

Template Version 1.2

Version 0.30 Page 1 of 22

DESIGN DOCUMENT

DSP/BIOS™ LINK

ENHANCED MULTIPROCESS SUPPORT

LNK 157 DES

Version 0.30

Page 2 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

This page has been intentionally left blank.

Page 3 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

This page has been intentionally left blank.

Page 5 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

TABLE OF CONTENTS

1 Introduction ... 6
1.1 Purpose & Scope ... 6
1.2 Terms & Abbreviations ... 6
1.3 References ... 6
1.4 Overview.. 6

2 Requirements ... 7

3 Assumptions... 8

4 Constraints ... 8

5 High Level Design... 9
5.1 Features... 9
5.2 Use case scenario.. 9
5.3 Design details ..10

6 Low Level Design.. 13
6.1 Constants & Enumerations...13
6.2 Typedefs & Data Structures ...13
6.3 API Definition...15

Page 6 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

1 Introduction

1.1 Purpose & Scope
This document describes the design of enhanced multi-process support for

DSP/BIOS™ LINK.

The document is targeted at the development team of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. LNK 001 PRD DSP/BIOS™ LINK Generic Product Requirement

Document

2. LNK 147 PRD DSP/BIOS™ LINK Version-specific Product

Requirement Document

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

This module provides the design for enhanced multi-process support within DSPLINK.

This allows multiple applications/processes to use DSPLINK independently, and

without being aware of each other.

Page 7 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

2 Requirements
SR110. (1.50) Enhanced multi-process support

DSP/BIOS Link must offer enhanced multi-process support. This must

includes the following:

- Multiple unrelated processes must be able to come and go. There must be

no hidden dependencies based on which process, for example, first used

PROC_attach as there are in the current version. The first process to attach to

the DSP must not be required to be the last to detach.

 * A reference count shall be used to ensure that the last PROC_detach ()

cleans up the system instead of processor ownership checks.

- Multiple independent applications must be able to gain access to, and utilize

the resources provided by the DSP for the PROC module.

 * Multiple applications must be able to make calls to PROC_load () or

PROC_start (). However, based on reference count, and if the applications are

attempting to load the same DSP executable, a corresponding status code

must be returned instead of re-loading the DSP. Reference count shall be

checked for PROC_start () and PROC_stop () also.

Page 8 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

3 Assumptions
None.

4 Constraints
1. Since PrOS only supports threads and not processes, PROC_attach () must not be

called for each thread in PrOS applications.

Page 9 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

5 High Level Design
Multiple applications may wish to use the services provided by DSPLINK to control

and communicate with the DSP. In such scenarios, with existing versions of

DSP/BIOS™ LINK, the applications must be integrated by a system integrator, to

ensure that the first application initializes DSPLINK, and loads and starts the DSP

before the second application can communicate with the DSP.

It is desirable to avoid such integration and allow independently developed

applications to use DSPLINK without being aware of other applications doing the

same.

In addition, if multiple different applications using DSPLINK are running on the target

processor, a crash in one of these must not affect the execution of the other

application.

5.1 Features
The following features shall be provided for enhanced multi-process support:

1. An application can be written to execute singly using DSPLINK to control and

communicate with the DSP.

2. The same application can be used without any changes in the applications source

code, to run simultaneously along with another application also using DSPLINK.

The only consideration to be used while writing the application, is that the

DSPLINK resources (e.g RingIO/MSGQ names) used by the applications must be

unique for the system.

3. The applications shall use the same integrated DSP executable containing DSP-

side content required for all the co-existing GPP-side applications.

5.2 Use case scenario
The following use-case scenario shall be supported:

Two applications contain source as follows:

PROC_setup (…) ;
PROC_attach (…) ;
POOL_open (poolId, poolParams) ;
PROC_load (…, dspExec, …) ;
PROC_start (…) ;
/* Application-specific code */
PROC_stop (…) ;
POOL_close (…) ;
PROC_detach (…) ;
PROC_destroy (…) ;

Both the applications can start-up and run independently if run singly. They can also

start-up and run independently if run at the same time on Linux.

The behavior seen by the applications shall be the same irrespective of the sequence

in which the calls actually get made to DSPLINK. An overview of the activities

occurring in each API, depending on the sequence in which it gets called, is given

below. It may not be necessary that the first occurrence for all APIs occurs only for

the first application.

