

❏ count must be greater than or equal to 0

❏ no tasks should be pending on the semaphore when SEM_new is
called

See Also QUE_new

SEM_new Initialize semaphore object
Application Program Interface 2-379

SEM_pend
C Interface

Syntax status = SEM_pend(sem, timeout);

Parameters SEM_Handle sem; /* semaphore object handle */
Uns timeout; /* return after this many system clock ticks */

Return Value Bool status; /* TRUE if successful, FALSE if timeout */

Description SEM_pend and SEM_post are for use with counting semaphores, which
keep track of the number of times the semaphore has been posted. This
is useful, for example, if you have a group of resources that are shared
between tasks. In contrast, SEM_pendBinary and SEM_postBinary are
for use with binary semaphores, which can have only an available or
unavailable state. The APIs for binary and counting semaphores cannot
be mixed for a single semaphore.

If the semaphore count is greater than zero (available), SEM_pend
decrements the count and returns TRUE. If the semaphore count is zero
(unavailable), SEM_pend suspends execution of the current task until
SEM_post is called or the timeout expires.

If timeout is SYS_FOREVER, a task stays suspended until SEM_post is
called on this semaphore. If timeout is 0, SEM_pend returns immediately.
If timeout expires (or timeout is 0) before the semaphore is available,
SEM_pend returns FALSE. Otherwise SEM_pend returns TRUE.

If timeout is not equal to SYS_FOREVER or 0, the task suspension time
can be up to 1 system clock tick less than timeout due to granularity in
system timekeeping.

A task switch occurs when calling SEM_pend if the semaphore count is
0 and timeout is not zero.

Constraints and
Calling Context

❏ SEM_pend can be called from a TSK with any timeout value, but if
called from an HWI or SWI the timeout must be 0.

❏ SEM_pend cannot be called from the program’s main() function.

❏ If you need to call SEM_pend within a TSK_disable/TSK_enable
block, you must use a timeout of 0.

❏ SEM_pend should not be called from within an IDL function. Doing
so prevents analysis tools from gathering run-time information.

See Also SEM_pendBinary
SEM_post

SEM_pend Wait for a semaphore
2-380

SEM_pendBinary
C Interface

Syntax status = SEM_pendBinary(sem, timeout);

Parameters SEM_Handle sem; /* semaphore object handle */
Uns timeout; /* return after this many system clock ticks */

Return Value Bool status; /* TRUE if successful, FALSE if timeout */

Description SEM_pendBinary and SEM_postBinary are for use with binary
semaphores. These are semaphores that can have only two states:
available and unavailable. They can be used to share a single resource
between tasks. They can also be used for a basic signaling mechanism,
where the semaphore can be posted multiple times and a subsequent
call to SEM_pendBinary clears the count and returns. Binary
semaphores do not keep track of the count; they simply track whether the
semaphore has been posted or not.

In contrast, SEM_pend and SEM_post are for use with counting
semaphores, which keep track of the number of times the semaphore has
been posted. This is useful, for example, if you have a group of resources
that are shared between tasks. The APIs for binary and counting
semaphores cannot be mixed for a single semaphore.

If the semaphore count is non-zero (available), SEM_pendBinary sets
the count to zero (unavailable) and returns TRUE.

If the semaphore count is zero (unavailable), SEM_pendBinary suspends
execution of this task until SEM_post is called or the timeout expires.

If timeout is SYS_FOREVER, a task remains suspended until
SEM_postBinary is called on this semaphore. If timeout is 0,
SEM_pendBinary returns immediately.

If timeout expires (or timeout is 0) before the semaphore is available,
SEM_pendBinary returns FALSE. Otherwise SEM_pendBinary returns
TRUE.

If timeout is not equal to SYS_FOREVER or 0, the task suspension time
can be up to 1 system clock tick less than timeout due to granularity in
system timekeeping.

A task switch occurs when calling SEM_pendBinary if the semaphore
count is 0 and timeout is not zero.

Constraints and
Calling Context

❏ This API can be called from a TSK with any timeout value, but if
called from an HWI or SWI the timeout must be 0.

SEM_pendBinary Wait for a binary semaphore
Application Program Interface 2-381

SEM_pendBinary
❏ This API cannot be called from the program’s main() function.

❏ If you need to call this API within a TSK_disable/TSK_enable block,
you must use a timeout of 0.

❏ This API should not be called from within an IDL function. Doing so
prevents analysis tools from gathering run-time information.

See Also SEM_pend
SEM_postBinary
2-382

SEM_post
C Interface

Syntax SEM_post(sem);

Parameters SEM_Handle sem; /* semaphore object handle */

Return Value Void

Description SEM_pend and SEM_post are for use with counting semaphores, which
keep track of the number of times the semaphore has been posted. This
is useful, for example, if you have a group of resources that are shared
between tasks.

In contrast, SEM_pendBinary and SEM_postBinary are for use with
binary semaphores, which can have only an available or unavailable
state. The APIs for binary and counting semaphores cannot be mixed for
a single semaphore.

SEM_post readies the first task waiting for the semaphore. If no task is
waiting, SEM_post simply increments the semaphore count and returns.

A task switch occurs when calling SEM_post if a higher priority task is
made ready to run.

Constraints and
Calling Context

❏ When called within an HWI, the code sequence calling SEM_post
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

❏ If SEM_post is called from within a TSK_disable/TSK_enable block,
the semaphore operation is not processed until TSK_enable is
called.

See Also SEM_pend
SEM_postBinary

SEM_post Signal a semaphore
Application Program Interface 2-383

SEM_postBinary
C Interface

Syntax SEM_postBinary(sem);

Parameters SEM_Handle sem; /* semaphore object handle */

Return Value Void

Description SEM_pendBinary and SEM_postBinary are for use with binary
semaphores. These are semaphores that can have only two states:
available and unavailable. They can be used to share a single resource
between tasks. They can also be used for a basic signaling mechanism,
where the semaphore can be posted multiple times and a subsequent
call to SEM_pendBinary clears the count and returns. Binary
semaphores do not keep track of the count; they simply track whether the
semaphore has been posted or not.

In contrast, SEM_pend and SEM_post are for use with counting
semaphores, which keep track of the number of times the semaphore has
been posted. This is useful, for example, if you have a group of resources
that are shared between tasks. The APIs for binary and counting
semaphores cannot be mixed for a single semaphore.

SEM_postBinary readies the first task in the list if one or more tasks are
waiting. SEM_postBinary sets the semaphore count to non-zero
(available) if no tasks are waiting.

A task switch occurs when calling SEM_postBinary if a higher priority
task is made ready to run.

Constraints and
Calling Context

❏ When called within an HWI, the code sequence calling this API must
be either wrapped within an HWI_enter/HWI_exit pair or invoked by
the HWI dispatcher.

❏ If this API is called from within a TSK_disable/TSK_enable block, the
semaphore operation is not processed until TSK_enable is called.

See Also SEM_post
SEM_pendBinary

SEM_postBinary Signal a binary semaphore
2-384

SEM_reset
C Interface

Syntax SEM_reset(sem, count);

Parameters SEM_Handle sem; /* semaphore object handle */
Int count; /* semaphore count */

Return Value Void

Description SEM_reset resets the semaphore count to count.

No task switch occurs when calling SEM_reset.

Constraints and
Calling Context

❏ count must be greater than or equal to 0.

❏ No tasks should be waiting on the semaphore when SEM_reset is
called.

❏ SEM_reset cannot be called by an HWI or a SWI.

See Also SEM_create

SEM_reset Reset semaphore count
Application Program Interface 2-385

SIO Module
2.26 SIO Module

The SIO module is the stream input and output manager.

Functions ❏ SIO_bufsize. Size of the buffers used by a stream

❏ SIO_create. Create stream

❏ SIO_ctrl. Perform a device-dependent control operation

❏ SIO_delete. Delete stream

❏ SIO_flush. Idle a stream by flushing buffers

❏ SIO_get. Get buffer from stream

❏ SIO_idle. Idle a stream

❏ SIO_issue. Send a buffer to a stream

❏ SIO_put. Put buffer to a stream

❏ SIO_ready. Determine if device is ready

❏ SIO_reclaim. Request a buffer back from a stream

❏ SIO_reclaimx. Request a buffer and frame status back from a stream

❏ SIO_segid. Memory segment used by a stream

❏ SIO_select. Select a ready device

❏ SIO_staticbuf. Acquire static buffer from stream

Constants, Types,
and Structures

#define SIO_STANDARD 0 /* open stream for */
 /* standard streaming model */
#define SIO_ISSUERECLAIM 1 /* open stream for */
 /* issue/reclaim streaming model */

#define SIO_INPUT 0 /* open for input */
#define SIO_OUTPUT 1 /* open for output */

typedef SIO_Handle; /* stream object handle */

typedef DEV_Callback SIO_Callback;

struct SIO_Attrs { /* stream attributes */
 Int nbufs; /* number of buffers */
 Int segid; /* buffer segment ID */
 size_t align; /* buffer alignment */
 Bool flush; /* TRUE->don't block in DEV_idle*/
 Uns model; /* SIO_STANDARD,SIO_ISSUERECLAIM*/
 Uns timeout; /* passed to DEV_reclaim */
 SIO_Callback *callback;
 /* initializes callback in DEV_Obj */
} SIO_Attrs;
2-386

SIO Module
SIO_Attrs SIO_ATTRS = {
 2, /* nbufs */
 0, /* segid */
 0, /* align */
 FALSE, /* flush */
 SIO_STANDARD, /* model */
 SYS_FOREVER /* timeout */
 NULL /* callback */
};

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the SIO
Manager Properties and SIO Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

USEISSUERECLAIM Bool false

Name Type Default (Enum Options)

comment String "<add comments here>"

deviceName Reference prog.get("dev-name")

controlParameter String ""

mode EnumString "input" ("output")

bufSize Int16 0x80

numBufs Int16 2

bufSegId Reference prog.get("SIO.OBJMEMSEG")

bufAlign EnumInt 1 (2, 4, 8, 16, 32, 64, ..., 32768)

flush Bool false

modelName EnumString "Standard" ("Issue/Reclaim")

allocStaticBuf Bool false

timeout Int16 -1

useCallBackFxn Bool false

callBackFxn Extern prog.extern("FXN_F_nop")

arg0 Arg 0

arg1 Arg 0
Application Program Interface 2-387

SIO Module
Description The stream manager provides efficient real-time device-independent I/O
through a set of functions that manipulate stream objects accessed
through handles of type SIO_Handle. The device independence is
afforded by having a common high-level abstraction appropriate for real-
time applications, continuous streams of data, that can be associated
with a variety of devices. All I/O programming is done in a high-level
manner using these stream handles to the devices and the stream
manager takes care of dispatching into the underlying device drivers.

For efficiency, streams are treated as sequences of fixed-size buffers of
data rather than just sequences of MADUs.

Streams can be opened and closed during program execution using the
functions SIO_create and SIO_delete, respectively.

The SIO_issue and SIO_reclaim function calls are enhancements to the
basic DSP/BIOS device model. These functions provide a second usage
model for streaming, referred to as the issue/reclaim model. It is a more
flexible streaming model that allows clients to supply their own buffers to
a stream, and to get them back in the order that they were submitted. The
SIO_issue and SIO_reclaim functions also provide a user argument that
can be used for passing information between the stream client and the
stream devices.

Both SWI and TSK threads can be used with the SIO module. However,
SWI threads can be used only with the issue/reclaim model, and only
then if the timeout parameter is 0. TSK threads can be used with either
model.

SIO Manager
Properties

The following global properties can be set for the SIO module in the SIO
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment that contains the SIO objects
created with Tconf.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.SIO.OBJMEMSEG = prog.get("myMEM");

❏ Use Only Issue/Reclaim Model. Enable this option if you want the
SIO module to use only the issue/reclaim model. If this option is false
(the default) you can also use the standard model.
Tconf Name: USEISSUERECLAIM Type: Bool
Example: bios.SIO.USEISSUERECLAIM = false;

SIO Object Properties To create an SIO object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.
2-388

SIO Module
var mySio = bios.SIO.create("mySio");

The following properties can be set for an SIO object in the SIO Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this SIO object.
Tconf Name: comment Type: String
Example: mySio.comment = "my SIO";

❏ Device. Select the device to which you want to bind this SIO object.
User-defined devices are listed along with DGN and DPI devices.
Tconf Name: deviceName Type: Reference
Example: mySio.deviceName = prog.get("UDEV0");

❏ Device Control String. Type the device suffix to be passed to any
devices stacked below the device connected to this stream.
Tconf Name: controlParameter Type: String
Example: mySio.controlParameter =

"/split4/codec";

❏ Mode. Select input if this stream is to be used for input to the
application program and output if this stream is to be used for output.
Tconf Name: mode Type: EnumString
Options: "input", "output"
Example: mySio.mode = "input";

❏ Buffer size. If this stream uses the Standard model, this property
controls the size of buffers (in MADUs) allocated for use by the
stream. If this stream uses the Issue/Reclaim model, the stream can
handle buffers of any size.
Tconf Name: bufSize Type: Int16
Example: mySio.bufSize = 0x80;

❏ Number of buffers. If this stream uses the Standard model, this
property controls the number of buffers allocated for use by the
stream. If this stream uses the Issue/Reclaim model, the stream can
handle up to the specified Number of buffers.
Tconf Name: numBufs Type: Int16
Example: mySio.numBufs = 2;

❏ Place buffers in memory segment. Select the memory segment to
contain the stream buffers if Model is Standard.
Tconf Name: bufSegId Type: Reference
Example: mySio.bufSegId = prog.get("myMEM");
Application Program Interface 2-389

SIO Module
❏ Buffer alignment. Specify the memory alignment to use for stream
buffers if Model is Standard. For example, if you select 16, the buffer
must begin at an address that is a multiple of 16. The default is 1,
which means the buffer can begin at any address.
Tconf Name: bufAlign Type: EnumInt
Options: 1, 2, 4, 8, 16, 32, 64, ..., 32768
Example: mySio.bufAlign = 1;

❏ Flush. Check this box if you want the stream to discard all pending
data and return without blocking if this object is idled at run-time with
SIO_idle.
Tconf Name: flush Type: Bool
Example: mySio.flush = false;

❏ Model. Select Standard if you want all buffers to be allocated when
the stream is created. Select Issue/Reclaim if your program is to
allocate the buffers and supply them using SIO_issue. Both SWI and
TSK threads can be used with the SIO module. However, SWI
threads can be used only with the issue/reclaim model, and only then
if the timeout parameter is 0. TSK threads can be used with either
model.
Tconf Name: modelName Type: EnumString
Options: "Standard", "Issue/Reclaim"
Example: mySio.modelName = "Standard";

❏ Allocate Static Buffer(s). If this property is set to true, the
configuration allocates stream buffers for the user. The SIO_staticbuf
function is used to acquire these buffers from the stream. When the
Standard model is used, checking this box causes one buffer more
than the Number of buffers property to be allocated. When the
Issue/Reclaim model is used, buffers are not normally allocated.
Checking this box causes the number of buffers specified by the
Number of buffers property to be allocated.
Tconf Name: allocStaticBuf Type: Bool
Example: mySio.allocStaticBuf = false;

❏ Timeout for I/O operation. This parameter specifies the length of
time the I/O operations SIO_get, SIO_put, and SIO_reclaim wait for
I/O. The device driver’s Dxx_reclaim function typically uses this
timeout while waiting for I/O. If the timeout expires before a buffer is
available, the I/O operation returns (-1 * SYS_ETIMEOUT) and no
buffer is returned.
Tconf Name: timeout Type: Int16
Example: mySio.timeout = -1;
2-390

SIO Module
❏ use callback function. Check this box if you want to use this SIO
object with a callback function. In most cases, the callback function
is SWI_andnHook or a similar function that posts a SWI. Checking
this box allows the SIO object to be used with SWI threads.
Tconf Name: useCallBackFxn Type: Bool
Example: mySio.useCallBackFxn = false;

❏ callback function. A function for the SIO object to call. In most
cases, the callback function is SWI_andnHook or a similar function
that posts a SWI. This function gets called by the class driver (see the
DIO Adapter) in the class driver's callback function. This callback
function in the class driver usually gets called in the mini-driver code
as a result of the HWI.
Tconf Name: callBackFxn Type: Extern
Example: mySio.callBackFxn =

prog.extern("SWI_andnHook");

❏ argument 0. The first argument to pass to the callback function. If the
callback function is SWI_andnHook, this argument should be a SWI
object handle.
Tconf Name: arg0 Type: Arg
Example: mySio.arg0 = prog.get("mySwi");

❏ argument 1. The second argument to pass to the callback function.
If the callback function is SWI_andnHook, this argument should be a
value mask.
Tconf Name: arg1 Type: Arg
Example: mySio.arg1 = 2;
Application Program Interface 2-391

SIO_bufsize
C Interface

Syntax size = SIO_bufsize(stream);

Parameters SIO_Handle stream;

Return Value size_t size;

Description SIO_bufsize returns the size of the buffers used by stream.

This API can be used only if the model is SIO_STANDARD.

See Also SIO_segid

SIO_bufsize Return the size of the buffers used by a stream
2-392

SIO_create
C Interface

Syntax stream = SIO_create(name, mode, bufsize, attrs);

Parameters String name; /* name of device */
Int mode; /* SIO_INPUT or SIO_OUTPUT */
size_t bufsize; /* stream buffer size */
SIO_Attrs *attrs; /* pointer to stream attributes */

Return Value SIO_Handle stream; /* stream object handle */

Description SIO_create creates a new stream object and opens the device specified
by name. If successful, SIO_create returns the handle of the new stream
object. If unsuccessful, SIO_create returns NULL unless it aborts (for
example, because it directly or indirectly calls SYS_error, and SYS_error
is configured to abort).

Internally, SIO_create calls Dxx_open to open a device.

The mode parameter specifies whether the stream is to be used for input
(SIO_INPUT) or output (SIO_OUTPUT).

If the stream is being opened in SIO_STANDARD mode, SIO_create
allocates buffers of size bufsize for use by the stream. Initially these
buffers are placed on the device todevice queue for input streams, and
the device fromdevice queue for output streams.

If the stream is being opened in SIO_ISSUERECLAIM mode, SIO_create
does not allocate any buffers for the stream. In SIO_ISSUERECLAIM
mode all buffers must be supplied by the client via the SIO_issue call. It
does, however, prepare the stream for a maximum number of buffers of
the specified size.

If the attrs parameter is NULL, the new stream is assigned the default set
of attributes specified by SIO_ATTRS. The following stream attributes
are currently supported:

SIO_create Open a stream
Application Program Interface 2-393

SIO_create
struct SIO_Attrs { /* stream attributes */
 Int nbufs; /* number of buffers */
 Int segid; /* buffer segment ID */
 size_t align; /* buffer alignment */
 Bool flush; /* TRUE->don't block in DEV_idle */
 Uns model; /* SIO_STANDARD,SIO_ISSUERECLAIM */
 Uns timeout; /* passed to DEV_reclaim */
 SIO_Callback *callback;
 /* initialize callback in DEV_Obj */
} SIO_Attrs;

❏ nbufs. Specifies the number of buffers allocated by the stream in the
SIO_STANDARD usage model, or the number of buffers to prepare
for in the SIO_ISSUERECLAIM usage model. The default value of
nbufs is 2. In the SIO_ISSUERECLAIM usage model, nbufs is the
maximum number of buffers that can be outstanding (that is, issued
but not reclaimed) at any point in time.

❏ segid. Specifies the memory segment for stream buffers. Use the
memory segment names defined in the configuration. The default
value is 0, meaning that buffers are to be allocated from the
"Segment for DSP/BIOS objects" property in the MEM Manager
Properties.

❏ align. Specifies the memory alignment for stream buffers. The
default value is 0, meaning that no alignment is needed.

❏ flush. Indicates the desired behavior for an output stream when it is
deleted. If flush is TRUE, a call to SIO_delete causes the stream to
discard all pending data and return without blocking. If flush is
FALSE, a call to SIO_delete causes the stream to block until all
pending data has been processed. The default value is FALSE.

❏ model. Indicates the usage model that is to be used with this stream.
The two usage models are SIO_ISSUERECLAIM and
SIO_STANDARD. The default usage model is SIO_STANDARD.

❏ timeout. Specifies the length of time the device driver waits for I/O
completion before returning an error (for example,
SYS_ETIMEOUT). timeout is usually passed as a parameter to
SEM_pend by the device driver. The default is SYS_FOREVER
which indicates that the driver waits forever. If timeout is
SYS_FOREVER, the task remains suspended until a buffer is
available to be returned by the stream. The timeout attribute applies
to the I/O operations SIO_get, SIO_put, and SIO_reclaim. If timeout
is 0, the I/O operation returns immediately. If the timeout expires
before a buffer is available to be returned, the I/O operation returns
the value of (-1 * SYS_ETIMEOUT). Otherwise the I/O operation
returns the number of valid MADUs in the buffer, or -1 multiplied by
an error code.
2-394

SIO_create
❏ callback. Specifies a pointer to channel-specific callback
information. The SIO_Callback structure is defined by the SIO
module to match the DEV_Callback structure. This structure contains
the callback function and two function arguments. The callback
function is typically SWI_andnHook or a similar function that posts a
SWI. Callbacks can only be used with the SIO_ISSUERECLAIM
model.

Existing DEV drivers do not use this callback function. While DEV
drivers can be modified to use this callback, it is not recommended.
Instead, the IOM device driver model is recommended for drivers that
need the SIO callback feature. IOM drivers use the DIO module to
interface with the SIO functions.

SIO_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is set by the "Segment for DSP/BIOS objects" property in the MEM
Manager Properties.

Constraints and
Calling Context

❏ A stream can only be used by one task simultaneously. Catastrophic
failure can result if more than one task calls SIO_get (or SIO_issue/
SIO_reclaim) on the same input stream, or more than one task calls
SIO_put (or SIO_issue / SIO_reclaim) on the same output stream.

❏ SIO_create creates a stream dynamically. Do not call SIO_create on
a stream that was created with Tconf.

❏ You can reduce the size of your application program by creating
objects with Tconf rather than using the XXX_create functions.
However, streams that are to be used with stacking drivers must be
created dynamically with SIO_create.

❏ SIO_create cannot be called from a SWI or HWI.

See Also Dxx_open
MEM_alloc
SEM_pend
SIO_delete
SIO_issue
SIO_reclaim
SYS_error
Application Program Interface 2-395

SIO_ctrl
C Interface

Syntax status = SIO_ctrl(stream, cmd, arg);

Parameters SIO_Handle stream; /* stream handle */
Uns cmd; /* command to device */
Arg arg; /* arbitrary argument */

Return Value Int status; /* device status */

Description SIO_ctrl causes a control operation to be issued to the device associated
with stream. cmd and arg are passed directly to the device.

SIO_ctrl returns SYS_OK if successful, and a non-zero device-
dependent error value if unsuccessful.

Internally, SIO_ctrl calls Dxx_ctrl to send control commands to a device.

Constraints and
Calling Context

❏ SIO_ctrl cannot be called from an HWI.

See Also Dxx_ctrl

SIO_ctrl Perform a device-dependent control operation
2-396

SIO_delete
C Interface

Syntax status = SIO_delete(stream);

Parameters SIO_Handle stream; /* stream object */

Return Value Int status; /* result of operation */

Description SIO_delete idles the device before freeing the stream object and buffers.

If the stream being deleted was opened for input, then any pending input
data is discarded. If the stream being deleted was opened for output, the
method for handling data is determined by the value of the flush field in
the SIO_Attrs structure (passed in with SIO_create). If flush is TRUE,
SIO_delete discards all pending data and returns without blocking. If
flush is FALSE, SIO_delete blocks until all pending data has been
processed by the stream.

SIO_delete returns SYS_OK if and only if the operation is successful.

SIO_delete calls MEM_free to delete a stream. MEM_free must acquire
a lock to the memory before proceeding. If another task already holds a
lock to the memory, then there is a context switch.

Internally, SIO_delete first calls Dxx_idle to idle the device. Then it calls
Dxx_close.

Constraints and
Calling Context

❏ SIO_delete cannot be called from a SWI or HWI.

❏ No check is performed to prevent SIO_delete from being used on a
statically-created object. If a program attempts to delete a stream
object that was created using Tconf, SYS_error is called.

❏ In SIO_ISSUERECLAIM mode, all buffers issued to a stream must
be reclaimed before SIO_delete is called. Failing to reclaim such
buffers causes a memory leak.

See Also SIO_create
SIO_flush
SIO_idle
Dxx_idle
Dxx_close

SIO_delete Close a stream and free its buffers
Application Program Interface 2-397

SIO_flush
C Interface

Syntax status = SIO_flush(stream);

Parameters SIO_Handle stream; /* stream handle */

Return Value Int status; /* result of operation */

Description SIO_flush causes all pending data to be discarded regardless of the
mode of the stream. SIO_flush differs from SIO_idle in that SIO_flush
never suspends program execution to complete processing of data, even
for a stream created in output mode.

The underlying device connected to stream is idled as a result of calling
SIO_flush. In general, the interrupt is disabled for the device.

One of the purposes of this function is to provide synchronization with the
external environment.

SIO_flush returns SYS_OK if and only if the stream is successfully idled.

Internally, SIO_flush calls Dxx_idle and flushes all pending data.

If a callback was specified in the SIO_Attrs structure used with
SIO_create, then SIO_flush performs no processing and returns
SYS_OK.

Constraints and
Calling Context

❏ SIO_flush cannot be called from an HWI.

❏ If SIO_flush is called from a SWI, no action is performed.

See Also Dxx_idle
SIO_create
SIO_idle

SIO_flush Flush a stream
2-398

SIO_get
C Interface

Syntax nmadus = SIO_get(stream, bufp);

Parameters SIO_Handle stream /* stream handle */
Ptr *bufp; /* pointer to a buffer */

Return Value Int nmadus; /* number of MADUs read or error if negative */

Description SIO_get exchanges an empty buffer with a non-empty buffer from
stream. The bufp is an input/output parameter which points to an empty
buffer when SIO_get is called. When SIO_get returns, bufp points to a
new (different) buffer, and nmadus indicates success or failure of the call.

SIO_get blocks until a buffer can be returned to the caller, or until the
stream's timeout attribute expires (see SIO_create). If a timeout occurs,
the value (-1 * SYS_ETIMEOUT) is returned. If timeout is not equal to
SYS_FOREVER or 0, the task suspension time can be up to 1 system
clock tick less than timeout due to granularity in system timekeeping.

To indicate success, SIO_get returns a positive value for nmadus. As a
success indicator, nmadus is the number of MADUs received from the
stream. To indicate failure, SIO_get returns a negative value for nmadus.
As a failure indicator, nmadus is the actual error code multiplied by -1.

An inconsistency exists between the sizes of buffers in a stream and the
return types corresponding to these sizes. While all buffer sizes in a
stream are of type size_t, APIs that return a buffer size return a type of
Int. The inconsistency is due to a change in stream buffer sizes and the
need to retain the return type for backward compatibility. Because of this
inconsistency, it is not possible to return the correct buffer size when the
actual buffer size exceeds the size of an Int type. This issue has the
following implications:

❏ If the actual buffer size is less than/equal to the maximum
positive Int value (31 bits). Check the return value for negative
values, which should be treated as errors. Positive values reflect the
correct size.

❏ If the actual buffer size is greater than the maximum positive Int
value. Ignore the return value. There is little room for this situation on
’C6000 since size_t is the same as unsigned int, which is 32 bits.
Since the sign in Int takes up one bit, the size_t type contains just one
more bit than an Int.

SIO_get Get a buffer from stream
Application Program Interface 2-399

SIO_get
For other architectures, size_t is:

❏ ’C28x - unsigned long

❏ ’C54x/’C55x/’C6x - unsigned int

Since this operation is generally accomplished by redirection rather than
by copying data, references to the contents of the buffer pointed to by
bufp must be recomputed after the call to SIO_get.

A task switch occurs when calling SIO_get if there are no non-empty data
buffers in stream.

Internally, SIO_get calls Dxx_issue and Dxx_reclaim for the device.

Constraints and
Calling Context

❏ The stream must not be created with attrs.model set to
SIO_ISSUERECLAIM. The results of calling SIO_get on a stream
created for the issue/reclaim streaming model are undefined.

❏ SIO_get cannot be called from a SWI or HWI.

❏ This API is callable from the program’s main() function only if the
stream's configured timeout attribute is 0, or if it is certain that there
is a buffer available to be returned.

See Also Dxx_issue
Dxx_reclaim
SIO_put
2-400

SIO_idle
C Interface

Syntax status = SIO_idle(stream);

Parameters SIO_Handle stream; /* stream handle */

Return Value Int status; /* result of operation */

Description If stream is being used for output, SIO_idle causes any currently buffered
data to be transferred to the output device associated with stream.
SIO_idle suspends program execution for as long as is required for the
data to be consumed by the underlying device.

If stream is being used for input, SIO_idle causes any currently buffered
data to be discarded. The underlying device connected to stream is idled
as a result of calling SIO_idle. In general, the interrupt is disabled for this
device.

If discarding of unrendered output is desired, use SIO_flush instead.

One of the purposes of this function is to provide synchronization with the
external environment.

SIO_idle returns SYS_OK if and only if the stream is successfully idled.

Internally, SIO_idle calls Dxx_idle to idle the device.

If a callback was specified in the SIO_Attrs structure used with
SIO_create, then SIO_idle performs no processing and returns SYS_OK.

Constraints and
Calling Context

❏ SIO_idle cannot be called from an HWI.

❏ If SIO_idle is called from a SWI, no action is performed.

See Also Dxx_idle
SIO_create
SIO_flush

SIO_idle Idle a stream
Application Program Interface 2-401

SIO_issue
C Interface

Syntax status = SIO_issue(stream, pbuf, nmadus, arg);

Parameters SIO_Handle stream; /* stream handle */
Ptr pbuf; /* pointer to a buffer */
size_t nmadus; /* number of MADUs in the buffer */
Arg arg; /* user argument */

Return Value Int status; /* result of operation */

Description SIO_issue is used to send a buffer and its related information to a stream.
The buffer-related information consists of the logical length of the buffer
(nmadus), and the user argument to be associated with that buffer.
SIO_issue sends a buffer to the stream and return to the caller without
blocking. It also returns an error code indicating success (SYS_OK) or
failure of the call.

Internally, SIO_issue calls Dxx_issue after placing a new input frame on
the driver’s device->todevice queue.

Failure of SIO_issue indicates that the stream was not able to accept the
buffer being issued or that there was a device error when the underlying
Dxx_issue was called. In the first case, the application is probably issuing
more frames than the maximum MADUs allowed for the stream, before it
reclaims any frames. In the second case, the failure reveals an
underlying device driver or hardware problem. If SIO_issue fails,
SIO_idle should be called for an SIO_INPUT stream, and SIO_flush
should be called for an SIO_OUTPUT stream, before attempting more
I/O through the stream.

The interpretation of nmadus, the logical size of a buffer, is direction-
dependent. For a stream opened in SIO_OUTPUT mode, the logical size
of the buffer indicates the number of valid MADUs of data it contains. For
a stream opened in SIO_INPUT mode, the logical length of a buffer
indicates the number of MADUs being requested by the client. In either
case, the logical size of the buffer must be less than or equal to the
physical size of the buffer.

The argument arg is not interpreted by DSP/BIOS, but is offered as a
service to the stream client. DSP/BIOS and all DSP/BIOS-compliant
device drivers preserve the value of arg and maintain its association with

SIO_issue Send a buffer to a stream
2-402

SIO_issue
the data that it was issued with. arg provides a user argument as a
method for a client to associate additional information with a particular
buffer of data.

SIO_issue is used in conjunction with SIO_reclaim to operate a stream
opened in SIO_ISSUERECLAIM mode. The SIO_issue call sends a
buffer to a stream, and SIO_reclaim retrieves a buffer from a stream. In
normal operation each SIO_issue call is followed by an SIO_reclaim call.
Short bursts of multiple SIO_issue calls can be made without an
intervening SIO_reclaim call, but over the life of the stream SIO_issue
and SIO_reclaim must be called the same number of times.