Page 10 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

API First occurrence Second occurrence

PROC_setup Sets up GPP-side of DSPLINK No activity. Does not result in

actually allocating any resources

for DSPLINK.

PROC_attach Performs all activities

required to be able to access

the DSP resources from this

process.

Performs all activities required to

be able to access the DSP

resources from this process.

POOL_open Configures the specified pool

with the specified parameters

If the same pool is opened, it is

made available to the process. No

change is made in the pool

configuration and the parameters

are ignored.

PROC_load Loads the specified DSP

executable on the DSP.

If the same DSP executable is

specified, the DSP state is not

changed, and the executable is not

actually loaded on the DSP.

PROC_start Starts the DSP executing

from its entry point.

The DSP state is not changed, and

this call does not result in actually

starting the DSP execution.

PROC_stop Does not actually stop the

execution of the DSP, since it

is still being used by the

second application.

Stops execution of the DSP and

places it in reset.

POOL_close Does not result in actually

closing the pool. Only makes

the pool unavailable to this

process.

Closes the pool and makes it

unavailable to any process/DSP.

PROC_detach Releases all resources that

were acquired for this process

in PROC_attach.

Releases all resources that were

acquired for this process in

PROC_attach.

PROC_destroy No activity. Does not result in

freeing any resources in

DSPLINK.

Releases all allocated resources on

the GPP-side of DSPLINK. Following

this, no further calls can be made

to DSPLINK APIs.

5.3 Design details

5.3.1 Changes to ownership concept:

1. The first process to attach shall not be designated as the owner of the DSP.

2. PROC_setup () /PROC_destroy () : PMGR_IsSetup flag shall be replaced by

PMGR_SetupRefCount reference count. This reference count shall be incremented

in PROC_setup () and decremented in PROC_destroy . If refCount is 0, actual

setup is done. When the reference count reaches 0, actual destroy is done.

3. PROC_attach () /PROC_detach () : PMGR_PROC_Object shall be modified to

include an attachRefCount field. This reference count shall be incremented in

Page 11 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

PROC_attach () and decremented in PROC_detach () . If reference count is 0,

actual attach is done. When reference count reaches 0, actual detach is done,

and DSP is powered down if power control is enabled in the configuration.

4. PROC_load () : The DSP state shall be used to identify whether it has been

already loaded. If already loaded, this call does not result in any actual load on

the DSP.

5. PROC_start () /PROC_stop () : PMGR_PROC_Object shall be modified to include a

startRefCount field. The reference count shall be incremented in PROC_start ()

and decremented in PROC_stop () . If reference count is 0, actual start is done.

When reference count reaches 0, actual stop is done.

5.3.2 Multi-process cleanup on Linux:

To support cleanup in a multi-processing scenario, the PROC resources allocated by

the process getting terminated shall be freed during cleanup. The system state shall

not be polluted, and other applications can continue using DSPLINK to communicate

with the DSP.

For every process, PROC, MSGQ and POOL setup and shutdown calls shall be

tracked. It shall be tracked whether the following APIs have been called by the

process:

� PROC_setup
� PROC_attach
� POOL_open (for all the max. possible pools)
� PROC_start
� MSGQ_transportOpen
� MSGQ_transportClose
� PROC_stop
� POOL_close
� PROC_detach
� PROC_destroy

With this tracking, it shall be checked in shutdown APIs, whether the corresponding

startup call had been made for that process. This shall ensure that an errant process

does not corrupt the reference count for each API, resulting in causing a crash in

other processes.

There are two scenarios, for which cleanup is to be performed:

1. Abnormal process termination: When an application process ends abnormally,

all threads within it are killed. This can happen for any of the following scenarios:

� Application crash

� Segmentation fault

� Any other crash resulting in kernel still remaining usable

� User kills the process with Ctrl C

� User kills the process through kill command

In all these scenarios, it must be possible to:

� Continue execution of other applications using DSPLINK.

� Perform basic shutdown calls for PROC, POOL and MSGQ to free these

basic resources allocated by this process.

Page 12 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

� Minimize memory or resource leaks.