At any given point in the life of a stream, the number of SIO_issue calls
can exceed the number of SIO_reclaim calls by a maximum of nbufs. The
value of nbufs is determined by the SIO_create call or by setting the
Number of buffers property for the object in the configuration.

Note:

An SIO_reclaim call should not be made without at least one
outstanding SIO_issue call. Calling SIO_reclaim with no outstanding
SIO_issue calls has undefined results.

Constraints and
Calling Context

❏ The stream must be created with attrs.model set to
SIO_ISSUERECLAIM.

❏ SIO_issue cannot be called from an HWI.

See Also Dxx_issue
SIO_create
SIO_reclaim
Application Program Interface 2-403

SIO_put
C Interface
Syntax nmadus = SIO_put(stream, bufp, nmadus);

Parameters SIO_Handle stream; /* stream handle */
Ptr *bufp; /* pointer to a buffer */
size_t nmadus; /* number of MADUs in the buffer */

Return Value Int nmadus; /* number of MADUs, negative if error */

Description SIO_put exchanges a non-empty buffer with an empty buffer. The bufp
parameter is an input/output parameter that points to a non-empty buffer
when SIO_put is called. When SIO_put returns, bufp points to a new
(different) buffer, and nmadus indicates success or failure of the call.

SIO_put blocks until a buffer can be returned to the caller, or until the
stream's timeout attribute expires (see SIO_create). If a timeout occurs,
the value (-1 * SYS_ETIMEOUT) is returned. If timeout is not equal to
SYS_FOREVER or 0, the task suspension time can be up to 1 system
clock tick less than timeout due to granularity in system timekeeping.

To indicate success, SIO_put returns a positive value for nmadus. As a
success indicator, nmadus is the number of valid MADUs in the buffer
returned by the stream (usually zero). To indicate failure, SIO_put returns
a negative value (the actual error code multiplied by -1).

An inconsistency exists between the sizes of buffers in a stream and the
return types corresponding to these sizes. While all buffer sizes in a
stream are of type size_t, APIs that return a buffer size return a type of
Int. The inconsistency is due to a change in stream buffer sizes and the
need to retain the return type for backward compatibility. Because of this
inconsistency, it is not possible to return the correct buffer size when the
actual buffer size exceeds the size of an Int type. This issue has the
following implications:

❏ If the actual buffer size is less than/equal to the maximum
positive Int value (31 bits). Check the return value for negative
values, which should be treated as errors. Positive values reflect the
correct size.

❏ If the actual buffer size is greater than the maximum positive Int
value. Ignore the return value. There is little room for this situation on
’C6000 since size_t is the same as unsigned int, which is 32 bits.
Since the sign in Int takes up one bit, the size_t type contains just one
more bit than an Int.

SIO_put Put a buffer to a stream
2-404

SIO_put
Since this operation is generally accomplished by redirection rather than
by copying data, references to the contents of the buffer pointed to by
bufp must be recomputed after the call to SIO_put.

A task switch occurs when calling SIO_put if there are no empty data
buffers in the stream.

Internally, SIO_put calls Dxx_issue and Dxx_reclaim for the device.

Constraints and
Calling Context

❏ The stream must not be created with attrs.model set to
SIO_ISSUERECLAIM. The results of calling SIO_put on a stream
created for the issue/reclaim model are undefined.

❏ SIO_put cannot be called from a SWI or HWI.

❏ This API is callable from the program’s main() function only if the
stream's configured timeout attribute is 0, or if it is certain that there
is a buffer available to be returned.

See Also Dxx_issue
Dxx_reclaim
SIO_get
Application Program Interface 2-405

SIO_ready
C Interface

Syntax status = SIO_ready(stream);

Parameters SIO_Handle stream;

Return Value Int status; /* result of operation */

Description SIO_ready returns TRUE if a stream is ready for input or output.

If you are using SIO objects with SWI threads, you may want to use
SIO_ready to avoid calling SIO_reclaim when it may fail because no
buffers are available.

SIO_ready is similar to SIO_select, except that it does not block. You can
prevent SIO_select from blocking by setting the timeout to zero, however,
SIO_ready is more efficient because SIO_select performs SEM_pend
with a timeout of zero. SIO_ready simply polls the stream to see if the
device is ready.

See Also SIO_select

SIO_ready Determine if device for stream is ready
2-406

SIO_reclaim
C Interface

Syntax nmadus = SIO_reclaim(stream, pbufp, parg);

Parameters SIO_Handle stream; /* stream handle */
Ptr *pbufp; /* pointer to the buffer */
Arg *parg; /* pointer to a user argument */

Return Value Int nmadus; /* number of MADUs or error if negative */

Description SIO_reclaim is used to request a buffer back from a stream. It returns a
pointer to the buffer, the number of valid MADUs in the buffer, and a user
argument (parg). After the SIO_reclaim call parg points to the same value
that was passed in with this buffer using the SIO_issue call.

If you want to return a frame-specific status along with the buffer, use
SIO_reclaimx instead of SIO_reclaim.

Internally, SIO_reclaim calls Dxx_reclaim, then it gets the frame from the
driver’s device->fromdevice queue.

If a stream was created in SIO_OUTPUT mode, then SIO_reclaim
returns an empty buffer, and nmadus is zero, since the buffer is empty. If
a stream was opened in SIO_INPUT mode, SIO_reclaim returns a non-
empty buffer, and nmadus is the number of valid MADUs of data in the
buffer.

If SIO_reclaim is called from a TSK thread, it blocks (in either mode) until
a buffer can be returned to the caller, or until the stream’s timeout
attribute expires (see SIO_create), and it returns a positive number or
zero (indicating success), or a negative number (indicating an error
condition). If timeout is not equal to SYS_FOREVER or 0, the task
suspension time can be up to 1 system clock tick less than timeout due
to granularity in system timekeeping.

If SIO_reclaim is called from a SWI thread, it returns an error if it is called
when no buffer is available. SIO_reclaim never blocks when called from
a SWI.

To indicate success, SIO_reclaim returns a positive value for nmadus. As
a success indicator, nmadus is the number of valid MADUs in the buffer.
To indicate failure, SIO_reclaim returns a negative value for nmadus. As
a failure indicator, nmadus is the actual error code multiplied by -1.

SIO_reclaim Request a buffer back from a stream
Application Program Interface 2-407

SIO_reclaim
Failure of SIO_reclaim indicates that no buffer was returned to the client.
Therefore, if SIO_reclaim fails, the client should not attempt to de-
reference pbufp, since it is not guaranteed to contain a valid buffer
pointer.

An inconsistency exists between the sizes of buffers in a stream and the
return types corresponding to these sizes. While all buffer sizes in a
stream are of type size_t, APIs that return a buffer size return a type of
Int. The inconsistency is due to a change in stream buffer sizes and the
need to retain the return type for backward compatibility. Because of this
inconsistency, it is not possible to return the correct buffer size when the
actual buffer size exceeds the size of an Int type. This issue has the
following implications:

❏ If the actual buffer size is less than/equal to the maximum
positive Int value (31 bits). Check the return value for negative
values, which should be treated as errors. Positive values reflect the
correct size.

❏ If the actual buffer size is greater than the maximum positive Int
value. Ignore the return value. There is little room for this situation on
’C6000 since size_t is the same as unsigned int, which is 32 bits.
Since the sign in Int takes up one bit, the size_t type contains just one
more bit than an Int.

SIO_reclaim is used in conjunction with SIO_issue to operate a stream
opened in SIO_ISSUERECLAIM mode. The SIO_issue call sends a
buffer to a stream, and SIO_reclaim retrieves a buffer from a stream. In
normal operation each SIO_issue call is followed by an SIO_reclaim call.
Short bursts of multiple SIO_issue calls can be made without an
intervening SIO_reclaim call, but over the life of the stream SIO_issue
and SIO_reclaim must be called the same number of times. The number
of SIO_issue calls can exceed the number of SIO_reclaim calls by a
maximum of nbufs at any given time. The value of nbufs is determined by
the SIO_create call or by setting the Number of buffers property for the
object in the configuration.

Note:

An SIO_reclaim call should not be made without at least one
outstanding SIO_issue call. Calling SIO_reclaim with no outstanding
SIO_issue calls has undefined results.

SIO_reclaim only returns buffers that were passed in using SIO_issue. It
also returns the buffers in the same order that they were issued.
2-408

SIO_reclaim
A task switch occurs when calling SIO_reclaim if timeout is not set to 0,
and there are no data buffers available to be returned.

Constraints and
Calling Context

❏ The stream must be created with attrs.model set to
SIO_ISSUERECLAIM.

❏ There must be at least one outstanding SIO_issue when an
SIO_reclaim call is made.

❏ SIO_reclaim returns an error if it is called from a SWI when no buffer
is available. SIO_reclaim does not block if called from a SWI.

❏ All frames issued to a stream must be reclaimed before closing the
stream.

❏ SIO_reclaim cannot be called from a HWI.

❏ This API is callable from the program’s main() function only if the
stream's configured timeout attribute is 0, or if it is certain that there
is a buffer available to be returned.

See Also Dxx_reclaim
SIO_issue
SIO_create
SIO_reclaimx
Application Program Interface 2-409

SIO_reclaimx
C Interface

Syntax nmadus = SIO_reclaimx(stream, *pbufp, *parg, *pfstatus);

Parameters SIO_Handle stream; /* stream handle */
Ptr *pbufp; /* pointer to the buffer */
Arg *parg; /* pointer to a user argument */
Int *pfstatus; /* pointer to frame status */

Return Value Int nmadus; /* number of MADUs or error if negative */

Description SIO_reclaimx is identical to SIO_reclaim, except that is also returns a
frame-specific status in the Int pointed to by the pfstatus parameter.

The device driver can use the frame-specific status to pass frame-
specific status information to the application. This allows the device driver
to fill in the status for each frame, and gives the application access to that
status.

The returned frame status is valid only if SIO_reclaimx() returns
successfully. If the nmadus value returned is negative, the frame status
should not be considered accurate.

Constraints and
Calling Context

❏ The stream must be created with attrs.model set to
SIO_ISSUERECLAIM.

❏ There must be at least one outstanding SIO_issue when an
SIO_reclaimx call is made.

❏ SIO_reclaimx returns an error if it is called from a SWI when no buffer
is available. SIO_reclaimx does not block if called from a SWI.

❏ All frames issued to a stream must be reclaimed before closing the
stream.

❏ SIO_reclaimx cannot be called from a HWI.

❏ This API is callable from the program’s main() function only if the
stream's configured timeout attribute is 0, or if it is certain that there
is a buffer available to be returned.

See Also SIO_reclaim

SIO_reclaimx Request a buffer back from a stream, including frame status
2-410

SIO_segid
C Interface

Syntax segid = SIO_segid(stream);

Parameters SIO_Handle stream;

Return Value Int segid; /* memory segment ID */

Description SIO_segid returns the identifier of the memory segment that stream uses
for buffers.

See Also SIO_bufsize

SIO_segid Return the memory segment used by the stream
Application Program Interface 2-411

SIO_select
C Interface

Syntax mask = SIO_select(streamtab, nstreams, timeout);

Parameters SIO_Handle streamtab; /* stream table */
Int nstreams; /* number of streams */
Uns timeout; /* return after this many system clock ticks */

Return Value Uns mask; /* stream ready mask */

Description SIO_select waits until one or more of the streams in the streamtab[] array
is ready for I/O (that is, it does not block when an I/O operation is
attempted).

streamtab[] is an array of streams where nstreams < 16. The timeout
parameter indicates the number of system clock ticks to wait before a
stream becomes ready. If timeout is 0, SIO_select returns immediately. If
timeout is SYS_FOREVER, SIO_select waits until one of the streams is
ready. Otherwise, SIO_select waits for up to 1 system clock tick less than
timeout due to granularity in system timekeeping.

The return value is a mask indicating which streams are ready for I/O. A
1 in bit position j indicates the stream streamtab[j] is ready.

SIO_select results in a context switch if no streams are ready for I/O.

Internally, SIO_select calls Dxx_ready to determine if the device is ready
for an I/O operation.

SIO_ready is similar to SIO_select, except that it does not block. You can
prevent SIO_select from blocking by setting the timeout to zero, however,
SIO_ready is more efficient in this situation because SIO_select performs
SEM_pend with a timeout of zero. SIO_ready simply polls the stream to
see if the device is ready.

For the SIO_STANDARD model in SIO_INPUT mode only, if stream I/O
has not been started (that is, if SIO_get has not been called), SIO_select
calls Dxx_issue for all empty frames to start the device.

SIO_select Select a ready device
2-412

SIO_select
Constraints and
Calling Context

❏ streamtab must contain handles of type SIO_Handle returned from
prior calls to SIO_create.

❏ streamtab[] is an array of streams; streamtab[i] corresponds to bit
position i in mask.

❏ SIO_select cannot be called from an HWI.

❏ SIO_select can only be called from a SWI if the timeout value is zero.

See Also Dxx_ready
SIO_get
SIO_put
SIO_ready
SIO_reclaim
Application Program Interface 2-413

SIO_staticbuf
C Interface

Syntax nmadus = SIO_staticbuf(stream, bufp);

Parameters SIO_Handle stream; /* stream handle */
Ptr *bufp; /* pointer to a buffer */

Return Value Int nmadus; /* number of MADUs in buffer */

Description SIO_staticbuf returns buffers for static streams that were configured
statically. Buffers are allocated for static streams by checking the
Allocate Static Buffer(s) check box for the related SIO object.

SIO_staticbuf returns the size of the buffer or 0 if no more buffers are
available from the stream.

An inconsistency exists between the sizes of buffers in a stream and the
return types corresponding to these sizes. While all buffer sizes in a
stream are of type size_t, APIs that return a buffer size return a type of
Int. This due to a change in stream buffer sizes and the need to retain the
return type for backward compatibility. Because of this inconsistency, it is
not possible to return the correct buffer size when the actual buffer size
exceeds the size of an Int type. This issue has the following implications:

❏ If the actual buffer size is less than/equal to the maximum
positive Int value (31 bits). Check the return value for negative
values, which indicate errors. Positive values reflect the correct size.

❏ If the actual buffer size is greater than the maximum positive Int
value. Ignore the return value. There is little room for this situation on
’C6000 since size_t is the same as unsigned int, which is 32 bits.
Since the sign in Int takes up one bit, the size_t type contains just one
more bit than an Int.

SIO_staticbuf can be called multiple times for SIO_ISSUERECLAIM
model streams.

SIO_staticbuf must be called to acquire all static buffers before calling
SIO_get, SIO_put, SIO_issue or SIO_reclaim.

SIO_staticbuf Acquire static buffer from stream
2-414

SIO_staticbuf
Constraints and
Calling Context

❏ SIO_staticbuf should only be called for streams that are defined
statically using Tconf.

❏ SIO_staticbuf should only be called for static streams whose
"Allocate Static Buffer(s)" property has been set to true.

❏ SIO_staticbuf cannot be called after SIO_get, SIO_put, SIO_issue or
SIO_reclaim have been called for the given stream.

❏ SIO_staticbuf cannot be called from an HWI.

See Also SIO_get
Application Program Interface 2-415

STS Module
2.27 STS Module

The STS module is the statistics objects manager.

Functions ❏ STS_add. Update statistics using provided value

❏ STS_delta. Update statistics using difference between provided
value and setpoint

❏ STS_reset. Reset values stored in STS object

❏ STS_set. Save a setpoint value

Constants, Types, and
Structures

struct STS_Obj {
 LgInt num; /* count */
 LgInt acc; /* total value */
 LgInt max; /* maximum value */
}

Note:

STS objects should not be shared across threads. Therefore,
STS_add, STS_delta, STS_reset, and STS_set are not reentrant.

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the STS
Manager Properties and STS Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

previousVal Int32 0

unitType EnumString "Not time based"
("High resolution time based",
"Low resolution time based")

operation EnumString "Nothing" ("A * x", "A * x + B",
"(A * x + B) / C")

numA Int32 1
2-416

STS Module
Description The STS module manages objects called statistics accumulators. Each
STS object accumulates the following statistical information about an
arbitrary 32-bit wide data series:

❏ Count. The number of values in an application-supplied data series

❏ Total. The sum of the individual data values in this series

❏ Maximum. The largest value already encountered in this series

Using the count and total, the Statistics View analysis tool calculates the
average on the host.

Statistics are accumulated in 32-bit variables on the target and in 64-bit
variables on the host. When the host polls the target for real-time
statistics, it resets the variables on the target. This minimizes space
requirements on the target while allowing you to keep statistics for long
test runs.

Default STS Tracing In the RTA Control Panel, you can enable statistics tracing for the
following modules by marking the appropriate checkbox. You can also
set the HWI Object Properties to perform various STS operations on
registers, addresses, or pointers.

Except for tracing TSK execution, your program does not need to include
any calls to STS functions in order to gather these statistics. The default
units for the statistics values are shown in Table 2-8.

Table 2-8. Statistics Units for HWI, PIP, PRD, and SWI Modules

Custom STS Objects You can create custom STS objects using Tconf. The STS_add
operation updates the count, total, and maximum using the value you
provide. The STS_set operation sets a previous value. The STS_delta

numB Int32 0

numC Int32 1

Name Type Default (Enum Options)

Module Units

HWI Gather statistics on monitored values within HWIs

PIP Number of frames read from or written to data pipe (count only)

PRD Number of ticks elapsed from time that the PRD object is ready
to run to end of execution

SWI Instruction cycles elapsed from time posted to completion

TSK Instruction cycles elapsed from time TSK is made ready to run
until the application calls TSK_deltatime.
Application Program Interface 2-417

STS Module
operation accumulates the difference between the value you pass and
the previous value and updates the previous value to the value you pass.

By using custom STS objects and the STS operations, you can do the
following:

❏ Count the number of occurrences of an event. You can pass a
value of 0 to STS_add. The count statistic tracks how many times
your program calls STS_add for this STS object.

❏ Track the maximum and average values for a variable in your
program. For example, suppose you pass amplitude values to
STS_add. The count tracks how many times your program calls
STS_add for this STS object. The total is the sum of all the
amplitudes. The maximum is the largest value. The Statistics View
calculates the average amplitude.

❏ Track the minimum value for a variable in your program. Negate
the values you are monitoring and pass them to STS_add. The
maximum is the negative of the minimum value.

❏ Time events or monitor incremental differences in a value. For
example, suppose you want to measure the time between hardware
interrupts. You would call STS_set when the program begins running
and STS_delta each time the interrupt routine runs, passing the
result of CLK_gethtime each time. STS_delta subtracts the previous
value from the current value. The count tracks how many times the
interrupt routine was performed. The maximum is the largest number
of clock counts between interrupt routines. The Statistics View also
calculates the average number of clock counts.

❏ Monitor differences between actual values and desired values.
For example, suppose you want to make sure a value stays within a
certain range. Subtract the midpoint of the range from the value and
pass the absolute value of the result to STS_add. The count tracks
how many times your program calls STS_add for this STS object.
The total is the sum of all deviations from the middle of the range. The
maximum is the largest deviation. The Statistics View calculates the
average deviation.

You can further customize the statistics data by setting the STS Object
Properties to apply a printf format to the Total, Max, and Average fields in
the Statistics View window and choosing a formula to apply to the data
values on the host.

Statistics Data
Gathering by the
Statistics View
Analysis Tool

The statistics manager allows the creation of any number of statistics
objects, which in turn can be used by the application to accumulate
simple statistics about a time series. This information includes the 32-bit
2-418

STS Module
maximum value, the last 32-bit value passed to the object, the number of
samples (up to 232 - 1 samples), and the 32-bit sum of all samples.

These statistics are accumulated on the target in real-time until the host
reads and clears these values on the target. The host, however,
continues to accumulate the values read from the target in a host buffer
which is displayed by the Statistics View real-time analysis tool. Provided
that the host reads and clears the target statistics objects faster than the
target can overflow the 32-bit wide values being accumulated, no
information loss occurs.

Using Tconf, you can select a Host Operation for an STS object. The
statistics are filtered on the host using the operation and variables you
specify. Figure 2-8 shows the effects of the (A x X + B) / C operation.

Figure 2-8. Statistics Accumulation on the Host

STS Manager
Properties

The following global property can be set for the STS module in the STS
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Object Memory. The memory segment that contains STS objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.STS.OBJMEMSEG = prog.get("myMEM");

STS Object Properties To create an STS object in a configuration script, use the following
syntax. The Tconf examples that follow assume the object has been
created as shown here.

var mySts = bios.STS.create("mySts");

The following properties can be set for an STS object in the STS Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

❏ comment. Type a comment to identify this STS object.
Tconf Name: comment Type: String
Example: mySts.comment = "my STS";

Target Host

Read
&

clear

Accumulate Filter = (A*x + B) / C Display

Count

(A x total + B) / C

(A x max + B) / C

Count

Total

Maximum

Count

Total

0 Max

32
Previous

Count

Total

Max

Average(A x total + B) /
(C x count)

64
Application Program Interface 2-419

STS Module
❏ prev. The initial 32-bit history value to use in this object.
Tconf Name: previousVal Type: Int32
Example: mySts.previousVal = 0;

❏ unit type. The unit type property enables you to choose the type of
time base units.

■ Not time based. If you select this unit type, the values are
displayed in the Statistics View without applying any conversion.

■ High-resolution time based. If you select this type, the Statistics
View, by default, presents results in units of instruction cycles.

■ Low-resolution time based. If you select this unit type, the default
Statistics View presents results in timer interrupt units.

Tconf Name: unitType Type: EnumString
Options: "Not time based", "High resolution time based", "Low

resolution time based"
Example: mySts.unitType = "Not time based";

❏ host operation. The expression evaluated (by the host) on the data
for this object before it is displayed by the Statistics View real-time
analysis tool. The operation can be:

■ A x X
■ A x X + B
■ (A x X + B) / C
Tconf Name: operation Type: EnumString
Options: "Nothing", "A * x", "A * x + B", "(A * x + B) / C"
Example: mySts.operation = "Nothing";

❏ A, B, C. The integer parameters used by the expression specified by
the Host Operation property above.
Tconf Name: numA Type: Int32
Tconf Name: numB Type: Int32
Tconf Name: numC Type: Int32
Example: mySts.numA = 1;

mySts.numB = 0;
mySts.numC = 1;
2-420

STS_add
C Interface

Syntax STS_add(sts, value);

Parameters STS_Handle sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value Void

Reentrant no

Description STS_add updates a custom STS object’s Total, Count, and Max fields
using the data value you provide.

For example, suppose your program passes 32-bit amplitude values to
STS_add. The Count field tracks how many times your program calls
STS_add for this STS object. The Total field tracks the total of all the
amplitudes. The Max field holds the largest value passed to this point.
The Statistics View analysis tool calculates the average amplitude.

You can count the occurrences of an event by passing a dummy value
(such as 0) to STS_add and watching the Count field.

You can view the statistics values with the Statistics View analysis tool by
enabling statistics in the DSP/BIOS→RTA Control Panel window and
choosing your custom STS object in the DSP/BIOS→Statistics View
window.

See Also STS_delta
STS_reset
STS_set
TRC_disable
TRC_enable

STS_add Update statistics using the provided value
Application Program Interface 2-421

STS_delta
C Interface

Syntax STS_delta(sts,value);

Parameters STS_Handle sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value Void

Reentrant no

Description Each STS object contains a previous value that can be initialized with
Tconf or with a call to STS_set. A call to STS_delta subtracts the previous
value from the value it is passed and then invokes STS_add with the
result to update the statistics. STS_delta also updates the previous value
with the value it is passed.

STS_delta can be used in conjunction with STS_set to monitor the
difference between a variable and a desired value or to benchmark
program performance. You can benchmark code by using paired calls to
STS_set and STS_delta that pass the value provided by CLK_gethtime.

STS_set(&sts, CLK_gethtime());
 "processing to be benchmarked"
STS_delta(&sts, CLK_gethtime());

Constraints and
Calling Context

❏ Before the first call to STS_delta is made, the previous value of the
STS object should be initialized either with a call to STS_set or by
setting the prev property of the STS object using Tconf.

Example STS_set(&sts, targetValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);

See Also STS_add
STS_reset
STS_set
CLK_gethtime
CLK_getltime
PRD_getticks
TRC_disable
TRC_enable

STS_delta Update statistics using difference between provided value & setpoint
2-422

STS_reset
C Interface

Syntax STS_reset(sts);

Parameters STS_Handle sts; /* statistics object handle */

Return Value Void

Reentrant no

Description STS_reset resets the values stored in an STS object. The Count and
Total fields are set to 0 and the Max field is set to the largest negative
number. STS_reset does not modify the value set by STS_set.

After the Statistics View analysis tool polls statistics data on the target, it
performs STS_reset internally. This keeps the 32-bit total and count
values from wrapping back to 0 on the target. The host accumulates
these values as 64-bit numbers to allow a much larger range than can be
stored on the target.

Example STS_reset(&sts);
STS_set(&sts, value);

See Also STS_add
STS_delta
STS_set
TRC_disable
TRC_enable

STS_reset Reset the values stored in an STS object
Application Program Interface 2-423

STS_set
C Interface

Syntax STS_set(sts, value);

Parameters STS_Handle sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value Void

Reentrant no

Description STS_set can be used in conjunction with STS_delta to monitor the
difference between a variable and a desired value or to benchmark
program performance. STS_set saves a value as the previous value in
an STS object. STS_delta subtracts this saved value from the value it is
passed and invokes STS_add with the result.

STS_delta also updates the previous value with the value it was passed.
Depending on what you are measuring, you can need to use STS_set to
reset the previous value before the next call to STS_delta.

You can also set a previous value for an STS object in the configuration.
STS_set changes this value.

See STS_delta for details on how to use the value you set with STS_set.

Example This example gathers performance information for the processing
between STS_set and STS_delta.

STS_set(&sts, CLK_getltime());
 "processing to be benchmarked"
STS_delta(&sts, CLK_getltime());

This example gathers information about a value’s deviation from the
desired value.

STS_set(&sts, targetValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);

This example gathers information about a value’s difference from a base
value.

STS_set Save a value for STS_delta
2-424

STS_set
STS_set(&sts, baseValue);
 "processing"
STS_delta(&sts, currentValue);
STS_set(&sts, baseValue);
 "processing"
STS_delta(&sts, currentValue);
STS_set(&sts, baseValue);

See Also STS_add
STS_delta
STS_reset
TRC_disable
TRC_enable
Application Program Interface 2-425

SWI Module
2.28 SWI Module

The SWI module is the software interrupt manager.

Functions ❏ SWI_andn. Clear bits from SWI's mailbox; post if becomes 0.

❏ SWI_andnHook. Specialized version of SWI_andn for use as hook
function for configured DSP/BIOS objects. Both its arguments are of
type (Arg).

❏ SWI_create. Create a software interrupt.

❏ SWI_dec. Decrement SWI's mailbox value; post if becomes 0.

❏ SWI_delete. Delete a software interrupt.

❏ SWI_disable. Disable software interrupts.

❏ SWI_enable. Enable software interrupts.

❏ SWI_getattrs. Get attributes of a software interrupt.

❏ SWI_getmbox. Return the mailbox value of the SWI when it started
running.

❏ SWI_getpri. Return a SWI’s priority mask.

❏ SWI_inc. Increment SWI's mailbox value and post the SWI.

❏ SWI_isSWI. Check current thread calling context.

❏ SWI_or. Or mask with value contained in SWI's mailbox and post the
SWI.

❏ SWI_orHook. Specialized version of SWI_or for use as hook function
for configured DSP/BIOS objects. Both its arguments are of type
(Arg).

❏ SWI_post. Post a software interrupt.

❏ SWI_raisepri. Raise a SWI’s priority.

❏ SWI_restorepri. Restore a SWI’s priority.

❏ SWI_self. Return address of currently executing SWI object.

❏ SWI_setattrs. Set attributes of a software interrupt.

Constants, Types, and
Structures

typedef struct SWI_Obj SWI_Handle;

SWI_MINPRI = 1; /* Minimum execution priority */
SWI_MAXPRI = 14 /* Maximum execution priority */
2-426

SWI Module
struct SWI_Attrs { /* SWI attributes */
 SWI_Fxn fxn; /* address of SWI function */
 Arg arg0; /* first arg to function */
 Arg arg1; /* second arg to function */
 Int priority; /* Priority of SWI object */
 Uns mailbox; /* check for SWI posting */
};

SWI_Attrs SWI_ATTRS = { /* Default attribute values */
 (SWI_Fxn)FXN_F_nop, /* SWI function */
 0, /* arg0 */
 0, /* arg1 */
 1, /* priority */
 0 /* mailbox */
 };

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the SWI
Manager Properties and SWI Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Description The SWI module manages software interrupt service routines, which are
patterned after HWI hardware interrupt service routines.

DSP/BIOS manages four distinct levels of execution threads: hardware
interrupt service routines, software interrupt routines, tasks, and
background idle functions. A software interrupt is an object that
encapsulates a function to be executed and a priority. Software interrupts
are prioritized, preempt tasks, and are preempted by hardware interrupt
service routines.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

fxn Extern prog.extern("FXN_F_nop")

priority EnumInt 1 (0 to 14)

mailbox Int16 0

arg0 Arg 0

arg1 Arg 0
Application Program Interface 2-427

SWI Module
Note:

SWI functions are called after the processor register state has been
saved. SWI functions can be written in C or assembly and must follow
the C calling conventions described in the compiler manual.

Note: RTS Functions Callable from TSK Threads Only
Many runtime support (RTS) functions use lock and unlock functions to
prevent reentrancy. However, DSP/BIOS SWI and HWI threads cannot
call LCK_pend and LCK_post. As a result, RTS functions that call
LCK_pend or LCK_post must not be called in the context of a SWI or
HWI thread. For a list or RTS functions that should not be called from
a SWI or an HWI function, see “LCK_pend” on page 2-211.

The C++ new operator calls malloc, which in turn calls LCK_pend. As a
result, the new operator cannot be used in the context of a SWI or HWI
thread.
The processor registers that are saved before SWI functions are called
include a0-a9 and b0-b9. These registers are the parent-preserved
registers mentioned in the TMS320C6000 Optimizing Compiler User’s
Guide. The child-preserved registers, a10-a15 and b10-b15, are not
saved.

Each software interrupt has a priority level. A software interrupt preempts
any lower-priority software interrupt currently executing.

A target program uses an API call to post a SWI object. This causes the
SWI module to schedule execution of the software interrupt’s function.
When a SWI is posted by an API call, the SWI object’s function is not
executed immediately. Instead, the function is scheduled for execution.
DSP/BIOS uses the SWI’s priority to determine whether to preempt the
thread currently running. Note that if a SWI is posted several times before
it begins running, (because HWIs and higher priority interrupts are
running,) when the SWI does eventually run, it will run only one time.

Software interrupts can be posted for execution with a call to SWI_post
or a number of other SWI functions. Each SWI object has a 32-bit mailbox
which is used either to determine whether to post the SWI or as a value
that can be evaluated within the SWI’s function. SWI_andn and SWI_dec
post the SWI if the mailbox value transitions to 0. SWI_or and SWI_inc
also modify the mailbox value. (SWI_or sets bits, and SWI_andn clears
bits.)
2-428

SWI Module
The SWI_disable and SWI_enable operations allow you to post several
SWIs and enable them all for execution at the same time. The SWI
priorities then determine which SWI runs first.

All SWIs run to completion; you cannot suspend a SWI while it waits for
something (for example, a device) to be ready. So, you can use the
mailbox to tell the SWI when all the devices and other conditions it relies
on are ready. Within a SWI processing function, a call to SWI_getmbox
returns the value of the mailbox when the SWI started running. Note that
the mailbox is automatically reset to its original value when a SWI runs;
however, SWI_getmbox will return the saved mailbox value from when
the SWI started execution.

Software interrupts can have up to 15 priority levels. The highest level is
SWI_MAXPRI (14). The lowest is SWI_MINPRI (0). The priority level of
0 is reserved for the KNL_swi object, which runs the task (TSK)
scheduler.