� Allow stopping & restarting DSPLINK without having to reinsert the kernel

module or reboot the hardware.

On Linux, this shall be done by registering a signal handler for process

termination signals. This signal handler shall make all shutdown API calls.

� Signal handling shall be enabled by default

� Whether DSPLINK should handle signals for cleanup shall be dynamically

configurable

� The signals to be handled shall be dynamically configurable

2. Normal exit: When an application exits, it performs the shutdown calls for

PROC, POOL and MSGQ to free these basic resources allocated by it. If this is not

done, the kernel resources and shared memory resources become unavailable to

other applications, and are lost. DSPLINK shall allow applications to exit, making

a minimum of exit API calls to free up all resources allocated by that process.

On Linux, this shall be done by registering an atexit handler that makes all

shutdown APIs calls.

Page 13 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

6 Low Level Design

6.1 Constants & Enumerations
None.

6.2 Typedefs & Data Structures

6.2.1 PROC_CurStatus

This structure defines the current status of the PROC component for each process.

Definition
typedef struct PROC_CurStatus_tag {
 Bool isSetup ;
 Bool isAttached [MAX_DSPS] ;
 Bool isStarted [MAX_DSPS] ;
#if defined (POOL_COMPONENT)
 Bool poolIsOpened [MAX_POOLENTRIES] ;
#endif /* if defined (POOL_COMPONENT) */
#if defined (MSGQ_COMPONENT)
 Bool mqtIsOpened [MAX_DSPS] ;
#endif /* if defined (MSGQ_COMPONENT) */
} PROC_CurStatus ;

Fields

isSetup Indicates whether PROC has been setup in this process.

isAttached Indicates whether PROC has been attached in this process for

the specified processor ID.

isStarted Indicates whether PROC has been started in this process for

the specified processor ID.

poolIsOpened Indicates whether POOL has been opened in this process for

the specified pool ID. Only defined if POOL component is
enabled.

mqtIsOpened Indicates whether MSGQ transport has been opened in this

process for the specified processor ID. Only defined if MSGQ
component is enabled.

Comments

This structure is used for tracking the PROC, MSGQ and CHNL startup and shutdown

API calls made in each process. This is required to ensure that if a process has not

called the startup API, it should not be allowed to call the corresponding shutdown

API.

Constraints

None.

See Also
PROC_Object

Page 14 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

6.2.2 PROC_Object

This structure defines the PROC object, which contains state information required by

the PROC user-side component.

Definition
typedef struct PROC_Object_tag {
 SYNC_USR_CsObject * syncCsObj ;
 PROC_CurStatus curStatus ;
} PROC_Object ;

Fields

syncCsObj Mutex for protecting PROC operations in user-space.

curStatus Current status for the components for each process.

Comments

This object is maintained in user space for each process and contains information for

protecting and tracking user-space resources.

Constraints

None.

See Also
PROC_CurStatus

Page 15 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

6.3 API Definition

6.3.1 PROC_setup

This function sets up the necessary data structures for the PROC component.

Syntax
DSP_STATUS PROC_setup (LINKCFG_Object * linkCfg) ;

Arguments

IN LINKCFG_Object * linkCfg

Pointer to the configuration information structure for DSP/BIOS™ LINK.

If NULL, indicates that default configuration should be used.

Return Value

DSP_SOK Operation successfully completed.

DSP_SALREADYSETUP The DSPLINK driver has already been setup by some

other application/process.

DSP_EALREADYSETUP The DSPLINK driver is already setup in this process.

DSP_ECONFIG Error in specified dynamic configuration. Please check

CFG_<PLATFORM>.c

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function is the first DSPLINK API that applications must call before they can

make calls to any other DSPLINK APIs. The only DSPLINK API that can be called

before PROC_setup is PROC_getState () .

This API initializes the DSPLINK driver. This API can be successfully called once by

every process in the system. However, it is not a must for every application/process

to make the call, if at least one process has initialized the DSPLINK driver before the

other applications/processes.

If this API is called more than once in a single process (even if called by different

threads within the process), the subsequent calls return an error.

Constraints

1. The calling applications must ensure that the contents of the dynamic

configuration structure passed to this API are correct.

2. If called by multiple applications, the calling applications must pass the same

dynamic configuration structure to this API. Otherwise it can result in

indeterminate system behavior.