A SWI preempts any currently running SWI with a lower priority. If two
SWIs with the same priority level have been posted, the SWI that was
posted first runs first. HWIs in turn preempt any currently running SWI,
allowing the target to respond quickly to hardware peripherals.

Interrupt threads (including HWIs and SWIs) are all executed using the
same stack. A context switch is performed when a new thread is added
to the top of the stack. The SWI module automatically saves the
processor’s registers before running a higher-priority SWI that preempts
a lower-priority SWI. After the higher-priority SWI finishes running, the
registers are restored and the lower-priority SWI can run if no other
higher-priority SWI has been posted. (A separate task stack is used by
each task thread.)

See the Code Composer Studio online tutorial for more information on
how to post SWIs and scheduling issues for the Software Interrupt
manager.

Treat mailbox
as bitmask

Treat mailbox
as counter

Always post

Post if
becomes 0

SWI_or

SWI_andn SWI_dec

SWI_inc

Does not modify
mailbox

SWI_post
Application Program Interface 2-429

SWI Module
SWI Manager
Properties

The following global property can be set for the SWI module in the SWI
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:
❏ Object Memory. The memory segment that contains the SWI

objects.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.SWI.OBJMEMSEG = prog.get("myMEM");

SWI Object Properties To create a SWI object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.
var mySwi = bios.SWI.create("mySwi");

If you cannot create a new SWI object (an error occurs or the Insert SWI
item is inactive in the DSP/BIOS Configuration Tool), try increasing the
Stack Size property in the MEM Manager Properties before adding a SWI
object or a SWI priority level.

The following properties can be set for a SWI object in the SWI Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:
❏ comment. Type a comment to identify this SWI object.

Tconf Name: comment Type: String
Example: mySwi.comment = "my SWI";

❏ function. The function to execute. If this function is written in C and
you are using the DSP/BIOS Configuration Tool, use a leading
underscore before the C function name. (The DSP/BIOS
Configuration Tool generates assembly code, which must use
leading underscores when referencing C functions or labels.) If you
are using Tconf, do not add an underscore before the function name;
Tconf adds the underscore needed to call a C function from
assembly internally.
Tconf Name: fxn Type: Extern
Example: mySwi.fxn = prog.extern("swiFxn");

❏ priority. This property shows the numeric priority level for this SWI
object. SWIs can have up to 15 priority levels. The highest level is
SWI_MAXPRI (14). The lowest is SWI_MINPRI (0). The priority level
of 0 is reserved for the KNL_swi object, which runs the task
scheduler. Instead of typing a number in the DSP/BIOS
Configuration Tool, you change the relative priority levels of SWI
objects by dragging the objects in the ordered collection view.
Tconf Name: priority Type: EnumInt
Options: 0 to 14
Example: mySwi.priority = 1;
2-430

SWI Module
❏ mailbox. The initial value of the 32-bit word used to determine if this
SWI should be posted.
Tconf Name: mailbox Type: Int16
Example: mySwi.mailbox = 7;

❏ arg0, arg1. Two arbitrary pointer type (Arg) arguments to the above
configured user function.
Tconf Name: arg0 Type: Arg
Tconf Name: arg1 Type: Arg
Example: mySwi.arg0 = 0;
Application Program Interface 2-431

SWI_andn
C Interface

Syntax SWI_andn(swi, mask);

Parameters SWI_Handle swi; /* SWI object handle*/
Uns mask /* inverse value to be ANDed */

Return Value Void

Reentrant yes

Description SWI_andn is used to conditionally post a software interrupt. SWI_andn
clears the bits specified by a mask from SWI’s internal mailbox. If SWI’s
mailbox becomes 0, SWI_andn posts the SWI. The bitwise logical
operation performed is:

mailbox = mailbox AND (NOT MASK)

For example, if multiple conditions that all be met before a SWI can run,
you should use a different bit in the mailbox for each condition. When a
condition is met, clear the bit for that condition.

SWI_andn results in a context switch if the SWI's mailbox becomes zero
and the SWI has higher priority than the currently executing thread.

You specify a SWI’s initial mailbox value in the configuration. The mailbox
value is automatically reset when the SWI executes.

Note:

Use the specialized version, SWI_andnHook, when SWI_andn
functionality is required for a DSP/BIOS object hook function.

SWI_andn Clear bits from SWI’s mailbox and post if mailbox becomes 0
2-432

SWI_andn
The following figure shows an example of how a mailbox with an initial
value of 3 can be cleared by two calls to SWI_andn with values of 2 and
1. The entire mailbox could also be cleared with a single call to SWI_andn
with a value of 3.

Constraints and
Calling Context

❏ If this function is invoked outside the context of an HWI, interrupts
must be enabled.

❏ When called within an HWI, the code sequence calling SWI_andn
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

Example /* ======== ioReady ======== */

 Void ioReady(unsigned int mask)
 {
 /* clear bits of "ready mask" */
 SWI_andn(©SWI, mask);
 }

See Also SWI_andnHook
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_orHook
SWI_post
SWI_self

Mailbox value = 3

SWI object

Mailbox value = 1

Mailbox value = 0

 SWI_andn with
mask=1

Software
interrupt is

posted

SWI object

SWI object

SWI_andn with
mask=2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Application Program Interface 2-433

SWI_andnHook
C Interface

Syntax SWI_andnHook(swi, mask);

Parameters Arg swi; /* SWI object handle*/
Arg mask /* value to be ANDed */

Return Value Void

Reentrant yes

Description SWI_andnHook is a specialized version of SWI_andn for use as hook
function for configured DSP/BIOS objects. SWI_andnHook clears the bits
specified by a mask from SWI’s internal mailbox and also moves the
arguments to the correct registers for proper interface with low level
DSP/BIOS assembly code. If SWI’s mailbox becomes 0, SWI_andnHook
posts the SWI. The bitwise logical operation performed is:

mailbox = mailbox AND (NOT MASK)

For example, if there are multiple conditions that must all be met before
a SWI can run, you should use a different bit in the mailbox for each
condition. When a condition is met, clear the bit for that condition.

SWI_andnHook results in a context switch if the SWI's mailbox becomes
zero and the SWI has higher priority than the currently executing thread.

You specify a SWI’s initial mailbox value in the configuration. The mailbox
value is automatically reset when the SWI executes.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an HWI, interrupts
must be enabled.

❏ When called within an HWI, the code sequence calling
SWI_andnHook must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

Example /* ======== ioReady ======== */

 Void ioReady(unsigned int mask)
 {
 /* clear bits of "ready mask" */
 SWI_andnHook(©SWI, mask);
 }

See Also SWI_andn
SWI_orHook

SWI_andnHook Clear bits from SWI’s mailbox and post if mailbox becomes 0
2-434

SWI_create
C Interface

Syntax swi = SWI_create(attrs);

Parameters SWI_Attrs *attrs; /* pointer to swi attributes */

Return Value SWI_Handle swi; /* handle for new swi object */

Description SWI_create creates a new SWI object. If successful, SWI_create returns
the handle of the new SWI object. If unsuccessful, SWI_create returns
NULL unless it aborts. For example, SWI_create can abort if it directly or
indirectly calls SYS_error, and SYS_error is configured to abort.

The attrs parameter, which can be either NULL or a pointer to a structure
that contains attributes for the object to be created, facilitates setting the
SWI object’s attributes. The SWI object’s attributes are specified through
a structure of type SWI_attrs defined as follows:

struct SWI_Attrs {
 SWI_Fxn fxn;
 Arg arg0;
 Arg arg1;
 Int priority;
 Uns mailbox;
};

If attrs is NULL, the new SWI object is assigned the following default
attributes.

SWI_Attrs SWI_ATTRS = { /* Default attribute values */
 (SWI_Fxn)FXN_F_nop, /* SWI function */
 0, /* arg0 */
 0, /* arg1 */
 1, /* priority */
 0 /* mailbox */
 };

The fxn attribute, which is the address of the SWI function, serves as the
entry point of the software interrupt service routine.

The arg0 and arg1 attributes specify the arguments passed to the SWI
function, fxn.

The priority attribute specifies the SWI object’s execution priority and
must range from 0 to 14. The highest level is SWI_MAXPRI (14). The
lowest is SWI_MINPRI (0). The priority level of 0 is reserved for the
KNL_swi object, which runs the task scheduler.

SWI_create Create a software interrupt
Application Program Interface 2-435

SWI_create
The mailbox attribute is used either to determine whether to post the SWI
or as a value that can be evaluated within the SWI function.

All default attribute values are contained in the constant SWI_ATTRS,
which can be assigned to a variable of type SWI_Attrs prior to calling
SWI_create.

SWI_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Module, page
2–241.

Constraints and
Calling Context

❏ SWI_create cannot be called from a SWI or HWI.

❏ The fxn attribute cannot be NULL.

❏ The priority attribute must be less than or equal to 14 and greater
than or equal to 1.

See Also SWI_delete
SWI_getattrs
SWI_setattrs
SYS_error
2-436

SWI_dec
C Interface

Syntax SWI_dec(swi);

Parameters SWI_Handle swi; /* SWI object handle*/

Return Value Void

Reentrant yes

Description SWI_dec is used to conditionally post a software interrupt. SWI_dec
decrements the value in SWI’s mailbox by 1. If SWI’s mailbox value
becomes 0, SWI_dec posts the SWI. You can increment a mailbox value
by using SWI_inc, which always posts the SWI.

For example, you would use SWI_dec if you wanted to post a SWI after
a number of occurrences of an event.

You specify a SWI’s initial mailbox value in the configuration. The mailbox
value is automatically reset when the SWI executes.

SWI_dec results in a context switch if the SWI's mailbox becomes zero
and the SWI has higher priority than the currently executing thread.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an HWI, interrupts
must be enabled.

❏ When called within an HWI, the code sequence calling SWI_dec
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

Example /* ======== strikeOrBall ======== */

 Void strikeOrBall(unsigned int call)
 {
 if (call == 1) {
 /* initial mailbox value is 3 */
 SWI_dec(&strikeoutSwi);
 }
 if (call == 2) {
 /* initial mailbox value is 4 */
 SWI_dec(&walkSwi);
 }
 }

See Also SWI_inc

SWI_dec Decrement SWI’s mailbox value and post if mailbox becomes 0
Application Program Interface 2-437

SWI_delete
C Interface

Syntax SWI_delete(swi);

Parameters SWI_Handle swi; /* SWI object handle */

Return Value Void

Description SWI_delete uses MEM_free to free the SWI object referenced by swi.

SWI_delete calls MEM_free to delete the SWI object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ swi cannot be the currently executing SWI object (SWI_self)

❏ SWI_delete cannot be called from a SWI or HWI.

❏ SWI_delete must not be used to delete a statically-created SWI
object. No check is performed to prevent SWI_delete from being
used on a statically-created object. If a program attempts to delete a
SWI object that was created using Tconf, SYS_error is called.

See Also SWI_create
SWI_getattrs
SWI_setattrs
SYS_error

SWI_delete Delete a software interrupt
2-438

SWI_disable

C Interface

Syntax SWI_disable();

Parameters Void

Return Value Void

Reentrant yes

Description SWI_disable and SWI_enable control software interrupt processing.
SWI_disable disables all other SWI functions from running until
SWI_enable is called. Hardware interrupts can still run.

SWI_disable and SWI_enable let you ensure that statements that must
be performed together during critical processing are not interrupted. In
the following example, the critical section is not preempted by any SWIs.
SWI_disable();
 `critical section`
SWI_enable();

You can also use SWI_disable and SWI_enable to post several SWIs
and have them performed in priority order. See the following example.

SWI_disable calls can be nested. The number of nesting levels is stored
internally. SWI handling is not reenabled until SWI_enable has been
called as many times as SWI_disable.

Constraints and
Calling Context

❏ The calls to HWI_enter and HWI_exit required in any HWIs that
schedule SWIs automatically disable and reenable SWI handling.
You should not call SWI_disable or SWI_enable within a HWI.

❏ SWI_disable cannot be called from the program’s main() function.

❏ Do not call SWI_enable when SWIs are already enabled. If you do, a
subsequent call to SWI_disable does not disable SWI processing.

Example /* ======== postEm ======== */
 Void postEm
 {
 SWI_disable();
 SWI_post(&encoderSwi);
 SWI_andn(©Swi, mask);
 SWI_dec(&strikeoutSwi);
 SWI_enable();
 }

See Also HWI_disable
SWI_enable

SWI_disable Disable software interrupts
Application Program Interface 2-439

SWI_enable
C Interface

Syntax SWI_enable();

Parameters Void

Return Value Void

Reentrant yes

Description SWI_disable and SWI_enable control software interrupt processing.
SWI_disable disables all other SWI functions from running until
SWI_enable is called. Hardware interrupts can still run. See the
SWI_disable section for details.

SWI_disable calls can be nested. The number of nesting levels is stored
internally. SWI handling is not be reenabled until SWI_enable has been
called as many times as SWI_disable.

SWI_enable results in a context switch if a higher-priority SWI is ready to
run.

Constraints and
Calling Context

❏ The calls to HWI_enter and HWI_exit are required in any HWI that
schedules SWIs. They automatically disable and reenable SWI
handling. You should not call SWI_disable or SWI_enable within a
HWI.

❏ SWI_enable cannot be called from the program’s main() function.

❏ Do not call SWI_enable when SWIs are already enabled. If you do
so, the subsequent call to SWI_disable will not disable SWI
processing.

See Also HWI_disable
HWI_enable
SWI_disable

SWI_enable Enable software interrupts
2-440

SWI_getattrs
C Interface

Syntax SWI_getattrs(swi, attrs);

Parameters SWI_Handle swi; /* handle of the swi */
SWI_Attrs *attrs; /* pointer to swi attributes */

Return Value Void

Description SWI_getattrs retrieves attributes of an existing SWI object.

The swi parameter specifies the address of the SWI object whose
attributes are to be retrieved. The attrs parameter, which is the pointer to
a structure that contains the retrieved attributes for the SWI object,
facilitates retrieval of the attributes of the SWI object.

The SWI object’s attributes are specified through a structure of type
SWI_attrs defined as follows:

struct SWI_Attrs {
 SWI_Fxn fxn;
 Arg arg0;
 Arg arg1;
 Int priority;
 Uns mailbox;
};

The fxn attribute, which is the address of the SWI function, serves as the
entry point of the software interrupt service routine.

The arg0 and arg1 attributes specify the arguments passed to the SWI
function, fxn.

The priority attribute specifies the SWI object’s execution priority and
ranges from 0 to 14. The highest level is SWI_MAXPRI (14). The lowest
is SWI_MINPRI (0). The priority level of 0 is reserved for the KNL_swi
object, which runs the task scheduler.

The mailbox attribute is used either to determine whether to post the SWI
or as a value that can be evaluated within the SWI function.

SWI_getattrs Get attributes of a software interrupt
Application Program Interface 2-441

SWI_getattrs
The following example uses SWI_getattrs:

extern SWI_Handle swi;
SWI_Attrs attrs;

SWI_getattrs(swi, &attrs);
attrs.priority = 5;
SWI_setattrs(swi, &attrs);

Constraints and
Calling Context

❏ SWI_getattrs cannot be called from a SWI or HWI.

❏ The attrs parameter cannot be NULL.

See Also SWI_create
SWI_delete
SWI_setattrs
2-442

SWI_getmbox
C Interface

Syntax num = Uns SWI_getmbox();

Parameters Void

Return Value Uns num /* mailbox value */

Reentrant yes

Description SWI_getmbox returns the value that SWI’s mailbox had when the SWI
started running. DSP/BIOS saves the mailbox value internally so that
SWI_getmbox can access it at any point within a SWI object’s function.
DSP/BIOS then automatically resets the mailbox to its initial value
(defined with Tconf) so that other threads can continue to use the SWI’s
mailbox.

SWI_getmbox should only be called within a function run by a SWI object.

When called from with the context of a SWI, the value returned by
SWI_getmbox is zero if the SWI was posted by a call to SWI_andn,
SWI_andnHook, or SWI_dec. Therefore, SWI_getmbox provides
relevant information only if the SWI was posted by a call to SWI_inc,
SWI_or, SWI_orHook, or SWI_post.

Constraints and
Calling Context

❏ SWI_getmbox cannot be called from the context of an HWI or TSK.

❏ SWI_getmbox cannot be called from a program’s main() function.

Example This call could be used within a SWI object’s function to use the mailbox
value within the function. For example, if you use SWI_or or SWI_inc to
post a SWI, different mailbox values can require different processing.

swicount = SWI_getmbox();

See Also SWI_andn
SWI_andnHook
SWI_dec
SWI_inc
SWI_or
SWI_orHook
SWI_post
SWI_self

SWI_getmbox Return a SWI’s mailbox value
Application Program Interface 2-443

SWI_getpri
C Interface

Syntax key = SWI_getpri(swi);

Parameters SWI_Handle swi; /* SWI object handle*/

Return Value Uns key /* Priority mask of swi */

Reentrant yes

Description SWI_getpri returns the priority mask of the SWI passed in as the
argument.

Example /* Get the priority key of swi1 */
key = SWI_getpri(&swi1);

/* Get the priorities of swi1 and swi3 */
key = SWI_getpri(&swi1) | SWI_getpri(&swi3);

See Also SWI_raisepri
SWI_restorepri

SWI_getpri Return a SWI’s priority mask
2-444

SWI_inc
C Interface

Syntax SWI_inc(swi);

Parameters SWI_Handle swi; /* SWI object handle*/

Return Value Void

Reentrant no

Description SWI_inc increments the value in SWI’s mailbox by 1 and posts the SWI
regardless of the resulting mailbox value. You can decrement a mailbox
value using SWI_dec, which only posts the SWI if the mailbox value is 0.

If a SWI is posted several times before it has a chance to begin
executing, because HWIs and higher priority SWIs are running, the SWI
only runs one time. If this situation occurs, you can use SWI_inc to post
the SWI. Within the SWI’s function, you could then use SWI_getmbox to
find out how many times this SWI has been posted since the last time it
was executed.

You specify a SWI’s initial mailbox value in the configuration. The mailbox
value is automatically reset when the SWI executes. To get the mailbox
value, use SWI_getmbox.

SWI_inc results in a context switch if the SWI is higher priority than the
currently executing thread.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an HWI, interrupts
must be enabled.

❏ When called within an HWI, the code sequence calling SWI_inc must
be either wrapped within an HWI_enter/HWI_exit pair or invoked by
the HWI dispatcher.

Example extern SWI_ObjMySwi;
/* ======== AddAndProcess ======== */
Void AddAndProcess(int count)

 int i;
 for (i = 1; I <= count; ++i)
 SWI_inc(&MySwi);
}

See Also SWI_dec
SWI_getmbox

SWI_inc Increment SWI’s mailbox value and post the SWI
Application Program Interface 2-445

SWI_isSWI
C Interface

Syntax result = SWI_isSWI(Void);

Parameters Void

Return Value Bool result; /* TRUE if in SWI context, FALSE otherwise */

Reentrant yes

Description This macro returns TRUE when it is called within the context of a SWI or
PRD function. This applies no matter whether the SWI was posted by an
HWI, TSK, or IDL thread. This macro returns FALSE in all other contexts.

In previous versions of DSP/BIOS, calling SWI_isSWI() from a task
switch hook resulted in TRUE. This is no longer the case; task switch
hooks are identified as part of the TSK context.

See Also HWI_isHWI
TSK_isTSK

SWI_isSWI Check to see if called in the context of a SWI
2-446

SWI_or
C Interface

Syntax SWI_or(swi, mask);

Parameters SWI_Handle swi; /* SWI object handle*/
Uns mask; /* value to be ORed */

Return Value Void

Reentrant no

Description SWI_or is used to post a software interrupt. SWI_or sets the bits specified
by a mask in SWI’s mailbox. SWI_or posts the SWI regardless of the
resulting mailbox value. The bitwise logical operation performed on the
mailbox value is:

mailbox = mailbox OR mask

You specify a SWI’s initial mailbox value in the configuration. The mailbox
value is automatically reset when the SWI executes. To get the mailbox
value, use SWI_getmbox.

For example, you might use SWI_or to post a SWI if any of three events
should cause a SWI to be executed, but you want the SWI’s function to
be able to tell which event occurred. Each event would correspond to a
different bit in the mailbox.

SWI_or results in a context switch if the SWI is higher priority than the
currently executing thread.

Note:

Use the specialized version, SWI_orHook, when SWI_or functionality
is required for a DSP/BIOS object hook function.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an HWI, interrupts
must be enabled.

❏ When called within an HWI, the code sequence calling SWI_or must
be either wrapped within an HWI_enter/HWI_exit pair or invoked by
the HWI dispatcher.

See Also SWI_andn
SWI_orHook

SWI_or OR mask with the value contained in SWI’s mailbox field
Application Program Interface 2-447

SWI_orHook
C Interface

Syntax SWI_orHook(swi, mask);

Parameters Arg swi; /* SWI object handle*/
Arg mask; /* value to be ORed */

Return Value Void

Reentrant no

Description SWI_orHook is used to post a software interrupt, and should be used
when hook functionality is required for DSP/BIOS hook objects.
SWI_orHook sets the bits specified by a mask in SWI’s mailbox and also
moves the arguments to the correct registers for interfacing with low level
DSP/BIOS assembly code. SWI_orHook posts the SWI regardless of the
resulting mailbox value. The bitwise logical operation performed on the
mailbox value is:
mailbox = mailbox OR mask

You specify a SWI’s initial mailbox value in the configuration. The mailbox
value is automatically reset when the SWI executes. To get the mailbox
value, use SWI_getmbox.

For example, you might use SWI_orHook to post a SWI if any of three
events should cause a SWI to be executed, but you want the SWI’s
function to be able to tell which event occurred. Each event would
correspond to a different bit in the mailbox.

SWI_orHook results in a context switch if the SWI is higher priority than
the currently executing thread.

Note:
Use the specialized version, SWI_orHook, when SWI_or functionality
is required for a DSP/BIOS object hook function.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an HWI, interrupts
must be enabled.

❏ When called within an HWI, the code sequence calling SWI_orHook
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

See Also SWI_andnHook
SWI_or

SWI_orHook OR mask with the value contained in SWI’s mailbox field
2-448

SWI_post
C Interface

Syntax SWI_post(swi);

Parameters SWI_Handle swi; /* SWI object handle*/

Return Value Void

Reentrant yes

Description SWI_post is used to post a software interrupt regardless of the mailbox
value. No change is made to the SWI object’s mailbox value.

To have a PRD object post a SWI object’s function, you can set
_SWI_post as the function property of a PRD object and the name of the
SWI object you want to post its function as the arg0 property.

SWI_post results in a context switch if the SWI is higher priority than the
currently executing thread.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an HWI, interrupts
must be enabled.

❏ When called within an HWI, the code sequence calling SWI_post
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

See Also SWI_andn
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_self

SWI_post Post a software interrupt
Application Program Interface 2-449

SWI_raisepri
C Interface

Syntax key = SWI_raisepri(mask);

Parameters Uns mask; /* mask of desired priority level */

Return Value Uns key; /* key for use with SWI_restorepri */

Reentrant yes

Description SWI_raisepri is used to raise the priority of the currently running SWI to
the priority mask passed in as the argument. SWI_raisepri can be used
in conjunction with SWI_restorepri to provide a mutual exclusion
mechanism without disabling SWIs.

SWI_raisepri should be called before a shared resource is accessed, and
SWI_restorepri should be called after the access to the shared resource.

A call to SWI_raisepri not followed by a SWI_restorepri keeps the SWI's
priority for the rest of the processing at the raised level. A SWI_post of
the SWI posts the SWI at its original priority level.

A SWI object’s execution priority must range from 0 to 14. The highest
level is SWI_MAXPRI (14). The lowest is SWI_MINPRI (0). Priority zero
(0) is reserved for the KNL_swi object, which runs the task scheduler.

SWI_raisepri never lowers the current SWI priority.

Constraints and
Calling Context

❏ SWI_raisepri cannot be called from an HWI or TSK level.

Example /* raise priority to the priority of swi_1 */
key = SWI_raisepri(SWI_getpri(&swi_1));
--- access shared resource ---
SWI_restore(key);

See Also SWI_getpri
SWI_restorepri

SWI_raisepri Raise a SWI’s priority
2-450

SWI_restorepri
C Interface

Syntax SWI_restorepri(key);

Parameters Uns key; /* key to restore original priority level */

Return Value Void

Reentrant yes

Description SWI_restorepri restores the priority to the SWI's priority prior to the
SWI_raisepri call returning the key. SWI_restorepri can be used in
conjunction with SWI_raisepri to provide a mutual exclusion mechanism
without disabling all SWIs.

SWI_raisepri should be called right before the shared resource is
referenced, and SWI_restorepri should be called after the reference to
the shared resource.

Constraints and
Calling Context

❏ SWI_restorepri cannot be called from an HWI or TSK level.

❏ SWI_restorepri cannot be called from the program’s main() function.

Example /* raise priority to the priority of swi_1 */
key = SWI_raisepri(SWI_getpri(&swi_1));
--- access shared resource ---
SWI_restore(key);

See Also SWI_getpri
SWI_raisepri

SWI_restorepri Restore a SWI’s priority
Application Program Interface 2-451

SWI_self
C Interface

Syntax curswi = SWI_self();

Parameters Void

Return Value SWI_Handle swi; /* handle for current swi object */

Reentrant yes

Description SWI_self returns the address of the currently executing SWI.

Constraints and
Calling Context

❏ SWI_self cannot be called from an HWI or TSK level.

❏ SWI_self cannot be called from the program’s main() function.

Example You can use SWI_self if you want a SWI to repost itself:

SWI_post(SWI_self());

See Also SWI_andn
SWI_getmbox
SWI_post

SWI_self Return address of currently executing SWI object
2-452

SWI_setattrs
C Interface

Syntax SWI_setattrs(swi, attrs);

Parameters SWI_Handle swi; /* handle of the swi */
SWI_Attrs *attrs; /* pointer to swi attributes */

Return Value Void

Description SWI_setattrs sets attributes of an existing SWI object.

The swi parameter specifies the address of the SWI object whose
attributes are to be set.

The attrs parameter, which can be either NULL or a pointer to a structure
that contains attributes for the SWI object, facilitates setting the attributes
of the SWI object. If attrs is NULL, the new SWI object is assigned a
default set of attributes. Otherwise, the SWI object’s attributes are
specified through a structure of type SWI_attrs defined as follows:

struct SWI_Attrs {
 SWI_Fxn fxn;
 Arg arg0;
 Arg arg1;
 Int priority;
 Uns mailbox;
};

The fxn attribute, which is the address of the swi function, serves as the
entry point of the software interrupt service routine.

The arg0 and arg1 attributes specify the arguments passed to the swi
function, fxn.

The priority attribute specifies the SWI object’s execution priority and
must range from 1 to 14. Priority 14 is the highest priority. You cannot use
a priority of 0; that priority is reserved for the system SWI that runs the
TSK scheduler.

The mailbox attribute is used either to determine whether to post the SWI
or as a value that can be evaluated within the SWI function.

All default attribute values are contained in the constant SWI_ATTRS,
which can be assigned to a variable of type SWI_Attrs prior to calling
SWI_setattrs.

SWI_setattrs Set attributes of a software interrupt
Application Program Interface 2-453

SWI_setattrs
The following example uses SWI_setattrs:

extern SWI_Handle swi;
SWI_Attrs attrs;

SWI_getattrs(swi, &attrs);
attrs.priority = 5;
SWI_setattrs(swi, &attrs);

Constraints and
Calling Context

❏ SWI_setattrs must not be used to set the attributes of a SWI that is
preempted or is ready to run.

❏ The fxn attribute cannot be NULL.

❏ The priority attribute must be less than or equal to 14 and greater
than or equal to 1.

See Also SWI_create
SWI_delete
SWI_getattrs
2-454

SYS Module
2.29 SYS Module

The SYS modules manages system settings.

Functions ❏ SYS_abort. Abort program execution

❏ SYS_atexit. Stack an exit handler

❏ SYS_error. Flag error condition

❏ SYS_exit. Terminate program execution

❏ SYS_printf. Formatted output

❏ SYS_putchar. Output a single character

❏ SYS_sprintf. Formatted output to string buffer

❏ SYS_vprintf. Formatted output, variable argument list

❏ SYS_vsprintf. Output formatted data

Constants, Types,
and Structures

#define SYS_FOREVER (Uns)-1 /* wait forever */
#define SYS_POLL (Uns)0 /* don’t wait */

#define SYS_OK 0 /* no error */
#define SYS_EALLOC 1 /* memory alloc error */
#define SYS_EFREE 2 /* memory free error */
#define SYS_ENODEV 3 /* dev driver not found */
#define SYS_EBUSY 4 /* device driver busy */
#define SYS_EINVAL 5 /* invalid parameter */
#define SYS_EBADIO 6 /* I/O failure */
#define SYS_EMODE 7 /* bad mode for driver */
#define SYS_EDOMAIN 8 /* domain error */
#define SYS_ETIMEOUT 9 /* call timed out */
#define SYS_EE0F 10 /* end-of-file */
#define SYS_EDEAD 11 /* deleted obj */
#define SYS_EBADOBJ 12 /* invalid object */
#define SYS_ENOTIMPL 13 /* action not implemented */
#define SYS_ENOTFOUND 14 /* resource not found */

#define SYS_EUSER 256 /* user errors start here */

#define SYS_NUMHANDLERS 8 /* # of atexit handlers */

extern String SYS_errors[]; /* error string array */

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the SYS
Manager Properties heading. For descriptions of data types, see Section
1.4, DSP/BIOS Tconf Overview, page 1-4.
Application Program Interface 2-455

SYS Module
Module Configuration Parameters

Description The SYS module makes available a set of general-purpose functions that
provide basic system services, such as halting program execution and
printing formatted text. In general, each SYS function is patterned after a
similar function normally found in the standard C library.

SYS does not directly use the services of any other DSP/BIOS module
and therefore resides at the bottom of the system. Other DSP/BIOS
modules use the services provided by SYS in lieu of similar C library
functions. The SYS module provides hooks for binding system-specific
code. This allows programs to gain control wherever other DSP/BIOS
modules call one of the SYS functions.

SYS Manager
Properties

The following global properties can be set for the SYS module in the SYS
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script.

❏ Trace Buffer Size. The size of the buffer that contains system trace
information. This system trace buffer can be viewed only by looking
for the SYS_PUTCBEG symbol in the Code Composer Studio
memory view. For example, by default the Putc function writes to the
trace buffer.
Tconf Name: TRACESIZE Type: Numeric
Example: bios.SYS.TRACESIZE = 512;

❏ Trace Buffer Memory. The memory segment that contains system
trace information.
Tconf Name: TRACESEG Type: Reference
Example: bios.SYS.TRACESEG = prog.get("myMEM");

Name Type Default

TRACESIZE Numeric 512

TRACESEG Reference prog.get("IDRAM")

ABORTFXN Extern prog.extern("UTL_doAbort")

ERRORFXN Extern prog.extern("UTL_doError")

EXITFXN Extern prog.extern("UTL_halt")

PUTCFXN Extern prog.extern("UTL_doPutc")
2-456

SYS Module
❏ Abort Function. The function to run if the application aborts by
calling SYS_abort. The default function is _UTL_doAbort, which logs
an error message and calls _halt. If you are using Tconf, do not add
an underscore before the function name; Tconf adds the underscore
needed to call a C function from assembly internally. The prototype
for this function should be:

 Void myAbort(String fmt, va_list ap);

Tconf Name: ABORTFXN Type: Extern
Example: bios.SYS.ABORTFXN =

prog.extern("myAbort");

❏ Error Function. The function to run if an error flagged by SYS_error
occurs. The default function is _UTL_doError, which logs an error
message and returns. The prototype for this function should be:

 Void myError(String s, Int errno, va_list ap);

Tconf Name: ERRORFXN Type: Extern
Example: bios.SYS.ERRORFXN =

prog.extern("myError");

❏ Exit Function. The function to run when the application exits by
calling SYS_exit. The default function is UTL_halt, which loops
forever with interrupts disabled and prevents other processing. The
prototype for this function should be:

 Void myExit(Int status);

Tconf Name: EXITFXN Type: Extern
Example: bios.SYS.EXITFXN =

prog.extern("myExit");

❏ Putc Function. The function to run if the application calls
SYS_putchar, SYS_printf, or SYS_vprintf. The default function is
_UTL_doPutc, which writes a character to the system trace buffer.
This system trace buffer can be viewed only by looking for the
SYS_PUTCBEG symbol in the Code Composer Studio memory
view. The prototype for this function should be:

 Void myPutc(Char c);

Tconf Name: PUTCFXN Type: Extern
Example: bios.SYS.PUTCFXN =

prog.extern("myPutc");

SYS Object Properties The SYS module does not support the creation of individual SYS objects.
Application Program Interface 2-457

SYS_abort
C Interface

Syntax SYS_abort(format, [arg,] ...);

Parameters String format; /* format specification string */
Arg arg; /* optional argument */

Return Value Void

Description SYS_abort aborts program execution by calling the function bound to the
configuration parameter Abort function, where vargs is of type va_list (a
void pointer which can be interpreted as an argument list) and represents
the sequence of arg parameters originally passed to SYS_abort.

(*(Abort_function))(format, vargs)

The function bound to Abort function can elect to pass the format and
vargs parameters directly to SYS_vprintf or SYS_vsprintf prior to
terminating program execution.

The default Abort function for the SYS manager is _UTL_doAbort, which
logs an error message and calls UTL _halt, which is defined in the boot.c
file. The UTL_halt function performs an infinite loop with all processor
interrupts disabled.

Constraints and
Calling Context

❏ If the function bound to Abort function is not reentrant, SYS_abort
must be called atomically.

See Also SYS_exit
SYS_printf

SYS_abort Abort program execution
2-458

SYS_atexit
C Interface

Syntax success = SYS_atexit(handler);

Parameters Fxn handler /* exit handler function */

Return Value Bool success /* handler successfully stacked */

Description SYS_atexit pushes handler onto an internal stack of functions to be
executed when SYS_exit is called. Up to SYS_NUMHANDLERS(8)
functions can be specified in this manner. SYS_exit pops the internal
stack until empty and calls each function as follows, where status is the
parameter passed to SYS_exit:

(*handler)(status)

SYS_atexit returns TRUE if handler has been successfully stacked;
FALSE if the internal stack is full.

The handlers on the stack are called only if either of the following
happens:

❏ SYS_exit is called.

❏ All tasks for which the Don’t shut down system while this task is still
running property is TRUE have exited. (By default, this includes the
TSK_idle task, which manages communication between the target
and analysis tools.)

Constraints and
Calling Context

❏ handler cannot be NULL.

SYS_atexit Stack an exit handler
Application Program Interface 2-459

SYS_error
C Interface

Syntax SYS_error(s, errno, [arg], ...);

Parameters String s; /* error string */
Int errno; /* error code */
Arg arg; /* optional argument */

Return Value Void

Description SYS_error is used to flag DSP/BIOS error conditions. Application
programs should call SYS_error to handle program errors. Internal
functions also call SYS_error.

SYS_error calls a function to handle errors. The default error function for
the SYS manager is _UTL_doError, which logs an error message and
returns. The default function can be replaced with your own error function
by setting the SYS.ERRORFXN configuration property.

The default error function or an alternate configured error function is
called as follows, where vargs is of type va_list (a void pointer which can
be interpreted as an argument list) and represents the sequence of arg
parameters originally passed to SYS_error.

(*(Error_function))(s, errno, vargs)

Constraints and
Calling Context

❏ The only valid error numbers are the error constants defined in sys.h
(SYS_E*) or numbers greater than or equal to SYS_EUSER.
Passing any other error values to SYS_error can cause DSP/BIOS to
crash.

SYS_error Flag error condition
2-460

SYS_exit
C Interface

Syntax SYS_exit(status);

Parameters Int status; /* termination status code */

Return Value Void

Description SYS_exit first pops a stack of handlers registered through the function
SYS_atexit, and then terminates program execution by calling the
function bound to the configuration parameter Exit function, passing on
its original status parameter.

(*handlerN)(status)
 ...
(*handler2)(status)
(*handler1)(status)

(*(Exit_function))(status)

The default Exit function for the SYS manager is UTL_halt, which
performs an infinite loop with all processor interrupts disabled.

Constraints and
Calling Context

❏ If the function bound to Exit function or any of the handler functions
is not reentrant, SYS_exit must be called atomically.

See Also SYS_abort
SYS_atexit

SYS_exit Terminate program execution
Application Program Interface 2-461

SYS_printf
C Interface

Syntax SYS_printf(format, [arg,] ...);

Parameters String format; /* format specification string */
Arg arg; /* optional argument */

Return Value Void

Description SYS_printf provides a subset of the capabilities found in the standard C
library function printf.

Note:

SYS_printf and the related functions are code-intensive. If possible,
applications should use the LOG Module functions to reduce code size
and execution time.

Conversion specifications begin with a % and end with a conversion
character. The conversion characters recognized by SYS_printf are
limited to the characters shown in Table 2-9.

Table 2-9. Conversion Characters Recognized by SYS_printf

Note that the %f conversion character is supported only on devices that
have a native floating point type (for example, the ’C67x and 283xx).

Between the % and the conversion character, the following symbols or
specifiers contained in square brackets can appear, in the order shown.

SYS_printf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

f decimal floating point

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p pointer
2-462

SYS_printf
%[-][0][width]type

A dash (-) symbol causes the converted argument to be left-justified
within a field of width characters with blanks following. A 0 (zero) causes
the converted argument to be right-justified within a field of size width with
leading 0s. If neither a dash nor 0 are given, the converted argument is
right-justified in a field of size width, with leading blanks. The width is a
decimal integer. The converted argument is not modified if it has more
than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the
corresponding argument is a 40-bit long integer. If the argument is a 32-
bit long integer (LgInt or LgUns), the l modifier should not be used.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of
arguments is replaced by a va_list on which the standard C macro
va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output
is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar
to output individual characters via the Putc function configured in the SYS
Manager Properties. The default Putc function is _UTL_doPutc, which
writes a character to the system trace buffer. The size and memory
segment for the system trace buffer can also be set in the SYS Manager
Properties. This system trace buffer can be viewed only by looking for the
SYS_PUTCBEG symbol in the Code Composer Studio memory view.

Constraints and
Calling Context

❏ On a DSP with floating-point support, SYS_printf prints an error for
floating point numbers whose absolute value is greater than the
maximum long int (defined as LONG_MAX in the <limits.h> ANSI
header). This is because the integer part is computed by simply
casting the float parameter to a long int local variable.

❏ On a DSP with floating-point support, SYS_printf only prints four
digits after the decimal point for floating point numbers. Since
SYS_printf does not support %e, floating point numbers have to be
scaled approximately before being passed to SYS_printf.

❏ The function bound to Exit function or any of the handler functions
are not reentrant; SYS_exit must be called atomically.

See Also SYS_sprintf
SYS_vprintf
SYS_vsprintf
Application Program Interface 2-463

SYS_sprintf
C Interface

Syntax SYS_sprintf (buffer, format, [arg,] ...);

Parameters String buffer; /* output buffer */
String format; /* format specification string */
Arg arg; /* optional argument */

Return Value Void

Description SYS_sprintf provides a subset of the capabilities found in the standard C
library function printf.

Note:

SYS_sprintf and the related functions are code-intensive. If possible,
applications should use LOG Module module functions to reduce code
size and execution time.

Conversion specifications begin with a % and end with a conversion
character. The conversion characters recognized by SYS_sprintf are
limited to the characters in Table 2-10.

Table 2-10. Conversion Characters Recognized by SYS_sprintf

Note that the %f conversion character is supported only on devices that
have a native floating point type (for example, the ’C67x and 283xx).

SYS_sprintf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

f decimal floating point

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p pointer
2-464

SYS_sprintf
Between the % and the conversion character, the following symbols or
specifiers contained within square brackets can appear, in the order
shown.

%[-][0][width]type

A dash (-) symbol causes the converted argument to be left-justified
within a field of width characters with blanks following. A 0 (zero) causes
the converted argument to be right-justified within a field of size width with
leading 0s. If neither a dash nor 0 are given, the converted argument is
right-justified in a field of size width, with leading blanks. The width is a
decimal integer. The converted argument is not modified if it has more
than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the
corresponding argument is a 40-bit long integer. If the argument is a 32-
bit long integer (LgInt or LgUns), the l modifier should not be used.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of
arguments is replaced by a va_list on which the standard C macro
va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output
is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar
to output individual characters in a system-dependent fashion via the
configuration parameter Putc function. This parameter is bound to a
function that displays output on a debugger if one is running, or places
output in an output buffer between PUTCEND and PUTCBEG.

Constraints and
Calling Context

❏ On a DSP with floating-point support, SYS_printf prints an error for
floating point numbers whose absolute value is greater than the
maximum long int (defined as LONG_MAX in the <limits.h> ANSI
header). This is because the integer part is computed by simply
casting the float parameter to a long int local variable.

❏ On a DSP with floating-point support, SYS_printf only prints four
digits after the decimal point for floating point numbers. Since
SYS_printf does not support %e, floating point numbers have to be
scaled approximately before being passed to SYS_printf.

❏ The function bound to Exit function or any of the handler functions
are not reentrant; SYS_exit must be called atomically.

See Also SYS_printf
SYS_vprintf
SYS_vsprintf
Application Program Interface 2-465

SYS_vprintf
C Interface

Syntax SYS_vprintf(format, vargs);

Parameters String format; /* format specification string */
va_list vargs; /* variable argument list reference */

Return Value Void

Description SYS_vprintf provides a subset of the capabilities found in the standard C
library function printf.

Note:

SYS_vprintf and the related functions are code-intensive. If possible,
applications should use LOG Module functions to reduce code size and
execution time.

Conversion specifications begin with a % and end with a conversion
character. The conversion characters recognized by SYS_vprintf are
limited to the characters in Table 2-11.

Table 2-11. Conversion Characters Recognized by SYS_vprintf

Note that the %f conversion character is supported only on devices that
have a native floating point type (for example, the ’C67x and 283xx).

SYS_vprintf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

f decimal floating point

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p pointer
2-466

SYS_vprintf
Between the % and the conversion character, the following symbols or
specifiers contained within square brackets can appear, in the order
shown.

%[-][0][width]type

A dash (-) symbol causes the converted argument to be left-justified
within a field of width characters with blanks following. A 0 (zero) causes
the converted argument to be right-justified within a field of size width with
leading 0s. If neither a dash nor 0 are given, the converted argument is
right-justified in a field of size width, with leading blanks. The width is a
decimal integer. The converted argument is not modified if it has more
than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the
corresponding argument is a 40-bit long integer. If the argument is a 32-
bit long integer (LgInt or LgUns), the l modifier should not be used.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of
arguments is replaced by a va_list on which the standard C macro
va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output
is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar
to output individual characters via the Putc function configured in the SYS
Manager Properties. The default Putc function is _UTL_doPutc, which
writes a character to the system trace buffer. The size and memory
segment for the system trace buffer can also be set in the SYS Manager
Properties. This system trace buffer can be viewed only by looking for the
SYS_PUTCBEG symbol in the Code Composer Studio memory view.

Constraints and
Calling Context

❏ On a DSP with floating-point support, SYS_printf prints an error for
floating point numbers whose absolute value is greater than the
maximum long int (defined as LONG_MAX in the <limits.h> ANSI
header). This is because the integer part is computed by simply
casting the float parameter to a long int local variable.

❏ On a DSP with floating-point support, SYS_printf only prints four
digits after the decimal point for floating point numbers. Since
SYS_printf does not support %e, floating point numbers have to be
scaled approximately before being passed to SYS_printf.

❏ The function bound to Exit function or any of the handler functions
are not reentrant; SYS_exit must be called atomically.

See Also SYS_printf
SYS_sprintf
SYS_vsprintf
Application Program Interface 2-467

SYS_vsprintf
C Interface

Syntax SYS_vsprintf(buffer, format, vargs);

Parameters String buffer; /* output buffer */
String format; /* format specification string */
va_list vargs; /* variable argument list reference */

Return Value Void

Description SYS_vsprintf provides a subset of the capabilities found in the standard
C library function printf.

Note:

SYS_vsprintf and the related functions are code-intensive. If possible,
applications should use LOG Module functions to reduce code size and
execution time.

Conversion specifications begin with a % and end with a conversion
character. The conversion characters recognized by SYS_vsprintf are
limited to the characters in Table 2-12.

Table 2-12. Conversion Characters Recognized by SYS_vsprintf

Note that the %f conversion character is supported only on devices that
have a native floating point type (for example, the ’C67x and 283xx).

SYS_vsprintf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

f decimal floating point

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p pointer
2-468

SYS_vsprintf
Between the % and the conversion character, the following symbols or
specifiers contained within square brackets can appear, in the order
shown.

%[-][0][width]type

A dash (-) symbol causes the converted argument to be left-justified
within a field of width characters with blanks following. A 0 (zero) causes
the converted argument to be right-justified within a field of size width with
leading 0s. If neither a dash nor 0 are given, the converted argument is
right-justified in a field of size width, with leading blanks. The width is a
decimal integer. The converted argument is not modified if it has more
than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the
corresponding argument is a 40-bit long integer. If the argument is a 32-
bit long integer (LgInt or LgUns), the l modifier should not be used.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of
arguments is replaced by a va_list on which the standard C macro
va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output
is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar
to output individual characters in a system-dependent fashion via the
configuration parameter Putc function. This parameter is bound to a
function that displays output on a debugger if one is running, or places
output in an output buffer between PUTCEND and PUTCBEG.

Constraints and
Calling Context

❏ On a DSP with floating-point support, SYS_printf prints an error for
floating point numbers whose absolute value is greater than the
maximum long int (defined as LONG_MAX in the <limits.h> ANSI
header). This is because the integer part is computed by simply
casting the float parameter to a long int local variable.

❏ On a DSP with floating-point support, SYS_printf only prints four
digits after the decimal point for floating point numbers. Since
SYS_printf does not support %e, floating point numbers have to be
scaled approximately before being passed to SYS_printf.

❏ The function bound to Exit function or any of the handler functions
are not reentrant; SYS_exit must be called atomically.

See Also SYS_printf
SYS_sprintf
SYS_vprintf
Application Program Interface 2-469

SYS_putchar
C Interface

Syntax SYS_putchar(c);

Parameters Char c; /* next output character */

Return Value Void

Description SYS_putchar outputs the character c by calling the system-dependent
function bound to the configuration parameter Putc function.

((Putc function))(c)

For systems with limited I/O capabilities, the function bound to Putc
function might simply place c into a global buffer that can be examined
after program termination.

The default Putc function for the SYS manager is _UTL_doPutc, which
writes a character to the system trace buffer. The size and memory
segment for the system trace buffer can be set in the SYS Manager
Properties. This system trace buffer can be viewed only by looking for the
SYS_PUTCBEG symbol in the Code Composer Studio memory view.

SYS_putchar is also used internally by SYS_printf and SYS_vprintf when
generating their output.

Constraints and
Calling Context

❏ If the function bound to Putc function is not reentrant, SYS_putchar
must be called atomically.

See Also SYS_printf

SYS_putchar Output a single character
2-470

TRC Module
2.30 TRC Module

The TRC module is the trace manager.

Functions ❏ TRC_disable. Disable trace class(es)

❏ TRC_enable. Enable trace type(s)

❏ TRC_query. Query trace class(es)

Description The TRC module manages a set of trace control bits which control the
real-time capture of program information through event logs and statistics
accumulators. For greater efficiency, the target does not store log or
statistics information unless tracing is enabled.

Table 2-13 lists events and statistics that can be traced. The constants
defined in trc.h, trc.h62, and trc.h64are shown in the left column.

Table 2-13. Events and Statistics Traced by TRC

Constant Tracing Enabled/Disabled Default

TRC_LOGCLK Log timer interrupts off

TRC_LOGPRD Log periodic ticks and start of periodic functions off

TRC_LOGSWI Log events when a SWI is posted and completes off

TRC_LOGTSK Log events when a task is made ready, starts, becomes blocked, resumes off

TRC_STSHWI Gather statistics on monitored values within HWIs off

TRC_STSPIP Count number of frames read from or written to data pipe off

TRC_STSPRD Gather statistics on number of ticks elapsed during execution off

TRC_STSSWI Gather statistics on length of SWI execution off

TRC_STSTSK Gather statistics on length of TSK execution. Statistics are gathered from
the time TSK is made ready to run until the application calls TSK_deltatime.

off

TRC_USER0
 and
TRC_USER1

Your program can use these bits to enable or disable sets of explicit instru-
mentation actions. You can use TRC_query to check the settings of these
bits and either perform or omit instrumentation calls based on the result.

off

TRC_GBLHOST This bit must be set in order for any implicit instrumentation to be performed.
Simultaneously starts or stops gathering of all enabled types of tracing. This
can be important if you are trying to correlate events of different types. This

off

TRC_GBLTARG This bit must also be set for any implicit instrumentation to be performed.
This bit can only be set by the target program and is enabled by default.

on

TRC_STSSWI Gather statistics on length of SWI execution off
Application Program Interface 2-471

TRC Module
All trace constants except TRC_GBLTARG are switched off initially. To
enable tracing you can use calls to TRC_enable or the DSP/BIOS→RTA
Control Panel, which uses the TRC module internally. You do not need
to enable tracing for messages written with LOG_printf or LOG_event
and statistics added with STS_add or STS_delta.

Your program can call the TRC_enable and TRC_disable operations to
explicitly start and stop event logging or statistics accumulation in
response to conditions encountered during real-time execution. This
enables you to preserve the specific log or statistics information you need
to see.
2-472

TRC_disable
C Interface

Syntax TRC_disable(mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Void

Reentrant no

Description TRC_disable disables tracing of one or more trace types. Trace types are
specified with a 32-bit mask. (See the TRC Module topic for a list of
constants to use in the mask.)

The following C code would disable tracing of statistics for software
interrupts and periodic functions:

TRC_disable(TRC_LOGSWI | TRC_LOGPRD);

Internally, DSP/BIOS uses a bitwise AND NOT operation to disable
multiple trace types.

For example, you might want to use TRC_disable with a circular log and
disable tracing when an unwanted condition occurs. This allows test
equipment to retrieve the log events that happened just before this
condition started.

See Also TRC_enable
TRC_query
LOG_printf
LOG_event
STS_add
STS_delta

TRC_disable Disable trace class(es)
Application Program Interface 2-473

TRC_enable
C Interface

Syntax TRC_enable(mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Void

Reentrant no

Description TRC_enable enables tracing of one or more trace types. Trace types are
specified with a 32-bit mask. (See the TRC Module topic for a list of
constants to use in the mask.)

The following C code would enable tracing of statistics for software
interrupts and periodic functions:

TRC_enable(TRC_STSSWI | TRC_STSPRD);

Internally, DSP/BIOS uses a bitwise OR operation to enable multiple
trace types.

For example, you might want to use TRC_enable with a fixed log to
enable tracing when a specific condition occurs. This allows test
equipment to retrieve the log events that happened just after this
condition occurred.

See Also TRC_disable
TRC_query
LOG_printf
LOG_event
STS_add
STS_delta

TRC_enable Enable trace type(s)
2-474

TRC_query
C Interface

Syntax result = TRC_query(mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Int result /* indicates whether all trace types enabled */

Reentrant yes

Description TRC_query determines whether particular trace types are enabled.
TRC_query returns 0 if all trace types in the mask are enabled. If any
trace types in the mask are disabled, TRC_query returns a value with a
bit set for each trace type in the mask that is disabled. (See the TRC
Module topic for a list of constants to use in the mask.)

Trace types are specified with a 32-bit mask. The full list of constants you
can use is included in the description of the TRC module.

For example, the following C code returns 0 if statistics tracing for the
PRD class is enabled:

result = TRC_query(TRC_STSPRD);

The following C code returns 0 if both logging and statistics tracing for the
SWI class are enabled:

result = TRC_query(TRC_LOGSWI | TRC_STSSWI);

Note that TRC_query does not return 0 unless the bits you are querying
and the TRC_GBLHOST and TRC_GBLTARG bits are set. TRC_query
returns non-zero if either TRC_GBLHOST or TRC_GBLTARG are
disabled. This is because no tracing is done unless these bits are set.

For example, if the TRC_GBLHOST, TRC_GBLTARG, and
TRC_LOGSWI bits are set, this C code returns the results shown:

result = TRC_query(TRC_LOGSWI); /* returns 0 */
result = TRC_query(TRC_LOGPRD); /* returns non-zero */

However, if only the TRC_GBLHOST and TRC_LOGSWI bits are set, the
same C code returns the results shown:

result = TRC_query(TRC_LOGSWI); /* returns non-zero */
result = TRC_query(TRC_LOGPRD); /* returns non-zero */

See Also TRC_enable
TRC_disable

TRC_query Query trace class(es)
Application Program Interface 2-475

TSK Module
2.31 TSK Module

The TSK module is the task manager.

Functions ❏ TSK_checkstacks. Check for stack overflow

❏ TSK_create. Create a task ready for execution

❏ TSK_delete. Delete a task

❏ TSK_deltatime. Update task STS with time difference

❏ TSK_disable. Disable DSP/BIOS task scheduler

❏ TSK_enable. Enable DSP/BIOS task scheduler

❏ TSK_exit. Terminate execution of the current task

❏ TSK_getenv. Get task environment

❏ TSK_geterr. Get task error number

❏ TSK_getname. Get task name

❏ TSK_getpri. Get task priority

❏ TSK_getsts. Get task STS object

❏ TSK_isTSK. Check current thread calling context

❏ TSK_itick. Advance system alarm clock (interrupt only)

❏ TSK_self. Get handle of currently executing task

❏ TSK_setenv. Set task environment

❏ TSK_seterr. Set task error number

❏ TSK_setpri. Set a task’s execution priority

❏ TSK_settime. Set task STS previous time

❏ TSK_sleep. Delay execution of the current task

❏ TSK_stat. Retrieve the status of a task

❏ TSK_tick. Advance system alarm clock

❏ TSK_time. Return current value of system clock

❏ TSK_yield. Yield processor to equal priority task

Task Hook Functions Void TSK_createFxn(TSK_Handle task);

Void TSK_deleteFxn(TSK_Handle task);

Void TSK_exitFxn(Void);

Void TSK_readyFxn(TSK_Handle newtask);

Void TSK_switchFxn(TSK_Handle oldtask,
 TSK_Handle newtask);
2-476

TSK Module
Constants, Types,
and Structures

typedef struct TSK_OBJ *TSK_Handle; /* task object handle*/

struct TSK_Attrs { /* task attributes */
 Int priority; /* execution priority */
 Ptr stack; /* pre-allocated stack */
 size_t stacksize; /* stack size in MADUs */
 Int stackseg; /* mem seg for stack allocation */
 Ptr environ; /* global environment data struct */
 String name; /* printable name */
 Bool exitflag; /* program termination requires */
 /* this task to terminate */
 Bool initstackflag; /* initialize task stack? */
};

Int TSK_pid; /* MP processor ID */

Int TSK_MAXARGS = 8; /* max number of task arguments */
Int TSK_IDLEPRI = 0; /* used for idle task */
Int TSK_MINPRI = 1; /* minimum execution priority */
Int TSK_MAXPRI = 15; /* maximum execution priority */
Int TSK_STACKSTAMP = 0xBEBEBEBE
TSK_Attrs TSK_ATTRS = { /* default attribute values */
 TSK->PRIORITY, /* priority */
 NULL, /* stack */
 TSK->STACKSIZE, /* stacksize */
 TSK->STACKSEG, /* stackseg */
 NULL, /* environ */
 "", /* name */
 TRUE, /* exitflag */
 TRUE, /* initstackflag */
};

enum TSK_Mode { /* task execution modes */
 TSK_RUNNING, /* task currently executing */
 TSK_READY, /* task scheduled for execution */
 TSK_BLOCKED, /* task suspended from execution */
 TSK_TERMINATED, /* task terminated from execution */
};

struct TSK_Stat { /* task status structure */
 TSK_Attrs attrs; /* task attributes */
 TSK_Mode mode; /* task execution mode */
 Ptr sp; /* task stack pointer */
 size_t used; /* task stack used */
};

Configuration
Properties

The following list shows the properties that can be configured in a Tconf
script, along with their types and default values. For details, see the TSK
Manager Properties and TSK Object Properties headings. For
descriptions of data types, see Section 1.4, DSP/BIOS Tconf Overview,
page 1-4.
Application Program Interface 2-477

TSK Module
Module Configuration Parameters

Instance Configuration Parameters

Name Type Default (Enum Options)

ENABLETSK Bool true

OBJMEMSEG Reference prog.get("IDRAM")

STACKSIZE Int16 1024

STACKSEG Reference prog.get("IDRAM")

PRIORITY EnumInt 1 (1 to 15)

DRIVETSKTICK EnumString "PRD" ("User")

CREATEFXN Extern prog.extern("FXN_F_nop")

DELETEFXN Extern prog.extern("FXN_F_nop")

EXITFXN Extern prog.extern("FXN_F_nop")

CALLSWITCHFXN Bool false

SWITCHFXN Extern prog.extern("FXN_F_nop")

CALLREADYFXN Bool false

READYFXN Extern prog.extern("FXN_F_nop")

Name Type Default (Enum Options)

comment String "<add comments here>"

autoAllocateStack Bool true

manualStack Extern prog.extern("null","asm")

stackSize Int16 1024

stackMemSeg Reference prog.get("IDRAM")

priority EnumInt 0 (-1, 0, 1 to 15)

fxn Extern prog.extern("FXN_F_nop")

arg0 Arg 0

arg7 Arg 0

envPointer Arg 0x00000000

exitFlag Bool true

allocateTaskName Bool false

order Int16 0
2-478

TSK Module
Description The TSK module makes available a set of functions that manipulate task
objects accessed through handles of type TSK_Handle. Tasks represent
independent threads of control that conceptually execute functions in
parallel within a single C program; in reality, concurrency is achieved by
switching the processor from one task to the next.

When you create a task, it is provided with its own run-time stack, used
for storing local variables as well as for further nesting of function calls.
The TSK_STACKSTAMP value is used to initialize the run-time stack.
When creating a task dynamically, you need to initialize the stack with
TSK_STACKSTAMP only if the stack is allocated manually and
TSK_checkstacks or TSK_stat is to be called. Each stack must be large
enough to handle normal subroutine calls as well as a single task
preemption context. A task preemption context is the context that gets
saved when one task preempts another as a result of an interrupt thread
readying a higher-priority task. All tasks executing within a single
program share a common set of global variables, accessed according to
the standard rules of scope defined for C functions.

Each task is in one of four modes of execution at any point in time:
running, ready, blocked, or terminated. By design, there is always one
(and only one) task currently running, even if it is a dummy idle task
managed internally by TSK. The current task can be suspended from
execution by calling certain TSK functions, as well as functions provided
by other modules like the SEM Module and the SIO Module; the current
task can also terminate its own execution. In either case, the processor
is switched to the next task that is ready to run.

You can assign numeric priorities to tasks through TSK. Tasks are
readied for execution in strict priority order; tasks of the same priority are
scheduled on a first-come, first-served basis. As a rule, the priority of the
currently running task is never lower than the priority of any ready task.
Conversely, the running task is preempted and re-scheduled for
execution whenever there exists some ready task of higher priority.

You can use Tconf to specify one or more sets of application-wide hook
functions that run whenever a task state changes in a particular way. For
the TSK module, these functions are the Create, Delete, Exit, Switch, and
Ready functions. The HOOK module adds an additional Initialization
function.

A single set of hook functions can be specified for the TSK module itself.
To create additional sets of hook functions, use the HOOK Module. When
you create the first HOOK object, any TSK module hook functions you
have specified are automatically placed in a HOOK object called
HOOK_KNL. To set any properties of this object other than the
Initialization function, use the TSK module properties. To set the
Application Program Interface 2-479

TSK Module
Initialization function property of the HOOK_KNL object, use the HOOK
object properties. If you configure only a single set of hook functions
using the TSK module, the HOOK module is not used.

The TSK_create topic describes the Create function. The TSK_delete
topic describes the Delete function. The TSK_exit topic describes the Exit
function.

If a Switch function is specified, it is invoked when a new task becomes
the TSK_RUNNING task. The Switch function gives the application
access to both the current and next task handles at task switch time. The
function should use these argument types:

Void mySwitchFxn(TSK_Handle currTask,
 TSK_Handle nextTask);

This function can be used to save/restore additional task context (for
example, external hardware registers), to check for task stack overflow,
to monitor the time used by each task, etc.

If a Ready function is specified, it is invoked whenever a task is made
ready to run. Even if a higher-priority thread is running, the Ready
function runs. The Ready function is called with a handle to the task being
made ready to run as its argument. This example function prints the
name of both the task that is ready to run and the task that is currently
running:

Void myReadyFxn(TSK_Handle task)
{
 String nextName, currName;
 TSK_Handle currTask = TSK_self();

 nextName = TSK_getname(task);
 LOG_printf(&trace, “Task %s Ready”, nextName);

 currName = TSK_getname(currTask);
 LOG_printf(&trace, “Task %s Running”, currName);
}

The Switch function and Ready function are called in such a way that they
can use only functions allowed within a SWI handler. See Appendix A,
Function Callability Table, for a list of functions that can be called by SWI
handlers. There are no real constraints on what functions are called via
the Create function, Delete function, or Exit function.
2-480

TSK Module
TSK Manager
Properties

The following global properties can be set for the TSK module in the TSK
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
Tconf script:

❏ Enable TSK Manager. If no tasks are used by the program other
than TSK_idle, you can optimize the program by disabling the task
manager. The program must then not use TSK objects created with
either Tconf or the TSK_create function. If the task manager is
disabled, the idle loop still runs and uses the system stack instead of
a task stack.
Tconf Name: ENABLETSK Type: Bool
Example: bios.TSK.ENABLETSK = true;

❏ Object Memory. The memory segment that contains the TSK
objects created with Tconf.
Tconf Name: OBJMEMSEG Type: Reference
Example: bios.TSK.OBJMEMSEG = prog.get("myMEM");

❏ Default stack size. The default size of the stack (in MADUs) used by
tasks. You can override this value for an individual task you create
with Tconf or TSK_create. The estimated minimum task size is
shown in the status bar of the DSP/BIOS Configuration Tool. This
property applies to TSK objects created both with Tconf and with
TSK_create.
Tconf Name: STACKSIZE Type: Int16
Example: bios.TSK.STACKSIZE = 1024;

❏ Stack segment for dynamic tasks. The default memory segment to
contain task stacks created at run-time with the TSK_create function.
The TSK_Attrs structure passed to the TSK_create function can
override this default. If you select MEM_NULL for this property,
creation of task objects at run-time is disabled.
Tconf Name: STACKSEG Type: Reference
Example: bios.TSK.STACKSEG = prog.get("myMEM");

❏ Default task priority. The default priority level for tasks that are
created dynamically with TSK_create. This property applies to TSK
objects created both with Tconf and with TSK_create.
Tconf Name: PRIORITY Type: EnumInt
Options: 1 to 15
Example: bios.TSK.PRIORITY = 1;
Application Program Interface 2-481

TSK Module
❏ TSK tick driven by. Choose whether you want the system clock to
be driven by the PRD module or by calls to TSK_tick and TSK_itick.
This clock is used by TSK_sleep and functions such as SEM_pend
that accept a timeout argument.
Tconf Name: DRIVETSKTICK Type: EnumString
Options: "PRD", "User"
Example: bios.TSK.DRIVETSKTICK = "PRD";

❏ Create function. The name of a function to call when any task is
created. This includes tasks that are created statically and those
created dynamically using TSK_create. If you are using Tconf, do not
add an underscore before the function name; Tconf adds the
underscore needed to call a C function from assembly internally. The
TSK_create topic describes the Create function.
Tconf Name: CREATEFXN Type: Extern
Example: bios.TSK.CREATEFXN =

prog.extern("tskCreate");

❏ Delete function. The name of a function to call when any task is
deleted at run-time with TSK_delete. The TSK_delete topic
describes the Delete function.
Tconf Name: DELETEFXN Type: Extern
Example: bios.TSK.DELETEFXN =

prog.extern("tskDelete");

❏ Exit function. The name of a function to call when any task exits.
The TSK_exit topic describes the Exit function.
Tconf Name: EXITFXN Type: Extern
Example: bios.TSK.EXITFXN =

prog.extern("tskExit");

❏ Call switch function. Check this box if you want a function to be
called when any task switch occurs.
Tconf Name: CALLSWITCHFXN Type: Bool
Example: bios.TSK.CALLSWITCHFXN = false;

❏ Switch function. The name of a function to call when any task switch
occurs. This function can give the application access to both the
current and next task handles. The TSK Module topic describes the
Switch function.
Tconf Name: SWITCHFXN Type: Extern
Example: bios.TSK.SWITCHFXN =

prog.extern("tskSwitch");
2-482

TSK Module
❏ Call ready function. Check this box if you want a function to be
called when any task becomes ready to run.
Tconf Name: CALLREADYFXN Type: Bool
Example: bios.TSK.CALLREADYFXN = false;

❏ Ready function. The name of a function to call when any task
becomes ready to run. The TSK Module topic describes the Ready
function.
Tconf Name: READYFXN Type: Extern
Example: bios.TSK.READYFXN =

prog.extern("tskReady");

TSK Object Properties To create a TSK object in a configuration script, use the following syntax.
The Tconf examples that follow assume the object has been created as
shown here.

var myTsk = bios.TSK.create("myTsk");

The following properties can be set for a TSK object in the TSK Object
Properties dialog of the DSP/BIOS Configuration Tool or in a Tconf script:

General tab ❏ comment. Type a comment to identify this TSK object.
Tconf Name: comment Type: String
Example: myTsk.comment = "my TSK";

❏ Automatically allocate stack. Check this box if you want the task’s
private stack space to be allocated automatically when this task is
created. The task’s context is saved in this stack before any higher-
priority task is allowed to block this task and run.
Tconf Name: autoAllocateStack Type: Bool
Example: myTsk.autoAllocateStack = true;

❏ Manually allocated stack. If you did not check the box to
Automatically allocate stack, type the name of the manually allocated
stack to use for this task.