See Also
PROC_destroy ()

Page 16 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

6.3.2 PROC_destroy

This function destroys the data structures for the PROC component, allocated earlier

by a call to PROC_setup () .

Syntax
DSP_STATUS PROC_destroy (Void) ;

Arguments

None.

Return Value

DSP_SOK Operation successfully completed.

DSP_SDESTROYED The final client has finalized the driver.

DSP_EACCESSDENIED The DSPLINK driver was not setup in this process.

DSP_ESETUP The DSPLINK driver was not setup.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function is the last DSPLINK API that applications must call after they have no

further need to use DSPLINK services. The only DSPLINK API that can be called

before PROC_setup is PROC_getState () .

This API finalizes the DSPLINK driver. This API can be successfully called once by

every process in the system. However, if the PROC_setup () API was not called in

the process, PROC_destroy () must not be called.

If this API is called more than once in a single process (even if called by different

threads within the process), the subsequent calls return an error.

Constraints

None.

See Also
PROC_setup ()

Page 17 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

6.3.3 PROC_attach

This function attaches the client to the specified DSP and also initializes the DSP (if

required).

Syntax
DSP_STATUS PROC_attach (ProcessorId procId, PROC_ Attrs * attr) ;

Arguments

IN ProcessorId procId

DSP identifier.

IN OPT PROC_Attrs * attr

Optional attributes for the processor on which attach is to be done.

Return Value

DSP_SOK Operation successfully completed.

DSP_SALREADYSETUP Successful attach. Also, indicates that another client

has already attached to DSP.

DSP_EINVALIDARG Invalid argument.

DSP_EACCESSDENIED Not allowed to access the DSP.

DSP_EALREADYCONNECTED Another thread of the same process has already

attached to the processor.

DSP_EWRONGSTATE Incorrect state for completing the requested

operation.

DSP_EFAIL General failure.

Comments

When any client wishes to use a specific DSP, it first needs to attach to the DSP by

calling this API specifying the required DSP ID.

Every process that needs to use DSPLINK with the specific DSP must make a call to

this API.

This API carries out all initialization required to be able to use DSPLINK with the

specified DSP ID from the calling process. This API can be successfully called once by

every process in the system. If this API is called more than once in a single process

(even if called by different threads within the process), the subsequent calls return

an error.

Constraints

PROC_setup () must be called by at least one client in the system before any

process can call this API.

See Also
PROC_detach ()

Page 18 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

6.3.4 PROC_detach

This function detaches the client from specified processor. If the caller is the owner

of the processor, this function releases all the resources that this component uses

and puts the DSP in an unusable state (from application perspective).

Syntax
DSP_STATUS PROC_detach (ProcessorId procId) ;

Arguments

IN ProcessorId procId

DSP identifier.

Return Value

DSP_SOK Operation successfully completed.

DSP_SDETACHED The final process has detached from the specific

processor.

DSP_EINVALIDARG Invalid argument.

DSP_ESETUP The DSPLINK driver was not setup.

DSP_EACCESSDENIED Not allowed to access the DSP.

DSP_EATTACHED Not attached to the target processor.

DSP_EWRONGSTATE Incorrect state for completing the requested

operation.

DSP_EFAIL General failure.

Comments

This function is the last DSPLINK API that all applications/processes must call after

they have no further need to use DSPLINK services for a specific processor ID. Once

this API has been called, the process cannot perform any further activities specific to

the DSP.

This API finalizes the DSPLINK driver for the specified processor ID in the calling

process. This API can be successfully called once by every process in the system.

However, if the PROC_attach () API was not called in the process for the specific

processor ID, PROC_detach () must not be called.

If this API is called more than once in a single process (even if called by different

threads within the process), the subsequent calls return an error.

Constraints

None.

See Also
PROC_attach ()

Page 19 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

6.3.5 PROC_load

This function loads the specified DSP executable on the target DSP.

Syntax
DSP_STATUS PROC_load (ProcessorId procId,
 Char8 * imagePath,
 Uint32 argc,
 Char8 ** argv) ;

Arguments

IN ProcessorId procId

DSP identifier.

IN Char8 * imagePath

Full path to the image file to load on DSP.