Tconf Name: manualStack Type: Extern
Example: myTsk.manualStack =

prog.extern("myStack");

❏ Stack size. Enter the size (in MADUs) of the stack space to allocate
for this task. You must enter the size whether the application
allocates the stack manually or automatically. Each stack must be
large enough to handle normal subroutine calls as well as a single
Application Program Interface 2-483

TSK Module
task preemption context. A task preemption context is the context
that gets saved when one task preempts another as a result of an
interrupt thread readying a higher priority task.
Tconf Name: stackSize Type: Int16
Example: myTsk.stackSize = 1024;

❏ Stack Memory Segment. If you set the "Automatically allocate
stack" property to true, specify the memory segment to contain the
stack space for this task.
Tconf Name: stackMemSeg Type: Reference
Example: myTsk.stackMemSeg = prog.get("myMEM");

❏ Priority. The priority level for this task. A priority of -1 causes a task
to be suspended until its priority is raised programmatically.
Tconf Name: priority Type: EnumInt
Options: -1, 0, 1 to 15
Example: myTsk.priority = 1;

Function tab ❏ Task function. The function to be executed when the task runs. If
this function is written in C and you are using the DSP/BIOS
Configuration Tool, use a leading underscore before the C function
name. (The DSP/BIOS Configuration Tool generates assembly code
which must use the leading underscore when referencing C functions
or labels.) If you are using Tconf, do not add an underscore before
the function name; Tconf adds the underscore needed to call a C
function from assembly internally. If you compile C programs with the
-pm or -op2 options, you should precede C functions called by task
threads with the FUNC_EXT_CALLED pragma. See the online help
for the C compiler for details.
Tconf Name: fxn Type: Extern
Example: myTsk.fxn = prog.extern("tskFxn");

❏ Task function argument 0-7. The arguments to pass to the task
function. Arguments can be integers or labels.
Tconf Name: arg0 to arg7 Type: Arg
Example: myTsk.arg0 = 0;

Advanced tab ❏ Environment pointer. A pointer to a globally-defined data structure
this task can access. The task can get and set the task environment
pointer with the TSK_getenv and TSK_setenv functions. If your
program uses multiple HOOK objects, HOOK_setenv allows you to
set individual environment pointers for each HOOK and TSK object
combination.
Tconf Name: envPointer Type: Arg
Example: myTsk.envPointer = 0;
2-484

TSK Module
❏ Don’t shut down system while this task is still running. Check
this box if you do not want the application to be able to end if this task
is still running. The application can still abort. For example, you might
clear this box for a monitor task that collects data whenever all other
tasks are blocked. The application does not need to explicitly shut
down this task.
Tconf Name: exitFlag Type: Bool
Example: myTsk.exitFlag = true;

❏ Allocate Task Name on Target. Check this box if you want the
name of this TSK object to be retrievable by the TSK_getname
function. Clearing this box saves a small amount of memory. The
task name is available in analysis tools in either case.
Tconf Name: allocateTaskName Type: Bool
Example: myTsk.allocateTaskName = false;

❏ order. Set this property for all TSK objects so that the numbers
match the sequence in which TSK functions with the same priority
level should be executed.
Tconf Name: order Type: Int16
Example: myTsk.order = 2;
Application Program Interface 2-485

TSK_checkstacks
C Interface

Syntax TSK_checkstacks(oldtask, newtask);

Parameters TSK_Handle oldtask; /* handle of task switched from */
TSK_Handle newtask; /* handle of task switched to */

Return Value Void

Description TSK_checkstacks calls SYS_abort with an error message if either
oldtask or newtask has a stack in which the last location no longer
contains the initial value TSK_STACKSTAMP. The presumption in one
case is that oldtask’s stack overflowed, and in the other that an invalid
store has corrupted newtask’s stack.

TSK_checkstacks requires that the stack was initialized by DSP/BIOS.
For dynamically-created tasks, initialization is controlled by the
initstackflag attribute in the TSK_Attrs structure passed to TSK_create.
Statically configured tasks always initialize the stack.

You can call TSK_checkstacks directly from your application. For
example, you can check the current task’s stack integrity at any time with
a call like the following:

TSK_checkstacks(TSK_self(), TSK_self());

However, it is more typical to call TSK_checkstacks in the task Switch
function specified for the TSK manager in your configuration file. This
provides stack checking at every context switch, with no alterations to
your source code.

If you want to perform other operations in the Switch function, you can do
so by writing your own function (myswitchfxn) and then calling
TSK_checkstacks from it.

Void myswitchfxn(TSK_Handle oldtask,
 TSK_Handle newtask)
{
 `your additional context switch operations`
 TSK_checkstacks(oldtask, newtask);
 ...
}

Constraints and
Calling Context

❏ TSK_checkstacks cannot be called from an HWI or SWI.

TSK_checkstacks Check for stack overflow
2-486

TSK_create
C Interface

Syntax task = TSK_create(fxn, attrs, [arg,] ...);

Parameters Fxn fxn; /* pointer to task function */
TSK_Attrs *attrs; /* pointer to task attributes */
Arg arg; /* task arguments */

Return Value TSK_Handle task; /* task object handle */

Description TSK_create creates a new task object. If successful, TSK_create returns
the handle of the new task object. If unsuccessful, TSK_create returns
NULL unless it aborts (for example, because it directly or indirectly calls
SYS_error, and SYS_error is configured to abort).

The fxn parameter uses the Fxn type to pass a pointer to the function the
TSK object should run. For example, if myFxn is a function in your
program, you can create a TSK object to call that function as follows:

task = TSK_create((Fxn)myFxn, NULL);

You can use Tconf to specify an application-wide Create function that
runs whenever a task is created. This includes tasks that are created
statically and those created dynamically using TSK_create. The default
Create function is a no-op function.

For TSK objects created statically, the Create function is called during the
BIOS_start portion of the program startup process, which runs after the
main() function and before the program drops into the idle loop.

For TSK objects created dynamically, the Create function is called after
the task handle has been initialized but before the task has been placed
on its ready queue.

Any DSP/BIOS function can be called from the Create function.
DSP/BIOS passes the task handle of the task being created to the Create
function. The Create function declaration should be similar to this:

Void myCreateFxn(TSK_Handle task);

The new task is placed in TSK_READY mode, and is scheduled to begin
concurrent execution of the following function call:

(*fxn)(arg1, arg2, ... argN) /* N = TSK_MAXARGS = 8 */

As a result of being made ready to run, the task runs the application-wide
Ready function if one has been specified.

TSK_create Create a task ready for execution
Application Program Interface 2-487

TSK_create
TSK_exit is automatically called if and when the task returns from fxn.

If attrs is NULL, the new task is assigned a default set of attributes.
Otherwise, the task’s attributes are specified through a structure of type
TSK_Attrs, which is defined as follows.
struct TSK_Attrs { /* task attributes */
 Int priority; /* execution priority */
 Ptr stack; /* pre-allocated stack */
 size_t stacksize; /* stack size in MADUs */
 Int stackseg; /* mem seg for stack alloc */
 Ptr environ; /* global environ data struct */
 String name; /* printable name */
 Bool exitflag; /* prog termination requires */
 /* this task to terminate */
 Bool initstackflag; /* initialize task stack? */
};

The priority attribute specifies the task’s execution priority and must be
less than or equal to TSK_MAXPRI (15); this attribute defaults to the
value of the configuration parameter Default task priority (preset to
TSK_MINPRI). If priority is less than 0, the task is barred from execution
until its priority is raised at a later time by TSK_setpri. A priority value of
0 is reserved for the TSK_idle task defined in the default configuration.
You should not use a priority of 0 for any other tasks.

The stack attribute specifies a pre-allocated block of stacksize MADUs to
be used for the task’s private stack; this attribute defaults to NULL, in
which case the task’s stack is automatically allocated using MEM_alloc
from the memory segment given by the stackseg attribute.

The stacksize attribute specifies the number of MADUs to be allocated
for the task’s private stack; this attribute defaults to the value of the
configuration parameter Default stack size (preset to 1024). Each stack
must be large enough to handle normal subroutine calls as well as a
single task preemption context. A task preemption context is the context
that gets saved when one task preempts another as a result of an
interrupt thread readying a higher priority task.

The stackseg attribute specifies the memory segment to use when
allocating the task stack with MEM_alloc; this attribute defaults to the
value of the configuration parameter Default stack segment.

The environ attribute specifies the task’s global environment through a
generic pointer that references an arbitrary application-defined data
structure; this attribute defaults to NULL.

The name attribute specifies the task’s printable name, which is a NULL-
terminated character string; this attribute defaults to the empty string "".
This name can be returned by TSK_getname.
2-488

TSK_create
The exitflag attribute specifies whether the task must terminate before
the program as a whole can terminate; this attribute defaults to TRUE.

The initstackflag attribute specifies whether the task stack is initialized to
enable stack depth checking by TSK_checkstacks. This attribute applies
both in cases where the stack attribute is NULL (stack is allocated by
TSK_create) and where the stack attribute is used to specify a pre-
allocated stack. If your application does not call TSK_checkstacks, you
can reduce the time consumed by TSK_create by setting this attribute to
FALSE.

All default attribute values are contained in the constant TSK_ATTRS,
which can be assigned to a variable of type TSK_Attrs prior to calling
TSK_create.

A task switch occurs when calling TSK_create if the priority of the new
task is greater than the priority of the current task.

TSK_create calls MEM_alloc to dynamically create an object’s data
structure. MEM_alloc must lock the memory before proceeding. If
another thread already holds a lock to the memory, then there is a context
switch. The segment from which the object is allocated is described by
the DSP/BIOS objects property in the MEM Module, page 2–241.

Constraints and
Calling Context

❏ TSK_create cannot be called from a SWI or HWI.

❏ The fxn parameter and the name attribute cannot be NULL.

❏ The priority attribute must be less than or equal to TSK_MAXPRI and
greater than or equal to TSK_MINPRI. The priority can be less than
zero (0) for tasks that should not execute.

❏ The string referenced through the name attribute cannot be allocated
locally.

❏ The stackseg attribute must identify a valid memory segment.

❏ Task arguments passed to TSK_create cannot be greater than 32
bits in length; that is, 40-bit integers and Double or Long Double data
types cannot be passed as arguments to the TSK_create function.

❏ You can reduce the size of your application program by creating
objects with Tconf rather than using the XXX_create functions.

See Also MEM_alloc
SYS_error
TSK_delete
TSK_exit
Application Program Interface 2-489

TSK_delete
C Interface

Syntax TSK_delete(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Void

Description TSK_delete removes the task from all internal queues and calls
MEM_free to free the task object and stack. task should be in a state that
does not violate any of the listed constraints.

If all remaining tasks have their exitflag attribute set to FALSE, DSP/BIOS
terminates the program as a whole by calling SYS_exit with a status code
of 0.

You can use Tconf to specify an application-wide Delete function that
runs whenever a task is deleted. The default Delete function is a no-op
function. The Delete function is called before the task object has been
removed from any internal queues and its object and stack are freed. Any
DSP/BIOS function can be called from the Delete function. DSP/BIOS
passes the task handle of the task being deleted to your Delete function.
Your Delete function declaration should be similar to the following:

Void myDeleteFxn(TSK_Handle task);

TSK_delete calls MEM_free to delete the TSK object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Note:
Unless the mode of the deleted task is TSK_TERMINATED,
TSK_delete should be called with care. For example, if the task has
obtained exclusive access to a resource, deleting the task makes the
resource unavailable.

Constraints and
Calling Context

❏ The task cannot be the currently executing task (TSK_self).

❏ TSK_delete cannot be called from a SWI or HWI.

❏ No check is performed to prevent TSK_delete from being used on a
statically-created object. If a program attempts to delete a task object
that was created using Tconf, SYS_error is called.

See Also MEM_free
TSK_create

TSK_delete Delete a task
2-490

TSK_deltatime
C Interface

Syntax TSK_deltatime(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Void

Description This function accumulates the time difference from when a task is made
ready to the time TSK_deltatime is called. These time differences are
accumulated in the task’s internal STS object and can be used to
determine whether or not a task misses real-time deadlines.

If TSK_deltatime is not called by a task, its STS object is never updated
in the Statistics View, even if TSK accumulators are enabled in the RTA
Control Panel.

TSK statistics are handled differently than other statistics because TSK
functions typically run an infinite loop that blocks when waiting for other
threads. In contrast, HWI and SWI functions run to completion without
blocking. Because of this difference, DSP/BIOS allows programs to
identify the “beginning” of a TSK function’s processing loop by calling
TSK_settime and the “end” of the loop by calling TSK_deltatime.

For example, if a task waits for data and then processes the data, you
want to ensure that the time from when the data is made available until
the processing is complete is always less than a certain value. A loop
within the task can look something like the following:

Void task
{
 'do some startup work'

 /* Initialize time in task's
 STS object to current time */
 TSK_settime(TSK_self());

 for (;;) {
 /* Get data */
 SIO_get(...);

 'process data'

TSK_deltatime Update task statistics with time difference
Application Program Interface 2-491

TSK_deltatime
 /* Get time difference and
 add it to task's STS object */
 TSK_deltatime(TSK_self());
 }
}

In the example above, the task blocks on SIO_get and the device driver
posts a semaphore that readies the task. DSP/BIOS sets the task’s
statistics object with the current time when the semaphore becomes
available and the task is made ready to run. Thus, the call to
TSK_deltatime effectively measures the processing time of the task.

Constraints and
Calling Context

❏ The results of calls to TSK_deltatime and TSK_settime are displayed
in the Statistics View only if Enable TSK accumulators is selected in
the RTA Control Panel.

See Also TSK_getsts
TSK_settime
2-492

TSK_disable
C Interface

Syntax TSK_disable();

Parameters Void

Return Value Void

Description TSK_disable disables the DSP/BIOS task scheduler. The current task
continues to execute (even if a higher priority task can become ready to
run) until TSK_enable is called.

TSK_disable does not disable interrupts, but is instead used before
disabling interrupts to make sure a context switch to another task does
not occur when interrupts are disabled.

TSK_disable maintains a count which allows nested calls to
TSK_disable. Task switching is not reenabled until TSK_enable has
been called as many times as TSK_disable. Calls to TSK_disable can be
nested.

Since TSK_disable can prohibit ready tasks of higher priority from
running it should not be used as a general means of mutual exclusion.
SEM Module semaphores should be used for mutual exclusion when
possible.

Constraints and
Calling Context

❏ Do not call any function that can cause the current task to block or
otherwise affect the state of the scheduler within a
TSK_disable/TSK_enable block. For example, SEM_pend (if timeout
is non-zero), TSK_sleep, TSK_yield, and MEM_alloc can all cause
blocking. Similarly, any MEM module call and any call that
dynamically creates or deletes an object (XXX_create or
XXX_delete) can affect the state of the scheduler. For a complete list,
see the "Possible Context Switch" column in Section A.1, Function
Callability Table.

❏ TSK_disable cannot be called from a SWI or HWI.

❏ TSK_disable cannot be called from the program’s main() function.

❏ Do not call TSK_enable when TSKs are already enabled. If you do
so, the subsequent call to TSK_disable will not disable TSK
processing.

See Also SEM Module
TSK_enable

TSK_disable Disable DSP/BIOS task scheduler
Application Program Interface 2-493

TSK_enable
C Interface

Syntax TSK_enable();

Parameters Void

Return Value Void

Description TSK_enable is used to reenable the DSP/BIOS task scheduler after
TSK_disable has been called. Since TSK_disable calls can be nested,
the task scheduler is not enabled until TSK_enable is called the same
number of times as TSK_disable.

A task switch occurs when calling TSK_enable only if there exists a
TSK_READY task whose priority is greater than the currently executing
task.

Constraints and
Calling Context

❏ Do not call any function that can cause the current task to block or
otherwise affect the state of the scheduler within a
TSK_disable/TSK_enable block. For example, SEM_pend (if timeout
is non-zero), TSK_sleep, TSK_yield, and MEM_alloc can all cause
blocking. Similarly, any MEM module call and any call that
dynamically creates or deletes an object (XXX_create or
XXX_delete) can affect the state of the scheduler. For a complete list,
see the "Possible Context Switch" column in Section A.1, Function
Callability Table.

❏ TSK_enable cannot be called from a SWI or HWI.

❏ TSK_enable cannot be called from the program’s main() function.

❏ Do not call TSK_enable when TSKs are already enabled. If you do
so, the subsequent call to TSK_disable will not disable TSK
processing.

See Also SEM Module
TSK_disable

TSK_enable Enable DSP/BIOS task scheduler
2-494

TSK_exit
C Interface

Syntax TSK_exit();

Parameters Void

Return Value Void

Description TSK_exit terminates execution of the current task, changing its mode
from TSK_RUNNING to TSK_TERMINATED. If all tasks have been
terminated, or if all remaining tasks have their exitflag attribute set to
FALSE, then DSP/BIOS terminates the program as a whole by calling the
function SYS_exit with a status code of 0.

TSK_exit is automatically called whenever a task returns from its top-
level function.

You can use Tconf to specify an application-wide Exit function that runs
whenever a task is terminated. The default Exit function is a no-op
function. The Exit function is called before the task has been blocked and
marked TSK_TERMINATED. Any DSP/BIOS function can be called from
an Exit function. Calling TSK_self within an Exit function returns the task
being exited. Your Exit function declaration should be similar to the
following:

Void myExitFxn(Void);

A task switch occurs when calling TSK_exit unless the program as a
whole is terminated.

Constraints and
Calling Context

❏ TSK_exit cannot be called from a SWI or HWI.

❏ TSK_exit cannot be called from the program’s main() function.

See Also MEM_free
TSK_create
TSK_delete

TSK_exit Terminate execution of the current task
Application Program Interface 2-495

TSK_getenv
C Interface

Syntax environ = TSK_getenv(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Ptr environ; /* task environment pointer */

Description TSK_getenv returns the environment pointer of the specified task. The
environment pointer, environ, references an arbitrary application-defined
data structure.

If your program uses multiple HOOK objects, HOOK_getenv allows you
to get environment pointers you have set for a particular HOOK and TSK
object combination.

See Also HOOK_getenv
HOOK_setenv
TSK_setenv
TSK_seterr
TSK_setpri

TSK_getenv Get task environment pointer
2-496

TSK_geterr
C Interface

Syntax errno = TSK_geterr(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Int errno; /* error number */

Description Each task carries a task-specific error number. This number is initially
SYS_OK, but it can be changed by TSK_seterr. TSK_geterr returns the
current value of this number.

See Also SYS_error
TSK_setenv
TSK_seterr
TSK_setpri

TSK_geterr Get task error number
Application Program Interface 2-497

TSK_getname
C Interface

Syntax name = TSK_getname(task);

Parameters TSK_Handle task; /* task object handle */

Return Value String name; /* task name */

Description TSK_getname returns the task’s name.

For tasks created with Tconf, the name is available to this function only if
the "Allocate Task Name on Target" property is set to true for this task.
For tasks created with TSK_create, TSK_getname returns the attrs.name
field value, or an empty string if this attribute was not specified.

See Also TSK_setenv
TSK_seterr
TSK_setpri

TSK_getname Get task name
2-498

TSK_getpri
C Interface

Syntax priority = TSK_getpri(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Int priority; /* task priority */

Description TSK_getpri returns the priority of task.

See Also TSK_setenv
TSK_seterr
TSK_setpri

TSK_getpri Get task priority
Application Program Interface 2-499

TSK_getsts
C Interface

Syntax sts = TSK_getsts(task);

Parameters TSK_Handle task; /* task object handle */

Return Value STS_Handle sts; /* statistics object handle */

Description This function provides access to the task’s internal STS object. For
example, you can want the program to check the maximum value to see
if it has exceeded some value.

See Also TSK_deltatime
TSK_settime

TSK_getsts Get the handle of the task’s STS object
2-500

TSK_isTSK
C Interface

Syntax result = TSK_isTSK(Void);

Parameters Void

Return Value Bool result; /* TRUE if in TSK context, FALSE otherwise */

Reentrant yes

Description This macro returns TRUE when it is called within the context of a TSK or
IDL function. It returns FALSE in all other contexts.

TSK_isTSK() API returns TRUE when the current thread is neither a HWI
nor a SWI. Thus, TSK_isTSK() returns TRUE when it is invoked within a
task thread, main(), or a task switch hook.

In previous versions of DSP/BIOS, calling the context checking functions
from main() resulted in TRUE for HWI_isHWI(). And, calling the context
checking functions from a task switch hook resulted in TRUE for
SWI_isSWI(). This is no longer the case; they are identified as part of the
TSK context.

In applications that contain no task threads, TSK_isTSK() now returns
TRUE from main() and from the IDL threads.

See Also HWI_isHWI
SWI_isSWI

TSK_isTSK Check to see if called in the context of a TSK
Application Program Interface 2-501

TSK_itick
C Interface

Syntax TSK_itick();

Parameters Void

Return Value Void

Description TSK_itick increments the system alarm clock, and readies any tasks
blocked on TSK_sleep or SEM_pend whose timeout intervals have
expired.

Constraints and
Calling Context

❏ TSK_itick cannot be called by a TSK object.

❏ TSK_itick cannot be called from the program’s main() function.

❏ When called within an HWI, the code sequence calling TSK_itick
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

See Also SEM_pend
TSK_sleep
TSK_tick

TSK_itick Advance the system alarm clock (interrupt use only)
2-502

TSK_self
C Interface

Syntax curtask = TSK_self();

Parameters Void

Return Value TSK_Handle curtask; /* handle for current task object */

Description TSK_self returns the object handle for the currently executing task. This
function is useful when inspecting the object or when the current task
changes its own priority through TSK_setpri.

No task switch occurs when calling TSK_self.

See Also TSK_setpri

TSK_self Returns handle to the currently executing task
Application Program Interface 2-503

TSK_setenv
C Interface

Syntax TSK_setenv(task, environ);

Parameters TSK_Handle task; /* task object handle */
Ptr environ; /* task environment pointer */

Return Value Void

Description TSK_setenv sets the task environment pointer to environ. The
environment pointer, environ, references an arbitrary application-defined
data structure.

If your program uses multiple HOOK objects, HOOK_setenv allows you
to set individual environment pointers for each HOOK and TSK object
combination.

See Also HOOK_getenv
HOOK_setenv
TSK_getenv
TSK_geterr

TSK_setenv Set task environment
2-504

TSK_seterr
C Interface

Syntax TSK_seterr(task, errno);

Parameters TSK_Handle task; /* task object handle */
Int errno; /* error number */

Return Value Void

Description Each task carries a task-specific error number. This number is initially
SYS_OK, but can be changed to errno by calling TSK_seterr. TSK_geterr
returns the current value of this number.

See Also TSK_getenv
TSK_geterr

TSK_seterr Set task error number
Application Program Interface 2-505

TSK_setpri
C Interface

Syntax oldpri = TSK_setpri(task, newpri);

Parameters TSK_Handle task; /* task object handle */
Int newpri; /* task’s new priority */

Return Value Int oldpri; /* task’s old priority */

Description TSK_setpri sets the execution priority of task to newpri, and returns that
task’s old priority value. Raising or lowering a task’s priority does not
necessarily force preemption and re-scheduling of the caller: tasks in the
TSK_BLOCKED mode remain suspended despite a change in priority;
and tasks in the TSK_READY mode gain control only if their (new) priority
is greater than that of the currently executing task.

The maximum value of newpri is TSK_MAXPRI(15). If the minimum value
of newpri is TSK_MINPRI(0). If newpri is less than 0, the task is barred
from further execution until its priority is raised at a later time by another
task; if newpri equals TSK_MAXPRI, execution of the task effectively
locks out all other program activity, except for the handling of interrupts.

The current task can change its own priority (and possibly preempt its
execution) by passing the output of TSK_self as the value of the task
parameter.

A context switch occurs when calling TSK_setpri if a task makes its own
priority lower than the priority of another currently ready task, or if the
currently executing task makes a ready task’s priority higher than its own
priority. TSK_setpri can be used for mutual exclusion.

Constraints and
Calling Context

❏ newpri must be less than or equal to TSK_MAXPRI.

❏ The task cannot be TSK_TERMINATED.

❏ The new priority should not be zero (0). This priority level is reserved
for the TSK_idle task.

See Also TSK_self
TSK_sleep

TSK_setpri Set a task’s execution priority
2-506

TSK_settime
C Interface

Syntax TSK_settime(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Void

Description Your application can call TSK_settime before a task enters its processing
loop in order to ensure your first call to TSK_deltatime is as accurate as
possible and doesn’t reflect the time difference since the time the task
was created. However, it is only necessary to call TSK_settime once for
initialization purposes. After initialization, DSP/BIOS sets the time value
of the task’s STS object every time the task is made ready to run.

TSK statistics are handled differently than other statistics because TSK
functions typically run an infinite loop that blocks when waiting for other
threads. In contrast, HWI and SWI functions run to completion without
blocking. Because of this difference, DSP/BIOS allows programs to
identify the “beginning” of a TSK function’s processing loop by calling
TSK_settime and the “end” of the loop by calling TSK_deltatime.

For example, a loop within the task can look something like the following:

Void task
{
 'do some startup work'

 /* Initialize task's STS object to current time */
 TSK_settime(TSK_self());

 for (;;) {
 /* Get data */
 SIO_get(...);

 'process data'

 /* Get time difference and
 add it to task's STS object */
 TSK_deltatime(TSK_self());
 }
}

TSK_settime Reset task statistics previous value to current time
Application Program Interface 2-507

TSK_settime
In the previous example, the task blocks on SIO_get and the device
driver posts a semaphore that readies the task. DSP/BIOS sets the task’s
statistics object with the current time when the semaphore becomes
available and the task is made ready to run. Thus, the call to
TSK_deltatime effectively measures the processing time of the task.

Constraints and
Calling Context

❏ TSK_settime cannot be called from the program’s main() function.

❏ The results of calls to TSK_deltatime and TSK_settime are displayed
in the Statistics View only if Enable TSK accumulators is selected
within the RTA Control Panel.

See Also TSK_deltatime
TSK_getsts
2-508

TSK_sleep
C Interface

Syntax TSK_sleep(nticks);

Parameters Uns nticks; /* number of system clock ticks to sleep */

Return Value Void

Description TSK_sleep changes the current task’s mode from TSK_RUNNING to
TSK_BLOCKED, and delays its execution for nticks increments of the
system clock. The actual time delayed can be up to 1 system clock tick
less than timeout due to granularity in system timekeeping.

After the specified period of time has elapsed, the task reverts to the
TSK_READY mode and is scheduled for execution.

A task switch always occurs when calling TSK_sleep if nticks > 0.

Constraints and
Calling Context

❏ TSK_sleep cannot be called from a SWI or HWI, or within a
TSK_disable / TSK_enable block.

❏ TSK_sleep cannot be called from the program’s main() function.

❏ TSK_sleep should not be called from within an IDL function. Doing so
prevents analysis tools from gathering run-time information.

❏ nticks cannot be SYS_FOREVER.

TSK_sleep Delay execution of the current task
Application Program Interface 2-509

TSK_stat
C Interface

Syntax TSK_stat(task, statbuf);

Parameters TSK_Handle task; /* task object handle */
TSK_Stat *statbuf; /* pointer to task status structure */

Return Value Void

Description TSK_stat retrieves attribute values and status information about a task.

Status information is returned through statbuf, which references a
structure of type TSK_Stat defined as follows:

struct TSK_Stat { /* task status structure */
 TSK_Attrs attrs; /* task attributes */
 TSK_Mode mode; /* task execution mode */
 Ptr sp; /* task stack pointer */
 size_t used; /* task stack used */
};

When a task is preempted by a software or hardware interrupt, the task
execution mode returned for that task by TSK_stat is still TSK_RUNNING
because the task runs when the preemption ends.

The current task can inquire about itself by passing the output of
TSK_self as the first argument to TSK_stat. However, the task stack
pointer (sp) in the TSK_Stat structure is the value from the previous
context switch.

TSK_stat has a non-deterministic execution time. As such, it is not
recommended to call this API from SWIs or HWIs.

Constraints and
Calling Context

❏ statbuf cannot be NULL.

See Also TSK_create

TSK_stat Retrieve the status of a task
2-510

TSK_tick
C Interface

Syntax TSK_tick();

Parameters Void

Return Value Void

Description TSK_tick increments the system clock, and readies any tasks blocked on
TSK_sleep or SEM_pend whose timeout intervals have expired.
TSK_tick can be invoked by an HWI or by the currently executing task.
The latter is particularly useful for testing timeouts in a controlled
environment.

A task switch occurs when calling TSK_tick if the priority of any of the
readied tasks is greater than the priority of the currently executing task.

Constraints and
Calling Context

❏ When called within an HWI, the code sequence calling TSK_tick
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

See Also CLK Module
SEM_pend
TSK_itick
TSK_sleep

TSK_tick Advance the system alarm clock
Application Program Interface 2-511

TSK_time
C Interface

Syntax curtime = TSK_time();

Parameters Void

Return Value Uns curtime; /* current time */

Description TSK_time returns the current value of the system alarm clock.

Note that since the system clock is usually updated asynchronously via
TSK_itick or TSK_tick, curtime can lag behind the actual system time.
This lag can be even greater if a higher priority task preempts the current
task between the call to TSK_time and when its return value is used.
Nevertheless, TSK_time is useful for getting a rough idea of the current
system time.

TSK_time Return current value of system clock
2-512

TSK_yield
C Interface

Syntax TSK_yield();

Parameters Void

Return Value Void

Description TSK_yield yields the processor to another task of equal priority.

A task switch occurs when you call TSK_yield if there is an equal priority
task ready to run.

Tasks of higher priority preempt the currently running task without the
need for a call to TSK_yield. If only lower-priority tasks are ready to run
when you call TSK_yield, the current task continues to run. Control does
not pass to a lower-priority task.

Constraints and
Calling Context

❏ When called within an HWI, the code sequence calling TSK_yield
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

❏ TSK_yield cannot be called from the program’s main() function.

See Also TSK_sleep

TSK_yield Yield processor to equal priority task
Application Program Interface 2-513

std.h and stdlib.h functions
2.32 std.h and stdlib.h functions

This section contains descriptions of special utility macros found in std.h
and DSP/BIOS standard library functions found in stdlib.h.

Macros ❏ ArgToInt. Cast an Arg type parameter as an integer type.

❏ ArgToPtr. Cast an Arg type parameter as a pointer type.

Functions ❏ atexit. Register an exit function.

❏ *calloc. Allocate and clear memory.

❏ exit. Call the exit functions registered by atexit.

❏ free. Free memory.

❏ *getenv. Get environmental variable.

❏ *malloc. Allocate memory.

❏ *realloc. Reallocate a memory packet.

Syntax #include <std.h>
ArgToInt(arg)
ArgToPtr(arg)

#include <stdlib.h>
int atexit(void (*fcn)(void));
void *calloc(size_t nobj, size_t size);
void exit(int status);
void free(void *p);
char *getenv(char *name);
void *malloc(size_t size);
void *realloc(void *p, size_t size);

Description The DSP/BIOS library contains some C standard library functions which
supersede the library functions bundled with the C compiler. These
functions follow the ANSI C specification for parameters and return
values. Consult Kernighan and Ritchie for a complete description of
these functions.

The functions calloc, free, malloc, and realloc use MEM_alloc and
MEM_free (with segid = Segment for malloc/free) to allocate and free
memory.

getenv uses the _environ variable defined and initialized in the boot file
to search for a matching environment string.

exit calls the exit functions registered by atexit before calling SYS_exit.
2-514

std.h and stdlib.h functions
Note: RTS Functions Callable from TSK Threads Only
Many runtime support (RTS) functions use lock and unlock functions to
prevent reentrancy. However, DSP/BIOS SWI and HWI threads cannot
call LCK_pend and LCK_post. As a result, RTS functions that call
LCK_pend or LCK_post must not be called in the context of a SWI or
HWI thread. For a list or RTS functions that should not be called from
a SWI or an HWI function, see “LCK_pend” on page 2-211.

To determine whether a particular RTS function uses LCK_pend, refer to
the source code for that function shipped with Code Composer Studio.
The following table shows some of the RTS functions that call LCK_pend
in certain versions of Code Composer Studio:

The C++ new operator calls malloc, which in turn calls LCK_pend. As a
result, the new operator cannot be used in the context of a SWI or HWI
thread.

fprintf printf vfprintf sprintf

vprintf vsprintf clock strftime

minit malloc realloc free

calloc rand srand getenv
Application Program Interface 2-515

2-516

Appendix A

Function Callability and Error Tables

This appendix provides tables describing TMS320C6000 errors and function callability.

A.1 Function Callability Table . A–2
A.2 DSP/BIOS Error Codes . A–11

Topic Page
A-1

Function Callability Table
A.1 Function Callability Table

The following table indicates what types of threads can call each of the
DSP/BIOS functions. The Possible Context Switch column indicates
whether another thread may be run as a result of this function. For
example, the function may block on a resource or it may make another
thread ready to run. The Possible Context Switch column does not
indicate whether the function disables interrupts that might schedule
higher-priority threads.

Table A-1 Function Callability

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?

ATM_andi Yes Yes Yes No Yes
ATM_andu Yes Yes Yes No Yes
ATM_cleari Yes Yes Yes No Yes
ATM_clearu Yes Yes Yes No Yes
ATM_deci Yes Yes Yes No Yes
ATM_decu Yes Yes Yes No Yes
ATM_inci Yes Yes Yes No Yes
ATM_incu Yes Yes Yes No Yes
ATM_ori Yes Yes Yes No Yes
ATM_oru Yes Yes Yes No Yes
ATM_seti Yes Yes Yes No Yes
ATM_setu Yes Yes Yes No Yes
BCACHE_getMar Yes Yes Yes No Yes
BCACHE_getMode Yes Yes Yes No Yes
BCACHE_getSize Yes Yes Yes No Yes
BCACHE_inv Yes Yes Yes No Yes
BCACHE_invL1pAll Yes Yes Yes No Yes
BCACHE_setMar Yes Yes Yes No Yes
BCACHE_setMode Yes Yes Yes No Yes
BCACHE_setSize Yes Yes Yes No Yes
BCACHE_wait Yes Yes Yes No Yes
BCACHE_wb Yes Yes Yes No Yes
BCACHE_wbAll Yes Yes Yes No Yes
BCACHE_wbInv Yes Yes Yes No Yes
BCACHE_wbInvAll Yes Yes Yes No Yes
BUF_alloc Yes Yes Yes No Yes
A-2

Function Callability Table
BUF_create Yes No No Yes Yes
BUF_delete Yes No No Yes Yes
BUF_free Yes Yes Yes No Yes
BUF_maxbuff Yes No No No Yes
BUF_stat Yes Yes Yes No Yes
C62_disableIER Yes Yes Yes No Yes
C62_enableIER Yes Yes Yes No Yes
C62_plug Yes Yes Yes No Yes
C64_disableIER Yes Yes Yes No Yes
C64_enableIER Yes Yes Yes No Yes
C64_plug Yes Yes Yes No Yes
CLK_countspms Yes Yes Yes No Yes
CLK_cpuCyclesPerHtime Yes Yes Yes No Yes
CLK_cpuCyclesPerLtime Yes Yes Yes No Yes
CLK_gethtime Yes Yes Yes No No
CLK_getltime Yes Yes Yes No No
CLK_getprd Yes Yes Yes No Yes
CLK_reconfig Yes Yes Yes No Yes
CLK_start Yes Yes Yes No No
CLK_stop Yes Yes Yes No No
DEV_createDevice Yes No No Yes* Yes
DEV_deleteDevice Yes No No Yes* Yes
DEV_match Yes Yes Yes No Yes
ECM_disableEvent Yes Yes Yes No Yes
ECM_dispatch No No Yes No No
ECM_dispatchPlug Yes Yes Yes No Yes
ECM_enableEvent Yes Yes Yes No Yes
EXC_clearLastStatus Yes Yes Yes* No Yes
EXC_dispatch No No Yes No No
EXC_exceptionHandler No No No* No No
EXC_exceptionHook No No No* No No
EXC_external No No No* No No
EXC_externalHook No No No* No No
EXC_evtEvtClear Yes Yes Yes No Yes
EXC_evtExpEnable Yes Yes Yes No Yes

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
Function Callability and Error Tables A-3

Function Callability Table
EXC_getLastStatus Yes Yes Yes* No Yes
EXC_internal No No No* No No
EXC_internalHook No No No* No No
EXC_nmi No No No* No No
EXC_nmiHook No No No* No No
GBL_getClkin Yes Yes Yes No Yes
GBL_getFrequency Yes Yes Yes No Yes
GBL_getProcId Yes Yes Yes No Yes
GBL_getVersion Yes Yes Yes No Yes
GBL_setFrequency No No No No Yes
GBL_setProcId No No No No No*
GIO_abort Yes No* No* Yes No
GIO_control Yes No* No* Yes Yes
GIO_create Yes No No No Yes
GIO_delete Yes No No Yes Yes
GIO_flush Yes No* No* Yes No
GIO_new Yes Yes Yes No Yes
GIO_read Yes No* No* Yes Yes*
GIO_submit Yes Yes* Yes* Yes Yes*
GIO_write Yes No* No* Yes Yes*
HOOK_getenv Yes Yes Yes No Yes
HOOK_setenv Yes Yes Yes No Yes
HST_getpipe Yes Yes Yes No Yes
HWI_applyWugenMasks Yes Yes Yes No Yes
HWI_disable Yes Yes Yes No Yes
HWI_disableWugen Yes Yes Yes No Yes
HWI_dispatchPlug Yes Yes Yes No Yes
HWI_enable Yes Yes Yes Yes* No
HWI_enableWugen Yes Yes Yes No Yes
HWI_enter No No Yes No No
HWI_eventMap Yes Yes Yes No Yes
HWI_exit No No Yes Yes No
HWI_getWugenMasks Yes Yes Yes No Yes
HWI_ierToWugenMasks Yes Yes Yes No Yes
HWI_isHWI Yes Yes Yes No Yes

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
A-4

Function Callability Table
HWI_restore Yes Yes Yes Yes* Yes
IDL_run Yes No No No No
LCK_create Yes No No Yes* Yes
LCK_delete Yes No No Yes* No
LCK_pend Yes No No Yes* No
LCK_post Yes No No Yes* No
LOG_disable Yes Yes Yes No Yes
LOG_enable Yes Yes Yes No Yes
LOG_error Yes Yes Yes No Yes
LOG_event Yes Yes Yes No Yes
LOG_event5 Yes Yes Yes No Yes
LOG_message Yes Yes Yes No Yes
LOG_printf Yes Yes Yes No Yes
LOG_printf4 Yes Yes Yes No Yes
LOG_reset Yes Yes Yes No Yes
MBX_create Yes No No Yes* Yes
MBX_delete Yes No No Yes* No
MBX_pend Yes Yes* Yes* Yes* No
MBX_post Yes Yes* Yes* Yes* Yes*
MEM_alloc Yes No No Yes* Yes
MEM_calloc Yes No No Yes* Yes
MEM_define Yes No No Yes* Yes
MEM_free Yes No No Yes* Yes
MEM_getBaseAddress Yes Yes Yes No Yes
MEM_increaseTableSize Yes No No Yes* Yes
MEM_redefine Yes No No Yes* Yes
MEM_stat Yes No No Yes* Yes
MEM_undefine Yes No No Yes* Yes
MEM_valloc Yes No No Yes* Yes
MPC_getPA Yes Yes Yes No Yes
MPC_getPageSize Yes Yes Yes No Yes
MPC_getPrivMode Yes Yes Yes No Yes
MPC_setBufferPA Yes Yes Yes No Yes
MPC_setPA Yes Yes Yes No Yes
MPC_setPrivMode Yes Yes Yes No Yes

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
Function Callability and Error Tables A-5

Function Callability Table
_MPC_getLastMPFAR No No No* No No
_MPC_getLastMPFSR No No No* No No
_MPC_exceptionHandler No No No* No No
_MPC_externalHandler No No No* No No
_MPC_internalHandler No No No* No No
_MPC_userHook No No No* No No
MSGQ_alloc Yes Yes Yes No Yes
MSGQ_close Yes Yes Yes No Yes
MSGQ_count Yes Yes* Yes* No No
MSGQ_free Yes Yes Yes No Yes
MSGQ_get Yes Yes* Yes* Yes* No
MSGQ_getAttrs Yes Yes Yes No Yes
MSGQ_getDstQueue Yes Yes Yes No No
MSGQ_getMsgId Yes Yes Yes No Yes
MSGQ_getMsgSize Yes Yes Yes No Yes
MSGQ_getSrcQueue Yes Yes Yes No No
MSGQ_isLocalQueue Yes Yes Yes No Yes
MSGQ_locate Yes No No Yes No
MSGQ_locateAsync Yes Yes Yes No No
MSGQ_open Yes Yes* Yes* Yes* Yes
MSGQ_put Yes Yes Yes No No
MSGQ_release Yes Yes Yes No No
MSGQ_setErrorHandler Yes Yes Yes No Yes
MSGQ_setMsgId Yes Yes Yes No Yes
MSGQ_setSrcQueue Yes Yes Yes No Yes
PIP_alloc Yes Yes Yes Yes Yes
PIP_free Yes Yes Yes Yes Yes
PIP_get Yes Yes Yes Yes Yes
PIP_getReaderAddr Yes Yes Yes No Yes
PIP_getReaderNumFrames Yes Yes Yes No Yes
PIP_getReaderSize Yes Yes Yes No Yes
PIP_getWriterAddr Yes Yes Yes No Yes
PIP_getWriterNumFrames Yes Yes Yes No Yes
PIP_getWriterSize Yes Yes Yes No Yes
PIP_peek Yes Yes Yes No Yes

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
A-6

Function Callability Table
PIP_put Yes Yes Yes Yes Yes
PIP_reset Yes Yes Yes Yes Yes
PIP_setWriterSize Yes Yes Yes No Yes
PRD_getticks Yes Yes Yes No Yes
PRD_start Yes Yes Yes No Yes
PRD_stop Yes Yes Yes No Yes
PRD_tick Yes Yes Yes Yes No
QUE_create Yes No No Yes* Yes
QUE_delete Yes No No Yes* Yes
QUE_dequeue Yes Yes Yes No Yes
QUE_empty Yes Yes Yes No Yes
QUE_enqueue Yes Yes Yes No Yes
QUE_get Yes Yes Yes No Yes
QUE_head Yes Yes Yes No Yes
QUE_insert Yes Yes Yes No Yes
QUE_new Yes Yes Yes No Yes
QUE_next Yes Yes Yes No Yes
QUE_prev Yes Yes Yes No Yes
QUE_put Yes Yes Yes No Yes
QUE_remove Yes Yes Yes No Yes
RTDX_channelBusy Yes Yes No No Yes
RTDX_CreateInputChannel Yes Yes No No Yes
RTDX_CreateOutputChannel Yes Yes No No Yes
RTDX_disableInput Yes Yes No No Yes
RTDX_disableOutput Yes Yes No No Yes
RTDX_enableInput Yes Yes No No Yes
RTDX_enableOutput Yes Yes No No Yes
RTDX_isInputEnabled Yes Yes No No Yes
RTDX_isOutputEnabled Yes Yes No No Yes
RTDX_read Yes Yes No No No
RTDX_readNB Yes Yes No No No
RTDX_sizeofInput Yes Yes No No Yes
RTDX_write Yes Yes No No No
SEM_count Yes Yes Yes No Yes
SEM_create Yes No No Yes* Yes

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
Function Callability and Error Tables A-7

Function Callability Table
SEM_delete Yes Yes* No Yes* No
SEM_new Yes Yes Yes No Yes
SEM_pend Yes Yes* Yes* Yes* No
SEM_pendBinary Yes Yes* Yes* Yes* No
SEM_post Yes Yes Yes Yes* Yes
SEM_postBinary Yes Yes Yes Yes* Yes
SEM_reset Yes No No No Yes
SIO_bufsize Yes Yes Yes No Yes
SIO_create Yes No No Yes* Yes
SIO_ctrl Yes Yes No No Yes
SIO_delete Yes No No Yes* Yes
SIO_flush Yes Yes* No No No
SIO_get Yes No No Yes* Yes*
SIO_idle Yes Yes* No Yes* No
SIO_issue Yes Yes No No Yes
SIO_put Yes No No Yes* Yes*
SIO_ready Yes Yes Yes No No
SIO_reclaim Yes Yes* No Yes* Yes*
SIO_reclaimx Yes Yes* No Yes* Yes*
SIO_segid Yes Yes Yes No Yes
SIO_select Yes Yes* No Yes* No
SIO_staticbuf Yes Yes No No Yes
STS_add Yes Yes Yes No Yes
STS_delta Yes Yes Yes No Yes
STS_reset Yes Yes Yes No Yes
STS_set Yes Yes Yes No Yes
SWI_andn Yes Yes Yes Yes* No
SWI_andnHook Yes Yes Yes Yes* No
SWI_create Yes No No Yes* Yes
SWI_dec Yes Yes Yes Yes* No
SWI_delete Yes No No Yes* Yes
SWI_disable Yes Yes No No No
SWI_enable Yes Yes No Yes* No
SWI_getattrs Yes Yes Yes No Yes
SWI_getmbox No Yes No No No

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
A-8

Function Callability Table
SWI_getpri Yes Yes Yes No Yes
SWI_inc Yes Yes Yes Yes* No
SWI_isSWI Yes Yes Yes No Yes
SWI_or Yes Yes Yes Yes* No
SWI_orHook Yes Yes Yes Yes* No
SWI_post Yes Yes Yes Yes* No
SWI_raisepri No Yes No No No
SWI_restorepri No Yes No Yes No
SWI_self No Yes No No No
SWI_setattrs Yes Yes Yes No Yes
SYS_abort Yes Yes Yes No Yes
SYS_atexit Yes Yes Yes No Yes
SYS_error Yes Yes Yes No Yes
SYS_exit Yes Yes Yes No Yes
SYS_printf Yes Yes Yes No Yes
SYS_putchar Yes Yes Yes No Yes
SYS_sprintf Yes Yes Yes No Yes
SYS_vprintf Yes Yes Yes No Yes
SYS_vsprintf Yes Yes Yes No Yes
TRC_disable Yes Yes Yes No Yes
TRC_enable Yes Yes Yes No Yes
TRC_query Yes Yes Yes No Yes
TSK_checkstacks Yes No No No No
TSK_create Yes No No Yes* Yes
TSK_delete Yes No No Yes* No
TSK_deltatime Yes Yes Yes No No
TSK_disable Yes No No No No
TSK_enable Yes No No Yes* No
TSK_exit Yes No No Yes* No
TSK_getenv Yes Yes Yes No Yes
TSK_geterr Yes Yes Yes No Yes
TSK_getname Yes Yes Yes No Yes
TSK_getpri Yes Yes Yes No Yes
TSK_getsts Yes Yes Yes No Yes
TSK_isTSK Yes Yes Yes No Yes

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?
Function Callability and Error Tables A-9

Function Callability Table
Note: *See the appropriate API reference page for more information.

Table A-2 RTS Function Calls

Note: *See section 2.32, std.h and stdlib.h functions, page 2-514 for more
information.

TSK_itick No Yes Yes Yes No
TSK_self Yes Yes Yes No No
TSK_setenv Yes Yes Yes No Yes
TSK_seterr Yes Yes Yes No Yes
TSK_setpri Yes Yes Yes Yes* Yes
TSK_settime Yes Yes Yes No No
TSK_sleep Yes No No Yes* No
TSK_stat Yes Yes* Yes* No Yes
TSK_tick Yes Yes Yes Yes* No
TSK_time Yes Yes Yes No No
TSK_yield Yes Yes Yes Yes* No

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

Callable
from
main()?

Function Callable
by TSKs?

Callable
by SWIs?

Callable by
HWIs?

Possible
Context
Switch?

calloc Yes No No Yes*

clock Yes No No Yes*

fprintf Yes No No Yes*

free Yes No No Yes*

getenv Yes No No Yes*

malloc Yes No No Yes*

minit Yes No No Yes*

printf Yes No No Yes*

rand Yes No No Yes*

realloc Yes No No Yes*

sprintf Yes No No Yes*

srand Yes No No Yes*

strftime Yes No No Yes*

vfprintf Yes No No Yes*

vprintf Yes No No Yes*

vsprintf Yes No No Yes*
A-10

DSP/BIOS Error Codes
A.2 DSP/BIOS Error Codes

Table A-3 Error Codes

Name Value SYS_Errors[Value]

SYS_OK 0 "(SYS_OK)”

SYS_EALLOC 1 "(SYS_EALLOC): segid = %d, size = %u, align = %u"
Memory allocation error.

SYS_EFREE 2 "(SYS_EFREE): segid = %d, ptr = ox%x, size = %u"
The memory free function associated with the indicated memory segment
was unable to free the indicated size of memory at the address indicated by
ptr.

SYS_ENODEV 3 "(SYS_ENODEV): device not found"
The device being opened is not configured into the system.

SYS_EBUSY 4 "(SYS_EBUSY): device in use"
The device is already opened by the maximum number of users.

SYS_EINVAL 5 "(SYS_EINVAL): invalid parameter"
An invalid parameter was passed.

SYS_EBADIO 6 "(SYS_EBADIO): device failure"
The device was unable to support the I/O operation.

SYS_EMODE 7 "(SYS_EMODE): invalid mode"
An attempt was made to open a device in an improper mode; e.g., an
attempt to open an input device for output.

SYS_EDOMAIN 8 "(SYS_EDOMAIN): domain error"
Used by SPOX-MATH when type of operation does not match vector or filter
type.

SYS_ETIMEOUT 9 "(SYS_ETIMEOUT): timeout error"
Used by device drivers to indicate that reclaim timed out.

SYS_EEOF 10 "(SYS_EEOF): end-of-file error"
Used by device drivers to indicate the end of a file.

SYS_EDEAD 11 "(SYS_EDEAD): previously deleted object"
An attempt was made to use an object that has been deleted.

SYS_EBADOBJ 12 "(SYS_EBADOBJ): invalid object"
An attempt was made to use an object that does not exist.

SYS_ENOTIMPL 13 "(SYS_ENOTIMPL): action not implemented"
An attempt was made to use an action that is not implemented.

SYS_ENOTFOUND 14 "(SYS_ENOTFOUND): resource not found"
An attempt was made to use a resource that could not be found.

SYS_EUSER >=256 "(SYS EUSER): <user-defined string>"
User-defined error.
Function Callability and Error Tables A-11

A-12

Appendix B

C6000 DSP/BIOS Register Usage

This appendix provides tables describing the TMS320C6000TM register conventions in terms of
preservation across multi-threaded context switching and preconditions.

B.1 Overview. B–2
B.2 Register Conventions . B–2

Topic Page
B-1

Overview
B.1 Overview

In a multi-threaded application using DSP/BIOS, it is necessary to know
which registers can or cannot be modified. Furthermore, users need to
understand which registers need to be saved/restored across a function
call or an interrupt.

The following definitions describe the various possible register handling
behaviors:

❏ Scratch register. These registers are saved/restored by the HWI
dispatcher or HWI_enter/HWI_exit with temporary register bit masks.

❏ Preserved register. These registers are saved/restored during a
TSK context switch.

❏ Initialized register. These registers are set to a particular value
during HWI processing and restored to their incoming value upon
exiting to the interrupt routine.

❏ Read-Only register. These registers may be read but must not be
modified.

❏ Global register. These registers are shared across all threads in the
system. To make a temporary change, save the register, make the
change, and then restore it.

❏ Other. These registers do not fit into one of the categories above.

B.2 Register Conventions

Table B-1 Register and Status Bit Handling

Register Status Bit Register or Status Bit Name Type Notes

A0-A9,
B0-B9

General purpose registers Scratch

A10-A12,
A14-A15,
B10-B13

General purpose registers Preserved

A13 Frame pointer Preserved

B14 Data page pointer Initialized HWI sets to bss before
calling ISR

B15 Stack pointer Initialized HWI sets to HWI stack
before calling ISR
B-2

Register Conventions
A16-A31**,
B16-B31**

General purpose registers Scratch

AMR Addressing mode register Initialized HWI sets to 0 before call-
ing ISR

CSR GIE Global interrupt enable Global

PGIE Previous global interrupt enable Global

DCC Data cache control mode Preserved

PCC Program cache control mode Preserved

EN Endian bit Read-Only

SAT Saturation bit Scratch

PWRD Control power-down modes Global

Revision ID Revision ID Read-Only

CPU ID CPU ID Read-Only

IFR Interrupt flag register Read-Only

ISR Interrupt set register Other Cannot be read

ICR Interrupt clear register Other Cannot be read

IER Interrupt enable register Read-Only

ISTP Interrupt service table pointer Read-Only

IRP Interrupt return pointer Global Can be modified with inter-
rupts disabled.

NRP Non-maskable interrupt return
pointer

Read-Only

PCE1 Program counter, E1 phase Read-Only

FADCR* Rmode Rounding mode Global Currently DSP/BIOS does
not deal with this register.

UNDER Underflow status bit

INEX Exponent status bit

OVER Overflow status bit

INFO Signed infinity status bit

INVAL INVAL status bit

Register Status Bit Register or Status Bit Name Type Notes
C6000 DSP/BIOS Register Usage B-3

Register Conventions
DEN2 Denormalized number

DEN1 Denormalized number

NAN2 NaN number

NAN1 NaN number

FAUCR* DIV0 DIV0 status bit Global Currently DSP/BIOS does
not deal with this register.

UNORD UNORD status bit

UNDER Underflow status bit

INEX Exponent status bit

OVER Overflow status bit

INFO Signed infinity status bit

INVAL INVAL status bit

DEN2 Denormalized number

DEN1 Denormalized number

NAN2 NaN number

NAN1 NaN number

FMCR* Rmode Rounding mode Global Currently DSP/BIOS does
not deal with this register.

UNDER Underflow status bit

INEX Exponent status bit

OVER Overflow status bit

INFO Signed infinity status bit

INVAL INVAL status bit

DEN2 Denormalized number

DEN1 Denormalized number

NAN2 NaN number

NAN1 NaN number

GFPGFR** Galois Field Polynomial
Generator

Global Currently DSP/BIOS does
not deal with this register.

Register Status Bit Register or Status Bit Name Type Notes
B-4

Register Conventions
TSR+ GIE Global interrupt enable Global

SGIE Saved global interrupt enable Global

GEE Global exception enable Read-Only

XEN Maskable exception enable Read-Only

DBGM Emulator debug mask Read-Only

CXM Current execution mode Read-Only

INT Interrupt processing Read-Only
/ Other

DSP/BIOS does not main-
tain this C64x+ status bit.
Since DSP/BIOS does not
do a "return from interrupt"
for certain task switches,
your application should
not expect this bit to cor-
rectly indicate whether an
interrupt is currently being
processed.

EXC Exception processing Read-Only

SPLX SPLOOP executing Read-Only

IB Interrupt blocked Read-Only

ITSR+ Interrupt task state register Global

NTSR+ NMI/Exception task state register Global

EFR+ Exception flag register Read-Only

ECR+ Exception clear register Read-Only

IERR+ Internal exception cause register Read-Only

SSR+ Saturation status register Global

ILC+ Inner loop SPL buffer count Global

RILC+ Reload inner loop SPL buffer
count

Global

GPLYA+ GMPY polynomial for A side Scratch,
Preserve

GPLYB+ GMPY polynomial for B side Scratch,
Preserve

Register Status Bit Register or Status Bit Name Type Notes
C6000 DSP/BIOS Register Usage B-5

Register Conventions
Notes: * — Denotes registers available on the ‘C67x, ‘C67x+ to support floating
point operations.

** — Denotes registers available on the ‘C64x, ‘C67x+ only.

+ — Denotes registers available on the ‘C64x+ only.

The General purpose registers follow the 'C' compiler conventions. IRP
can be used as a scratch register only when interrupts are disabled. ITSR
and NTSR are identical copies of TSR, see TSR for details on each
individual status bit.

For the ‘C67x FADCR, FAUCR, and FMCR registers, the compiler
assumes the nearest rounding mode is used. This is assumed to be the
default mode at power-up. The compiler does not actually do anything to
set it up that way, nor does it ever write or read these registers. These
registers are completely under user control. Code may generate slightly
different results if you change these registers.

TSCL+ Low half of 64-bit time stamp
counter

Read-Only

TSCH+ High half of 64-bit time stamp
counter

Read-Only

DNUM+ DSP number Read-Only

DIER+ Debug interrupt enable register Global

Register Status Bit Register or Status Bit Name Type Notes
B-6

Appendix C

C64x+ Exception Support

This appendix provides describes support for C64x+ exception handling.

C.1 C64x+ Exception Support . C–2
C.2 Using the DSP/BIOS EXC Module . C–3
C.3 Data Types and Macros . C–6
C.4 EXC Module . C–7
C.5 _MPC Module . C–16

Topic Page
C-1

C64x+ Exception Support
C.1 C64x+ Exception Support

DSP/BIOS provides exception support for the C64x+ family of DSPs
through the EXC module. This module provides various handler functions
that print exception data to the system log. The handler functions also call
"user hook functions" at key locations. You can write hook functions to
extend the behavior of the EXC module. The EXC module also records
exception information for later retrieval by user code.

You can use DSP/BIOS exception support as-is; it provides useful
diagnostic information. You can also extend it or replace it altogether.

A key point is that an exception indicates a fatal error. Exception
processing should not attempt to return to the code that was interrupted.
Exception processing is essentially a dead-end for the system, and
should be limited to retrieving diagnostic information and/or shutting
down the system. DSP/BIOS exception support is based on this idea. As
soon as an exception is called, the “context” of HWI, SWI, and task
threads no longer exists. (If you want to extend exception handling to
include recovering from exceptions, you can write your own version of
EXC_dispatch and use the HWI dispatcher or HWI_enter/HWI_exit to
maintain “context” within exception handling.)

C.1.1 About C64x+ Exceptions

Exceptions are situations that trigger the NMI interrupt. The types of
exceptions are:

❏ Software-generated exceptions. System calls that generate a
SWE instruction are treated as exceptions. EXC_dispatch calls an
internal function to handle SWE exceptions.

❏ External exceptions. The C64x+ has a set of 128 system events.
These events can be routed to interrupts and handled by the
DSP/BIOS HWI and ECM modules. Alternatively, system events can
be routed to the exception combiner (whose output goes only to the
NMI pin). To cause an event to generate an exception, you must
enable it—for example, by calling EXC_evtExpEnable. The EXC
module doesn't enable exception generation for any individual
system event.

The EXC module handles external exceptions by routing them to
EXC_exceptionHandler, which calls the EXC_external API. This API
simply reports that an external exception occurred unless you write a
hook function to provides more detail about an exception type.

❏ Internal exceptions. These are handled directly by the CPU. They
are not related to events as are external exceptions. There is a CPU
register (IERR) to report information about them. These exceptions
C-2

Using the DSP/BIOS EXC Module
are routed to EXC_exceptionHandler, which calls the EXC_internal
API to handle them.

❏ Legacy NMI. These are routed to EXC_exceptionHandler, which
calls the EXC_nmi API to handle them.

C.2 Using the DSP/BIOS EXC Module

This section provides a general description and general usage guidelines
for DSP/BIOS C64x+ exception support. For further details, see Section
C.4, EXC Module.

Source code for the EXC module is provided in the src/exc subdirectory
of the DSP/BIOS installation.

The EXC module initializes DSP/BIOS to respond to C64x+ exceptions.
It does this by enabling the GEE and XEN bits in the TSR register, and
then installing an exception handler in the NMI vector. Once enabled,
GEE cannot be disabled without resetting the CPU. This initialization
allows internal exceptions to be recognized and routed to the NMI
handler and then processed by EXC_exceptionHandler.

See the TMS320C64x+ DSP Megamodule Reference Guide (SPRU871)
for information about exception-related registers.

C.2.1 Enabling and Disabling EXC Support

By default, the EXC module is enabled. To disable it, set the “Enable EXC
module exception processing” field in the HWI Manager Properties to
false. You can also disable the EXC module in a Tconf script with the
following statement:

bios.HWI.ENABLEEXC = false;

Note that the EXC module does not have its own “module” in the
configuration tools. It is, however, a module in the DSP/BIOS kernel. The
HWI module is simply used as a container for the single EXC
configuration property.

When enabled, EXC support configures the HWI_NMI object to run the
EXC_dispatch function. You may alternately choose to configure your
own function instead using the configuration tool. Source code for
EXC_dispatch is provided in the src/exc subdirectory of the DSP/BIOS
installation; you can use this as a starting point or an example.

If you use any EXC module APIs in your application source code, add the
following line to your source file:

#include <exc.h>
C64x+ Exception Support C-3

Using the DSP/BIOS EXC Module
C.2.2 Out-of-the-Box EXC Behavior

The EXC module prints messages to the system log named
LOG_system. This log’s output can be observed in CCStudio in a LOG
window named "Execution Graph Details". These messages are
intermixed with details of standard DSP/BIOS scheduling events and are
flagged in the Execution Graph itself with a blue box.

After all processing is finished, EXC calls SYS_abort to terminate the
system. In general, when an application lands in SYS_abort, you should
look in the "Execution Graph Details" window for a message related to
the abort.

By default, EXC processes only internal exceptions and legacy NMI
occurrences. It also prints and records general exception information,
such as the NRP (which points to the area where the exception
occurred). If you enable any external events to generate exceptions, EXC
doesn’t report those exceptions. You will need to create a hook function
that reports details about particular external events you enable.