IN Uint32 argc

Number of argument to be passed to the base image upon start.

IN Char8 ** argv

Arguments to be passed to DSP main application.

Return Value

DSP_SOK Operation successfully completed.

DSP_SALREADYLOADED The specified processor has already been loaded.

DSP_EINVALIDARG Invalid argument.

DSP_EACCESSDENIED Not allowed to access the DSP.

DSP_ESETUP The DSPLINK driver has not been setup.

DSP_EATTACHED This process has not attached to the specified

processor.

DSP_EPENDING H/W specific error. The request can’t be serviced at
this point of time.

DSP_EFILE Invalid base image.

DSP_ESIZE Size of the .args section is not sufficient to hold the

passed arguments.

DSP_EWRONGSTATE Incorrect state for completing the requested

operation.

DSP_EFAIL General failure.

Page 20 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

Comments

Any client that wishes to use the DSP can call this API to load the DSP executable on

it. However, only the first client to call this API actually loads the DSP. The

subsequent calls are ignored.

Constraints

All applications using a specific DSP at the same time must ensure that they use the

same base DSP executable.

See Also
PROC_start ()

Page 21 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

6.3.6 PROC_start

This function starts execution of the loaded code on DSP from the starting point

specified in the DSP executable loaded earlier by call to PROC_load () .

Syntax
DSP_STATUS PROC_start (ProcessorId procId) ;

Arguments

IN ProcessorId procId

DSP identifier.

Return Value

DSP_SOK Operation successfully completed.

DSP_SALREADYSTARTED The specified processor has already been started.

DSP_EINVALIDARG Invalid argument.

DSP_EPENDING H/W specific error. The request can’t be serviced at

this point of time.

DSP_EACCESSDENIED Not allowed to access the DSP.

DSP_ESETUP The DSPLINK driver has not been setup.

DSP_EATTACHED This process has not attached to the specified

processor.

DSP_EWRONGSTATE Incorrect state for completing the requested

operation.

DSP_ECONFIG The specified processor could not be started. Driver

handshake failed due to DSP driver
initialization/configuration failure.

DSP_EFAIL General failure.

Comments

Any client that wishes to use the DSP can call this API to start the DSP executable on

it. However, only the first client to call this API actually starts the DSP. The

subsequent calls are ignored.

Constraints

All applications using a specific DSP at the same time must ensure that they use the

same base DSP executable.

See Also
PROC_load ()
PROC_stop ()

Page 22 of 22 Version 0.30

DSP/BIOS™ LINK

LNK 157 DES

ENHANCED MULTIPROCESS SUPPORT

6.3.7 PROC_stop

This function stops execution of the specified DSP. This API may place the DSP in

reset.

Syntax
DSP_STATUS PROC_stop (ProcessorId procId) ;

Arguments

IN ProcessorId procId

DSP identifier.

Return Value

DSP_SOK Operation successfully completed.

DSP_SSTOPPED The final process has stopped the DSP execution.

DSP_EINVALIDARG Invalid argument.

DSP_EACCESSDENIED Not allowed to access the DSP.

DSP_ESETUP The DSPLINK driver has not been setup.

DSP_EATTACHED This process has not attached to the specified

processor.

DSP_EWRONGSTATE Incorrect state for completing the requested
operation.

DSP_ESTARTED The specified processor has not been started.

DSP_EFAIL General failure.

Comments

Once a process has completed its processing requiring transfers with the DSP, it can

call this API to stop the execution of the DSP with this API. However, it is not

essential to call this API if it has been previously called by some other

application/process.

Only the last client to call this API actually stops the DSP. The earlier calls are

ignored.

If the PROC_start () API was not called in the process, PROC_stop () must not be

called.

If this API is called more than once in a single process (even if called by different

threads within the process), the subsequent calls return an error.

Constraints

None.

See Also
PROC_load ()

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	Features
	Use case scenario
	Design details
	Changes to ownership concept:
	Multi-process cleanup on Linux:

	Low Level Design
	Constants & Enumerations
	Typedefs & Data Structures
	PROC_CurStatus
	PROC_Object

	API Definition
	PROC_setup
	PROC_destroy
	PROC_attach
	PROC_detach
	PROC_load
	PROC_start
	PROC_stop