C.2.3 Extending EXC Exception Processing

There are four EXC function hooks you can use to gain processing
control during exception processing. These hooks are:

❏ EXC_exceptionHook

❏ EXC_externalHook

❏ EXC_internalHook

❏ EXC_nmiHook

See Section C.4, EXC Module for details.

In addition, the _MPC APIs provide a _MPC_userHook hook.

If you want to further customize EXC module behavior, source code for
EXC_dispatch is provided in the exc_asm.s64P file in the src/exc
subdirectory of the DSP/BIOS installation. Source code for other EXC
functions is in the exc.c file in the same subdirectory.
C-4

Using the DSP/BIOS EXC Module
C.2.4 Interactions with the MPC Module

The DSP/BIOS MPC Module supports the C64x+ Memory Protection
Controllers. The MPC hardware generates exceptions when an access
that violates permissions occurs. The DSP/BIOS MPC module contains
code that reports permission violations.

See section 2.18, MPC Module, page 2-261 for information about
enabling the MPC module and using its APIs.

When enabled, the MPC module assigns its exception handling functions
(with a prefix of “_MPC”) to the EXC exception handling hooks.

The MPC module enables and handles only MPC-related events.
Specifically, enabling the MPC module causes the Program Memory
Controller (PMC), Data Memory Controller (DMC), and Unified Memory
Controller (UMC) CPU events to be enabled to generate exceptions. The
corresponding DMA events are not enabled.

If you want other exceptions to be generated, you need to enable those
system events and write functions to handle them. To support this, the
EXC module provides the APIs described in this appendix. Since the
MPC module takes control of the EXC function hooks, the MPC module
also provides a function hook that you can assign to handle additional
exception processing (see _MPC_userHook).

C.2.5 Retrieving General Exception Information

The following support routines gather information about the most recent
exception or MPC violation:

❏ EXC_getLastStatus

❏ _MPC_getLastMPFAR

❏ _MPC_getLastMPFSR

See Section C.4, EXC Module and Section C.5, _MPC Module for details.
C64x+ Exception Support C-5

Data Types and Macros
C.3 Data Types and Macros

The following types and macros are defined in exc.h, which your
application should include if you call EXC APIs.

typedef struct EXC_Status {
 Uint32 efr; /* copy of exception flag register (EFR) */
 Uint32 nrp; /* copy of NMI return pointer (NRP) */
 Uint32 ntsr; /* copy of TSR used by NMI processing (NTSR) */
 Uint32 ierr; /* copy of internal exception report register (IERR) */
} EXC_Status;

/* EFR (Exception Flag Register) bits */
#define EXC_EFRSXF 0x00000001
#define EXC_EFRIXF 0x00000002
#define EXC_EFREXF 0x40000000
#define EXC_EFRNXF 0x80000000

/* ECR (Exception Clear Register) bits */
#define EXC_ECRSXF EXC_EFRSXF
#define EXC_ECRIXF EXC_EFRIXF
#define EXC_ECREXF EXC_EFREXF
#define EXC_ECRNXF EXC_EFRNXF

/* TSR exception enable bits */
#define EXC_TSRGEE 0x00000004
#define EXC_TSRXEN 0x00000008

/* TSR Privilege Mode bits */
#define EXC_TSRCXMSV 0x00000000
#define EXC_TSRCXMUS 0x00000040

/* IERR (Internal Exception Report Register) bits */
#define EXC_IERRIFX 0x00000001
#define EXC_IERRFPX 0x00000002
#define EXC_IERREPX 0x00000004
#define EXC_IERROPX 0x00000008
#define EXC_IERRRCX 0x00000010
#define EXC_IERRRAX 0x00000020
#define EXC_IERRPRX 0x00000040
#define EXC_IERRLBX 0x00000080
#define EXC_IERRMS 0x00000100

/* MPC CPU Access Memory Protection Fault Events */
#define EXC_EVTPMCCMPA 120 /* PMC CPU fault */
#define EXC_EVTDMCCMPA 122 /* DMC CPU fault */
#define EXC_EVTUMCCMPA 124 /* UMC CPU fault */
#define EXC_EVTEMCCMPA 126 /* EMC CPU fault */
C-6

EXC Module
C.4 EXC Module

The EXC module supplies the following APIs:

❏ EXC_clearLastStatus. Clears latest exception status values.
❏ EXC_dispatch. Function run by HWI_NMI.
❏ EXC_evtEvtClear. Clears an event from the event flag register.
❏ EXC_evtExpEnable. Enables an event to generate an exception.
❏ EXC_exceptionHandler. Services non-software exceptions.
❏ EXC_exceptionHook. Hook fxn called by EXC_exceptionHandler.
❏ EXC_external. Handles exceptions external to the CPU.
❏ EXC_externalHook. Hook fxn called by EXC_external.
❏ EXC_getLastStatus. Gets latest exception status values.
❏ EXC_internal. Handles exceptions internal to the CPU.
❏ EXC_internalHook. Hook fxn called by EXC_internal.
❏ EXC_nmi. Handles legacy NMI exceptions.
❏ EXC_nmiHook. Hook fxn called by EXC_nmi.
C64x+ Exception Support C-7

EXC Module
C.4.1 EXC_dispatch

Syntax Void EXC_dispatch(Void);

Parameters None

Return None

Description When you enable EXC support, the DSP/BIOS HWI_NMI object is
configured to run the EXC_dispatch function. This function then handles
all types of NMIs (non-maskable interrupts). Its actions are determined by
the type of NMI that occurs. The types of NMIs are:

❏ Software-generated exceptions. System calls that generate a
SWE instruction are treated as exceptions. EXC_dispatch calls a
function to handle SWE exceptions. Currently, the only case
supported is a system call made by MPC_setPrivMode. The source
for this function is provided with the EXC_dispatch source code; you
can modify it to handle additional SWE instructions.

❏ Internal exceptions. These are routed to EXC_exceptionHandler,
which calls the EXC_internal API.

❏ External exceptions. These are MPC violations. These are routed
to EXC_exceptionHandler, which calls the EXC_external API. If both
the MPC and EXC modules are enabled, the _MPC hook function for
external exceptions reports MPC violations.

❏ Legacy NMI. These are routed to EXC_exceptionHandler, which
calls the EXC_nmi API.

Note that EXC_dispatch is not run by the HWI dispatcher and does not
use HWI_enter/HWI_exit. DSP/BIOS treats exceptions as “dead-end”
situations. You can customize the EXC_exceptionHandler and
EXC_dispatch functions to allow for recovery from exceptions.

Source code for EXC_dispatch is provided in the exc_asm.s64P file in
the src/exc subdirectory of the DSP/BIOS installation. Source code for
other EXC functions is in the exc.c file in the same subdirectory.

Constraints and
Calling Context

❏ This function should only be called as the function for the DSP/BIOS
HWI_NMI object.
C-8

EXC Module
C.4.2 EXC_exceptionHandler

Syntax Void EXC_exceptionHandler(Void);

Parameters None

Return None

Description EXC_exceptionHandler is called by EXC_dispatch to service exceptions
that aren't software induced. It performs the following actions:

1) Reads the EFR (Exception Flag Register) to determine which type of
exception to service (internal, external, or legacy NMI).

2) Prints the following information about the exception using LOG_error
(whose output goes to the "Execution Graph Details" window):

■ EFR value

■ NRP value

■ privilege mode (user/supervisor)

3) Records the following information in the EXC_Status structure for
later retrieval through a call to EXC_getLastStatus:

■ EXC_Status.efr

■ EXC_Status.nrp

■ EXC_Status.ntsr (contains user/supervisor mode)

4) Calls the hook function pointed to by the EXC_exceptionHook
pointer. This hook function must conform to the following prototype:

 Void (*EXC_exceptionHook)(Void)

5) Calls the default handler for the type of interrupt. This will be either
EXC_internal, EXC_external, or EXC_nmi.

6) Terminates the system by calling SYS_abort.

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.
C64x+ Exception Support C-9

EXC Module
C.4.3 EXC_exceptionHook

Syntax Void (*EXC_exceptionHook)(Void);

Parameters None

Return None

Description If EXC_exceptionHook points to a function, that function is called by
EXC_exceptionHandler after it prints the pertinent exception information
and before it calls the default handling function for the NMI type. See
EXC_exceptionHandler for further details.

For the MPC module, the default EXC_exceptionHook function is
_MPC_exceptionHandler.

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.

C.4.4 EXC_internal

Syntax Void EXC_internal(Void);

Parameters None

Return None

Description EXC_internal handles exceptions that are internal to the CPU. That is,
they are neither SWE, nor external to the CPU, nor legacy NMI.

This function is called by EXC_exceptionHandler. It performs the
following actions:

1) Decodes the IERR register and prints the information contained
therein using LOG_error.

2) Calls the hook function pointed to by the EXC_internalHook pointer.
This hook function must conform to the following prototype:

 Void (*EXC_internalHook)(Void)

3) Records the EXC_Status.ierr value for later retrieval and inspection
by the user (with a call to EXC_getLastStatus).

4) Clears the IERR and returns.

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.
C-10

EXC Module
C.4.5 EXC_internalHook

Syntax Void (*EXC_internalHook)(Void);

Parameters None

Return None

Description If EXC_internalHook points to a function, that function is called by
EXC_internal after it prints information from the IERR register. See
EXC_internal for further details.

For the MPC module, the default EXC_internalHook function is
_MPC_internalHandler.

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.

C.4.6 EXC_external

Syntax Void EXC_external(Void);

Parameters None

Return None

Description EXC_external handles exceptions that are external to the CPU. That is,
they are neither SWE, nor internal to the CPU, nor legacy NMI.

This function is called by EXC_exceptionHandler. It performs the
following actions:

1) Prints a message using LOG_error that indicates an external
exception occurred.

2) Calls the hook function pointed to by the EXC_externalHook pointer.
This hook function must conform to the following prototype:

 Void (*EXC_externalHook)(Void)

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.
C64x+ Exception Support C-11

EXC Module
C.4.7 EXC_externalHook

Syntax Void (*EXC_externalHook)(Void);

Parameters None

Return None

Description If EXC_externalHook points to a function, that function is called by
EXC_external after it prints information to indicate that an exception
occurred. See EXC_external for further details.

For the MPC module, the default EXC_externalHook function is
_MPC_externalHandler.

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.

C.4.8 EXC_nmi

Syntax Void EXC_nmi(Void);

Parameters None

Return None

Description EXC_nmi handles legacy NMI exceptions. That is, they are neither SWE,
nor internal or external to the CPU.

This function is called by EXC_exceptionHandler. It performs the
following actions:

1) Prints a message using LOG_error that indicates a legacy NMI
occurred.

2) Calls the hook function pointed to by the EXC_nmiHook pointer. This
hook function must conform to the following prototype:

 Void (*EXC_nmiHook)(Void)

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.
C-12

EXC Module
C.4.9 EXC_nmiHook

Syntax Void (*EXC_nmiHook)(Void);

Parameters None

Return None

Description If EXC_nmiHook points to a function, that function is called by EXC_nmi
after it prints information to indicate that an exception occurred. See
EXC_nmi for further details.

For the MPC module, the default EXC_nmiHook function is FXN_F_nop,
which does nothing.

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.

C.4.10 EXC_getLastStatus

Syntax EXC_Status EXC_getLastStatus(Void);

Parameters None

Return EXC_Status status; /* contains last values of exception registers */

Description EXC_getLastStatus retrieves the last recorded values of the exception
registers that correspond to the members of the EXC_Status data type.
These values are overwritten when the next exception is processed. You
can clear the EXC_status fields by calling EXC_clearLastStatus.

The EXC_Status data type is as follows:

typedef struct EXC_Status {
 Uint32 efr; /* copy of exception flag register (EFR) */
 Uint32 nrp; /* copy of NMI return pointer (NRP) */
 Uint32 ntsr; /* copy of TSR used by NMI processing (NTSR) */
 Uint32 ierr; /* copy of internal exception report register (IERR) */
} EXC_Status;

Constraints and
Calling Context

❏ This function is usually called in the context of exception handling. If
you extend exception handling support to include recovering from
exceptions, this function may be called outside the context of
exception handling.
C64x+ Exception Support C-13

EXC Module
C.4.11 EXC_clearLastStatus

Syntax Void EXC_clearLastStatus(Void);

Parameters None

Return None

Description EXC_clearLastStatus clears the last recorded values of exception
registers that correspond to the members of the EXC_Status data type.

These values will be set to new values when the next exception is
processed. They may be retrieved by way of the API EXC_getLastStatus.

You can use this API along with EXC_getLastStatus to determine
whether a new exception has occurred since the time
EXC_clearLastStatus was called.

Constraints and
Calling Context

❏ This function is usually called in the context of exception handling. If
you extend exception handling support to include recovering from
exceptions, this function may be called outside the context of
exception handling.

C.4.12 EXC_evtExpEnable

Syntax Void EXC_evtExpEnable(Uns event);

Parameters Uns event /* event number */

Return None

Description EXC_evtExpEnable enables the specified event type to generate the
EXCEP hardware exception (which is routed to NMI). You must call this
function in order for a particular type of event to be recognized by the
exception framework.

The EXC module provides constants for the following event types. See
the “System Event Mapping“ table in the TMS320C64x+ DSP
Megamodule Reference Guide (SPRU871) for a list of event numbers.

/* MPC CPU Access Memory Protection Fault Events */
#define EXC_EVTPMCCMPA 120 /* PMC CPU fault */
#define EXC_EVTDMCCMPA 122 /* DMC CPU fault */
#define EXC_EVTUMCCMPA 124 /* UMC CPU fault */
#define EXC_EVTEMCCMPA 126 /* EMC CPU fault */

The MPC module enables the first three types of CPU faults as hardware
exceptions, but does not enable the EXC_EVTEMCCMPA fault.

Constraints and
Calling Context

❏ none
C-14

EXC Module
C.4.13 EXC_evtEvtClear

Syntax Void EXC_evtEvtClear(Uns event);

Parameters Uns event /* event number */

Return None

Description EXC_evtEvtClear clears the specified event from the event flag register
(EVTFLAGx). It must be called in order for that event to generate a new
exception.

This function is for external exceptions only. You may want to use it if you
write your own EXC_externalHook function. It is called by
_MPC_externalHandler.

Constraints and
Calling Context

❏ This function is usually called in the context of exception handling. If
you extend exception handling support to include recovering from
exceptions, this function may be called outside the context of
exception handling.
C64x+ Exception Support C-15

_MPC Module
C.5 _MPC Module

The MPC module provides the following handlers, hooks, and functions:

❏ _MPC_exceptionHandler. Assigned to EXC_exceptionHook.

❏ _MPC_getLastMPFAR. Gets MPFAR for a memory controller.

❏ _MPC_getLastMPFSR. Gets MPFSR for a memory controller.

❏ _MPC_externalHandler. Assigned to EXC_externalHook.

❏ _MPC_internalHandler. Assigned to EXC_internalHook.

❏ _MPC_userHook. Hook for user-defined function.

C.5.1 _MPC_exceptionHandler

Syntax Void _MPC_exceptionHandler(Void);

Parameters None

Return None

Description _MPC_exceptionHandler is assigned to the EXC_exceptionHook
function pointer when you enable the MPC module. It performs the
following actions:

1) Records exception status (using EXC_getLastStatus) in the structure
_MPC_excStatus, which is of type EXC_Status.

2) Calls the user-settable hook function pointer (_MPC_userHook).

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.

C.5.2 _MPC_internalHandler

Syntax Void _MPC_internalHandler(Void);

Parameters None

Return None

Description _MPC_internalHandler is assigned to the EXC_internalHook function
pointer when you enable the MPC module. It is a minimal function that
only records exception status using EXC_getLastStatus.

Typically the MPC module doesn't cause any internal exceptions, but
certain MPC exceptions can get flagged as an internal exception when
they are caught early by the CPU instead of by an MPC module.

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.
C-16

_MPC Module
C.5.3 _MPC_externalHandler

Syntax Void _MPC_externalHandler(Void);

Parameters None

Return None

Description _MPC_externalHandler is assigned to the EXC_externalHook function
pointer when you enable the MPC module. This is where the bulk of MPC
exception processing occurs. This function performs the following
actions:

1) Inspects all known MPC controllers for violations and prints any
violations using LOG_error.

2) Records all pertinent information regarding the violation for later
retrieval with the _MPC_getLastMPFAR and _MPC_getLastMPFSR
APIs.

3) Clears the event that caused the exception using EXC_evtEvtClear
and returns.

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.

C.5.4 _MPC_userHook

Syntax Void (*_MPC_userHook)(Void);

Parameters None

Return None

Description _MPC_userHook is called by _MPC_exceptionHandler. This is a user-
settable hook function, so you can replace it with your own function if you
like. See _MPC_exceptionHandler for further details.

This hook function is called prior to handling the actual MPC violation. If
you want the default _MPC_exceptionHandler to handle the violation,
don't perturb the existing violation information in the MPC hardware
registers.

The default _MPC_userHook function is FXN_F_nop, which does
nothing.

Constraints and
Calling Context

❏ This function should only be called in the context of exception
handling.
C64x+ Exception Support C-17

_MPC Module
C.5.5 _MPC_getLastMPFAR

Syntax Uint32 _MPC_getLastMPFAR(Uns id);

Parameters Uns id /* _MPC_PMC, _MPC_DMC, or _MPC_UMC */

Return Uint32 mpfarReg /* Last observed MPFAR register for controller */

Description _MPC_getLastMPFAR returns the latest observed copy of the MPC
register MPFAR (Memory Protection Fault Address Register). This
register’s value is recorded by _MPC_externalHandler.

Each peripheral that generates memory protection faults provides an
MPFAR register. The id parameter indicates whether to get the MPFAR
for the Program Memory Controller (PMC), Data Memory Controller
(DMC), or Unified Memory Controller (UMC). The _mpc.h file defines the
following constants for use with the id parameter:

_MPC_DMC
_MPC_PMC
_MPC_UMC

Constraints and
Calling Context

❏ This function is usually called during exception handling. If you
extend exception handling to include recovering from exceptions, this
function may be called outside the context of exception handling.

C.5.6 _MPC_getLastMPFSR
Syntax Uint32 _MPC_getLastMPFSR(Uns id);

Parameters Uns id /* _MPC_PMC, _MPC_DMC, or _MPC_UMC */

Return Uint32 mpfsrReg /* Last observed MPFSR register for controller */

Description _MPC_getLastMPFSR returns the latest observed copy of the MPC
register MPFSR (Memory Protection Fault Status Register). This
register’s value is recorded by _MPC_externalHandler.

Each peripheral that generates memory protection faults provides an
MPFSR register. The id parameter indicates whether to get the MPFSR
for the Program Memory Controller (PMC), Data Memory Controller
(DMC), or Unified Memory Controller (UMC). The _mpc.h file defines the
following constants for use with the id parameter:

_MPC_DMC
_MPC_PMC
_MPC_UMC

Constraints and
Calling Context

❏ This function is usually called during exception handling. If you
extend exception handling to include recovering from exceptions, this
function may be called outside the context of exception handling.
C-18

This is a draft version printed from file: apirefIX.fm on 2/20/09
Index
64Plus cache support 2-136

A
A registers, conventions for B-2
abort function 2-457
aborting program 2-458
allocators

for messages sent by MSGQ module 2-275
interface for 2-327

AMR register, conventions for B-3
AND operation

signed integers 2-3
unsigned integers 2-4

Arg data type 1-5
ArgToInt macro 2-514
ArgToPtr macro 2-514
arguments for functions 1-5
assembly language

callable functions (DSP/BIOS) A-2
calling C functions from 1-4

atexit function 2-514
ATM module 2-2

function callability A-2
functions in, list of 1-6, 2-2

ATM_andi function 2-3
ATM_andu function 2-4
ATM_cleari function 2-5
ATM_clearu function 2-6
ATM_deci function 2-7
ATM_decu function 2-8
ATM_inci function 2-9
ATM_incu function 2-10
ATM_ori function 2-11
ATM_oru function 2-12
ATM_seti function 2-13
ATM_setu function 2-14
atomic queue manager 2-340
average statistics for data series 2-417

B
B registers, conventions for B-2
BCACHE module 2-15

functions in, list of 1-6, 2-15
BCACHE_getMar function 2-17
BCACHE_getMode function 2-18
BCACHE_getSize function 2-19
BCACHE_inv function 2-20
BCACHE_invL1pAll function 2-21
BCACHE_setMar function 2-22
BCACHE_setMode function 2-24
BCACHE_setSize function 2-25
BCACHE_wait function 2-26
BCACHE_wb function 2-27
BCACHE_wbAll function 2-28
BCACHE_wbInv function 2-29
BCACHE_wbInvAll function 2-30
BIOS library

instrumented or non-instrumented 2-133
board clock frequency 2-131
board input clock 2-138
board name 2-131
Bool data type 1-5
Boolean values 1-5
BUF module 2-31

configuration properties 2-31
function callability A-2
functions in, list of 1-7, 2-31
global properties 2-33
object properties 2-33

BUF_alloc function 2-35
BUF_create function 2-36
BUF_delete function 2-38
BUF_free function 2-39
BUF_maxbuff function 2-40
BUF_stat function 2-41
buffer pool

allocating fixed-size buffer 2-35
creating 2-36
deleting 2-38
fixed-size buffers 2-31
freeing fixed-size buffer 2-39
maximum number of buffers 2-40
status of 2-41

buffered pipe manager 2-307
buffers, splitting 2-115
bypass mode 2-18
Index-1

 Index
C
C functions

calling from assembly language 1-4
C_library_stdlib 2-514
C62 module 2-42

function callability A-3
functions in, list of 1-7

C62_disableIER function 2-43
C62_enableIER function 2-45
C62_plug function 2-49
C64 module 2-42

function callability A-3
C64_disableIER function 2-44
C64_enableIER function 2-47
C64_plug function 2-50
C64x+ interrupt controller 2-120
c6711 boards

memory segments 2-249
c6x EVM boards

memory segments 2-249
cache

invalidate 2-20, 2-21, 2-29, 2-30
operations 2-16
size 2-19, 2-25
writeback 2-27, 2-28, 2-29, 2-30

cache mode 2-133
cache support

64Plus 2-136
cache, L1 and L2 2-15
callability of functions A-2
calling context (see context)
calloc function 2-514

not callable from SWI or HWI A-10
channels (see communication channels; data chan-

nels; host channels)
character, outputting 2-470
class driver 2-74
CLK module 2-51

checking calling context 2-201
configuration properties 2-51
function callability 2-177, A-3
functions in, list of 1-7, 2-51
global properties 2-55
object properties 2-59
timer for, driving PRD ticks 2-333, 2-334
trace types for 2-471

CLK_countspms function 2-61
CLK_cpuCyclesPerHtime function 2-62
CLK_cpuCyclesPerLtime function 2-63
CLK_F_isr function 2-55
CLK_gethtime function 2-64
CLK_getltime function 2-65
CLK_getprd function 2-66
CLK_reconfig function 2-67

CLK_start function 2-69
CLK_stop function 2-70
clock function

not callable from SWI or HWI A-10
clocks (see clock domains; real-time clock; system

clock; timer)
communication channels

closing 2-153
control call on 2-150
opening 2-151, 2-155

consumer, of data pipe 2-309
context

CLK, checking for 2-201
HWI, checking for 2-201
SWI, checking for 2-446
switching, functions allowing A-2
switching, register usage and 1-4

conversion specifications for formatted data 2-462,
2-464, 2-466, 2-468

count statistics for data series 2-417
counts per millisecond, timer 2-61
CPU clock domains (see clock domains)
CPU cycles

converting high-resolution time to 2-62
converting low-resolution time to 2-63

CPU frequency 2-139, 2-142
CSR register, conventions for B-3

D
data channels

busy status, checking 2-360
initializing 2-361
initializing for output 2-362
input, disabling 2-363
input, enabling 2-365
input, number of MADUs read from 2-371
input, reading from 2-369, 2-370
input, status of 2-367
output, disabling 2-364
output, enabling 2-366
output, status of 2-368
output, writing to 2-372

data pipes 2-307
allocating empty frame from 2-313
getting frame from 2-316
number of frames available to read 2-318
number of frames available to write 2-321
number of words written, setting 2-326
putting frame in 2-324
recycling frame that has been read to 2-315
writerAddr point of, getting 2-320

data types 1-5
Arg 1-5
Index-2

Index
Bool 1-5
EnumInt 1-5
EnumString 1-5
Extern 1-5
Int16 1-5
Int32 1-5
Numeric 1-5
Reference 1-5
String 1-5

default values
for properties 1-5

DEV module 2-71
configuration properties 2-73
function callability A-3
functions in, list of 1-8, 2-71
object properties 2-74
properties 2-74

DEV_createDevice function 2-76
DEV_deleteDevice function 2-79
DEV_match function 2-80
device

closing 2-81
control operation of 2-82
creating 2-76
deleting 2-79
idling 2-83
initializing 2-84
matching with driver 2-80
opening 2-87
readiness of, checking 2-88
retrieving buffer from 2-89
sending buffer to 2-85

device drivers 2-71
DGN driver 2-91
DGS driver 2-96
DHL driver 2-100
DIO adapter 2-104
DNL driver 2-107
DOV driver 2-108
DPI driver 2-111
DST driver 2-115
DTR driver 2-117
list of 2-74
matching device with 2-80

device table 2-80
device-dependent control operations, performing 2-

396
DGN driver 2-74, 2-91

object properties 2-92
DGS driver 2-74, 2-96
dgs.h file 2-97
DGS_Params structure 2-96
DHL driver 2-74, 2-100

global properties 2-102
object properties 2-102

DIER register, conventions for B-6
DIO adapter 2-74, 2-104

configuration properties for 2-104
global properties 2-105
object properties 2-106

DMA channel 2-49
DNL driver 2-74, 2-107
DNUM register, conventions for B-6
DOV driver 2-74, 2-108
DPI driver 2-74, 2-111

object properties 2-113
drivers (see device drivers)
DSP Endian Mode 2-132
DSP speed 2-131
DSP/BIOS functions, list of 1-6
DSP/BIOS modules, list of 1-2
DSP/BIOS version 2-141
DST driver 2-74, 2-115
DTR driver 2-74, 2-117
dtr.h file 2-118
DTR_multiply function 2-117
DTR_multiplyInt16 function 2-117
DTR_Params structure 2-118
Dxx_close function 2-81
Dxx_ctrl function 2-82
Dxx_idle function 2-83
Dxx_init function 2-84
Dxx_issue function 2-85
Dxx_open function 2-87
Dxx_ready function 2-88
Dxx_reclaim function 2-89

E
ECM module 2-120

configuration properties 2-120
functions in, list of 1-9, 2-120
global properties 2-122
object properties 2-122

ECM_disableEvent function 2-124
ECM_dispatch function 2-125
ECM_dispatchPlub function 2-127
ECM_enableEvent function 2-128
ECR register, conventions for B-5
EFR register, conventions for B-5
empty devices 2-107
endian mode 2-132
enumerated integers 1-5
enumerated strings 1-5
EnumInt data type 1-5
EnumString data type 1-5
environment for HOOK and TSK objects 2-167
environment pointer for HOOK and TSK objects 2-

168
Index-3

 Index
error condition
flagging 2-460

error function 2-457
error handling

error codes A-11
MSGQ module 2-302

error message, writing to system log 2-220
error number for tasks 2-497
event combiner 2-120

configuring 2-127
handling functions 2-125

events
mapping 2-196
scheduling functions based on 2-333
tracing 2-471

EXC module C-2, C-7
functions in, list of 1-9

EXC_clearLastStatus function C-14
EXC_dispatch function C-8
EXC_evtEvtClear function C-15
EXC_evtExpEnable function C-14
EXC_exceptionHandler function C-9
EXC_exceptionHook function C-10
EXC_external function C-11
EXC_externalHook function C-12
EXC_getLastStatus function C-13
EXC_internal function C-10
EXC_internalHook function C-11
EXC_nmi function C-12
EXC_nmiHook function C-13
exception handling C-2
exit function 2-457, 2-514
exit handler

stacking 2-459
Extern data type 1-5

F
f32toi16 function 2-98
FADCR register, conventions for B-3
false/true values 1-5
fatal error C-2
FAUCR register, conventions for B-4
fixed-size buffers

allocating 2-35
freeing 2-39
maximum number of 2-40
pools of 2-31

FMCR register, conventions for B-4
formatted data, outputting 2-462, 2-464, 2-466, 2-

468
fprintf function

not callable from SWI or HWI A-10
frame

available to read to, getting number of 2-318
available to write, getting number of 2-321
getting from pipe 2-316
number of words in, getting 2-319
number of words that can be written to 2-322
putting in pipe 2-324
recycling 2-315
size and address of, determining 2-323

free function 2-514
not callable from SWI or HWI A-10

freeze mode 2-18
functions

arguments for 1-5
callability of A-2
calling conventions for 1-4
external 1-5
list of 1-6
naming conventions for 1-4

G
gather/scatter driver 2-96
GBL module 2-129

configuration properties 2-129
function callability A-4
functions in, list of 1-9, 2-129
global properties 2-131

GBL_getClkin function 2-138
GBL_getFrequency function 2-139
GBL_getProcId function 2-140
GBL_getVersion function 2-141
GBL_setFrequency function 2-142
GBL_setProcId function 2-143
Gconf

underscore preceding C function names 1-4, 2-60,
2-205, 2-430

generators 2-91
getenv function 2-514

not callable from SWI or HWI A-10
GFPGFR register, conventions for B-4
GIO module 2-144

configuration properties 2-146
function callability A-4
functions in, list of 1-10, 2-144
global properties 2-147
object properties 2-148

GIO_abort function 2-149
GIO_control function 2-150
GIO_create function 2-151
GIO_delete function 2-153
GIO_flush function 2-154
GIO_new function 2-155
GIO_read function 2-157
GIO_submit function 2-159
Index-4

Index
GIO_write function 2-161
global settings 2-129
GPLYA register, conventions for B-5
GPLYB register, conventions for B-5

H
hardware interrupts 2-174

callable functions A-2
context of, determining if in 2-201
disabled, manipulating variables while 2-2
disabling 2-186
enabling 2-191
plugging dispatcher 2-188
restoring context before interrupt 2-197
restoring global interrupt enable state 2-202
saving context of 2-193
saving or restoring registers across B-2
target-specific, disabling 2-43, 2-44
target-specific, enabling 2-45, 2-47
target-specific, enabling and disabling 2-42

hardware registers
MEM module and 2-240

hardware timer counter register ticks 2-51
heap, address 2-255
high-resolution time 2-51, 2-52, 2-54

converting to CPU cycles 2-62
getting 2-64

hook functions 2-163
HOOK module 2-163

configuration properties 2-163
function callability A-4
functions in, list of 1-10, 2-163
object properties 2-165
properties 2-165

HOOK_getenv function 2-167
HOOK_setenv function 2-168
host channel manager 2-169
host link driver 2-74, 2-100
HST module 2-169

configuration properties 2-169
function callability A-4
functions in, list of 1-10, 2-169
global properties 2-170
object properties 2-171

HST object 2-100
HST_getpipe function 2-173
HWI module 2-174

configuration properties 2-174
function callability A-4
functions in, list of 1-11, 2-174
global properties 2-179
object properties 2-180
statistics units for 2-417

HWI_applyWugenMasks function 2-185
HWI_disable function 2-186
HWI_disableWugen function 2-187
HWI_dispatchplug function 2-188
HWI_enable function 2-191
HWI_enableWugen function 2-192
HWI_enter function 2-177, 2-193
HWI_eventMap function 2-196
HWI_exit function 2-177, 2-197
HWI_getWugenMasks function 2-199
HWI_ierToWugenMasks function 2-200
HWI_isHWI function 2-201
HWI_NMI object C-8
HWI_restore function 2-202

I
I/O availability, scheduling functions based on 2-333
i16tof32 function 2-98
i16toi32 function 2-98
i16tou8 function 2-98
i32toi16 function 2-98
ICR register, conventions for B-3
IDL module 2-203

configuration properties 2-203
function callability A-5
functions in, list of 1-11, 2-203
global properties 2-204
object properties 2-205

IDL_run function 2-206
idle functions, running 2-206
idle thread manager 2-203
IER (Interrupt Enable Register)

disable interrupts using 2-43, 2-44
enable interrupts using 2-45

IER register, conventions for B-3
IERR register C-2
IERR register, conventions for B-5
IFR register, conventions for B-3
ILC register, conventions for B-5
initialization 2-163
input channels

declaring 2-361
disabling 2-363
enabling 2-365
number of MADUs read from 2-371
reading from 2-369, 2-370
status of, determining 2-367

input streams 2-386
Input/Output

aborting 2-149
closing communication channel 2-153
control call on communication channel 2-150
flushing input and output channels 2-154
Index-5

 Index
opening communication channel 2-151, 2-155
submitting GIO packet 2-159
synchronous read 2-157
synchronous write 2-161

INT status bit B-5
Int16 data type 1-5
Int32 data type 1-5
integers

enumerated 1-5
unsigned 1-5

interface for allocators 2-327
interrupt controller 2-120
Interrupt Enable Register

disable interrupts using 2-43, 2-44
enable interrupts using 2-45

interrupt selection number 2-121
interrupt selector 2-120
Interrupt Service Fetch Packet 2-49, 2-50
interrupt service routines (see hardware interrupts)
Interrupt Service Table 2-49, 2-50
interrupt threads 2-429
interrupt vector, plugging 2-42, 2-49, 2-50
invalidate cache 2-16
IOM model for device drivers 2-71
IRP register, conventions for B-3
ISFP (Interrupt Service Fetch Packet) 2-49, 2-50
ISR epilog 2-197
ISR prolog 2-193
ISR register, conventions for B-3
ISRs

disabling 2-124
enabling 2-128
handling 2-125

IST (Interrupt Service Table) 2-49, 2-50
ISTP register, conventions for B-3
ITSR register, conventions for B-5

L
L1 cache 2-15
L1D cache 2-16, 2-136
L1P cache 2-16, 2-136
L2 cache 2-15, 2-16, 2-136
L2 cache mode 2-134
L2 memory settings 2-133, 2-134
L2 priority queues 2-135
L2 requestor priority 2-135
L2 transfer requests 2-135
L2ALLOC queues 2-135
LCK module 2-207

configuration properties 2-207
function callability A-5
functions in, list of 1-11, 2-207
global properties 2-207

object properties 2-208
LCK_create function 2-209
LCK_delete function 2-210
LCK_pend function 2-211

thread restrictions for 2-515
LCK_post function 2-213

thread restrictions for 2-515
load addresses 2-245
localcopy function 2-98
LOG module 2-214

configuration properties 2-214
function callability A-5
functions in, list of 1-12, 2-214
global properties 2-215
object properties 2-216

LOG_disable function 2-218
LOG_enable function 2-219
LOG_error function 2-220
LOG_event function 2-221
LOG_event5 function 2-222
LOG_message function 2-224
LOG_printf function 2-225
LOG_printf4 function 2-228
LOG_reset function 2-230
low-resolution time 2-51, 2-52, 2-53

converting to CPU cycles 2-63
getting 2-65
restarting 2-69
stopping 2-70

M
MADUs 2-239
mailbox

clear bits from 2-432, 2-434
creating 2-233
decrementing 2-437
deleting 2-234
get value of 2-443
incrementing 2-445
OR mask with value in 2-447, 2-448
posting message to 2-236
waiting for message from 2-235

mailbox manager 2-231
main function

calling context 2-201
malloc function 2-514

not callable from SWI or HWI A-10
MAR register

getting 2-17, 2-22
MAR registers 2-134, 2-136
maskable CPU interrupts 2-120
maximum statistics for data series 2-417
MBX module 2-231
Index-6

Index
configuration properties 2-231
function callability A-5
functions in, list of 1-12, 2-231
global properties 2-232
object properties 2-232

MBX_create function 2-233
MBX_delete function 2-234
MBX_pend function 2-235
MBX_post function 2-236
MEM module 2-237

configuration properties 2-237
function callability A-5
functions in, list of 1-12, 2-237
global properties 2-240
object properties 2-247

MEM_alloc function 2-250
MEM_define function 2-252
MEM_free function 2-254
MEM_getBaseAddress function 2-255
MEM_increaseTableSize function 2-256
MEM_redefine function 2-257
MEM_stat function 2-258
MEM_undefine function 2-259
MEM_valloc function 2-260
memory block

freeing 2-254
increasing 2-256

memory segment manager 2-237
memory segments

allocating and initializing 2-260
allocating from 2-250
c6711 boards 2-249
c6x EVM boards 2-249
defining 2-252
existing, redefining 2-257
status of, returning 2-258
undefining 2-259

message log 2-214
appending formatted message to 2-225, 2-228
disabling 2-218
enabling 2-219
resetting 2-230
writing unformatted message to 2-221, 2-222

message queues 2-274
closing 2-282
determining destination queue for message 2-287
finding 2-294
number of messages in 2-283
open, finding 2-292
opening 2-296
placing message in 2-299
receiving message from 2-285
releasing 2-301

messages
allocating 2-281

determining destination message queue of 2-287
freeing 2-284
ID for, setting 2-304
ID of, determining 2-288
number of, in message queue 2-283
placing in message queue 2-299
receiving from message queue 2-285
reply destination of, determining 2-290
reply destination of, setting 2-306
size of, determining 2-289

messaging, multi-processor 2-271
mini-drivers 2-104

deleting 2-153
minit function

not callable from SWI or HWI A-10
modules

_MPC module C-16
ATM module 2-2
BCACHE module 2-15
BUF module 2-31
C62 module 2-42
C64 module 2-42
CLK module 2-51
DEV module 2-71
ECM module 2-120
EXC module C-7
functions for, list of 1-6
GBL module 2-129
GIO module 2-144
HOOK module 2-163
HST module 2-169
HWI module 2-174
IDL module 2-203
LCK module 2-207
list of 1-2
LOG module 2-214
MBX module 2-231
MEM module 2-237
MPC module 2-261
MSGQ module 2-271
PIP module 2-307
POOL module 2-327
PRD module 2-332
QUE module 2-340
SEM module 2-373
SIO module 2-386
STS module 2-416
SWI module 2-426
SYS module 2-455
trace types for 2-471
TRC module 2-471
TSK module 2-476

_MPC module C-16
functions in, list of 1-13

MPC module 2-261
Index-7

 Index
configuration properties 2-261
exception handling C-5
functions in, list of 1-13, 2-261
global properties 2-263

_MPC_exceptionHandler function C-16
_MPC_externalHandler function C-17
_MPC_getLastMPFAR function C-18
_MPC_getLastMPFSR function C-18
MPC_getPA function 2-264
MPC_getPageSize function 2-265
MPC_getPrivMode function 2-266, 2-270
_MPC_internalHandler function C-16
MPC_setBufferPA function 2-267
MPC_setPA function 2-269
_MPC_userHook function C-17
MSGQ API 2-274, 2-275
MSGQ module 2-271

configuration properties 2-273
function callability A-6
functions in, list of 1-13, 2-271
global properties 2-280
internal errors, handling 2-302
static configuration 2-276

MSGQ_alloc function 2-281
MSGQ_close function 2-282
MSGQ_count function 2-283
MSGQ_free function 2-284
MSGQ_get function 2-285
MSGQ_getAttrs function 2-286
MSGQ_getDstQueue function 2-287
MSGQ_getMsgId function 2-288
MSGQ_getMsgSize function 2-289
MSGQ_getSrcQueue function 2-290
MSGQ_isLocalQueue function 2-291
MSGQ_locate function 2-292
MSGQ_locateAsync function 2-294
MSGQ_open function 2-296
MSGQ_put function 2-299
MSGQ_release function 2-301
MSGQ_setErrorHandler function 2-302
MSGQ_setMsgId function 2-304
MSGQ_setSrcQueue function 2-306
multiple processors 2-143
multiprocessor application

converting single-processor application to 2-113
multi-processor applications 2-143
multi-processor messaging 2-271

N
naming conventions

functions 1-4
properties 1-5

NMI exceptions C-3

NMI functions
calling HWI functions 2-177

notifyReader function 2-309
PIP API calls and 2-178

notifyWriter function 2-309
NRP register, conventions for B-3
NTSR register, conventions for B-5
null driver 2-107
Numeric data type 1-5

O
object references

properties holding 1-5
on-chip timer (see timer)
operations (see functions)
OR operation

signed integers 2-11
unsigned integers 2-12

output channels
declaring 2-362
disabling 2-364
enabling 2-366
status of, determining 2-368
writing to 2-372

output streams 2-386
outputting formatted data 2-462, 2-464, 2-466, 2-468
outputting single character 2-470
overlap driver 2-108

P
packing/unpacking ratio, DGS driver 2-96
PCE1 register, conventions for B-3
period register

value of 2-66
periodic function

starting 2-337
stopping 2-338

periodic function manager 2-332
periodic rate 2-52
PIP module 2-307

configuration properties 2-308
function callability A-6
functions in, list of 1-14, 2-307
global properties 2-310
object properties 2-310
statistics units for 2-417
trace types for 2-471

PIP_alloc function 2-313
PIP_free function 2-309, 2-315
PIP_get function 2-316
PIP_getReaderAddr function 2-317
PIP_getReaderNumFrames function 2-318
Index-8

Index
PIP_getReaderSize function 2-319
PIP_getWriterAddr function 2-320
PIP_getWriterNumFrames function 2-321
PIP_getWriterSize function 2-322
PIP_peek function 2-323
PIP_put function 2-309, 2-324
PIP_setWriterSize function 2-326
pipe driver 2-74, 2-111
pipe manager, buffered 2-307
pipe object 2-173
pipes

allocating empty frame from 2-313
get readerAddr pointer of 2-317
getting frame from 2-316
number of frames available to read 2-318
number of frames available to write 2-321
number of words written, setting 2-326
putting frame in 2-324
recycling frame that has been read to 2-315
writerAddr point of, getting 2-320

POOL module 2-327
configuration properties 2-327
functions in, list of 2-327
global properties 2-331

PRD module 2-332
configuration properties 2-332
function callability A-7
functions in, list of 1-15, 2-332
global properties 2-333
object properties 2-334
statistics units for 2-417
ticks driven by CLK timer 2-333, 2-334
ticks, getting current count 2-336
ticks, incrementing 2-339
ticks, setting increments for 2-334
trace types for 2-471

PRD_getticks function 2-336
PRD_start function 2-337
PRD_stop function 2-338
PRD_tick function 2-339
prescalar register

resetting 2-67
printf function

not callable from SWI or HWI A-10
processor ID 2-131, 2-140, 2-143
processors

multiple 2-143
PROCID 2-143
producer, of data pipe 2-309
program

aborting 2-458
terminating 2-461

properties
data types for 1-5
default values for 1-5

ECM object 2-122
GIO object 2-148
HOOK module 2-165
HOOK object 2-165
MEM object 2-247
naming conventions 1-5

putc function 2-457

Q
QUE module 2-340

configuration properties 2-340
function callability A-7
functions in, list of 1-15, 2-340
global properties 2-341
object properties 2-342

QUE_create function 2-343
QUE_delete function 2-344
QUE_dequeue function 2-345
QUE_empty function 2-346
QUE_enqueue function 2-347
QUE_get function 2-348
QUE_head function 2-349
QUE_insert function 2-350
QUE_new function 2-351
QUE_next function 2-352
QUE_prev function 2-353
QUE_put function 2-354
QUE_remove function 2-355
queue manager 2-340
queues

creating 2-343
deleting 2-344
emptying 2-351
getting element from front of 2-348
inserting element at end of 2-347
inserting element in middle of 2-350
putting element at end of 2-354
removing element from front of 2-345
removing element from middle of 2-355
returning pointer to element at front of 2-349
returning pointer to next element of 2-352
returning pointer to previous element of 2-353
testing if empty 2-346

R
rand function

not callable from SWI or HWI A-10
reader, of data pipe 2-309
readers, MSGQ module 2-273, 2-275
read-time data exchange settings 2-357
realloc function 2-514

not callable from SWI or HWI A-10
Index-9

 Index
real-time clock (see CLK module)
Reference data type 1-5
register conventions B-2
registers

modification in multi-threaded application B-2
saving or restoring across function calls or

interrupts B-2
resource lock

acquiring ownership of 2-211
creating 2-209
deleting 2-210
relinquishing ownership of 2-213

resource lock manager 2-207
RILC register, conventions for B-5
RTDX module 2-357

configuration properties 2-357
function callability A-7
functions in, list of 1-16
object properties 2-359
target configuration properties 2-358

RTDX_channelBusy function 2-360
RTDX_CreateInputChannel 2-361
RTDX_CreateOutputChannel function 2-362
RTDX_disableInput function 2-363
RTDX_disableOutput function 2-364
RTDX_enableInput function 2-365
RTDX_enableOutput function 2-366
RTDX_isInputEnabled function 2-367
RTDX_isOutputEnabled function 2-368
RTDX_read function 2-369
RTDX_readNB function 2-370
RTDX_sizeofInput function 2-371
RTDX_write function 2-372
RTS functions

not calling in HWI or SWI threads 2-176, 2-515
RTS library 2-131

S
scaling operation 2-117
SEM module 2-373

configuration properties 2-373
function callability A-7
functions in, list of 1-16, 2-373
global properties 2-375
object properties 2-375

SEM_count function 2-376
SEM_create function 2-377
SEM_delete function 2-378
SEM_new function 2-379
SEM_pend function 2-380
SEM_pendBinary function 2-381
SEM_post function 2-383
SEM_postBinary function 2-384

SEM_reset 2-385
semaphore manager 2-373
semaphores

binary, signaling 2-384
binary, waiting for 2-381
count of, determining 2-376
count of, resetting 2-385
creating 2-377
deleting 2-378
initializing 2-379
signaling 2-383
waiting for 2-380

signal generators 2-91
signed integers

AND operation 2-3
clearing 2-5
decrementing 2-7
incrementing 2-9
OR operation 2-11
setting 2-13

single-processor application
converting to multiprocessor application 2-113

SIO module 2-386
configuration properties 2-387
function callability A-8
functions in, list of 1-17
functions in. list of 2-386
global properties 2-388
object properties 2-388

SIO/DEV model for device drivers 2-72
SIO_bufsize function 2-392
SIO_create function 2-393
SIO_ctrl function 2-396
SIO_delete function 2-397
SIO_flush function 2-398
SIO_get function 2-399
SIO_idle function 2-401
SIO_issue function 2-402
SIO_ISSUERECLAIM streaming model

DPI and 2-112
SIO_put function 2-404
SIO_ready function 2-406
SIO_reclaim function 2-407
SIO_reclaimx function 2-410
SIO_segid function 2-411
SIO_select function 2-412
SIO_staticbuf function 2-414
sleep

for tasks 2-509
software generator driver 2-74
software interrupt manager 2-426
software interrupts

address of currently executing interrupt 2-452
attributes of, returning 2-441
attributes of, setting 2-453
Index-10

Index
callable functions A-2
checking to see if in context of 2-446
clearing 2-435
context of, determining if in 2-446
deleting 2-438
disabled, manipulating variables while 2-2
enabling 2-440
mailbox for, clearing bits 2-432, 2-434
mailbox for, decrementing 2-437
mailbox for, incrementing 2-445
mailbox for, OR mask with value in 2-447, 2-448
mailbox for, returning value of 2-443
posting 2-447, 2-448, 2-449
priority mask, returning 2-444
raising priority of 2-450
restoring priority of 2-451

split driver 2-115
sprintf function

not callable from SWI or HWI A-10
srand function

not callable from SWI or HWI A-10
SSR register, conventions for B-5
stack

allocating for tasks 2-483
checking for overflow 2-486

stack size for tasks 2-481, 2-483
stackable gather/scatter driver 2-96
stackable overlap driver 2-108
stackable split driver 2-115
stackable streaming transformer driver 2-117
STATICPOOL allocator 2-329
statistics

resetting values of 2-423
saving values for delta 2-424
tracing 2-471
updating 2-421
updating with delta 2-422

statistics object manager 2-416
status bit TSR.INT B-5
std.h library

functions in 2-514
macros in, list of 1-20

stdlib.h library
functions in 2-514
functions in, list of 1-20

stream I/O manager 2-386
streams

acquiring static buffer from 2-414
closing 2-397
device for, determining if ready 2-406
device for, selecting ready device 2-412
device-dependent control operation, issuing 2-396
flushing 2-398
getting buffer from 2-399
idling 2-401

memory segment used by, returning 2-411
opening 2-393
putting buffer to 2-404
requesting buffer from 2-407, 2-410
sending buffer to 2-402
size of buffers used by, determining 2-392

strftime function
not callable from SWI or HWI A-10

String data type 1-5
strings 1-5

enumerated 1-5
STS module 2-416

configuration properties 2-416
function callability A-8
functions in, list of 1-17, 2-416
global properties 2-419
object properties 2-419

STS_add function 2-421
STS_delta function 2-422
STS_reset function 2-423
STS_set function 2-424
sum statistics for data series 2-417
SWE instruction C-2
SWI module 2-426

configuration properties 2-427
function callability A-8
functions in, list of 1-18, 2-426
global properties 2-430
object properties 2-430
statistics units for 2-417
trace types for 2-471

SWI_andn function 2-432
SWI_andnHook function 2-434
SWI_create function 2-435
SWI_dec function 2-437
SWI_delete function 2-438
SWI_enable function 2-440
SWI_getattrs function 2-441
SWI_getmbox function 2-443
SWI_getpri function 2-444
SWI_inc function 2-445
SWI_isSWI function 2-446
SWI_or function 2-447
SWI_orHook function 2-448
SWI_post function 2-449
SWI_raisepri function 2-450
SWI_restorepri function 2-451
SWI_self function 2-452
SWI_setattrs function 2-453
synchronous read 2-157
synchronous write 2-161
SYS module 2-455

configuration properties 2-455
function callability A-9
functions in, list of 1-18, 2-455
Index-11

 Index
global properties 2-456
object properties 2-457

SYS_abort function 2-457, 2-458
SYS_atexit function 2-459
SYS_EALLOC status A-11
SYS_EBADIO status A-11
SYS_EBADOBJ status A-11
SYS_EBUSY status A-11
SYS_EDEAD status A-11
SYS_EDOMAIN status A-11
SYS_EEOF status A-11
SYS_EFREE status A-11
SYS_EINVAL status A-11
SYS_EMODE status A-11
SYS_ENODEV status A-11
SYS_ENOTFOUND status A-11
SYS_ENOTIMPL status A-11
SYS_error function 2-457, 2-460
SYS_ETIMEOUT status A-11
SYS_EUSER status A-11
SYS_exit function 2-457, 2-461
SYS_OK status A-11
SYS_printf function 2-457, 2-462
SYS_putchar function 2-457, 2-470
SYS_sprintf function 2-464
SYS_vprintf function 2-457, 2-466
SYS_vsprintf 2-468
system clock 2-52

choosing module driving 2-482
incrementing in TSK module 2-502, 2-511
PRD module driving 2-482
returning current value of 2-512

system clock manager 2-51
system events

exceptions C-2
system log 2-214

writing error message to 2-220
writing program-supplied message to 2-224

system settings, managing 2-455

T
target board name 2-131
task environment

setting 2-504
task manager 2-476
task scheduler

disabling 2-493
enabling 2-494

tasks
callable functions A-2
checking if in context of 2-501
creating 2-487
currently executing, handle of 2-503

default priority of 2-481
delaying execution of (sleeping) 2-509
deleting 2-490
environment pointer for, getting 2-496
error number for, getting 2-497
error number for, setting 2-505
execution priority of, setting 2-506
handle of STS object, getting 2-500
incrementing system clock for 2-502, 2-511
name of, getting 2-498
not shutting down system during 2-485
priority of 2-484, 2-499
resetting time statistics for 2-507
status of, retrieving 2-510
terminating 2-495
updating time statistics for 2-491
yielding to task of equal priority 2-513

Tconf
underscore preceding C function names 1-4, 2-60,

2-205, 2-430
terminating program 2-461
threads

idle thread manager 2-203
interrupt threads 2-429
register modification and B-2
RTS functions callable from 2-515

tick count, determining 2-336
tick counter (see PRD module, ticks)
timer 2-51, 2-52

counts per millisecond 2-61
resetting 2-67
specifying 2-54

timer counter 2-53
timer mode 2-54
timer period register

resetting 2-67
timestamps 2-216
trace buffer

memory segment for 2-456
size of 2-456

trace manager 2-471
tracing

disabling 2-473
enabling 2-474
querying enabled trace types 2-475

transform function, DGS driver 2-96
transformer driver 2-117
transformers 2-117
transports array 2-143, 2-279
transports, MSGQ module 2-275
TRC module 2-471

function callability A-9
functions in, list of 1-19, 2-471

TRC_disable function 2-473
TRC_enable function 2-474
Index-12

Index
TRC_query function 2-475
true/false values 1-5
TSCH register, conventions for B-6
TSCL register, conventions for B-6
TSK module 2-476

configuration properties 2-477
function callability A-9
functions in, list of 1-19, 2-476
global properties 2-481
object properties 2-483
statistics units for 2-417
system clock driven by 2-482, 2-502, 2-511
trace types for 2-471

TSK_checkstacks function 2-486
TSK_create function 2-487
TSK_delete function 2-490
TSK_deltatime function 2-491
TSK_disable function 2-493
TSK_enable function 2-494
TSK_exit function 2-495
TSK_getenv function 2-496
TSK_geterr function 2-497
TSK_getname function 2-498
TSK_getpri function 2-499
TSK_getsts function 2-500
TSK_isTSK function 2-501
TSK_itick function 2-502
TSK_self function 2-503
TSK_setenv function 2-504
TSK_seterr function 2-505
TSK_setpri function 2-506
TSK_settime function 2-507
TSK_sleep function 2-509
TSK_stat function 2-510
TSK_tick function 2-511
TSK_time function 2-512
TSK_yield function 2-513
TSR register, conventions for B-5
TSR.INT status bit B-5

U
u16tou32 function 2-98
u32tou16 function 2-98
u32tou8 function 2-98
u8toi16 function 2-98
u8tou32 function 2-98
underscore

preceding C function names 1-4, 2-60, 2-205, 2-
430

unsigned integers 1-5
AND operation 2-4
clearing 2-6
decrementing 2-8
incrementing 2-10
OR operation 2-12
setting 2-14

V
variables

manipulating with interrupts disabled 2-2
vectID parameter 2-196
vfprintf function

not callable from SWI or HWI A-10
vprintf function

not callable from SWI or HWI A-10
vsprintf function

not callable from SWI or HWI A-10

W
wait for cache operation 2-26
writeback cache 2-16
writer, of data pipe 2-309
writers, MSGQ module 2-273, 2-276
WUGEN registers 2-185, 2-187, 2-192, 2-199, 2-200
Index-13

	TMS320C6000 DSP/BIOS 5.x Application Programming Interface (API) Reference Guide
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	Contents
	Figures
	Tables

	API Functional Overview
	1.1 DSP/BIOS Modules
	1.2 Naming Conventions
	1.3 Assembly Language Interface Overview
	1.4 DSP/BIOS Tconf Overview
	1.5 List of Operations

	Application Program Interface
	2.1 ATM Module
	ATM_andi
	ATM_andu
	ATM_cleari
	ATM_clearu
	ATM_deci
	ATM_decu
	ATM_inci
	ATM_incu
	ATM_ori
	ATM_oru
	ATM_seti
	ATM_setu

	2.2 BCACHE Module
	BCACHE_getMar
	BCACHE_getMode
	BCACHE_getSize
	BCACHE_inv
	BCACHE_invL1pAll
	BCACHE_setMar
	BCACHE_setMode
	BCACHE_setSize
	BCACHE_wait
	BCACHE_wb
	BCACHE_wbAll
	BCACHE_wbInv
	BCACHE_wbInvAll

	2.3 BUF Module
	BUF_alloc
	BUF_create
	BUF_delete
	BUF_free
	BUF_maxbuff
	BUF_stat

	2.4 C62 and C64 Modules
	C62_disableIER
	C64_disableIER
	C62_enableIER
	C64_enableIER
	C62_plug
	C64_plug

	2.5 CLK Module
	CLK_countspms
	CLK_cpuCyclesPerHtime
	CLK_cpuCyclesPerLtime
	CLK_gethtime
	CLK_getltime
	CLK_getprd
	CLK_reconfig
	CLK_start
	CLK_stop

	2.6 DEV Module
	DEV_createDevice
	DEV_deleteDevice
	DEV_match
	Dxx_close
	Dxx_ctrl
	Dxx_idle
	Dxx_init
	Dxx_issue
	Dxx_open
	Dxx_ready
	Dxx_reclaim
	DGN Driver
	DGS Driver
	DHL Driver
	DIO Adapter
	DNL Driver
	DOV Driver
	DPI Driver
	DST Driver
	DTR Driver

	2.7 ECM Module
	ECM_disableEvent
	ECM_dispatch
	ECM_dispatchPlug
	ECM_enableEvent

	2.8 GBL Module
	GBL_getClkin
	GBL_getFrequency
	GBL_getProcId
	GBL_getVersion
	GBL_setFrequency
	GBL_setProcId

	2.9 GIO Module
	GIO_abort
	GIO_control
	GIO_create
	GIO_delete
	GIO_flush
	GIO_new
	GIO_read
	GIO_submit
	GIO_write

	2.10 HOOK Module
	HOOK_getenv
	HOOK_setenv

	2.11 HST Module
	HST_getpipe

	2.12 HWI Module
	HWI_applyWugenMasks
	HWI_disable
	HWI_disableWugen
	HWI_dispatchPlug
	HWI_enable
	HWI_enableWugen
	HWI_enter
	HWI_eventMap
	HWI_exit
	HWI_getWugenMasks
	HWI_ierToWugenMasks
	HWI_isHWI
	HWI_restore

	2.13 IDL Module
	IDL_run

	2.14 LCK Module
	LCK_create
	LCK_delete
	LCK_pend
	LCK_post

	2.15 LOG Module
	LOG_disable
	LOG_enable
	LOG_error
	LOG_event
	LOG_event5
	LOG_message
	LOG_printf
	LOG_printf4
	LOG_reset

	2.16 MBX Module
	MBX_create
	MBX_delete
	MBX_pend
	MBX_post

	2.17 MEM Module
	MEM_alloc
	MEM_calloc
	MEM_define
	MEM_free
	MEM_getBaseAddress
	MEM_increaseTableSize
	MEM_redefine
	MEM_stat
	MEM_undefine
	MEM_valloc

	2.18 MPC Module
	MPC_getPA
	MPC_getPageSize
	MPC_getPrivMode
	MPC_setBufferPA
	MPC_setPA
	MPC_setPrivMode

	2.19 MSGQ Module
	MSGQ_alloc
	MSGQ_close
	MSGQ_count
	MSGQ_free
	MSGQ_get
	MSGQ_getAttrs
	MSGQ_getDstQueue
	MSGQ_getMsgId
	MSGQ_getMsgSize
	MSGQ_getSrcQueue
	MSGQ_isLocalQueue
	MSGQ_locate
	MSGQ_locateAsync
	MSGQ_open
	MSGQ_put
	MSGQ_release
	MSGQ_setErrorHandler
	MSGQ_setMsgId
	MSGQ_setSrcQueue

	2.20 PIP Module
	PIP_alloc
	PIP_free
	PIP_get
	PIP_getReaderAddr
	PIP_getReaderNumFrames
	PIP_getReaderSize
	PIP_getWriterAddr
	PIP_getWriterNumFrames
	PIP_getWriterSize
	PIP_peek
	PIP_put
	PIP_reset
	PIP_setWriterSize

	2.21 POOL Module
	2.22 PRD Module
	PRD_getticks
	PRD_start
	PRD_stop
	PRD_tick

	2.23 QUE Module
	QUE_create
	QUE_delete
	QUE_dequeue
	QUE_empty
	QUE_enqueue
	QUE_get
	QUE_head
	QUE_insert
	QUE_new
	QUE_next
	QUE_prev
	QUE_put
	QUE_remove

	2.24 RTDX Module
	RTDX_channelBusy
	RTDX_CreateInputChannel
	RTDX_CreateOutputChannel
	RTDX_disableInput
	RTDX_disableOutput
	RTDX_enableInput
	RTDX_enableOutput
	RTDX_isInputEnabled
	RTDX_isOutputEnabled
	RTDX_read
	RTDX_readNB
	RTDX_sizeofInput
	RTDX_write

	2.25 SEM Module
	SEM_count
	SEM_create
	SEM_delete
	SEM_new
	SEM_pend
	SEM_pendBinary
	SEM_post
	SEM_postBinary
	SEM_reset

	2.26 SIO Module
	SIO_bufsize
	SIO_create
	SIO_ctrl
	SIO_delete
	SIO_flush
	SIO_get
	SIO_idle
	SIO_issue
	SIO_put
	SIO_ready
	SIO_reclaim
	SIO_reclaimx
	SIO_segid
	SIO_select
	SIO_staticbuf

	2.27 STS Module
	STS_add
	STS_delta
	STS_reset
	STS_set

	2.28 SWI Module
	SWI_andn
	SWI_andnHook
	SWI_create
	SWI_dec
	SWI_delete
	SWI_disable
	SWI_enable
	SWI_getattrs
	SWI_getmbox
	SWI_getpri
	SWI_inc
	SWI_isSWI
	SWI_or
	SWI_orHook
	SWI_post
	SWI_raisepri
	SWI_restorepri
	SWI_self
	SWI_setattrs

	2.29 SYS Module
	SYS_abort
	SYS_atexit
	SYS_error
	SYS_exit
	SYS_printf
	SYS_sprintf
	SYS_vprintf
	SYS_vsprintf
	SYS_putchar

	2.30 TRC Module
	TRC_disable
	TRC_enable
	TRC_query

	2.31 TSK Module
	TSK_checkstacks
	TSK_create
	TSK_delete
	TSK_deltatime
	TSK_disable
	TSK_enable
	TSK_exit
	TSK_getenv
	TSK_geterr
	TSK_getname
	TSK_getpri
	TSK_getsts
	TSK_isTSK
	TSK_itick
	TSK_self
	TSK_setenv
	TSK_seterr
	TSK_setpri
	TSK_settime
	TSK_sleep
	TSK_stat
	TSK_tick
	TSK_time
	TSK_yield

	2.32 std.h and stdlib.h functions

	Function Callability and Error Tables
	A.1 Function Callability Table
	A.2 DSP/BIOS Error Codes

	C6000 DSP/BIOS Register Usage
	B.1 Overview
	B.2 Register Conventions

	C64x+ Exception Support
	C.1 C64x+ Exception Support
	C.1.1 About C64x+ Exceptions

	C.2 Using the DSP/BIOS EXC Module
	C.2.1 Enabling and Disabling EXC Support
	C.2.2 Out-of-the-Box EXC Behavior
	C.2.3 Extending EXC Exception Processing
	C.2.4 Interactions with the MPC Module
	C.2.5 Retrieving General Exception Information

	C.3 Data Types and Macros
	C.4 EXC Module
	C.4.1 EXC_dispatch
	C.4.2 EXC_exceptionHandler
	C.4.3 EXC_exceptionHook
	C.4.4 EXC_internal
	C.4.5 EXC_internalHook
	C.4.6 EXC_external
	C.4.7 EXC_externalHook
	C.4.8 EXC_nmi
	C.4.9 EXC_nmiHook
	C.4.10 EXC_getLastStatus
	C.4.11 EXC_clearLastStatus
	C.4.12 EXC_evtExpEnable
	C.4.13 EXC_evtEvtClear

	C.5 _MPC Module
	C.5.1 _MPC_exceptionHandler
	C.5.2 _MPC_internalHandler
	C.5.3 _MPC_externalHandler
	C.5.4 _MPC_userHook
	C.5.5 _MPC_getLastMPFAR
	C.5.6 _MPC_getLastMPFSR

	Index

